
SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 1–14

SMOOTHING-NORM PRECONDITIONING FOR
REGULARIZING MINIMUM-RESIDUAL METHODS∗

PER CHRISTIAN HANSEN† AND TOKE KOLDBORG JENSEN†‡

Abstract. When GMRES (or a similar minimum-residual algorithm such as RRGMRES, MIN-
RES, or MR-II) is applied to a discrete ill-posed problem with a square matrix, in some cases the
iterates can be considered as regularized solutions. We show how to precondition these methods in
such a way that the iterations take into account a smoothing norm for the solution. This technique
is well established for CGLS, but it does not immediately carry over to minimum-residual methods
when the smoothing norm is a seminorm or a Sobolev norm. We develop a new technique which
works for any smoothing norm of the form ‖Lx‖2 and which preserves symmetry if the coefficient
matrix is symmetric. We also discuss the efficient implementation of our preconditioning technique,
and we demonstrate its performance with numerical examples in one and two dimensions.

Key words. general-form regularization, smoothing norm, regularizing iterations, GMRES,
MINRES, weighted pseudoinverse

AMS subject classifications. 65F22, 65F10

DOI. 10.1137/050628453

1. Introduction. We are concerned with large-scale discrete ill-posed problems
with a square coefficient matrix, i.e., ill-conditioned linear systems of the form Ax = b
with A ∈ R

n×n and x, b ∈ R
n. These problems typically arise from discretizations

of Fredholm integral equations of the first kind, e.g., in computerized tomography,
geophysics, or image restoration. Due to the ill-conditioning of A and the unavoidable
errors in the right-hand side (coming from data), any attempt to compute the “naive”
solution A−1b will fail to produce a meaningful solution.

Instead we must use a regularization method to compute a stabilized solution
which is less sensitive to the errors. There are many such methods around, and one
of the most popular is Tikhonov regularization, which amounts to computing

xλ = argminx

{
‖Ax− b‖2

2 + λ2 ‖Lx‖2
2

}
= (ATA + λ2 LTL)−1AT b,(1.1)

where the matrix L defines a smoothing norm ‖L · ‖2 that acts as a regularizer and
where λ is the regularization parameter.

For large-scale problems we need iterative methods to compute regularized solu-
tions, and there is a rich literature on CG-based methods for computing the Tikhonov
solution via the least-squares formulation of (1.1). More recently we have seen an in-
terest in methods referred to as regularizing iterations. These are Krylov subspace
methods applied directly to the problem min ‖Ax− b‖2 or Ax = b with no additional
smoothing norm (such as λ2‖Lx‖2

2); instead the projection of the problem onto the
Krylov subspace, associated with the method, acts as a regularizer of the solution.
See, e.g., [7] and [12] for details.

∗Received by the editors April 4, 2005; accepted for publication (in revised form) by D. Szyld
March 23, 2006; published electronically December 21, 2006.

http://www.siam.org/journals/simax/29-1/62845.html
†Informatics and Mathematical Modelling, Building 321, Technical University of Denmark, DK-

2800 Lyngby, Denmark (pch@imm.dtu.dk).
‡Current address: TNM Consult, Marielundvej 48, DK-2730 Herlev, Denmark (toke.jensen@

gmail.com).

1

2 PER CHRISTIAN HANSEN AND TOKE KOLDBORG JENSEN

Probably the newest member of the family of regularizing iteration methods is
the GMRES algorithm [15]. If A is symmetric, then GMRES is analytically identical
to the MINRES algorithm [14], the latter yielding a simpler implementation with a
short recursion. Regularizing GMRES and MINRES iterations were recently studied
in [1], [2], [3], and [12].

The use of a matrix L �= In in the Tikhonov problem (1.1) can lead to better
regularized solutions than the choice L = In, the explanation being that with a proper
choice of L the solution xλ is expressed in terms of basis vectors that are better suited
to the problem. The choice of L is problem dependent. As demonstrated by Hanke
and Hansen [8], the matrix L can be incorporated into the CGLS algorithm for solving
min ‖Ax− b‖2 in such a way that the modified Krylov subspace provides the desired
basis for the solution.

The purpose of this paper is to give a rigorous explanation of how we can carry
this idea of preconditioning over to regularizing minimum-residual methods for a gen-
eral smoothing norm ‖L · ‖2. The hope is that if the minimum-residual methods
produce regularized solutions similar to the Tikhonov solutions, then incorporating
the smoothing norm will produce solutions comparable to the general-form Tikhonov
solutions. The main difficulty is that the smoothing-norm preconditioning from [8]
typically involves rectangular matrices and therefore does not immediately carry over
to the methods studied here. We shall demonstrate that we can still use the underlying
idea, but the practical details and the implementation are different. Our precondi-
tioner has the additional feature that it, when used in connection with symmetric
problems, preserves the symmetry of the iteration matrix, thus allowing MINRES
and MR-II to be used.

Since there is no overall “best” regularization algorithm, we believe that users
should preferably have access to a variety of efficient and robust regularization meth-
ods. Also, a full understanding of the theoretical properties of regularizing iterations
has not emerged and is a topic of current research. The goal of this paper is therefore
not to emphasize preconditioned minimum-residual methods over other regularizing
iterations, but instead to demonstrate how the preconditioner should be defined for a
general matrix L and implemented efficiently.

Our paper is organized as follows. Section 2 describes how to incorporate the
matrix L into regularizing CGLS iterations via a standard-form transformation based
on the A-weighted pseudoinverse of L. In section 3 we briefly summarize a method
based on augmentation of L to a square matrix. Our main results are given in section
4, where we introduce our rectangular preconditioning technique, and in section 5
we demonstrate how to implement the new preconditioner efficiently. Finally, we
illustrate our algorithm with one- and two-dimensional examples in section 6.

Throughout the paper, Iq is the identity matrix of order q, A† is the pseudoinverse
of A, R(·) and N (·) denote the range and null space of a matrix, and the Krylov
subspace is denoted by Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}.

2. Working with smoothing norms. We first summarize the results from [8]
about smoothing norms. The key idea is to transform the general-form Tikhonov
problem (1.1) into a problem in standard form,

min
x

{
‖Ā x̄− b̄‖2

2 + λ2 ‖x̄‖2
2

}
.

When L is invertible, the standard-form transformation is easy: set Ā = AL−1 and
b̄ = b, and use x̄ = Lx ⇔ x = L−1x̄.

SMOOTHING-NORM PRECONDITIONING 3

Often the matrix L is rectangular and therefore not invertible. For example, if
the smoothing norm ‖Lx‖2 represents the norm of the first or second derivative of
the solution, and if x represents samples of the solution on a regular grid, then as L
we use the matrices L1 ∈ R

(n−1)×n and L2 ∈ R
(n−2)×n given by

L1 =

⎛⎝−1 1
. . .

. . .

−1 1

⎞⎠ , L2 =

⎛⎝ 1 −2 1
. . .

. . .
. . .

1 −2 1

⎞⎠ .(2.1)

With these rectangular matrices, the smoothing norm ‖Lx‖2 is a seminorm. The
matrices L1 and L2 are chosen such that their null spaces

N (L1) = span
{
(1, 1, . . . , 1)T

}
, N (L2) = span

{
(1, 1, . . . , 1)T , (1, 2, . . . , n)T

}
represent the null spaces of the underlying first and second derivative operators. Ob-
viously, any component of the solution in N (L) is unaffected by the regularization in
(1.1), but since N (L1) and N (L2) are spanned by very smooth vectors (representing
the constant and the linear functions), there is no harm in leaving the component
unregularized.

To deal with such rectangular matrices, we assume that the matrix L ∈ R
p×n

satisfies rank(L) = p < n. Then it is demonstrated in [8] that the standard-form
transformation takes the form

Ā = AL†
A, b̄ = b−Ax0, xλ = L†

Ax̄λ + x0,

where L†
A is the A-weighted pseudoinverse of L (cf. [5]) given by

L†
A = E L†, with E = In −

(
A (In − L†L)

)†
A,(2.2)

and x0 is the component of the solution lying in the null space of L,

x0 =
(
A (In − L†L)

)†
b = N (AN)† b,

in which N is any matrix of full column rank such that R(N) = N (L).
To incorporate the smoothing norm into the framework of regularizing iterations,

we apply CGLS to ‖Ā x̄ − b̄‖2, and Hanke and Hansen [8] demonstrated how the

CGLS algorithm can be modified in such a way that all operations with L†
A act as

preconditioning. To see this, following section 6.1 of [10], we note that if Pk is the
Ritz polynomial associated with k steps of CG applied to ĀT Ā x̄ = ĀT b̄, then the
iterate x(k) after k steps of the preconditioned CGLS algorithm can be written as

x(k) = Pk

(
L†
AL

†T
A ATA

)
L†
AL

†T
A AT b + x0.(2.3)

It is now obvious that L†
AL

†T
A acts like a “preconditioner,” and efficient methods for

implementing this kind of preconditioning for CGLS and other methods are described
in [8], [9], and [10, section 2.3.2]. We refer to the preconditioned version of CGLS as
P-CGLS.

In some applications we encounter L matrices with more rows than columns,
typically in connection with Sobolev norms such as

‖Lx‖2
2 = ‖L1 x‖2

2 + ‖L2 x‖2
2 =

∥∥∥∥(L1

L2

)
x

∥∥∥∥2

2

.

4 PER CHRISTIAN HANSEN AND TOKE KOLDBORG JENSEN

In this case an orthogonal factorization of L can often lead to a more efficient im-
plementation. Specifically, if L = QR, where Q has orthonormal columns and R is
triangular or trapezoidal and has full row rank, then ‖Lx‖2 = ‖Rx‖2, and we can
thus replace L with R. This approach can also be used in connection with P-CGLS
because L† = R†QT and L†L = R†R, and therefore L†

AL
†T
A = R†

AR
†T
A , showing that

the underlying Krylov subspaces in (2.3) are identical.
Unfortunately, the preconditioner based on Ā cannot be applied to regularizing

minimum-residual methods such as MINRES and GMRES because these methods
require a square coefficient matrix, which is not the case for Ā when L is noninvertible.
Hence we need to develop a different kind of preconditioning for these methods.

3. The augmented-matrix approach. To be able to use GMRES/MINRES
and the variants RRGMRES [1] and MR-II [6] (i.e., GMRES and MINRES with
starting vector Ab instead of b), the coefficient matrix must be square. When working
with a rectangular L, such as in (2.1), it was suggested in [4] to augment it with
additional rows to make it square and invertible. For L1 and L2, this approach leads
to the augmented n× n matrices

L̂1 =

(
L1

wT

)
, L̂2 =

⎛⎝ w̄T

L2

wT

⎞⎠ .(3.1)

If the additional rows are chosen such that the augmented matrices are invertible, then
we can use the matrices A L̂−1

1 and A L̂−1
2 in connection with the minimum-residual

methods. The use of a full-rank matrix L̂ in the standard-form transformation is
equivalent to using L̂−1 as a right preconditioner. We refer to [4] for more details
about the choices of w and w̄.

While this augmented-matrix approach is simple to implement and use, it also
has some disadvantages. For example, symmetry of the coefficient matrix A does
not carry over to the coefficient matrices AL̂−1

1 and AL̂−1
2 , thus excluding the use

of MINRES.1 Moreover, any orthogonal reduction of L changes the iterates because
the Krylov subspace changes. For example, if L is nonsingular and L = QR, then
Kk(L

−1A,L−1b) = Kk(R
−1QTA,R−1QT b) �= Kk(R

−1A,R−1b). This also rules out
the use of any L with more rows than columns.

4. Smoothing-norm preconditioning. As an alternative to the above tech-
nique, we now present an approach that works for any rectangular matrix L ∈ R

p×n

with p < n and which does not require any modifications of the problem. In addition,
our approach preserves symmetry, thus allowing short-recurrence implementations
such as MINRES and MR-II to be used if A is symmetric.

Our approach is similar in spirit to the technique described in section 2 for
Tikhonov regularization and CGLS, but the details are different. We refer to the
new preconditioned algorithms as SN-X, where X = GMRES, RRGMRES, MINRES,
or MR-II, and SN is an abbreviation for “smoothing norm.”

We start by writing the solution as the sum of the regularized component in
R(L†

A) and the unregularized component in N (L),

x = L†
Ay + x0 = L†

Ay + Nz,(4.1)

1For symmetric A, one might instead consider applying MINRES to the system L̂−TAL̂−1x =

L̂−T b, where L̂−TAL̂−1 is symmetric.

SMOOTHING-NORM PRECONDITIONING 5

where again x0 = N (AN)† b and N is a matrix with full column rank whose columns
span N (L). These columns need not be orthonormal, although this is preferable for
numerical computations. The two vectors y and z = (AN)†b are uniquely determined
because L and N both have full rank.

Our basic problem Ax = b can now be formulated as

A
(
L†
A , N

)(y
z

)
= b.

Premultiplication of this system with
(
L†
A , N

)T
leads to the 2 × 2 block system(

L†T
A AL†

A L†T
A AN

NTAL†
A NTAN

)(
y
z

)
=

(
L†T
A b

NT b

)
.

We eliminate z from this system by forming the Schur complement system S y = d
with S and d given by

S = L†T
A AL†

A − L†T
A AN(NTAN)−1NTAL†

A = L†T
A P AL†

A,(4.2)

d = L†T
A b− L†T

A AN(NTAN)−1NT b = L†T
A P b,(4.3)

where we have introduced P = In−AN(NTAN)−1NT . We shall now study the Schur
system S y = d in more detail.

Theorem 4.1. If R(LT) and R(AN) are complementary subspaces,2 then

P = In −AN(NTAN)−1NT(4.4)

is the oblique projector onto R(LT) along R(AN).
Proof. The matrix In − P is idempotent because

(In − P)2 = AN(NTAN)−1NTAN(NTAN)−1NT = In − P,

and hence it is a projector. Since In − P is nonsymmetric, it is an oblique projector,
and it is easy to see that the projection is onto R(AN) with R(LT) contained in the
null space. The assumption that R(LT) and R(AN) are complementary subspaces
ensures that P is an oblique projector onto R(LT) along R(AN).

Smoothing-norm preconditioning for GMRES amounts to applying GMRES to
the Schur complement system Sy = d. We emphasize that, as for CGLS, the pur-
pose of this preconditioning is to provide a more desirable Krylov subspace for the
regularized solution.

When we apply GMRES to the Schur system Sy = d, there exists a polynomial
P̃k such that the solution after k iterations is given by

y(k) = P̃k

(
L†T
A PAL†

A

)
L†T
A P b.

The corresponding vector x(k) is given by x(k) = L†
Ay

(k) +x0, and we therefore obtain
the SN-GMRES iterate

x(k) = L†
AP̃k

(
L†T
A PAL†

A

)
L†T
A P b + x0

= P̃k

(
L†
AL

†T
A PA

)
L†
AL

†T
A P b + x0,(4.5)

2The subspaces R(LT) ⊆ R
n and R(AN) ⊆ R

n are complementary if R(LT) + R(AN) = R
n

and R(LT) ∩R(AN) = {0}; see, e.g., [13, section 5.9].

6 PER CHRISTIAN HANSEN AND TOKE KOLDBORG JENSEN

showing that x(k)−x0 lies in the Krylov subspace Kk(L
†
AL

†T
A PA,L†

AL
†T
A Pb). We note

that the iterates of RRGMRES take the same form as for GMRES, except that the
polynomial coefficients are different, and thus RRGMRES can also be used on the
Schur system.

Although the polynomial expressions for the preconditioned CGLS and GMRES
methods in (2.3) and (4.5) are similar in essence, the solutions obtained from the
two methods are different, due to CGLS being a Ritz–Galerkin method and GMRES
being a minimum-residual method. Even when L is invertible, the two approaches
produce different iterates. Furthermore, the oblique projector P also indicates that
the SN-X algorithms do not solve the same problem as does P-CGLS. Nevertheless,
as we illustrate in section 6, our preconditioned algorithms are able to produce good
solutions for certain problems.

We emphasize that the two main difficulties with the augmented-matrix approach
from section 3 are both satisfactorily dealt with in this new approach. For a symmetric
matrix A, the matrix L†T

A P AL†
A is also symmetric, which follows from the symmetry

of PA = A−AN (NTAN)−1NTA. This symmetry allows us to use MINRES or MR-
II on the Schur system, resulting in SN-MINRES and SN-MR-II. The new approach
also allows us to use any rectangular L, including those with more rows than columns
via the orthogonal reduction L = QR mentioned in section 2.

5. Implementation issues. In this section we consider some issues that are
important for the efficient implementation of the SN-X algorithms. We start with a
theorem that simplifies the Schur system.

Theorem 5.1. If the requirements in Theorem 4.1 are satisfied, then the Schur
system S y = d given by (4.2)–(4.3) takes the simpler form

L†TP AL†y = L†TP b,(5.1)

with P given by (4.4).
Proof. From the relation (A(In − L†L))† = (ANN†)† = N(AN)† it follows that

the matrix E in (2.2) can be written as E = In −N(AN)†A. Moreover,

AT (AN)†TNTP = AT (AN)†TNT −AT (AN)†TNTAN(NTAN)−1NT

= AT (AN)†TNT −AT (AN)†TNT = 0,

and therefore ETP = (In −AT (AN)†TNT)P = P . We also have the relation

P AN(AN)†A =
(
In −AN(NTAN)−1NT

)
AN(AN)†A

= AN(AN)†A−AN(AN)†A = 0,

and thus PAE = PA(In−N(AN)†A) = PA. Inserting these relations and L†
A = EL†

into the Schur system, we obtain (5.1).
This theorem has an important impact on the numerical implementation of our

preconditioner, because the weighted pseudoinverse L†
A can be replaced by the ordi-

nary pseudoinverse L† in the computations. The weighted pseudoinverse L†
A is needed

only in the back-transformation (4.1).
Turning to the details of the implementation, we need to compute x0 efficiently.

This is done via the QR factorization of the matrix AN , which is always “skinny” for
the low-dimensional null spaces associated with the derivative operators:

1. AN = Q0R0 (skinny QR factorization),

2. x0 ← N R−1
0 QT

0 b.
(5.2)

SMOOTHING-NORM PRECONDITIONING 7

We also need an efficient technique for multiplications with P from (4.4), which basi-
cally amounts to a number of “skinny” matrix-vector products. Using again the QR
factorization of AN , we obtain

AN (NTAN)−1NT = Q0R0(N
TQ0R0)

−1NT = Q0 (NTQ0)
−1NT ,

and thus the product P x is computed as

P x = x−Q0 (NTQ0)
−1NTx,

where a precomputed factorization of the small square matrix NTQ0 should be used.
Assuming that N has orthonormal columns, the smallest singular value of NTQ0 is
equal to cosine of the subspace angle between N (L) and R(AN). Our experience is
that this angle is usually small (because the smooth basis vectors of the two subspaces
resemble each other), and consequently NTQ0 is well conditioned—however, there is
no guarantee that this is always the case.

The complete algorithm for performing the multiplication v = L†TPAL†y in the
SN-X algorithms thus takes the form

1. v1 ← A (L†y),

2. v2 ← Q0 (NTQ0)
−1NT v1,

3. v ← L†T (v1 − v2).

(5.3)

The cost of working with the Schur complement system is therefore for each iteration
the following: one multiplication with A, one with L†, one with L†T , and one with the
oblique projector P . The preconditioning technique is feasible when the computation
of L†y and L†T (v1 − v2) can be implemented efficiently, and the null space N (L) has
low dimension such that multiplication with P is inexpensive. The remaining work,
i.e., reorthogonalization and updating of the residual norm and the solution, etc., is
identical to applying the minimum-residual method to a nonpreconditioned system.
A complete SN-X algorithm thus takes the following form:

1. Use (5.2) to compute Q0, R0, and x0.

2. Run k steps of algorithm X on (5.1), using (5.3), to compute y(k).

3. Set x(k) = L†
Ay

(k) + x0.

(5.4)

While not fully documented in [8], [9], [10], P-CGLS—in addition to the multi-
plications with A and AT—also requires multiplications with L† and its transpose,
as well as one multiplication with the matrix E (which is also an oblique projector).
Hence the overall work for preconditioning the SN-X algorithms is essentially the same
as that for P-CGLS.

We use an example from two-dimensional problems to illustrate how to work with
a rank-deficient L with more rows than columns. Assume that X ∈ R

M×N is the two-
dimensional solution, and that we use the Sobolev norm ‖Ld2X‖2

F + ‖X LT
d1
‖2
F, where

Ld1 ∈ R
(N−d1)×N and Ld2 ∈ R

(M−d2)×M are the matrices in (2.1). Then L takes the
form

L =

(
Ld1 ⊗ IM
IN ⊗ Ld2

)
,(5.5)

and we note that L has more rows than columns and is rank-deficient. The following
theorem shows how to proceed via the SVDs of the “small” matrices Ld1 and Ld2 .

8 PER CHRISTIAN HANSEN AND TOKE KOLDBORG JENSEN

Theorem 5.2. Let L be given by (5.5), and let Ld1
= Ud1

Σd1
V T
d1

and Ld2
=

Ud2
Σd2

V T
d2

be the SVDs of Ld1
and Ld2

, respectively. Then ‖Lx‖2 = ‖LD x‖2 with

LD = D (Vd1 ⊗ Vd2)
T ,(5.6)

where D ∈ R
MN×MN is a nonnegative diagonal matrix satisfying

D2 = ΣT
d1

Σd1 ⊗ IM + IN ⊗ ΣT
d2

Σd2 .(5.7)

Furthermore, define the matrix splitting Vdi
= (Vdi , Ndi) such that N (Ldi) = R(Ndi)

for i = 1, 2. Then a basis for N (L) = N (LD) is given by the columns of

N = Nd1 ⊗Nd2 .(5.8)

Proof. Inserting the SVDs of Ld1 and Ld2 and using IN = Vd1V
T
d1

and IM =

Vd2
V T
d2

, we obtain

L =

(
Ld1 ⊗ IM
IN ⊗ Ld2

)
=

(
(Ud1 Σd1 V

T
d1

) ⊗ (Vd2 V
T
d2

)

(Vd1 V
T
d1

) ⊗ (Ud2
Σd2

V T
d2

)

)
=

(
Ud1 ⊗ Vd2 0

0 Vd1
⊗ Ud2

)(
Σd1 ⊗ IM
IN ⊗ Σd2

)
(Vd1 ⊗ Vd2

)T .

Since the middle matrix consists of two “stacked” diagonal matrices, we can easily
determine an orthogonal matrix QD (consisting of Givens rotations) and a diagonal
matrix D such that

QT
D

(
Σd1 ⊗ IM
IN ⊗ Σd2

)
=

(
D
0

)
,

and it is no restriction to assume that the diagonal elements of D are nonnegative.
Hence

L =

(
Ud1 ⊗ Vd2 0

0 Vd1 ⊗ Ud2

)
QD

(
D
0

)
(Vd1

⊗ Vd2)
T ,

and we obtain ‖Lx‖2 = ‖LD x‖2. Equation (5.7) follows from the relation

D2 = DTD =

(
D
0

)T (
D
0

)
=

(
Σd1 ⊗ IM
IN ⊗ Σd2

)T (
Σd1 ⊗ IM
IN ⊗ Σd2

)
.

Regarding the null space N (L) = N (LD), it is easily seen from (5.6) that the null
space vectors are given by the columns of Vd1 ⊗ Vd2 for which the diagonal elements
of D are zero. This leads directly to (5.8).

The consequences of this theorem are that we can substitute the structured matrix
LD for L in the Tikhonov problem (1.1), and that we have a simple basis for N (L).
The approach can be used in both the P-CGLS and the SN-X algorithms and leads to
increased efficiency, while L matrices of this form are not applicable in the augmented-
matrix approach.

SMOOTHING-NORM PRECONDITIONING 9

6. Numerical experiments. We include two test problems to illustrate the
performance of the new preconditioning technique for regularizing minimum-residual
methods. The first example is a synthetic two-dimensional problem with a symmetric
coefficient matrix and an L of the form (5.5); the second is a finite-element model of a
steady-state heat distribution problem with a nonsymmetric coefficient matrix and a
periodic solution. In both examples we calculate the relative error of the regularized
solutions x(k) compared to the exact solution x, i.e.,

ε(k) = ‖x(k) − x‖2 / ‖x‖2,(6.1)

where x(k) is the kth iterate. The best regularized solution is always defined as the
solution for which ε(k) is smallest.

6.1. Two-dimensional example. The two-dimensional example is a synthetic
problem generated from the deriv2 test problem in Regularization Tools [9]. The
coefficient matrix A ∈ R

37500×37500 is generated as the Kronecker product of A1 ∈
R

250×250 and A2 ∈ R
150×150, each being a discretization of Green’s function for the

second derivative. The resulting coefficient matrix is symmetric, and thus MINRES
and MR-II can be used.

The exact solution X has size M ×N = 150×250, and it consists of the sum of a
linear function in one direction and a quadratic function in the other. The Matlab

code for generating the exact solution is

s = linspace(-1,1,250); t = linspace(-1,1,150);

[s,t] = meshgrid(s,t);

X = s + t.^2;

and then x is obtained by stacking the columns of X. The right-hand side is computed
by b = Ax+e, in which e is white Gaussian noise scaled such that ‖e‖2/‖Ax‖2 = 10−2.
Using the Kronecker products, all computations can be carried out without explicitly
forming the large matrix A, instead using A1 and A2.

The top plots in Figure 6.1 show the exact solution and the right-hand side as
two-dimensional images. Figure 6.1 also shows the best regularized solutions using
MINRES, MR-II, CGLS, SN-MINRES, SN-MR-II, and P-CGLS as measured by (6.1).
For the preconditioned algorithms we use the matrix L in (5.5) with d1 = d2 = 1,
corresponding to first derivative smoothing in both directions, and its null space is
spanned by the constant image.

The six algorithms produce solutions with different properties; all the precondi-
tioned algorithms give much better regularized solutions than the nonpreconditioned
algorithms, and MINRES gives by far the most noisy solution. All the nonprecondi-
tioned solutions tend to go to zero near the edges of the domain; this behavior comes
from the fact that the bases for these solutions are the Krylov vectors, which all tend
to zero at the edges. Using the matrix L from (5.5) as preconditioner, the Krylov
subspaces are changed to favor the particular properties of this problem, resulting in
better reconstructions. The best SN-MR-II solution is similar to the best solution
obtained by P-CGLS, both regarding the quality and the number of iterations. It is
worth noting that even though the cost of applying the preconditioner is about the
same for P-CGLS and SN-MR-II, P-CGLS needs an additional matrix-vector multi-
plication with AT in each iteration, which makes SN-MR-II somewhat faster.

6.2. Steady-state heat distribution. This test problem from [11] involves a
partial differential equation that describes the steady-state heat distribution in a two-
dimensional domain Ω with inner and outer boundaries ∂Ωi and ∂Ωo. The forward

10 PER CHRISTIAN HANSEN AND TOKE KOLDBORG JENSEN

Exact solution Blurred and noisy data

Best MINRES solution (4 its) Best SN-MINRES solution (12 its)

Best MR-II solution (15 its) Best SN-MR-II solution (20 its)

Best CGLS solution (22 its) Best P-CGLS solution (20 its)

Fig. 6.1. Top row: exact solution and right-hand side for the two-dimensional test problem
with a symmetric coefficient matrix. The remaining rows show the best regularized solutions using
standard and preconditioned algorithms. The preconditioning uses the matrix L in (5.5) with d1 =
d2 = 1 corresponding to first derivative smoothing in both the vertical and horizontal directions.

problem takes the form

∇2f(z) = 0, z ∈ Ω,

{
f(z) = fi(z), z ∈ ∂Ωi,
∂
∂nf(z) = 0, z ∈ ∂Ωo,

SMOOTHING-NORM PRECONDITIONING 11

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 50 100 150 200
0

1

2
Temperature on inner boundary

0 50 100 150 200
0

1

2
Observed temperature on outer boundary

Fig. 6.2. Test problem with steady-state heat distribution. Left: the geometry and the finite-
element mesh. Right: exact temperature fi on the inner boundary (top), and measured noisy tem-
perature fo on the outer boundary (bottom).

where fi is the temperature on the inner boundary and ∂
∂n denotes the normal deriva-

tive on the outer boundary. The inverse problem is to determine the temperature
distribution on the inner boundary from measurements of the temperature on the
outer boundary.

In this example, the inner boundary ∂Ωi is an ellipse with semiaxes of length 1.2
and 0.8, while the outer boundary ∂Ωo is a square with side length 4; see Figure 6.2.
We use a matrix-free implementation in which A, the forward computation, is a finite-
element model that maps the temperature fi(z) on the inner boundary ∂Ωi to the
temperature fo(z) on the outer boundary ∂Ωo.

The exact solution vector x consists of values of the temperature on the inner
boundary in n = 200 grid points. The right-hand side, consisting of the temperature
in the n grid points of the outer boundary, is then computed as b = Ax + e, where
e is white Gaussian noise scaled such that ‖e‖2/‖Ax‖2 = 10−3. Both temperature
profiles are also shown in Figure 6.2.

Using n points on both ∂Ωi and ∂Ωo, the operation with the square matrix A
involves solving the forward problem via the finite-element model. A similar discrete
model for operation with the transposed matrix is not simple to derive, and therefore
P-CGLS is not directly applicable. On the other hand, GMRES and RRGMRES are
natural methods of choice for solving the inverse problem.

The two top rows in Figure 6.3 show the optimal solutions obtained with GMRES
and RRGMRES using L = In and L = L2. The third row shows the comparable re-
sults with L equal to the augmented matrix L̂2 from (3.1) with w̄ = α(−2, 1, 0, . . . , 0)T ,
w = α(0, . . . , 0, 1, −2)T , and α = 4.29·10−4. The α-parameter can be considered as a
special regularization parameter for the added rows and must be chosen appropriately
in addition to the number of iterations. Selecting the optimal α is in general not an
easy problem. For this constructed test problem we compute the optimal solutions
for a range of α values, and the chosen α is the one that gives rise to the overall best
regularized solution. Figure 6.4 shows how the optimal GMRES solutions vary with
α—the situation is very similar for RRGMRES.

For all three choices of L, RRGMRES performs better than GMRES. Using a
smoothing norm with L = L2 or L = L̂2 improves the solutions by about an order of
magnitude. With these two choices of L, the augmented-matrix approach seems to

12 PER CHRISTIAN HANSEN AND TOKE KOLDBORG JENSEN

GMRES RRGMRES

L = In

50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

ε(5) = 5.34 · 10−2 ε(15) = 3.83 · 10−2

SN-GMRES SN-RRGMRES

L = L2

50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

ε(7) = 7.12 · 10−3 ε(10) = 5.74 · 10−3

GMRES on AL̂−1
2 RRGMRES on AL̂−1

2

L = L̂2

50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

ε(10) = 2.21 · 10−3 ε(11) = 1.90 · 10−3

Error, SN-RRGMRES, L = L2 Error, SN-RRGMRES, L = R̃

50 100 150 200

−0.04

−0.02

0

0.02

50 100 150 200

−4

−2

0

2
x 10

−3

Fig. 6.3. Three top rows: solutions to the steady-state heat distribution problem computed with
standard and preconditioned GMRES and RRGMRES, and with different smoothing norms. The
numbers ε(k) below the plots are the optimal relative errors after k iterations. Bottom row: the error
x− xk in the SN-RRGMRES solution for two choices of L.

perform better than the SN-approach. On the other hand, Figure 6.4 shows that a
small change in α will result in worse solutions. An obvious choice of α would be to
choose a value so small that the influence of the added rows is negligible while still
keeping L̂2 invertible, e.g., α = 10−8. This corresponds to the flat part of the plot in
Figure 6.4, and an optimal solution with a higher relative error. The dependence on α
illustrates the importance of choosing wise extensions to the L-matrices. Especially,
the extension proposed in [4, Equation (13)] (L̂2 with α = 1) is seen to perform badly
for this particular problem.

However, the quality of the solution can be improved further by taking into ac-
count the periodicity of the solution. A careful study shows that the errors in all the

SMOOTHING-NORM PRECONDITIONING 13

10
−10

10
−5

10
0

10
−2

10
−1

α

re
l.

er
ro

r ε
(k

)

Fig. 6.4. Best obtainable relative errors ε(k) of GMRES solutions using L̂2 with w̄ =
α(−2, 1, 0, . . . , 0)T and w = α(0, . . . , 0, 1, −2)T for a range of values of α.

solutions grow towards the edges; this is illustrated by the bottom left plot in Fig-
ure 6.3, which shows the error in the SN-RRGMRES solution with L = L2. A natural
requirement is therefore to add the constraint that the second derivative should also
be minimized across the edges of the periodic solution. Hence, we use a circulant
version of L2 given by

L̃2 =

⎛⎜⎜⎜⎜⎝
−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

⎞⎟⎟⎟⎟⎠ ∈ R
n×n,

which corresponds to L2 with periodic boundary conditions. This matrix is singular
with rank(L̃2) = n− 1, and its null space is given by

N (L̃2) = span
{
(1, 1, . . . , 1)T

}
.

Since L̃2 is singular, it cannot be used in the augmented-matrix approach. In order
to use the SN-approach, we compute the skinny QR-factorization L̃2 = Q̃R̃ with R̃
trapezoidal, and use L = R̃.

Using this choice of L, the smallest error ε(6) = 6.28 · 10−4 in the SN-GMRES
solution is obtained after 6 iterations, while the smallest error ε(5) = 5.21 · 10−4 in
the SN-RRGMRES solution is obtained after 5 iterations. In both cases, the relative
error is reduced by an order of magnitude, compared to using L2, and is also superior
to the approach using the augmented L̂2 with α = 4.29 · 10−4. Furthermore, the
number of iterations is reduced. The bottom right plot in Figure 6.3, which shows
the error in the SN-RRGMRES solution with L = R̃, illustrates the reduction of the
error, primarily because the errors near the edges are reduced significantly.

7. Conclusion. We presented a new preconditioning technique for regulariz-
ing minimum-residual methods such that it corresponds to using a smoothing norm
‖Lx‖2 in the Tikhonov formulation, and the matrix L is allowed to be both rank
deficient and rectangular. Our algorithm preserves symmetry when the coefficient
matrix is symmetric, thus allowing the use of MINRES and MR-II where appropriate.
Our algorithm is computationally feasible when the dimension of N (L) is small and

14 PER CHRISTIAN HANSEN AND TOKE KOLDBORG JENSEN

computations with L† can be implemented efficiently. We showed an example of an
L matrix for two-dimensional problems where this is achieved. We also demonstrated
how to implement the algorithm efficiently, and we gave numerical examples in one
and two dimensions that illustrate the use and performance of the new preconditioner.

Our numerical examples illustrate that the proposed SN-approach can provide
an improvement in the solution’s accuracy compared to standard minimum-residual
methods, that the SN-approach works for a larger class of smoothing norms than the
augmented-matrix approach, and that preconditioned minimum-residual methods can
be computationally attractive alternatives to preconditioned CGLS (e.g., when AT is
not directly available).

Acknowledgements. We would like to thank the referees for comments, which
considerably improved the presentation and the numerical examples.

REFERENCES

[1] D. Calvetti, B. Lewis, and L. Reichel, GMRES-type methods for inconsistent systems,
Linear Algebra Appl., 316 (2000), pp. 157–169.

[2] D. Calvetti, B. Lewis, and L. Reichel, GMRES, L-curves, and discrete ill-posed problems,
BIT, 42 (2002), pp. 44–65.

[3] D. Calvetti, B. Lewis, and L. Reichel, On the regularizing properties of the GMRES method,
Numer. Math., 91 (2002), pp. 605–625.

[4] D. Calvetti, L. Reichel, and A. Shuibi, Invertible smoothing preconditioners for linear
discrete ill-posed problems, Appl. Numer. Math., 54 (2005), pp. 135–149.

[5] L. Eldén, A weighted pseudoinverse, generalized singular values, and constrained least squares
problems, BIT, 22 (1982), pp. 487–501.

[6] M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Longman, Harlow, UK,
1995.

[7] M. Hanke, On Lanczos based methods for the regularization of discrete ill-posed problems,
BIT, 41 (2001), pp. 1008–1018.

[8] M. Hanke and P. C. Hansen, Regularization methods for large-scale problems, Surveys Math.
Industry, 3 (1993), pp. 253–315.

[9] P. C. Hansen, Regularization Tools: A Matlab package for analysis and solution of discrete
ill-posed problems, Numer. Algorithms, 6 (1994), pp. 1–35.

[10] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear
Inversion, SIAM Monogr. Math. Model. Comput. 4, SIAM, Philadelphia, 1997.

[11] M. Jacobsen, Modular Regularization Algorithms, Ph.D. thesis, Informatics and Mathematical
Modelling, Technical University of Denmark, Lyngby, Denmark, 2004.

[12] M. Kilmer and G. W. Stewart, Iterative regularization and MINRES, SIAM J. Matrix Anal.
Appl., 21 (1999), pp. 613–628.

[13] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.
[14] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,

SIAM J. Numer. Anal, 12 (1975), pp. 617–629.
[15] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 15–32

MAJORIZATION FOR CHANGES IN ANGLES BETWEEN
SUBSPACES, RITZ VALUES, AND GRAPH LAPLACIAN SPECTRA∗

ANDREW V. KNYAZEV† AND MERICO E. ARGENTATI†

Abstract. Many inequality relations between real vector quantities can be succinctly ex-
pressed as “weak (sub)majorization” relations using the symbol ≺w. We explain these ideas and
apply them in several areas, angles between subspaces, Ritz values, and graph Laplacian spec-
tra, which we show are all surprisingly related. Let Θ(X ,Y) be the vector of principal angles in
nondecreasing order between subspaces X and Y of a finite dimensional space H with a scalar
product. We consider the change in principal angles between subspaces X and Z, where we let
X be perturbed to give Y. We measure the change using weak majorization. We prove that
| cos2 Θ(X ,Z) − cos2 Θ(Y,Z)|≺w sinΘ(X ,Y), and give similar results for differences of cosines, i.e.,
| cosΘ(X ,Z)− cosΘ(Y,Z)|≺w sin Θ(X ,Y), and of sines and sines squared, assuming dimX = dimY.
We observe that cos2 Θ(X ,Z) can be interpreted as a vector of Ritz values, where the Rayleigh–
Ritz method is applied to the orthogonal projector on Z using X as a trial subspace. Thus, our
result for the squares of cosines can be viewed as a bound on the change in the Ritz values of an
orthogonal projector. We then extend it to prove a general result for Ritz values for an arbitrary
Hermitian operator A, not necessarily a projector: let Λ (PXA|X) be the vector of Ritz values in
nonincreasing order for A on a trial subspace X , which is perturbed to give another trial subspace
Y; then |Λ (PXA|X) − Λ (PYA|Y)| ≺w (λmax − λmin) sin Θ(X ,Y), where the constant is the differ-
ence between the largest and the smallest eigenvalues of A. This establishes our conjecture that the
root two factor in our earlier estimate may be eliminated. Our present proof is based on a classical
but rarely used technique of extending a Hermitian operator in H to an orthogonal projector in
the “double” space H2. An application of our Ritz values weak majorization result for Laplacian
graph spectra comparison is suggested, based on the possibility of interpreting eigenvalues of the
edge Laplacian of a given graph as Ritz values of the edge Laplacian of the complete graph. We
prove that

∑
k |λ1

k − λ2
k| ≤ nl, where λ1

k and λ2
k are all ordered elements of the Laplacian spectra of

two graphs with the same n vertices and with l equal to the number of differing edges.

Key words. majorization, principal angles, canonical angles, canonical correlations, subspace,
orthogonal projection, perturbation analysis, Ritz values, Rayleigh–Ritz method, graph spectrum,
graph vertex Laplacian, graph edge Laplacian

AMS subject classifications. 15A42, 15A60, 65F35, 05C50

DOI. 10.1137/060649070

1. Introduction. Many inequality relations between real vector quantities can
be succinctly expressed as “weak (sub)majorization” relations using the symbol ≺w

that we now introduce. For a real vector x = [x1, . . . , xn] let x↓ be the vector obtained
by rearranging the entries of x in an algebraically nonincreasing order. Vector y
weakly majorizes vector x; i.e., x ≺w y if

∑k
i=1 x

↓
i ≤

∑k
i=1 y

↓
i , k = 1, . . . , n. The

importance of weak majorization can be seen from the classical statement that the
following two conditions are equivalent: x≺wy and

∑n
i=1 φ(xi) ≤

∑n
i=1 φ(yi) for all

nondecreasing convex functions φ. Thus, a single weak majorization result implies a

∗Received by the editors January 4, 2006; accepted for publication (in revised form) by I. C. F.
Ipsen March 31, 2006; published electronically December 21, 2006. Preliminary results of this pa-
per were presented at the 12th ILAS Conference in Canada in June, 2005, at the minisymposium
“Canonical Angles Between Subspaces: Theory and Applications.” This material is based upon work
supported by the National Science Foundation award DMS 0208773 and the Intelligence Technology
Innovation Center through the joint “Approaches to Combat Terrorism” NSF Program Solicitation
NSF 03-569.

http://www.siam.org/journals/simax/29-1/64907.html
†Department of Mathematical Sciences, University of Colorado at Denver, and Health Sciences

Center, P.O. Box 173364, Campus Box 170, Denver, CO 80217-3364 (andrew.knyazev@cudenver.edu,
http://math.cudenver.edu/∼aknyazev/, merico.argentati@cudenver.edu).

15

16 ANDREW V. KNYAZEV AND MERICO E. ARGENTATI

great variety of inequalities. We explain these ideas and apply them in several areas,
angles between subspaces, Ritz values, and graph Laplacian spectra, which we show
are all surprisingly related.

The concept of principal angles, also referred to as canonical angles, between
subspaces is one of the classical mathematical ideas originating from [16] with many
applications. In functional analysis, the gap between subspaces, which is related to
the sine of the largest principal angle, bounds the perturbation of a closed linear op-
erator by measuring the change in its graph, while the smallest nontrivial principal
angle between two subspaces determines whether the sum of the subspaces is closed.
In numerical analysis, principal angles appear naturally to estimate how close an ap-
proximate eigenspace is to the true eigenspace. The chordal distance, the Frobenius
norm of the sine of the principal angles, on the Grassmannian space of finite dimen-
sional subspaces is used, e.g., for subspace packing with applications in control theory.
In statistics, the cosines of principal angles are called canonical correlations and have
applications in information retrieval and data visualization.

Let H be a real or complex n < ∞ dimensional vector space equipped with an
inner product (x, y) and a vector norm ‖x‖ = (x, x)1/2. The acute angle between two
nonzero vectors x and y is defined as

θ(x, y) = arccos
|(x, y)|
‖x‖‖y‖ ∈

[
0,

π

2

]
.

For three nonzero vectors x, y, z, we have bounds on the change in the angle

|θ(x, z) − θ(y, z)| ≤ θ(x, y),(1.1)

in the sine

|sin(θ(x, z)) − sin(θ(y, z))| ≤ sin(θ(x, y)),(1.2)

and in the cosine

|cos(θ(x, z)) − cos(θ(y, z))| ≤ sin(θ(x, y)),(1.3)

and a more subtle bound on the change in the sine or cosine squared:∣∣cos2(θ(x, z)) − cos2(θ(y, z))
∣∣ =

∣∣sin2(θ(x, z)) − sin2(θ(y, z))
∣∣ ≤ sin(θ(x, y)).(1.4)

Let us note that we can project the space H into the span{x, y, z} without changing the
angles; i.e., the inequalities above present essentially the case of a three dimensional
(3D) space.

Inequality (1.1) is proved in [34, Theorem 3.2, p. 514]. We note that (1.2) follows
from (1.1), since the sine function is increasing and subadditive; see [34, p. 530].

It is instructive to provide a simple proof of the sine inequality (1.2) using orthog-
onal projectors. Let PX , PY , and PZ be the orthogonal projectors onto the subspaces
spanned by the vectors x, y, and z, respectively, and let ‖ · ‖ also denote the induced
operator norm. When we are dealing with 1D subspaces, we have the following ele-
mentary formula: sin(θ(x, y)) = ‖PX − PY‖. (Indeed, Px − Py has rank at most two,
so it has at most two nonzero singular values, but (Px − Py)

2x = (1 − |(x, y)|2)x and
(Px − Py)

2y = (1 − |(x, y)|2)y for unit vectors x and y, so 1 − |(x, y)|2 = sin2(θ(x, y))
is a double eigenvalue of (Px − Py)

2.) Then the sine inequality (1.2) is equivalent to
the triangle inequality | ‖PX − PZ‖ − ‖PY − PZ‖ | ≤ ‖PX − PY‖.

MAJORIZATION: ANGLES, RITZ VALUES, GRAPH SPECTRA 17

In this paper, we replace 1D subspaces spanned by the vectors x, y, and z with
multidimensional subspaces X , Y, and Z, and we use the concept of principal angles
between subspaces. Principal angles are very well studied in the literature; however,
some important gaps still remain. Here, we are interested in generalizing inequalities
(1.2)–(1.4) above to multidimensional subspaces to include all principal angles, using
weak majorization.

Let us denote by Θ(X ,Y) the vector of principal angles in nondecreasing order
between subspaces X and Y. Let dimX = dimY, and let another subspace Z be given.
We prove that | cos2 Θ(X ,Z) − cos2 Θ(Y,Z)|≺w sin Θ(X ,Y), and give similar results
for differences of cosines, i.e., | cos Θ(X ,Z)−cos Θ(Y,Z)|≺w sin Θ(X ,Y), and of sines
and sines squared. This is the first main result of the present paper; see section 3.
The proof of weak majorization for sines is a direct generalization of the 1D proof
above. Our proofs of weak majorization for cosines and sines or cosines squared do
not have such simple 1D analogues.

Pioneering results using angles between subspaces in the framework of unitarily
invariant norms and symmetric gauge functions, equivalent to majorization, appear
in [7], which introduces many of the tools that we use here. The main goal of [7]
is, however, different—analyzing the perturbations of eigenvalues and eigenspaces—
while in the present paper we are concerned with sensitivity of angles and Ritz values
with respect to changes in subspaces.

Our second main result (see section 4) bounds the change in the Ritz values with
the change of the trial subspace. We attack the problem by discovering a simple, but
deep, connection between the principal angles and the Rayleigh–Ritz method.

We first give a brief definition of Ritz values. Let A : H → H be a Hermitian
operator, and let X be a (so-called trial) subspace of H. We define an operator PXA|X
on X , where PX is the orthogonal projector onto X and PXA|X denotes the restriction
of operator PXA to its invariant subspace X , as discussed, e.g., in [32, section 11.4,
pp. 234–239]. The eigenvalues Λ(PXA|X) are called Ritz values of the operator A
with respect to the trial subspace X .

We observe that the cosines squared cos2 Θ(X ,Z) of principal angles between
subspaces X and Z can be interpreted as a vector of Ritz values, where the Rayleigh–
Ritz method is applied to the orthogonal projector PZ onto Z using X as a trial
subspace. Let us illustrate this connection for one dimensional X = span{x} and
Z = span{z}, where it becomes trivial:

cos2(θ(x, z)) =
(x, PZx)

(x, x)
.

The ratio on the right is the Rayleigh quotient for PZ—the one dimensional analogue
of a Ritz value. In this notation, estimate (1.4) turns into∣∣∣∣ (x, Pzx)

(x, x)
− (y, Pzy)

(y, y)

∣∣∣∣ ≤ sin(θ(x, y)),(1.5)

which clearly now is a particular case of a general estimate for the Rayleigh quotient
(cf. [19]), ∣∣∣∣ (x,Ax)

(x, x)
− (y,Ay)

(y, y)

∣∣∣∣ ≤ (λmax − λmin) sin(θ(x, y)),(1.6)

where A is a Hermitian operator and λmax − λmin is the spread of its spectrum.

18 ANDREW V. KNYAZEV AND MERICO E. ARGENTATI

We show that the multidimensional analogue of (1.5) can be interpreted as a
bound on the change in the Ritz values with the change of the trial subspace, in
the particular case where the Rayleigh–Ritz method is applied to an orthogonal pro-
jector. We then extend it to prove a general result for Ritz values for an arbitrary
Hermitian operator A, not necessarily a projector: let Λ (PXA|X) be the vector of
Ritz values in nonincreasing order for the operator A on a trial subspace X , which
is perturbed to give another trial subspace Y; then |Λ (PXA|X) − Λ (PYA|Y)| ≺w

(λmax−λmin) sin Θ(X ,Y), which is a multidimensional analogue of (1.6). Our present
proof is based on a classical but rarely used idea of extending a Hermitian operator
in H to an orthogonal projector in the “double” space H2, preserving its Ritz values.

An application of our Ritz values weak majorization result for Laplacian graph
spectra comparison is suggested in section 5, based on the possibility of interpreting
eigenvalues of the edge Laplacian of a given graph as Ritz values of the edge Laplacian
of the complete graph. We prove that

∑
k |λ1

k − λ2
k| ≤ nl, where λ1

k and λ2
k are all

ordered elements of the Laplacian spectra of two graphs with the same n vertices and
with l equal to the number of differing edges.

The rest of the paper is organized as follows. In section 2, we provide some back-
ground, definitions, and several statements concerning weak majorization, principal
angles between subspaces, and extensions of Hermitian operators to projectors. In
section 3, we prove in Theorems 3.2 and 3.3 that the absolute value of the change in
(the squares of) the sines and cosines is weakly majorized by the sines of the angles
between the original and perturbed subspaces. In section 4, we prove in Theorem
4.2 that a change in the Ritz values in the Rayleigh–Ritz method with respect to
the change in the trial subspaces is weakly majorized by the sines of the principal
angles between the original and perturbed trial subspaces times a constant. In sec-
tion 5, we apply our Ritz values weak majorization result to Laplacian graphs spectra
comparison. Section 6 gives brief conclusions.

This paper is related to several different subjects: majorization, principal angles,
the Rayleigh–Ritz method, and Laplacian graph spectra. In most cases, whenever
possible, we cite books rather than the original works in order to keep our already
quite long list of references within a reasonable size.

2. Definitions and preliminaries. In this section we introduce some defini-
tions, basic concepts, and generally familiar results for later use.

2.1. Weak majorization. Majorization is a well-known (e.g., see [14, pp. 45–
49] or [24, pp. 9–14]) important mathematical concept with numerous applications.

For a real vector x = [x1, . . . , xn] let x↓ be the vector obtained by rearranging

the entries of x in an algebraically nonincreasing order, x↓
1 ≥ · · · ≥ x↓

n. We denote
[|x1|, . . . , |xn|] by |x|. We say that vector y weakly majorizes vector x, and we use

the notation [x1, . . . , xn] ≺w [y1, . . . , yn] or x ≺w y if
∑k

i=1 x
↓
i ≤

∑k
i=1 y

↓
i for

k = 1, . . . , n. If in addition the sums above for k = n are equal, y (strongly) majorizes
vector x, but we do not use this type of majorization in the present paper. Two
vectors of different lengths may be compared by simply appending zeroes to increase
the size of the smaller vector to make the vectors the same length.

Weak majorization is a powerful tool for bounds involving eigenvalues and singular
values and is covered, e.g., in [10], [24], [1], and [15], which we follow here and to which
we refer the reader for references to the original works and all necessary proofs. In the
present paper, we use several well-known statements that we formulate for operators
H → H and overview briefly below.

MAJORIZATION: ANGLES, RITZ VALUES, GRAPH SPECTRA 19

Let S(A) denote the vector of all singular values of A : H → H in nonincreasing
order, i.e., S(A) = S↓(A), while individual singular values of A enumerated in non-
increasing order are denoted by si(A). For Hermitian A let Λ(A) denote the vector
of all eigenvalues of A in nonincreasing order, i.e., Λ(A) = Λ↓(A), while individual
eigenvalues of A enumerated in nonincreasing order are denoted by λi(A).

The starting point for weak majorization results that we use in this paper is, e.g.,
[24, Theorem 9.G.1, p. 241], given next.

Theorem 2.1. Λ(A + B) ≺w Λ(A) + Λ(B) for Hermitian A and B.
This follows easily from Ky Fan’s trace maximum principle [24, Theorem 20.A.2,

p. 511] and the fact that the maximum of a sum is bounded from above by the sum
of the maxima. For general A : H → H and B : H → H, it follows from Theorem 2.1,
since the top half of the spectrum of the Hermitian 2-by-2 block operator

[
0 A
A∗ 0

]
is

nothing but S(A), that (see, e.g., [15, Cor. 3.4.3, p. 196]) we have the following.
Corollary 2.2. S(A±B) ≺w S(A) + S(B).
A more delicate and stronger result is the following Lidskii theorem (see, e.g., [1,

Theorem III.4.1, p. 69]), which can be proved using the Wielandt maximum principle
(e.g., [1, Theorem III.3.5, p. 67]).

Theorem 2.3. For Hermitian A and B and any set of indices 1 ≤ i1 < · · · < ik ≤
n = dimH, we have

∑k
j=1 λij (A + B) ≤

∑k
j=1 λij (A) +

∑k
j=1 λj(B), k = 1, . . . , n.

By choosing an appropriate set of indices, Theorem 2.3 for Hermitian A and B
immediately gives Λ(A) − Λ(B) ≺w Λ(A−B), which for singular values of arbitrary
A : H → H and B : H → H is equivalent (see [1, section IV.3, pp. 98–101]) to, e.g.,
[15, Theorem 3.4.5, p. 198] or [1, Theorem IV.3.4, p. 100], as follows.

Corollary 2.4. |S(A) − S(B)| ≺w S(A−B).
Applying Corollary 2.4 to properly shifted Hermitian operators, we get the next

result.
Corollary 2.5. |Λ(A) − Λ(B)| ≺w S(A−B) for Hermitian A and B.
We finally need the so-called pinching inequality (see, e.g., [10, Theorem II.5.1,

p. 52] or [1, Problem II.5.5, p. 50]), which we write as follows.
Theorem 2.6. If P is an orthogonal projector, then we have the weak majoriza-

tion bound S(PAP ± (I − P)A(I − P)) ≺w S(A).
Proof. Indeed, A = PAP +(I−P)A(I−P)+PA(I−P)+(I−P)AP , so let B =

PAP +(I−P)A(I−P)−PA(I−P)−(I−P)AP ; then (2P−I)A(2P−I) = B, where
2P − I is unitary Hermitian, and thus A∗A and B∗B are similar and S(A) = S(B).
Evidently, PAP + (I −P)A(I −P) = (A+B)/2, and so the pinching result with the
plus follows from Corollary 2.2. The pinching result with the minus is equivalent to
the pinching result with the plus, since the sign does not change the singular values
on the left-hand side: S(PAP ± (I − P)A(I − P)) = S(PAP)∪ S((I − P)A(I − P)),
since the ranges of PAP and (I − P)A(I − P) are disjoint.

2.2. Principal angles between subspaces. Let PX and PY be orthogonal
projectors onto the subspaces X and Y, respectively, of the space H. We define the
set of cosines of principal angles between subspaces X and Y by

cos Θ(X ,Y) = [s1(PXPY), . . . , sm(PXPY)], m = min {dimX ; dimY} .(2.1)

Our definition (2.1) is evidently symmetric: Θ(X ,Y) = Θ(Y,X). By definition, the
cosines are arranged in nonincreasing order, i.e., cos(Θ(X ,Y)) = (cos(Θ(X ,Y)))↓,
while the angles θi(X ,Y) ∈ [0, π/2], i = 1, . . . ,m, and their sines are in nondecreasing
order.

The concept of principal angles is closely connected to cosine-sine (CS) decom-

20 ANDREW V. KNYAZEV AND MERICO E. ARGENTATI

positions of unitary operators; we refer the reader to the books [37], [38], [1] for the
history and references to the original publications on principal angles and the CS
decomposition. We need several simple but important statements about the angles,
provided below. In the particular case dimX = dimY, the standard CS decomposition
can be used, and the statements are easy to derive. For the general case dimX
= dimY
that is necessary for us here, they can be obtained using the general (rectangular)
form of the CS decomposition described, e.g., in [31], [30]. For completeness we pro-
vide the proofs here using ideas from [13], [7], preparing our work to be more easily
extended to infinite dimensional Hilbert spaces.

In [18, Theorem 3.4, p. 2017 and Theorem 3.5, p. 2018], without proofs we for-
mulate statements equivalent to the theorem below; see also [3, Example 1.2.6].

Theorem 2.7. When one of the two subspaces is replaced with its orthogonal
complement, the corresponding pairs of angles sum up to π/2; specifically,[π

2
, . . . ,

π

2
, (Θ(X ,Y))↓

]
=

[π
2
− Θ(X ,Y⊥), 0, . . . , 0

]
,(2.2)

where there are max{dimX −dimY; 0} values π/2 on the left, and possibly extra zeroes
on the right to match the sizes.

The angles between subspaces and between their orthogonal complements are es-
sentially the same,

[(Θ(X ,Y))↓, 0, . . . , 0] = [(Θ(X⊥,Y⊥))↓, 0, . . . , 0],(2.3)

where extra zeroes at the end may need to be added on either side to match the sizes.
Proof. Let M00 = X ∩Y, M01 = X ∩Y⊥, M10 = X⊥ ∩Y, M11 = X⊥ ∩Y⊥, as

suggested in [13, p. 381].
Each of the subspaces is invariant with respect to orthoprojectors PX and PY and

their products, and so each of the subspaces contributes independently to the set of
singular values of PXPY in (2.1). Specifically, there are dimM00 ones, dimM0 singular
values in the interval (0, 1) equal to cos Θ(M0,Y), where M0 = X ∩ (M00 ⊕ M01)

⊥,
and all other singular values are zeroes; thus,

(Θ(X ,Y))
↓

=
[π
2
, . . . ,

π

2
, (Θ(M0,Y))↓, 0, . . . , 0

]
,(2.4)

where there are min {dim(M01); dim(M10)} values π/2 and dim(M00) zeroes.
The subspace M0 does not change if we substitute Y⊥ for Y in (2.4), so we have

(
Θ(X ,Y⊥)

)↓
=

[π
2
, . . . ,

π

2
, (Θ(M0,Y⊥))↓, 0, . . . , 0

]
,

where there are min {dim(M00); dim(M11)} values π/2 and dim(M01) zeroes. Since
λ is an eigenvalue of (PXPY)|M0 if and only if 1− λ is an eigenvalue of (PXPY⊥)|M0 ,
we have π

2 − Θ(M0,Y⊥) = (Θ(M0,Y))↓, and the latter equality turns into

π

2
− Θ(X ,Y⊥) =

[π
2
, . . . ,

π

2
, (Θ(M0,Y))↓, 0, . . . , 0

]
,(2.5)

where there are dim(M01) values π/2, and min {dim(M00); dim(M11)} zeroes. To
obtain (2.2), we make (2.4) and (2.5) equal by adding max {dimM01 − dimM10; 0}
values π/2 to (2.4) and max {dimM00 − dimM11; 0} zeroes to (2.5), and by noting

MAJORIZATION: ANGLES, RITZ VALUES, GRAPH SPECTRA 21

that, since dim(X ∩Y⊥) = dimX +dimY⊥−dim(X +Y⊥), X⊥∩Y = (X +Y⊥)⊥ and
dimY⊥ − dim((X + Y⊥)⊥) = dim(X + Y⊥) − dimY, we have dimM01 − dimM10 =
dim(X ∩Y⊥)−dim(X⊥ ∩Y) = dimX + dimY⊥ −dim(X +Y⊥)−dim((X +Y⊥)⊥) =
dimX − dimY.

The proof above shows that there are dimM00 = dim(X ∩ Y) zeroes on the
right-hand side in (2.2). To prove (2.3), we substitute X⊥ for X in (2.2) to get[
π
2 , . . . ,

π
2 , (Θ(X⊥,Y))↓

]
=

[
π
2 − Θ(X⊥,Y⊥), 0, . . . , 0

]
with dim(X⊥ ∩ Y) zeroes on

the right, on the one hand, and exchange Θ(X ,Y) = Θ(Y,X) in (2.2) and then
substitute X⊥ for X to obtain

[
π
2 , . . . ,

π
2 , (Θ(Y,X⊥))↓

]
=

[
π
2 − Θ(Y,X), 0, . . . , 0

]
with dim(Y ∩X⊥) zeroes on the right, on the other hand. We have equal numbers of
zeroes on the right in both equalities, and Θ(X⊥,Y) = Θ(Y,X⊥) by the symmetry
of our definition (2.1), so subtracting both equalities from π/2 leads to (2.3).

We also use the following trivial, but crucial, statement.
Lemma 2.8. Λ ((PXPY)|X) = [cos2 Θ(X ,Y), 0, . . . , 0], with max{dimX−dimY; 0}

extra zeroes.
Proof. The operator (PXPY)|X = ((PXPY)(PXPY)�) |X is Hermitian nonnegative

definite, and its spectrum can be represented using the definition of angles (2.1). The
number of extra zeroes is exactly the difference between the number dimX of Ritz
values and the number min{dimX ; dimY} of principal angles.

Finally, we need the following characterization of singular values of the difference
of projectors, which for dimX = dimY appears, e.g., in [38, Theorem 5.5.5, p. 43].

Theorem 2.9.

[S(PX − PY), 0, . . . , 0] = [1, . . . , 1, (sin Θ(X ,Y), sin Θ(X ,Y))
↓
, 0, . . . , 0],

where there are |dimX −dimY| extra 1’s upfront, the set sin Θ(X ,Y) is repeated twice
and ordered, and extra 0’s at the end may need to be added on either side to match
the sizes.

Proof. The projectors PX and PY are idempotent, which implies, on the one
hand,

(PX − PY)2 = PX (I − PY) + PY(I − PX) = PXPY⊥ + PYPX⊥ ,

so that the subspace X is invariant under (PX − PY)2. On the other hand,

(PX − PY)2 = (I − PX)PY + (I − PY)PX = PX⊥PY + PY⊥PX ,

so that the subspace X⊥ is also invariant under (PX−PY)2. The projectors PX and PY
are orthogonal, and thus the operator (PX −PY)2 is Hermitian, and its spectrum can
be represented as a union (counting the multiplicities) of the spectra of its restrictions
to the complementary invariant subspaces X and X⊥:

Λ
(
(PX − PY)2

)
= [Λ((PXPY⊥)|X),Λ((PX⊥PY))|X⊥]

↓
.

Using Lemma 2.8 and statement (2.2) of Theorem 2.7,

[Λ((PXPY⊥)|X), 0, . . . , 0] = [cos2 Θ(X ,Y⊥), 0, . . . , 0]

= [1, . . . , 1, (sin2 Θ(X ,Y))↓, 0, . . . , 0],

where there are max{dimX − dimY; 0} leading 1’s and possibly extra 0’s to match
the sizes, and

[Λ((PX⊥PY)|X⊥), 0, . . . , 0] = [cos2 Θ(X⊥,Y), 0, . . . , 0]

= [1, . . . , 1, (sin2 Θ(X ,Y))↓, 0, . . . , 0],

22 ANDREW V. KNYAZEV AND MERICO E. ARGENTATI

where there are max{dimY − dimX ; 0} leading 1’s and possibly extra 0’s to match
the sizes. Combining these two relations and taking the square root completes the
proof.

2.3. Extending operators to isometries and projectors. In this subsection
we present a simple and known technique (see, e.g., [12] and [35, p. 461]) for extending
a Hermitian operator to a projector. We give an alternative proof based on extending
an arbitrary normalized operator B to an isometry B̂ (in matrix terms, a matrix
with orthonormal columns). [9, Problem X.1.26, p. 455] and [1, Problem I.3.6, p. 11]
extend B to a block 2-by-2 unitary operator. Our technique is similar and results in a
2-by-1 isometry operator B̂ that coincides with the first column of the 2-by-2 unitary
extension.

Lemma 2.10. Given an operator B : H → H with singular values less than or
equal to one, there exists a block 2-by-1 isometry operator B̂ : H → H2 such that the
upper block of B̂ coincides with B.

Proof. B∗B is Hermitian nonnegative definite, and all its eigenvalues are bounded
by one, since all singular values of B are bounded by one. Therefore, I − B∗B
is Hermitian and nonnegative definite, and thus possesses a Hermitian nonnegative
definite square root. Let

B̂ =

[
B√

I −B∗B

]
.

By direct calculation, B̂∗B̂ = B∗B +
√
I −B∗B

√
I −B∗B = I; i.e., B̂ is an isome-

try.
Now we use Lemma 2.10 to extend, in a similar sense, a shifted and normalized

Hermitian operator to an orthogonal projector.
Theorem 2.11 (see [12] and [35, p. 461]). Given a Hermitian operator A : H →

H with eigenvalues enclosed in the segment [0, 1], there exists a block 2-by-2 orthogonal
projector Â : H2 → H2 such that its upper left block is equal to A.

Proof. There exists
√
A, which is also Hermitian and has its eigenvalues enclosed

in [0, 1]. Applying Lemma 2.10 to B =
√
A, we construct the isometry B̂ and set

Â = B̂B̂∗ =

[√
A√

I −A

] [√
A

√
I −A

]
=

[
A

√
A(I −A)√

A(I −A) I −A

]
.

We see that indeed the upper left block is equal to A. We can use the fact that B̂ is
an isometry to show that Â is an orthogonal projector, or that can be checked directly
by calculating Â2 = Â and noticing that Â is Hermitian by construction.

Introducing S =
√
A and C =

√
I −A, we obtain

Â =

[
S2 SC
SC C2

]
,

which is a well-known (see, e.g., [13], [6]) block form of an orthogonal projector that
can alternatively be derived using the CS decomposition of unitary operators; see,
e.g., [37], [38], [1].

The importance of Theorem 2.11 can be better seen if we reformulate it as follows.
Theorem 2.12 (cf. [9, Example X.27, p. s455]). Given a Hermitian operator

A : H → H with eigenvalues enclosed in a segment [0, 1], there exist subspaces X
and Y in H2 such that A is unitarily equivalent to (PXPY)|X , where PX and PY
are the corresponding orthogonal projectors in H2 and |X denotes a restriction to the
invariant subspace X .

MAJORIZATION: ANGLES, RITZ VALUES, GRAPH SPECTRA 23

Proof. We use Theorem 2.11 and take PY = Â and PX =
[
I 0
0 0

]
.

Similar to Theorem 2.12, Lemma 2.10 implicitly states that an arbitrary normal-
ized operator B is unitarily equivalent to a product of the partial isometry B̂ in H2

and the orthogonal projector in H2 that selects the upper block in B̂ (called PX in
the proof of Theorem 2.12). It is instructive to compare this product to the classical
polar decomposition of B that is a product of a partial isometry and a Hermitian
nonnegative definite operator in H. In H2, we can choose the second factor to be an
orthogonal projector! This statement together with Theorem 2.12 can provide inter-
esting canonical decompositions in H2 that apparently are not exploited at present,
but in our opinion deserve attention.

We take advantage of Theorem 2.12 in the present paper. Using Lemma 2.8 with
(2.1), Theorem 2.12 implies that the spectrum of an arbitrary Hermitian operator after
a proper shift and scaling is nothing but a set of cosines squared of principal angles
between some pair of subspaces. This surprising idea appears to be very powerful.
It allows us, in section 4, to obtain a novel result on the sensitivity of Ritz values
with respect to the trial subspace by reducing the investigation of the Rayleigh–Ritz
method to the analysis of the principal angles between subspaces that we provide in
the next section.

3. Majorization for angles. In this section we prove the main results of the
present paper involving sines and cosines and their squares of principal angles, but
we start with a known statement that involves the principal angles themselves.

Theorem 3.1 (see [34, Theorem 3.2, p. 514]). Let X , Y, and Z be subspaces of
the same dimension. Then

|Θ(X ,Z) − Θ(Y,Z)| ≺w Θ(X ,Y).(3.1)

Theorem 3.1 deals with the principal angles themselves, and the obvious question
is: Are there similar results for a function of these angles, in particular for sines and
cosines and their squares? For one dimensional subspaces, estimate (3.1) turns into
(1.1), which, as discussed in the Introduction, implies the estimate (1.2) for the sine.
According to an anonymous referee, it appears to be known to some specialists that
the same inference can be made for tuples of angles, but there is no good reference
for this at present. Below we give easy direct proofs in a unified way for the sines and
cosines and their squares.

We first prove the estimates for sine and cosine, which are straightforward gener-
alizations of the 1D sine (1.2) and cosine (1.3) inequalities from the Introduction.

Theorem 3.2. Let dimX = dimY; then

| sin Θ(X ,Z) − sin Θ(Y,Z)| ≺w sin Θ(X ,Y),(3.2)

| cos Θ(X ,Z) − cos Θ(Y,Z)| ≺w sin Θ(X ,Y).(3.3)

Proof. Let PX , PY , and PZ be the corresponding orthogonal projectors onto the
subspaces X , Y, and Z, respectively. We prove the sine estimate (3.2), using the idea
of [33]. Starting with (PX − PZ) − (PY − PZ) = PX − PY , as in the proof of the 1D
sine estimate (1.2), we use Corollary 2.4 to obtain

|S(PX − PZ) − S(PY − PZ)| ≺w S(PX − PY).

The singular values of the difference of two orthoprojectors are described by Theorem
2.9. Since dimX = dimY, we have the same number of extra 1’s up front in S(PX−PZ)

24 ANDREW V. KNYAZEV AND MERICO E. ARGENTATI

and in S(PY −PZ), so that the extra 1’s are canceled and the set of nonzero entries of
|S(PX −PZ)−S(PY −PZ)| consists of nonzero entries of | sin Θ(X ,Z)− sin Θ(Y,Z)|
repeated twice. The nonzero entries of S(PX − PY) are by Theorem 2.9 the nonzero
entries of sin Θ(X ,Y) also repeated twice, and thus we come to (3.2).

The cosine estimate (3.3) follows directly from the sine estimate (3.2) with Z⊥

instead of Z because of (2.2), and utilizing the assumption dimX = dimY.
In our earlier paper [18, Lemma 5.1, p. 2023 and Lemma 5.2, p. 2025] we obtained

a particular case of Theorem 3.2, only for the largest change in the sine and the cosine,
but with improved constants. We are not presently able, however, to modify the proofs
of [18] using weak majorization, in order to improve the estimates of Theorem 3.2 by
introducing these same constants.

Our last, but not least, result in this series is the weak majorization bound for
the sines or cosines squared, which provides the foundation for the rest of the paper.

Theorem 3.3. Let dimX = dimY; then

| cos2 Θ(X ,Z) − cos2 Θ(Y,Z)| = | sin2 Θ(X ,Z) − sin2 Θ(Y,Z)| ≺w sin Θ(X ,Y).

Proof. The equality is evident. To prove the majorization result for the sines
squared, we start with the useful pinching identity

(PX − PZ)2 − (PY − PZ)2 = PZ⊥(PX − PY)PZ⊥ − PZ(PX − PY)PZ .

Applying Corollary 2.4, we obtain∣∣S (
(PX − PZ)2

)
− S

(
(PY − PZ)2

)∣∣ ≺w S (PZ⊥(PX − PY)PZ⊥ − PZ(PX − PY)PZ) .

For the left-hand side we use Theorem 2.9, as in the proof of Theorem 3.2, except that
we are now working with the squares. For the right-hand side, the pinching Theorem
2.6 gives

S (PZ⊥(PX − PY)PZ⊥ − PZ(PX − PY)PZ) ≺w S (PX − PY) ,

and we use Theorem 2.9 again to characterize S (PX − PY), as in the proof of Theo-
rem 3.2.

4. Changes in the trial subspace in the Rayleigh–Ritz method. In this
section, we explore a simple, but deep, connection between the principal angles and
the Rayleigh–Ritz method that we discuss in the Introduction. We demonstrate that
the analysis of the influence of changes in a trial subspace in the Rayleigh–Ritz method
is a natural extension of the theory concerning principal angles and the proximity of
two subspaces developed in the previous section.

For the reader’s convenience, let us repeat here the definition of Ritz values from
the Introduction: Let A : H → H be a Hermitian operator and PX be an orthogonal
projector to a subspace X of H. The eigenvalues Λ(PXA|X) are the Ritz values of
operator A with respect to X , which is called the trial subspace.

Let X and Y both be subspaces of H and dimX = dimY. The goal of this
section is to analyze the sensitivity of Ritz values with respect to the trial subspaces,
specifically to bound the change |Λ (PXA|X) − Λ (PYA|Y)| in terms of sin Θ(X ,Y)
using weak majorization. Such an estimate is already obtained in Theorem 10 of our
earlier paper [19] by applying Corollary 2.5 to the matrices of PXA|X and PYA|Y .
This approach, however, leads to an extra factor

√
2 on the right-hand side, which is

conjectured in [19] to be artificial.

MAJORIZATION: ANGLES, RITZ VALUES, GRAPH SPECTRA 25

We remove this
√

2 factor in our new Theorem 4.2 by using the entirely different
and novel approach: We connect the Ritz values with extension Theorems 2.11 and
2.12, on the one hand, and with the cosine squared of principal angles in Lemma 2.8,
on the other hand. We have shown in Theorem 2.11 that a Hermitian nonnegative
definite contraction operator can be extended to an orthogonal projector in a larger
space. The extension has an extra nice property: It preserves the Ritz values.

Corollary 4.1. Under the assumptions of Theorem 2.11, the Ritz values of
operator A : H → H in the trial subspace X ⊂ H are the same as the Ritz values of
operator Â : H2 → H2 in the trial subspace

X̂ =

[
X
0

]
⊂ Ĥ =

[
H
0

]
⊂ H2.

Proof. Let PĤ : H2 → H2 be an orthogonal projector on the subspace Ĥ and

PX̂ : H2 → H2 be an orthogonal projector on the subspace X̂ . We use the equality

sign to denote the trivial isomorphism between H and Ĥ; i.e., we simply write H = Ĥ
and X = X̂ .

In this notation, we first observe that A = PĤÂ|Ĥ; i.e., the operator A itself

can be viewed as a result of the Rayleigh–Ritz method applied to the operator Â
in the trial subspace Ĥ. Second, we use the fact that a recursive application of the
Rayleigh–Ritz method on a system of enclosed trial subspaces is equivalent to a direct
single application of the Rayleigh–Ritz method to the smallest trial subspace; indeed,
in our notation, PĤPX̂ = PX̂PĤ = PX̂ , since X̂ ⊂ Ĥ, and thus

PXA|X =
(
PX̂PĤÂ|Ĥ

)∣∣∣
X̂

= PX̂ Â|X̂ .

Next we note that Lemma 2.8 states that the Rayleigh–Ritz method applied to an
orthogonal projector produces Ritz values, which are essentially the cosines squared of
the principal angles between the range of the projector and the trial subspace. For the
reader’s convenience we reformulate Lemma 2.8 here: Let the Rayleigh–Ritz method
be applied to A = PZ , where PZ is an orthogonal projector onto a subspace Z, and let
X be the trial subspace in the Rayleigh–Ritz method; then the set of the Ritz values
is Λ (PXPZ |X) = [cos2 Θ(X ,Z), 0, . . . , 0] with max{dimX − dimZ; 0} extra zeroes.

Now we are ready to direct our attention to the main topic of this section: the
influence of changes in a trial subspace in the Rayleigh–Ritz method on the Ritz
values.

Theorem 4.2. Let A : H → H be Hermitian, and let X and Y both be subspaces
of H and dimX = dimY. Then

|Λ (PXA|X) − Λ (PYA|Y)| ≺w (λmax − λmin) sin Θ(X ,Y),(4.1)

where λmin and λmax are the smallest and largest eigenvalues of A, respectively.
Proof. We prove Theorem 4.2 in two steps. First we show that we can assume

that A is a nonnegative definite contraction without losing generality. Second, under
these assumptions, we extend the operator A to an orthogonal projector by Theorem
2.11 and use the facts that such an extension does not affect the Ritz values by
Corollary 4.1 and that the Ritz values of an orthogonal projector can be interpreted
as the cosines squared of principal angles between subspaces by Lemma 2.8, thus
reducing the problem to the already established result on weak majorization of the
cosine squared Theorem 3.3.

26 ANDREW V. KNYAZEV AND MERICO E. ARGENTATI

We observe that the statement of the theorem is invariant with respect to a shift
and a scaling; indeed, for real α and β if the operator A is replaced with β(A−α) and
λmin and λmax are correspondingly updated, both sides of (4.1) are just multiplied
by β, and (4.1) is thus invariant with respect to α and β. Choosing α = λmin and
β = 1/(λmax−λmin), the transformed operator (A−λmin)/(λmax−λmin) is Hermitian
with its eigenvalues enclosed in a segment [0, 1], and thus the statement (4.1) of the
theorem can be equivalently rewritten as

|Λ (PXA|X) − Λ (PYA|Y)| ≺w sin Θ(X ,Y),(4.2)

where we from now on assume that A is a nonnegative definite contraction without
losing generality.

The second step of the proof is to recast the problem into an equivalent problem for
an orthogonal projector with the same Ritz values and principal angles. By Theorem
2.11 we can extend the nonnegative definite contraction A to an orthogonal projector
PẐ , where Ẑ is a subspace of H2. PẐ has by Corollary 4.1 the same Ritz values with
respect to trial subspaces,

X̂ =

[
X
0

]
⊂ Ĥ =

[
H
0

]
⊂ H2 and Ŷ =

[
Y
0

]
⊂ Ĥ =

[
H
0

]
⊂ H2,

as A has with respect to the trial subspaces X and Y. By Lemma 2.8, these Ritz
values are equal to the cosines squared of the principal angles between Ẑ and the trial
subspace X̂ or Ŷ, possibly with the same number of zeroes being added. Moreover,
the principal angles between X̂ and Ŷ in H2 are clearly the same as those between
X and Y in H and dimX̂ = dimX = dimY = dimŶ. Thus, (4.2) can be equivalently
reformulated as

| cos2 Θ(X̂ , Ẑ) − cos2 Θ(Ŷ, Ẑ)| ≺w sin Θ(X̂ , Ŷ).(4.3)

Finally, we notice that (4.3) is already proved in Theorem 3.3.
Remark 4.1. As in [19, Remark 7], the constant λmax − λmin in Theorem 4.2

can be replaced with

max
x∈X+Y, ‖x‖=1

(x,Ax) − min
x∈X+Y, ‖x‖=1

(x,Ax),

which for some subspaces X and Y can provide a significant improvement.
Remark 4.2. The implications of the weak majorization inequality in Theorem

4.2 may not be obvious to every reader. To clarify, let m = dimX = dimY, and let
α1 ≥ · · · ≥ αm be the Ritz values of A with respect to X and β1 ≥ · · · ≥ βm be the
Ritz values of A with respect to Y. The weak majorization inequality in Theorem 4.2
directly implies

k∑
i=1

|αi − βi|↓ ≤ (λmax − λmin)

k∑
i=1

sin(Θi(X ,Y))↓, k = 1, . . . ,m;

e.g., for k = m we obtain

m∑
i=1

|αi − βi| ≤ (λmax − λmin)

m∑
i=1

sin(Θi(X ,Y)),(4.4)

MAJORIZATION: ANGLES, RITZ VALUES, GRAPH SPECTRA 27

and for k = 1 we have

max
j=1,...,m

|αj − βj | ≤ (λmax − λmin)gap(X ,Y),(4.5)

where the gap gap(X ,Y) between equidimensional subspaces X and Y is the sine of
the largest angle between X and Y. Inequality (4.5) is proved in [19, Theorem 5].

For real vectors x and y the weak majorization x ≺w y is equivalent to the in-
equality

∑n
i=1 φ(xi) ≤

∑n
i=1 φ(yi) for any continuous nondecreasing convex real val-

ued function φ; see, e.g., [24, Proposition 4.B.2., p. 109]. Taking, e.g., φ(t) = tp with
p ≥ 1, Theorem 4.2 also implies(

m∑
i=1

|αi − βi|p
) 1

p

≤ (λmax − λmin)

(
m∑
i=1

sin(Θi(X ,Y))p

) 1
p

, 1 ≤ p < ∞.

We finally note that the results of Theorem 4.2 are not intended for the case where
one of the subspaces X or Y is invariant with respect to operator A. In such a case, it
is natural to expect a much better bound that involves the square of the sin Θ(X ,Y).
Majorization results of this kind are not apparently known in the literature. Without
majorization, estimates are available just for the largest change in the Ritz values;
e.g., see [19], [21].

5. Application of the majorization results to graph spectra comparison.
In this section, we show that our majorization results can be applied to compare
graph spectra. The graph spectra comparison can be used for graph matching and
has applications in data mining; cf. [23].

The section is divided into three subsections. In subsection 5.1, we give all neces-
sary definitions and basic facts concerning Laplacian graph spectra. In subsection 5.2,
we connect the Laplacian graph spectrum and Ritz values, by introducing the graph
edge Laplacian. Finally, in subsection 5.3, we prove our main result on the Laplacian
graph spectra comparison.

5.1. Incidence matrices and graph Laplacians. Here, we give mostly well-
known relevant definitions (see, e.g., [5], [4], [26], [27], [28], [29]), just slightly tailored
for our specific needs.

Let V be a finite ordered set (of vertices), with an individual element (vertex)
denoted by vi ∈ V . Let Ec be the finite ordered set (of all edges), with an individual
element (edge) denoted by ek ∈ Ec such that every ek = [vi, vj] for all possible
i > j. Ec can be viewed as the set of edges of a complete simple graph with vertices
V (without self-loops and/or multiple edges). The results of the present paper are
invariant with respect to specific ordering of vertices and edges.

Let wc : Ec → R be a function describing edge weights, i.e., wc(ek) ∈ R. If
for some edge ek the weight is positive, wc(ek) > 0, we call this edge present; if
wc(ek) = 0, we say that the edge is absent. In this paper we do not allow negative
edge weights. For a given weight function wc, we define E ⊆ Ec such that ek ∈ E if
wc(ek)
= 0, and we define w to be the restriction of wc on all present edges E; i.e., w
is made of all nonzero values of wc. A pair of sets of vertices V and present edges E
with weights w is called a graph (V,E) or a weighted graph (V,E,w).

The vertex-edge incidence matrix Qc of a complete graph (V,Ec) is a matrix
which has a row for each vertex and a column for each edge, with columnwise entries
determined as qik = 1, qjk = −1 for every edge ek = [vi, vj], i > j, in Ec and with
all other entries of Qc equal to zero. The vertex-edge incidence matrix Q of a graph

28 ANDREW V. KNYAZEV AND MERICO E. ARGENTATI

(V,E) is determined in the same way, but only for the edges present in E. The vertex-
edge incidence matrix can be viewed as a matrix representation of a graph analogue
of the divergence operator from partial differential equations (PDE).

Extending the PDE analogy, the matrix L = QQ∗ is called the graph Laplacian.
In the PDE context, this definition corresponds to the negative Laplacian with the
natural boundary conditions; cf. [25]. Let us note that in the graph theory literature
such a definition of the graph Laplacian is usually attributed to directed graphs, even
though reversing any edge direction does not affect the graph Laplacian.

If we want to take into account the weights, we can work with the matrix
Q diag(w(E))Q∗, which is an analogue of an isotropic diffusion operator, or we can
introduce a more general edge matrix W and work with QWQ∗, which corresponds
to a general anisotropic diffusion. It is interesting to notice the equality

Qc diag(wc(Ec))Q
∗
c = Q diag(w(E))Q∗,(5.1)

which shows two alternative equivalent formulas for the graph diffusion operator.
For simplicity of presentation, we assume in the rest of the paper that the weights

wc take only the values zero and one. Under this assumption, we introduce the matrix
P = diag(wc(Ec)) and notice that P is the matrix of an orthogonal projector on a
subspace spanned by coordinate vectors with indices corresponding to the indices of
edges present in E, and that equality (5.1) turns into

QcPQ∗
c = QQ∗ = L.(5.2)

Let us note that our results can be easily extended to a more general case of arbitrary
nonnegative weights, or even to the case of the edge matrix W , assuming that it is
symmetric nonnegative definite, W = W ∗ ≥ 0.

Fiedler’s pioneering work [8] on using the eigenpairs of the graph Laplacian to
determine some structural properties of the graph has attracted much attention in
the past. Recent advances in large-scale eigenvalue computations using multilevel
preconditioning (e.g., [17], [20], [22]) suggest novel efficient numerical methods to
compute the Fiedler vector and may rejuvenate this classical approach, e.g., for graph
partitioning. In this paper, we concentrate on the whole set of eigenvalues of L, which
is called the Laplacian graph spectrum.

It is known that the Laplacian graph spectrum does not determine the graph
uniquely, i.e., that there exist isospectral graphs; see, e.g., [39] and references there.
However, intuition suggests that a small change in a large graph should not change
the Laplacian graph spectrum very much, and attempts have been made to use the
closeness of Laplacian graph spectra to judge the closeness of the graphs in applica-
tions; for alternative approaches, see [2]. The goal of this section is to back up this
intuition with rigorous estimates for proximity of the Laplacian graph spectra.

5.2. Laplacian graph spectrum and Ritz values. In the previous section,
we obtained in Theorem 4.2 a weak majorization bound for changes in Ritz values
depending on a change in the trial subspace, which we would like to apply to ana-
lyze the graph spectrum. In this subsection, we present an approach that allows us
to interpret the Laplacian graph spectrum as a set of Ritz values obtained by the
Rayleigh–Ritz method applied to the complete graph.

A graph (V,E) can evidently be obtained from the complete graph (V,Ec) by
removing edges; moreover, as we already discussed, we can construct the (V,E) graph
Laplacian by either of the terms in equality (5.2). The problem is that such a con-
struction cannot be recast as an application of the Rayleigh–Ritz method, since the

MAJORIZATION: ANGLES, RITZ VALUES, GRAPH SPECTRA 29

multiplication by the projector P takes place inside of the product in (5.2), not out-
side, as required by the Rayleigh–Ritz method.

To resolve this difficulty, we use the matrix K = Q∗Q, which is sometimes called
the matrix of the graph edge Laplacian, instead of the matrix of the graph vertex
Laplacian L = QQ∗, as both matrices K and L share the same nonzero eigenvalues.
The advantage of the edge Laplacian K is that it can be obtained from the edge
Laplacian of the complete graph Q∗

cQc simply by removing the rows and columns
that correspond to missing edges. Mathematically, this procedure can be viewed as
an instance of the classical Rayleigh–Ritz method, as follows.

Lemma 5.1. Recall that the weights wc take only the values zero and one and
that P = diag(wc(Ec)) is a matrix of an orthogonal projector on a subspace spanned
by coordinate vectors with indices corresponding to the indices of edges present in E.
Then Q∗Q = (PQ∗

cQc)|Range(P); in other words, the matrix Q∗Q is the result of the

Rayleigh–Ritz method applied to the matrix Q∗
cQc on the trial subspace Range(P).

The application of the Rayleigh–Ritz method in this case is reduced to simply
crossing out rows and columns of the matrix Q∗

cQc corresponding to absent edges,
since P projects onto a span of coordinate vectors with the indices of the present
edges.

Lemma 5.1 is a standard tool in spectral graph theory (see, e.g., [11]) for proving
that the eigenvalues are interlacing; however, the procedure is not apparently recog-
nized in the spectral graph community as an instance of the classical Rayleigh–Ritz
method. Lemma 5.1 provides us with the missing link in order to apply our Theorem
4.2 to Laplacian graph spectra comparison.

5.3. Majorization of Ritz values for Laplacian graph spectra compari-
son. Using the tools that we have presented in the previous subsections, we can now
apply the particular case, (4.4), of our weak majorization result of section 4 to analyze
the change in the graph spectrum when several edges are added to or removed from
the graph.

Theorem 5.2. Let (V,E1) and (V,E2) be two graphs with the same set of n
vertices V , with the same number ne of edges E1 and E2, and with the number of
differing edges in E1 and E2 equal to l. Then

n∑
k=1

|λ1
k − λ2

k| ≤ nl,(5.3)

where λ1
k and λ2

k are all Laplacian eigenvalues, counting multiplicities, of the graphs
(V,E1) and (V,E2) in nonincreasing order.

Proof. The spectra of the graph vertex n × n Laplacian QQ∗ and the graph
edge ne × ne Laplacian Q∗Q are the same apart from zero, which does not affect
the statement of the theorem, so we redefine λ1

k and λ2
k as elements of the spectra,

counting the multiplicities, of the edge Laplacians of the graphs (V,E1) and (V,E2).
Then, by Theorem 5.1, λ1

k and λ2
k are the Ritz values of the edge Laplacian matrix

A = Q∗
cQc of the complete graph, corresponding to the trial subspaces X = Range(P1)

and Y = Range(P2) spanned by coordinate vectors with indices of the edges present
in E1 and E2, respectively.

Let us apply Theorem 4.2, taking the sum over all available nonzero values in the
weak majorization statement as in (4.4). This already gives us the left-hand side of
(5.3). To obtain the right-hand side of (5.3) from Theorem 4.2, we now show in our
case that, first, λmax − λmin = n and, second, the sum of sines of all angles between
the trial subspaces X and Y is equal to l.

30 ANDREW V. KNYAZEV AND MERICO E. ARGENTATI

The first claim follows from the fact, which is easy to check by direct calculation,
that the spectrum of the vertex (and thus the edge) Laplacian of the complete graph
with n vertices consists of only two eigenvalues λmax = n and λmin = 0. Let us make
a side note that we can interpret the Laplacian of the complete graph as a scaled
projector; i.e., in this case we could have applied Theorem 3.3 directly, rather than
Theorem 4.2, which would still result in (5.3).

The second claim, on the sum of sines of all angles, follows from the definitions
of X and Y and the assumption that the number of differing edges in E1 and E2 is
equal to l. Indeed, X and Y are spanned by coordinate vectors with indices of the
edges present in E1 and E2. The edges that are present in both E1 and E2 contribute
zero angles into Θ(X ,Y), while the l edges that are different in E1 and E2 contribute
l right angles into Θ(X ,Y), so that the sum of all terms in sin Θ(X ,Y) is equal
to l.

Remark 4.1 is also applicable for Theorem 5.2—while the min term is always
zero, since all graph Laplacians are degenerate, the max term can be made smaller
by replacing n with the largest eigenvalue of the Laplacian of the graph (V,E1 ∪E2).

It is clear from the proof that we do not use the full force of our weak majorization
results in Theorem 5.2, because it concerns angles which are zero or π/2. Nevertheless,
the results of Theorem 5.2 appear to be novel in graph theory. We note that these
results can easily be extended on k-partite graphs, and possibly to mixed graphs.

Let us finally mention an alternative approach to compare Laplacian graph spec-
tra, which we do not cover in the present paper, by applying Corollary 2.5 directly to
graph Laplacians and estimating the right-hand side, using the fact that the changes
in l edges represent a low-rank perturbation of the graph Laplacian; cf. [36].

6. Conclusions. We use majorization to investigate the sensitivity of angles
between subspaces and Ritz values with respect to subspaces, and to analyze changes
in graph Laplacian spectra where edges are added and removed. We discover that
these seemingly different areas are all surprisingly related. We establish in a unified
way new results on weak majorization of the changes in the sine/cosine (squared) and
in the Ritz values. The main strength of the paper in our opinion is, however, not
so much in the results themselves but rather in a novel and elegant proof technique
that is based on a classical but rarely used idea of extending Hermitian operators
to orthogonal projectors in a larger space. We believe that this technique is very
powerful and should be known to a wider audience.

Acknowledgments. We are indebted to Li Qiu and Yanxia Zhang, who sug-
gested to us the idea of the proof of the sine estimate in Theorem 3.2, which also
allowed us to simplify our original proof of Theorem 3.3. We also thank our Ph.D.
students Ilya Lashuk, for contributing to section 2.3, and Abram Jujunashvili, for
many helpful comments. Finally, we thank the anonymous referees for their numer-
ous useful and illuminating suggestions, which dramatically improved the paper.

REFERENCES

[1] R. Bhatia, Matrix Analysis, Springer-Verlag, Berlin, 1997.
[2] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren, A measure of

similarity between graph vertices: Applications to synonym extraction and web searching,
SIAM Rev., 46 (2004), pp. 647–666.

[3] F. Chatelin, Eigenvalues of Matrices, John Wiley and Sons, Chichester, UK, 1993.
[4] F. R. K. Chung, Spectral Graph Theory, CBMS Reg. Conf. Ser. Math. 92,. AMS, Providence,

RI, 1997.

MAJORIZATION: ANGLES, RITZ VALUES, GRAPH SPECTRA 31

[5] D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs: Theory and Applications,
3rd ed., Johann Ambrosius Barth, Heidelberg, Germany, 1995.

[6] C. Davis, Separation of two linear subspaces, Acta Sci. Math. (Szeged), 19 (1958), pp. 172–187.
[7] C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation, III, SIAM J.

Numer. Anal., 7 (1970), pp. 1–46.
[8] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J., 23 (1973), pp. 298–305.
[9] I. M. Glazman and Ju. I. Ljubič, Finite-dimensional Linear Analysis: A Systematic Pre-

sentation in Problem Form, translated from the Russian and edited by G. P. Barker and
G. Kuerti, M.I.T. Press, Cambridge, MA, 1974.

[10] I. C. Gohberg and M. G. Krĕın, Introduction to the Theory of Linear Nonselfadjoint Op-
erators, translated from the Russian by A. Feinstein, Trans. Math. Monogr. 18, AMS,
Providence, RI, 1969.

[11] W. H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl., 226/228 (1995),
pp. 593–616.

[12] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math., 2 (1950),
pp. 125–134.

[13] P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc., 144 (1969), pp. 381–389.
[14] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press,

Cambridge, UK, 1959.
[15] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New

York, 1999.
[16] C. Jordan, Essai sur la géométrie à n dimensions, Bull. Soc. Math. France, 3 (1875), pp. 103–

174.
[17] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block precon-

ditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.
[18] A. V. Knyazev and M. E. Argentati, Principal angles between subspaces in an A-based

scalar product: Algorithms and perturbation estimates, SIAM J. Sci. Comput., 23 (2002),
pp. 2009–2040.

[19] A. V. Knyazev and M. E. Argentati, On proximity of Rayleigh quotients for different vectors
and Ritz values generated by different trial subspaces, Linear Algebra Appl., 415 (2006),
pp. 82–95.

[20] A. V. Knyazev and K. Neymeyr, Efficient solution of symmetric eigenvalue problems using
multigrid preconditioners in the locally optimal block conjugate gradient method, Electron.
Trans. Numer. Anal., 15 (2001), pp. 38–55.

[21] A. V. Knyazev and J. E. Osborn, New a priori FEM error estimates for eigenvalues, SIAM J.
Numer. Anal., 43 (2006), pp. 2647–2667; extended online version available at http://www-
math.cudenver.edu/ccm/reports/rep215.pdf.

[22] Y. Koren, L. Carmel, and D. Harel, Drawing huge graphs by algebraic multigrid optimiza-
tion, Multiscale Model. Simul., 1 (2003), pp. 645–673.

[23] S. Kosinov and T. Caelli, Inexact multisubgraph matching using graph eigenspace and clus-
tering models, in Proceedings of the Joint IAPR International Workshop on Structural,
Syntactic, and Statistical Pattern Recognition, Windsor, ON, 2002, Lecture Notes in Com-
put. Sci. 2396, Springer-Verlag, New York, pp. 133–142.

[24] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications,
Math. Sci. Engrg. 143, Academic Press, New York, 1979.

[25] P. McDonald and R. Meyers, Diffusions on graphs, Poisson problems and spectral geometry,
Trans. Amer. Math. Soc., 354 (2002), pp. 5111–5136.

[26] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl., 197/198 (1994),
pp. 143–176.

[27] R. Merris, A survey of graph Laplacians, Linear and Multilinear Algebra, 39 (1995), pp. 19–31.
[28] R. Merris, Laplacian graph eigenvectors, Linear Algebra Appl., 278 (1998), pp. 221–236.
[29] B. Mohar, Some applications of Laplace eigenvalues of graphs, in Graph Symmetry (Montreal,

PQ, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 497, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1997, pp. 225–275.

[30] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM
J. Numer. Anal., 18 (1981), pp. 398–405.

[31] C. C. Paige and M. Wei, History and generality of the CS decomposition, Linear Algebra
Appl., 208/209 (1994), pp. 303–326.

[32] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics in Appl. Math. 20, SIAM,
Philadelphia, 1997.

[33] L. Qiu and Y. Zhang, private communication, 2005.
[34] L. Qiu, Y. Zhang, and C.-K. Li, Unitarily invariant metrics on the Grassmann space, SIAM

32 ANDREW V. KNYAZEV AND MERICO E. ARGENTATI

J. Matrix Anal. Appl., 27 (2005), pp. 507–531.
[35] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Publications, New York, 1990.
[36] W. So, Rank one perturbation and its application to the Laplacian spectrum of a graph, Linear

and Multilinear Algebra, 46 (1999), pp. 193–198.
[37] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, Boston, MA,

1990.
[38] G. W. Stewart, Matrix Algorithms Volume II: Eigensystems, SIAM, Philadelphia, 2001.
[39] E. R. van Dam and W. H. Haemers, Which graphs are determined by their spectrum? Linear

Algebra Appl., 373 (2003), pp. 241–272.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 33–53

SOLUTIONS OF THE PARTIALLY DESCRIBED INVERSE
QUADRATIC EIGENVALUE PROBLEM∗

YUEN-CHENG KUO† , WEN-WEI LIN‡ , AND SHU-FANG XU§

Abstract. Given k pairs of complex numbers and vectors (closed under conjugation), we consider
the inverse quadratic eigenvalue problem of constructing n×n real symmetric matrices M , C, and K
(with M positive definite) so that the quadratic pencil Q(λ) ≡ λ2M+λC+K has the given k pairs as
eigenpairs. Using various matrix decompositions, we first construct a general solution to this problem
with k ≤ n. Then, with appropriate choices of degrees of freedom in the general solution, we construct
several particular solutions with additional eigeninformation or special properties. Numerical results
illustrating these solutions are also presented.

Key words. quadratic eigenvalue problem, inverse eigenvalue problem, partially prescribed
spectrum, partial eigenstructure assignment

AMS subject classifications. 65F15, 15A22, 65H17, 93B55

DOI. 10.1137/05064134X

1. Introduction. This paper first constructs a general symmetric quadratic
pencil

Q(λ) ≡ λ2M + λC + K(1.1)

with M� = M > 0 (being symmetric positive definite), C� = C, and K� = K ∈
R

n×n, so that Q(λ) has k given pairs of complex numbers and vectors, closed under
conjugation, as its eigenpairs. Then, under appropriate choices of degrees of freedom
in the general solution, we construct several particular solutions with additional
eigeninformation or special properties. Here, we formulate our partially described
inverse quadratic eigenvalue problem.

PD-IQEP (partially described inverse quadratic eigenvalue problem). Given an
eigeninformation pair (Λ, X) ∈ R

k×k × R
n×k (k ≤ n), where

Λ = diag{λ[2]
1 , . . . , λ

[2]
� ;λ2�+1, . . . , λk}(1.2a)

with

λ
[2]
j =

[
αj βj

−βj αj

]
∈ R

2×2, βj �= 0, for j = 1, . . . , �,(1.2b)

and

X = [x1R,x1I , . . . ,x�R,x�I ;x2�+1, . . . ,xk],(1.3)

∗Received by the editors September 28, 2005; accepted for publication (in revised form) by M. Chu
May 8, 2006; published electronically December 21, 2006.

http://www.siam.org/journals/simax/29-1/64134.html
†Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung, 811, Taiwan

(yckuo@nuk.edu.tw).
‡Department of Mathematics, National Tsinghua University, Hsinchu, 300, Taiwan (wwlin@am.

nthu.edu.tw).
§LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, China (xsf@pku.

edu.cn).

33

34 YUEN-CHENG KUO, WEN-WEI LIN, AND SHU-FANG XU

find n× n real symmetric matrices M , C, and K, with M being positive definite, so
that

MXΛ2 + CXΛ + KX = 0.(1.4)

This problem is called “partially described” because the quadratic pencil (1.1)
has part of its eigenvalues and the corresponding eigenvectors, respectively, given by

α1 ± ιβ1, . . . , α� ± ιβ�; λ2�+1, . . . , λk;
and x1R ± ιx1I , . . . ,x�R ± ιx�I ; x2�+1, . . . ,xk.

(1.5)

Here ι =
√
−1. We note that in a large and complicated physical system [16, 17, 19],

it is often impractical or impossible to obtain complete spectral information. Thus, it
is more sensible to consider a PD-IQEP where only a subset of eigenpairs is known.

In mathematical modeling, there is often a correspondence between the inter-
nal parameters and the external behavior. Finding the eigenpairs (λ,x) such that
Q(λ)x = 0 for given M , C, and K is referred to as a direct quadratic eigenvalue
problem (QEP). This is part of the process to induce the dynamics behavior of a
system from known physical parameters such as mass, length, elasticity, inductance,
capacitance, and so on. A detailed theoretical analysis of QEPs can be found in [10].
Engineering applications, mathematical properties, and a variety of numerical meth-
ods for QEPs can be found in the recent survey paper [18]. In contrast, the inverse
problem is to determine or estimate some parameters of the system from its measured
or expected behavior. The concern in the direct problem is to deduce the behavior
from the parameters, whereas in the inverse problem we try to recover the parameters
from the behavior. The inverse problem is as important as the direct problem in
application.

There is much interest in the inverse eigenvalue problem, including the pole as-
signment problem. Some general reviews and extensive bibliographies can be found
in [5, 3]. Some previous attempts at solving the IQEP are listed as follows:

(i) In [4], special symmetric solutions M , C, and K (with M and K being
symmetric positive definite) to the standard PD-IQEP (with k ≤ n) and the
monic PD-IQEP (with k = n + 1) have been constructed.

(ii) In [12], symmetric solutions M , C, and K (with M and K being symmetric
positive definite, and C being positive semidefinite) have been constructed
when all eigenvalues are simple and nonreal, and the corresponding eigenvec-
tor matrix is of the form X = XR(I − ιΘ), where XR is nonsingular and Θ
is orthogonal.

(iii) In [2, 7, 6, 14, 15], a feedback control with partial eigenstructure assignment
was considered. The proportional and derivative feedback controllers have
been constructed to assign specific eigenpairs to the new QEP and make the
closed-loop system insensitive to perturbation. However, this consideration
cannot preserve the symmetry of the closed-loop system.

(iv) In [1, 13], a symmetric Q(λ) has been constructed to partially assign some
eigenvalues while retaining other eigenpairs.

(v) In [8, 9, 11], for the finite element model updating problem, a symmetric Q(λ)
which possesses partially described eigenpairs and is nearest to the original
analytical model has been constructed.

(vi) Other types of IQEPs have been studied under modified conditions. For
instance, in [15], a symmetric quadratic pencil Q(λ) = λ2I + λC + K has
been found, so that Q(λ) and Q̂(λ) (constructed from Q(λ) by deleting the

INVERSE QUADRATIC EIGENVALUE PROBLEM 35

last row and column) have prescribed eigenvalues. In [17], nonproportional
underdamped systems have been studied.

The main purpose of this paper is first to construct a general solution of the
PD-IQEP. With appropriate choices of free variables in the general solution, we then
construct several particular solutions to the PD-IQEP with additional eigeninforma-
tion or special structures. The particular solutions of the standard PD-IQEP and the
monic PD-IQEP in [4] are just the special cases of the general solution (see section 5).

This paper is organized as follows. In section 2, we give an expression of the
general solution to the PD-IQEP in terms of decompositions of some associated ma-
trices. In section 3, we construct particular solutions with K ≥ 0. In section 4, with
k = n, we construct particular solutions assigning additional eigenvalues or eigenpairs.
In section 5, with k < n, we construct particular solutions assigning one additional
complex eigenpair or special structures. Numerical results, illustrating the particular
solutions in section 4, are presented in section 6. A conclusion and a list of solved
and unsolved PD-IQEPs are presented in section 7.

Throughout this paper, we use capital letters to denote matrices, and lowercase
(bold) letters to denote scalars (vectors). For B ∈ R

n×m, B�, B̄, and BH denote
the transpose, conjugate, and conjugate transpose of B, respectively. N (B) denotes
the null space of B. For a symmetric A ∈ R

n×n, A > 0 (≥ 0) denotes a symmetric
positive definite (semidefinite) matrix. The spectrum and the spectral radius of A are
denoted by σ(A) and ρ(A), respectively.

For simplicity, we make the following assumptions:

(H1) The eigenvector matrix X in (1.3) has full column rank, i.e., rank(X) = k.

(H2) The eigenvalue matrix Λ in (1.2a) has only simple eigenvalues.

2. General solution of the PD-IQEP. In this section, we shall solve a general
solution to the PD-IQEP for a given matrix pair (Λ, X) ∈ R

k×k × R
n×k (k ≤ n) as

in (1.2) and (1.3).

Theorem 2.1. Given a matrix pair (Λ, X) ∈ R
k×k × R

n×k (k ≤ n) as in (1.2)
and (1.3), let

X = Q

[
R
0

]
(2.1)

be the QR-factorization of X, where Q ∈ R
n×n is orthogonal and R ∈ R

k×k is non-
singular, and let S = RΛR−1. The general solution to the PD-IQEP is given by

M = Q

[
M11 M12

M21 M22

]
Q�, C = Q

[
C11 C12

C21 C22

]
Q�, K = Q

[
K11 K12

K21 K22

]
Q�,(2.2)

where

(i)

[
M11 M12

M21 M22

]
∈ R

n×n is arbitrarily symmetric positive definite,

(ii) C22 = C�
22,K22 = K�

22 ∈ R
(n−k)×(n−k) are arbitrarily symmetric,

(iii) C21 = C�
12 ∈ R

(n−k)×k is arbitrary,

(iv) C11 = C�
11 = −(M11S + S�M11 + R−�DR−1) ∈ R

k×k,(2.3a)

(v) K11 = K�
11 = S�M11S + R−�DΛR−1 ∈ R

k×k,(2.3b)

(vi) K21 = K�
12 = −(M21S

2 + C21S) ∈ R
(n−k)×k,(2.3c)

36 YUEN-CHENG KUO, WEN-WEI LIN, AND SHU-FANG XU

in which

D = diag

([
ξ1 η1

η1 −ξ1

]
, . . . ,

[
ξ� η�
η� −ξ�

]
; ξ2�+1, . . . , ξk

)
,(2.4)

with ξi and ηi being arbitrary real numbers.
Proof. Substituting (2.1) and (2.2) into (1.4), we have

M11S
2 + C11S + K11 = 0,(2.5)

M21S
2 + C21S + K21 = 0.(2.6)

Thus, finding M , C, and K which satisfy (1.4) is equivalent to finding the submatrices
M11, M21, C11, C21, K11, and K21 which satisfy (2.5) and (2.6). Clearly, it follows
from (2.6) that K21 is determined by (2.3c), where M21 and C21 are arbitrary.

As M and K are required to be symmetric positive definite and symmetric, re-
spectively, so are M11 and K11 in (2.2). From (2.5) it follows that

K11 = −(M11S
2 + C11S).(2.7)

Let M11 be an arbitrary symmetric positive definite matrix. We need to find a sym-
metric C11 such that K11 in (2.7) is symmetric. We thus need a C11 = C�

11 so that

(M11S
2 + C11S)� = M11S

2 + C11S.(2.8)

After rearrangement, (2.8) becomes

C11S − S�C11 = −M11S
2 + (S2)�M11.(2.9)

It is easily seen that (2.9) has a particular solution

C0
11 = −(M11S + S�M11).(2.10)

Next we consider of the homogeneous equation

C11S − S�C11 = 0.(2.11)

Substituting S = RΛR−1 into (2.11), we get

(R�C11R)Λ − Λ�(R�C11R) = 0.(2.12)

Partitioning R�C11R compatibly with Λ, we have s = k − � and

R�C11R =

⎡⎢⎣ Γ11 · · · Γ1s

...
. . .

...
Γs1 · · · Γss

⎤⎥⎦ ,(2.13)

where Γjj is a 2 × 2 matrix for 1 ≤ j ≤ � and Γjj is a 1 × 1 matrix for � + 1 ≤ j ≤ s.
Substituting (2.13) into (2.12) and using assumption (H2), we deduce that

Γji = 0, j �= i,

Γjjλ
[2]
j − (λ

[2]
j)�Γjj = 0, j = 1, . . . , �;

(2.14)

INVERSE QUADRATIC EIGENVALUE PROBLEM 37

and

Γ�+j,�+jλ2�+j − λ2�+jΓ�+j,�+j = 0, j = 1, . . . , s− �.(2.15)

Since λ
[2]
j has the form in (1.2b) with βj �= 0, it is easily seen that the general solution

of (2.14) has the form

Γjj =

[
ξj ηj
ηj −ξj

]
, j = 1, . . . , �,(2.16)

where ξj , ηj are arbitrary real numbers and (2.15) holds for any real numbers Γ�+j,�+j =
ξ�+j . Thus, the general solution of the homogeneous equation (2.11) has the form

C11 = R−�DR−1,(2.17)

with D defined in (2.4). This, together with (2.10), gives rise to the general solution
of (2.9):

C11 = −R−�DR−1 −M11S − S�M11,(2.18)

(cf. (2.3a)). Substituting (2.18) into (2.7) yields (2.3b). Note that from (2.16) and
(1.2) the matrix DΛ in (2.3b) is symmetric. This completes the proof.

Remark 2.1. Theorem 2.1 shows that the solution to the PD-IQEP is under-
determined. Therefore, the question arises as to how these degrees of freedom could
be exploited. This will be discussed in the subsequent sections.

3. Particular solutions with K ≥ 0. In practice, the matrix K in the PD-
IQEP is sometimes required to be symmetric positive semidefinite. In this section,
we shall apply Theorem 2.1 to construct such a solution. We first prove the following
two lemmas.

Lemma 3.1. For any given matrix D defined in (2.4), we can construct a sym-
metric positive definite matrix M11 so that K11 defined in (2.3b) is symmetric positive
semidefinite.

Proof. Since S = RΛR−1, it is easy to see that K11 in (2.3b) is symmetric positive
semidefinite if and only if the matrix

Λ�R�M11RΛ + DΛ(3.1)

is symmetric positive semidefinite.
Since Λ has distinct eigenvalues, we have either 0 �∈ σ(Λ) or 0 being a simple

eigenvalue of Λ (say, λk = 0). We first construct a symmetric positive definite (or a

symmetric positive semidefinite when λk = 0) matrix M̃ so that M̃ + DΛ ≥ 0. Then

we use M̃ to construct the desired M11.
Take

M̃ =

{
M̃1 if 0 �∈ σ(Λ),

diag(M̃1, 0) if 0 ∈ σ(Λ),
(3.2)

where

M̃1 = diag

([
x1 z1

z1 y1

]
, . . . ,

[
x� z�
z� y�

]
; x2�+1, . . . , xk1

)
,(3.3)

38 YUEN-CHENG KUO, WEN-WEI LIN, AND SHU-FANG XU

in which k1 = k when 0 �∈ σ(Λ) and k1 = k − 1 when λk = 0. From (2.4) and (1.2),
we denote

DΛ = diag

([
θ1 ω1

ω1 −θ1

]
, . . . ,

[
θ� ω�

ω� −θ�

]
; θ2�+1, . . . , θk

)
,(3.4)

where

θj = αjξj − βjηj , ωj = αjηj + βjξj , j = 1, . . . , �,
θj = ξjλj , j = 2� + 1, . . . , k,

(3.5)

with ξj and ηj being arbitrary real numbers. Using (3.4) and (3.5), if we choose xi,
yi, and zi such that {

xi > 0, i = 1, . . . , k1,

xiyi − z2
i > 0, i = 1, . . . , �,

(3.6)

xi + θi ≥ 0, i = 2� + 1, . . . , k1,(3.7) {
xi + θi > 0, di ≡ (yi − θi) − (zi+ωi)

2

xi+θi
≥ 0,

or xi + θi = zi + ωi = 0, yi − θi ≥ 0,
i = 1, . . . , �,(3.8)

then M̃1 > 0 and M̃ + DΛ ≥ 0. Obviously, such real numbers xi, yi, and zi can be
easily chosen. Once M̃1 is determined, the required M11 can be chosen by

M11 =

⎧⎪⎪⎨⎪⎪⎩
R−�Λ−�M̃1Λ

−1R−1 if 0 �∈ σ(Λ),

R−�

[
Λ−�

1 M̃1Λ
−1
1 0

0 1

]
R−1 if 0 ∈ σ(Λ),

(3.9)

where Λ1 = Λ(1 : k − 1, 1 : k − 1).
Let K11 be constructed as in Lemma 3.1. Then from (3.2) and (3.9) it is easily

seen that

K11 = R−�(M̃ + DΛ)R−1.(3.10)

Since M̃ + DΛ ≥ 0, there exists a congruence transformation L such that

L�(M̃ + DΛ)L =

[
K̃1 0
0 0q

]
,(3.11)

where K̃1 is a (k − q) × (k − q) positive diagonal matrix. Since K is required to be
symmetric positive semidefinite, it follows that[

RL 0
0 I

]T [
K11 K12

K21 K22

] [
RL 0
0 I

]
=

[
LTRTK11RL LTRTK12

K21RL K22

]
≥ 0.

From (3.10) and (3.11), it holds that L�R�K11RL has the form in (3.11), and then
the last q columns of K21RL must be zero. In the following lemma we show that M21

and C21 can be chosen so that this condition holds.
Lemma 3.2. For the given k× k nonsingular matrix L in (3.11), one can choose

matrices M21 and C21 so that the last q columns of K21RL are zero, where the matrix
K21 is determined by (2.3c).

INVERSE QUADRATIC EIGENVALUE PROBLEM 39

Proof. We first consider the case when 0 /∈ σ(Λ). In this case, since RΛ2L and
RΛL are nonsingular, there exist orthogonal matrices Q1 and Q2 such that

Q�
1 RΛ2L

[
0
Iq

]
=

[
Γ1

0

]
, Q�

2 RΛL

[
0
Iq

]
=

[
Δ1

0

]
,(3.12)

where Γ1,Δ1 ∈ R
q×q are nonsingular. Now let

M21Q1 = [M1
21 | M2

21], C21Q2 = [C1
21 | C2

21],(3.13)

where M1
21, C

1
21 ∈ R

k×q. It follows from (2.3c), (3.12), and (3.13) that

0 = K21RL

[
0
Iq

]
(3.14)

= −(M21S
2 + C21S)RL

[
0
Iq

]
= [M1

21 | M2
21]

[
Γ1

0

]
+ [C1

21 | C2
21]

[
Δ1

0

]
.(3.15)

Therefore, with C1
21 being arbitrary,

M1
21 = −C1

21Δ1Γ
−1
1 .(3.16)

Similarly, in the case when 0 ∈ σ(Λ), there exist orthogonal matrices Q1 and Q2

such that

Q�
1 RΛ2L

[
0
Iq

]
=

[
Γ1 γ1

0 0

]
, Q�

2 RΛL

[
0
Iq

]
=

[
Δ1 δ1

0 0

]
,(3.17)

where Γ1,Δ1 ∈ R
(q−1)×(q−1) are nonsingular and γ1, δ1 ∈ R

q−1. Let

M21Q1 = [M1
21 | M2

21], C21Q2 = [C1
21 | C2

21],(3.18)

where M1
21, C

1
21 ∈ R

k×(q−1), and let

0 = K21RL

[
0
Iq

]
= −(M21S

2 + C21S)RL

[
0
Iq

]
.

We have

M1
21 = −C1

21Δ1Γ
−1
1 ,(3.19)

where C1
21 solves C1

21(δ1 − Δ1Γ
−1
1 γ1) = 0, which has infinite many solutions.

Thus, we have completed the proof of the lemma.
Using Lemmas 3.1 and 3.2, we can construct a particular solution to the PD-IQEP

with K ≥ 0 as follows.
Algorithm 3.1. Solving the PD-IQEP with K ≥ 0.
Step 1. Choose D as in (2.4) arbitrarily and compute DΛ by (3.4) and (3.5).
Step 2. Construct a positive definite matrix M11 by (3.2)–(3.9), compute C11 and

K11 by (2.3a) and (2.3b), respectively, and compute L as in (3.11).
Step 3. Compute the decomposition (3.12) (or (3.17)), determine M21 and C21 by

(3.13) and (3.16) (or (3.18) and (3.19)), and compute K21 by (2.3c).

40 YUEN-CHENG KUO, WEN-WEI LIN, AND SHU-FANG XU

Step 4. Choose an (n− k) × (n− k) positive matrix M̂ and an (n− k) × (n− k)

semipositive matrix K̂ and compute M22 = M̂ + M21M
−1
11 MT

21 and K22 = K̂ +

K21K
†
11K

T
21. Here K†

11 denotes the Moore–Penrose inverse of K11.
Step 5. Choose an arbitrary symmetric C22 and form

M = Q

[
M11 M�

21

M21 M22

]
Q�, C = Q

[
C11 C�

21

C21 C22

]
Q�, K = Q

[
K11 K�

21

K21 K22

]
Q�,

where Q is given by (2.1).

4. Particular solutions with additional eigeninformation when k = n.
Since there are still many degrees of freedom in the general solution of the PD-IQEP
in section 3, we are motivated to satisfy additional constraints or eigeninformation
so that the number of equations constructed from these additional conditions is less
than or equal to the number of free variables. Consequently, such a PD-IQEP with
the additional eigeninformation can be solved generically.

By Theorem 2.1, with k = n, the general solution of the PD-IQEP is given by

C = −(MS + S�M + R−�DR−1),(4.1a)

K = S�MS + R−�DΛR−1,(4.1b)

where M > 0 can be arbitrarily chosen and D is given by (2.4) with k = n. Based on
the factorization of quadratic matrix pencils [10, p. 228], we then have the following
theorem.

Theorem 4.1. In the case when k = n, it holds that

Q(λ) = λ2M + λC + K = (λI − S� −R−�DR−1M−1)M(λI − S).(4.2)

This means that the eigenvalues of Q(λ) are completely determined by the eigenvalues
of S (or Λ) and S + M−1R−�DR−1.

Proof. Substituting (4.1) into Q(λ), we have

Q(λ) = λ2M + λC + K

= λ2M − λ(MS + S�M + R−�DR−1) + S�MS + R−�DΛR−1

= (λI − S)�M(λI − S) + R−�DR−1(−λI + S)

=
(
(λI − S)�M −R−�DR−1

)
(λI − S)

= (λI − S� −R−�DR−1M−1)M(λI − S).(4.3)

Thus (4.2) holds.
In the rest of this section, we shall present two particular solutions to the PD-

IQEP with additional eigeninformation when k = n.

4.1. Particular solutions with additional eigenvalues. Our goal in this
subsection is to construct a quadratic pencil Q(λ) in (4.3) which has n arbitrarily
assigned eigenvalues, closed under complex conjugation, by appropriate choices of M
and D.

Theorem 4.2. The positive definite M and the block diagonal D in (2.4) can
be chosen so that S + M−1R−�DR−1 in (4.2) has n given eigenvalues, closed under
complex conjugation.

INVERSE QUADRATIC EIGENVALUE PROBLEM 41

Proof. Let M̃ = (R�MR)−1. Then

S + M−1R−�DR−1 = R(Λ + M̃D)R−1.(4.4)

We need to find appropriate choices of M̃ and D such that Λ + M̃D has the n given
eigenvalues. We consider

M̃ = diag

([
x1 z1

z1 y1

]
, . . . ,

[
xs zs
zs ys

])
(4.5)

for n = 2s and

M̃ = diag

([
x1 z1

z1 y1

]
, . . . ,

[
xs zs
zs ys

]
; x2s+1

)
(4.6)

for n = 2s+1. Consider the appropriate blocks in Λ, M̃ , and D while ignoring indices;
we only need to assign arbitrary (real or complex conjugate) eigenvalues to matrices
of the forms

A1 =

[
α β

−β α

]
+

[
x z
z y

] [
ξ η
η −ξ

]
(4.7)

and

A2 =

[
λ1 0
0 λ2

]
+

[
x z
z y

] [
ξ1 0
0 ξ2

]
.(4.8)

This can be achieved via appropriate choices of x, y, z, ξ, η, ξ1, and ξ2. We first
require x > 0 and xy − z2 > 0 so that M̃ > 0 as in (4.5) and (4.6).

(i) Assume that A1 is of the form found in (4.7). In this case, we first choose
z = 0. Then we prove that for any given real numbers μ̃ and ν̃, there are two positive
numbers x, y and two real number ξ, η such that

trA1 = μ̃, detA1 = ν̃.

This implies

ξ(x− y) = μ̃− 2α ≡ μ,(4.9)

(αξ + βη)(x− y) − (ξ2 + η2)xy = ν̃ − α2 − β2 ≡ ν.(4.10)

If μ = 0, we choose ξ = 0; then (4.9) holds. By taking η = 1
β , (4.10) becomes

x(β2 − y) = β2(ν + y).(4.11)

Here we use the assumption that β is nonzero. When ν = −β2, we take y = β2 > 0;
then (4.11) holds automatically. When ν > −β2, we take y satisfying max{−ν, 0} <
y < β2; when ν < −β2, we take y satisfying β2 < y < −ν. In both cases, we choose

x = β2 ν + y

β2 − y
> 0.

If μ �= 0, from (4.9) it follows that

x− y =
μ

ξ
.(4.12)

42 YUEN-CHENG KUO, WEN-WEI LIN, AND SHU-FANG XU

Substituting (4.12) into (4.10) leads to

xy =
1

ξ2 + η2

(
μα− ν +

η

ξ
μβ

)
≡ c.(4.13)

Solving x in (4.12) and substituting into (4.13), we get

y2 +
μ

ξ
y − c = 0.(4.14)

It is easy to take ξ and η so that c, as defined in (4.13), is positive. Thus, from
(4.14), we can take

y =
1

2

⎛⎝−μ

ξ
+

√(
μ

ξ

)2

+ 4c

⎞⎠ > 0,(4.15)

and then, by (4.12), we have

x =
μ

ξ
+ y =

1

2

⎛⎝μ

ξ
+

√(
μ

ξ

)2

+ 4c

⎞⎠ > 0.(4.16)

(ii) Assume that A2 is of the form found in (4.8). We shall prove, for any given
real numbers μ̃ and ν̃, that there exist positive numbers x, y and real numbers z, ξ1,
ξ2 which satisfy xy − z2 > 0 and

trA2 = μ̃, detA2 = ν̃.

This implies

ξ1x + ξ2y = μ̃− λ1 − λ2 ≡ μ,(4.17)

ξ1λ2x + λ1ξ2y + ξ1ξ2(xy − z2) = ν̃ − λ1λ2 ≡ ν.(4.18)

From (4.17), we have ξ1 = (μ− ξ2y)/x. Substituting it into (4.18), we get

λ2(μ− ξ2y) + λ1ξ2y +
1

x
ξ2(xy − z2)(μ− ξ2y) = ν.

This implies

−(xy − z2)ξ2
2 +

[
(λ1 − λ2) + μ

xy − z2

xy

]
ξ2 + (λ2μ− ν) = 0.(4.19)

It remains to show that there are real numbers x, y, z with x > 0 and xy − z2 > 0
such that the quadratic equation (4.19) has real roots. This requires the discriminant
of (4.19) to be positive, i.e.,[

(λ1 − λ2) + μ
xy − z2

xy

]2

+ 4(xy − z2)(λ2μ− ν) > 0.(4.20)

To satisfy (4.20), we can first take xy sufficiently large and then take z such that
xy − z2 is a sufficiently small positive number.

INVERSE QUADRATIC EIGENVALUE PROBLEM 43

With k = n, we have constructed a particular solution to the PD-IQEP with n
additional eigenvalues.

Algorithm 4.1. Solving a PD-IQEP with k = n and n additional eigen-

values.

Step 1. Choose M > 0 and D by (i) and (ii) as in Theorem 4.2 so that S +
M−1R−�DR−1 has n additionally given eigenvalues.

Step 2. Compute C and K by (4.1a) and (4.1b), respectively.
Step 3. Compute M = QMQ�, C = QCQ�, K = QKQ�, where Q is given by

(2.1).

4.2. Particular solutions with additional eigenpairs. In this subsection, we
are interested in solving the PD-IQEP with k = n and r (r ≤

√
n) additionally given

eigenpairs. Note that with these r (r ≤
√
n) additional eigenpairs, this particular

solution of the PD-IQEP is generically solvable (see Remark 4.1 later). Conversely, if
r >

√
n, the PD-IQEP, in general, has no solution.

Suppose we are additionally given r (r ≤
√
n) eigenpairs (μj ,yj) ∈ C×C

n, where

μj = μ̄j+1 ∈ C\R, yj = ȳj+1 ∈ C
n\R

n, j = 1, 3, . . . , 2s− 1,(4.21a)

μj ∈ R, yj ∈ R
n, j = 2s + 1, . . . , r.(4.21b)

Furthermore, we assume that μj /∈ σ(Λ), j = 1, . . . , r, and [y1, . . . ,yr] is of full
column rank. Then, for r ≤

√
n, a quadratic pencil as in (4.2) always exists and

satisfies Q(μj)yj = 0 for j = 1, . . . , r. To this end, we first prove a lemma.
Lemma 4.1. Given linearly independent vectors ζ1, . . . , ζr ∈ R

n and δ1, . . . , δr ∈
R

n, there is a symmetric positive definite matrix M such that

M [ζ1, . . . , ζr] = [δ1, . . . , δr](4.22)

if and only if

[ζ1, . . . , ζr]
�[δ1, . . . , δr] ≡ Z�X > 0.(4.23)

Proof. (Necessity.) If (4.22) holds, then

[ζ1, . . . , ζr]
�[δ1, . . . , δr] = [ζ1, . . . , ζr]

�M [ζ1, . . . , ζr] > 0

because M > 0 and Z = [ζ1, . . . , ζr] is of full column rank.
(Sufficiency.) Let V be an orthogonal matrix such that

V [ζ1, . . . , ζr] =

[
R
0

]
,(4.24)

where R ∈ R
r×r is nonsingular and upper triangular. Let

V [δ1, . . . , δr] =

[
T1

T2

]
, T1 ∈ R

r×r.(4.25)

It is sufficient to find an n× n M̃ > 0 such that

M̃

[
R
0

]
=

[
T1

T2

]
.(4.26)

44 YUEN-CHENG KUO, WEN-WEI LIN, AND SHU-FANG XU

Then M = V �M̃V > 0 satisfies (4.22). Partition M̃ into

M̃ =

[
M̃1 M̃2

M̃�
2 M̃3

]
.

By (4.26), we have M̃1 = T1R
−1. From (4.23)–(4.25), it follows that

R�M̃1R = R�T1R
−1R = R�T1

= [R�, 0]

[
T1

T2

]
= [R�, 0]V V �

[
T1

T2

]
= Z�X > 0.

Thus, M̃1 > 0. Taking M̃�
2 = T2R

−1 and M̃3 = I+M̃�
2 M̃−1

1 M̃2, we have M̃ > 0.
From (4.2), Q(μj)yj = 0 is equivalent to(

μjI − S� −R−TDR−1M−1
)
Mzj = 0,(4.27)

where zj = (μjI − S)yj , j = 1, . . . , r. By letting vj = R−1zj ≡ [vj,1, . . . , vj,n]� and

M̃ = R�MR, (4.27) is equivalent to

M̃vj = (μjI − Λ�)−1Dvj , j = 1, . . . , r.(4.28)

We now define an n-vector, corresponding to D in (2.4), by

d = [ξ1, η1; . . . ; ξ�, η�; ξ2�+1, . . . , ξn]�.(4.29)

Write

Dvj = Vjd, j = 1, . . . , r,(4.30)

where

Vj = diag

([
vj,1 vj,2

−vj,2 vj,1

]
, . . . ,

[
vj,2�−1 vj,2�
−vj,2� vj,2�−1

]
; vj,2�+1, . . . , vj,n

)
.

Then (4.28) implies

M̃vj = (μjI − Λ�)−1Vjd, j = 1, . . . , r.(4.31)

Let

ζj = Re(vj), ζj+1 = Im(vj), j = 1, 3, . . . , 2s− 1,(4.32a)

Gj = Re
(
(μjI − Λ�)−1Vj

)
, Gj+1 = Im

(
(μjI − Λ�)−1Vj

)
,(4.32b)

j = 1, 3, . . . , 2s− 1,

ζj = vj , Gj = (μjI − Λ�)−1Vj , j = 2s + 1, . . . , r.(4.32c)

From (4.31)–(4.32) and Lemma 4.1, we proved the following theorem.
Theorem 4.3. For additionally prescribed eigenpairs (μj ,yj) ∈ C × C

n (j =
1, . . . , r) as in (4.21), there exist a symmetric positive definite matrix M and a matrix
D as in (2.4) such that Q(μj)yj = 0 (j = 1, . . . , r) if and only if

W ≡ [ζ1, . . . , ζr]
�[G1d, . . . , Grd] > 0,(4.33)

where ζj and Gj (j = 1, . . . , r) are given by (4.32) and d is defined in (4.29).

INVERSE QUADRATIC EIGENVALUE PROBLEM 45

Remark 4.1. Suppose r ≤
√
n. If we set W in (4.33) to be any symmetric positive

definite matrix, then (4.33) can form a squared or underdetermined real linear system
in d ∈ R

n:

ζ�
i Gjd = wij , i, j = 1, . . . , r ≤

√
n.(4.34)

Thus, the vector d ∈ R
n, and therefore D in (2.4), are generically solvable.

Remark 4.2. The solution of the monic IQEP in [4] is a special case of Theorem
4.3 with r = 1.

With k = n, we have constructed a particular solution to the PD-IQEP with r
(≤

√
n) additional eigenpairs.

Algorithm 4.2. Solving a PD-IQEP with k = n and r (r ≤
√
n) addi-

tional eigenpairs.

Step 1. Compute ζj and Gj in (4.32) for j = 1, . . . , r.
Step 2. Choose a W ≡ [wij]r×r > 0; if the linear equation (4.34) for d is solvable,

then go to Step 3; else repeat Step 2.
Step 3. Compute M > 0 as in Lemma 4.1 by setting δj = Gjd, j = 1, . . . , r.
Step 4. Compute C and K by (4.1a) and (4.1b), respectively.
Step 5. Compute M = QMQ�, C = QCQ�, K = QKQ�, where Q is given by

(2.1).

5. Particular solutions with additional eigeninformation when k < n.
When k < n, for a given matrix pair (Λ, X) ∈ R

k×k ×R
n×k as in (1.2) and (1.3) and

under assumptions (H1)–(H2), Theorem 2.1 states that the general solution to the
PD-IQEP is

M = Q

[
M11 M12

M21 M22

]
Q�, C = Q

[
C11 C12

C21 C22

]
Q�, K = Q

[
K11 K12

K21 K22

]
Q�,

(5.1)

where M , C22, C21 = C�
12 and K22 can be arbitrarily chosen, while C11, K11, and

K21 = K�
12 are given by (2.3). Furthermore, we have the following.

Theorem 5.1. In the case when k < n, it holds that

(5.2)
Q(λ) = λ2M + λC + K

=

[(
λI− S�−R−TDR−1M−1

11

)
M11

(
λI− S�)(M21 (λI + S)+ C21)

�

(M21 (λI + S) + C21) λ2M22 + λC22 + K22

][
λI −S 0

0 I

]
,

which shows that Q(λ) shares all the eigenvalues of Λ.
Proof. From (5.1) and (2.3), we have

λ2M11 + λC11 + K11 =
(
λI − S�−R−TDR−1M−1

11

)
M11 (λI − S) ,

λ2M21 + λC21 + K21 = M21(λ
2I − S2) + C21 (λI − S)

= [M21(λI + S) + C21] (λI − S) ,

which imply (5.2).
In the following subsections, we construct two particular solutions to the PD-

IQEP when k < n, with one additional complex eigenpair (with k = n−1) or positive
definite property of M and K. These solutions are equivalent to those developed
in [4].

46 YUEN-CHENG KUO, WEN-WEI LIN, AND SHU-FANG XU

5.1. Particular solutions with an additional complex eigenpair. In this
subsection, we shall construct the particular solution of the PD-IQEP with k = n− 1
and an additional complex eigenpairs. We shall show that this particular solution is
equivalent to the unique solution of the monic IQEP in [4] with M = In.

For a given pair (Λ, X) ∈ R
(n−1)×(n−1) × R

n×(n−1) as in (1.2) and (1.3), under
assumptions (H1)–(H2), Theorem 5.1 shows that the general solution of the PD-
IQEP has the decomposition (5.2), where S = RΛR−1 and Q�X = [R�, 0]�. For
an additionally given complex eigenpair (μ, z) with μ /∈ σ(Λ), we want to solve the
PD-IQEP by (2.3) where M = In and Q(μ)z = Q(μ̄)z̄ = 0.

Write z = [r12
r22], where r12 ∈ C

n−1 and 0 �= r22 ∈ C, and denote R̂ =
[
R r12
0 r22

]
and

Λ̂ =
[

Λ 0
0 μ

]
. Then we have

Ŝ ≡ R̂Λ̂R̂−1 =

[
RΛR−1 −r−1

22 RΛR−1r12 + μr−1
22 r12

0 μ

]
.(5.3)

In [4], the general solution of the Hermitian matrix Ĉ in Q(λ) ≡ λ2M̂ + λĈ + K̂
is given by

Ĉ ≡
[
Ĉ11 ĉ12

ĉH12 ĉ22

]
= −

(
Ŝ + ŜH

)
−
[

R−�

− r̄−1
22 rH12R

−�

]
D
[
R−1 −r−1

22 R−1r12

]
,(5.4)

where D is of the form in (2.4), Ĉ11 ∈ R
(n−1)×(n−1), ĉ12 ∈ C

n−1, and ĉ22 ∈ C.

Expanding Ĉ11, ĉ12, and ĉ22 in (5.4), we get

Ĉ11 = −
(
S + S�)−R−�DR−1,(5.5)

ĉ12 = −r−1
22 (μI − S) r12 + r−1

22 R−�DR−1r12,(5.6)

ĉ22 = −μ− μ̄− |r22|−2rH12R
−�DR−1r12.(5.7)

On the other hand, by setting M11 = In−1 and M21 = 0 in (5.2) and relaxing C
to be Hermitian, we have

Q(λ) ≡ λ2I + λC + K

=

[
λI − S� −R−�DR−1 (λI − S�)c12

cH12 λ2 + λc22 + k22

] [
λI − S 0

0 1

]
.(5.8)

Here we partition C as

C =

[
C11 c12

cH12 c22

]
,(5.9)

where C11 ∈ R
(n−1)×(n−1), c12 ∈ C

n−1, c22 ∈ C.
We want to show C = Ĉ when Q(μ)z= Q(μ̄)z̄= 0. From [4], C in (5.9) satisfies

C = C̄ = CH = C�, and therefore K = K�.
It is easily seen that

C11 = −(S + S�) −R−�DR−1 = Ĉ11.(5.10)

INVERSE QUADRATIC EIGENVALUE PROBLEM 47

Substituting λ = μ in (5.8), we compute Q(μ)z ≡ Q(μ) [r12
r22] = 0 and obtain

(μI − S� −R−�DR−1)(μI − S)r12 + r22(μI − S�)c12 = 0,(5.11)

cH12(μI − S)r12 + r22(μ
2 + μc22 + k22) = 0.(5.12)

Then from DΛ=Λ�D, we have

c12 = −r−1
22 (μI − S�)−1(μI − S� −R−�DR−1)(μI − S)r12

= −r−1
22 (μI − S)r12 + r−1

22 R−�(μI − Λ)−�D(μI − Λ)R−1r12

= −r−1
22 (μI − S −R−�DR−1)r12 = ĉ12.(5.13)

Similarly, from Q(μ̄)
[
r̄12
r̄22

]
=0, we have

(μ̄I − S� −R−�DR−1)(μ̄I − S)r̄12 + r̄22(μ̄I − S�)c12 = 0,(5.14)

cH12(μ̄I − S)r̄12 + r̄22(μ̄
2 + μ̄c22 + k22) = 0.(5.15)

Eliminating k22 in (5.12) using the difference of (5.12) and (5.15), we get

(μ− μ̄)c22 + cH12[r
−1
22 (μI − S)r12 − r̄−1

22 (μ̄I − S)r̄12] + μ2 − μ̄2 = 0.(5.16)

From (5.11) and (5.13)–(5.14), it follows that

(μ− μ̄)c22 = cH12[r̄
−1
22 (μ̄I − S)r̄12 − r−1

22 (μI − S)r12] + μ̄2 − μ2

= − r̄−1
22 rH12(μ̄I − S� −R−�DR−1)[r̄−1

22 (μ̄I − S)r̄12 − r−1
22 (μI − S)r12]

+ μ̄2 − μ2 (from (4.14))

= r̄−1
22 rH12[μI − S� −R−�DR−1 + (μ̄− μ)I]r−1

22 (μI − S)r12

− r̄−1
22 rH12[−(μ̄I − S�)c12] + μ̄2 − μ2 (from (4.11))

= − r̄−1
22 rH12[−(μ̄I − S�)c12 + (μ− S�)c12 − (μ̄− μ)r−1

22 (μI − S)r12]

+ μ̄2 − μ2

= − r̄−1
22 rH12[(μ− μ̄)(c12 + r−1

22 (μI − S)r12] + μ̄2 − μ2 (from (4.13))

= − r̄−1
22 rH12[r

−1
22 (μ− μ̄)R−�DR−1r12] + μ̄2 − μ2

= (μ− μ̄)(−|r22|−2rH12R
−�DR−1r12 − μ− μ̄).

Hence c22 = ĉ22. Combining with (5.10) and (5.13), we have shown that C = Ĉ.

5.2. Particular solutions with special structures. In this subsection, we
shall construct a particular solution of the PD-IQEP with k < n, M > 0, and K > 0.
Under suitable condition this solution is equivalent to the solution of the standard
IQEP developed in [4].

We now take D = 0; then the decomposition (5.2) becomes

Q(λ) =

[
λI − S 0

0 I

]�[
M11 (M21(λI + S) + C21)

�

M21(λI + S) + C21 λ2M22 + λC22 + K22

][
λI − S 0

0 I

]
.

(5.17)

Thus, we have

det (Q(λ)) = [det (λI − S)]2 det (Q2(λ)),(5.18)

48 YUEN-CHENG KUO, WEN-WEI LIN, AND SHU-FANG XU

where

Q2(λ) = λ2M22 + λC22 + K22 − [M21(λI + S) + C21]M
−1
11 [M21(λI + S) + C21]

�

≡ λ2M̃22 + λC̃22 + K̃22,(5.19)

with

M̃22 = M22 −M21M
−1
11 M�

12,(5.20a)

C̃22 = C22 −M21M
−1
11 (M21S + C21)

� − (M21S + C21)M
−1
11 M�

21,(5.20b)

K̃22 = K22 − (M21S + C21)M
−1
11 (M21S + C21)

�.(5.20c)

On the other hand, with m = 2n− k > n, choose an arbitrary matrix U ∈ R
m×n

which is of full column rank. Partition U = [U1, U2] with U1 ∈ R
m×k. Thus, if we

take

M = U�U > 0,(5.21)

we obtain

M11 = U�
1 U1, M21 = U�

2 U1, M22 = U�
2 U2.(5.22)

Substituting (5.22) into (2.3), we have

C11 = −(U�
1 U1S + S�U�

1 U1),(5.23a)

K11 = S�U�
1 U1S,(5.23b)

K21 = −(U�
2 U1S + C21)S.(5.23c)

Let V1 = −U1S and V2 be an arbitrary m × (n − k) matrix. Taking C21 =
U�

2 V1 + V �
2 U1 and substituting it into (5.23) lead to

C11 = U�
1 V1 + V �

1 U1, K11 = V �
1 V1,(5.24a)

K21 = (U�
2 V1 − U�

2 V1 − V �
2 U1)S = V �

2 V1.(5.24b)

If we write V = [V1, V2] and take

C22 = U�
2 V2 + V �

2 U2, K22 = V �
2 V2,(5.25)

then from (5.24) we obtain

C = U�V + V �U, K = V �V.(5.26)

Assume without loss of generality that X = [R�, 0]�, and with V1 = −U1S, we then
have

[R�,Λ�R�]

[
V �

1

U�
1

]
= [X�,Λ�X�]

[
V �

U�

]
= 0.(5.27)

If V2 above is chosen so that
[
V �

U�

]
is of full column rank, then the quadratic

pencil defined by (5.21) and (5.26) is precisely the solution of the standard IQEP in
[4].

INVERSE QUADRATIC EIGENVALUE PROBLEM 49

Furthermore, from (5.22)–(5.25), the matrices in (5.20) become

M̃22 = U�
2 BU2,(5.28a)

C̃22 = U�
2 BV2 + V �

2 BU2,(5.28b)

K̃22 = V �
2 BV2,(5.28c)

where B = I − U1(U
�
1 U1)

−1U�
1 . Therefore, Q2(λ) in (5.18) becomes

Q2(λ) = λ2M̃22 + λC̃22 + K̃22

= (λU2 + V2)
�B(λU2 + V2).(5.29)

Note that here B is an orthogonal projector, i.e., B2 = B = B�.
We now consider the QR-decomposition

U = [U1, U2] = P

⎡⎣T11 T12

0 T22

0 0

⎤⎦ ,(5.30)

where P is orthogonal, and T11 ∈ R
k×k and T22 ∈ R

(n−k)×(n−k) are both nonsingular
and upper triangular. Then

V1 = −U1S = −P

⎡⎣T11S
0
0

⎤⎦ .(5.31)

Let

n− k

P�V2 =

⎡⎣T13

T23

T33

⎤⎦ k
n− k
m− n = n− k

.(5.32)

As
[
V �

U�

]
is of full column rank, it follows that T33 is nonsingular. Therefore, we have

B = I − U1(U
�
1 U1)

−1U�
1 = P

[
0 0
0 In−k

]
P�

and

λU2 + V2 = P

⎡⎣λT12 + T13

λT22 + T23

T33

⎤⎦ ,

implying

Q2(λ) = (λT22 + T23)
�(λT22 + T23) + T�

33T33.(5.33)

Because T33 is nonsingular, detQ2(λ) > 0 for any real number λ. Thus, Q2(λ) in
(5.18) has only complex conjugate eigenvalues with nonzero imaginary part. Further-

more, if
[
V �

U�

]
is chosen to be orthogonal, then we have T23 = 0. From (5.33), we

have Q2(λ) = (λ2 + 1)I with eigenvalues λ = ±ι. This also coincides with the result
in [4].

50 YUEN-CHENG KUO, WEN-WEI LIN, AND SHU-FANG XU

Table 6.1

Absolute errors of computed eigenvalues.

Eigenvalues Absolute error |λi − λ̂i|
λ1 = λ̄2 1.2766e-011

λ3 4.2322e-013
λ4 2.7001e-013
λ5 9.7161e-013
λ6 7.6428e-012

λ7 = λ̄8 9.9151e-012
λ9 = λ̄10 3.5711e-010

λ11 2.2284e-010
λ12 6.1142e-012

6. Numerical examples. The results presented in sections 4 and 5 offer a
constructive way to solve the PD-IQEP with additional eigeninformation or special
structures. In this section, we present two numerical examples to illustrate the par-
ticular solutions constructed in section 4. Numerical examples constructed by section
5 can be found in [4]. For presentation, we report all numbers in 5 significant digits
only, though all calculations are carried out in full precision.

To generate test data, we first randomly generate the partially prescribed eigen-
information (Λ, X) ∈ R

6×6×R
6×6 as in (1.2) and (1.3), with λ1 = 3.5121+8.2485ι =

λ̄2, λ3 = 1.7541, λ4 = 1.2596, λ5 = 0.42402, λ6 = 6.4268, and the corresponding
eigenvectors

x1 = x̄2 =

⎡⎢⎢⎢⎢⎢⎢⎣
9.2963 + 1.0480ι
2.3695 + 3.5650ι
3.8789 + 6.5809ι
2.8644 + 4.9742ι
1.5007 + 1.1356ι
1.9623 + 6.5805ι

⎤⎥⎥⎥⎥⎥⎥⎦ , x3 =

⎡⎢⎢⎢⎢⎢⎢⎣
8.3476
8.0904
5.5542
9.2809
4.0705
2.8111

⎤⎥⎥⎥⎥⎥⎥⎦ ,

x4 =

⎡⎢⎢⎢⎢⎢⎢⎣
6.6044
9.3147
2.5443
2.1294
8.1057
2.7021

⎤⎥⎥⎥⎥⎥⎥⎦ , x5 =

⎡⎢⎢⎢⎢⎢⎢⎣
3.7708
5.8997
6.7357
6.6171
3.7162
8.6814

⎤⎥⎥⎥⎥⎥⎥⎦ , x6 =

⎡⎢⎢⎢⎢⎢⎢⎣
8.5856
8.3937
3.3068
8.1301
1.8702
2.7268

⎤⎥⎥⎥⎥⎥⎥⎦ .

It is easy to check that the matrix pair (Λ, X) ∈ R
6×6×R

6×6 satisfies the assumptions
(H1) and (H2).

Example 1. Subsection 4.1 shows that the PD-IQEP may have 6 assigned eigen-
values, closed under complex conjugation. We generate randomly 6 eigenvalues:
λ7 = 4.6983+4.0385ι = λ̄8, λ9 = 5.6495+1.5612ι = λ̄10, λ11 = 8.9227, λ12 = 4.1238.
We compute a real symmetric quadratic pencil

Q̂(λ) = λ2M̂ + λĈ + K̂

by using the method described in subsection 4.1. The residual ‖M̂XΛ2 + ĈXΛ +

K̂X‖2 and the eigenvalues of M̂ are, respectively, 3.6953e-011 and {150.52, 5.9347,
0.12706, 1.8466e-2, 1.2481e-2, 5.5983e-4}. In Table 6.1, we display the absolute errors

|λi − λ̂i| (i = 1, . . . , 12), where λ̂i are the computed eigenvalues of Q̂(λ).

INVERSE QUADRATIC EIGENVALUE PROBLEM 51

These numerical results show that the computed quadratic pencil is satisfactory.

Example 2. Subsection 4.2 shows the PD-IQEP may have 2 (<
√

6) additional
assigned eigenpairs, closed under complex conjugation. We randomly generate 2 eigen-
pairs: λ7 = 4.6983 + 4.0385ι = λ̄8 and

x7 = x̄8 =

⎡⎢⎢⎢⎢⎢⎢⎣
8.6239 + 6.7913ι
1.2742 + 1.5386ι
6.0538 + 9.0277ι
5.4385 + 8.5876ι
4.6188 + 1.0069ι
7.9774 + 3.1084ι

⎤⎥⎥⎥⎥⎥⎥⎦ .

We compute a real symmetric quadratic pencil

Q̌(λ) = λ2M̌ + λČ + Ǩ

by using the method described in subsection 4.2. We have the following numerical
results:

‖M̌XΛ2 + ČXΛ + ǨX‖2 = 2.0916e-013,

‖Q̌(λ7)x7‖2 = ‖Q̌(λ8)x8‖2 = 1.6213e-013,

σ(M̌) = {1.0144, 1.0081, 1, 1, 3.4592e-3, 1.1868e-3}.

This shows that the matrix M̌ is symmetric positive definite and the residuals are
small.

7. Conclusions. In this paper, we use techniques involving matrix decomposi-
tions to derive an expression of the general solution to the PD-IQEP, for a set of given
k eigenpairs (k ≤ n), under assumptions (H1) and (H2). With appropriate choices of
degrees of freedom, we can construct a quadratic pencil Q(λ) = λ2M + λC +K with
M > 0 and K ≥ 0. Furthermore, we can also find solutions which satisfy various
additional eigeninformation, as shown in sections 4 and 5. The problem of how to
utilize the degrees of freedom in general, or under other given sets of eigeninformation,
is interesting and needs further investigation. In summary, we list some of the solved
and unsolved PD-IQEPs, under various constraints, in Tables 7.1 and 7.2.

For another case of k > n, it is rather involved and the proof technique of Theorem
2.1 seems not to be used directly to find a general solution of PD-IQEP. To our
knowledge, this case has never been discussed in the literature. It might be interesting
research and needs further investigation.

Table 7.1

PD-IQEP solved in section 2.

Given Λ and X as in (1.2) and (1.3) under assumptions (H1) and (H2), equations
(2.2)–(2.4) give rise to symmetric M , C, and K with M > 0 such that (1.4) holds.

Acknowledgment. We would like to give our best thanks to Professor Moody
Chu (NCSU) for many valuable comments and helpful discussions on this paper.

52 YUEN-CHENG KUO, WEN-WEI LIN, AND SHU-FANG XU

Table 7.2

List of solved and unsolved PD-IQEPs with additional conditions.

Number of PD-eigenpairs Additional eigeninformation Status

k ≤ n K ≥ 0 Solved in section 3

k = n n additional eigenvalues Solved in section 4.1

k = n r (r ≤
√
n) additional eigenpairs Solved in section 4.2

k = n− 1 One additional complex eigenpair
Solved in [4] or

section 5.1

k < n D = 0 in (2.3) and K > 0
Solved in [4] or

section 5.2

k = n
r (r ≤

√
n) additional eigenpairs

and K ≥ 0
Unsolved

k = n n
2

additional specified eigenpairs Unsolved

k ≤ n

min{μ‖M−Ma‖2
F+ν‖C−Ca‖2

F+‖K−Ka‖2
F :

M> 0, K=K�, C=C�},
where Ma, Ca, Ka are given analytic

models and μ, ν are appropriate parameters.

Unsolved

REFERENCES

[1] J. Carvalho, B. N. Datta, W. W. Lin, and C. S. Wang, Symmetric preserving eigenvalue
embedding in finite element model updating of vibrating structures, J. Sound Vibration,
290 (2006), pp. 839–864.

[2] E. K.-W. Chu and B. N. Datta, Numerically robust pole assignment for second-order systems,
Internat. J. Control, 64 (1996), pp. 1113–1127.

[3] M. T. Chu and G. H. Golub, Structured inverse eigenvalue problems, Acta Numer., 11 (2002),
pp. 1–71.

[4] M. T. Chu, Y.-C. Kuo, and W.-W. Lin, On inverse quadratic eigenvalue problems with
partially prescribed eigenstructure, SIAM J. Matrix Anal. Appl., 25 (2004), pp. 995–1020.

[5] M. T. Chu, Inverse eigenvalue problems, SIAM Rev., 40 (1998), pp. 1–39.
[6] B. N. Datta, S. Elhay, Y. M. Ram, and D. R. Sarkissian, Partial eigenstructure assignment

for the quadratic pencil, J. Sound Vibration, 230 (2000), pp. 101–110.
[7] B. N. Datta, Finite element model updating, eigenstructure assignment and eigenvalue em-

bedding techniques for vibrating systems, mechanical systems and signal processing, Mech.
Systems Signal Process., 16 (2002), pp. 83–96.

[8] M. I. Friswell, D. J. Inman, and D. F. Pilkey, The direct updating of damping and stiffness
matrices, AIAA J., 36 (1998), pp. 491–493.

[9] M. I. Friswell and J. E. Mottershead, Finite Element Model Updating in Structural Dy-
namics, Kluwer Academic, Dordrecht, The Netherlands, 1995.

[10] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York,
1982.

[11] Y. C. Kuo, W. W. Lin, and S. F. Xu, A new model correcting method for quadratic eigenvalue
problems using a symmetric eigenstructure assignment, AIAA J., 43 (2005), pp. 2593–2598.

[12] P. Lancaster and U. Prells, Inverse problems for damped vibrating systems, J. Sound Vi-
bration, 283 (2005), pp. 891–914.

[13] W. W. Lin and J. N. Wang, Partial pole assignment for the quadratic pencil by output feedback
control with feedback designs, Numer. Linear Algebra Appl., 12 (2005), pp. 967–979.

[14] N. K. Nichols and J. Kautsky, Robust eigenstructure assignment in quadratic matrix poly-
nomials: Nonsingular case, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 77–102.

[15] Y. M. Ram and S. Elhay, An inverse eigenvalue problem for the symmetric tridiagonal
quadratic pencil with application to damped oscillatory systems, SIAM J. Appl. Math.,
56 (1996), pp. 232–244.

[16] D. D. Sivan and Y. M. Ram, Physical modifications to vibratory systems with assigned eigen-
data, ASME J. Appl. Mech., 66 (1999), pp. 427–432.

INVERSE QUADRATIC EIGENVALUE PROBLEM 53

[17] L. Starek and D. J. Inman, Symmetric inverse eigenvalue vibration problem and its applica-
tions, Mech. Systems Signal Process., 15 (2001), pp. 11–29.

[18] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001),
pp. 235–286.

[19] D. C. Zimmerman and M. Widengren, Correcting finite element models using a symmetric
eigenstructure assignment technique, AIAA J., 28 (1990), pp. 1670–1676.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 54–66

THE MATRIX GOLDEN MEAN AND ITS APPLICATIONS TO
RICCATI MATRIX EQUATIONS∗

YONGDO LIM†

Abstract. In this paper we generalize the concept of the golden mean of positive numbers to
the golden mean of positive definite matrices and apply it to some Riccati algebraic and differential
matrix equations. We describe the unique positive definite solutions of the Riccati matrix equations
XA−1X ± X − (B − A) = 0 with 0 < A ≤ B in terms of geometric and golden means of positive
definite matrices as well as the asymptotic behavior of the associated Riccati differential equations
Ẋ = −XA−1X ∓ X + (B − A). We describe (apparently new) results related to matrix continued
fractions, symplectic Hamiltonian matrices, and other matrix means obtained from golden mean–
related inequalities via canonical iterative processes.

Key words. positive definite matrix, Riccati (differential) matrix equation, geometric mean,
golden mean, continued fraction, symplectic Hamiltonian, Riemannian metric

AMS subject classifications. 15A24, 93D20, 53B21

DOI. 10.1137/050645026

1. Introduction. The geometric mean A#B = A1/2(A−1/2BA−1/2)1/2A1/2 of
positive definite matrices A and B appears in the literature with many applications
in matrix inequalities (arithmetic-geometric-harmonic mean inequalities [4], [5], [6],
[29]), inverse mean problems [2], [3], [20], [37], semidefinite programming (scaling point
[47], [48], [22]), geometry (geodesic middle [30], [10], [11], [16], [32], [36]), statistical
shape analysis (intrinsic mean [44], [45], [46]), and symmetric matrix word equations
[8], [27], [25], [34]. The most important property of the geometric mean is that it
has a Riccati matrix equation as the defining equation: The geometric mean A#B is
the unique positive definite solution of the Riccati matrix equation XA−1X = B. It
also appears as an attracting fixed point of the associated Riccati differential equation
Ẋ = −XA−1X+B on the open convex cone of positive definite matrices [32, Theorem
5.1]: If X(t) is a solution of the differential equation with initial point being any
positive definite matrix, then limt→∞ X(t) = A#B.

In this paper we introduce a new matrix mean having characteristics similar to
the geometric mean in Riccati matrix equations. The well-known golden ratio or
golden section 1

2 (1 +
√

5), which has been used extensively in art and architecture
(cf. [23], [24], [41]), is regarded as the unique positive real solution of the quadratic
equation x2 − x− 1 = 0. More generally, the quadratic equations

x2

a
∓ x− (b− a) = 0, 0 < a ≤ b,(1.1)

have the unique positive real solutions a�b := 1
2 (a +

√
4ab− 3a2), a�b := 1

2 (−a +√
4ab− 3a2), respectively, realizing the golden ratio as 1�2 = 1

2 (1+
√

5). We consider a

∗Received by the editors November 12, 2005; accepted for publication (in revised form) by R.
Bhatia May 15, 2006; published electronically December 21, 2006. This work was supported by
grant R01-2006-000-10211-0 from the Basic Research Program of the Korea Science and Engineering
Foundation.

http://www.siam.org/journals/simax/29-1/64502.html
†Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea (ylim@knu.

ac.kr).

54

THE GOLDEN MEAN AND RICCATI MATRIX EQUATIONS 55

natural matrix generalization of (1.1), the Riccati matrix equations under 0 < A ≤ B,

XA−1X −X − (B −A) = 0,(1.2)

XA−1X + X − (B −A) = 0,(1.3)

and the associated Riccati matrix differential equations,

Ẋ = −XA−1X + X + (B −A),(1.4)

Ẋ = −XA−1X −X + (B −A).(1.5)

The classical Riccati matrix (respectively, differential) equation appearing in linear
quadratic problems is of the form XAX −MX −XMT −B = 0 and Ẋ(t) = B(t) +
M(t)X(t) + X(t)M(t)T −X(t)A(t)X(t), where A ≥ 0 and B ≥ 0 and M is a square
matrix [9], [15], [28]. However, the Riccati equation (1.2) is equivalent to the well-
known nonlinear matrix equation X = Q + NX−1NT , N > 0 (see [19], [26], [40]).

In this paper we show that the matrix generalizations of a�b and a�b defined by
A�B = 1

2 (A+A#(4B − 3A)) and A�B = 1
2 (−A+A#(4B − 3A)) are indeed unique

positive definite solutions of (1.2) and (1.3), respectively. The golden mean A�B of
positive definite matrices with A ≤ B is studied in detail in the context of matrix
means with close connections to continued fractions and symplectic Hamiltonians. We
also prove that for A < B, A�B and A�B are attracting fixed points of the differential
Riccati equations of (1.4) and (1.5): If X(t) and Y (t) are solutions of the Riccati dif-
ferential equation (1.4) and (1.5), respectively, with initial value any positive definite
matrix, then A�B = limt→∞ X(t), A�B = limt→∞ Y (t), and limt→∞ X(t)#Y (t) =
A#(B −A).

The paper is organized as follows. In section 2 we briefly review the Riemannian
structure and the geometric mean operation on the positive definite convex cone.
In section 3 we describe explicit solutions for nonlinear matrix equations which are
uniquely equivalent to (1.2) and (1.3). Some basic properties for the golden mean
A�B of positive definite matrices A and B are found in section 4. The harmonic-
geometric-golden mean inequalities are established and corresponding matrix means
are obtained from the canonical iterative processes (Theorem 4.3). In section 5 we
introduce continued fractions of positive definite matrices and then represent A�B as a
fixed point of the linear fractional action of a symplectic Hamiltonian matrix and as a
limit of repeated continued fractions of positive definite matrices. This shows that for
A < B, the differential Riccati equations (1.4) and (1.5) have attracting fixed points
A�B and A�B, respectively. The proof depends heavily on Bougerol’s contraction
result on symplectic Hamiltonians for the Riemannian metric on the convex cone of
positive definite matrices [14].

Throughout this paper we assume that all matrices are square matrices with real
entries. Let Sym(n,R) be the vector space of all n× n symmetric matrices. For A ∈
Sym(n,R), we recall that A is positive semidefinite, denoted by 0 ≤ A, if 〈x,Ax〉 ≥ 0
for all x ∈ R

n, where 〈·, ·〉 denotes the usual inner product on R
n. Similarly, A

is positive definite, denoted 0 < A, if it is positive semidefinite and invertible, or,
equivalently, 〈x,Ax〉 > 0 for all nonzero x. We denote the set of positive definite
(respectively, semidefinite) matrices by Sym(n,R)++ (respectively, Sym(n,R)+).

2. The geometric mean and invariant metrics. The geometric mean A#B
of positive semidefinite matrices A and B is defined (and characterized) by the max-
imum of all X ≥ 0 for which (A

X
X
B) is positive semidefinite [4]. If A is invertible,

then A#B = A1/2(A−1/2BA−1/2)1/2A1/2. Various alternative characterizations of

56 YONGDO LIM

the geometric mean can be found in matrix inequalities, semidefinite programming,
geometry, statistical shape analysis, and matrix word equations. See [4], [5], [10], [11],
[7], [20], [32], [36], [37], [44], [45], [46], [47], and see also [6] for multivariable geometric
means.

Lemma 2.1 (Riccati lemma). Let A be a positive definite matrix and let B
be a positive definite (respectively, semidefinite) matrix. Then the geometric mean
A#B is a unique positive definite (respectively, semidefinite) solution of the Riccati
equation XA−1X = B. Furthermore, the geometric mean operation has the following
properties:

(i) A#B = B#A;
(ii) (A#B)−1 = A−1#B−1 for positive definite matrices A and B;
(iii) M(A#B)MT = (MAMT)#(MBMT) for any nonsingular matrix M ;
(iv) 2(A−1 + B−1)−1 ≤ A#B ≤ 1

2 (A + B) for positive definite matrices A,B.
Proof. See [5] or [32].
It is known that the open convex cone Sym(n,R)++ of positive definite matri-

ces admits a natural Riemannian structure induced by the trace metric 〈X,Y 〉A :=
tr(A−1XA−1Y), A > 0, X, Y ∈ Sym(n,R). The Riemannian metric distance δ(A,B)

is given by δ(A,B) =
(∑n

i=1 log2 λi(A
−1/2BA−1/2)

)1/2
, where λi(A

−1/2BA−1/2) de-

note the eigenvalues of A−1/2BA−1/2 (see [30]). It is invariant under the matrix
inversion and congruence transformations:

δ(A−1, B−1) = δ(A,B) = δ(MTAM,MTBM), M ∈ GL(n,R).(2.1)

In particular, the geometric mean A#B of positive definite matrices A and B is
the unique midpoint (geodesic middle) of A and B for the distance δ (cf. [30], [32],
[11]). The nonpositive curvature property of the Riemannian manifold Sym(n,R)++

is known as the following (equivalent) inequality:

δ(At, Bt) ≤ tδ(A,B), 0 ≤ t ≤ 1.(2.2)

In particular, the square root function X 	→X1/2 is a strict contraction on Sym(n,R)++.
It has recently been proved by Bhatia [10] that the nonpositive curvature property

(2.2) holds for metrics inherited from symmetric gauge functions: If Φ is a symmet-
ric gauge function, for instance one of the Schatten p-norms ||x||p = (

∑
|xi|p)1/p,

then it defines a natural unitary invariant norm on the complex matrices ||A||Φ =
Φ(s1(A), . . . , sn(A)), where si(A) are the singular values of A in nonincreasing order.
The corresponding metric distance on the positive definite cone Ω is determined by
δΦ(A,B) = || log(A−1/2BA−1/2)||Φ. The metric δΦ satisfies the nonpositive curvature
property (2.2). We note that δ(A,B) = || log(A−1/2BA−1/2)||2.

3. Riccati matrix equations. The nonlinear matrix equations X=Q±A∗X−1A
are extensively studied (see [17], [18], [19], [26], [21], [40], [43]), where Q > 0 and A is
an n× n matrix. For positive definite A, we have an explicit formula for the positive
definite solution of X = Q + A∗X−1A.

Theorem 3.1. Let A be a positive definite matrix and let B be a positive semidef-
inite matrix. Then the nonlinear matrix equations

0 = X2 ±X −A2,

0 = BX−1B −X ±A,

0 = XA−1X ±X −B

THE GOLDEN MEAN AND RICCATI MATRIX EQUATIONS 57

have unique positive definite solutions

S±
1 (A) =

1

2
(∓I + I#(I + 4A2)),

S±
2 (A,B) =

1

2
(±A + A#(A + 4BA−1B)),

S±
3 (A,B) =

1

2
(∓A + A#(A + 4B)),

respectively.
Proof. (1) It is easy to see that S±

1 (A) = 1
2 (∓I+I#(I+4A2)) are positive definite.

By direct computation, S±
1 (A) are solutions of X2±X−A2 = 0. Suppose that X is a

positive definite solution of X2+X−A2 = 0. Since X2+X−A2 = (X+ 1
2I)

2−A2− 1
4I,

we have X + 1
2I = (A2 + 1

4I)
1/2 and thus X = S+

1 (A).
Next, suppose that X is a positive definite solution of X2 − X − A2 = 0. Then

(X− 1
2I)

2 = A2+ 1
4I. One can see that X and A commute because X2−X = A2. Then

by diagonalizing A and X, we have X ≥ I and X − 1
2I = (A2 + 1

4I)
1/2. Therefore,

X = 1
2I + I#(A2 + 1

4I) = S−
1 (A).

(2) Consider the matrix equations X = ±A+BX−1B. Setting Y = A−1/2XA−1/2

and D = A−1/2BA−1/2 we have

Y = ±I + DY −1D,(3.1)

respectively. By Lemma 2.1, if Y is a positive definite solution of (3.1), then Y satisfies
D = Y #(Y ∓ I) = (Y 2 ∓ Y)1/2 or

Y 2 ∓ Y −D2 = 0.(3.2)

Conversely, if Y is a positive definite solution of (3.2), then Y and D commute and
hence Y satisfies (3.1). Therefore (3.2) and (3.1) are equivalent, respectively. Solving
Y we then have Y = S∓

1 (D) by (1) and therefore

S±
2 (A,B) = A1/2Y A1/2 = A1/2S∓

1 (A−1/2BA−1/2)A1/2

= A1/2
(1

2
(±I + I#(I + 4(A−1/2BA−1/2)2))

)
A1/2

=
1

2
(±A + A#(A + 4BA−1B)),

where the last equality follows from the congruence transformation property of the
geometric mean (Lemma 2.1 (iii)).

(3) We consider the matrix equations XA−1X±X−B = 0. Let Y = A−1/2XA−1/2

and D = A−1/2BA−1/2. Then Y 2 ± Y −D = 0 and hence Y = S±
1 (D1/2); thus

S±
3 (A,B) = A1/2Y A1/2 = A1/2S±

1 (D1/2)A1/2

= A1/2
(1

2
(∓I + I#(I + 4D))

)
A1/2 =

1

2
(∓A + A#(A + 4B)).

Corollary 3.2. Suppose that A and B are positive definite matrices with the
order relation A ≤ B.

(i) The Riccati matrix equation XA−1X − X − (B − A) = 0 has the unique
positive definite solution X = A�B := 1

2 (A + A#(4B − 3A)).

58 YONGDO LIM

(ii) The Riccati matrix equation XA−1X + X − (B − A) = 0 has the unique
positive definite solution X = A�B := 1

2 (−A + A#(4B − 3A)).
Remark 3.3. The positive definite matrix A�B = 1

2 (A + A#(4B − 3A)) is the
unique positive definite fixed point of the strict contraction f(X) = A#(X+(B−A))
defined on the positive definite convex cone Sym(n,R)++ for the Riemannian metric
distance.

Indeed, the Riccati matrix equation XA−1X = X + (B − A) can be written as
X = A#(X+(B−A)) by the Riccati lemma. That is, the positive definite solution of
the Riccati matrix equation is a fixed point of the function f(X) = A#(X+(B−A)).
Now, the square root function X → X1/2 = I#X is a strict contraction for the
Riemannian metric (2.2), and hence X 	→ A#X is a strict contraction by invariance
property of the metric. Furthermore, it turns out that every translation X 	→ X +C,
C ≥ 0, is contracted by the Riemannian metric (Proposition 1.6 of [14]). Therefore
the map f(X) = A#(X + (B−A)) is a strict contraction defined on the Riemannian
manifold Sym(n,R)++ and hence has a unique positive definite fixed point.

Remark 3.4. We observe that A�B = A�B−A. This can be alternatively explained
via a fixed point of a strict contraction. The Riccati matrix equation XA−1X +
X − (B − A) = 0 is equivalent to X + A = A#(X + B) by the Riccati lemma;
X + B = (X + A)A−1(X + A) = XA−1X + 2X + A. That is, A�B is the unique
positive solution of X +A = A#(X +B). Setting Y = X +A, we have Y = X +A =
A#(X + B) = A#(X + A + (B − A)) = A#(Y + B − A). By the preceding remark,
Y = A�B and hence A�B = A�B + A.

4. The golden mean. It is easy to see that aA�bA = (a�b)A for any positive
scalars 0 < a ≤ b and, in particular, A�2A = 1

2 (1 +
√

5)A. We call A�B the golden
mean of A and B.

Lemma 4.1. Let C ≥ I. The inequalities 2C1/2 − I ≤ (4C − 3I)1/2 ≤ 2C − I
hold, and one of the equalities holds if and only if C = I.

Proof. Use the spectral decomposition of C.
We list some properties of the golden mean A�B.
Proposition 4.2. Suppose that A and B are positive definite matrices with

A ≤ B.
(i) M(A�B)MT=(MAMT)�(MBMT) and M(A�B)MT=(MAMT)�(MBMT)

for any nonsingular n× n matrix M.
(ii) A�B = A#B if and only if A = B.
(iii) A�B = 1

2A
1/2

(
I + (4A−1/2BA−1/2 − 3I)1/2

)
A1/2.

(iv) If A < B, then A�B = 1
2

(
A + (B −A)#(4A + A(B −A)−1A)

)
.

(v) (The harmonic-geometric-golden mean inequalities)

A ≤ 2(A−1 + B−1)−1 ≤ A#B ≤ A�B ≤ B.

(vi) If B ≥ 3A (respectively, B ≤ 3A), then A�B ≤ 1
2 (A + B) (respectively,

A�B ≥ 1
2 (A + B)).

(vii) (A�B)#(A�B) = A#(B −A).
(viii) A�B = A#(B + A�B) and A�B = A#(B −A�B).
Proof. (i) It follows by linearity of congruence transformations and invariance of

geometric mean (Lemma 2.1 (iii)).
Set C := A−1/2BA−1/2. Then C ≥ I and hence we can apply Lemma 4.1.
(ii) It follows from the invariance property of the geometric and golden means

that A#B = A�B if and only if C1/2 = 1
2 (I + (4C − 3I)1/2). By Lemma 4.1, this is

exactly the case C = I or, equivalently, A = B.

THE GOLDEN MEAN AND RICCATI MATRIX EQUATIONS 59

(iii) It follows by (i).
(iv) Suppose that A < B. Then C − I > 0. By (iii) and Lemma 2.1 (iii),

A�B =
1

2
A1/2

(
I + (4A−1/2BA−1/2 − 3I)1/2

)
A1/2

=
1

2
A1/2

(
I + (4C − 3I)1/2

)
A1/2 =

1

2
A1/2

(
I + (4(C − I) + I)1/2

)
A1/2

=
1

2
A1/2

(
I + (C − I)#(4I + (C − I)−1)

)
A1/2

=
1

2
(A + (B −A)#(4A + A(B −A)−1A)).

(v) By applying the order reversing property of the matrix inversion and the
harmonic-geometric mean inequality, we get A ≤ 2(A−1 + B−1)−1 ≤ A#B. The
geometric and golden mean inequality follows from Lemma 4.1 and by (iii),

A#B = A1/2(A−1/2BA−1/2)1/2A1/2 = A1/2C1/2A1/2

L(4.1)

≤ A1/2
(1

2
(I + (4C − 3I)1/2)

)
A1/2 (iii)

= A�B ≤ B.

(vi) It follows by C2 − 4C + 3I = (C − 3I)(C − I).
(vii) It follows from (I�C)(I�C) = 1

4 (I+(4C−3I)1/2)(−I+(4C−3I)1/2) = C−I
and the invariance property of the golden mean (i).

(viii) By direct computation

(A�B)A−1(A�B) =
1

4

(
A + A#(4B − 3A)

)
A−1

(
A + A#(4B − 3A)

)
=

1

4

(
I + A#(4B − 3A) ·A−1

)(
A + A#(4B − 3A)

)
=

1

4
(A + 2 ·A#(4B − 3A) + 4B − 3A)

=
1

2
(−A + A#(4B − 3A)) + B = B + A�B,

where the third equality follows from the Riccati lemma (A#(4B−3A))A−1(A#(4B−
3A)) = 4B−3A. It then follows by the Riccati lemma A�B = A#(B+A�B). Similarly,
A�B = A#(B −A�B).

We denote G by the graph of the Löwner order ≤ on the positive definite cone
G := {(A,B)| 0 < A ≤ B}. The functions

g : G → G, g(A,B) = (A#B,A�B),

h : G → G, h(A,B) = (2(A−1 + B−1)−1, A�B)

are well-defined by the harmonic-geometric-golden mean inequalities (Proposition
4.2 (v)). We denote gn and hn by the nth iterate of g and h.

Theorem 4.3. For each (A,B) ∈ G, there exist positive definite matrices GGM
(A,B) and HGM(A,B) such that

lim
n→∞

gn(A,B) = (GGM(A,B),GGM(A,B)),

lim
n→∞

hn(A,B) = (HGM(A,B),HGM(A,B)).

Furthermore, the order relation HGM(A,B) ≤ GGM(A,B) holds.

60 YONGDO LIM

Proof. Let A,B be positive definite matrices such that A ≤ B. Setting (A1, B1) =
(A,B), (An+1, Bn+1) = gn(A,B), we have A2 = A#B, B2 = A�B,An+1 = An#Bn,
and Bn+1 = An�Bn. By Proposition 4.2 (v), A1 = A ≤ A#B = A2 ≤ A�B = B2 ≤
B = B1. Hence A2 ≤ B2. Doing this process with (A2, B2), we get A1 ≤ A2 ≤
A2#B2 = A3 ≤ A2�B2 = B3 ≤ B2 ≤ B1 and by induction A1 ≤ An ≤ An#Bn =
An+1 ≤ An�Bn = Bn+1 ≤ Bn ≤ B1 for all n ∈ N. This implies that the sequence An

(respectively, Bn) is increasing (respectively, decreasing) bounded above (respectively,
below). Thus they converge, say, A∞ = limn→∞ An, B∞ = limn→∞ Bn. Note that
A∞ and B∞ are positive definite and that

A∞ = lim
n→∞

An+1 = lim
n→∞

An#Bn = (lim
n→∞

An)#(lim
n→∞

Bn) = A∞#B∞.

Applying the Riccati lemma, we get B∞ = (A∞#B∞)A−1
∞ (A∞#B∞) = A∞A−1

∞ A∞ =
A∞. This completes the proof for the map g.

Using the harmonic-golden mean inequality, one can give a similar proof for the
map h. Furthermore, the order relation HGM(A,B) ≤ GGM(A,B) follows from the
harmonic-geometric mean inequality.

We call GGM(A,B) and HGM(A,B) the geometric-golden mean and harmonic-
golden mean of A and B, respectively.

Remark 4.4. We note that the harmonic-arithmetic mean iteration (A,B) 	→
(2(A−1+B−1)−1, (A+B)/2) starting at (A0, B0) has a (common) limit, the geometric
mean A0#B0 (cf. [32]), and that in the positive real case the limit of the arithmetic-
geometric mean iteration (a, b) 	→ (

√
ab, (a+b)/2) (called the AGM) can be described

in terms of complete elliptic integrals. See [12] and [13] for other mean iterations of
positive real numbers. In this context, there may be interest in studying the means
GGM(A,B),HGM(A,B) and the self map of G defined by

G → G, (A,B) 	→ (HGM(A,B),GGM(A,B))

even for positive real numbers. For instance, we compute

GGM(1, 2) = 1.58975858639889 . . . , HGM(1, 2) = 1.56481880877123

5. Matrix continued fractions and differential Riccati equations. In [14]
Bougerol considered the closed subsemigroup

H :=

{(
A B
C D

)
∈ Sp(2n,R) : A is invertible, BAT ≥ 0, ATC ≥ 0

}

of the symplectic Lie group Sp(2n,R). Here a symplectic matrix T = (AC
B
D) of or-

der 2n means an invertible matrix satisfying BAT and ATC are symmetric and
ATD − CTB = I. The members of H are called Hamiltonian matrices (cf. [15]).
We denote by H0 the subset of H for which (1, 2) and (2, 1) entries are positive def-
inite: BAT , ATC > 0. We briefly review some results about Hamiltonian matrices.
For more detail, see [31], [35], and [33]. The semigroup H has nonempty interior: H0

is the interior of H and is an open dense ideal of H. Let sp(2n,R) be the Lie algebra
of the symplectic Lie group Sp(2n,R):

sp(2n,R) =

{(
A B
C −AT

)
: B,C ∈ Sym(n,R), A ∈ M(n,R)

}
.

THE GOLDEN MEAN AND RICCATI MATRIX EQUATIONS 61

The tangent Lie wedge of H defined by L(H) := {X ∈ sp(2n,R) : exp(tX) ∈
H for all t ≥ 0} is determined by

L(H) =

{(
A B
C −AT

)
∈ sp(2n,R) : B,C ≥ 0

}
.(5.1)

We further note that the interior of L(H) is L(H)0 := {(AC
B

−AT) : B,C > 0}. It then
follows by the ideal property of H0 and the homeomorphic property of exponential
mapping near the zero matrix that

exp(L(H)0) ⊂ H0.(5.2)

In [14] Bougerol proved that each member of H (respectively, H0) under the action
of linear fractional transformations defined by(

A B
C D

)
.X = (AX + B)(CX + D)−1 if CX + D is invertible

carries the convex cone Sym(n,R)++ into itself [14, Proposition 1.5] and is a (re-
spectively, strict) contraction with respect to the Riemannian metric δ(A,B) [14,
Theorem 1.7]. We further note that each member of H (respectively, H0) is also a
(respectively, strict) contraction with respect to the Thompson part metric d(A,B) =
|| log(A−1/2BA−1/2)||∞ induced by the spectral norm with an explicit formula (a
Birkhoff contraction formula) for least contraction coefficient [38], [39], [35].

We consider the symplectic Hamiltonian matrix (I+AB
B

A
I) for positive definite

matrices A and B. It belongs to H0 since A(I + AB)T = A + ABA > 0 and (I +
AB)TB = B + BAB > 0. Now, applying Bougerol’s result, the associated fractional
transformation

ΦA,B(X) =

(
I + AB A

B I

)
.X = ((I + AB)X + A)(BX + I)−1

= (A(BX + I) + X)(BX + I)−1 = A + X(BX + I)−1 = A + (B + X−1)−1

is strictly contracted by the Riemannian distance, and hence it has a unique positive
definite fixed point. Furthermore, the fixed point is the limit of the nth iterations
with any initial point by the Banach fixed point theorem. We assert that the nth
iteration Φn

A,B(A) forms a continued fraction. The continued fraction [A1, A2, . . . , An]
of positive definite matrices is naturally defined by

[A1] = A1, [A1, A2, . . . , An] = A1 + [A2, . . . , An]−1.

Then

Φn
A,B(A) = [A,B,A,B, . . . , A,B,A︸ ︷︷ ︸

2n+1 terms

].

Indeed, ΦA,B(X) = [A,B,X] for any X > 0 and by induction

Φn
A,B(A) = ΦA,B(Φn−1

A,B (A)) = [A,B,Φn−1
A,B (A)] = [A,B, [A,B, . . . , A︸ ︷︷ ︸

2n−1

]]

= A + [B,A,B, . . . , A︸ ︷︷ ︸
2n

]−1 = [A,B,A,B . . . , A,B,A︸ ︷︷ ︸
2n+1

].

62 YONGDO LIM

Similarly,

Φn
A,B(A + B−1) = [A,B,A,B, . . . , A,B︸ ︷︷ ︸

2(n+1) terms

].

Theorem 5.1. Let A and B be positive definite matrices. Then

A�(A + B−1) = lim
n→∞

[A,B,A,B, . . . , A,B,A︸ ︷︷ ︸
2n+1

]

= lim
n→∞

[A,B,A,B, . . . , A,B︸ ︷︷ ︸
2n

].

In particular, if 0 < A < B, then

A�B = lim
n→∞

[A, (B −A)−1, A, (B −A)−1, . . . , A︸ ︷︷ ︸
2n+1

]

and

A�B = lim
n→∞

[(B −A)−1, A, (B −A)−1, . . . , A︸ ︷︷ ︸
2n

]−1.

Proof. By the Banach fixed point theorem and by the above observation, the
unique positive definite fixed point of ΦA,B is the limit of the two nth iterations
starting the points A and A + B−1, respectively:

lim
n→∞

[A,B,A,B, . . . , A︸ ︷︷ ︸
2n+1

] = lim
n→∞

[A,B,A,B, . . . , A,B︸ ︷︷ ︸
2n

].

We will show that A�(A + B−1) is a fixed point of ΦA,B .
Let X be the positive definite fixed point of ΦA,B . Then it satisfies the continued

fraction equation [A,B,X] = X and

X = [A,B,X] = A + [B,X]−1 = A + (B + X−1)−1

= A1/2
(
I +

(
A1/2BA1/2 + (A−1/2XA−1/2)−1

)−1)
A1/2 = A1/2[I, C,D]A1/2,

where C = A1/2BA1/2, D = A−1/2XA−1/2. This implies that

[I, C,D] = A−1/2[A,B,X]A−1/2 = A−1/2XA−1/2 = D,

that is, D = A−1/2XA−1/2 is the unique positive definite solution of the equation of
continued fraction [I, C, Y] = Y. Since (C + D−1)−1 = D −D(D + C−1)−1D for any
positive definite matrices C and D (cf. [1], [49]), [I, C,D] = D implies that

D2 −D − C−1 = 0.(5.3)

By Theorem 3.1, D = 1
2 (I + I#(I + 4C−1)) = I�(I + C−1). Therefore,

X = A1/2DA1/2 = A1/2(I�(I + C−1))A1/2

= A1/2(I�(I + A−1/2B−1A−1/2))A1/2 = A�(A + B−1),

THE GOLDEN MEAN AND RICCATI MATRIX EQUATIONS 63

where the last equality follows from the invariance property of the golden mean
(Proposition 4.2).

Finally we have a similar result for A�B:

A�B = (A�B) −A =
(

lim
n→∞

[A, (B −A)−1, A, (B −A)−1, . . . , A︸ ︷︷ ︸
2n+1

]
)
−A

=
(
A + lim

n→∞
[(B −A)−1, A, (B −A)−1, . . . , A︸ ︷︷ ︸

2n

]−1
)
−A

= lim
n→∞

[(B −A)−1, A, (B −A)−1, . . . , A︸ ︷︷ ︸
2n

]−1.

We consider the dual of the golden mean A�B, which is defined by (B−1�A−1)−1.
Corollary 5.2. For 0 < A < B, the dual of A�B is given by

(B−1�A−1)−1 = (A−1 −B−1)−1�(B + (A−1 −B−1)−1).

In particular, (A�B)−1 = (B −A)−1�(A−1 + (B −A)−1).
Proof. Let X = (A−1 −B−1)−1 and Y = B + (A−1 −B−1)−1. Then by Theorem

5.1,

(X�Y)−1 = lim
n→∞

[B−1, (A−1 −B−1)−1, B−1, . . . , (A−1 −B−1)−1] = B−1�A−1.

We consider two Riccati differential equations

Ẋ = −XA−1X + X + (B −A),(5.4)

Ẋ = −XA−1X −X + (B −A)(5.5)

for positive definite matrices A and B with A < B.

Let T =
(I/2 B−A

A−1 −I/2

)
and S =

(−I/2 B−A

A−1 I/2

)
. Then since A�B is the positive definite

solution of the associated matrix equations of (5.4), the graph of A�B is T -invariant
and hence exp tT -invariant. Indeed,(

I/2 B −A
A−1 −I/2

)(
(A�B)x

x

)
=

(
1
2 (A�B)x + (B −A)x
(A−1 ·A�B)x− x/2

)
=

(
(A�B)y

y

)
, y = (A−1 ·A�B)x− x/2,

where we used the fact (A�B)A−1(A�B) = B+A�B = A�B+(B−A) (Proposition 4.2
(viii)). Identifying the Möbius action of the symplectic group on symmetric matrices
as the linear action on the space of isotropic subspaces of R

n × R
n (cf. section 5 of

[32]), we have that exp tT.(A�B) = A�B for all t ∈ R. Similarly, exp tS.(A�B) = A�B.
However, from T, S ∈ L(H)0 and (5.2), one sees that exp tT and exp tS belong

to H0 for t > 0 and hence they are strict contractions for the Riemannian distance.
This implies that A�B and A�B are unique positive definite fixed points of exp tT and
exp tS, respectively.

Let X0 > 0 be an arbitrary initial point of the Riccati differential equation
(5.4). Then from a standard fact about differentiable Lie group action (cf. section
5 of [32]) one may see that X(t) := exp tT.X0 is the solution of (5.4). Putting
K := sup0≤s≤1 δ(exp sT.X0, X0), where δ(A,B) = || log(A−1/2BA−1/2)||2 denotes

64 YONGDO LIM

the Riemannian metric on the positive definite cone Sym(n,R)++, we then have for
t = n + s, s ∈ [0, 1], n = 1, 2, . . . ,

δ(exp tT.X0, A�B) = δ(exp(n + s)T.X0, A�B)

≤ δ(expnT.(exp sT.X0), expnT.X0) + δ(expnT.X0, A�B)

≤ αnδ(exp sT.X0, X0) + δ(expnT.X0, A�B)

≤ αnK + αnδ(X0, A�B) = αn(K + δ(X0, A�B)),

where α denotes the least contraction coefficient of the strict contraction expT. We
conclude that the solution X(t) converges to A�B as t → ∞. A similar method can
be applied for A�B.

Theorem 5.3. Let X(t) and Y (t) be solutions of the Riccati differential equation
(5.4) and (5.5), respectively, with initial value any positive definite matrix. Then

A�B = lim
t→∞

X(t) and A�B = lim
t→∞

Y (t).

Moreover, limt→∞ X(t)#Y (t) = (A�B)#(A�B) = A#(B −A).
Proof. The equality (A�B)#(A�B) = A#(B − A) follows from Proposition 4.2

(vii).
Remark 5.4. The preceding result holds true under the condition A < B and

solutions with initial point at positive definite matrices. In the case that A ≤ B but
not A < B, that is, A−1/2BA−1/2 has the eigenvalue 1, then exp tT is not a strict
contraction for t > 0, and so it is unclear whether solutions X(t) converge to A�B.

Acknowledgment. The author is very grateful to the referees for valuable com-
ments.

REFERENCES

[1] W. Anderson, G. Kleindorfer, P. Kleindorfer, and M. Woodroofe, Consistent estimates
of the parameters of a linear system, Ann. Math. Statist., 40 (1969), pp. 2064–2075.

[2] W. N. Anderson, Jr., M. E. Mays, T. D. Morley, and G. E. Trapp, The contraharmonic
mean of HSD matrices, SIAM J. Algebra Discrete Methods, 8 (1987), pp. 674–682.

[3] W. N. Anderson, Jr., and G. E. Trapp, Inverse problems for means of matrices, SIAM J.
Algebra Discrete Methods, 7 (1986), pp. 188–192.

[4] T. Ando, Topics on Operator Inequalities, Lecture Notes, Hokkaido University, Sapporo,
Japan, 1978.

[5] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard
products, Linear Algebra Appl., 26 (1979), pp. 203–241.

[6] T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra Appl., 385 (2004),
pp. 305–334.

[7] E. Andruchow, G. Corach, and D. Stojanoff, Geometric significance of the Löwner-Heinz
inequality, Proc. Amer. Math. Soc., 128 (1999), pp. 1031–1037.

[8] S. N. Armstrong and C. R. Hillar, A Degree Theoretic Approach to the Solvability of
Symmetric Word Equations in Positive Definite Letters, preprint.

[9] D. S. Bernstein, Matrix Mathematics, Princeton University Press, Princeton, NJ, Oxford,
UK, 2005.

[10] R. Bhatia, On the exponential metric increasing property, Linear Algebra Appl., 375 (2003),
pp. 211–220.

[11] R. Bhatia and J. Holbrook, Riemannian geometry and matrix geometric means, Linear
Algebra Appl., 413 (2006), pp. 594–618.

[12] J. M. Borwein and P. B. Borwein, On the mean iteration (a, b) ← (a+3b
4

,
√
ab+b
2

), Math.
Comp., 53 (1989), pp. 311–326.

[13] J. M. Borwein, P. B. Borwein, and F. Garvan, Hypergeometric analogues of the arithmetic-
geometric mean iteration, Constr. Approx., 9 (1993), pp. 509–523.

THE GOLDEN MEAN AND RICCATI MATRIX EQUATIONS 65

[14] P. Bougerol, Kalman filtering with random coefficients and contractions, SIAM J. Control
Optim., 31 (1993), pp. 942–959.

[15] M. Chu, N. Buono, F. Diele, T. Politi, and S. Ragni, On the semigroup of standard
symplectic matrices and its applications, Linear Algebra Appl., 389 (2004), pp. 215–225.

[16] G. Corach, H. Porta, and L. Recht, Geodesics and operator means in the space of positive
operators, Internat. J. Math., 4 (1993), pp. 193–202.

[17] J. C. Engwerda, On the existence of a positive definite solution of the matrix equation X +
ATX−1A = I, Linear Algebra Appl., 194 (1993), pp. 91–108.

[18] J. C. Engwerda, A. C. M. Ran, and A. L. Rijkeboer, Necessary and sufficient conditions
for the existence of a positive definite solution of the matrix equation X + A∗X−1A = Q,
Linear Algebra Appl., 186 (1993), pp. 255–275.

[19] A. Ferrante and B. Levy, Hamiltonian solutions of the equation X = Q+NX−1N∗, Linear
Algebra Appl., 247 (1996), pp. 359–373.

[20] M. Fiedler and V. Pták, A new positive definite geometric mean of two positive definite
matrices, Linear Algebra Appl., 251 (1997), pp. 1–20.

[21] C.-H. Guo and P. Lancaster, Iterative solution of two matrix equations, Math. Comput., 68
(1999), pp. 1589–1603.

[22] R. A. Hauser and Y. Lim, Self-scaled barriers for irreducible symmetric cones, SIAM J.
Optim., 12 (2002), pp. 715–723.

[23] R. Herz-Fischler, A Mathematical History of Division in Extreme and Mean Ratio, Wilfrid
Laurier University Press, Waterloo, ON, 1987.

[24] R. Herz-Fischler, The home of golden numberism, Math. Intelligencer, 27 (2005), pp. 69–71.
[25] C. J. Hillar and C. R. Johnson, Symmetric word equations in two positive definite letters,

Proc. Amer. Math. Soc., 132 (2004), pp. 945–953.
[26] I. G. Ivanov, V. I. Hasanov, and F. Uhlig, Improved methods and starting values to solve

the matrix equations X ±A∗X−1A = I iteratively, Math. Comp., 74 (2005), pp. 263–278.
[27] C. R. Johnson and C. J. Hillar, Eigenvalues of words in two positive definite letters, SIAM

J. Matrix Anal. Appl., 23 (2002), pp. 916–928.
[28] V. Jurdjevic, Geometric Control Theory, Cambridge Stud. Adv. Math. 51, Cambridge Uni-

versity Press, Cambridge, UK, 1997.
[29] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), pp. 205–

224.
[30] S. Lang, Fundamentals of Differential Geometry, Grad. Texts in Math. 191, Springer, New

York, 1999.
[31] J. D. Lawson and Y. Lim, Lie semigroups with triple decompositions, Pacific J. Math., 192

(2000), pp. 393–412.
[32] J. D. Lawson and Y. Lim, The geometric mean, matrices, metrics, and more, Amer. Math.

Monthly, 108 (2001), pp. 797–812.
[33] J. D. Lawson and Y. Lim, The symplectic semigroup and Riccati differential equations, J.

Dyn. Control Syst., 12 (2006), pp. 49–77.
[34] J. D. Lawson and Y. Lim, Solving symmetric matrix word equations via symmetric space

machinery, Linear Algebra Appl., 414 (2006), pp. 560–569.
[35] Y. Lim, Birkhoff formula for conformal compressions of symmetric cones, Amer. J. Math., 125

(2003), pp. 167–182.
[36] Y. Lim, Best approximation in Riemannian geodesic submanifolds of positive definite matrices,

Canad. J. Math., 56 (2004), pp. 776–793.
[37] Y. Lim, The inverse mean problem of geometric and contraharmonic means, Linear Algebra

Appl., 408 (2005), pp. 221–229.
[38] C. Liverani and M. P. Wojtkowski, Generalization of the Hilbert metric to the space of

positive definite matrices, Pacific J. Math., 166 (1994), pp. 339–355.
[39] C. Liverani and M. P. Wojtkowski, Ergodicity in Hamiltonian systems, in Dynamics Re-

ported, Dynam. Report. Expositions Dynam. Systems (N.S.) 4, Springer, Berlin, 1995,
pp. 130–202.

[40] X. Liu and H. Gao, On the positive definite solutions of the matrix equations Xs±ATX−tA =
In, Linear Algebra Appl., 368 (2003), pp. 83–97.

[41] M. Livio, The Golden Ratio, Broadway Books, New York, 2002.
[42] H. Maass, Siegel’s Modular Forms and Dirichlet Series, Lecture Notes in Math. 216, Springer,

Heidelberg, 1971.
[43] B. Meini, Efficient computation of the extreme solutions of X + A∗X−1A = Q and X −

A∗X−1A = Q, Math. Comp., 71 (2002), pp. 1189–1204.
[44] M. Moakher, A differential geometric approach to the geometric mean of symmetric positive-

definite matrices, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 735–747.

66 YONGDO LIM

[45] M. Moakher, On averaging symmetric positive-definite tensors, submitted.
[46] M. Moakher and P. G. Batchelor, The symmetric space of positive-definite tensors: From

geometry to applications and visualization, in Visualization and Image Processing of Tensor
Fields, J. Weickert and H. Hagen, eds., Springer, Berlin, 2005.

[47] Y.-E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex
programming, Math. Oper. Res., 22 (1997), pp. 1–42.

[48] J. F. Sturm, Similarity and other spectral relations for symmetric cones, Linear Algebra Appl.,
312 (2000), pp. 135–154.

[49] F. Zhang, Matrix Theory: Basic Results and Techniques, Springer, New York, 1999.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 67–81

A FAST SOLVER FOR HSS REPRESENTATIONS VIA SPARSE
MATRICES∗

S. CHANDRASEKARAN† , P. DEWILDE‡ , M. GU§ , W. LYONS¶, AND T. PALS†

Abstract. In this paper we present a fast direct solver for certain classes of dense structured
linear systems that works by first converting the given dense system to a larger system of block
sparse equations and then uses standard sparse direct solvers. The kind of matrix structures that
we consider are induced by numerical low rank in the off-diagonal blocks of the matrix and are
related to the structures exploited by the fast multipole method (FMM) of Greengard and Rokhlin.
The special structure that we exploit in this paper is captured by what we term the hierarchically
semiseparable (HSS) representation of a matrix. Numerical experiments indicate that the method is
probably backward stable.

Key words. fast multipole method, low-rank structures, fast solvers, orthogonal factorizations,
hierarchically semiseparable representations, sparse matrices, direct sparse solvers

AMS subject classifications. 65F05, 65F50

DOI. 10.1137/050639028

1. Introduction. Beginning with the early work of Gohberg, Kailath, and Kol-
tracht [6] and Rokhlin [11], and the introduction of the fast multipole method (FMM)
of Greengard and Rokhlin [7], it has become clear that many large matrices that
arise in practice have a complex low-rank structure in their submatrices that can be
exploited efficiently to speed up matrix algorithms. In particular, such structured
matrices arise in the numerical solution of integral equations, as fill-in during Gauss-
ian elimination of sparse matrices that come from the discretization of elliptic PDEs,
and in many other applications. In earlier work [2] we introduced techniques to de-
sign fast and stable direct solvers for such structured matrices based on an implicit
ULV factorization algorithm and a matrix representation that we called hierarchically
semiseparable (HSS). In this paper we show that linear systems of equations involving
such dense structured matrices can be efficiently converted into a larger sparse system
of equations that has an ordering of the unknowns permitting a very efficient direct
Gaussian elimination solver to be used. This technique has several advantages. First,
it makes it possible to exploit the highly developed sparse direct solver technology
to attack dense structured problems. Second, it provides a theoretical tool to study
these large dense structured matrices. However, in this paper we just concentrate on
showing how this technique can be used to design a fast, stable solver for matrices in
HSS form only.

∗Received by the editors August 26, 2005; accepted for publication (in revised form) by D. A. Bin
May 30, 2006; published electronically December 21, 2006.

http://www.siam.org/journals/simax/29-1/63902.html
†Department of Electrical and Computer Engineering, University of California at Santa Barbara,

Santa Barbara, CA 93106 (shiv@ece.ucsb.edu, tpals@engineering.ucsb.edu). The research of these
authors was supported in part by NSF grant CCR-0204388.

‡Faculty of Electrical Engineering, Delft University of Technology, Delft, The Netherlands
(p.dewilde@its.tudelft.nl).

§Department of Mathematics, University of California at Berkeley, Berkeley, CA 94704 (mgu@
math.berkeley.edu). The research of this author was supported in part by NSF grant CCR-0204388.

¶Department of Mathematics, University of California at Santa Barbara, Santa Barbara, CA
93106 (lyons@math.ucsb.edu). The research of this author was supported in part by NSF grant
CCR-0204388.

67

68 CHANDRASEKARAN, DEWILDE, GU, LYONS, AND PALS

Fig. 1. One level HSS partition tree with m0;1 = m1;1 + m1;2.

The idea of explicitly using sparse representations of low-rank structured matrices
seems to have first originated in the use of diagonal algebras in time-varying systems
theory [5]. Of course, such representations are implicit even in the original FMM
papers [7].

2. HSS representations. Usually an m×n matrix A is represented in terms of
its mn entries Ai,j . The HSS representation of A is another way to present the same
information. It tries to exploit the presence of low- (numerical) rank submatrices in
A. Of course this presumes that we know which submatrices are potentially of low
rank. Fortunately, in the application that we have in mind, namely, the numerical
solution of elliptic PDEs, this information is usually available. In particular, the
HSS representation assumes that the matrix has its low-rank submatrices in the off-
diagonal regions. Historically the HSS representation is just a special case of the
representations commonly exploited in the FMM literature.

The HSS representation depends directly on a recursive block partitioning of the
matrix. It is natural to use a tree to represent these partitions. Suppose at the first
level the matrix is partitioned as follows:

A =

(m1;1 m1;2

m1;1 A1;1,1 A1;1,2

m1;2 A1;2,1 A1;2,2

)
.

Then the corresponding HSS partition tree is shown in Figure 1 where it is assumed
that A is an m0;1 ×m0;1 matrix.

The HSS representation tries to exploit the low (numerical) rank of the off-
diagonal blocks. The one level HSS tree, for example, is based on the partitioning

A =

(m1;1 m1;2

m1;1 D1;1 U1;1B1;1,2V
H
1;2

m1;2 U1;2B1;2,1V
H
1;1 D1;2

)
,

where clearly the factorization of the off-diagonal blocks can be chosen to be rank-
revealing. The tree is shown in Figure 2. At this stage it is not quite clear why, for
example, U1;1 is written at the first leaf node. One reason is that that particular
node corresponds to the first m1;1 rows of the matrix, and U1;1 is associated with
(a portion) of those rows. A better reason will become obvious once we get into
section 3. Similarly the expansion coefficient B1;1,2 is placed on the edge connecting

SPARSE HSS SOLVER 69

Fig. 2. One level HSS.

the two leaves because it sits at the intersection of the rows corresponding to the first
leaf node and the columns corresponding to the second leaf node. The matrices R1;i

and W1;i have no columns at all and will be explained shortly.
The two level HSS representation is based on the partition

A =

⎛⎜⎜⎝
(m2;1 m2;2) (m2;3 m2;4)(

m2;1

m2;2

) (
A2;1,1 A2;1,2

A2;2,1 A2;2,2

)
A1;1,2(

m2;3

m2;4

)
A1;2,1

(
A2;3,3 A2;3,4

A2;4,3 A2;4,4

)
⎞⎟⎟⎠,

where m1;i = m2;2i−1 + m2;2i for i = 1, 2. The matrices that make up the two level
HSS form of A are in turn inferred from the equation

A =

⎛⎜⎜⎝
(

D2;1 U2;1B2;1,2V
H
2;2

U2;2B2;2,1V
H
2;1 D2;2

)
U1;1B1;1,2V

H
1;2

U1;2B1;2,1V
H
1;1

(
D2;3 U2;3B2;3,4V

H
2;4

U2;4B2;4,3V
H
2;3 D2;4

)
⎞⎟⎟⎠ .

However, the matrices U1;i and V1;i are not part of the two level HSS representation.
And, equally importantly, U2;i (V2;i) is not chosen as a column (row) basis for A2;i,j

(A2;j,i). Rather we define translation operators R2;i and W2;i such that

U1;i =

(
U2;2i−1R2;2i−1

U2;2iR2;2i

)
, i = 1, 2,(1)

V1;i =

(
V2;2i−1W2;2i−1

V2;2iW2;2i

)
, i = 1, 2.(2)

Notice that for this to be possible we must choose U2;i such that it forms a column
basis for the submatrix

(A2;i,1 · · ·A2;i,i−1 A2;i,i+1 · · · A2;i,4) .

Notice that we obtain the above matrix by taking the ith block row from the second
level partition of A and dropping the diagonal block A2;i,i. Similarly we choose V2;i

70 CHANDRASEKARAN, DEWILDE, GU, LYONS, AND PALS

Fig. 3. Two level HSS.

to be a row basis for the submatrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2;1,i

...
A2;i−1,i

A2;i+1,i

...
A2;4,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The two level HSS tree is shown in Figure 3. The translation operators are placed
at the edges from the leaves of the second level to their parents in the first level to
reflect (1) and (2). The translation operators R1;i and W1;i are not important and
are usually chosen to be matrices with no columns at all.

Generally speaking, an HSS representation is a finite binary tree of the type shown
in Figure 3, where the dimensions of the matrices at the nodes and leaves must be
chosen according to the restrictions that these assemblies(

Bk;2i−1,2i RH
k+1;2i−1

Wk+1;2i 0

)
and

(
Bk;2i,2i−1 RH

k+1;2i

Wk+1;2i−1 0

)
are possible if the node (k, i) is not a leaf,1 and if it is a leaf, then the assembly(

Dk;i Uk;i

V H
k;i 0

)
1The node (k, i) is the ith node counting from the left at level k in the tree.

SPARSE HSS SOLVER 71

and the multiplications

Uk;iRk;i and Vk;iWk;i

must be possible. In this paper we always assume that R1;i and W1;i have no columns
at all.

Given an arbitrary HSS tree and an arbitrary matrix A with the right number of
rows and columns, one can always find an HSS representation for A conforming with
the HSS tree. The O(n2) flops algorithm to carry this out is presented in [2].

3. Fast multiplication. The key to the fast inversion algorithm is the fast
algorithm for multiplying a matrix in HSS form with a vector. In particular, it is
the recursions for the multiplication algorithm that are the key. The recursions we
present are exactly the same as those used in the FMM [7].

To be concrete assume that the HSS form of the matrix A is available and that we
want to multiply it rapidly with the vector x to obtain Ax = b. Of course one method
is to first get the componentwise entries Ai,j of A and to then use a conventional
algorithm. However, that would not be the most efficient thing to do.

Rather, we first observe that we need to multiply submatrices of x with Vk;i for
each node in the HSS tree. Of course some of these Vk;i’s are not directly available,
namely, those on the nonleaf nodes, but we can get around that using the translation
operators Wk;i. Before we get into the details we need some notation. We will assume
that xk;i denotes a submatrix of x partitioned according to the kth level of the HSS
tree. That is,

x =

(
m1;1 x1;1

m1;2 x1;2

)
,

and

x =

⎛⎜⎜⎝
m2;1 x2;1

m2;2 x2;2

m2;3 x2;3

m2;4 x2;4

⎞⎟⎟⎠,

and so on.

Now we observe that at the leaf node (k, i) we can compute

gk;i = V H
k;ixk;i.

If (k, i) is not a leaf node we can infer

gk;i = V H
k;ixk;i

=

(
Vk+1;2i−1Wk+1;2i−1

Vk+1;2iWk+1;2i

)H (
xk+1;2i−1

xk+1;2i

)
= WH

k+1;2i−1V
H
k+1;2i−1xk+1;2i−1 + WH

k+1;2iV
H
k+1;2ixk+1;2i

= WH
k+1;2i−1gk+1;2i−1 + WH

k+1;2igk+1;2i.

72 CHANDRASEKARAN, DEWILDE, GU, LYONS, AND PALS

We see therefore that gk;i = V H
k;ixk;i can be computed at each node of the HSS tree

very efficiently via the set of equations

gk;i = V H
k;ixk;i at a leaf,(3)

= WH
k+1;2i−1gk+1;2i−1 + WH

k+1;2igk+1;2i at a nonleaf node.(4)

To complete the multiplication let us look in detail at b2;1 for a two level HSS
tree

b2;1 = D2;1x2;1 + U2;1B2;1,2g2;2 + U2;1R2;1B1;1,2g1;2,

which we can regroup more carefully as follows:

b2;1 = D2;1x2;1 + U2;1(B2;1,2g2;2 + R2;1B1;1,2g1;2).

This suggests that we define the auxiliary variables fk;i such that

bk;i = Ak;i,ixk;i + Uk;ifk;i.

Of course if (k, i) is not a leaf, then we will not have access to the diagonal block Ak;i,i

or Uk;i. But in that case we see that we can split the equation using the translation
operators Rk;i as follows:(

bk+1;2i−1

bk+1;2i

)
=

(
Ak+1;2i−1,2i−1 Uk+1;2i−1Bk+1;2i−1,2iV

H
k+1;2i

Uk+1;2iBk+1;2i,2i−1V
H
k+1;2i−1 Ak+1;2i,2i

)
·
(
xk+1;2i−1

xk+1;2i

)
+

(
Uk+1;2i−1Rk+1;2i−1

Uk+1;2iRk+1;2i

)
fk;i,

which simplifies to the pair of equations

bk+1;2i−1 = Ak+1;2i−1,2i−1xk+1;2i−1 + Uk+1;2i−1 (Bk+1;2i−1,2igk+1;2i + Rk+1;2i−1fk;i) ,

bk+1;2i = Ak+1;2i,2ixk+1;2i−1,2i + Uk+1;2i (Bk+1;2i,2i−1gk+1;2i−1 + Rk+1;2i−fk;i) .

This does not seem to lead anywhere, but in fact it does tell us that the recursive
equations for the auxiliary variables fk;i are

fk+1;2i−1 = Bk+1;2i−1,2igk+1;2i + Rk+1;2i−1fk;i,(5)

fk+1;2i = Bk+1;2i,2i−1gk+1;2i−1 + Rk+1;2ifk;i.(6)

This looks good, but how do we start off the recursion? In other words, what is f0;1?
Let us look at its defining equation

b = Ax = b0;1 = A0;1x0;1 + U0;1f0;1,

which implies that

f0;1 = () ,(7)

the empty matrix! Of course at the leaf level we can directly compute the outputs
from

bk;i = Dk;ixk;i + Uk;ifk;i.(8)

With that we have a complete set of efficient recursions for computing Ax = b
given x and the HSS form of A.

SPARSE HSS SOLVER 73

4. Sparse representation. We will now make the effort to write the multipli-
cation recursions in a compact form using matrix notation, and without indices. This
will turn out to be the key step that can reveal the way to the fast solver.

We first define some block diagonal matrices. Let D be a block diagonal ma-
trix formed by ordering Dk;i in, say, breadth-first order.2 Similarly we define block
diagonal matrices U and V. For example, for a two level HSS form, we would have

U =

⎛⎜⎝
U2;1

U2;2

U2;3

U2;4

⎞⎟⎠ .

We also arrange all the translation operators Rk;i in a block diagonal matrix R,
in breadth-first order. Note that there is one Rk;i per parent node. So R will be a
block diagonal matrix with a potentially different number of diagonal blocks than,
say, U. Similarly we define the block diagonal matrix W. For example, for a two
level HSS representation we would have

W =

⎛⎜⎜⎜⎜⎜⎝
W1;1

W1;2

W2;1

W2;2

W2;3

W2;4

⎞⎟⎟⎟⎟⎟⎠ .

We also arrange the Bk;i,j in a block diagonal matrix B, with the Bk;i,j in breadth-
first order, and within a node we place Bk+1;2i−1,2i before Bk+1;2i,2i−1. So for a two
level HSS form we would have

B =

⎛⎜⎜⎜⎜⎜⎝
B1;1,2

B1;2,1

B2;1,2

B2;2,1

B2;3,4

B2;4,3

⎞⎟⎟⎟⎟⎟⎠ .

We next define the shift-down operator Z↓ on trees. Given a binary tree with
matrices on each node, the action of Z↓ on the binary tree is to produce an identical
tree in which the matrix on every parent node has been moved into the children. The
matrices at the leaves are dropped off. The root node acquires a zero matrix. For
example for a two level HSS tree the action of Z↓ (in the depth-first order for input
and output) is expressed by the following equation corresponding to Figure 4:⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Z↓

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a
b
c
d
e
f
g

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
a
a
b
b
c
c

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.(9)

2We are free to pick this order, but once we have chosen an order we must stick with it for the
remaining diagonal matrices too.

74 CHANDRASEKARAN, DEWILDE, GU, LYONS, AND PALS

Fig. 4. Action of Z↓ on a two level HSS tree.

Fig. 5. Action of Z↔ on a two level HSS tree.

As can be seen Z↓ is very sparse and noninvertible.

Now we define the twiddle operator Z↔ on trees. When Z↔ acts on a binary tree
with matrices on each node, it exchanges the matrices on sibling nodes. The following
equation gives an explicit representation for Z↔ on a two level HSS tree (which is
shown pictorially in Figure 5):⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Z↔

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a
b
c
d
e
f
g

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a
c
b
e
d
g
f

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that Z↔ is a permutation matrix (which are always very sparse, of course).

Now let us assign the intermediate quantities gk;i and fk;i to the corresponding
nodes on the HSS tree. Naturally we can then stack them up in breadth-first ordering
in a single block vector and call them g and f . For example, for the two level HSS

SPARSE HSS SOLVER 75

tree we would have

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

f0;1

f1;1

f1;2

f2;1

f2;2

f2;3

f2;4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We also need to define a projection operator Pleaf that acting on a block vector
like f would return the restriction of it to the leaf nodes. For example, for the two
level HSS tree we would have

⎛⎜⎝
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞⎟⎠
︸ ︷︷ ︸

Pleaf

⎛⎜⎜⎜⎜⎜⎜⎜⎝

f0;1

f1;1

f1;2

f2;1

f2;2

f2;3

f2;4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝
f2;1

f2;2

f2;3

f2;4

⎞⎟⎠ .(10)

We also define x and b as the two block vectors obtained by arranging the sub-
matrices of x and b according to the leaf partitions of the HSS tree. So, for example,
in the case of a two level HSS tree we would have

x =

⎛⎜⎝
x2;1

x2;2

x2;3

x2;4

⎞⎟⎠ .

Of course this is just x in this case. But if we had ordered the tree nodes (and hence
leaves) in some other order this may not have been the case.

With these new matrices we can rewrite the fast multiplication recursions in
compact form. Let us start with the pair (3) and (4) which can be written together
as

g = PH
leafV

Hx + ZH
↓ WHg.(11)

It is very important for the reader to understand why the single equation above is
exactly equivalent to the pair (3) and (4). For example, let us check if (3) is captured
correctly.

To do that we can apply the leaf projection operator from the left in (11) and
obtain

Pleafg = PleafP
H
leafV

Hx + PleafZ
H
↓ WHg.(12)

We need to understand the significance of PH
leaf and ZH

↓ and their relationship to
Pleaf .

For example, PH
leaf is the pseudoinverse of Pleaf , as Pleaf is an orthogonal projector

76 CHANDRASEKARAN, DEWILDE, GU, LYONS, AND PALS

Fig. 6. Action of ZH
↓ on a two level HSS tree.

“onto the leaves of the HSS tree.” So if we look at the example in (10) we have⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

f2;1

f2;2

f2;3

f2;4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= PH

leaf

⎛⎜⎝
f2;1

f2;2

f2;3

f2;4

⎞⎟⎠ .

From this we can see that PH
leaf embeds a block vector inside an HSS tree with the

blocks assigned to the leaves and zeros assigned to the parent nodes. It follows that
PleafP

H
leaf = I.

Next we look at ZH
↓ . Since the action of Z↓ on an HSS tree is to move the vectors

at the parent node down into the child nodes, it is not surprising to learn that ZH
↓

does nearly the opposite; it adds the vectors in the child nodes together and assigns
them to the parent nodes, while the leaf nodes are assigned zeros. This is depicted in
Figure 6. From this it follows that PleafZ

H
↓ = 0.

Putting all this together we see that (12) can be simplified to

Pleafg = VHx,

which is exactly (3) written using block matrices.
Next we quickly describe how (4) is embedded in (11). For this we need to consider

the nonleaf nodes on both sides of (11). We can do so, for example, by multiplying
both sides by I −PH

leafPleaf . The latter acts on an HSS tree by setting all the vectors
at the leaf nodes to zero. From this, and our earlier description of PH

leaf and ZH
↓ , it is

easy to verify that (I −PH
leafPleaf)P

H
leaf = 0 and (I −PH

leafPleaf)Z
H
↓ = ZH

↓ . Therefore

when we multiply both sides of (11) by (I − PH
leafPleaf) we obtain

(I − PH
leafPleaf)g = ZH

↓ WHg,

which when written out componentwise for each nonleaf node yields (4).
Next we observe that (7), (5), and (6) can be combined and written as the single

equation

f = RZ↓f + BZ↔g.(13)

SPARSE HSS SOLVER 77

Finally, we can write the output (8) as

b = Dx + UPleaf f .(14)

It is more convenient to combine the three equations (11), (13), and (14) into the
single equation⎛⎝ D 0 UPleaf

0 BZ↔ RZ↓ − I
PH

leafV
H ZH

↓ WH − I 0

⎞⎠
︸ ︷︷ ︸

S

⎛⎝x
g
f

⎞⎠ =

⎛⎝b
0
0

⎞⎠ .(15)

We first observe that the matrix S is extremely block sparse. In particular, S is
a block matrix with at most three nonzero blocks in every block row. For example,
the first block row of (15) reads

D2;1x2;1 + U2;1f2;1 = b2;1,

and it shows that S has only two nonzero blocks, D2;1 and U2;1, in its first block row.
The general observation, that S has at most three nonzero blocks in any block row,
follows from the recursions for the fast multiplication algorithm, (3) to (7).

It is now convenient to look at a graph representation of S. We will use the
standard one from text books (see [1, section 6.4.2]). Usually sparse matrices are
viewed elementwise and the corresponding graphs have elements on the edges. In our
case it is best to view S as a block sparse matrix and to look at the corresponding
graph instead. First we observe that even though S is not a Hermitian matrix, its
nonzero blocks form a structurally symmetric matrix; that is, if the (i, j) block of S
is a structural nonzero block, then the (j, i) block is also a structural nonzero block.
Therefore, we can use an undirected graph to represent the block sparsity of S. An
example of the graph we will use for a two level HSS form is shown in Figure 7. The
graph is set up as follows. First certain block rows and columns are assigned (or
associated) with a node of the graph. For example, in Figure 7, the block column
corresponding to the unknowns f0;1 and g0;1 is assigned to the topmost node in the
figure. Similarly the block column corresponding to the unknowns f2;1, g2;1, and x2;1

is assigned to the bottom leftmost leaf node. Once a block column has been associated
with a node of the graph the corresponding block row is also associated with the same
node. Note that the nodes for the graph representation of S are exactly the nodes
of the HSS tree. This is not a coincidence. Once the nodes have been assigned the
edges for the graph are picked according to the structural nonzero blocks of S. For
example, the equation

g1;2 −WH
2;3g2;3 −WH

2;4g2;4 = 0

is one of the rows of the equation expressed by (15). Since this equation connects
the block variable g2;3 with the block variable g1;2 there is an edge in the graph of
Figure 7 between the two nodes connecting these two variables. We do a similar
thing for every block row equation of (15), drawing an edge between two nodes of
the graph if there is a block equation connecting unknowns in the two nodes. The
resulting graph representation for S for a two level HSS form is shown in Figure 7.
The assignment of block rows and columns in this figure might seem arbitrary but the
intention will become clear soon. Definitely one of the reasons was to make clear that

78 CHANDRASEKARAN, DEWILDE, GU, LYONS, AND PALS

Fig. 7. Block sparse graph of S arising from two level HSS form.

the graph representing the sparsity of S is closely related to the graph representing
the HSS form of A.

Since S is very sparse it naturally raises the idea that we could solve the sparse
system of equations (15) for x efficiently using a standard sparse solver. However,
to establish that we must first establish that the system is invertible (if the original
matrix A is) and that we will not incur too much fill-in during Gaussian elimination
on S.

We begin with the first issue: does S−1 exist whenever A−1 exists? While resolv-
ing this question we will discover a remarkable diagonal formula for HSS representa-
tions. First, observe that the bottom 2× 2 principal submatrix of S is invertible with
an inverse given by the explicit formula(

BZ↔ RZ↓ − I
ZH

↓ WH − I 0

)−1

=

(
0 (ZH

↓ WH − I)−1

(RZ↓ − I)−1 −(RZ↓ − I)−1BZ↔(ZH
↓ WH − I)−1

)
.

Of course the validity of this formula hinges upon the existence of the two inverses

(WZ↓ − I)−1 and (RZ↓ − I)−1.

But these two inverses always exist. The reasoning is as follows. We see from (9) that
Z↓ is nilpotent. Since W and R are block diagonal matrices with block sizes chosen
to be compatible with the block identities in Z↓, it follows that WZ↓ and RZ↓ are
also nilpotent matrices. From this it follows that the above two inverses always exist.
This proves our assertion.

Now we can always solve (15) for x and obtain(
D + UPleaf(I − RZ↓)

−1BZ↔(I − ZH
↓ WH)−1PH

leafV
H
)
x = b.(16)

SPARSE HSS SOLVER 79

Since this is true for all x, it follows that

A = D + UPleaf(I − RZ↓)
−1BZ↔(I − ZH

↓ WH)−1PH
leafV

H .(17)

This is a compact diagonal representation of the HSS form of A. It therefore follows
that if A is invertible then the sparse matrix S in (15) is also invertible, since A is
just the (1, 1) Schur complement of S.

So it is clear that to solve Ax = b for x we could solve the sparse system of
equations (15) instead. But to establish that there is a computational advantage in
doing so, we must show that the sparse system (15) has an ordering that will not fill
in during Gaussian elimination. Of course if we first eliminate f and then g, we will
get exactly A, which is the original matrix and completely filled in!

To find a better ordering we look at the block sparse graph for the system of which
an example for the two level HSS representation is shown in Figure 7. From that figure
it is obvious that there will be no block fill-in for the nested dissection ordering of the
unknowns, that is, if we eliminate in the following block order: (f2;1 g2;1 x2;1),
(f2;2 g2;2 x2;2), (f2;3 g2;3 x2;3), (f2;4 g2;4 x2;4), (f1;1 g1;1), (f1;2 g1;2),
(f0;1 g0;1). To see why this is so, note that after eliminating the variables f2;1, g2;1,
and x2;1, for example, the remaining equations will have no new nonzero blocks (see
[1, sections 6.4.4 and 6.5.3] for further explanations on how determine fill-in during
Gaussian elimination from the graph representation).

In general, in the nested dissection ordering all the variables on the left subtree
are ordered before all the variables in the right subtree, with the variables on the root
node coming last. Of course, the variables in the left and right subtrees are themselves
ordered recursively in nested dissection order.

The bottom line is that there exists a no fill-in Gaussian elimination order. But
what about pivoting to ensure numerical stability? That is a more complicated ques-
tion, and we do not answer it here. Rather, we just observe that the block sparse
graph also shows that we can get an efficient sparse QR factorization in the nested
dissection ordering.

To see this let us follow through the first step of a block Givens QR factorization
algorithm on the two level HSS form shown in Figure 7. We first try to eliminate the
node containing f2;1, g2;1, and x2;1. We have to first apply a block Givens rotation
involving the pivot row and the row corresponding to the variables f2;2, g2;2, and x2;2.
We note that the only possible fill-in in this row and the pivot row must correspond to
the variables f1;1 and g1;1. But both these positions are already nonzero, so no fill-in
edges have to be added to the graph. If we now proceed with the nested dissection
ordering, we can argue similarly that no fill-in edges at all will be added to the block
sparse graph (see [1, section 6.6.4]).

Hence, to avoid numerical instabilities, we can just use a sparse QR factorization
method. Since there is essentially no fill-in, we obtain a solver that is numerically
stable and is linear in the dimension of the matrix A, with a constant that depends
on the size of the Bk;i,j matrices. In particular, the number of flops is a constant
times the sum of the cube of the sizes of the Bk;i,j ’s. This can be inferred as follows.

First note that every block equation has at most three block terms. Therefore,
every stage of the block QR factorization involves a constant number of matrix mul-
tiplications. For the sake of simplicity, let us consider the case when every matrix in
the HSS form is no bigger than p×p for some integer p. Then, it is clear that at every
stage of the block QR algorithm, the number of flops will not exceed some constant
times p3. Since there is no fill-in during the QR factorization, it also follows that the

80 CHANDRASEKARAN, DEWILDE, GU, LYONS, AND PALS

total number of flops will not exceed the number of nodes in the HSS tree times p3

times some constant. But the number of nodes in the HSS tree cannot exceed n/p
times some constant, where n is the dimension of the matrix A. Therefore, in this
case, the number of flops is O(np2).

We caution that to construct an HSS representation from a dense matrix will in
general require O(n2) flops (using the algorithm presented in [2], for example). The
same paper [2] also describes examples where the HSS representation can be computed
in O(n) flops. Similarly, the entire FMM literature can be viewed as a repository of
examples where the FMM representation can be computed in O(n) flops, and from
which the HSS representation in turn can be computed in O(n) flops.

5. Numerical experiments. We now describe some numerical experiments
that exhibit the efficiency and the stability of the sparse solver approach. All ex-
periments were carried out on a 1GHz PowerPC G4 machine with 1.5GB RAM and
a 167MHz bus. We used the vendor supplied BLAS.

The n × n matrix A was chosen according to the formula Ai,j =
√
|x(n)

i − x
(n)
j |,

with the points x
(n)
i = cos(π(2i+1)/2n) as the zeros of the nth Chebyshev polynomial.

The HSS tree was decided by a standard dyadic division of the interval [−1, 1]. The
intervals were repeatedly divided in half until there were less than p points left. The
value of p was chosen according to the matrix size to enable better memory behavior.
Since the zeros of the Chebyshev polynomial cluster at the end points the resulting
HSS tree was not uniform. We measure the skewness of the HSS tree as the ratio of the
longest path (shortest distance) from a root to a leaf to the shortest path from a root
to a leaf. The HSS form of the matrix was computed beforehand using the algorithm
in the earlier paper [2] to eight digits of accuracy. It is well known that for matrices of
the form we are considering in this experiment the ranks of the Bk;i,j ’s are essentially
proportional to the logarithm of the accuracy. Therefore, in this experiment the sizes
of the Bk;i,j ’s were essentially constant, independent of the matrix size. Therefore,
we should expect the CPU time of the solver to scale linearly in the matrix size.

The experimental data are reported in Table 1. The first column shows that we
tried matrices that varied in size from 256 × 256 to 131072 × 131072. The second
column shows the factor p that decides the maximum number of rows (and columns)
in a leaf node. The skewness of the HSS tree of the various matrices that we tried
is shown in column three. The fourth column shows the CPU time required by the
sparse solver.

The sparse solver we used was a custom built block QR solver. We ordered the
sparse matrix in (15) in nested dissection order. As can be seen from column four of
the table the solver is essentially a linear time solver as predicted by the theory, and
that it is not affected adversely by the skewness of the HSS tree.

In column five we show the backward error for each solve. The backward error
for solving the system Ax = b with computed solution x̂ is defined to be the ratio of
the smallest 2-norm of any matrix E that satisfies the equation (A+E)x̂ = b, and the
2-norm of A (see [1, section 1.4.6]). As can be seen from column five, the backward
error for our method is essentially machine precision. This shows that the method
behaved in a backward stable manner in this set of experiments.

6. Conclusion. We have shown that a fast direct solver for linear systems of
equations with the coefficient matrix in HSS form can be easily constructed from a
sparse solver. The resulting algorithm is fast and stable.

It is easy to see that this idea can easily be extended to handle more complex

SPARSE HSS SOLVER 81

Table 1

Speed and stability of sparse solver for HSS forms.

Matrix size Leaf block size Skewness of tree CPU time in seconds Backward error
256 13 2 0.07 9.90765e-17
512 14 1.8 0.15 1.01727e-16
1024 15 1.83333 0.32 2.86709e-16
2048 16 1.85714 0.68 5.5083e-17
4096 17 1.875 1.43 8.24819e-17
8192 18 1.88889 2.87 4.0822e-17
16384 19 1.9 5.57 5.32472e-17
32768 20 2 11.29 4.96643e-17
65536 21 2 25.43 8.64522e-17
131072 22 2 53.88 8.51812e-17

partitions of the matrix than the one used in the HSS representation. In particu-
lar, the method can easily be extended to handle a full FMM representation of the
matrix (see [10]), the hierarchical matrix representation (see [8, 9]), and the sequen-
tially semiseparable representation (see [3, 4]). These matters will be presented in a
companion paper.

REFERENCES

[1] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[2] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically

semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.
[3] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and

D. White, Some fast algorithms for sequentially semiseparable representations, SIAM J.
Matrix Anal. Appl., 27 (2005), pp. 341–364.

[4] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A. van der Veen, Fast stable solver
for sequentially semi-separable linear systems of equations, in HiPC 202, S. Sahni, ed.,
Lecture Notes in Comput. Sci. 2552, Springer-Verlag, Berlin, 2002, pp. 545–554.

[5] P. Dewilde and A. van der Veen, Time-Varying Systems and Computations, Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1998.

[6] I. Gohberg, T. Kailath, and I. Koltracht, Linear complexity algorithms for semiseparable
matrices, Integral Equations Operator Theory, 8 (1985), pp. 780–804.

[7] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325–348.

[8] W. Hackbusch, A sparse arithmetic based on H-matrices. Part I: Introduction to H-matrices,
Computing, 62 (1999), pp. 89–108.

[9] W. Hackbusch, B. N. Khoromskij, and S. Sauter, On H2-Matrices, preprint 50, MPI,
Leipzig, 1999.

[10] T. Pals, Multipole for Scattering Computations: Spectral Discretization, Stabilization, Fast
Solvers, Ph.D. thesis, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA, 2004.

[11] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys.,
60 (1985), pp. 187–207.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 82–97

MINIMIZING THE CONDITION NUMBER FOR SMALL RANK
MODIFICATIONS∗

CHEN GREIF† AND JAMES M. VARAH†

Abstract. We consider the problem of minimizing the condition number of a low rank modifi-
cation of a matrix. Analytical results show that the minimum, which is not necessarily unique, can
be obtained and expressed by a small number of eigenpairs or singular pairs. The symmetric and the
nonsymmetric cases are analyzed, and numerical experiments illustrate the analytical observations.

Key words. condition number, low rank modifications, minimization, interlacing

AMS subject classifications. 65F35, 15A12

DOI. 10.1137/050647554

1. Introduction. Let A ∈ R
n×n be a general matrix, and consider the problem

min
U,V

κ2(A + UV T),(1.1)

where κ2 denotes the spectral condition number, and U, V ∈ R
n×k, so that UV T is a

rank-k matrix. The parameter k is prescribed along with the matrix A.
The problem of minimizing the condition number of a matrix has been studied

often, but not, as far as we know, very systematically. This is in contrast with the
problem of minimizing the spectral norm, or the maximum eigenvalue of a symmetric
matrix, over given parameterizations. These are much easier problems because the
2-norm is a convex function on the matrix space, as is the maximum eigenvalue on
the space of real symmetric matrices, making them amenable to convex optimization
techniques (specifically, semidefinite programming); see [1]. By contrast, the condi-
tion number is not convex on matrix space. In the case of symmetric positive definite
matrices, it is possible to transform a linearly parameterized condition number opti-
mization problem to a convex optimization problem in the semidefinite programming
framework (see [1, p. 203]), but when the matrices are symmetric indefinite or nonsym-
metric, the problem is more difficult. See [5, 8] for relatively early work on optimizing
preconditioners with specified sparsity patterns via eigenvalue optimization. A thor-
ough eigenvalue analysis of low rank perturbations of symmetric matrices is given in
the classic [9] and in other places. A recent paper [2] provides necessary and sufficient
conditions on when the singular values of a rectangular matrix can be reassigned, us-
ing low rank modifications. Low rank perturbations are used, for example, for stable
computation of eigenvalues of symmetric tridiagonal matrices using the divide and
conquer method [6].

In this paper we provide an analysis of the problem, discuss uniqueness and
existence, and derive results for minimizers in a variety of cases, including symmetric
semidefinite, symmetric indefinite, and general nonsymmetric matrices, for rank-1,
rank-2, and higher rank modifications.

∗Received by the editors December 13, 2005; accepted for publication (in revised form) by
A. J. Wathen June 2, 2006; published electronically December 21, 2006. This work was supported
in part by the Natural Sciences and Engineering Research Council of Canada.

http://www.siam.org/journals/simax/29-1/64755.html
†Department of Computer Science, The University of British Columbia, Vancouver B.C. V6T

1Z4, Canada (greif@cs.ubc.ca, varah@cs.ubc.ca).

82

CONDITION NUMBER MINIMIZATION 83

There are many reasons for studying condition number optimization, and the
recent availability of new approaches and code for solving nonsmooth optimization
problems may allow for a comprehensive experimental and theoretical study. Our
own original motivation arose from a search for effective preconditioners for sym-
metric indefinite systems. Of course, the condition number is only one factor in the
convergence of iterative solvers, and in fact low rank perturbations by their nature
have a limited effect on the spectrum due to the interlacing property which we discuss
in detail throughout the paper. Nevertheless, when the spectrum of a matrix does
not have an obvious structure, it may be useful to consider whether an approach of
condition number minimization is effective, at least for symmetric, or nonsymmetric
but normal, matrices.

The rest of the paper is structured as follows. In sections 2–5 we discuss the sym-
metric problem. First, in section 2 we introduce the interlacing property for rank-k
modifications and show how it can be proved using the Courant–Fischer min/max
representation. In section 3 we present our analytic results for semidefinite matrices
and show that a solution (not necessarily unique) can be obtained by using the eigen-
vectors corresponding to the smallest eigenvalues. In section 4 we extend our analysis
to the symmetric indefinite case and show that a solution can be obtained using the
eigenvectors that correspond to the largest and smallest eigenvalues in magnitude. In
section 5 we show that even if those eigenvectors are not known exactly, their approx-
imations may yield a nearly optimal solution. In section 6 we show that, using similar
techniques, we can deal with the nonsymmetric problem as well. In section 7 we give
an example of an application: preconditioning a saddle point system using condition
number minimization. We conclude with a short summary of our main observations.

2. The interlacing property. This section and sections 3–5 are devoted to the
symmetric version of problem (1.1):

min
V

κ2(A + V V T),(2.1)

with A symmetric. We will assume throughout that the spectral decomposition of A
is given by

QTAQ = D,

with the columns of Q containing the eigenvectors of A:

Q = [q(1) q(2) . . . q(n)], i = 1, . . . , n.

First consider the rank-1 case. We can write the modified matrix as (A + γvvT)
with ‖v‖2 = 1. The following separation theorem, or interlacing property, is well
known (see, e.g., [3, p. 442]). Below we provide a proof based on the Courant–Fischer
result.

Theorem 2.1. If the eigenvalues of A are λn ≤ λn−1 ≤ · · · ≤ λ1 and those of
(A + γvvT) are μn ≤ μn−1 ≤ · · · ≤ μ1, then for γ ≥ 0,

λn ≤ μn ≤ λn−1 ≤ μn−1 ≤ · · · ≤ λ1 ≤ μ1.

Proof. For γ ≥ 0, clearly μi ≥ λi for 1 ≤ i ≤ n. To show μn ≤ λn−1, use the
Courant–Fischer min/max representation (see [3, p. 394] or [9, p. 101])

λn−1 = max
y �=0

min
xT x=1
xT y=0

(xTAx).

84 CHEN GREIF AND JAMES M. VARAH

We have

μn = min
xT x=1

xT (A + γvvT)x ≤ min
xT x=1
xT v=0

xT (A + γvvT)x

= min
xT x=1
xT v=0

(xTAx) ≤ max
y �=0

min
xT x=1
xT y=0

(xTAx) = λn−1.

A similar argument works for the other eigenvalues, using Y with k columns and

λn−k = max
Y �=0

min
xT x=1
xTY =0

(xTAx).

This completes the proof.
A similar result holds for γ ≤ 0. Next, the rank-k case can be handled as a

succession of rank-1 modifications:

A + V V T = A +

k∑
j=1

v(j)v(j)T ,

where {v(j)} are the columns of V . Applying the separation theorem successively
gives, for example, λn ≤ μn ≤ λn−k.

More generally, when A is indefinite, one would like to treat indefinite rank-k
modifications

A + V EV T = A +

k∑
j=1

ejv
(j)v(j)T ,

where E = diag(±1). This can also be handled as a succession of rank-1 modifications.

Suppose A1 = A + v(1)v(1)T . Then its eigenvalues {μj} satisfy

λn ≤ μn ≤ λn−1 ≤ · · · ≤ μ2 ≤ λ1 ≤ μ1.

Now let A2 = A1 − v(2)v(2)T . Its eigenvalues {τj} satisfy

τn ≤ μn ≤ τn−1 ≤ · · · ≤ τ2 ≤ μ2 ≤ τ1 ≤ μ1.

Hence we have ⎧⎨⎩
τn ≤ λn−1,
λn ≤ τn−1 ≤ λn−2 ≤ · · · ≤ λ3 ≤ τ2 ≤ λ1,
λ2 ≤ τ1.

Similar inequalities hold in the general rank-k case: if E has p positive and m
negative coefficients, then in general the eigenvalues {τj} of (A + V EV T) satisfy

λj+m ≤ τj ≤ λj−p.

The proof is a straightforward extension of the above argument and is omitted for the
sake of brevity.

CONDITION NUMBER MINIMIZATION 85

The above results provide natural bounds on the eigenvalues of small rank mod-
ifications, which we exploit in the following sections.

3. The symmetric positive semidefinite case. Having introduced interlac-
ing results, we now move on to focus on the problem of minimizing the condition
number.

3.1. Rank-1 modifications. Consider the problem of minimizing the spectral
condition number of a rank-1 modification of a positive semidefinite matrix A:

min
v

κ2(A + vvT) = min
v

μ1(v)

μn(v)
.

By scaling v, we can express this alternatively as

min
‖v‖2=1
γ≥0

κ2(A + γvvT).

The case γ ≤ 0 can be handled analogously.
Theorem 3.1. Let A be positive semidefinite with eigenvalues 0 ≤ λn ≤ · · · ≤ λ1

and at most one zero eigenvalue. Then

min
‖v‖2=1
γ≥0

κ2(A + γvvT) =
λ1

λn−1

and is achieved for v = q(n), the eigenvector corresponding to λn, and for γ in the
range λn−1 − λn ≤ γ ≤ λ1 − λn.

Proof. We can easily see that λ1/λn−1 is a lower bound using the interlacing
property: we can do no better than keep μ1 = λ1 and increase μn to λn−1, giving
κ2 ≥ λ1

λn−1
.

Since A is symmetric, its eigenvectors {q(i)} are orthonormal. Hence (A+γq(n)q(n)T)
has eigenvalues λn + γ, λn−1, . . . , λ2 and λ1. Thus, as long as λn−1 ≤ λn + γ ≤ λ1,
the extreme eigenvalues are λ1 and λn−1, so we have equality.

Remark. The eigenvalues of the modified matrix (A+γvvT) are generally denoted
in ordered form as μn ≤ μn−1 ≤ · · · ≤ μ1. However, when v = q(n) as in the proof
above, only one of these eigenvalues differs from the original set λn ≤ · · · ≤ λ1. In this
case it is convenient to refer to that eigenvalue λn + γ as μn (and hence μi = λi for
i �= n) even though the resulting set {μn, . . . , μ1} may not be ordered. The interlacing
property holds, of course, but since γ is such that λn + γ could be larger than λn−1,
the {μi} would have to be renumbered to be properly ordered. We make use of this
slight abuse of notation later in section 4.

Finally, note that κ2(γ) ≡ κ2(A + γvvT) has a “flat spot” at its minimum. Of
course, one could also consider γ < 0, which may reduce the condition number further.

3.2. Rank-k modifications. For the rank-k case, we consider minV κ2(A +
V V T) over all n× k matrices V . If we again scale the columns of V , we can express
this as

min
‖vj‖2=1

κ2(A + V EV T) = min
‖vj‖2=1
γj≥0

κ2(A + γ1v1v
T
1 + · · · + γkvkv

T
k).(3.1)

86 CHEN GREIF AND JAMES M. VARAH

Theorem 3.2. Let A be positive semidefinite with eigenvalues 0 ≤ λn ≤ · · · ≤ λ1

and at most k zero eigenvalues. Then

min
V

κ2(A + V EV T) =
λ1

λn−k
.

This minimum is achieved for V = [q(n) · · · q(n−k+1)], and the range of values for
E = diag(γ1, . . . , γk) is given by⎧⎪⎨⎪⎩

λn−k − λn ≤ γ1 ≤ λ1 − λn ;
...

λn−k − λn−k+1 ≤ γk ≤ λ1 − λn−k+1.

(3.2)

Proof. Again from the interlacing property, λ1/λn−k is a lower bound. Then for
V as above, the eigenvalues of (A+V EV T) are λn+γ1, . . . , λn−k+1+γk, λn−k, . . . , λ1.
Thus we must ensure that each transformed eigenvalue is in the closed interval
[λn−k, λ1], which is equivalent to requiring (3.2).

We remark that in this rank-k case, one might also consider instead of (3.1),

min
‖vj‖2=1

γ≥0

κ2(A + γV V T),

with only one scaling factor γ. Then the above result again applies, but the range
of γ is more restrictive. For the transformed eigenvalues to lie in [λn−k, λ1], we need
λn + γ ≥ λn−k and λn−k+1 + γ ≤ λ1, or λn−k − λn ≤ γ ≤ λ1 − λn−k+1. This range is
nonempty only if λn−k+1 − λn ≤ λ1 − λn−k, which will certainly be true for k small
enough.

These results show that to optimize the condition number of a rank-k modifica-
tion, one should choose vectors {vj} close to the eigenvectors of A associated with the
smallest eigenvalues. In section 5 we will consider the effect of using approximations
to these eigenvectors. Note also that solutions to the minimization problem are not
necessarily unique: there is a range of values for which the minimum is obtained.

4. The symmetric indefinite case. When A is indefinite, we first consider the
rank-1 case:

min
‖v‖2=1

γ

κ2(A + γvvT).(4.1)

Here γ may be positive or negative. We will keep the ordering of the eigenvalues
the same as before (even though some may now be negative) and make the following
definitions and assumptions:

D1. We will assume throughout that n > 2. (The case n = 2 is trivial.)
D2. Denote by {σj} the singular values of A, σ1 ≥ · · · ≥ σn ≥ 0. Of course these

are simply the moduli of the eigenvalues.
D3. Let |λm| = minj |λj |. That is, m denotes the index of the smallest eigenvalue

in magnitude. Thus σn = |λm|.
D4. Assume without loss of generality that the largest eigenvalue in magnitude is

λn, so that σn = −λn ≥ λ1. (If not, we can use −A in place of A.)

D5. Finally, since κ2(A) = σ1

σn
= |λn|

|λm| , we call λn and λm the active eigenvalues

of A.

CONDITION NUMBER MINIMIZATION 87

The following lemma presents a lower bound for the condition number. Later (in
Theorem 4.3) we will show that this bound can actually be attained.

Lemma 4.1. Let A be indefinite and satisfy the above assumptions. Then

min
‖v‖2=1
γ≥0

κ2(A + γvvT) ≥ σ2

σn−1
.

Proof. The mapping A → (A + γvvT) transforms the eigenvalues from {λi} to
{μi}. Since γ ≥ 0 we have μi ≥ λi for each i. In trying to minimize the resulting
condition number, we must take into account the interlacing property. Thus, we can
do no better than the following:

(i) transform λn to μn = −σ2 = min(λn−1,−λ1);
(ii) transform λm to μm = λm−1 (whether λm is positive or negative);
(iii) leave the other eigenvalues unchanged, i.e., μi = λi, i �= n,m.

The resulting matrix will have condition number

max(λ1, |λn−1|)
min(|λm+1|, |λm−1|)

=
σ2

σn−1
,(4.2)

which completes the proof.
Remark. The case γ ≤ 0 does not change the result, since a similar argument

gives a lower bound of max(|λn|,λ2)
min(|λm+1|,|λm−1|) . It is worse (greater) than that above, since

by one of our assumptions −λn ≥ λ1.
We now wish to show that we can actually attain the lower bound by appropriate

choice of v (and γ). We have γ ≥ 0 and thus we can incorporate it into v, so that
(4.1) becomes

min
v

κ2(A + vvT).(4.3)

First consider A diagonal, A = diag(di), dn ≤ · · · ≤ 0 ≤ · · · ≤ d1, with active
eigenvalues dn and dm. Now take a vector v with nonzero components only in positions
n and m. Denote them by vn and vm. Then (A + vvT) is identical to A except for
the 2 × 2 block formed by rows and columns m and n. This block is(

dm + v2
m vnvm

vnvm dn + v2
n

)
,

and its eigenvalues μ are the roots of

μ2 − (dn + dm + v2
m + v2

n)μ + dndm + dnv
2
m + dmv2

n = 0.(4.4)

So the eigenvalues of (A + vvT) are μi = di if i �= n,m and the roots of (4.4) if
i = n,m. Let us denote the latter by μn and μm, so that dn is transformed to μn and
dm to μm. Although μn ≥ dn and μm ≥ dm, they can otherwise be chosen anywhere
without violating the interlacing theorem, as again the {μi} here are not necessarily
ordered.

Evaluating the quadratic equation (4.4) gives two linear equations for the two
unknowns v2

m and v2
n. Fortunately, this linearity, which does not hold in general for

88 CHEN GREIF AND JAMES M. VARAH

cases where v has more than two nonzero components, allows us to make a few useful
analytical observations. The linear equations are(

dn − μn dm − μn

dn − μm dm − μm

)(
v2
m

v2
n

)
=

(
(μn − dn)(dm − μn)
(μm − dn)(dm − μm)

)
.(4.5)

We denote the linear system (4.5) by

Bw = c

and note that the solution w must have nonnegative components, which restricts the
possible choices for μn and μm. The case of a homogeneous linear system is trivial,
since it implies that μn = dn and μm = dm, which means none of the eigenvalues
change. We therefore have the following result.

Lemma 4.2. If μn and μm are chosen so that μn ≤ dm ≤ μm, then the solution
w to Bw = c has nonnegative components with at least one of them positive.

Proof. From (4.5) it is easy to see that det(B) = (dm − dn)(μm − μn) �= 0 if
dm �= dn and μm �= μn. It is sufficient to consider dn < dm < d1, since nonsharp
inequalities can be trivially handled separately. By D1–D5 we have dn ≤ −d1. Direct
computation gives

w = B−1c =
1

dm − dn

(
(μm − dm)(dm − μn)
(dn − μm)(dn − μn)

)
.

Thus w1 ≥ 0 if μn ≤ dm ≤ μm. Moreover, w2 ≥ 0 if dn ≤ μn and dn ≤ μm, but this
is ensured since by interlacing the mapping A → (A+ γvvT) transforms the {di} into
algebraically equal or larger eigenvalues, {μi}.

We can therefore choose μn and μm anywhere, subject to the above stated re-
striction, and are now ready to show that the lower bound presented in Lemma 4.1
can actually be attained.

Theorem 4.3. Let A be indefinite, satisfying D1–D5. Then

min
‖v‖2=1

γ

κ2(A + γvvT) = min
v

κ2(A + vvT) =
σ2

σn−1
.

Proof. Since A is symmetric, it can be diagonalized, and so it is reasonable
to start by considering a diagonal A as above. In this case we have maxi �=n |di| =
σ2 = max(d1, |dn−1|), and mini �=m |di| = σn−1 = min(|dm−1|, |dm+1|). Thus, by
Lemma 4.2 we need only ensure that μn and μm do not become active. We must
have σn−1 ≤ |μn|, |μm| ≤ σ2, and μn ≤ dm ≤ μm. To ensure both of these, choose
μn negative, −σ2 ≤ μn ≤ −σn−1, and μm positive, σn−1 ≤ μm ≤ σ2. Indeed any
such choice will result in κ2(A + vvT) = σ2/σn−1, giving a two-parameter family of
solutions.

Now, for nondiagonal A, suppose QTAQ = D, diagonal. Then, defining u = QT v
we have

QT (A + vvT)Q = D + (QT v)(vTQ)

= D + uuT .

So, we first solve for u using the above described procedure, giving un and um. We
then form

v = Qu = umq(m) + unq
(n).

CONDITION NUMBER MINIMIZATION 89

The similarity transformation does not change the 2-norm, and hence not the con-
dition number. It follows that minimizing κ2(A + vvT) is equivalent to minimizing
κ2(D + uuT), and the proof is complete.

There are many reasonable choices for μn and μm so that μn ≤ dm ≤ μm and
σn−1 ≤ |μn|, |μm| ≤ σ2. For example, one could choose the median singular value
σ∗ = σn/2 or σ(n+1)/2 and pick

μn = −σ∗, μm = σ∗.

It is also worth mentioning that Theorem 4.3 applies to A positive definite, with the
resulting modified matrix indefinite.

For the indefinite rank-k case, that is,

A + V EV T = A +

k∑
j=1

ejv
(j)v(j)T ,(4.6)

where E = diag(ej) = diag(±1), we first extend the lower bound of Lemma 4.1 as
follows.

Lemma 4.4. Let A be indefinite and V EV T a rank-k modification. Then

min
V,E

κ2(A + V EV T) ≥ σk+1

σn−k
.

Proof. Using (4.6) to express A+V EV T as a sequence of k rank-1 modifications,
we apply Lemma 4.1 at each step. Notice that each step can be positive or negative,
and the result “peels off” the top and bottom singular values at each step.

Now, to show that the bound can again be attained, we choose a particular
sequence of rank-1 modifications with appropriate sign.

Theorem 4.5. Let A be indefinite and V EV T a rank-k modification. Then

min
V,E

κ2(A + V EV T) =
σk+1

σn−k
.

Proof. For A diagonal, we apply a sequence of 2 × 2 rank-1 modifications as
in Theorem 4.3, choosing ej = +1 if the largest eigenvalue at that step is negative
(and thus transforming eigenvalues into algebraically equal or larger eigenvalues), and
ej = −1 if the largest eigenvalue is positive (and thus the eigenvalues are mapped into
algebraically equal or smaller eigenvalues). To ensure that we “peel off” the top and
bottom singular values at each step, we need only choose the transformed eigenvalues
μn and μm so that σn−k ≤ |μn|, |μm| ≤ σk+1. For a nondiagonal A, we again have to
multiply by the eigenvector matrix Q.

Example 4.6. Take A = diag(−9,−5,−1, 0, 1, 5, 9) and ask for the best rank-1
and rank-2 modifications. For the first step, the active eigenvalues can be taken to be

−9 and 0. Lemma 4.2 gives v(1)T = (2.49, 0, 0, 1.67, 0, 0, 0) and e1 = 1. The resulting

matrix A1 = A + v(1)v(1)T has eigenvalues (−5,−5,−1, 1, 5, 5, 9), and κ2(A1) = 9.
Notice for this example that in this first step, we could choose μn and μm anywhere
in the range 1 = σn−1 ≤ |μn|, |μm| ≤ σ2 = 9.

For the second step, we take active eigenvalues 9 and −1. We get e2 = −1

and v(2)T = (0, 0, 1.55, 0, 0, 0, 0, 2.37). The resulting matrix A2 = A1 − v(2)v(2)T has
eigenvalues (−5,−5,−5, 1, 5, 5, 5), and κ2(A2) = 5. Notice that we do not have to
rediagonalize A1 since the second set of active eigenvalues is distinct from the first.

90 CHEN GREIF AND JAMES M. VARAH

0

1

2

3

4

1
2

3
4

5

0

10

20

30

40

50

60

70

80

90

Fig. 4.1. The condition number of the modified matrix for a range of values of vn and vm.

In Figure 4.1 we plot κ2(A + vvT) for 0 ≤ vm, vn ≤ 4 . Notice the “flat spot”
in this graph, where κ2 = 9, that is, a two-dimensional range where the minimum
condition is attained. Finally, the solution V = [v(1) v(2)] is by no means unique.
However, it does have the minimum number of nonzero components.

5. The effect of perturbations. From the analysis so far, it is clear that to
minimize the condition number of the modified matrix, one needs to know particular
eigenvectors. Of course, for a large matrix, these are not known explicitly and are often
expensive to compute. This raises the question of approximations: what effect will
inexact knowledge of the eigenvectors have on the condition number of the modified
matrix?

We consider here only the simple case of a semidefinite A (with eigenvalues {λi}
and eigenvectors {q(j)}) modified by a rank-1 matrix. Following Theorem 3.1, we
choose the modification v = q(n) and consider

C(γ) = A + γq(n)q(n)T .(5.1)

If G is defined as the interval λn−1−λn ≤ γ ≤ λ1−λn, then for γ ∈ G, λmin(C) = λn−1

and λmax(C) = λ1, so κ2(C) is minimized.
Now suppose we allow perturbations in q(n), caused, for example, by inexact

approximation. Then we have the following result.
Theorem 5.1. Suppose γ ∈ G and

A + γuuT , u = q(n) + εw,

where ε 	 1 and ‖w‖2 = 1. Then

κ2(A + γuuT) = κ2(C) + O(ε2),(5.2)

where C = C(γ) is as given in (5.1).

CONDITION NUMBER MINIMIZATION 91

Proof. Define F = γ(q(n)wT + wq(n)T). Then we have

A + γuuT = A + γ(q(n) + εw)(q(n) + εw)T(5.3)

= C(γ) + εγ(q(n)wT + wq(n)T) + ε2wwT

= C + εF + ε2wwT .

The eigenvalues of C = C(γ) are λ1, . . . , λn−1, and λn + γ. Now let γ be fixed
and consider the eigenvalues of the first-order perturbation C + εF . For any specific
eigenvalue λj(C), let

λj(ε) = λj(C + εF) = λj(C) + ελ′
j + O(ε2).

Assuming each eigenvalue is simple, recall that (see, e.g., [9, Chap. 2])

λ′
j =

q(j)TFq(j)

q(j)T q(j)
.

We have two cases:
(i) j = n: λ′

n = γq(n)T (q(n)wT + wq(n)T)q(n) = 2γwT q(n).

(ii) j �= n: λ′
j = γq(j)T (q(n)wT + wq(n)T)q(j) = 0.

Hence

λn(ε) = λn(C) + O(ε), λj(ε) = λj(C) + O(ε2) for j �= n.

Thus from (5.3) the same is true for the full perturbation A + γuuT .
Finally then, if γ is chosen inside G, so that the extreme eigenvalues of C are λ1

and λn−1, then under perturbation in the vector u = q(n) + εw, (5.2) follows.
Theorem 5.1 shows, then, that the effect of a first-order perturbation in the

eigenvector is only second-order in the condition number. Thus, an approximation
to the eigenvector that can be computed rapidly can be useful for the purpose of
obtaining a nearly optimal condition number.

Example 5.2. Consider the discrete Laplace operator using finite difference dis-
cretizations on a uniform, two-dimensional grid. It is well known that if Neumann
boundary conditions are employed, the matrix has nullity 1 with a vector of constants
as its null-space. We set a grid of 32 points in each direction; the resulting matrix is
1024 × 1024. The Lanczos algorithm (without reorthogonalization) is applied using
four dimension sizes: k = 4, 8, 16, 32. The initial guess is random. We compute ap-
proximations to the null vector of the matrix using the Ritz vector associated with
the smallest Ritz value. As is evident from Table 5.1, the condition number of the
modified matrix using the approximation to the null vector is close to that of the
modified matrix using the exact null vector, with the relative error decreasing as ε
decreases. A precise assessment of the error is more involved and would require the
evaluation of the magnitude of the term multiplied by ε2 in Theorem 5.1. Never-

theless, for n large enough examining the relative error, |κ2(A+q(n)q(n)T)−κ2(A+uuT)|
κ2(A+q(n)q(n)T)

(given in the last column of the table) illustrates the quadratic dependence on ε, as
predicted by Theorem 5.1. For example, between k = 16 and k = 32 the value of ε
goes down by a factor of approximately 3.43 while the relative error decreases by a
factor of approximately 17.5.

92 CHEN GREIF AND JAMES M. VARAH

Table 5.1

Effect of perturbations for a discrete Laplace operator with Neumann boundary conditions. The
approximations to the null vector are generated using the Lanczos algorithm. In the table, q(n) is a
normalized vector of constants (i.e., a null vector of A) and u is the approximation to it generated
by the Lanczos procedure.

k λn ‖Au‖2 ε ≡ ‖u− q(n)‖2 κ2(A + q(n)q(n)T) κ2(A + uuT) Rel. error

4 3.541e-003 0.099821 0.053903 11.66 11.72 5.1e-003
8 3.482e-004 0.018074 0.039415 50.55 50.63 1.6e-003
16 3.637e-005 0.0043127 0.025597 206.17 206.30 6.3e-004
32 1.629e-006 0.00080484 0.007465 828.69 828.72 3.6e-005

6. Extension to nonsymmetric matrices. We now move to consider the non-
symmetric case. For rank-1 modifications, the nonsymmetric case could be trans-
formed into a problem of minimizing the condition number of a symmetric rank-2
modification of the 2n× 2n symmetric matrix

G =

(
0 A
AT 0

)
.

But in fact much can be said about the nonsymmetric problem by working on it
directly. Consider a nonsymmetric matrix A, with singular values σ1 ≥ · · · ≥ σn ≥ 0,
and its unsymmetric rank-1 modification A + uvT , with singular values τ1 ≥ · · · ≥
τn ≥ 0. Using the interlacing result for symmetric matrices given in section 2, one
can formulate a separation theorem for these singular values as well.

Theorem 6.1. The singular values {τj} of A + uvT are related to the singular
values {σj} of A as follows:⎧⎨⎩

σ2 ≤ τ1,
σk+1 ≤ τk ≤ σk, 1 < k < n,
0 ≤ τn ≤ σn−1.

(6.1)

Consequently, a lower bound for κ2(A + uvT) is given by

κ2(A + uvT) =
τ1
τn

≥ σ2

σn−1
.(6.2)

Proof. Using the Courant–Fischer min/max result for ATA,

σ2
n−k = max

Y �=0
min

xT x=1
xTY =0

(xTATAx)

for Y an n× k matrix. Consider, for example, τn−1:

τ2
n−1 = max

y �=0
min

xT x=1
xT y=0

xT (A + uvT)T (A + uvT)x

= max
y �=0

min
xT x=1
xT y=0

xT
(
ATA + ATuvT + vuTA + v(uTu)vT

)
x.

Thus, taking y = v,

τ2
n−1 ≥ min

xT x=1
xT v=0

(xTATAx) ≥ min
xT x=1

(xTATAx) = σ2
n.

CONDITION NUMBER MINIMIZATION 93

Moreover,

τ2
n−1 ≤ max

v,y �=0
min

xT x=1
xT y=0

xT v=0

(xTATAx) ≤ max
y �=0
z �=0

min
xT x=1
xT y=0

xT z=0

(xTATAx) = σ2
n−2.

A similar result holds for each intermediate singular value τk, 1 < k < n. For the
extreme values τ1 and τn, one achieves only one-sided inequalities; thus τ1 ≥ σ2 and
0 ≤ τn ≤ σn−1. Using these last two inequalities gives (6.2).

Now we show that this bound can be attained. For A = D = diag(σ1, . . . , σn), we
proceed as in section 4: consider (D+uvT) with u and v having nonzero components
only in the first and last places, corresponding to the extreme singular values σ1, σn.
Then (D + uvT) is diagonal, with singular values σ2, . . . , σn−1, except for the 2 × 2
block (

d1 + u1v1 u1vn
unv1 dn + unvn

)
.

Notice that we want to choose u and v so the singular values of this 2×2 block are well
inside the interval [dn, d1]. Choosing u = v does not work, as a positive solution of
the analogue of (4.5) results in singular values outside this interval. Thus we need to
make the block nonsymmetric but simple enough that the singular values are readily

calculated. One approach is to make the block look like
(

a b
−b a

)
, whose (double)

singular values are (a2 + b2)1/2. For this to happen, we must have{
unv1 = −u1vn,
d1 + u1v1 = dn + unvn.

(6.3)

We have two constraints for four unknowns. One way to proceed is to let u1, un be
arbitrary, and then (6.3) gives

v1 =
−u1

u2
1 + u2

n

· (d1 − dn), vn =
un

u2
1 + u2

n

· (d1 − dn)(6.4)

and

a =
u2

1dn + u2
nd1

u2
1 + u2

n

, b =
u1un

u2
1 + u2

n

· (d1 − dn).(6.5)

Notice that the expression for a is a weighted average of d1 and dn and thus can
be made to equal any value in [dn, d1] by appropriate choice of u1, un.

Theorem 6.2. Let A be an n × n nonsymmetric matrix (n > 2) with singular
values σ1 ≥ · · · ≥ σn ≥ 0. Then

min
u,v

κ2(A + uvT) =
σ2

σn−1
.

Proof. To show that the bound (6.2) can be attained, use A’s singular value
decomposition A = UDV T , D = diag(σ1, . . . , σn). Then apply the above technique
for some value of τ∗, σn−1 ≤ τ∗ ≤ σ2. From (6.5) we have

u2
1 =

d2
1 − (τ∗)2

d2
1 − d2

n

, u2
n =

(τ∗)2 − d2
n

d2
1 − d2

n

,(6.6)

and v1, vn are given by (6.4). Notice that u2
1 + u2

n = 1.

94 CHEN GREIF AND JAMES M. VARAH

This gives (D + uvT) with singular values σ2, . . . , σn−1, and τ∗ (twice). Finally,

U(D + uvT)V T = A + (Uu)(V v)T = A + ũṽT

has minimal condition. Since the 2-norm is invariant under orthogonal transforma-
tions, the condition numbers of D + uvT and A + ũṽT are minimized at the same
time.

Notice that ũ and ṽ are linear combinations of the extreme singular vectors of
A. In our code we use τ∗ = σn/2 or σ(n+1)/2, the median singular value. Again
the solution is not unique. The rank-k case can be handled as a sequence of rank-1
modifications, as in previous sections.

Example 6.3. The 5 × 5 matrix

A =

⎛⎜⎜⎜⎜⎝
−0.1693 0.9417 −0.5721 −0.1761 0.3667
−0.3900 0.9802 0.2870 0.4891 −0.5749
0.7487 0.5777 −0.3599 −0.4641 0.6785
−0.9700 −0.1227 0.9202 −0.1202 0.2576
0.5359 −0.0034 0.4533 0.8668 −0.7325

⎞⎟⎟⎟⎟⎠
was generated randomly, and we sought to minimize the condition number of a rank-1
modification. The singular values of A are 1.8910, 1.5398, 1.4567, 0.6648, 0.1610. Using
our analytical observations and our strategy for choosing τ∗ to be the median singular
value, the resulting modified matrix has singular values 1.5398, 1.4567, 1.4567, 1.4567,
0.6648. By construction, then, we obtain three equal singular values. The optimal
condition number is 2.3163. Next, we use the MATLAB command fminsearch to find
a solution, and get the same minimal value, now with singular values 1.5446, 1.5446,
1.1185, 0.6648, 0.6647. Thus, the solution is indeed nonunique.

7. Example: Saddle point system preconditioning. Consider the numeri-
cal solution of a large and sparse saddle point linear system whose associated matrix
is

K =

(
A B
BT 0

)
,

where A is n × n and B is n × m, with m < n. Popular preconditioners have a
2 × 2 block diagonal structure, with their (1,1) block approximating the (1,1) block
of the original saddle point matrix, and their (2,2) block approximating the Schur
complement. Motivated by this, let us make a connection to the analysis presented
in the previous sections by considering the preconditioner

M =

(
A + V V T 0

0 ±BT (A + V V T)−1B

)
,

where V is n × k. The ± signs in front of the (2, 2) block suggest two options. It
makes sense to consider such a preconditioner if solving a system with A + V V T , a
rank-k modification of A, is significantly easier than solving for A. (Notice that A
could be singular even if K is not.) Thus, we could aim to select a rank-k matrix V
that minimizes the condition number of A + V V T .

This approach is computationally delicate for the following reasons. First, V is
dense in general, whereas the original saddle point matrix is assumed sparse. In terms
of storage, if we are to store V explicitly it will require nk entries. Note that A+V V T

CONDITION NUMBER MINIMIZATION 95

need not be stored explicitly when iterative solvers are used. If A has � nonzero entries
per row on average, then the storage requirements for the (1, 1) block increase from
n� for A to n(�+k) for A+V V T . In terms of computational cost, since a decisive cost
factor in the (implicit) inversion of the (1,1) block are matrix-vector products, the
overhead for the cost of multiplying a vector by A + V V T compared to multiplying
by A is the addition of two matrix-vector products with n × k matrices. In other
words, the overhead here is O(nk) floating point operations per iteration. Another
potential difficulty is the computation of V , which may be expensive to the extent of
dominating the cost of solution of the linear system. Here the observations in section
5 come to our aid, since Theorem 5.1 implies that computing V can be done inexactly
(likely at a substantially lower cost), while still obtaining a nearly optimal condition
number. Finally, to make this approach more practical, inexact inner iterations for
solving A + V V T could be applied throughout the iteration.

The sign in front of the (2, 2) block affects the structure of the preconditioned
eigenvalues as follows. If it is a positive sign, then the preconditioner is positive
definite. In this case the eigenvalues of the preconditioned matrix are real, and a
minimum residual solver employing short recurrence relations (such as MINRES) can
be applied. If, on the other hand, the sign in front of the (1, 1) block is negative,
then the preconditioner is no longer positive definite but its inertia is closer to the
inertia of the original saddle point matrix. Furthermore, it can be shown that at least
m+n−k of the eigenvalues of the preconditioned matrix are complex with unit norm.

Let ν be an eigenvalue of the preconditioned matrix M−1K, with associated
eigenvector (x, y), and denote

M = A + V V T .

Then (
A B
BT 0

)(
x
y

)
= ν

(
M 0
0 ±BTM−1B

)(
x
y

)
.

Since we are assuming that M−1K is nonsingular, we must have ν �= 0. Observing
that (

M 0
0 ±BTM−1B

)−1 (
A B
BT 0

)
=

(
M 0
0 ±BTM−1B

)−1 [(
M B
BT 0

)
−
(

V V T 0
0 0

)]
,

we now proceed as follows. If the positive sign in front of the (2, 2) block of M is
selected, it follows that the preconditioned matrix is a rank-k modification of a matrix
which by [7] has precisely three distinct nonzero eigenvalues: 1 and (1±

√
5)/2, with

algebraic multiplicities n−m, m, and m, respectively. Thus, for k < min(m,n−m),
M−1K has eigenvalues 1, (1±

√
5)/2 of algebraic multiplicities at least n−m−k, m−k,

and m − k, respectively. If, on the other hand, the negative sign is chosen, the
preconditioned matrix is a rank-k modification of a matrix with eigenvalues 1 and
1±ı

√
3

2 , with the same algebraic multiplicities as above. Here ı =
√
−1.

Substituting y = 1
ν (BTM−1B)−1BTx and defining x̃ = M1/2x, we have (ν2I −

νK−P)x̃ = 0, where K = M−1/2AM−1/2, P = P 2 = M−1/2B(BTM−1B)−1BTM−1/2

is an orthogonal projector. In our case

K = M−1/2AM−1/2 = M−1/2(M − V V T)M−1/2 = I −M−1/2V V TM−1/2 = I − Ṽ Ṽ T ,

96 CHEN GREIF AND JAMES M. VARAH

0 500 1000 1500
-1. 5

-1

-0. 5

0

0.5

1

1.5

2
cvxqp1

0 20 40 60 80 100 120
10

-10

10
 -9

10
 -8

10
 -7

10
 -6

10
 -5

10
 -4

10
 -3

10
 -2

10
 -1

10
0

cvxqp1

Fig. 7.1. Eigenvalues of the preconditioned matrix for cvxqp1 (on the left) and convergence of
preconditioned MINRES (on the right). The right-hand side vector b was generated by setting the
solution as a vector of constants, such that ‖b‖2 = 1.

where Ṽ = M−1/2V , and we can rewrite our quadratic eigenvalue problem as

((ν2 − ν)I + νṼ Ṽ T ∓ P)x̃ = 0.(7.1)

We can say more if A is symmetric positive semidefinite with nullity k. Let V be an
n×k orthogonal matrix representing the null-space of A. Since MV = (A+V V T)V =
V , it follows that the columns of V are eigenvectors of M with multiple eigenvalues
1. By the analysis of section 3, V is a minimizer for problem (2.1). Since MV = V
we have M1/2V = V , and hence Ṽ = V . Thus, (7.1) takes the form

((ν2 − ν)I + νV V T ∓ P)x̃ = 0.

We can thus express the eigenvalue problem in terms of an orthogonal projector onto
a space related to the range of B and the null vectors of A.

Example 7.1. We used the cvxqp1 matrix from the CUTEr test collection [4] in
its “raw” form, i.e., without taking into account the constraint settings in the context
of an optimization problem, for testing the preconditioning approach suggested in
this section. The matrix has a 1000 × 1000 (1,1) block, whose rank is 986. The size
of B is 1000 × 500. For this experiment, the matrix V contains the 14 eigenvectors
corresponding to the zero eigenvalues. We have applied the preconditioner with a
positive sign selected for its (2, 2) block. The eigenvalues of the preconditioned matrix
are given in Figure 7.1 on the left and validate the eigenvalue analysis of this section
and the algebraic multiplicities of the three clusters of eigenvalues. Convergence
graphs for MINRES are given in Figure 7.1 on the right.

Computing the null vectors exactly in this case would be costly and storing all
of them would require more storage than that required for the matrix of the linear
system. In practice adjustments such as inexpensive approximation of the null vectors
and inexact inversion of A + V V T have to be made. Nevertheless, the substantial
savings in iteration counts may indicate the viability of this approach.

8. Conclusions. We have considered the problem of minimizing the condition
number of a matrix that is subject to low rank modifications. For symmetric ma-
trices, the standard interlacing property of eigenvalues can be applied and for the
nonsymmetric case an analogous property of the singular values can be used. There

CONDITION NUMBER MINIMIZATION 97

is nonuniqueness, but a solution can be obtained using active eigenvectors or singular
vectors of the matrices, which correspond to extremal eigenvalues (in the symmetric
case) or singular values (nonsymmetric case). There is a large “flat spot” of values
that can be used to obtain the minimum. In the symmetric indefinite case the two
equations that need to be solved to find a possible minimizer are linear, even though
the general setting of the problem is nonlinear. For the nonsymmetric case there are
more degrees of freedom, and in fact we have four equations with two unknowns.
We exploited this freedom by computing the vectors using a particular shifted skew-
symmetric matrix for which the singular values are available analytically.

Acknowledgments. We are indebted to Michael Overton for many enjoyable
and fruitful discussions of the problem—before, after, and while he visited the Uni-
versity of British Columbia in summer 2005. Michael’s insightful comments and sug-
gestions for improving this manuscript are gratefully acknowledged. We are also
grateful to two very thorough referees for many constructive comments which helped
improve this manuscript.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge,
UK, 2003.

[2] D. Chu and M. Chu, Low rank update of singular values, Math. Comp., 75 (2006), pp. 1351–
1366.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[4] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr and SifDec: A constrained and uncon-
strained testing environment, revisited, ACM Trans. Math. Software, 29 (2003), pp. 373–394.

[5] A. Greenbaum and G. H. Rodrigue, Optimal preconditioners for a given sparsity pattern,
BIT, 29 (1990), pp. 610–634.

[6] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiagonal
eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172–191.

[7] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite
linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969–1972.

[8] M. L. Overton, Large-scale optimization of eigenvalues, SIAM J. Optim., 2 (1992), pp. 88–120.
[9] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK, 1965.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 98–116

SCHWARZ ITERATIONS FOR SYMMETRIC POSITIVE
SEMIDEFINITE PROBLEMS∗

REINHARD NABBEN† AND DANIEL B. SZYLD‡

Abstract. Convergence properties of additive and multiplicative Schwarz iterations for solving
linear systems of equations with a symmetric positive semidefinite matrix are analyzed. The analysis
presented applies to matrices whose principal submatrices are nonsingular, i.e., positive definite.
These matrices appear in discretizations of some elliptic partial differential equations, e.g., those
with Neumann or periodic boundary conditions.

Key words. linear systems, additive Schwarz, multiplicative Schwarz, domain decomposition
methods, symmetric positive semidefinite systems, singular matrices, comparison theorems, overlap,
coarse grid correction

AMS subject classifications. 65F10, 65F35, 65M55

DOI. 10.1137/050644203

1. Introduction. Domain decomposition methods, including additive and mul-
tiplicative Schwarz, are widely used for the numerical solution of partial differential
equations; see, e.g., [38], [41], [44]. Advantages of these methods include enhancement
of parallelism and a localized treatment. One can find algebraic descriptions of them,
e.g., in [14], [20], [47], especially for symmetric positive definite problems.

In this paper, we adopt the algebraic representation of additive and multiplicative
Schwarz developed in a series of papers [1], [18], [19], [34], [35], where analysis of
convergence and properties for several variants of the methods are provided, both for
symmetric positive definite and for nonsingular M -matrices. Recently, convergence
properties were studied for singular systems arising in the solution of Markov chains,
i.e., singular M -matrices with all principal submatrices being nonsingular [7], [32].
In particular, this theory applies to singular matrices with a one-dimensional null-
space, and to those representing irreducible Markov chains; see, e.g., [42]. We also
mention the recent work on multiplicative Schwarz iterations for positive semidefinite
operators [26], [28].

In this paper, we extend the theory to the symmetric positive semidefinite case,
with particular emphasis on the singular case (the analysis of the symmetric positive
definite case is known; see, e.g., [1], [21, Ch. 11], [41], [44]). We study in particular
the case when all principal submatrices are nonsingular, i.e., positive definite. This
situation arises in practice, e.g., in the discretization of certain elliptic differential
equations such as −Δu+ u = f with Neumann or periodic boundary conditions; see,
e.g., [5]. We show that in this case, the additive and multiplicative Schwarz itera-
tions are convergent and we characterize the convergence factor γ for such methods
(sections 4 and 5). We use the theory of matrix splittings (see section 3) to obtain
these convergence properties. We remark that we do not use splittings to produce new

∗Received by the editors November 3, 2005; accepted for publication (in revised form) by M.
Benzi June 9, 2006; published electronically December 21, 2006.

http://www.siam.org/journals/simax/29-1/64420.html
†Institute für Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany (nabben@

math.tu-berlin.de).
‡Department of Mathematics, Temple University (038-16), 1805 N. Broad St., Philadelphia, PA

19122-6094 (szyld@temple.edu). Supported in part by the U.S. National Science Foundation under
grant DMS-0207525, and by the U.S. Department of Energy under grant DE-FG02-05ER25672.

98

SCHWARZ FOR SEMIDEFINITE SYSTEMS 99

stationary iterative methods. What we do is recast the Schwarz iteration matrices as
coming from specific splittings, and we use this setup as an analytical tool to obtain
convergence results.

The convergence theory we develop implies that the corresponding preconditioned
matrices have zero as an isolated point in the spectrum. The rest of the spectrum is
contained in a circle centered at one with radius γ < 1. When considering additive and
multiplicative Schwarz preconditioners for singular systems, one needs to use Krylov
subspace methods which are sometimes tailored for this case; see, e.g., [17], [23], [39],
and the references given therein.

We believe that our purely algebraic approach is much simpler than that of [26],
[28], and in addition, it can be applied to problems which may not have a variational
formulation. Of course our approach is only valid for the finite dimensional case.
We also consider the case of inexact local solvers (section 6), and the influence of
the amount of overlap and the number of blocks in the convergence rate (sections 7
and 8). Finally, we study the convergence of two-level methods, i.e., methods where
a coarse grid correction is considered as well (section 9).

2. The algebraic representation and notation. We first briefly describe
the additive and multiplicative Schwarz methods and give some auxiliary results.
Additional notation and background are also given in the next section.

Let R(A) be the range of A. Consider the linear system in R
n of the form

(2.1) Ax = b, b ∈ R(A).

In this paper we consider the case where A is symmetric positive semidefinite, and we
denote this by A � O. We assume that every principal submatrix of A is nonsingular,
i.e., a symmetric positive definite matrix, and if Ai is such a submatrix, we denote
this by Ai � O. This situation occurs, for instance, when the null-space of A, N (A),
is unidimensional and any generator of it has no zero entries; cf. [5].

We consider p subspaces Vi, with dimVi = ni, i = 1, . . . , p, which are spanned by
columns of the identity I over R

n and such that
n∑

i=1

Vi = R
n =: V.(2.2)

Note that the subspaces Vi may overlap. Between the subspaces Vi and the space V
we consider the following mappings:

Ri : V → Vi, RT
i : Vi → V,

where rank(RT
i) = ni. Ri is called the restriction operator while RT

i is called the
prolongation operator. We also use the matrices

Pi = RT
i A

−1
i RiA = RT

i (RiART
i)−1RiA,

where Ai := RiART
i is a permutation of a principal submatrix of A, which because

of our assumption is nonsingular. Note that Pi is a projection.
With these projections the damped additive Schwarz method used as an iterative

method to solve (2.1) can be described as

xk+1 = xk + θ

p∑
i=1

RT
i A

−1
i Ri(b−Axk)(2.3)

=

(
I − θ

p∑
i=1

RT
i A

−1
i RiA

)
xk +

(
θ

p∑
i=1

RT
i A

−1
i Ri

)
b,

100 REINHARD NABBEN AND DANIEL B. SZYLD

where 0 < θ ≤ 1 is a damping parameter; see [8], [11], [12], [13], [20], [21, Ch. 11],
[41], [44]. The iteration matrix is then given by

TAS,θ = I − θ

p∑
i=1

RT
i A

−1
i RiA = I − θ

p∑
i=1

Pi,(2.4)

or, using the notation

M−1
AS =

p∑
i=1

RT
i A

−1
i Ri,(2.5)

then, the iteration matrix (2.4) can be written as

TAS,θ = I − θM−1
ASA.

Later on, in Theorem 4.2, we show that the matrix on the right-hand side in (2.5) is
nonsingular, and therefore it makes sense to denote it as M−1

AS . Furthermore, for each
θ > 0 one can define a splitting of A for which the iteration matrix is precisely (2.4).
One such splitting is A = 1

θMAS − (1
θMAS − A). When A is singular, such splitting

however is not unique; see [2].
Very often in practice the additive Schwarz method is used for preconditioning a

Krylov subspace method. In the symmetric cases considered here the method of choice
is the conjugate gradient method; for a study of this method for singular systems,
see [23]. While the matrix A may be singular, the preconditioning matrix M is usually
assumed to be symmetric positive definite. The additive Schwarz preconditioner is
M−1

AS and the preconditioned matrix is then

M−1
ASA =

p∑
i=1

Pi = I − TAS,1.

The multiplicative Schwarz method can be written as the iteration

xk+1 = TMSx
k + c, k = 0, 1, . . . ,(2.6)

with the iteration matrix

TMS = (I − Pp)(I − Pp−1) · · · (I − P1) =

1∏
i=p

(I − Pi),(2.7)

and a certain vector c. The corresponding preconditioned matrix in this case is I −
TMS .

Remark 2.1. Observe that for any vector y ∈ N (A), i.e., such that Ay = 0, one
has Ty = y for both iteration matrices T = TAS,θ of (2.4), or T = TMS of (2.7).
This implies in particular that we need to require in our iterations, such as (2.3), that
x0 /∈ N (A).

We outline our strategy to prove the convergence of the iterations (2.3) and (2.6).
We need to show that the powers of the iteration matrices (2.4) and (2.7) converge
to a limit; see Definition 3.1 below. One sufficient condition for this to hold is that
there is a splitting of A of the form A = M − N with M nonsingular such that
M−1N is the iteration matrix, and we show that this splitting is P -regular (see

SCHWARZ FOR SEMIDEFINITE SYSTEMS 101

Definition 3.3 below), which implies convergence; see Theorem 3.2 below. We also use
certain comparison theorems to relate the convergence of different versions of these
iterations. We present a context for these analytical tools in section 3. In the rest of
this section, we repeat the algebraic characterization of the Schwarz methods used,
e.g., in [1], which is the basis to produce the above-mentioned splittings.

As already mentioned, we assume that the rows of Ri are rows of the n×n identity
matrix I, e.g., of the form

Ri =

⎡⎣ 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎦ .

This restriction operator is often called a Boolean gather operator, while its transpose
RT

i is called a Boolean scatter operator. Formally, such a matrix Ri can be expressed
as

Ri = [Ii|O]πi(2.8)

with Ii the identity on R
ni and πi a permutation matrix on R

n. Then Ai is a sym-
metric permutation of an ni × ni principal submatrix of A. In fact, we can write

πiAπT
i =

[
Ai Ki

KT
i A¬i

]
,(2.9)

where A¬i is the principal submatrix of A “complementary” to Ai, i.e.,

A¬i = [O|I¬i] · πi ·A · πT
i · [O|I¬i]

T

with I¬i the identity on R
n−ni .

For each i = 1, . . . , p, we define

(2.10) Ei := RT
i Ri ∈ R

n×n.

These diagonal matrices have ones on the diagonal in every row where RT
i has nonze-

ros. We further need sets Si defined by

Si := {j ∈ {1, . . . , n} : (Ei)j,j = 1}.

Then

(2.11)

p⋃
i=1

Si = S = {1, 2, . . . , n};

i.e., each index is in at least one set Si. This is equivalent to saying that
∑p

i=1 Ei ≥
I, with equality if and only if there is no overlap. In other words, in the case of
overlapping subspaces, we have here that each diagonal entry of

∑p
i=1 Ei is greater

than or equal to one, which implies nonsingularity. Only in the rows corresponding
to overlap this matrix has an entry different from one.

For each i = 1, . . . , p, we construct a second set of matrices Mi ∈ R
n×n associated

with Ri from (2.8) as

(2.12) Mi = πT
i

[
Ai O
O D¬i

]
πi,

102 REINHARD NABBEN AND DANIEL B. SZYLD

where under our assumptions on A � O, we have that D¬i = diag(A¬i) � O, and
thus Mi is invertible.

With the definitions (2.10) and (2.12) we obtain the following equality which we
will use throughout the paper:

(2.13) EiM
−1
i A = RT

i A
−1
i RiA = Pi, i = 1, . . . , p.

3. Convergent matrices, splittings, and comparison theorems. In this
section we present some more definitions and results which we use in the rest of the
paper.

Definition 3.1. A matrix T is called convergent if limk→∞ T k exists. This is
equivalent to the following three conditions:

(1) ρ(T) ≤ 1.
(2) rank(I − T) = rank(I − T)2.
(3) If |λ| = 1 for an eigenvalue λ of T , then λ = 1.
Condition 2 states that the index of the matrix I − T is one, or in this case that

ind1T = 1 [3]. Several equivalent conditions can be found in [43]. One of them is the
following:

ind1T = 1 ⇔ R(I − T) ∩N (I − T) = {0},(3.1)

i.e., that the intersection of the range and the null-space of I − T is trivial.
If ρ(T) = 1 for a convergent matrix then the asymptotic rate of convergence is

given by

γ(T) := max{|λ| : λ ∈ σ(T), |λ| < 1}.(3.2)

When A is singular, and we have a nonsingular matrix M , and a convergent
matrix T such that A = M(I−T), then P = limk→∞ T k is a projection onto N (A) =
N (I−T). In fact P = I−(I−T)(I−T)D, where (I−T)D denote the Drazin inverse of
(I −T). Furthermore, if we let c = M−1b, and consider the iteration xk+1 = Txk + c,
x0 /∈ N (A) (cf. (2.3)), then limk→∞ xk = (I−T)Dc+(I−P)x0; see, e.g., [3, Ch. 7.6].

A useful result in the analysis of convergent iteration matrices is the following,
due to Keller [24].

Theorem 3.2. Let A be symmetric and let M be nonsingular such that M +
MT − A is positive definite. Then T = I −M−1A is convergent if and only if A is
positive semidefinite.

Note than when M is symmetric this theorem says that if 2M − A � O, then T
is convergent if and only if A � O.

Definition 3.3. A splitting A = M −N is called P -regular if M +MT −A � O
[36], and strong P -regular if in addition N � O [33].

With this definition, Theorem 3.2 indicates that a sufficient condition for con-
vergence of T is that A = M − N is a P -regular splitting of a positive semidefinite
matrix. Weaker sufficient conditions, and also necessary conditions not requiring the
nonsingularity of M , can be found in the recent paper [27].

The following result is a new sufficient condition for convergence, which we use
later in the paper.

Lemma 3.4. Let A be symmetric positive semidefinite and let A = M −N with
M symmetric positive definite. If

A
1
2M−1A

1
2 ≺ 2I,

then T = I −M−1A is convergent and A = M −N is a P -regular splitting.

SCHWARZ FOR SEMIDEFINITE SYSTEMS 103

Proof. We have A
1
2M−1A

1
2 ≺ 2I. Thus

σ(A
1
2M−1A

1
2) ⊂ [0, 2).

Since

σ(A
1
2M−1A

1
2) = σ(M−1A) = σ(AM−1) = σ(AM− 1

2M− 1
2) = σ(M− 1

2AM− 1
2),

we have that

2I −M− 1
2AM− 1

2 � 0.

Hence,

M
1
2 (2I −M− 1

2AM− 1
2)M

1
2 � 0

and therefore,

2M −A � 0;

i.e., we have a P -regular splitting. Using Theorem 3.2 we obtain that T = I −M−1A
is convergent.

The use of P -regular splittings as sufficient conditions for convergence of classical
stationary iterative methods for symmetric matrices mimics the use of regular or weak
regular splittings as sufficient conditions for the convergence of classical stationary
iterative methods for monotone matrices; see, e.g., the classic books [3], [37], [45].
In this case, the rate of convergence of the iterative method is given by the spectral
radius of the iteration matrix. Thus, the rate of convergence of two iterative methods
for monotone matrices can be compared by looking at the corresponding spectral
radii. Many comparison theorems using different hypothesis on the splittings have
appeared in the literature; see, e.g., [9], [10], [16], [29], [33], [45], [46], and other
references therein. When the iteration matrices have spectral radius equal to one, as
is usually the case for singular linear systems, the convergence rate is given by (3.2).
Comparison theorems for these can be found in [30], [31]. Here we present a new
comparison theorem, which we use in our context.

We first present the following result due to Weyl; see [22, Theorem 4.3.7]. Let
M � O, and denote its eigenvalues by λ1(M) ≥ λ2(M), . . . , λn(M) ≥ 0.

Proposition 3.5. Let M1 and M2 be two symmetric positive semidefinite ma-
trices. If M1 � M2 then λi(M1) ≥ λi(M2) for all i.

Of course, this proposition is valid when M is positive definite as well.
Theorem 3.6. Let A be symmetric positive semidefinite. Let M1 and M2 be

symmetric positive definite and let N1 := M1 −A and N2 := M2 −A. If

M−1
1 � M−1

2 ,

then

λi(M
−1
1 N1) ≤ λi(M

−1
2 N2)

for all i. If additionally N1 and N2 are positive semidefinite, then

γ(M−1
1 N1) ≤ γ(M−1

2 N2).

104 REINHARD NABBEN AND DANIEL B. SZYLD

Proof. We first note that

σ(M−1
k A) = σ(M−1

k A
1
2A

1
2) = σ(A

1
2M−1

k A
1
2), k = 1, 2.

With Proposition 3.5 we obtain for each i that

λi(M
−1
1 A) = λi(A

1
2M−1

1 A
1
2) ≥ λi(A

1
2M−1

2 A
1
2) = λi(M

−1
2 A).(3.3)

Since M−1
k Nk = I −M−1

k A, k = 1, 2, (3.3) indicates that for each i,

λi(M
−1
1 N1) ≤ λi(M

−1
2 N2).

If N1 and N2 are positive semidefinite then all eigenvalues of M−1
1 N1 and M−1

2 N2 are
nonnegative, and therefore

γ(M−1
1 N1) ≤ γ(M−1

2 N2).

4. Convergence of additive Schwarz. We begin with an auxiliary result, the
proof of which follows by a straightforward calculation.

Lemma 4.1. Let A be symmetric positive semidefinite. Then

A
1
2RT

i (RiART
i)−1RiA

1
2

is an orthogonal projection. Thus, I − A
1
2RT

i (RiART
i)−1RiA

1
2 is also an orthogonal

projection and as a consequence

A
1
2RT

i (RiART
i)−1RiA

1
2 � I,(4.1)

and

σ(A
1
2RT

i (RiART
i)−1RiA

1
2) = {0, 1}.

Theorem 4.2. Let A be symmetric positive semidefinite such that each principal
submatrix is positive definite. Let b ∈ R(A) and x0 /∈ N (A). If 0 < θ < 2/p, then the
additive Schwarz iteration defined by (2.4) is convergent and the splitting defined by
M = 1

θMAS is P -regular.
Proof. First, as is done in [21] for the nonsingular case, we prove that the matrix

p∑
i=1

RT
i (RiAR

T
i)−1Ri

is nonsingular. To that end, let the vector x be such that

p∑
i=1

RT
i (RiART

i)−1Rix = 0.

Hence

xT

p∑
i=1

RT
i (RiAR

T
i)−1Rix = 0,

and thus

p∑
i=1

(A
− 1

2
i Rix)TA

− 1
2

i Rix =

p∑
i=1

||A− 1
2

i Rix||22 = 0,

SCHWARZ FOR SEMIDEFINITE SYSTEMS 105

which implies Rix = 0 for i = 1, . . . , p. By our assumption (2.2) this implies that
x = 0.

Using Lemma 4.1 we have that (4.1) holds. Summing up, we have

A
1
2

(
p∑

i=1

RT
i (RiART

i)−1Ri

)
A

1
2 � pI,(4.2)

and since θ < 2/p, we have A
1
2 θM−1

ASA
1
2 ≺ 2I. We can now use Lemma 3.4, and this

completes the proof.
As is done in [21, Ch. 11.2.4] in the symmetric positive definite case, a careful

look at the sum in (4.2) indicates that we can replace the number of subdomains p

with the number of colors q of the graph of A. Thus A
1
2M−1

ASA
1
2 ≺ qI, and if θ < 2/q,

we have convergence.
Remark 4.3. If we further restrict the value of the damping parameter to θ < 1/p

(or θ < 1/q), we have that the splitting defined by 1
θMAS is strong P -regular. This

follows since in this case A
1
2 θM−1

ASA
1
2 ≺ I, which implies 1

θMAS � A.
We note that the result in Theorem 4.2 applies in particular to the symmetric

positive definite case. Thus, in our formulation we have doubled the interval of ad-
missible damping factors for convergence of the damped additive Schwarz method,
since the usual restriction is that θ < 1/q; see [18], [21, Ch. 11.2.4]. We mention also
that simple examples show that this method may not be convergent for θ = 1.

From Theorem 4.2 it follows that the only eigenvalue of T in the unit circle is
λ = 1, and since we showed that MAS is nonsingular, the corresponding eigenvector is
a generator of the one-dimensional N (A). It follows then (see, e.g., [22, section 4.2]),
that the convergence factor (3.2) of the additive Schwarz iteration can be characterized
as

γ(TAS,θ) = max
z⊥N(A)

zT z=1

zTTAS,θz

= max
z⊥N(A)
(z,z)=1

(
1 − θ

p∑
i=1

(RT
i A

−1
i Riz,Az)

)

= 1 − θ

(
min

z⊥N(A)
(z,z)=1

p∑
i=1

(RT
i A

−1
i Riz,Az)

)
.(4.3)

We note that on the subspace N (A)⊥, the matrix A is positive definite. Let us call
Â = A|N (A)⊥ , and we can thus replace A with Â in (4.3). Furthermore, since Â1/2 is

invertible, we can write w = Â1/2z, and write (4.3) as

γ(TAS,θ) = 1 − θ

⎛⎝ min
Â−1/2w⊥N(A)

(w,Â−1w)=1

p∑
i=1

wT Â−1/2RT
i A

−1
i RiÂ

1/2w

⎞⎠ .(4.4)

We point out that the characterization (4.4) is also valid for the case of A symmetric
positive definite, in which case we have Â = A.

5. Convergence of multiplicative Schwarz. We begin with an important
auxiliary result.

Lemma 5.1. Let A be a symmetric positive semidefinite matrix such that each
principal submatrix is positive definite. Let x, y ∈ R

n, such that

(5.1) y = (I − EiM
−1
i A)x,

106 REINHARD NABBEN AND DANIEL B. SZYLD

where Ei is defined in (2.10) and Mi in (2.12). Then the following holds:

(5.2) yTAy − xTAx = −(y − x)TEiAEi(y − x) ≤ 0.

Proof. Consider x = πT
i (xT

1 , x
T
2)T and y = πT

i (yT1 , y
T
2)T , with x1, y1 ∈ R

ni .
Further, from (2.10) and (2.8) we have that

(5.3) Ei = πT
i

[
Ii O
O O

]
πi.

Consider now (5.1), whence we immediately have that

(5.4) y2 = x2,

and using (2.12) and (2.9), we also get

(5.5) Aiy1 = −A12x2,

where here we use the notation A12 = Ki, and similarly A21 = KT
i = AT

12. Using
these identities we write

yTAy − xTAx = (yT1 , y
T
2)πiAπT

i (yT1 , y
T
2)T − (xT

1 , x
T
2)πiAπT

i (xT
1 , x

T
2)T

= yT1 Aiy1 + yT2 A21y1 + yT1 A12y2 − xT
1 Aix1 − xT

2 A21x1 − xT
1 A12x2

= xT
2 A21(y1 − x1) + (yT1 − xT

1)A12x2 + yT1 Aiy1 − xT
1 Aix1

= −yT1 Ai(y1 − x1) − (yT1 − xT
1)Aiy1 + yT1 Aiy1 − xT

1 Aix1

= −(yT1 − xT
1)Ai(y1 − x1) = −(y − x)TEiAEi(y − x),

where the last equality follows from the identity

EiAEi = πT
i

[
Ai O
O O

]
πi.

Since A � O, EiAEi is semidefinite as well, and the right-hand side of (5.2) is non-
positive.

Theorem 5.2. Let A be a symmetric positive semidefinite matrix such that each
principal submatrix is positive definite. Let b ∈ R(A) and x0 /∈ N (A). Then the
multiplicative Schwarz iteration defined by (2.6) is convergent.

Proof. We need to prove that the iteration matrix T = TMS is convergent; i.e.,
we need to prove conditions (1), (2), and (3) of Definition 3.1.

(1) Starting with z = x(1) /∈ N (A), let x(i+1) = (I−Pi)x
(i). Thus x(p+1) = Tx(1).

Using (5.2) repeatedly, and canceling terms, we obtain

zTTTATz − zTAz = −
p∑

i=1

(x(i+1) − x(i))TEiAEi(x
(i+1) − x(i))

= −
p∑

i=1

((x(i+1) − x(i))TEi)EiAEi(Ei(x
(i+1) − x(i))).(5.6)

Since EiAEi is positive definite it follows that the right-hand side of (5.6) is nonpos-
itive. However, the right-hand side is zero if and only if

Ei(x
(i+1) − x(i)) = 0 for all i, i = 1, . . . , p.

SCHWARZ FOR SEMIDEFINITE SYSTEMS 107

The other n− ni components of x(i+1) − x(i) are also zero using the same argument
as in Lemma 5.1 to obtain (5.4). But this implies x(p+1) = x(i+1) = x(i) = x(1),
i = 1, . . . , p. Thus x(1) must be a common fixed point of (I − Pi) for all i = 1, . . . , p.
However, the fixed points of the projections (I −Pi) are just the vectors z ∈ R

n with
Eiz = 0. Since

∑p
i=1 Ei ≥ I there is no such common nonzero fixed point. Hence the

right-hand side of (5.6) must be negative, and we obtain

zTTTATz − zTAz < 0.

Thus we have that for all λ ∈ σ(T) with corresponding eigenvector y /∈ N (A)

λ2yTAy − yTAy < 0.(5.7)

Hence λ2 − 1 < 0. Thus

|λ| < 1.

If λ ∈ σ(T) but the corresponding eigenvector y ∈ N (A), we easily obtain from the
definition of T that λ = 1. Hence, ρ(T) ≤ 1.

(2) By (3.1), it suffices to prove that N (I − T) ∩R(I − T) = {0}. Here we have
that N (A) = N (I − T). This holds since y /∈ N (A) implies Ty = y by part (1),
i.e., y /∈ N (I − T). On the other hand y ∈ N (A) implies y ∈ N (I − T), using the
definition of T ; cf. Remark 2.1. Hence, we need to prove that

N (A) ∩R(I − T) = {0}.(5.8)

Let x ∈ N (A)∩R(I−T). Then there exists a y with (I−T)y = x, i.e., y = Ty+x.
Since x ∈ N (A) we obtain

A(I − T)y = Ax = 0, and thus yTAy − yTATy = 0.

Using y = Ty + x we get

yTAy − yTTTATy + xTATy = yTAy − yTTTATy = 0.

Part (1) of this proof now implies y ∈ N (A); cf. (5.7). Therefore, by Remark 2.1,
x = (I − T)y = 0, which completes this part of the proof.

(3) As proved above we have λ < 1 for all λ ∈ σ(T) with corresponding eigenvector
y /∈ N (A). Thus if |λ| = 1 for some eigenvalue λ of T then the corresponding
eigenvector y must be in the null-space of A. Hence Ay = 0. But then Ty = y and
thus λ = 1.

We mention that we need to prove explicitly (5.8) since we do not have an explicit
representation of a nonsingular matrix MMS such that M−1

MSA = I − TMS . The
existence of such a matrix, i.e., of a splitting induced by TMS [2] is only obtained
after the theorem is proved. Any splitting induced by such a matrix MMS is thus
P -regular.

We also comment on the fact that in some cases one may want to have a symmetric
operator, and in such a case, the natural multiplicative operator is

(5.9) TSMS = (I − P1)(I − P2) · · · (I − Pp−1)(I − Pp)(I − Pp−1) · · · (I − P1).

It follows that Theorem 6.1 applies to this case as well, and that a posteriori,
there exists a nonsingular matrix MSMS such that M−1

SMSA = I − TSMS . We can
characterize the convergence factor (3.2) of this symmetric multiplicative Schwarz
iteration as

γ =γ(TSMS) = max
z⊥N(A)

zT z=1

(z, TSMSz).(5.10)

108 REINHARD NABBEN AND DANIEL B. SZYLD

6. Inexact local solvers. In this section we study the effect of varying how
exactly (or inexactly) the local problems are solved. The convergence of these very
practical versions of the methods is based on the same ideas used to prove that of the
standard Schwarz iterations in sections 4 and 5. The influence of different levels of
inexactness is analyzed using our comparison theorem, Theorem 3.6.

Very often in practice, instead of solving the local problems Aiyi = zi exactly,
such linear systems are approximated by Ã−1

i zi, where Ãi is an approximation of Ai;
see, e.g., [6], [41], [44]. The expression Ã−1

i zi often represents an approximation to
the solution of the system Aizi = vi using some steps of an (inner) iterative method.
By replacing Ai with Ãi in (2.4) one obtains the damped additive Schwarz iterations
with inexact local solvers, and its iteration matrix is then

(6.1) T̃AS,θ = I − θ

p∑
i=1

RT
i Ã

−1
i RiA.

The iteration matrices TAS,θ and T̃AS,θ in (2.4) and (6.1) are induced by splittings

A = Mθ −Nθ and A = M̃θ − Ñθ where

M−1
θ = θ

p∑
i=1

RT
i A

−1
i Ri = θ

p∑
i=1

EiM
−1
i � O,(6.2)

M̃−1
θ = θ

p∑
i=1

RT
i Ã

−1
i Ri = θ

p∑
i=1

EiM̃
−1
i � O.(6.3)

Here

(6.4) M̃i = πT
i

[
Ãi O
O D¬i

]
πi, and thus M̃−1

i = πT
i

[
Ã−1

i O
O D−1

¬i

]
πi.

The fact that the matrix (6.3) is nonsingular follows in the same manner as in the
proof that (6.2) is nonsingular in Theorem 4.2.

In the case considered in this paper we assume, as is generally done (see, e.g., [21,
Ch. 11.2.4]), that the inexact local solvers correspond to symmetric positive definite
matrices and satisfy

(6.5) Ãi � Ai.

For examples of splittings for which the inequality (6.5) holds, see, e.g., [33]. A
situation worth mentioning where (6.5) holds is when Ai is semidefinite and the inexact
local solver is definite. This process is usually called regularization; see, e.g., [15], [25].

Theorem 6.1. Let A be a symmetric positive semidefinite matrix such that each
principal submatrix is positive definite. Let b ∈ R(A) and x0 /∈ N (A). Let Ãi and
Āi be inexact local solvers of Ai satisfying Ãi � Āi � Ai. Let T̄AS,θ be obtained by

replacing Ãi by Āi in (6.1), i = 1, . . . , p. Let the damping factor 0 < θ < 2/p. Then
the inexact additive Schwarz iterations defined by (6.1) and T̄AS,θ are convergent, and
the splittings induced by these iteration matrices are P -regular. With the stronger
hypothesis that 0 < θ < 1/p, we also have that γ(TAS,θ) ≤ γ(T̄AS,θ) ≤ γ(T̃AS,θ), and
the splittings induced by these iteration matrices are strongly P -regular.

Proof. Since Ãi � Ai we have

(6.6) Ã−1
i � A−1

i ,

SCHWARZ FOR SEMIDEFINITE SYSTEMS 109

and thus, using Lemma 4.1

A
1
2RT

i Ã
−1
i RiA

1
2 � A

1
2RT

i A
−1
i RiA

1
2 � I.

Similar inequalities are obtained with Āi. The rest of the convergence proof proceeds
in the same manner as that of Theorem 4.2.

Consider the matrices (6.2) and (6.3) which are symmetric positive definite using
Mi as in (2.12) and M̃i as in (6.4). From (6.6), we have that M−1

θ � M̃−1
θ � O. This

implies Mθ � M̃θ and Nθ � Ñθ. By Remark 4.3, we have that Nθ � O, i.e., that the
splittings are strong P -regular. The same results are obtained in the case of Āi. The
theorem follows from Theorem 3.6.

As was the case with Theorem 4.2, we can replace p in the restriction on the
damping parameter with q, the number of colors; i.e., we guarantee convergence of
additive Schwarz with inexact local solvers for θ < 2/q. Since Theorem 6.1 applies in
particular to the symmetric positive definite case, we have again double the interval
of admissible damping factors for the additive Schwarz iteration with inexact local
solvers; cf. [1].

Remark 6.2. An alternative proof of the second part of Theorem 6.1 can be
obtained by considering the two convergence factors, γ(TAS,θ) given by (4.4) for the
exact case, and the second given by

γ(T̃AS,θ) = 1 − θ

⎛⎝ min
Â−1/2w⊥N(A)

(w,Â−1w)=1

p∑
0=1

wT Â−1/2RT
i Ã

−1
i RiÂ

1/2w

⎞⎠(6.7)

for the inexact case. Since σ(Â−1/2RT
i A

−1
i RiÂ

1/2) = {0} ∪ σ(A−1
i) and σ(Â−1/2RT

i

Ã−1
i RiÂ

1/2) = {0} ∪ σ(Ã−1
i), and since −Ã−1

i � −A−1
i , we have that

−wT Â−1/2RT
i Ã

−1
i RiÂ

1/2w ≥ − wT Â−1/2RT
i A

−1
i RiÂ

1/2w, i = 1, . . . , p,

which implies that γ(T̃AS,θ) ≥ γ(TAS,θ).
For simplicity, in Theorem 6.1, we assumed that the inexact versions use the same

damping parameter θ. It is evident from the proofs that if the damping parameter
for the inexact version is smaller, say, θ̃ < θ, the same conclusions hold.

The implication of Theorem 6.1 is that by replacing the local solvers Ai with the
approximate counterparts Ãi, the additive Schwarz iteration is expected to take more
iterations. In practice, a solve with Ãi should be sufficiently less expensive so that
the overall method is cheaper.

Next we consider the multiplicative Schwarz method with inexact local solvers on
the subdomains. Here we assume that the approximations Ãi satisfy

Ãi + ÃT
i −Ai � 0.(6.8)

This assumption implies that

Ai = Ãi − (Ãi −Ai) are P -regular splittings.

Using (6.4), the inexact multiplicative Schwarz iteration matrix is given by

(6.9) T̃ = (I − EpM̃
−1
p A)(I − Ep−1M̃

−1
p−1A) · · · (I − E1M̃

−1
1 A).

110 REINHARD NABBEN AND DANIEL B. SZYLD

Lemma 6.3. Let A be a symmetric positive semidefinite matrix. Let x, y ∈ R
n

such that y = (I − EiM̃
−1
i A)x, where M̃i is defined in (6.4) with Ãi satisfying (6.8).

Then the following identity holds:

(6.10) −(y − x)TEi(M̃
T
i + M̃i −A)Ei(y − x) ≤ 0.

Proof. The proof proceeds as that of Lemma 5.1. We have that (5.4) holds, but
instead of (5.5) we have Ãiy1 = (Ãi −Ai)x1 −A12x2. We then obtain

yTAy − xTAx = xT
2 A21(y1 − x1) + (yT1 − xT

1)A12x2 + yT1 Aiy1 − xT
1 Aix1

= (xT
1 (Ãi −Ai)

T − yT1 Ã
T
i)(y1 − x1)

+ (yT1 − xT
1)((Ãi −Ai)x1 − Ãiy1) + yT1 Aiy1 − xT

1 Aix1

= (−xT
1 Ai − (yT1 − xT

1)ÃT
i)(y1 − x1)

+ (yT1 − xT
1)(−Aix1 − Ãi(y1 − x1)) + yT1 Aiy1 − xT

1 Aix1

= − (yT1 − xT
1)(Ãi + ÃT

i −Ai)(y1 − x1)

= − (y − x)TEi(M̃
T
i + M̃i −A)Ei(y − x) ≤ 0,

where the last inequality follows from (6.8) and the form of the matrices M̃i in
(6.4).

Theorem 6.4. Let A be a symmetric positive semidefinite matrix such that each
principal submatrix is positive definite. Let b ∈ R(A) and x0 /∈ N (A). Then the
multiplicative Schwarz iteration with iteration matrix (6.9) with M̃i defined in (6.4)
and with inexact local solvers satisfying (6.8) converges to the solution of Ax = b.

Proof. We need to prove that the iteration matrix T̃ is convergent; i.e., we need
to prove conditions (1), (2), and (3) of Definition 3.1. The proof is similar to the
proof of Theorem 5.2. The only difference appears in proving condition (1). Here we
use Lemma 6.3 and obtain

zT T̃TAT̃z − zTAz < 0

for all z /∈ N (A), and the rest of the proof follows.
A symmetric version of multiplicative Schwarz with inexact local solvers can also

be constructed in a way similar to (5.9), and its convergence factor can be character-
ized in a way similar to (5.10).

We mention that a comparison analogous to that of the second part of Theorem 6.1
is not valid for multiplicative Schwarz, not even in the definite case. A counterexample
can be found in [40].

7. Varying the amount of overlap. We study here how varying the amount
of overlap between subblocks (subdomains) influences the convergence rate of additive
Schwarz.

Let us consider two sets of subblocks (subdomains) of the matrix A, as defined
by the sets (2.11), such that one has more overlap than the other; i.e., let

(7.1) Ŝi ⊇ Si, i = 1, . . . , p,

with
⋃p

i=1 Ŝi =
⋃p

i=1 Si = S. Of course, each set Ŝi defines an n̂i × n matrix R̂i,

where n̂i is the cardinality of Ŝi, and the corresponding n× n matrix Êi = R̂T
i R̂i, as

in (2.10). The relation (7.1) implies that

(7.2) I � Êi � Ei � O.

SCHWARZ FOR SEMIDEFINITE SYSTEMS 111

Similarly, if π̂i is such that R̂i = [Ii|O] π̂i, with Ii the identity in R
n̂i , we denote by

Âi the corresponding principal submatrix of A, i.e.,

Âi = R̂iAR̂T
i = [Ii|O] · π̂i ·A · π̂T

i · [Ii|O]T ,

and, as in (2.12) define

(7.3) M̂i = π̂T
i

[
Âi O

O D̂¬i

]
π̂i,

where D̂¬i = diag(Â¬i) � O, and Â¬i is the (n − n̂i) × (n − n̂i) complementary
principal submatrix of A as in (2.9). As in (2.13), we have here also the fundamental
identity

ÊiM̂
−1
i = R̂T

i Â
−1
i R̂i, i = 1, . . . , n.

We want to compare M̂i with Mi, although Âi and Ai are of different size. Without
loss of generality, we can assume that the permutations πi and π̂i coincide on the set
Si, and that the indexes in Si are the first ni elements in Ŝi. In fact, we can assume
that π̂i = πi. Thus, Ai is a principal submatrix of Âi, and M̂i has the same diagonal
as Mi.

We will apply to these the following result for symmetric positive definite matrices
which can be found, e.g., in [21].

Lemma 7.1. Let A be a symmetric positive definite matrix and the form of the
matrices M̃i in (6.4). Let A be a symmetric positive definite matrix, and Ai = RiART

i ,
Ri a restriction operator, so that Ai is a principal submatrix of A. Then RT

i A
−1
i Ri �

A−1.
We consider the case of damped additive Schwarz with iteration matrix (2.4), and

the iteration matrix corresponding to the larger overlap is

(7.4) T̂AS,θ = I − θ

p∑
i=1

R̂T
i Â

−1
i R̂iA.

Theorem 7.2. Let A be a symmetric positive semidefinite matrix such that each
principal submatrix is positive definite. Let b ∈ R(A) and x0 /∈ N (A). Consider two
sets of subblocks of A defined by (7.1), and the two corresponding additive Schwarz
iterations (2.4) and (7.4). Let the damping factor θ ≤ 1/p, which implies in particular
that the additive Schwarz methods are convergent. Then, γ(T̂θ) ≤ γ(Tθ).

Proof. As mentioned above assume that all the principal submatrices of A of
order less than n are nonsingular. Let Qi = EiM

−1
i = RT

i A
−1
i Ri and Q̂i = ÊiM̂

−1
i =

R̂T
i Â

−1
i R̂i. Since Ai is a principal submatrix of Âi, by Lemma 7.1 we have that

Q̂i � Qi. Therefore,

M̂−1
θ = θ

p∑
i=1

Q̂i � θ

p∑
i=1

Qi = M−1
θ � O.

As shown in Remark 4.3, these splittings are strong P -regular, and the theorem follows
from Theorem 3.6.

We note that an alternative proof similar to that in Remark 6.2 can be applied
here, using the relation R̂T

i Â
−1
i R̂i = Q̂i � Qi = RT

i A
−1
i Ri just proved.

112 REINHARD NABBEN AND DANIEL B. SZYLD

Theorem 7.2 indicates that the more overlap there is, the faster the convergence
of the algebraic additive Schwarz method. As a special case, we have that overlap is
better than no overlap. This is consistent with the analysis for grid-based methods;
see, e.g., [4], [41]. Of course, the faster convergence rate brings an associated increased
cost of the local solvers, since now they have matrices of larger dimension and more
nonzeros. In the cited references a small amount of overlap is recommended, and the
increase in cost is usually offset by faster convergence.

We should mention that with an increase of overlap, the number of colors of the
graph may decrease, so that the damping factor may need to be revised. In all cases,
the maximum restriction is θ < 1/p.

A comparison analogous to that of Theorem 7.2 is not valid for multiplicative
Schwarz, not even in the definite case. A counterexample can be found in [40].

8. Varying the number of blocks. We address here the following question:
If we partition a block into smaller blocks, how is the convergence of the Schwarz
method affected? We show that for the additive Schwarz method the more subblocks
(subdomains), the slower the convergence. In a limiting case, if we have a single
variable in each block and there is no overlap, this is the classic Jacobi method, and
our results indicate that this has asymptotically slower convergence than any sets of
blocks for additive Schwarz.

As in the situations described in sections 6 and 7, the slower convergence may
be partially compensated by less expensive local solvers, since they are of smaller
dimension.

Formally, consider each block of variables Si partitioned into ki subblocks; i.e.,
we have

(8.1) Sij ⊂ Si, j = 1, . . . , ki,⋃ki

j=1 Sij = Si, and Sij ∩ Sik = ∅ if j = k. Each set Sij has associated matrices Rij

and Eij = RT
ij
Rij . Since we have a partition,

(8.2) Eij � Ei, j = 1, . . . , ki, and

ki∑
j=1

Eij = Ei, i = 1, . . . , p.

We define the matrices Aij = RijART
ij

, and Mij corresponding to the set Sij in the

manner already familiar to the reader (see, e.g., (7.3)), so that

EijM
−1
ij

= RT
ijA

−1
ij

Rij , j = 1, . . . , ki, i = 1, . . . , p.

Given a fixed damping parameter θ, the iteration matrix of the refined partition is
then

(8.3) T̄θ = I − θ

p∑
i=1

ki∑
j=1

EijM
−1
ij

A

(cf. (2.4)), and an induced strong P -splitting (assuming the proper restriction on θ)
A = M̄θ − N̄θ is given by

M̄−1
θ = θ

p∑
i=1

ki∑
j=1

EijM
−1
ij

.

SCHWARZ FOR SEMIDEFINITE SYSTEMS 113

Theorem 8.1. Let A be a symmetric positive semidefinite matrix such that each
principal submatrix is positive definite. Let b ∈ R(A) and x0 /∈ N (A). Consider
two sets of subblocks of A defined by (2.11) and (8.1), respectively, and the two cor-
responding additive Schwarz iterations defined by (2.4) and (8.3). Let k = maxi ki,
and let the damping factors be θ ≤ 1/p, and θ̄ = θ/k ≤ 1/(kp). This implies that in
particular the additive Schwarz methods are convergent. Then, γ(Tθ) ≤ γ(T̄θ̄).

Proof. As in the proof of Theorem 7.2 we have, using Lemma 7.1, that

Qij = EijM
−1
ij

� Qi = EiM
−1
i .

Therefore,
∑ki

j=1 Qij � kiQi, and

M̄−1
θ = θ

p∑
i=1

ki∑
j=1

Qij � kθ

p∑
i=1

Qi = kM−1
θ ,

which is equivalent to M̄−1
θ̄

= (1/k)M̄−1
θ � M−1

θ . The theorem now follows using
Theorem 3.6 and the fact that these are strong P -regular splittings, as shown in
Remark 4.3.

As in the previous sections a comparison analogous to that of Theorem 8.1 is not
valid for multiplicative Schwarz, not even in the definite case. Again, a counterexam-
ple can be found in [40].

9. Two-level schemes. We consider now two-level schemes, i.e., those in which
an additional step is taken, corresponding to a coarse grid correction. In the non-
singular case, this additional step makes Schwarz methods optimal in the sense that
the condition number of the preconditioned matrix M−1A is independent of the mesh
size; see, e.g., [38], [41], [44]. In our setting, for the coarse grid correction consider an
additional subspace V0 of V , and the corresponding projection P0 = RT

0 A
−1
0 R0A =

RT
0 (R0AR

T
0)−1R0A. There are several cases we consider here: additive Schwarz with

coarse grid correction, with iteration matrix given by

TASc,θ = TAS,θ − θRT
0 A

−1
0 R0A = I − θ

p∑
i=0

RT
i A

−1
i RiA = I − θ

p∑
i=0

Pi;(9.1)

multiplicative Schwarz with coarse grid correction, with iteration matrix given by

TMSc = TMS(I − P0) =

0∏
i=p

(I − Pi),

or in the symmetrized case by TSMSc = (I−P0)TSMS(I−P0); multiplicative Schwarz
additively corrected, known as the two-level hybrid I Schwarz method, with iteration
matrix given by

HI,θ = I − θP0 − θ(I − TMS) = I − θ(G0 + M−1
MS)A,

where G0 = RT
0 A

−1
0 R0; and the two-level hybrid II Schwarz method, which is additive

Schwarz multiplicatively corrected, with iteration matrix given by

HII,θ = TAS,θ(I − P0).

We begin our analysis with the additive Schwarz iteration with coarse grid cor-
rection. By comparing the iteration matrices in (9.1) and (2.4), one can see that

114 REINHARD NABBEN AND DANIEL B. SZYLD

Theorem 4.2 is valid in this case as well, with the exception that the damping factor θ
needs to be less than 2/(p+1). Therefore we have that the matrix TASc,θ is a conver-
gent matrix, and that the induced splitting defined by M−1

ASc,θ = θ
∑p

i=0 R
T
i A

−1
i Ri is

P -regular. We can also show that coarse grid correction does not increase (and may
decrease) the convergence factor of the iterations.

Theorem 9.1. Let A be a symmetric positive semidefinite matrix such that each
principal submatrix is positive definite. Then γ(TASc,θ) ≤ γ(TAS,θ).

Proof. We use the fact that G0 = RT
0 A

−1
0 R0 � 0 to conclude that

M−1
ASc,θ = θ(M−1

AS + G0) � θM−1
AS .

The theorem now follows by the application of Theorem 3.6.
A characterization similar to (4.4) applies to this two-level method, with one more

term in the sum. Thus, an alternative proof of this theorem using this characterization
can be done in a manner similar to that in Remark 6.2.

Next, we consider the multiplicative Schwarz iterations with coarse grid correc-
tion. It is not hard to see that Theorem 5.2 applies to this case as well, so that TMSc

and TSMSc are convergent.
We conclude by mentioning that the coarse grid corrections can be applied to the

methods with inexact solvers described in section 6 as well, and since the analysis is
very similar, we do not repeat it.

Acknowledgments. We thank Michele Benzi and the referees for their com-
ments on an earlier version of this paper, which helped improve our presentation.

REFERENCES

[1] M. Benzi, A. Frommer, R. Nabben, and D. B. Szyld, Algebraic theory of multiplicative
Schwarz methods, Numer. Math., 89 (2001), pp. 605–639.

[2] M. Benzi and D. B. Szyld, Existence and uniqueness of splittings for stationary iterative
methods with applications to alternating methods, Numer. Math., 76 (1997), pp. 309–321.

[3] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics
Appl. Math. 9, SIAM, Philadelphia, 1994.

[4] P. E. Bjørstad and O. B. Widlund, To overlap or not to overlap: A note on a domain
decomposition method for elliptic problems, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 1053–1061.

[5] P. Bochev and R. B. Lehoucq, On the finite element solution of the pure Neumann problem,
SIAM Rev., 47 (2005), pp. 50–66.

[6] J. H. Bramble, J. E. Pasciak, and A. T. Vassilev, Analysis of non-overlapping domain
decomposition algorithms with inexact solves, Math. Comp., 67 (1998), pp. 1–19.

[7] R. Bru, F. Pedroche, and D. B. Szyld, Additive Schwarz iterations for Markov chains,
SIAM J. Matrix Anal. Appl., 27 (2005), pp. 445–458.

[8] T. F. Chan and T. P. Mathew, Domain decomposition algorithms, in Acta Numerica 1994,
Acta Numer., Cambridge University Press, Cambridge, UK, 1994, pp. 61–143.

[9] J.-J. Climent and C. Perea, Some comparison theorems for weak nonnegative splittings of
bounded operators, Linear Algebra Appl., 275–276 (1998), pp. 77–106.

[10] G. Csordas and R. S. Varga, Comparisons of regular splittings of matrices, Numer. Math.,
44 (1984), pp. 23–35.

[11] M. Dryja, An additive Schwarz algorithm for two- and three-dimensional finite element prob-
lems, in Proceedings of the Second International Symposium on Domain Decomposition
Methods for Partial Differential Equations, T. F. Chan, R. Glowinski, G. A. Meurant, J.
Pèriaux, and O. B. Widlund, eds., SIAM, Philadelphia, 1989, pp. 168–172.

[12] M. Dryja and O. B. Widlund, An additive variant of the Schwarz alternating method for the
case of many subregions, Technical Report 339, Ultracomputer Note 131, Department of
Computer Science, Courant Institute, New York University, New York, NY, 1987.

SCHWARZ FOR SEMIDEFINITE SYSTEMS 115

[13] M. Dryja and O. B. Widlund, Some domain decomposition algorithms for elliptic problems,
in Iterative Methods for Large Linear Systems, Academic Press, San Diego, 1989, pp. 273–
291.

[14] M. Dryja and O. B. Widlund, Towards a unified theory of domain decomposition algorithms
for elliptic problems, in Proceedings of the Third International Symposium on Domain
Decomposition Methods for Partial Differential Equations, T. F. Chan, R. Glowinski, J.
Périaux, and O. B. Widlund, eds., SIAM, Philadelphia, 1990, pp. 3–21.

[15] M. Dryja and O. B. Widlund, Schwarz methods of Neumann-Neumann type for three-
dimensional elliptic finite element problems, Comm. Pure Appl. Math., 48 (1995), pp. 121–
155.

[16] L. Elsner, Comparisons of weak regular splittings and multisplitting methods, Numer. Math.,
56 (1989), pp. 283–289.

[17] R. W. Freund and M. Hochbruck, On the use of two QMR algorithms for solving singular
systems and applications in Markov Chain modelling, Numer. Linear Algebra Appl., 1
(1994), pp. 403–420.

[18] A. Frommer and D. B. Szyld, Weighted max norms, splittings, and overlapping additive
Schwarz iterations, Numer. Math., 83 (1999), pp. 259–278.

[19] A. Frommer and D. B. Szyld, An algebraic convergence theory for restricted additive Schwarz
methods using weighted max norms, SIAM J. Numer. Anal., 39 (2001), pp. 463–479.

[20] M. Griebel and P. Oswald, On the abstract theory of additive and multiplicative Schwarz
algorithms, Numer. Math., 70 (1995), pp. 163–180.

[21] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Springer-Verlag, New
York, 1994.

[22] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

[23] W. J. Kammerer and M. Z. Nashed, On the convergence of the conjugate gradient method
for singular linear operator equations, SIAM J. Numer. Anal., 9 (1972), pp. 165–181.

[24] H. B. Keller, On the solution of singular and semidefinite linear systems by iteration, SIAM
J. Numer. Anal., 2 (1965), pp. 281–290.

[25] A. Klawonn and O. B. Widlund, A domain decomposition method with Lagrange multipliers
and inexact solvers for linear elasticity, SIAM J. Sci. Comput., 22 (2000), pp. 1199–1219.

[26] Y.-J. Lee, J. Wu, J. Xu, and L. Zikatanov, A Sharp Convergence Estimate of the Method
of Subspace Corrections for Singular Systems, Technical Report AM259, Department of
Mathematics, Pennsylvania State University, State College, PA, 2002.

[27] Y.-J. Lee, J. Wu, J. Xu, and L. Zikatanov, On the convergence of iterative methods for
semidefinite linear systems, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 634–641.

[28] Y.-J. Lee, J. Xu, and L. Zikatanov, Successive subspace correction method for singular system
of equations, in Proceedings of the Fourteenth International Conference on Domain Decom-
position Methods, I. Herrera, D. E. Keyes, O. B. Widlund, and R. Yates, eds., UNAM Press,
Mexico City, Mexico, 2003, pp. 315–321. Also available online at http://www.ddm.org.

[29] I. Marek and D. B. Szyld, Comparison theorems for weak splittings of bounded operators,
Numer. Math., 58 (1990), pp. 387–397.

[30] I. Marek and D. B. Szyld, Comparison theorems for the convergence factor of iterative
methods for singular matrices, Linear Algebra Appl., 316 (2000), pp. 67–87.

[31] I. Marek and D. B. Szyld, Comparison of convergence of general stationary iterative methods
for singular matrices, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 68–77.

[32] I. Marek and D. B. Szyld, Algebraic Schwarz methods for the numerical solution of Markov
chains, Linear Algebra Appl., 386 (2004), pp. 67–81.

[33] R. Nabben, A note on comparison theorems of splittings and multisplittings of Hermitian
positive definite matrices, Linear Algebra Appl., 233 (1996), pp. 67–80.

[34] R. Nabben, Comparisons between additive and multiplicative Schwarz iterations in domain
decomposition methods, Numer. Math., 95 (2003), pp. 145–162.

[35] R. Nabben and D. B. Szyld, Convergence theory of restricted multiplicative Schwarz methods,
SIAM J. Numer. Anal., 40 (2003), pp. 2318–2336.

[36] J. M. Ortega, Numerical Analysis: A Second Course, Classics Appl. Math. 3, SIAM, Philadel-
phia, 1990.

[37] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Classics Appl. Math. 30, SIAM, Philadelphia, 2000.

[38] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equa-
tions, Oxford Science Publications, Clarendon Press, Oxford, UK, 1999.

[39] L. Reichel and Q. Ye, Breakdown-free GMRES for singular systems, SIAM J. Matrix Anal.
Appl., 26 (2005), pp. 1001–1021.

116 REINHARD NABBEN AND DANIEL B. SZYLD

[40] M. Schnitker, Eine algebraische Konvergenztheorie der Schwarz-Verfahen für symmetrisch
positiv definite Matrizen, Examensarbeit, Universität Bielefeld, Bielefeld, Germany, 2002.

[41] B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain Decomposition: Parallel Mul-
tilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press,
Cambridge, UK, 1996.

[42] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton Univer-
sity Press, Princeton, NJ, 1994.

[43] D. B. Szyld, Equivalence of convergence conditions for iterative methods for singular equa-
tions, Numer. Linear Algebra Appl., 1 (1994), pp. 151–154.

[44] A. Toselli and O. Widlund, Domain Decomposition Methods—Algorithms and Theory,
Springer Series in Computational Mathematics 34, Springer-Verlag, Berlin, 2005.

[45] R. S. Varga, Matrix Iterative Analysis. Second Revised and Expanded Edition, Springer-Verlag,
Berlin, 2000.

[46] Z. I. Woźnicki, Nonnegative splitting theory, Japan J. Indust. Appl. Math., 11 (1994), pp. 289–
342.

[47] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992),
pp. 581–613.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 117–142

MATRIX MEASURES AND RANDOM WALKS WITH A BLOCK
TRIDIAGONAL TRANSITION MATRIX∗

HOLGER DETTE† , BETTINA REUTHER† , W. J. STUDDEN‡ , AND M. ZYGMUNT§

Abstract. In this paper we study the connection between matrix measures and random walks
with a block tridiagonal transition matrix. We derive sufficient conditions such that the blocks of
the n-step block tridiagonal transition matrix of the Markov chain can be represented as integrals
with respect to a matrix valued spectral measure. Several stochastic properties of the processes are
characterized by means of this matrix measure. In many cases this measure is supported in the
interval [−1, 1]. The results are illustrated by several examples including random walks on a grid and
the embedded chain of a queuing system.

Key words. Markov chain, block tridiagonal transition matrix, spectral measure, matrix mea-
sure, quasi-birth-and-death process, canonical moments, Chebyshev matrix polynomials

AMS subject classifications. 60J10, 42C05

DOI. 10.1137/050638230

1. Introduction. Consider a homogeneous Markov chain with state space

Cd = {(i, j) ∈ N0 × N | 1 ≤ j ≤ d}(1.1)

and block tridiagonal transition matrix

P =

⎛⎜⎜⎜⎝
B0 A0 0
CT

1 B1 A1

CT
2 B2 A2

0
. . .

. . .
. . .

⎞⎟⎟⎟⎠ ,(1.2)

where d ∈ N is finite, and A0, A1, . . . , B0, B1, . . . , C1, C2, . . . are d × d matrices con-
taining the probabilities of one-step transitions (here and throughout this paper CT

denotes the transpose of the matrix C). If the one-step block tridiagonal transition
matrix is represented by

P = (Pii′)i,i′=0,1,...(1.3)

with d × d block matrices Pii′ , the probability of going in one step from state (i, j)
to (i′, j′) is given by the element in the position (j, j′) of the matrix Pii′ . In the state
(i, j), i is usually referred to as the level of the state and j is referred to as the phase

∗Received by the editors August 16, 2005; accepted for publication (in revised form) by M. Benzi
June 22, 2006; published electronically December 21, 2006.

http://www.siam.org/journals/simax/29-1/63823.html
†Ruhr-Universität Bochum, Fakultät für Mathematik, 44780 Bochum, Germany (holger.dette@

rub.de, bettina.reuther@rub.de). The work of the first author was supported by the Deutsche
Forschungsgemeinschaft (De 502/22-1, SFB 475, Komplexitätsreduktion in multivariaten Daten-
strukturen).

‡Department of Statistics, Purdue University, West Lafayette, IN 47907-1399 (studden@
stat.purdue.edu).

§Department of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza
30, 30-059 Krakow, Poland (marcin.zygmunt@vp.pl).

117

118 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

of the state. Some illustrative examples will be given below. Block tridiagonal tran-
sition matrices of the form (1.2) naturally appear in the analysis of the embedded
Markov chains of continuous-time Markov processes with state space (1.1) and block
tridiagonal infinitesimal generator (see, e.g., the monographs of Neuts (1981) and
Neuts (1989) or the recent work of Marek (2003) and Dayar and Quessette (2002)
among many others) and these models have significant applications in the perfor-
mance evalutation of communication systems (see, e.g., Ost (2001)). Markov chains
with transition matrix (1.2) are known in the literature as level dependent quasi-
birth-and-death processes and several authors have contributed to the analysis of
such processes (see Hajek (1982), Gaver, Jacobs, and Latouche (1984), Ramaswami
and Taylor (1996), Bright and Taylor (1995), Latouche, Pearce, and Taylor (1998),
Bean, Pollett, and Taylor (2000), and Li and Cao (2004) among many others). Bright
and Taylor (1995) considered the problem of calculating the equilibrium distribu-
tion of a quasi-birth-and-death process for finite dimensional block matrices, while
Ramaswami and Taylor (1996) investigated level dependent processes with infinite
dimensional blocks. Quasistationary distributions of these processes were considered
by Bean, Pollett, and Taylor (2000). Latouche, Pearce, and Taylor (1998) discussed
the existence and the form of invariant measures for quasi-birth-and-death processes.
In the present paper we propose an alternative methodology for analyzing some level
dependent quasi-birth-and-death processes which is based on some spectral analysis
of the transition matrix.

For this we note that matrices of the form (1.2) are also closely related to a
sequence of matrix polynomials recursively defined by

xQn(x) = AnQn+1(x) + BnQn(x) + CT
nQn−1(x), n ∈ N0,(1.4)

where Q−1(x) = 0 and Q0(x) = Id denotes the d × d identity matrix. If An = Cn+1

and Bn is symmetric it follows that there exists a matrix measure Σ = {σij}i,j=1,...,d

on the real line (here σij are signed measures such that for any Borel set A ⊂ R the
matrix Σ(A) is nonnegative definite) such that the polynomials Qj(x) are orthonormal
with respect to a left inner product, i.e.,

〈Qi, Qj〉 =

∫
R

Qi(x)dΣ(x)QT
j (x) = δijId(1.5)

(see, e.g., Sinap and Van Assche (1996), or Duran (1995)). In recent years several
authors have studied properties of matrix orthonormal polynomials (see, e.g., Rodman
(1990), Duran and Van Assche (1995), Duran (1996, 1999), and Dette and Studden
(2001) among many others).

In the present paper we are interested in the relation between Markov chains
with state space Cd defined in (1.1) and block tridiagonal transition matrix (1.2) and
the polynomials Qj(x) defined by the recursive relation (1.4). In the case d = 1
this problem has been studied extensively in the literature (see Karlin and McGregor
(1959), Whitehurst (1982), Woess (1985), Van Doorn and Schrijner (1993, 1995), and
Dette (1996) among many others), but the case d > 1 is more difficult, because in this
case a system of matrix polynomials {Qj(x)}j≥0 satisfying a recurrence relation of
the form (1.4) is not necessarily orthogonal with respect to an inner product induced
by a matrix measure. In section 2 we characterize the transition matrices of the form
(1.2) such that there exists an integral representation for the corresponding n-step
transition probabilities in terms of the matrix measure and corresponding orthogonal

MATRIX MEASURES AND RANDOM WALKS 119

matrix polynomials, i.e.,

Pn
ij

(∫
Qj(x)dΣ(x)QT

j (x)

)
=

(∫
xnQi(x)dΣ(x)QT

j (x)

)
,

where Pn
ij denotes the d × d block of the n-step block tridiagonal transition matrix

Pn in the position (i, j). In other words, the element in the position (k, l) of Pn
ij is

the probability of going in n steps from state (i, k) to (j, l) and admitting an integral
representation. We also derive a sufficient condition such that the spectral (matrix)
measure Σ (if it exists) is supported on the interval [−1, 1]. In section 3 we discuss
several illustrative examples where this condition is satisfied including some examples
from queuing theory. Section 4 continues our more theoretical discussion and some
consequences of the integral representation are derived. We present a characterization
of recurrence by properties of the blocks of the transition matrix, which generalizes
the classical characterization of recurrence of a birth-and-death chain (see Karlin and
Taylor (1975)). Finally, in section 5 we present some applications of our results,
which demonstrate the potential of our approach. In particular we derive a very
simple necessary condition for positive recurrence of a quasi-birth-and-death process
and a new representation of the equilibrium distribution in terms of the random walk
measure Σ and the orthogonal polynomials Qj(x).

2. Random walk matrix polynomials. A matrix measure Σ is a d×d matrix
Σ = {σij}i,j=1,...,d of finite signed measures σij on the Borel field of the real line R or
of an appropriate subset. It will be assumed here that for each Borel set A ⊂ R the
matrix Σ(A) = {σij(A)}i,j=1,...,d is symmetric and nonnegative definite, i.e., Σ(A) ≥
0. The moments of the matrix measure Σ are given by the d× d matrices

Sk =

∫
tkdΣ(t), k = 0, 1, . . . ,(2.1)

and only measures for which all relevant moments exist will be considered throughout
this paper. Let Gi (i = 0, . . . , n) denote d× d matrices; then a matrix polynomial is
defined by P (t) =

∑n
i=0 Git

i. The inner product of two matrix polynomials, say, P
and Q, is defined by

〈P,Q〉 =

∫
P (t)Σ(dt)QT (t),(2.2)

where QT (t) denotes the transpose of the matrix Q(t). Sinap and Van Assche (1996)
call this the “left” inner product. Orthogonal polynomials are defined by orthog-
onalizing the sequence Ip, tIp, t

2Ip, . . . with respect to the above inner product. If
S0, S1, . . . is a given sequence of matrices such that the block Hankel matrices

H2m =

⎛⎜⎝ S0 · · · Sm

...
...

Sm . . . S2m

⎞⎟⎠(2.3)

are positive definite, it is well known (see, e.g., Marcellán and Sansigre (1993)) that a
matrix measure Σ with moments Sj (j ∈ N0) and a corresponding infinite sequence of
orthogonal matrix polynomials with respect to dΣ(x) exist. Moreover, these matrix
polynomials satisfy a three term recurrence relation.

120 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

Let {Qj(x)}j≥0 denote a sequence of matrix polynomials defined by the recurrence
relationship (1.4), where the matrices Cj (j ∈ N) and Aj (j ∈ N0) in (1.2) are assumed
to be nonsingular. The following results characterize the existence of a matrix measure
Σ such that the polynomials Qj(x) are orthogonal with respect to dΣ(x) in the sense
of (2.2).

Theorem 2.1. Assume that the matrices An (n ∈ N0) and Cn (n ∈ N) in the one-
step block tridiagonal transition matrix (1.2) are nonsingular. There exists a matrix
measure Σ on the real line with positive definite Hankel matrices H2m (m ∈ N0) such
that the polynomials {Qn(x)}n∈N0 defined by (1.4) are orthogonal with respect to the
measure dΣ(x) if and only if there exists a sequence of nonsingular matrices {Rn}n∈N0

such that the following relations are satisfied:

RnBnR
−1
n is symmetric ∀ n ∈ N0,

(2.4)

RT
nRn = C−1

n · · ·C−1
1 (RT

0 R0)A0 · · ·An−1 ∀ n ∈ N.

Proof. Assume that the polynomials {Qn(x)}n∈N0 are orthogonal with respect to
the measure dΣ(x), that is, ∫

R

Qi(x)dΣ(x)QT
j (x) = 0,(2.5)

whenever i 	= j and ∫
R

Qi(x)dΣ(x)QT
i (x) = Fi > 0 (i ∈ N0),(2.6)

where we use the notation Fi > 0 for a positive definite matrix Fi ∈ R
d×d (the fact

that the matrix Fi is positive definite follows from a straightforward calculation using

the assumption that H2m is positive definite for all m ∈ N0). Define Rn = F
−1/2
n

and Q̃n(x) = RnQn(x); then it is easy to see that the polynomials {Q̃n(x)}n∈N0
are

orthonormal with respect to the measure dΣ(x). Therefore it follows from Sinap and
Van Assche (1996) that there exist d×d nonsingular matrices {Dn}n∈N and symmetric
matrices {En}n∈N0 such that the recurrence relation

xQ̃n(x) = Dn+1Q̃n+1(x) + EnQ̃n(x) + DT
n Q̃n−1(x)(2.7)

is satisfied for all n ∈ N0, (Q̃−1(x) = 0, Q̃0(x) = R0). On the other hand, we obtain
from (1.4) and the representation Q̃n(x) = RnQn(x) the recurrence relation

(2.8)

xQ̃n(x) = RnAnR
−1
n+1Q̃n+1(x) + RnBnR

−1
n Q̃n(x) + RnC

T
nR

−1
n−1Q̃n−1(x),

and a comparison of (2.7) and (2.8) yields

Dn+1 = RnAnR
−1
n+1, En = RnBnR

−1
n , DT

n = RnC
T
nR

−1
n−1,(2.9)

MATRIX MEASURES AND RANDOM WALKS 121

where the matrix En is symmetric. Now a straightforward calculation gives

RnAnR
−1
n+1 = (Rn+1C

T
n+1R

−1
n)T = (RT

n)−1Cn+1R
T
n+1,

or equivalently

RT
n+1Rn+1 = C−1

n+1(R
T
nRn)An.

This yields by an induction argument

RT
nRn = C−1

n · · ·C−1
1 RT

0 R0A0 · · ·An−1, n ∈ N,

and proves the first part of Theorem 2.1.
For the converse assume that the relations in (2.4) are satisfied and consider the

polynomials Q̃n(x) = RnQn(x). These polynomials satisfy the recurrence relation
(2.8) and from (2.4) it follows that the matrices

En = RnBnR
−1
n

are symmetric (n ∈ N0), while

Dn+1 = RnAnR
−1
n+1 = (Rn+1C

T
n+1R

−1
n)T

by the second assumption in (2.4). Therefore the recurrence relation for the polynomi-
als Q̃n(x) is of the form (2.7) and by the discussion following Theorem 3.1 in Sinap and
van Assche (1996) these polynomials are orthonormal with respect to a matrix mea-
sure dΣ(x). This also implies the orthogonality of the polynomials Qn(x) = R−1

n Q̃n(x)
with respect to the measure dΣ(x).

Because the polynomials Q
n
(t) = R−1

0 D1 · · ·DnQ̃n(t) have leading coefficient Id
we obtain that the matrix

〈Q
n
, Q

n
〉 =

∫
Q

n
(t)dΣ(t)QT

n
(t) = R−1

0 D1 · · ·DnD
T
n · · ·DT

1 (RT
0)−1(2.10)

is nonsingular. On the other hand it follows from Dette and Studden (2001) that the
left-hand side of (2.10) is equal to the Schur complement, say, S2n − S−

2n, of S2n in
H2n. Because the matrix H2n is positive definite if and only if H2n−2 and the Schur
complement of S2n in H2n are positive definite it follows by an induction argument
that all Hankel matrices obtained from the moments of the matrix measure Σ are
positive definite.

Remark 2.2. Throughout this paper a matrix measure Σ with corresponding
orthogonal matrix polynomials Qi(x) is called a random walk matrix measure or
spectral measure and the polynomials Qi(x) will be called random walk matrix poly-
nomials if the assumptions of Theorem 2.1 are satisfied. Because the polynomials
Q̃i(x) = RiQi(x) defined in the proof of Theorem 2.1 are orthonormal with respect
to the measure dΣ(x) it follows that

Id = 〈Q̃0, Q̃0〉 =

∫
Q̃0(x)dΣ(x)Q̃T

0 = R0S0R
T
0 ,(2.11)

or equivalently

R−1
0 ((RT

0)−1) = (RT
0 R0)

−1 = S0,(2.12)

122 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

where S0 is the 0th moment of the matrix measure Σ (see (2.1)). We finally note
that the matrices Rn in Theorem 2.1 are not unique. If {Rn}n∈N0 is a sequence of
matrices satisfying (2.4), these relations are also fulfilled for the sequence {R̃n}n∈N0 =
{UnRn}n∈N0 , where Un (n ∈ N0) are arbitrary orthogonal matrices.

Before we present some examples, where the conditions of Theorem 2.1 are sat-
isfied we derive some consequences of the existence of a random walk measure. For
this let Q(x) = (QT

0 (x), QT
1 (x), . . .)T denote the vector of matrix polynomials defined

by the recursive relation (1.4); then it is easy to see that the recurrence relation (1.4)
is equivalent to

xQ(x) = PQ(x),(2.13)

which gives (by iteration)

xnQ(x) = PnQ(x).(2.14)

Therefore ∫
xnQ(x)dΣ(x)QT

j (x) = Pn

∫
Q(x)dΣ(x)QT

j (x),(2.15)

and from the orthogonality of the random walk polynomials we obtain the represen-
tation

Pn
ij =

(∫
xnQi(x)dΣ(x)QT

j (x)

)(∫
Qj(x)dΣ(x)QT

j (x)

)−1

(2.16)

for the block in the position (i, j) of the n-step block tridiagonal transition matrix
Pn.

Theorem 2.3. If the assumptions of Theorem 2.1 are satisfied, the block Pn
ij in

the position (i, j) of the n-step block tridiagonal transition matrix Pn of the random
walk can be represented in the form (2.16), where Σ denotes a random walk measure
corresponding to the one-step transition matrix P .

Remark 2.4. Note that the random walk measure is not necessarily uniquely
determined by the random walk on the grid Cd. However, using the case i = j = 0 in
(2.16) it follows for the moments of the random walk measure

Pn
00 = SnS

−1
0 (n ∈ N0),(2.17)

where Pn
00 is the first block in the n-step transition matrix of the random walk. There-

fore the moments of a random walk measure are essentially uniquely determined. In
the following we will derive a sufficient condition such that the random walk measure
(if it exists) is supported on the interval [−1, 1]. In this case the measure is determined
by its moments.

Theorem 2.5. Assume that the conditions of Theorem 2.1 are satisfied and define
the block diagonal matrix R = diag (R0, R1, R2, . . .). If the matrix R is symmetric and
the matrix

P̃ = RTPR−1(2.18)

MATRIX MEASURES AND RANDOM WALKS 123

has nonnegative entries, then the random walk matrix measure Σ = {σij}i,j=1,...,d

corresponding to the polynomials in (1.4) is supported on the interval [−1, 1], that is,

supp(σij) ⊂ [−1, 1] ∀ i, j = 1, . . . , d.

Proof. Note that the matrix in (2.18) is symmetric (because the assumptions
of Theorem 2.1 are satisfied) and that the entries of P̃ are nonnegative, by the as-
sumptions of the theorem. According to Schur’s test (see Halmos and Sunder (1978),
Theorem 5.2) it follows that

‖P̃‖2 ≤ 1(2.19)

if we can find two vectors, say, v, w, with positive components such that

P̃ v ≤ w and P̃w ≤ v

(where the symbol ≤ means here inequality in each component). If v = w = R1 (here
1 denotes the infinite dimensional vector with all elements equal to one), then the
representation (2.18) implies that

P̃ v = P̃R1 = RTP1 ≤ RT 1,

which shows that (2.19) is indeed satisfied. Now let

Πj = C−1
j . . . C−1

1 RT
0 R0A0 . . . Aj−1 = RT

j Rj ,(2.20)

and consider the inner product

〈x, y〉Π =

∞∑
j=0

xT
j Πjyj(2.21)

(with x = (xT
0 , x

T
1 , . . .); y = (yT0 , y

T
1 , . . .);xj ∈ R

d, yj ∈ R
d) and its corresponding

norm, say, ‖ · ‖Π. Define

�2(Rd) = {x = (xT
0 , x

T
1 , . . .) | xj ∈ R

d (j ∈ N0); ‖x‖2
Π < ∞}.(2.22)

From the definition of P and Πj it is easy to see that ΠiPij = PT
jiΠj (for all i, j ∈ N0),

which implies that P is a selfadjoint operator with respect to the inner product 〈·, ·〉Π.
Moreover, we have for any x

‖Px‖Π = xTPTΠPx = xTRT P̃T P̃Rx = ‖P̃Rx‖2

≤ ‖P̃‖2‖Rx‖2 ≤ xTRTRx = xTΠx = ‖x‖Π,

where we used the representation Π = RTR and (2.19). Consequently, ‖P‖Π ≤ 1,
which proves the theorem.

We note that there are many examples where the assumptions of Theorem 2.5 are
satisfied and we conjecture, in fact, that a random walk measure is always supported
in the interval [−1, 1]. In the case d = 1 this property holds because in this case the
assumptions of Theorems 2.1 and 2.5 are obviously satisfied. This was shown before
by Karlin and McGregor (1959), and an alternative proof can be found in Dette and
Studden (1997), Chapter 8.

124 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

Our next result gives a relation between the Stieltjes transforms of two random
walk measures, say, Σ and Σ̃, where only the matrices B0 and B̃0 differ in the corre-
sponding one-step block tridiagonal transition matrices P and P̃ .

Theorem 2.6. Consider the one-step block tridiagonal transition matrix P in
(1.2) and the matrix

P̃ =

⎛⎜⎜⎜⎝
B̃0 A0 0
CT

1 B1 A1

CT
2 B2 A2

0
. . .

. . .
. . .

⎞⎟⎟⎟⎠ ,(2.23)

and assume that there exists a random walk measure Σ corresponding to the one-
step transition matrix P such that the matrix R0B̃0R

−1
0 is symmetric, where R0 is

a matrix such that (2.4) is satisfied. Then there exists also a random walk measure
Σ̃ corresponding to the matrix P̃ . If Σ and Σ̃ are determinate, then the Stieltjes
transforms of both matrix measures are related by

∫
dΣ(t)

z − t
=

⎧⎨⎩
(∫

dΣ̃(t)

z − t

)−1

− S−1
0 (B0 − B̃0)

⎫⎬⎭
−1

.(2.24)

Proof. Because the matrix R0B̃0R
−1
0 is symmetric and the matrices P and P̃

differ only by the element in the first block, the sequence of matrices R0, R1, . . . can
be used to symmetrize the matrices P and P̃ simultaneously (see the proof of Theorem
2.1). Consequently, there exists a random walk measure corresponding to the random
walk with one-step block tridiagonal transition matrix P̃ . Let {Qn(x)}n∈N0

denote the
system of matrix orthogonal polynomials defined by the recursive relation (1.4) and
define {Q̃n(x)}n∈N0 by the same recursion, where the matrix B0 has been replaced
by B̃0. A straightforward calculation shows that the difference polynomials

Rj(x) = Q̃j(x) −Qj(x)

also satisfy the recursion (1.4) with initial conditions R0(x) = 0, R1(x) = A−1
0 (B0 −

B̃0). In particular, these polynomials are “proportional” to the first associated or-
thogonal matrix polynomials

Q(1)
n (x) =

∫
Qn(x) −Qn(t)

x− t
dΣ(t) (n ∈ N0),(2.25)

that is,

Rn(x) = Q(1)
n (x)RT

0 R0(B0 − B̃0).(2.26)

Recall from the proof of Theorem 2.1 that the systems {RnQn(x)R−1
0 }n∈N0

and
{RnQ̃n(x)R−1

0 }n∈N0 are orthonormal with respect to the random walk measures
dμ(x) = R0dΣ(x)RT

0 and dμ̃ = R0dΣ̃(x)RT
0 , respectively, and that μ and μ̃ are

determinate. Therefore we obtain from Markov’s theorem for matrix orthogonal

MATRIX MEASURES AND RANDOM WALKS 125

polynomials (see Duran (1996)) that∫
dΣ̃(t)

z − t
= R−1

0

∫
dμ̃(t)

z − t
(RT

0)−1(2.27)

= lim
n→∞

R−1
0 (RnQ̃n(z)R−1

0)−1(RnQ̃
(1)
n (z)RT

0)(RT
0)−1

= lim
n→∞

(Q̃n(z))−1Q̃(1)
n (z)

= lim
n→∞

{Qn(z) + Q(1)
n (z)RT

0 R0(B0 − B̃0)}−1Q(1)
n (z)

= lim
n→∞

{{(Qn(z))−1Q(1)
n (z)}−1 + RT

0 R0(B0 − B̃0)}−1

= lim
n→∞

{RT
0 {(RnQn(z)R−1

0)−1RnQ
(1)
n (z)RT

0 }−1R0

+RT
0 R0(B − B̃0)}−1

=

{
RT

0

(∫
dμ(t)

z − t

)−1

R0 + RT
0 R0(B0 − B̃0)

}−1

=

{(∫
dΣ(t)

z − t

)−1

+ RT
0 R0(B0 − B̃0)

}−1

=

{(∫
dΣ(t)

z − t

)−1

+ S−1
0 (B0 − B̃0)

}−1

,

where Q̃
(1)
n (x) denotes the first associated orthogonal matrix polynomial obtained by

the analogue of (2.25) from Q̃n(x) and we have used the fact that Q̃
(1)
n (x) = Q

(1)
n (x)

for the third equality (note that this identity is obvious from the definition of P and
P̃ in (1.2) and (2.23), respectively).

Remark 2.7. Note that Theorem 2.1 and some of its consequences are derived
under the assumption of nonsingular matrices An and Cn. As pointed out by a referee
there are several applications in queuing theory where these matrices do not have
full rank (see Latouche and Ramaswami (1999)). In this remark we indicate how the
nonsingularity assumptions regarding the matrices Cn can be relaxed (note that this
covers most of the commonly used queuing models). For this purpose we rewrite the
conditions in Theorem 2.1 as

Cn+1R
T
n+1Rn+1 = RT

nRnAn ∀ n ∈ N0(2.28)

and

RnBn = EnRn ∀ n ∈ N0,(2.29)

for some sequence of symmetric matrices (En)n∈N0 . Note that the conditions (2.28)
and (2.29) were derived in the proof of Theorem 2.1 (under the assumptions of The-
orem 2.1 they are in fact equivalent to (2.4)). We will now demonstrate that these

126 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

conditions are in fact sufficient for the proof of the existence of a random walk measure
using some spectral theory of selfadjoint operators (see, e.g., Berezanskii (1968)). In
the following we indicate how such a measure can be derived; further details can be
found in Berezanskii (1968), pages 501–607.

For this purpose define

Πj = RT
j Rj (j ∈ N0)

and consider the space L(Rd, L(Rd,Rd)) which can be identified with

�2(Rd×d) :=
{
X =

(
XT

0 , XT
1 , . . .

)T | Xj ∈ R
d×d, 〈〈X,X〉〉 < ∞

}
,

where the matrix valued pseudo inner product is defined by (Y =
(
Y T

0 , Y T
1 , . . .

)T
)

〈〈X,Y 〉〉 :=
∞∑
j=1

XT
j ΠjYj .

Note that the space �2(Rd×d) equipped with the inner product

〈X,Y 〉 =
1

d
trace〈〈X,Y 〉〉

is a Hilbert space and isometric isomorph to the space �2(Rd) defined in (2.22). More-
over, the matrix P in (1.2) defines an operator acting on �2(Rd×d) and �2(Rd), denoted
by P and J, respectively; that is,

(PX)n = AnXn+1 + BnXn + CT
nXn−1 (n ∈ N0, X−1 = 0),

(Jx)n = Anxn+1 + Bnxn + CT
n xn−1 (n ∈ N0, x−1 = 0).

Note that (2.28) and (2.29) imply the symmetry conditions

PT
ijΠi = ΠjPji(2.30)

(this follows by an elementary calculation), and recalling the definition of the inner
product 〈·, ·〉Π in (2.21) we obtain

〈Jx, y〉Π =

∞∑
i=0

∞∑
j=0

(Pijxj)
TΠiyi =

∞∑
i=0

∞∑
j=0

xT
j ΠjPjiyi = 〈x, Jy〉Π.

In other words, J is a selfadjoint operator acting on �2(Rd). Let (Eλ)λ denote the
corresponding resolution of the identity (i.e., J =

∫
λEλ); then (Eλ)λ induces a

resolution of the identity, say, (Eλ)λ, corresponding to the operator P on �2(Rd×d) in
the following way:

(EλU)x := Eλ(Ux), U ∈ �2(Rd×d), x ∈ R
d.

Now define E(j) = (0d, . . . , 0d, Id, 0d, . . .)
T ∈ �2(Rd×d) as the jth “unit” vector (here

0d is the d× d matrix with all entries equal to 0) and the spectral measure by

Σ(λ) = 〈〈E(0), EλE(0)〉〉 ∈ R
d×d;

MATRIX MEASURES AND RANDOM WALKS 127

then it follows by similiar arguments as in Berezanskii (1968), pages 562–565, that∫
Qi(x)dΣ(x)QT

j (x) = 〈〈E(i), E(j)〉〉 = δijΠj ,

where δij denotes Kronecker’s symbol. The same arguments as used in the derivation
of Theorem 2.3 now imply

Pn
ijΠj =

∫
xnQi(x)dΣ(x)QT

j (x),

which is the statement of Theorem 2.3. Other results of this paper can be generalized
in a similiar way. For example, Theorem 2.5 remains valid if there exists a matrix P̃
with nonnegative entries such that P̃R = RTP. The details are omitted for the sake
of brevity.

3. Examples. In this section we present several examples where the conditions
of Theorem 2.1 are satisfied.

3.1. Random walks on the integers. Consider the classical random walk on
Z (see, e.g., Feller (1950)) with one-step up, down, and holding transition probabilities
pi, qi, and ri (respectively), where pi + qi + ri ≤ 1, i ∈ Z, where the strict inequality
pi +qi +ri < 1 is interpreted as a permanent absorbing state i∗, which can be reached
from the state i with probability 1 − pi − qi − ri. By the one-to-one mapping

ψ :

⎧⎪⎨⎪⎩
Z → C2,

i →
{

(i, 1) if i ∈ N0,
(−i− 1, 2) else,

this process can be interpreted as a process on the grid C2, where transitions from the
first to the second row are only possible if the process is in state (0, 1). The transition
matrix of this process is given by (1.2) with 2 × 2 blocks

B0 =

(
r0 q0
p−1 r−1

)
; Bn =

(
rn 0
0 r−n−1

)
;(3.1)

An =

(
pn 0
0 q−n−1

)
; CT

n =

(
qn 0
0 p−n−1

)
.(3.2)

It is easy to see that the conditions of Theorem 2.1 are satisfied with the matrices

R0 =

(
1 0

0
√

q0
p−1

)
, Rn =

⎛⎝√p0...pn−1

q1...qn
0

0
√

q0q−1...q−n

p−1p−2...p−n−1

⎞⎠ ,(3.3)

and consequently, there exists a random walk matrix measure corresponding to this
process, say, Σ, which is supported in the interval [−1, 1] (see Theorem 2.5). For the
calculation of the Stieltjes transform of this measure we use Theorem 2.6 and obtain

Φ(z) =

∫
dΣ(t)

z − t
=
{

Φ̃−1(z) −RT
0 R0(B0 − B̃0)

}−1

.(3.4)

Here Φ̃ is the Stieltjes transform of a random walk measure Σ̃ with transition matrix
(1.2), where the matrix B0 in (3.1) has been replaced by

B̃0 =

(
r0 0
0 r−1

)
,

128 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

and the matrix B0 − B̃0 is given by

B0 − B̃0 =

(
0 q0

p−1 0

)
.

Note that the matrix Φ̃ is diagonal and if Φ̃+ and Φ̃− denote the corresponding
diagonal elements, we obtain from (3.4) the representation

Φ(z) =

∫
dΣ(t)

z − t
=

(
1/Φ̃+(z) −q0
−q0 1/Φ̃−(z)

)−1

=
1

1 − q2
0Φ̃+(z)Φ̃−(z)

(
Φ̃+(z) q0Φ̃

−(z)Φ̃+(z)

q0Φ
−(z)Φ̃+(z) Φ̃−(z)

)
.

In particular, for the classical random walk (pi = p, qi = q, ri = 0 for all i ∈ Z) we
have

Φ̃+(z) = −z −
√
z2 − 4pq

2pq
, Φ̃−(z) =

p

q
Φ+(z),

and a straightforward calculation gives the result

Φ(z) =

⎛⎜⎝ −1√
z2−4pq

1
2q

(
1 − z√

z2−4pq

)
1
2q

(
1 − z√

z2−4pq

)
p
q

−1√
z2−4pq

⎞⎟⎠ ,

which was also obtained by Karlin and McGregor (1959) by a probabilistic argument.

3.2. An example from queuing theory. In a recent paper Dayar and Ques-
sette (2002) considered a system of two independent queues, where queue 1 is an
M/M/1 and queue 2 is an M/M/1/d− 1. Both queues have a Poisson arrival process
with rate λi (i = 1, 2) and exponential service distributions with rates μi (i = 1, 2). It
is easy to see that the embedded random walk corresponding to the quasi-birth-and-
death process representing the length of queue 1 (which is unbounded) and the length
of queue 2 (which varies between 0, 1, . . . , d − 1) has a one-step transition matrix of
the form (1.2), where the blocks Bi, Ai, and Ci are given by

B0 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 λ2

λ1+λ2
μ2

γ−μ1
0 λ2

γ−μ1

. . .
. . .

. . .
μ2

γ−μ1
0 λ2

γ−μ1
μ2

λ1+μ2
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,(3.5)

Bi =

⎛⎜⎜⎜⎜⎜⎜⎝
0 λ2

γ−μ2
μ2

γ 0 λ2

γ

. . .
. . .

. . .
μ2

γ 0 λ2

γ
μ2

γ−λ2
0

⎞⎟⎟⎟⎟⎟⎟⎠ , i ≥ 1,(3.6)

MATRIX MEASURES AND RANDOM WALKS 129

A0 =

⎛⎜⎜⎜⎜⎜⎜⎝

λ1

λ1+λ2
λ1

γ−μ1

. . .
λ1

γ−μ1
λ1

λ1+μ2

⎞⎟⎟⎟⎟⎟⎟⎠ ,(3.7)

Ai =

⎛⎜⎜⎜⎜⎜⎜⎝

λ1

γ−μ2
λ1

γ

. . .
λ1

γ
λ1

γ−λ2

⎞⎟⎟⎟⎟⎟⎟⎠ , i ≥ 1,(3.8)

and

Ci =

⎛⎜⎜⎜⎜⎜⎜⎝

μ1

γ−μ2
μ1

γ

. . .
μ1

γ
μ1

γ−λ2

⎞⎟⎟⎟⎟⎟⎟⎠ , i ≥ 1,(3.9)

respectively, and γ = λ1 +λ2 +μ1 +μ2, λ1 < μ1. A straightforward calculation shows
that the assumptions of Theorem 2.1 are satisfied, where the matrices Rn are diagonal
and given by

R0 = diag

⎛⎝√(λ1 +λ2)μ2√
(γ−μ1)λ2

, 1,

√
λ2√
μ2

,
λ2

μ2
, . . . ,

(√
λ2√
μ2

)d−3

,

√
(λ1 +μ2)λ

d−2
2√

(γ−μ1)μ
d−2
2

⎞⎠ ,

R1 = diag

⎛⎝√λ1(γ−μ2)μ2√
λ2(γ−μ1)μ1

,

√
γλ1√

(γ−μ1)μ1

, . . . ,

√
γλ1λ

d−3
2√

(γ−μ1)μ1μ
d−3
2

,

√
λ1(γ−λ2)λ

d−2
2√

(γ−μ1)μ1μ
d−2
2

⎞⎠ ,

Ri =

(√
λ1

μ1

)i−1

R1, i ≥ 2.

It also follows from Theorem 2.5 that the corresponding random walk matrix
measure is supported in the interval [−1, 1].

3.3. The simple random walk on the grid. Consider the random walk on
the grid Cd, where the probabilities of going from state (i, j) to (i, j+1), (i, j−1), (i−
1, j), (i+ 1, j) are given by u, v, �, r, respectively, where u+ v + �+ r = 1. In this case
it follows that Ai = rId (i ≥ 0), Ci = �Id (i ≥ 1),

Bi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 u
v 0 u

v 0 u
. . .

. . .
. . .

v 0 u
v 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, i ≥ 0,(3.10)

130 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

and it is easy to see that the conditions of Theorem 2.1 are satisfied with

R0 = diag

(
1,

√
u

v
,

√
u2

v2
, . . . ,

√
ud−1

vd−1

)
, Ri =

(√
r

�

)i

R0, i ≥ 1.

It now follows from Theorem 2.5 that the corresponding random walk matrix measure
is supported in the interval [−1, 1]. For the identification of the Stieltjes transform of
the spectral measure we note that the orthonormal polynomials defined by (2.7) have
constant coefficients given by D = Dn =

√
r�Id,

E = En =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
√
vu√

vu 0
√
vu√

vu 0
√
vu

. . .
. . .

. . .√
vu 0

√
vu√

vu 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.(3.11)

Therefore it follows from the work of Duran (1999) that the Stieltjes transform of the
random walk measure is given by∫

dΣ(t)

z − t
=

1

2r�

{
zId − E −

{
(zId − E)2 − 4r�Id

}1/2}
.

From the same reference we obtain that the support of the random walk measure is
given by the set

supp(Σ) = {x ∈ R | xId − E has an eigenvalue in [−2
√
r�, 2

√
r�]}.(3.12)

It is well known (see Basilevsky (1983)) that the eigenvalues of the matrix E in (3.11)
are given by

2
√
uv cos

(
jπ

d + 1

)
, j = 1, . . . , d,

with corresponding normalized eigenvectors

xj =

√
2

d + 1

(
sin

(
�

πj

d + 1

))d

�=1

.

Therefore it follows from (3.12) that

supp(Σ) =

[
−2

√
r� + 2

√
uv cos

(
πd

d + 1

)
, 2
√
r� + 2

√
uv cos

(
π

d + 1

)]
(note that supp(Σ) ⊂ [−1, 1]). For the calculation of the random walk measure we
determine the spectral decomposition of the matrix

−H(x) = 4Id −D−1/2(xId − E)D−1(xId − E)D−1/2

=
1

r�

{
4r�Id − (xId − E)2

}
.

The eigenvalues of this matrix are given by

λj(x) =
1

r�

{
4r�−

(
x− 2

√
vu cos

(
πj

d + 1

))2
}
,

MATRIX MEASURES AND RANDOM WALKS 131

and by the results in Duran (1999) the weight of the matrix measure is given by

dΣ(x) =
1

2π
√
r�

UΛ(x)UT dx,

where the matrix Λ(x) is defined by

Λ(x) =
{

diag(max(λ1(x), 0), . . . ,max(λd(x), 0))
}1/2

,

and the elements of the matrix U = {uj�}j,�=1,...,d are given by

uj� =

√
2

d + 1
sin

(
�

jπ

d + 1

)
.

3.4. Finite state spaces. The assertions of section 2 remain correct for random
walks on a finite grid, where the corresponding random walk measure has a finite
support. As an example consider a random walk on the finite grid

C = Cd,N = {(i, j) ∈ N0 × N| 0 ≤ i ≤ N − 1, 1 ≤ j ≤ d},

where the probabilities of going from state (i, j) to (i, j+1), (i, j−1), (i−1, j), (i+1, j)
are given by u, v, �, and r, respectively, where u + v + � + r = 1. Then the transition
matrix P is given by the finite dimensional block tridiagonal matrix

P =

⎛⎜⎜⎜⎜⎜⎝
B0 A0 0
CT

1 B1 A1

. . .
. . .

. . .

CT
N−2 BN−2 AN−2

0 CT
N−1 BN−1

⎞⎟⎟⎟⎟⎟⎠
with Ai = rId, 0 ≤ i ≤ N − 2, Ci = �Id, 1 ≤ i ≤ N − 1, and matrices Bi defined
by (3.10). A straightforward calculation shows that the corresponding random walk
matrix polynomials are given by

Qn(x) =

(√
�

r

)n

Un

(
1

2

√
r

�
A

)
,

n = 0, . . . , N − 1, where Un(z) denotes the Chebyshev polynomial of the second kind
and the matrix A is given by

A =
1

r

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x −u
−v x −u

−v x −u
. . .

. . .
. . .

−v x −u
−v x

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Moreover, observing the representations

UN

(z
2

)
=

N∏
j=1

(
z − 2 cos

(
jπ

N + 1

))
, detA =

(√
uv

r

)d

Ud

(
1

2
√
uv

x

)
,

132 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

we obtain that the zeros of the polynomials QN (x) are given by

λij = 2

(√
uv cos

(
iπ

d + 1

)
+
√
�r cos

(
jπ

N + 1

))
, i = 1, . . . , d; j = 1, . . . , N.

In particular, it follows for the rate of convergence of the probability of no absorption
that

P (Xn ∈ Cd,N | X0 = x) = O

(
2n

(√
uv cos

(
π

d + 1

)
+
√
�r cos

(
π

N + 1

))n)
.

3.5. A random walk on a tree. Consider a graph with d rays which are
connected at one point, the origin. On each ray the probability of moving away from
the origin is p and moving in one step toward the origin is q, where p + q = 1. From
the origin the probability of going to the ith ray is di > 0 (i = 1, . . . , d) (see Figure 1,
where the case d = 4 is illustrated). It is easy to see that this process corresponds
to a random walk on the grid Cd with block tridiagonal transition matrix P in (1.2),
where Bi = 0 if i ≥ 1, Ci = qId for all i ≥ 1, A0 = diag (d1, p, . . . , p) , Ai = pId for
all i ≥ 1, and

B0 =

⎛⎜⎜⎜⎝
0 d2 · · · · · · dd
q 0 · · · · · · 0
...

...
...

q 0 · · · · · · 0

⎞⎟⎟⎟⎠ ,

where
∑d

i=1 di = 1. Moreover, this matrix clearly satisfies the assumptions of Theo-
rem 2.1 with

R0 = diag

(
1,

√
d2

q
, . . . ,

√
dd
q

)
, R1 = diag

(√
d1

q
,

√
d2p

q2
, . . . ,

√
ddp

q2

)
,

and

Ri =

(√
p

q

)i−1

R1, i ≥ 2.

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

����

���

���

���

d1

d3
d2

d4

�

� �

� ���
���

���
���

���
���

���
��� p

p
p

p

q

q

q

q

1

23

4

Fig. 1. A random walk on a tree.

MATRIX MEASURES AND RANDOM WALKS 133

By an application of Theorem 2.6 and the inversion formula for Stieltjes transforms
we obtain for the corresponding random walk measure

dΣ(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a(x) b2(x) b3(x) . . . bd(x)
b2(x) f2(x) e2,3(x) . . . e2,d(x)
b3(x) e2,3(x) f3(x) . . . e3,d(x)

...
...

...
...

bd−1(x) e2,d−1(x) e3,d−1(x) . . . ed−1,d(x)
bd(x) e2,d(x) e3,d(x) . . . fd(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
dx,

where the functions a, bi, ek,�, and fk are given by

a(x) =
(
∑d

i=2 d
2
i d1 + d2

1q − (d1 − p)x2)
√

4pq − x2

2pπ((
∑d

i=2 d
2
i + d1q)2 − (

∑d
i=2 d

2
i + (d1 − p)q)x2)

,

bk(x) = − dkx
√

4pq − x2

2π((
∑d

i=2 d
2
i + d1q)2 − (

∑d
i=2 d

2
i + (d1 − p)q)x2)

, k = 2, . . . , d,

ek,�(x) =
dkd�

√
4pq − x2(px2 −

∑d
i=2 d

2
jd1 − d2

1q)

2π(d2
1q − (d1 − p)x2)((

∑d
i=2 d

2
i + d1q)2 − (

∑d
i=2 d

2
i + (d1 − p)q)x2)

,

k = 2, . . . , d− 1, � = 3, . . . , d,

fk(x) =
d1(

∑d
i=2 d

2
i + d1q)(

∑d
i=2,i 	=k d

2
i + d1q)

√
4pq − x2

2π(d2
1q − (d1 − p)x2)((

∑d
i=2 d

2
i + d1q)2 − (

∑d
i=2 d

2
i + (d1 − p)q)x2)

+
−((

∑d
i=2 d

2
i (d1 − p) +

∑d
i=2,i 	=k d

2
i p + d1(d1 − p)q)x2)

√
4pq − x2

2π(d2
1q − (d1 − p)x2)((

∑d
i=2 d

2
i + d1q)2 − (

∑d
i=2 d

2
i + (d1 − p)q)x2)

,

k = 2, . . . , d.

Note that the random walk measure is supported in the interval [−2
√
pq, 2

√
pq].

4. Further discussion. In the present section we derive further consequences of
the existence of a random walk measure corresponding to the block tridiagonal transi-
tion matrix (1.2). Throughout this section we assume that the conditions of Theorem
2.1 are satisfied and that the corresponding random walk measure is supported in the
interval [−1, 1].

4.1. Recurrence. We denote by

(4.1)

Hij(z) =

∞∑
n=0

(Pn
ij)z

n =

(∫
Qi(x)dΣ(x)QT

j (x)

1 − xz

)(∫
Qj(x)dΣ(x)QT

j (x)

)−1

the (matrix) generating function of the block (i, j), where the last identity follows from
Theorem 2.3 and Lebesgue’s theorem. Therefore we obtain that a state (i, �) ∈ Cd is

134 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

recurrent if and only if

(4.2)
∞∑

n=0

eT� P
n
iie� = lim

z→1
eT� Hii(z)e�

= eT�

(∫
Qi(x)dΣ(x)QT

i (x)

1 − x

)(∫
Qi(x)dΣ(x)QT

i (x)

)−1

e� = ∞,

where eT� = (0, . . . , 0, 1, 0, . . . , 0)T denotes the �th unit vector in R
d. We summarize

this observation in the following corollary.
Corollary 4.1. Assume that the conditions of Theorem 2.1 are satisfied for

the block tridiagonal transition matrix P in (1.2) corresponding to a random walk on
Cd and that the corresponding spectral measure is supported in the interval [−1, 1]. A
state (i, �) ∈ Cd is recurrent if and only if condition (4.2) is satisfied. Moreover, if the
random walk is irreducible it is recurrent if and only if the condition

eTj

∫ 1

−1

dΣ(x)

1 − x
S−1

0 ej = ∞(4.3)

is satisfied for some j ∈ {1, . . . , d} (in this case it is satisfied for any j ∈ {1, . . . , d}).
Corollary 4.2. Assume that the conditions of Theorem 2.1 are satisfied for

the matrix P in (1.2) corresponding to an irreducible random walk on Cd and that
the corresponding spectral measure is supported in the interval [−1, 1]. The random
walk is positive recurrent if and only if one of the measures dτ�(x) = eT� dΣ(x)S−1

0 e�
(� = 1, . . . , d) has a jump at the point 1. In this case all measures dτ�(x) (� = 1, . . . , d)
have a jump at the point 1.

Proof. Let dτ�(x) = eT� dΣ(x)S−1
0 e�; then the probability of returning from state

(0, �) to (0, �) in k steps is given by

αk = eT� (P k
00)e� = eT�

∫ 1

−1

xkdΣ(x)S−1
0 e� =

∫ 1

−1

xkdτ�(x).

The random walk is positive recurrent if and only if α = limk→∞ αk exists and
is positive. Considering the sequence α2n it follows by the dominated convergence
theorem that this is the case if and only if τ� has a jump at x = −1 or x = 1. If τ�
has no jump at x = 1 we obtain

τ�(−1) = lim
n→∞

{
−
∫ 1

−1

x2n+1dτ�(x) +

∫ 1

−1−
x2n+1dτ�(x)

}
= − lim

n→∞
P 2n+1

00 ≤ 0,

and consequently τ� has no jump at x = −1. Therefore the random walk is positive
recurrent if and only if τ� has a jump at x = 1.

Remark 4.3. For an irreducible random walk with a random walk measure Σ sat-
isfying S0 = Id the properties of recurrence and positive recurrence are characterized
by the diagonal elements of the corresponding random walk measure Σ.

4.2. Canonical moments and random walk measures. In this section we
will represent the Stieltjes transform of a random walk matrix measure Σ which is

MATRIX MEASURES AND RANDOM WALKS 135

supported in the interval [−1, 1] in terms of its canonical moments, which were recently
introduced by Dette and Studden (2001) in the context of matrix measures. We will
use this representation to derive a characterization of recurrence of the process in
terms of blocks of the matrix P.

Theorem 4.4. The Stieltjes transform of a random walk measure Σ, which is
supported in the interval [−1, 1] has the following continued fraction expansions:∫

dΣ(x)

z − x
= lim

n→∞
S

1/2
0

{
zId + Id − 2ζT1 −

{
zId + Id − 2ζT2 − 2ζT3 −

{
zId + Id − 2ζT4

−2ζT5 − · · · −
{
zId + Id − 2ζT2n − 2ζT2n+1

}−1

4ζT2nζ
T
2n−1

}−1

·

· · · · 4ζT4 ζT3

}−1

4ζT2 ζT1

}−1

S
1/2
0

= lim
n→∞

S
1/2
0

{
(z + 1)Id −

{
Id −

{
(z + 1)Id −

· · · −
{

(z + 1)Id − 2ζT2n+1

}−1

2ζT2n

}−1

. . . 2ζT2

}−1

2ζT1

}−1

S
1/2
0 ,

where the quantities ζj ∈ R
d×d are defined by ζ0 = 0, ζ1 = U1, ζj = Vj−1Uj if

j ≥ 2 and the sequences {Uj} and {Vj} are the canonical moments of the random
walk measure Σ. The convergence is uniform on compact subsets of C with positive
distance from the interval [−1, 1]. In particular, the following representation holds:∫

dΣ(x)

1 − x
=

1

2
S

1/2
0

[
Id +

∞∑
l=1

(V T
1)−1 . . . (V T

l)−1UT
l . . . UT

1

]
S

1/2
0 .(4.4)

Proof. Let Pn(t) denote the nth monic orthogonal polynomial with respect to
the matrix measure dΣ(t); then it follows from Dette and Studden (2001) that Pn(t)
can be calculated recursively as

Pn+1(t) =
{

(t + 1)Id − 2ζT2n+1 − 2ζT2n

}
Pn(t) − 4ζT2nζ

T
2n−1Pn−1(t),(4.5)

where P 0(t) = Id, P−1(t) = 0, the quantities ζj ∈ R
d×d are defined by ζ0 = 0,

ζ1 = U1, ζj = Vj−1Uj if j ≥ 2, and the sequences {Uj} and {Vj} are the canonical
moments of the random walk measure Σ. Note that Dette and Studden (2001) define
the canonical moments for matrix measures on the interval [0, 1], but the canonical
moments are invariant with respect to transformations of the measure. More precisely,
it can be shown that measures related by an affine transformation t → a + (b − a)t
(a, b ∈ R, a < b) have the same canonical moments. The results for the corresponding
orthogonal polynomials can also easily be extended to matrix measures on the interval
[−1, 1]. The quantities

Δ2n := 〈Pn, Pn〉 = 22n(S0ζ1 . . . ζ2n)T(4.6)

are positive definite (see Dette and Studden (2001)) and consequently the polynomials

Pn(z) = Δ
−1/2
2n Pn(z)

are orthonormal with respect to the measure dΣ(x). Now a straightforward calculation
shows that these polynomials satisfy the recurrence relation

tPk(t) = Ak+1Pk+1(t) + BkPk(t) + AT
k Pk−1(t), k = 0, 1, . . . ,(4.7)

136 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

with initial conditions

P−1(t) = 0, P0(t) = S
−1/2
0(4.8)

and coefficients

An+1 = Δ
−1/2
2n Δ

1/2
2n+2,(4.9)

Bn = −Δ
−1/2
2n (Id − 2ζT2n − 2ζT2n+1)Δ

1/2
2n ,(4.10)

AT
n = 4Δ

−1/2
2n ζT2nζ

T
2n−1Δ

1/2
2n−2(4.11)

(note that the matrix Δ2n = 4Δ2n−2ζ2n−1ζ2n is symmetric and therefore the two

representations in (4.9) and (4.11) for the matrix An are in fact identical). If P
(1)
n (z)

denotes the first associated orthogonal polynomial corresponding to Pn(z) we obtain
from Zygmunt (2002) the representation

Fn(z) = (Pn+1(z))
−1P

(1)
n+1(z)

= S0{zId −B0 −A1{zId −B1 −A2{zId −B2 −(4.12)

· · · −An{zId −Bn}−1AT
n}−1 . . . AT

2 }−1AT
1 }−1.

Now a straightforward application of (4.9)–(4.11) yields

Fn(z) = S
1/2
0 {zId + Id − 2ζT1 − {zId + Id − 2ζT2 − 2ζT3 − {zId + Id − 2ζT4

−2ζT5 − · · · − {zId + Id − 2ζT2n − 2ζT2n+1}−14ζT2nζ
T
2n−1}−1 ·(4.13)

· · · · 4ζT4 ζT3 }−14ζT2 ζT1 }−1S
1/2
0 ,

and an iterative application of the matrix identity

Id + A−1B = (Id − (B + A)−1B)−1

and Markov’s theorem (see Duran (1996)) gives∫
dΣ(x)

z − x
= lim

n→∞
S

1/2
0

{
(z + 1)Id −

{
Id −

{
(z + 1)Id −

· · · −
{

(z + 1)Id − 2ζT2n+1

}−1

2ζT2n

}−1

. . . 2ζT2

}−1

2ζT1

}−1

S
1/2
0

(note that this transformation is essentially a contraction). This proves the first part
of the theorem. For the second part we put z = 1 and use formula (1.3) in Fair (1971)
to obtain∫

dΣ(x)

1 − x
= lim

n→∞

1

2
S

1/2
0

{
Id −

{
Id −

{
Id −(4.14)

· · · −
{
Id − ζT2n+1

}−1

ζT2n

}−1

. . .
}−1

ζT1

}−1

S
1/2
0

= lim
n→∞

1

2
S

1/2
0

n+1∑
j=0

X−1
j+1ζ

T
j Xj−1X

−1
j ζTj−1Xj−2X

−1
j−1 . . . X1X

−1
2 ζT1 S

1/2
0 ,

where X0 = Id, X1 = Id,

Xn+1 = Xn − ζTnXn−1 (n ≥ 1).

MATRIX MEASURES AND RANDOM WALKS 137

Now a straightforward induction argument shows that Xn+1 = V T
n . . . V T

1 and (4.14)
reduces to (4.4), which proves the remaining assertion of the theorem.

Our next result generalizes the famous characterization of recurrence in an irre-
ducible birth-and-death chain to the matrix case.

Theorem 4.5. Assume that the conditions of Theorem 2.1 are satisfied for the
block tridiagonal transition matrix of a random walk and that the corresponding spec-
tral measure is supported in the interval [−1, 1]. The state (0, �) is recurrent if and
only if

eT� S
1/2
0

∞∑
i=0

T−1
i+1A

−1
i CT

i Ti−1T
−1
i A−1

i−1C
T
i−1Ti−2T

−1
i−1 ·

· · · · T1T
−1
2 A−1

1 CT
1 T0T

−1
1 A−1

0 T0S
−1/2
0 e� = ∞,

where Ti = Qi(1) (i ∈ N0), T−2 = T−1 = Id, and Qi(x) denotes the ith random walk
polynomial defined by (1.4). In particular, an irreducible random walk on the grid Cd
is recurrent if and only if one of the diagonal elements of the matrix

S
1/2
0

∞∑
i=0

T−1
i+1A

−1
i CT

i Ti−1T
−1
i A−1

i−1C
T
i−1Ti−2T

−1
i−1 . . . T1T

−1
2 A−1

1 CT
1 T0T

−1
1 A−1

0 T0S
−1/2
0

is infinite (in this case all diagonal elements of this matrix have this property).
Proof. A combination of Corollary 4.1 and Theorem 4.4 shows that the state (0, �)

is recurrent if and only if

t =
1

2
eT� S

1/2
0

⎡⎣Id +

∞∑
j=1

(V T
j)−1 . . . (V T

l)−1UT
j . . . UT

1

⎤⎦S
−1/2
0 e� = ∞,(4.15)

where U1, U2, . . . are the canonical moments of the random walk measure Σ and Vj =
Id −Uj (j ≥ 1). In the following we express the right-hand side in terms of the blocks
of the one-step block tridiagonal transition matrix P corresponding to the random
walk. For this consider the recurrence relation (1.4) and define Tn = Qn(1). Note
that the polynomials Q

n
(t) = A0 . . . An−1Qn(t) are monic and satisfy the recurrence

relation

Q
n+1

(t) = tQ
n
(t) −A0 . . . An−1BnA

−1
n−1 . . . A

−1
0 Q

n
(t)

−A0 . . . An−1C
T
nA

−1
n−2 . . . A

−1
0 Q

n−1
(t).

Therefore a comparison with (4.5) yields

A0 . . . An−1BnA
−1
n−1 . . . A

−1
0 = −Id + 2ζT2n + 2ζT2n+1,(4.16)

A0 . . . An−1C
T
nA

−1
n−2 . . . A

−1
0 = 4ζT2nζ

T
2n−1.

Using these representations and the fact that UkVk = VkUk (see Dette and Studden
(2001), Theorem 2.7) it is easy to see that

Tn = Qn(1) = 2nA−1
n−1 . . . A

−1
0 V T

2n−1V
T
2n−2 . . . V

T
1 ,

and it follows from the same reference that these matrices are nonsingular for all
n ∈ N0. Therefore we can define

Q̂n(x) = T−1
n Qn(x),(4.17)

138 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

and it is easy to see that these polynomials satisfy the recurrence relation

xQ̂n(x) = ÂnQ̂n+1(x) + B̂nQ̂n(x) + ĈT
n Q̂n−1(x),(4.18)

where

Ân = T−1
n AnTn+1, B̂n = T−1

n BnTn, ĈT
n = T−1

n CT
n Tn−1(4.19)

(note that Ân + B̂n + ĈT
n = Id). Combining (4.16) with (4.19) we obtain

Â0 . . . Ân−1B̂nÂ
−1
n−1 . . . Â

−1
0 = −Id + 2ζT2n + 2ζT2n+1,

Â0 . . . Ân−1Ĉ
T
n Â

−1
n−2 . . . Â

−1
0 = 4ζT2nζ

T
2n−1,

and by an induction argument (noting that Ân + B̂n + ĈT
n = Id) it follows that

2UT
2nU

T
2n−1 = Â0 . . . Ân−1Ĉ

T
n Â

−1
n−1 . . . Â

−1
0 ,

2V T
2n+1V

T
2n = Â0 . . . Ân−1ÂnÂ

−1
n−1 . . . Â

−1
0 .

Finally, we obtain for the left-hand side of (4.15)

t =
1

2
eT� S

1/2
0

∞∑
j=0

{
(V T

1)−1 . . . (V T
2j)

−1UT
2j . . . U

T
1

+(V T
1)−1 . . . (V T

2j+1)
−1UT

2j+1 . . . U
T
1

}
S
−1/2
0 e�

= eT� S
1/2
0

∞∑
j=0

Â−1
j ĈT

j Â
−1
j−1 . . . Â

−1
1 ĈT

1 Â−1
0 S

−1/2
0 e�

= eT� S
1/2
0

∞∑
j=0

T−1
j+1A

−1
j CT

j Tj−1T
−1
j A−1

j−1C
T
j−1Tj−2T

−1
j−1 ·

· · · · T1T
−1
2 A−1

1 CT
1 T0T

−1
1 A−1

0 T0S
−1/2
0 e�

with Ti = Qi(1) (i ∈ N0), which proves the assertion of the theorem.
Remark 4.6. It is interesting to note that the condition in Theorem 4.5 simplifies

substantially if all the matrices Ti, Ai, Ci are commuting. In this case an irreducible
random walk is recurrent if and only if

eT� S
1/2
0

∞∑
i=0

T−1
i+1T

−1
i (C1 . . . Ci)

T (A0 . . . Ai)
−1S

−1/2
0 e� = ∞

for some � ∈ {1, . . . , d}.
Example 4.7. Consider the random walk on the tree introduced in section 3.5.

By Corollary 4.1 the state (0, 1) (which corresponds to the origin) is recurrent if and
only if

∞ = eT1

(∫
dΣ(x)

1 − x

)(∫
dΣ(x)

)−1

e1 =

∫ 2
√
pq

2
√
pq

a(x)

1 − x
dx,

where the function a is defined in section 3.5 and we have used the fact that
∫
dΣ(x) =

S0 = (RT
0 R0)

−1 (see Remark 2.2). Because the support of the spectral measure is
given by the interval [−

√
4pq,−

√
4pq] it follows that the condition p = q = 1

2 is
necessary for the recurrence of the random walk. Now a straightforward calculation
shows that the state (0, 1) (i.e., the center of the graph) is recurrent if and only if the

condition 2
∑d

i=2 d
2
i =

∑d
i=2 di is satisfied (in all other cases the integral is finite).

MATRIX MEASURES AND RANDOM WALKS 139

5. Applications. In this section we briefly discuss some applications of our
approach.

5.1. Representations of the invariant measure. Note that an irreducible
quasi-birth-and-death process always has an invariant measure with a matrix prod-
uct form (see Latouche, Pearce, and Taylor (1998)). In particular, if the process is
positive recurrent, the invariant measure coincides with the stationary distribution
x = (xT

0 , x
T
1 , . . .), which can be represented as

xT
k = xT

0

k−1∏
�=0

R̃�,(5.1)

where the set {R̃�}∞�=0 is the minimal nonnegative solution of the equations

Rk = Ak + RkBk+1 + RkRk+1C
T
k+2 (k ≥ 0)(5.2)

and x0 satisfies

xT
0 (B0 + R̃0C

T
1) = xT

0 ,(5.3)

normalized so that xT e = 1, where e denotes a vector with all entries equal to one.
We will now investigate these properties from the viewpoint derived in this paper and
suppose that the assumptions of Theorem 2.5 are satisfied for an irreducible aperiodic
Markov chain on the grid Cd. Note that the limits

Li′ = lim
n→∞

Pn
ii′

exist and do not depend on i. By the Theorem of dominated convergence and (2.16)
it follows that

Li′ = lim
n→∞

{
Qi(1)Σ(1)QT

i′ (1) + (−1)nQi(−1)Σ(−1)QT
i′ (−1)

}
Z−1
i′ ,(5.4)

where Zi′ =
∫
Qi′(x)dΣ(x)QT

i′ (x) and Σ(1) and Σ(−1) denote the mass of the ran-
dom walk matrix measure at the points 1 and −1, respectively. Considering the
subsequence of odd positive integers it follows that Σ has no mass at −1 and (5.4)
reduces to

Li′ = lim
n→∞

Pn
ii′ = Qi(1)Σ(1)QT

i′ (1)Z−1
i′ .(5.5)

Note that the left-hand side of this equation does not depend on i and therefore (5.5)
provides several representations for the same quantity (by using different values of i).
For example, if we put i = 0 and note that the rank of the matrices Li′ is 1 we obtain
from the identity L0 = Σ(1)Z−1

0 that the rank of the weight Σ(1) is 1. Moreover, if
the random walk is positive recurrent, the stationary distribution is given by

x = (xT
0 , x

T
1 , . . .) = eT0 (L0, L1, . . .),

and it follows that

xT
k = eT0 Lk = eT0 Σ(1)QT

k (1)Z−1
k (k ≥ 0),

140 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

which is an alternative representation for the stationary distribution. In particular,
we have for the vector x0 in (5.1)

xT
0 = eT0 Σ(1)S−1

0 .

Moreover, if the matrices Qk(1) are nonsingular, we obtain by straightforward calcu-
lation that the representation (5.1) holds with

R̃j = Zj(Q
T
j (1))−1QT

j+1(1)Z−1
j+1.(5.6)

Using the relations (2.4) it follows by straightforward algebra that the sequence
{R̃j}j∈N0

is in fact a solution of the system (5.2) and (5.3), which yield to the station-
ary distribution. We finally note that the proof of Theorem 2.1 shows that the matrix
Z−1
j = RT

j Rj can be expressed in terms of the blocks Aj , Cj and the matrix S0.

5.2. A necessary condition for positive recurrence. As a second applica-
tion we use the identity (5.5) for two values i, k and obtain

Qi(1)Σ(1)QT
i′ (1) = Qk(1)Σ(1)QT

i′ (1) = Li′

which reduces for i′ = 0 to

(Qi(1) −Qk(1))Σ(1) = 0 (i, k ≥ 0).(5.7)

Recall that by Corollary 4.2 the irreducible random walk is positive recurrent if and
only if all measures eT� dΣ(x)S−1

0 e� have a jump at the point 1. In this case it follows
from (5.7) that all matrices Qi(1) −Qk(1) are singular (otherwise Σ(1) would be the
null matrix). Consequently we obtain the following result.

Theorem 5.1. Assume that the block tridiagonal transition matrix of an irre-
ducible random walk satisfies the assumptions of Theorem 2.5. If the process is positive
recurrent, then the matrices

Qi(1) −Qk(1)

are singular for all i, k ∈ N0.
Example 5.2. Consider the random walk on the tree presented in section 3.5.

In Example 4.7 it is demonstrated that the random walk is recurrent if and only if
p = q = 1

2 and

d∑
i=2

di = 2

d∑
i=2

d2
i ,

which will be assumed in the following discussion. A straightforward calculation shows
that Q0(1) = Id,

Q1(1) =

⎛⎜⎜⎜⎜⎜⎝
2 −2d2 −2d3 . . . −2dd
−1 2 0 . . . 0
−1 0 2 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 2

⎞⎟⎟⎟⎟⎟⎠ ,

and consequently we obtain

|Q1(1) −Q0(1)| = |Id − 2B0| = 1 − 2d2 − · · · − 2dd = 2d1 − 1.

MATRIX MEASURES AND RANDOM WALKS 141

Therefore, if the random walk would be positive recurrent it follows that d1 = 1
2 .

Because the tree corresponding to the random walk is symmetric we conclude that
the role of d1 and d2 can be interchanged. Consequently the random walk can only be
positive recurrent if two of the probabilities dj are equal to 1/2 and the others vanish.
However, this corresponds to the symmetric random walk on Z, which is not positive
recurrent. In other words: the random walk considered in section 3.5 is recurrent if
p = q = 1

2 and
∑d

i=2 di = 2
∑d

i=2 d
2
i but never positive recurrent.

Acknowledgments. This work was done while H. Dette was visiting the De-
partment of Statistics, Purdue University, and this author would like to thank the
Department for its hospitality. The authors would like to thank two unknown ref-
erees for their constructive comments on an earlier version of this paper and Isolde
Gottschlich, who typed this paper with considerable technical expertise.

REFERENCES

A. Basilevsky (1983), Applied Matrix Algebra in the Statistical Sciences, North–Holland, Amster-
dam.

N. G. Bean, P. K. Pollett, and P. G. Taylor (2000), Quasi-stationary distributions for level-
dependent quasi-birth-and-death processes, Comm. Statist. Stochastic Models, 16, pp. 511–541.

Ju. M. Berezanskii (1968), Expansions in Eigenfunctions of Selfadjoint Operators, Trans. Math.
Monogr. 17, AMS, Providence, RI.

L. Bright and P. G. Taylor (1995), Calculating the equilibrium distribution in level dependent
quasi-birth-and-death processes, Comm. Statist. Stochastic Models, 11, pp. 497–525.

T. Dayar and F. Quessette (2002), Quasi-birth-and-death processes with level-geometric distribu-
tion, SIAM J. Matrix Anal. Appl., 24, pp. 281–291.

H. Dette (1996), On the generating functions of a random walk on the nonnegative integers, J.
Appl. Probab., 33, pp. 1033–1052.

H. Dette and W. J. Studden (1997), The Theory of Canonical Moments with Applications in
Statistics, Probability, and Analysis, Wiley, New York.

H. Dette and W. J. Studden (2001), Matrix measures, moment spaces, and Favard’s theorem for
the interval [0, 1] and [0,∞), Linear Algebra Appl., 345, pp. 163–193.

A. J. Duran (1995), On orthogonal polynomials with respect to a positive definite matrix of measures,
Canad. J. Math., 47, pp. 88–112.

A. J. Duran (1996), Markov’s theorem for orthogonal matrix polynomials, Canad. J. Math., 48, pp.
1180–1195.

A. J. Duran (1999), Ratio asymptotics for orthogonal matrix polynomials, J. Approx. Theory, 100,
pp. 304–344.

A. J. Duran and W. Van Assche (1995), Orthogonal matrix polynomials and higher-order recur-
rence relations, Linear Algebra Appl., 219, pp. 261–280.

W. Fair (1971), Noncommutative continued fractions, SIAM J. Math. Anal., 2, pp. 226–232.
W. Feller (1950), An Introduction to Probability Theory and Its Applications, Vol. I, John Wiley

& Sons, New York.
D. P. Gaver, P. A. Jacobs, and G. Latouche (1984), Finite birth-and-death models in randomly

changing environments, Adv. in Appl. Probab., 16, pp. 715–731.
B. Hajek (1982), Birth-and-death processes on the integers with phases and general boundaries,

J. Appl. Probab., 19, pp. 488–499.
P. R. Halmos and V. S. Sunder (1978), Bounded Integral Operators on L2-Spaces, Springer-Verlag,

New York.
S. Karlin and J. McGregor (1959), Random walks, Illionis J. Math., 3, pp. 66–81.
S. Karlin and H. M. Taylor (1975), A First Course in Stochastic Processes, Academic Press, New

York.
G. Latouche, C. E. M. Pearce, and P. G. Taylor (1998), Invariant measures for quasi-birth-

and-death processes, Comm. Statist. Stochastic Models, 14, pp. 443–460.
G. Latouche and V. Ramaswami (1999), Introduction to Matrix Analytic Methods in Stochastic

Modeling, ASA-SIAM Ser. Stat. Appl. Probab. 5, SIAM, Philadelphia, Chapter 12.
Q. L. Li and J. Cao (2004), Two types of RG-factorizations of quasi-birth-and-death processes and

their applications to stochastic integral functionals, Stoch. Models, 20, pp. 299–340.

142 H. DETTE, B. REUTHER, W. STUDDEN, AND M. ZYGMUNT

F. Marcellán and G. Sansigre (1993), On a class of matrix orthogonal polynomials on the real
line, Linear Algebra Appl., 181, pp. 97–109.

I. Marek (2003), Quasi-birth-and-death processes, level geometric distributions. An aggrega-
tion/disaggregation approach, J. Comput. Appl. Math., 152, pp. 277–288.

M. F. Neuts (1981), Matrix Geometric Solutions in Stochastic Models. An Algorithmic Approach.
The John Hopkins University Press, Baltimore.

M. F. Neuts (1989), Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel
Dekker, New York.

A. Ost (2001), Performance of Communication Systems: A Model-Based Approach with Matrix-
Geometric Methods, Springer-Verlag, Berlin.

V. Ramaswami and P. G. Taylor (1996), Some properties of the rate operators in level dependent
quasi-birth-and-death processes with a countable number of phases, Comm. Statist. Stochastic
Models, 12, pp. 143–164.

L. Rodman (1990), Orthogonal matrix polynomials, in Orthogonal Polynomials, NATO Adv. Sci.
Inst. Ser. C Math. Phys. Sci. 294, P. Nevai, ed., Kluwer, Dordrecht, The Netherlands, pp. 345–
362.

A. Sinap and W. Van Assche (1996), Orthogonal matrix polynomials and applications, J. Comput.
Appl. Math., 66, pp. 27–52.

E. A. van Doorn and P. Schrijner (1993), Random walk polynomials and random walk measures,
J. Comput. Appl. Math., 49, pp. 289–296.

E. A. van Doorn and P. Schrijner (1995), Geometric ergodicity and quasi-stationarity in discrete-
time birth-death processes, J. Austral. Math. Soc. Ser. B, 37, pp. 121–144.

T. A. Whitehurst (1982), An application of orthogonal polynomials to random walks, Pacific J.
Math., 99, pp. 205–213.

W. Woess (1985), Random walks and periodic continued fractions, Adv. in Appl. Probab., 17,
pp. 67–84.

M. J. Zygmunt (2002), Matrix Chebyshev polynomials and continued fractions, Linear Algebra
Appl., 340, pp. 155–168.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 143–159

SYMMETRIC LINEARIZATIONS FOR MATRIX POLYNOMIALS∗

NICHOLAS J. HIGHAM† , D. STEVEN MACKEY† , NILOUFER MACKEY‡ , AND

FRANÇOISE TISSEUR†

Abstract. A standard way of treating the polynomial eigenvalue problem P (λ)x = 0 is to
convert it into an equivalent matrix pencil—a process known as linearization. Two vector spaces of
pencils L1(P) and L2(P), and their intersection DL(P), have recently been defined and studied by
Mackey, Mackey, Mehl, and Mehrmann. The aim of our work is to gain new insight into these spaces
and the extent to which their constituent pencils inherit structure from P . For arbitrary polynomials
we show that every pencil in DL(P) is block symmetric and we obtain a convenient basis for DL(P)
built from block Hankel matrices. This basis is then exploited to prove that the first deg(P) pencils
in a sequence constructed by Lancaster in the 1960s generate DL(P). When P is symmetric, we
show that the symmetric pencils in L1(P) comprise DL(P), while for Hermitian P the Hermitian
pencils in L1(P) form a proper subset of DL(P) that we explicitly characterize. Almost all pencils in
each of these subsets are shown to be linearizations. In addition to obtaining new results, this work
provides a self-contained treatment of some of the key properties of DL(P) together with some new,
more concise proofs.

Key words. matrix polynomial, matrix pencil, linearization, companion form, quadratic eigen-
value problem, vector space, block symmetry, Hermitian, Hankel

AMS subject classifications. 65F15, 15A18

DOI. 10.1137/050646202

1. Introduction. The polynomial eigenvalue problem P (λ)x = 0, where

P (λ) =
k∑

i=0

λiAi, Ai ∈ C
n×n, Ak �= 0,(1.1)

arises in many applications and is an active topic of study. The quadratic case (k = 2)
is the most important in practice [25], but higher degree polynomials also arise [5], [13],
[19], [24]. We continue the practice stemming from Lancaster [15] of developing theory
for general k where possible, in order to gain the most insight and understanding.

The standard way of solving the polynomial eigenvalue problem is to linearize
P (λ) into L(λ) = λX + Y ∈ C

kn×kn, solve the generalized eigenproblem L(λ)z = 0,
and recover eigenvectors of P from those of L. Formally, L is a linearization of P if
there exist unimodular E(λ) and F (λ) (that is, det(E(λ)) and det(F (λ)) are nonzero
constants) such that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

Hence det(L(λ)) agrees with det(P (λ)) up to a nonzero constant multiplier, so that
L and P have the same eigenvalues. The linearizations used in practice are almost

∗Received by the editors November 28, 2005; accepted for publication (in revised form) by Z. Bai
July 3, 2006; published electronically December 21, 2006. This work was supported by Engineering
and Physical Sciences Research Council grant GR/S31693.

http://www.siam.org/journals/simax/29-1/64620.html
†School of Mathematics, The University of Manchester, Sackville Street, Manchester, M60 1QD,

UK (higham@ma.man.ac.uk, smackey@ma.man.ac.uk, ftisseur@ma.man.ac.uk). The work of the first
author was supported by a Royal Society-Wolfson Research Merit Award.

‡Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 (nil.mackey
@wmich.edu).

143

144 N. HIGHAM, D. S. MACKEY, N. MACKEY, AND F. TISSEUR

invariably one of C1(λ) = λX1 +Y1 and C2(λ) = λX2 +Y2, called the first and second
companion forms [16, sect. 14.1], respectively, where

X1 = X2 = diag(Ak, In, . . . , In),(1.2a)

Y1 =

⎡⎢⎢⎢⎣
Ak−1 Ak−2 . . . A0

−In 0 . . . 0
...

. . .
. . .

...
0 . . . −In 0

⎤⎥⎥⎥⎦ , Y2 =

⎡⎢⎢⎢⎢⎣
Ak−1 −In . . . 0

Ak−2 0
. . .

...
...

...
. . . −In

A0 0 . . . 0

⎤⎥⎥⎥⎥⎦ .(1.2b)

Yet many linearizations exist, and other than the convenience of their construction,
there is no apparent reason for preferring the companion forms. Indeed one obvious
disadvantage of the companion forms is their lack of preservation of certain structural
properties of P , most obviously symmetry.

Four recent papers have systematically addressed the task of broadening the menu
of available linearizations and providing criteria to guide the choice. Mackey et al. [17]
construct two vector spaces of pencils generalizing the companion forms and prove
many interesting properties, including that almost all of these pencils are lineariza-
tions. In [18], the same authors identify linearizations within these vector spaces that
respect palindromic and odd-even structures. Higham, D. S. Mackey, and Tisseur
[10] analyze the conditioning of some of the linearizations introduced in [17], looking
for a best conditioned linearization and comparing its condition number with that of
the original polynomial. Most recently, Higham, Li, and Tisseur [9] investigate the
backward error of approximate eigenpairs recovered from a linearization, obtaining
results complementary to, but entirely consistent with, those of [10].

Before discussing our aims, we recall some definitions and results from [17]. Let
F denote C or R. With the notation

Λ = [λk−1, λk−2, . . . , 1]T ∈ F
k, where k = deg(P),

define two vector spaces of kn× kn pencils L(λ) = λX + Y :

L1(P) =
{
L(λ) : L(λ)(Λ⊗ In) = v ⊗ P (λ), v ∈ F

k
}
,(1.3)

L2(P) =
{
L(λ) : (ΛT ⊗ In)L(λ) = wT ⊗ P (λ), w ∈ F

k
}
.(1.4)

The vectors v and w are referred to as “right ansatz” and “left ansatz” vectors,
respectively. It is easily checked that for the companion forms in (1.2), C1(λ) ∈ L1(P)
with v = e1 and C2(λ) ∈ L2(P) with w = e1, where ei denotes the ith column of Ik.
The dimensions of L1(P) and L2(P) are both k(k − 1)n2 + k [17, Cor. 3.6]. For any
regular P (that is, any P for which det(P (λ)) �≡ 0), almost all pencils in L1(P) and
L2(P) are linearizations of P [17, Thm. 4.7].

A crucial property of L1 and L2 is that eigenvectors of P can be directly recovered
from eigenvectors of linearizations in L1 and L2. Specifically, for any pencil L ∈ L1(P)
with nonzero right ansatz vector v, x is a right eigenvector of P with eigenvalue λ
if and only if Λ ⊗ x (if λ is finite) or e1 ⊗ x (if λ = ∞) is a right eigenvector for L
with eigenvalue λ. Moreover, if this L ∈ L1(P) is a linearization for P , then every

SYMMETRIC LINEARIZATIONS FOR MATRIX POLYNOMIALS 145

right eigenvector of L has one of these two Kronecker product forms; hence some
right eigenvector of P can be recovered from every right eigenvector of L. A similar
recovery property holds for left eigenvectors and pencils in L2(P). For more details,
see [17, Thms. 3.8, 3.14, and 4.4].

The subspace

DL(P) = L1(P) ∩ L2(P)(1.5)

of “double ansatz” pencils is of particular interest, because there is a simultaneous
correspondence via Kronecker products between left and right eigenvectors of P and
those of pencils in DL(P). Two key facts are that L ∈ DL(P) if and only if L
satisfies the conditions in (1.3) and (1.4) with w = v, and that every v ∈ F

k uniquely
determines X and Y such that L(λ) = λX + Y is in DL(P) [17, Thm. 5.3]. Thus
DL(P) is a k-dimensional space of pencils associated with P . Just as for L1(P) and
L2(P), almost all pencils in DL(P) are linearizations [17, Thm. 6.8].

Our contributions are now summarized. We show in section 3 that the set of
block symmetric pencils in L1(P) is precisely DL(P). That DL(P) should comprise
only block symmetric pencils is perhaps surprising, as P is arbitrary. We show that
the pencils corresponding to v = ei, i = 1: k, form a basis for DL(P) built from
block diagonal matrices with block Hankel blocks. This basis is used in section 4
to prove that the first k = deg(P) pencils in a sequence constructed by Lancaster
[14], [15], generate DL(P). In sections 5 and 6 we show that when P is symmetric
the set of symmetric pencils in L1(P) is the same as DL(P), while for Hermitian
P the Hermitian pencils in L1(P) form a proper subset of DL(P) corresponding to
real ansatz vectors. In section 7 we summarize the known “almost all pencils are
linearizations” results and prove such a result for the Hermitian pencils in L1(P).

Initially, our main motivation for this investigation was the problem of systemati-
cally generating symmetric linearizations for symmetric matrix polynomials. However,
the analysis has led, via the study of block symmetric pencils, to new derivations of
some of the general properties of DL(P). Therefore this paper should be useful as a
self-contained introduction to DL(P) with proofs that are conceptually clearer and
more concise than the original derivations in [17].

Finally, we motivate our interest in the preservation of symmetry. A matrix
polynomial that is real symmetric or Hermitian has a spectrum that is symmetric
with respect to the real axis, and the sets of left and right eigenvectors coincide.
These properties are preserved in a symmetric (Hermitian) linearization by virtue
of its structure—not just through the numerical entries of the pencil. A symmetry-
preserving pencil has the practical advantages that storage and computational cost
are reduced if a method that exploits symmetry is applied. The eigenvalues of a
symmetric (Hermitian) pencil L(λ) = λX +Y can be computed, for small to medium
size problems, by first reducing the matrix pair (Y,X) to tridiagonal-diagonal form
[23] and then using the HR [4], [6] or LR [21] algorithms or the Ehrlich–Aberth
iterations [3]. For large problems, a symmetry-preserving pseudo-Lanczos algorithm of
Parlett and Chen [20], [2, sect. 8.6], based on an indefinite inner product, can be used.
For a quadratic polynomial Q(λ) that is hyperbolic, or in particular overdamped, a
linearization that is a symmetric definite pencil can be identified [11, Thm. 3.6]; this
pencil is amenable to structure-preserving methods that exploit both the symmetry
and the definiteness [27] and guarantee real computed eigenvalues for Q(λ) not too
close to being nonhyperbolic.

146 N. HIGHAM, D. S. MACKEY, N. MACKEY, AND F. TISSEUR

2. Block symmetry and shifted sum. We begin with some notation and
results concerning block transpose and block symmetry. Our aim is to investigate
the existence and uniqueness of solutions in block symmetric matrices of the equation
X �→Y = Z, where �→ is a “shifted sum” operation and Z is a given arbitrary matrix.
For the purposes of this paper we consider only block matrices in which all the blocks
have the same size.

Definition 2.1 (block transpose). Let A = (Aij) be a block k × � matrix with
m× n blocks Aij. The block transpose of A is the block �× k matrix AB with m× n
blocks defined by (AB)ij = Aji.

Recall that all pencils in L1(P) and L2(P) are of size kn × kn, where k is the
degree of the n× n matrix polynomial P (λ). Throughout this paper we regard these
pencils as block k × k matrices with n × n blocks. The block transpose operation,
performed relative to this partitioning, establishes an intimate link between L1(P)
and L2(P).

Theorem 2.2. For any matrix polynomial P (λ), the block transpose map

L1(P) −→ L2(P),

L(λ) 	−→ L(λ)B

is a linear isomorphism between L1(P) and L2(P). In particular, if L(λ) ∈ L1(P)
has right ansatz vector v, then L(λ)B ∈ L2(P) with left ansatz vector w = v.

Proof. It is straightforward to check that
(
L(λ)(Λ ⊗ In)

)B
= (Λ ⊗ In)BL(λ)B =

(ΛT⊗In)L(λ)B and
(
v⊗P (λ)

)B
= vT⊗P (λ). Hence if L(λ) ∈ L1(P) with right ansatz

vector v, then block transposing the defining condition in (1.3) yields (ΛT⊗In)L(λ)B =
vT⊗P (λ). Thus L(λ)B ∈ L2(P) with left ansatz vector v, and so block transpose gives
a well-defined map from L1(P) to L2(P). Clearly this map is linear and the kernel
is just the zero pencil, since L(λ)B = 0 ⇒ L(λ) = 0. Since dim L1(P) = dim L2(P),
the proof is complete.

The companion forms give a nice illustration of Theorem 2.2. By inspection,

C2(λ) =
(
C1(λ)

)B
and, as noted earlier, C1(λ) ∈ L1(P) with right ansatz vector

v = e1 while C2(λ) ∈ L2(P) with left ansatz vector w = v = e1.
Given the notion of block transpose, it is natural to consider block symmetric

matrices, which will play a central role in our development. A block k × k matrix A
with m × n blocks is block symmetric if AB = A. For example, a block 2 × 2 block
symmetric matrix has the form

[
A11

A12

A12

A22

]
. Note that if each block Aij ∈ F

n×n in a
block symmetric matrix A is symmetric, then A is symmetric.

The column-shifted sum introduced in [17] is a simple operation on block matrices
that enables us both to easily construct pencils in L1(P) and to conveniently test when
a given pencil is in L1(P).

Definition 2.3 (column-shifted sum). Let X and Y be block k×k matrices with
n× n blocks Xij and Yij. Then the column-shifted sum X �→Y of X and Y is

X �→Y :=

⎡⎢⎣X11 . . . X1k 0
...

...
...

Xk1 . . . Xkk 0

⎤⎥⎦ +

⎡⎢⎣0 Y11 . . . Y1k

...
...

...
0 Yk1 . . . Ykk

⎤⎥⎦ ∈ F
kn×k(n+1),

where the zero blocks are n× n.

SYMMETRIC LINEARIZATIONS FOR MATRIX POLYNOMIALS 147

The significance of this shifted sum operation is revealed by the following result
[17, Lem. 3.4], which shows how membership in L1(P) is equivalent to a specific
Kronecker product form in the shifted sum.

Lemma 2.4. Let P (λ) =
∑k

i=0 λ
iAi be an n × n matrix polynomial of degree k,

and let L(λ) = λX + Y be a kn× kn pencil. Then for v ∈ F
k,

L(λ) ∈ L1(P) with right ansatz vector v ⇐⇒ X �→Y = v ⊗ [Ak Ak−1 . . . A0].

We now show that the equation X �→Y = Z with an arbitrary Z may always
be uniquely solved with block symmetric X and Y . To this end we introduce the
mapping

(X,Y)
S	−→ X �→Y

between the space of all pairs of block symmetric block k×k matrices (X,Y) and the
space of all block k × (k + 1) matrices Z.

Lemma 2.5. The shifted sum mapping S is a linear isomorphism.
Proof. The linearity of S follows easily from the definition of column-shifted sum

in Definition 2.3. Since S is linear and its domain and codomain have the same
dimension n2k(k + 1), it suffices to establish either the injectivity or the surjectivity
of S; we show here the injectivity.

Suppose X and Y are block symmetric and X �→Y = 0. We will show by induc-
tion that X = Y = 0. If k = 1 then X �→Y = [X Y] and X = Y = 0 is immediate.
Let k ≥ 2 and let X and Y be partitioned as indicated in the following diagram, with
the last block row and last block column labeled:

X �→Y =

(3)

X̃ (4)
�→

(2)

Ỹ
(1)

The last block column of X �→Y = 0 implies that (1) is zero. The block symmetry
of Y then implies that (2) is zero. The last block row of X �→Y = 0 now shows that
(3) is zero, and (4) is then zero by the block symmetry of X. We now have that

X �→Y =

[
X̃ 0
0 0

]
�→

[
Ỹ 0
0 0

]
=

[
X̃ �→Ỹ 0

0 0

]
= 0.

Since X̃ �→Ỹ = 0, the inductive hypothesis implies X̃ = Ỹ = 0, and consequently
that X = Y = 0.

Although Lemma 2.5 implies that X �→Y = Z can always be solved with block
symmetric X and Y , it gives no information about the form of the solution or how to
construct it. Knowing the structure of X and Y is crucial to the later developments in
sections 3 and 4, so we close this section with a procedure for explicitly constructing
these solutions.

148 N. HIGHAM, D. S. MACKEY, N. MACKEY, AND F. TISSEUR

First we define three special types of block symmetric matrix that play a central
role in the construction. Let

R� =

[
1

. .
.

1

]
�×�

and N� =

⎡⎢⎢⎣
0 1

0
. . .
. . . 1

0

⎤⎥⎥⎦
�×�

. (Note that N1 = 0.)(2.1)

For an arbitrary n×n block M, we define three block Hankel, block symmetric, block
�× � matrices:

H(0)
� (M) :=

[
M

. .
.

M

]
= R� ⊗M,

H(1)
� (M) :=

⎡⎣ M 0
. .

.
. .

.

M . .
.

0

⎤⎦ = (N�R�) ⊗M =

⎡⎣ 1 0
. .

.
. .

.

1 . .
.

0

⎤⎦⊗M,

H(−1)
� (M) :=

⎡⎣ 0
. .

.
M

. .
.

. .
.

0 M

⎤⎦ = (R�N�) ⊗M =

⎡⎣ 0
. .

.
1

. .
.

. .
.

0 1

⎤⎦⊗M.

The superscript (0), (1), or (−1) denotes that the blocks M are on, above, or below
the antidiagonal, respectively. Note that all three of these block Hankel matrices are
symmetric if M is.

Now let E�
ij ∈ F

�×(�+1) denote the matrix that is everywhere zero except for a
1 in the (i, j) entry. Our construction is based on the observation that for arbitrary
M,P ∈ F

n×n, the shifted sums

H(0)
� (M) �→(−H(1)

� (M)) =

⎡⎢⎢⎣
0 0 0
... . .

.
. .

. ...

0 0 . .
. ...

M 0 0

⎤⎥⎥⎦ = E�
�1 ⊗M,(2.2)

−H(−1)
� (P) �→H(0)

� (P) =

⎡⎢⎢⎣
0 0 P... . .

.
0 0

... . .
.

. .
. ...

0 0 0

⎤⎥⎥⎦ = E�
1,�+1 ⊗ P(2.3)

place M and P at the bottom left corner and top right corner of a block � × (� + 1)
matrix, respectively.

Inherent in the linearity of the map S is the compatibility of the shifted sum �→
with ordinary sums, i.e.,(∑

Xi

)
�→

(∑
Yi

)
=

∑(
Xi �→Yi

)
.

Hence if we can show how to construct block symmetric X and Y that place an
arbitrary n × n block into an arbitrary (i, j) block location in Z, then sums of such
examples will achieve the desired result for an arbitrary Z.

SYMMETRIC LINEARIZATIONS FOR MATRIX POLYNOMIALS 149

For indices i, j such that 1 ≤ i ≤ j ≤ k, let � = j− i+1 and embed H(0)
� (M) and

−H(1)
� (M) as principal submatrices in block rows and block columns i through j of

block k × k zero matrices to get

X̂ij �→Ŷij :=

i j

i

j

⎡⎢⎢⎢⎢⎣ H(0)
� (M)

⎤⎥⎥⎥⎥⎦ �→

i j

i

j

⎡⎢⎢⎢⎢⎣ −H(1)
� (M)

⎤⎥⎥⎥⎥⎦(2.4)

=

i j+1

i

j

⎡⎢⎢⎣ H(0)
� (M) �→(−H(1)

� (M))

⎤⎥⎥⎦
= Eji ⊗M (i ≤ j).

Note that embedding H(0)
� (M) and −H(1)

� (M) as principal block submatrices guar-

antees that X̂ij and Ŷij are block symmetric. Similarly, defining the block symmetric
matrices

X̃ij =

i j

i

j

⎡⎢⎢⎣ −H(−1)
� (P)

⎤⎥⎥⎦ , Ỹij =

i j

i

j

⎡⎢⎢⎣ H(0)
� (P)

⎤⎥⎥⎦ ,(2.5)

we have

X̃ij �→Ỹij = Ei,j+1 ⊗ P (i ≤ j).(2.6)

Thus sums of these principally embedded versions of (2.2) and (2.3) can produce an
arbitrary block k × (k + 1) matrix Z as the column-shifted sum of block symmetric
X and Y .

3. Block symmetric pencils and DLDLDL(P) for general P . We now study the
subspace of block symmetric pencils in L1(P), which turns out to be the same as the
space DL(P). This way of characterizing DL(P) leads to short proofs of some of its
properties, as well as the identification of a useful basis.

3.1. Block symmetric pencils in LLL1(P). For a general polynomial P we can
use the results of section 2 to analyze the subspace

B(P) :=
{
λX + Y ∈ L1(P) : XB = X, Y B = Y

}
(3.1)

of all block symmetric pencils in L1(P). We will see in section 7 that almost all of
these pencils are indeed linearizations for P .

Theorem 3.1. For any matrix polynomial P (λ) of degree k, dim B(P) = k, and
for each vector v ∈ F

k there is a uniquely determined block symmetric pencil in B(P).

150 N. HIGHAM, D. S. MACKEY, N. MACKEY, AND F. TISSEUR

Proof. Recalling that L1 is defined by (1.3), the theorem is proved if we can show
that the map

B(P)
M−→ VP := {v ⊗ P (λ) : v ∈ F

k},(3.2)

L(λ) 	−→ L(λ) (Λ⊗ In)

is a linear isomorphism.
First, recall from Lemma 2.4 that for any pencil λX + Y ∈ L1(P),

(λX + Y)(Λ⊗ In) = v ⊗ P (λ) ⇐⇒ X �→Y = v ⊗ [Ak Ak−1, . . . , A0].(3.3)

Thus λX+Y is in kerM if and only if X �→Y = 0. But X and Y are block symmetric,
so by Lemma 2.5 we see that kerM = {0}, and hence M is 1-1.

To see that M is onto, let v ⊗ P (λ) with v ∈ F
k be an arbitrary element of

VP . With Z = v ⊗ [Ak Ak−1, . . . , A0], Lemma 2.5 shows that there exist block
symmetric X and Y such that X �→Y = v ⊗ [Ak Ak−1, . . . , A0]. Then by (3.3) we
have M(λX + Y) = v ⊗ P (λ), showing that M is onto.

3.2. Double ansatz pencils. Our goal is now to show that DL(P) := L1(P)∩
L2(P) = B(P). The inclusion DL(P) ⊆ B(P), which says that all pencils λX + Y in
DL(P) are block symmetric, can be deduced immediately from the following formulae
for the blocks of X and Y in terms of the right ansatz vector v [17, Thm. 5.3]:

Xij = vmax(i,j)Ak+1−min(i,j) +

min(i−1,j−1)∑
μ=1

(vj+i−μAk+1−μ − vμAk+1−j−i+μ),

Yij =

min(i,j)∑
μ=1

(vμAk−j−i+μ − vj+i+1−μAk+1−μ), i, j = 1: k.

However, the derivation of these formulas is long and tedious. We present a shorter
proof, based on first principles, of the stronger result DL(P) = B(P).

Lemma 3.2. For any matrix polynomial P (λ), B(P) ⊆ DL(P). Moreover, the
right and left ansatz vectors of any L(λ) ∈ B(P) are equal.

Proof. For L(λ) ∈ B(P) ⊂ L1(P) with right ansatz vector v, we know from
Theorem 2.2 that L(λ)B = L(λ) is in L2(P) with left ansatz vector w = v, and so
L(λ) ∈ DL(P).

Now we consider the special case of DL(P)-pencils with v = 0, showing that in
this case the left ansatz vector w is forced to be 0 and the pencil is unique. Note that
the definition of DL(P) does not require that X and Y are block symmetric, so we
cannot appeal to Lemma 2.5 here.

Lemma 3.3. Suppose L(λ) = λX +Y ∈ DL(P) has right ansatz vector v and left
ansatz vector w. Then v = 0 implies that w must also be 0, and that X = Y = 0.

Proof. We first show that the �th block column of X and the �th coordinate of
w is zero for � = 1: k, by an induction on � .

Suppose that � = 1. From Lemma 2.4 we know that X �→Y =v⊗[Ak Ak−1, . . . , A0].
Since v = 0 we have X �→Y = 0, and hence the first block column of X is zero.
Now from Theorem 2.2, L(λ) being in L2(P) with left ansatz vector w implies
that L(λ)B ∈ L1(P) with right ansatz vector w, which can be written in terms of

SYMMETRIC LINEARIZATIONS FOR MATRIX POLYNOMIALS 151

the shifted sum as

XB �→Y B = w ⊗ [Ak Ak−1, . . . , A0].(3.4)

The (1, 1)-block of the right-hand side of (3.4) is w1Ak, while on the left-hand side
the (1, 1)-block of XB �→Y B is the same as the (1, 1)-block of X. Hence w1Ak = 0.
But the leading coefficient Ak of P (λ) is nonzero by assumption, so w1 = 0.

Now suppose that the �th block column of X is zero and that w� = 0. Then
by (3.4) the �th block row of XB �→Y B is zero. Since the �th block row of XB is zero,
the �th block row of Y B, or, equivalently, the �th block column of Y , must also be
zero. Combining this with X �→Y = 0 implies that the (� + 1)st block column of X
is zero. Now equating the (� + 1, 1)-blocks of both sides of (3.4) gives w�+1Ak = 0,
and hence w�+1 = 0. This concludes the induction, and shows that X = 0 and
w = 0.

Finally, X = 0 and X �→Y = 0 implies Y = 0, completing the proof.
We can now characterize DL(P) and give a precise description of all right/left

ansatz vector pairs (v, w) that can be realized by some DL(P)-pencil. The latter has
already been done in [17, Thm. 5.3], but with a much longer derivation.

Theorem 3.4. For a matrix polynomial P (λ) of degree k, DL(P) = B(P). In
particular, if L(λ) ∈ DL(P) with right ansatz vector v and left ansatz vector w, then
v = w and L is block symmetric. Thus dim DL(P) = k, and for each v ∈ F

k there is
a uniquely determined pencil in DL(P).

Proof. Consider the linear map DL(P) −→ F
k that associates to any pencil

L(λ) ∈ DL(P) its right ansatz vector v ∈ F
k. By Lemma 3.3 this map is injective,

so that dim DL(P) ≤ k. But B(P) ⊆ DL(P) by Lemma 3.2, and dim B(P) = k by
Theorem 3.1, so B(P) = DL(P). The rest of the theorem follows from the properties
of B(P) in Theorem 3.1 and Lemma 3.2.

The equality DL(P) = B(P) can be thought of as saying that the pencils in DL(P)
are doubly structured: they have block symmetry as well as the eigenvector recovery
properties that were the original motivation for their definition.

3.3. The standard basis for BBB(P). The isomorphism established in the proof
of Theorem 3.1 immediately suggests the possibility that the basis for B(P) corre-
sponding (via the map M in (3.2)) to the standard basis {e1, . . . , ek} for F

k may be
especially simple and useful. In this section we derive a general formula for these
“standard basis pencils” in B(P) as a corollary of the shifted sum construction used
in section 2 to build block symmetric solutions of the equation X �→Y = Z. These
pencils are of course also a basis for DL(P), since DL(P) = B(P).

In light of Lemma 2.4, then, our goal is to construct for each 1 ≤ m ≤ k a block
symmetric pencil λXm + Ym such that

Xm �→Ym = em ⊗ [Ak Ak−1, . . . , A0].(3.5)

This is most easily done in two steps. First we show how to achieve the first m block
columns in the desired shifted sum, i.e., how to get em ⊗ [Ak, . . . , Ak−m+1 0, . . . , 0].
Then the last k−m+1 block columns em⊗ [0, . . . , 0 Ak−m, . . . , A1 A0] are produced
by a related but slightly different construction. We use the following notation for
principal block submatrices, adapted from [12]: for a block k× k matrix X and index
set α ⊆ {1, 2, . . . , k}, X(α) will denote the principal block submatrix lying in the
block rows and block columns with indices in α.

To get the first m block columns in the desired shifted sum we repeatedly use
the construction in (2.4) to build block k × k matrices X̂m and Ŷm , embedding

152 N. HIGHAM, D. S. MACKEY, N. MACKEY, AND F. TISSEUR

once in each of the principal block submatrices X̂m(αi) and Ŷm(αi) for the index
sets αi = {i, i + 1, . . . ,m}, i = 1: m. Accumulating these embedded submatrices,
we obtain

X̂m =

m⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ak
. .

.
Ak−1

. .
.

. .
. ...

. .
.

. .
. ...

AkAk−1 Ak−m+1

0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m,

Ŷm = −

m⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ak 0
. .

.
Ak−1 0

. .
.

. .
. ...

...
AkAk−1 . . . Ak−m+2 0
0 0 0

0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m,

with the property that X̂m �→Ŷm = em ⊗ [Ak, . . . , Ak−m+1 0, . . . , 0] .
To obtain the last k − m + 1 columns we use the construction outlined in (2.5)

and (2.6) k − m + 1 times to build block k × k matrices X̃m and Ỹm , embedding

once in each of the principal block submatrices X̃m(βj) and Ỹm(βj) for the index sets
βj = {m,m + 1, . . . , j}, j = m : k, which yields

X̃m = −

m k⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0

0 0 0
0 Ak−m−1

. . . A1 A0...
... . .

.
. .

.
... A1 . .

.

0 A0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m

k

,

Ỹm =

m k⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0

Ak−m A1 A0... . .
.
A0... . .

.
. .

.

A1 . .
.

A0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m

k

,

SYMMETRIC LINEARIZATIONS FOR MATRIX POLYNOMIALS 153

satisfying X̃m �→Ỹm = em⊗ [0, . . . , 0 Ak−m, . . . , A1 A0] . With Xm := X̂m + X̃m and

Ym := Ŷm + Ỹm we have Xm �→Ym = em ⊗ [Ak Ak−1, . . . , A1 A0] , so λXm + Ym is
the mth standard basis pencil for B(P).

A more concise way to express the mth standard basis pencil uses the following
block Hankel matrices. Let Lj(P (λ)) denote the lower block antitriangular, block
Hankel, block j × j matrix

Lj(P (λ)) :=

⎡⎢⎢⎣
Ak

. .
.

Ak−1

. .
.

. .
. ...

Ak Ak−1 . . . Ak−j+1

⎤⎥⎥⎦(3.6)

formed from the first j matrix coefficients Ak, Ak−1, . . . , Ak−j+1 of P (λ). Similarly,
let Uj(P (λ)) denote the upper block antitriangular, block Hankel, block j × j matrix

Uj(P (λ)) :=

⎡⎢⎢⎣
Aj−1 . . . A1 A0

... . .
.

. .
.

A1 . .
.

A0

⎤⎥⎥⎦(3.7)

formed from the last j matrix coefficients Aj−1, Aj−2, . . . , A1, A0 of P (λ). Then the
block symmetric matrices Xm and Ym in the mth standard basis pencil (m = 1: k)
can be neatly expressed as direct sums of block Hankel matrices:

Xm = Xm(P (λ)) =

[
Lm(P (λ)) 0

0 −Uk−m(P (λ))

]
,(3.8a)

Ym = Ym(P (λ)) =

[
−Lm−1(P (λ)) 0

0 Uk−m+1(P (λ))

]
.(3.8b)

(Lj and Uj are taken to be void when j = 0.) From (3.8) it now becomes obvious
that the coefficient matrices in successive standard basis pencils are closely related:

Ym(P (λ)) = −Xm−1(P (λ)), m = 1: k.(3.9)

Thus we have the following explicit formula for the standard basis pencils in B(P).
Theorem 3.5. Let P (λ) be a matrix polynomial of degree k. Then for m = 1: k

the block symmetric pencil in B(P) with ansatz vector em is λXm−Xm−1, where Xm

is given by (3.8a).
The standard basis pencils in B(P) for general polynomials of degree 2 and 3

are listed in Tables 3.1 and 3.2, where the partitioning from (3.8) is shown in each

Table 3.1

Block symmetric standard basis for the quadratic P (λ) = λ2A + λB + C.

v L(λ) ∈ B(P)[
1
0

]
λ

[
A 0

0 −C

]
+

[
B C
C 0

]
[
0
1

]
λ

[
0 A
A B

]
+

[
−A 0

0 C

]

154 N. HIGHAM, D. S. MACKEY, N. MACKEY, AND F. TISSEUR

Table 3.2

Block symmetric standard basis for the cubic P (λ) = λ3A + λ2B + λC + D.

v L(λ) ∈ B(P)[
1
0
0

]
λ

[
A 0 0

0 −C −D
0 −D 0

]
+

[
B C D
C D 0
D 0 0

]
[

0
1
0

]
λ

[
0 A 0
A B 0

0 0 −D

]
+

[
−A 0 0

0 C D
0 D 0

]
[

0
0
1

]
λ

[
0 0 A
0 A B
A B C

]
+

[
0 −A 0

−A −B 0

0 0 D

]

case. As an immediate consequence we have, for the important case of quadratics
P (λ) = λ2A + λB + C, the following description of all block symmetric pencils in
L1(P):

B(P) =

{
L(λ) = λ

[
v1A v2A
v2A v2B − v1C

]
+

[
v1B − v2A v1C

v1C v2C

]
: v ∈ C

2

}
.

4. Other constructions of block symmetric linearizations. Several other
methods for constructing block symmetric linearizations of matrix polynomials have
appeared previously in the literature.

Antoniou and Vologiannidis [1] have recently found new companion-like lineariza-
tions for general matrix polynomials P by generalizing Fiedler’s results [7] on a factor-
ization of the companion matrix of a scalar polynomial and certain of its permutations.
From this finite family of 1

6 (2 + degP)! pencils, all of which are linearizations, they
identify one distinguished pencil that is Hermitian whenever P is Hermitian. But this
example has structure even for general P : it is block symmetric. Indeed, it provides
a simple example of a block symmetric linearization for P (λ) that is not in B(P). In
the case of a cubic polynomial P (λ) = λ3A + λ2B + λC + D, the pencil is

L(λ) = λ

⎡⎣ A 0 0
0 0 I
0 I C

⎤⎦ +

⎡⎣ B −I 0
−I 0 0
0 0 D

⎤⎦ .(4.1)

Using the column-shifted sum it is easy to see that L(λ) is not in L1(P), and hence
not in B(P).

Contrasting with the “permuted factors” approach of [1], [7] and the additive
construction used in this paper, is a third “multiplicative” method for generating
block symmetric linearizations described by Lancaster in [14], [15]. In [14] only scalar
polynomials p(λ) = akλ

k + · · · + a1λ + a0 are considered; the starting point is the
companion matrix of p(λ),

C =

⎡⎢⎢⎢⎣
−a−1

k

1
. . .

1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ak−1 ak−2 . . . a0

1 0 . . . 0
. . .

. . .
...

0 1 0

⎤⎥⎥⎥⎦ ,(4.2)

SYMMETRIC LINEARIZATIONS FOR MATRIX POLYNOMIALS 155

and the associated pencil λI−C. Lancaster’s idea is to seek a nonsingular symmetric
matrix B such that BC is symmetric, thus providing a symmetric linearization B(λI−
C) = λB−BC for p(λ). That such a B can always be found follows from a standard
result in matrix theory [12, Cor. 4.4.11]. Lancaster shows further that B and BC
symmetric imply BCj is symmetric for all j ≥ 1; thus BCj−1(λI − C) = λBCj−1 −
BCj is a symmetric pencil for any j ≥ 1, and for j ≥ 2 it is a linearization of p(λ)
if a0 �= 0. This strategy is realized in [14] with the particular choice of symmetric
(Hankel) matrix

B =

⎡⎢⎣ ak
. .

.
ak−1

. .
.

. .
. ...

ak ak−1 . . . a1

⎤⎥⎦ ,(4.3)

which is nonsingular since ak �= 0, and it is observed that this particular B gives
symmetric pencils λBCj−1 − BCj with an especially simple form for 1 ≤ j ≤ k,
though apparently with a much more complicated form for j > k.

It is easy to see that these symmetric pencils, constructed for scalar polynomi-
als p(λ), can be immediately extended to block symmetric pencils for general ma-
trix polynomials P (λ) simply by formally replacing the scalar coefficients of p(λ)
in B,BC,BC2, . . . by the matrix coefficients of P (λ). This has been done in [15,
sect. 4.2] and [8]. Garvey et al. [8] go even further with these block symmetric pen-
cils, using them as a foundation for defining a new class of isospectral transformations
on matrix polynomials.

Since Lancaster’s construction of pencils is so different from ours there is no a
priori reason to expect any connection between his pencils and the pencils in DL(P).
The next result shows, rather surprisingly, that the first k pencils in Lancaster’s
sequence generate DL(P).

Theorem 4.1. For any matrix polynomial P (λ) of degree k, the pencil λBCk−m−
BCk−m+1 from Lancaster’s construction, with B and C defined by the block matrix
analogue of (4.2) and (4.3), is identical to λXm−Xm−1, the mth standard basis pencil
for DL(P), for m = 1: k.

Proof. We have to show that Xm = BCk−m, m = 0: k, where Xm is given by
(3.8a). For notational simplicity we will carry out the proof for a scalar polynomial;
the same proof applies to a matrix polynomial with only minor changes in notation.
The m = k case, Xk(p(λ)) = Lk(p(λ)) = B, is immediate from (3.6), (3.8), and (4.3).
The rest follow inductively (downward) from the relation Xm−1(p(λ)) = Xm(p(λ))·C,
which we now proceed to show holds for m = 1: k.

To see that XmC = Xm−1, or equivalently that[
Lm(p(λ)) 0

0 −Uk−m(p(λ))

]
C =

[
Lm−1(p(λ)) 0

0 −Uk−m+1(p(λ))

]
holds for 1 ≤ m ≤ k, it will be convenient to rewrite the companion matrix (4.2) in
the form

C = NT
k − a−1

k

⎡⎢⎢⎢⎣
ak−1 ak−2 . . . a0

0 0 . . . 0
...

...
...

0 0 . . . 0

⎤⎥⎥⎥⎦ = NT
k − a−1

k e1

[
ak−1 ak−2 . . . a0

]
,

156 N. HIGHAM, D. S. MACKEY, N. MACKEY, AND F. TISSEUR

where Nk is defined in (2.1). Then

Xm(p(λ))C = Xm(p(λ))NT
k − a−1

k Xm(p(λ)) e1

[
ak−1 ak−2 . . . a0

]
=

[
Lm(p(λ)) 0

0 −Uk−m(p(λ))

]
NT

k − em
[
ak−1 ak−2 . . . a0

]
.

In the first term, postmultiplication by NT
k has the effect of shifting the columns to

the left by one (and losing the first column), thus giving

Xm(p(λ))C =

⎡⎣ Lm−1(p(λ)) 0 0
ak−1 . . . ak−m+1 0 0

0 −Uk−m(p(λ)) 0

⎤⎦

−

⎡⎣ 0 0 0
ak−1 . . . ak−m+1 ak−m . . . a1 a0

0 0 0

⎤⎦

=

⎡⎣ Lm−1(p(λ)) 0 0
0 −ak−m . . . − a1 −a0

0 −Uk−m(p(λ)) 0

⎤⎦
=

[
Lm−1(p(λ)) 0

0 − Uk−m+1(p(λ))

]
= Xm−1(p(λ)).

This completes the inductive step of the proof.

5. Symmetric pencils in LLL1(P) for symmetric P . We now return to the
problem that originally motivated the investigation in this paper, that of system-
atically finding large sets of symmetric linearizations for symmetric polynomials,
P (λ) = P (λ)T . Our strategy is first to characterize the set

S(P) :=
{
λX + Y ∈ L1(P) : XT = X, Y T = Y

}
(5.1)

of all symmetric pencils in L1(P) when P is symmetric, and then later in section 7 to
show that almost all of these symmetric pencils are indeed linearizations for P .

We begin with a result for symmetric polynomials reminiscent of Theorem 2.2,
but using transpose rather than block transpose.

Lemma 5.1. Suppose P (λ) is a symmetric matrix polynomial and L(λ) ∈ L1(P)
with right ansatz vector v. Then LT (λ) ∈ L2(P) with left ansatz vector w = v.
Similarly, L(λ) ∈ L2(P) with left ansatz vector v implies that LT (λ) ∈ L1(P) with
right ansatz vector v.

Proof. Suppose L(λ) ∈ L1(P) with right ansatz vector v. Then(
L(λ)(Λ⊗ I)

)T
=

(
v ⊗ P (λ)

)T
=⇒ (ΛT ⊗ I)LT (λ) = vT ⊗ P (λ).

Thus LT (λ) ∈ L2(P) with left ansatz vector v. The proof of the second statement is
analogous.

We characterize the space S(P) in the next result by relating it to the previously
developed space DL(P), which we already know equals B(P).

Theorem 5.2. For any symmetric polynomial P (λ), S(P) = DL(P).

SYMMETRIC LINEARIZATIONS FOR MATRIX POLYNOMIALS 157

Proof. Suppose L(λ) ∈ S(P) ⊆ L1(P) with right ansatz vector v. Then by
Lemma 5.1 we know that LT (λ) = L(λ) is in L2(P) with left ansatz vector v, and so
L(λ) ∈ DL(P). Thus S(P) ⊆ DL(P).

By Lemma 5.1, L(λ) ∈ DL(P) with right/left ansatz vector v implies that LT (λ) ∈
DL(P) with left/right ansatz vector v. But by Theorem 3.4 pencils in DL(P) are
uniquely determined by their ansatz vector, so L(λ) ≡ LT (λ), and hence DL(P) ⊆
S(P). Therefore DL(P) = S(P).

Once again one may refer to Tables 3.1 and 3.2 for examples of what are in effect
triply structured pencils whenever P is symmetric. Recall, however, that there are
symmetric linearizations for P that are not in S(P): L in (4.1) is not in S(P), but is
a symmetric linearization for any symmetric cubic P .

6. Hermitian pencils in LLL1(P) for Hermitian P . For a Hermitian matrix
polynomial P (λ) of degree k, that is, P (λ)∗ = P (λ), let

H(P) :=
{
λX + Y ∈ L1(P) : X∗ = X, Y ∗ = Y

}
(6.1)

denote the set of all Hermitian pencils in L1(P). A priori the right ansatz vector
v of a pencil in H(P) might be any vector in C

k, since P is a complex polynomial.
However, we will see that any such v must in fact be real, and furthermore that any
Hermitian pencil in L1(P) must be in DL(P).

Theorem 6.1. For any Hermitian polynomial P (λ), H(P) is the subset of all
pencils in DL(P) with a real ansatz vector. In other words, for each vector v ∈ R

k

there is a unique Hermitian pencil in H(P).
Proof. Suppose L(λ) ∈ H(P) ⊂ L1(P) with right ansatz vector v, so that L(λ)(Λ⊗

I) = v ⊗ P (λ). Then, since P and L are Hermitian,(
L(λ)(Λ⊗ I)

)∗
=

(
v ⊗ P (λ)

)∗
=⇒ (Λ

T ⊗ I)L(λ) = vT ⊗ P (λ).

This last equation holds for all λ, so we may replace λ by λ to get (ΛT ⊗ I)L(λ) =
vT ⊗ P (λ), so that L(λ) ∈ L2(P) with left ansatz vector w = v. Thus L(λ) ∈ DL(P)
and H(P) ⊆ DL(P). But by Theorem 3.4 the right and left ansatz vectors of any
DL(P)-pencil must be equal. So v = v, which means v ∈ R

k.
Conversely, for an arbitrary v ∈ R

k let H(λ) be the unique pencil in DL(P) with
right/left ansatz vector v. By arguments analogous to those used in Lemma 5.1 it
is straightforward to show that for Hermitian P , L(λ) ∈ DL(P) with any right/left
ansatz vector v ∈ C

k implies that L∗(λ) := λX∗ + Y ∗ ∈ DL(P) with left/right
ansatz vector v. But H(λ) has a real ansatz vector v, so H∗(λ) ∈ DL(P) with
exactly the same ansatz vector v. Thus the uniqueness of DL(P)-pencils established
in Theorem 3.4 implies that H(λ) ≡ H∗(λ), i.e., H(λ) ∈ H(P).

7. Almost all pencils in BBB(P), DLDLDL(P), SSS(P), and HHH(P) are linearizations.
The remaining fundamental issue is the question of which pencils in the subspaces
B(P), DL(P), S(P), and H(P) are actually linearizations for P when P is regular.
Some answers to this question are already known. First, a pencil L in L1(P) or L2(P)
is a linearization precisely when L is a regular pencil [17, Thm. 4.3]. Second, for each
of L1(P), L2(P), and DL(P) it is known that almost all pencils are linearizations,
where “almost all” means all except for a closed, nowhere dense set of measure zero
[17, Thms. 4.7, 6.8]. Because of Theorems 3.4 and 5.2, the same conclusion follows
immediately for B(P), and for S(P) when P is symmetric. However, for H(P) the
possible ansatz vectors lie in R

k, a closed, nowhere dense set of measure zero in C
k

158 N. HIGHAM, D. S. MACKEY, N. MACKEY, AND F. TISSEUR

(the ansatz vector set of DL(P) when P is Hermitian), so we cannot immediately
deduce an “almost all” result for H(P). Some further analysis is therefore needed.

To a vector v = [v1, v2, . . . , vk]
T ∈ F

k associate the scalar polynomial

p(x; v) = v1x
k−1 + v2x

k−2 + · · · + vk−1x + vk,

referred to as the “v-polynomial” of the vector v. We adopt the convention that
p(x; v) has a root at ∞ whenever v1 = 0. The following result provides a condition
that L ∈ DL(P) be a linearization of P .

Theorem 7.1 (eigenvalue exclusion theorem [17, Thm. 6.7]). Suppose that P (λ)
is a regular matrix polynomial and L(λ) ∈ DL(P) with ansatz vector v. Then L(λ)
is a linearization for P (λ) if and only if no root of the v-polynomial p(x; v) is an
eigenvalue of P (λ).

With the aid of this result we can establish the desired genericity statement.
Theorem 7.2 (linearizations are generic in H(P)). Let P (λ) be a regular Her-

mitian matrix polynomial. For almost all v ∈ R
k the corresponding pencil in H(P) is

a linearization.
Proof. Recall that the resultant res(f, g) of two polynomials f(x) and g(x) is a

polynomial in the coefficients of f and g with the property that res(f, g) = 0 if and
only if f(x) and g(x) have a common (finite) root [22, p. 248], [26]. Now consider
r = res

(
p(x; v),detP (x)

)
, which, because P is Hermitian and fixed, can be viewed

as a real polynomial r(v1, v2, . . . , vk) in the components of v ∈ R
k. The zero set

Z(r) =
{
v ∈ R

k : r(v1, v2, . . . , vk) = 0
}
, then, is exactly the set of all v ∈ R

k

for which some finite root of p(x; v) is an eigenvalue of P (λ). Recall that by our
convention the v-polynomial p(x; v) has ∞ as a root exactly for v ∈ R

k lying in the
hyperplane v1 = 0. Thus by Theorem 7.1 the set of vectors v ∈ R

k for which the
corresponding pencil L(λ) ∈ H(P) ⊂ DL(P) is not a linearization of P (λ) is either
the proper (real) algebraic set Z(r), or the union of two proper (real) algebraic sets,
Z(r) and the hyperplane v1 = 0. But the union of any finite number of proper (real)
algebraic sets is always a closed, nowhere dense set of measure zero in R

k.

8. Conclusions. We have revisited DL(P), the space of double ansatz pencils
introduced in [17], proving that it is the same as the set of block symmetric pencils in
the right ansatz space L1(P). Our alternative characterization of DL(P) shows that
even unstructured matrix polynomials admit linearizations that are symmetric at the
block level, while simultaneously possessing the DL(P) property of revealing both left
and right eigenvectors of P .

Our analysis shows how to find all the symmetric pencils in L1(P) for a symmetric
matrix polynomial P : these are precisely the pencils in DL(P). For Hermitian P , the
Hermitian pencils in L1(P) correspond to the double ansatz pencils that have a real
ansatz vector. Almost all pencils in each of these vector spaces have been shown to
be linearizations.

Acknowledgment. We thank the referees for perceptive comments that led to
an improvement in the presentation.

REFERENCES

[1] E. N. Antoniou and S. Vologiannidis, A new family of companion forms of polynomial
matrices, Electron. J. Linear Algebra, 11 (2004), pp. 78–87.

[2] Z. Bai, J. W. Demmel, J. J. Dongarra, A. Ruhe, and H. A. van der Vorst, eds., Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Software Environ.
Tools 11, SIAM, Philadelphia, 2000.

SYMMETRIC LINEARIZATIONS FOR MATRIX POLYNOMIALS 159

[3] D. A. Bini, L. Gemignani, and F. Tisseur, The Ehrlich–Aberth method for the nonsymmetric
tridiagonal eigenvalue problem, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 153–175.

[4] M. A. Brebner and J. Grad, Eigenvalues of Ax = λBx for real symmetric matrices A and
B computed by reduction to a pseudosymmetric form and the HR process, Linear Algebra
Appl., 43 (1982), pp. 99–118.

[5] T. J. Bridges and P. J. Morris, Differential eigenvalue problems in which the parameter
appears nonlinearly, J. Comput. Phys., 55 (1984), pp. 437–460.

[6] A. Bunse-Gerstner, An analysis of the HR algorithm for computing the eigenvalues of a
matrix, Linear Algebra Appl., 35 (1981), pp. 155–173.

[7] M. Fiedler, A note on companion matrices, Linear Algebra Appl., 372 (2003), pp. 325–331.
[8] S. Garvey, U. Prells, M. I. Friswell, and Z. Chen, General isospectral flows for linear

dynamic systems, Linear Algebra Appl., 385 (2004), pp. 335–368.
[9] N. J. Higham, R.-C. Li, and F. Tisseur, Backward error of polynomial eigenproblems solved

by linearization, MIMS EPrint 2006.137, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, 2006.

[10] N. J. Higham, D. S. Mackey, and F. Tisseur, The conditioning of linearizations of matrix
polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), 1005–1028.

[11] N. J. Higham, F. Tisseur, and P. M. Van Dooren, Detecting a definite Hermitian pair and
a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems,
Linear Algebra Appl., 351–352 (2002), pp. 455–474.

[12] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

[13] T.-M. Hwang, W.-W. Li, J.-L. Liu, and W. Wang, Jacobi-Davidson methods for cubic eigen-
value problems, Numer. Linear Algebra Appl., 12 (2005), pp. 605–624.

[14] P. Lancaster, Symmetric transformations of the companion matrix, NABLA: Bulletin of the
Malayan Math. Soc., 8 (1961), pp. 146–148.

[15] P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, UK, 1966.
Reprinted by Dover, New York, 2002.

[16] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic Press, Lon-
don, 1985.

[17] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for
matrix polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), 971–1004.

[18] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Structured polynomial eigenvalue
problems: Good vibrations from good linearizations, SIAM J. Matrix Anal. Appl., 28 (2006),
1029–1051.

[19] V. Mehrmann and D. Watkins, Polynomial eigenvalue problems with Hamiltonian structure,
Electron. Trans. Numer. Anal., 13 (2002), pp. 106–118.

[20] B. N. Parlett and H. C. Chen, Use of indefinite pencils for computing damped natural modes,
Linear Algebra Appl., 140 (1990), pp. 53–88.

[21] H. Rutishauser, Solution of eigenvalue problems with the LR-transformation, in Further Con-
tributions to the Solution of Simultaneous Linear Equations and the Determination of
Eigenvalues, Nat. Bur. Standards Appl. Math. Ser. 49, United States Department of Com-
merce, Washington, D.C., 1958, pp. 47–81.

[22] H. Stetter, Numerical Polynomial Algebra, SIAM, Philadelphia, 2004.
[23] F. Tisseur, Tridiagonal-diagonal reduction of symmetric indefinite pairs, SIAM J. Matrix

Anal. Appl., 26 (2004), pp. 215–232.
[24] F. Tisseur and N. J. Higham, Structured pseudospectra for polynomial eigenvalue problems,

with applications, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 187–208.
[25] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001),

pp. 235–286.
[26] B. L. van der Waerden, Modern Algebra, Vol. 1, 2nd ed., Frederick Ungar Publishing, New

York, 1953.
[27] K. Veselić, A Jacobi eigenreduction algorithm for definite matrix pairs, Numer. Math., 64

(1993), pp. 241–269.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 160–176

A NEW ITERATIVE CRITERION FOR H-MATRICES∗

M. ALANELLI† AND A. HADJIDIMOS†

Abstract. H-matrices appear in many areas of science and engineering, e.g., in the solution
of the linear complementarity problem (LPC) in optimization theory and in the solution of large
systems for real time changes of data in fluid analysis in the car industry. Classical (stationary)
iterative methods used for the solution of linear systems have been shown to converge for this class
of matrices. Several authors have proposed direct and iterative criteria to identify whether a certain
matrix A ∈ C

n,n is an H-matrix. Based on previous and new ideas we propose a new iterative
algorithm for irreducible matrices A that, except in a “very special” case, decides whether A is an
H- or a non H-matrix. A MATLAB subroutine is given and numerical examples are provided in
support of the theory developed.

Key words. M - and H-matrices, (generalized) strictly diagonally dominant matrices, criteria
for H-matrices

AMS subject classification. 65F10

DOI. 10.1137/050636802

1. Introduction. In numerical linear algebra, the theory of M - and H-matrices
is very important for the solution of linear systems of algebraic equations by iterative
methods (see, e.g., [2], [12], [24], and [26]). For example, (a) in the linear complemen-
tarity problem (LCP) [1] (see also section 10.1 of [2] for specific applications), where
we are interested in finding a z ∈ R

n such that z ≥ 0, Mz + q ≥ 0, zT (Mz + q) = 0,
with M ∈ R

n,n and q ∈ R
n given, a sufficient condition for a solution to exist, and to

be found by a modification of an iterative method, especially of SOR, is that M is an
H-matrix, with mii > 0, i = 1(1)n [1]; (b) in fluid analysis, in the car modeling design
[23], [18], it was observed that large linear systems with an H-matrix coefficient A
are solved iteratively much faster if A is postmultiplied by a suitable diagonal matrix
D, with dii > 0, i = 1(1)n, so that AD is strictly diagonally dominant. Although an
H-matrix can be defined via the definition for an M -matrix, which will be given later
on, in what follows and in the algorithms that will be presented we mostly use the
following definition.

Definition 1.1. A matrix A ∈ C
n,n is said to be an H-matrix if there exists a

diagonal matrix D, with positive diagonal elements, such that AD is row-wise strictly
diagonally dominant.

Notes. (i) If there exists a diagonal matrix D satisfying Definition 1.1 for a given
A, there exist infinitely many D’s and their set is denoted by DA. (ii) An H-matrix
is also called a generalized (row) strictly diagonally dominant matrix. (iii) Note that
Definition 1.1 for an H-matrix A implies that A is nonsingular; this is consistent with
the original definition by Ostrowski [20] (see also [24]).

We remind the reader of the following definition.
Definition 1.2. A matrix X ∈ C

n,n is said to be (row-wise) strictly diagonally

∗Received by the editors July 25, 2005; accepted for publication (in revised form) by D. B. Szyld
July 10, 2006; published electronically December 21, 2006.

http://www.siam.org/journals/simax/29-1/63680.html
†Department of Mathematics, University of Crete, GR-714 09 Heraklion, Greece (alanelli@math.

uoc.gr, hadjidim@math.uoc.gr). The work of the first author was funded by “Herakleitos” Opera-
tional Programme for Education and Initial Vocational Training 2002–2005. Part of the work of the
second author was funded by the Program Pythagoras of the Greek Ministry of Education.

160

ALGORITHM FOR H-MATRICES 161

dominant if

(1.1) |xii| >
n∑

j=1, j �=i

|xij |, i = 1(1)n.

In what follows we are to use for a matrix the terms reducible and irreducible.
For these terms we give the following definition.

Definition 1.3. A matrix A ∈ C
n,n is said to be reducible if there exists a

permutation matrix P ∈ R
n,n such that

PAPT =

[
A11 A12

O A22

]
,

where A11 ∈ C
r,r, 1 ≤ r ≤ n − 1, and O ∈ C

n−r,r is the zero matrix. If such a
permutation matrix does not exist, A is called irreducible.

Knowing that a matrix A ∈ C
n,n is an H-matrix guarantees that many iterative

methods applied for the solution of the linear system Ax = b, b ∈ C
n, possess nice

convergence properties. The majority of the proposed identification criteria are itera-
tive (see, e.g., [10], [16], [15], [17], [19], and [9]) because direct ones (see, e.g., [7], [13],
[8], [6], and [4]) have high computational complexities. For example, one may argue
that for this identification of A ∈ C

n,n a simple direct criterion would be “find the
inverse of its comparison matrix and check if its entries are nonnegative.” However,
such a criterion requires O(n3) floating point operations for a large dense matrix com-
pared to O(n2) per iteration for an iterative method, while for a large sparse matrix,
e.g., a tridiagonal whose inverse of its comparison, as is known, is dense, the cost is
O(n2) compared to O(n) per iteration. By the way, the only iterative criterion that
takes advantage of the sparsity of A, as this is the case in almost all applications, is
the one proposed in [9], where an extension of the compact profile technique of [14]
was developed. This criterion is much cheaper compared to any of the direct or even
iterative criteria.

In this work we focus on the three algorithms in [16], [17], and [19] denoted by
H, L, and B, respectively. In section 2, some introductory notation is given, the three
algorithms are presented, and we show, by giving a number of examples, that there
are cases where Algorithms L and B cannot converge as it was claimed. In section 3, a
number of statements needed in what follows are given and some of them are proved.
In section 4, by using the theory in section 3, we propose a new Jacobi-type iterative
criterion for identifying H-matrices in pseudocode (Algorithm AH). The convergence
of the new algorithm is proved mainly for irreducible matrices. Finally, in section 5,
we implement it to a MATLAB function, present a number of numerical examples,
and conclude with a couple of points.

2. Preliminaries, the three algorithms, and comments. In this section we
present some introductory notation, the two mathematically documented algorithms
H in [16] and L in [17] and also B in [19], and make some comments regarding the
convergence of the last two. Each of the algorithms has been slightly modified, as
regards the notation, so that their similarities and differences are readily distinguished.

For the aforementioned algorithms the following matrices are defined: First, the
sequence of positive diagonal matrices

(2.1) D(k), k = 0, 1, 2, . . . , D(0) = I,

162 M. ALANELLI AND A. HADJIDIMOS

and also the matrices

(2.2) A(k) = A(k−1)D(k−1), k = 1, 2, 3, . . . , A(0) = A,

for Algorithms H and L, while

(2.3) A(k) =
(
D(k−1)

)−1

A(k−1)D(k−1), k = 1, 2, 3, . . . , A(0) = (diag(A))
−1

A,

for Algorithm B. From the definitions in (2.1) and (2.3), it is concluded that for
Algorithm B there holds

(2.4) a
(k)
ii = 1, i = 1(1)n, k = 0, 1, 2,

Let N := {1, 2, . . . , n} and

(2.5) s
(k)
i =

n∑
j=1, j �=i

|a(k)
ij |, i = 1(1)n, k = 0, 1, 2,

Let also

N
(k)
1 ≡ N1(A

(k)) :=
{
i ∈ N : |a(k)

ii | > s
(k)
i

}
,

and n
(k)
1 ≡ n1(A

(k)) be its cardinality.
Algorithm H.

INPUT: A matrix A := [aij] ∈ C
n,n and any ε > 0.

OUTPUT: D = D(0)D(1) · · ·D(k) ∈ DA if A is an H-matrix.
1. If N1(A) = ∅ or aii = 0 for some i ∈ N, “A is not an H-matrix,” STOP; Otherwise
2. Set A(0) = A, D(0) = I, k = 1

3. Compute A(k) = A(k−1)D(k−1) = [a
(k)
ij]

4. Compute s
(k)
i =

∑n
j=1, j �=i |a

(k)
ij |, i = 1(1)n, Update N

(k)
1 and n

(k)
1

5. If n
(k)
1 = n, “A is an H-matrix,” STOP; Otherwise

6. Set d = [di], where

di =

⎧⎨⎩
s
(k)
i

+ε

|a(k)
ii

|+ε
if i ∈ N

(k)
1 ,

1 if i /∈ N
(k)
1

7. Set D(k) = diag(d), k = k + 1; Go to Step 3.
Algorithm L.

INPUT: A matrix A := [aij] ∈ C
n,n and any ε > 0.

OUTPUT: D = D(0)D(1) · · ·D(k) ∈ DA or /∈ DA if A is or is not an H-matrix,
respectively.
1. If aii = 0 for some i ∈ N, “A is not an H-matrix,” STOP; Otherwise
2. Set A(0) = A, D(0) = I, k = 1

3. Compute A(k) = A(k−1)D(k−1) = [a
(k)
ij]

4. Compute s
(k)
i =

∑n
j=1, j �=i |a

(k)
ij |, i = 1(1)n, Set n

(k)
1 = 0

5. If |a(k)
ii | > s

(k)
i , n

(k)
1 = n

(k)
1 + 1, i = 1(1)n

6. If n
(k)
1 = n, “A is an H-matrix,” STOP; Otherwise

ALGORITHM FOR H-MATRICES 163

7. If n
(k)
1 = 0, “A is not an H-matrix,” STOP; Otherwise

8. Set d = [di], where

di =
s
(k)
i + ε

|a(k)
ii | + ε

, i = 1(1)n

9. Set D(k) = diag(d), k = k + 1; Go to Step 3.
Algorithm B.

INPUT: A matrix A := [aij] ∈ C
n,n.

OUTPUT: D = D(0)D(1) · · ·D(k) ∈ DD−1A ≡ DA or /∈ DA if A is or is not an
H-matrix, respectively
1. If N1(A) = ∅ or aii = 0 for some i ∈ N, “A is not an H-matrix,” STOP; Otherwise
2. Compute si =

∑n
j=1,= j �=i |aij |, i = 1(1)n

3. If si = 0, i = 1(1)n, “A is an H-matrix,” STOP; Otherwise

4. Set A(0) = (diag(A))
−1

A, D(0) = I, k = 1

5. Compute A(k) =
(
D(k−1)

)−1
A(k−1)D(k−1) = [a

(k)
ij]

6. Compute s
(k)
i =

∑n
j=1, j �=i |a

(k)
ij |, i = 1(1)n

7. If s
(k)
i ≤ 1, i = 1(1)n, and s

(k)
i < 1 for at least one i ∈ N, “A is an H-matrix,”

STOP; Otherwise

8. If s
(k)
i ≥ 1, i = 1(1)n, “A is not an H-matrix,” STOP; Otherwise

9. Determine m such that s
(k)
m = mini=1(1)n s

(k)
i for s

(k)
i �= 0

10. Set d = [di], where

di =

{
s
(k)
m if i = m,

1 if i �= m

11. Set D(k) = diag(d), k = k + 1; Go to Step 5.
We proceed with some observations on the three algorithms.
According to the theory in [16, Theorem 2.1] or [17, Theorems 1, 2, 3, and 4] if

A is an H-matrix either Algorithm H or Algorithm L converges. On the other hand,
if Algorithm H converges, A is an H-matrix, while if Algorithm L converges, then A
may or may not be an H-matrix depending on the algorithm’s output.

Regarding Algorithm L, one can find out that in the case of a non H-matrix,
convergence of the algorithm cannot always be guaranteed. When A is reducible
there may be problems as the following example shows. Let

(2.6) A =

⎡⎢⎢⎣
1 −2 0 −0.5

−2 1 0 0
0 0 2 −1
0 0 −1 2

⎤⎥⎥⎦ ,

which is not an H-matrix. If one applies Algorithm L to A, where initially it is
n1(A) = 2, it is found that the algorithm cannot converge. No matter what ε > 0 is
used, it is always n1(A

(k)) = 2, k = 0, 1, 2, This is because, for any A(k) strict
diagonal dominance holds for its last two rows and (strict) nondiagonal dominance
holds for the first two.

Let us now consider the irreducible matrices

(2.7) A1 =

⎡⎣ 1 0 −0.5
−0.5 1 0

0 −2 1

⎤⎦ , A2 =

⎡⎣ 1 0 −0.5
−2 1 0

0 −2 1

⎤⎦ ,

164 M. ALANELLI AND A. HADJIDIMOS

where A1 is an H-matrix while A2 is not. In the proof of Theorem 2 in [17] it
is assumed that ε = 0; therefore we make the same assumption here. Applying
Algorithm L, we obtain

(2.8) A
(2)
1 =

⎡⎣ 0.5 0 −1
−0.25 0.5 0

0 −1 2

⎤⎦ , A
(2)
2 =

⎡⎣ 0.5 0 −1
−1 2 0

0 −4 2

⎤⎦ ,

(2.9) A
(3)
1 =

⎡⎣ 1 0 −0.5
−0.5 0.25 0

0 −0.5 1

⎤⎦ , A
(3)
2 =

⎡⎣ 1 0 −2
−2 1 0

0 −2 4

⎤⎦ ,

(2.10) A
(4)
1 =

⎡⎣ 0.5 0 −0.25
−0.25 0.5 0

0 −1 0.5

⎤⎦ , A
(4)
2 =

⎡⎣ 2 0 −1
−4 2 0

0 −4 2

⎤⎦ ,

etc. So, for the A
(k)
1 sequence we have d

(1)
1 = d

(1)
2 = 0.5, d

(1)
3 = 2 and after three

iterations we have again d
(4)
1 = d

(4)
2 = 0.5, d

(4)
3 = 2. Obviously, this three-cyclic

pattern is repeated ad infinitum. For the sequence of A
(k)
2 ’s a similar situation arises

since then d
(1)
1 = 0.5, d

(1)
2 = d

(1)
3 = 2 and d

(4)
1 = 0.5, d

(4)
2 = d

(4)
3 = 2. Hence neither of

the two sequences converges. This is most probably due to the assumption made in
[17], that limε→0+

(
limk→∞ D(k)

)
= limk→∞

(
limε→0+ D(k)

)
, which may not be valid

and so ε cannot be taken to be zero. There is one more crucial point in the same
theorem. It is proved that any two consecutive Jacobi matrices B(k), k = 0, 1, 2, . . . ,
associated with the comparison matrix of the A(k)’s (see Definition 3.2) satisfy

(2.11) B(k+1) =
(
D(k)

)−1

B(k)D(k), k = 0, 1, 2,

During each iteration a similarity permutation on D(k) (which has to be applied also

on A(k) and B(k)) sets the diagonal elements d
(k)
i in a nondecreasing order. It is then

proved that for any b
(k)
ij (i < j), b

(k)
ij ≤ b

(k+1)
ij , while for any b

(k)
ij (i > j), b

(k)
ij ≥ b

(k+1)
ij .

However, in the next iteration the d
(k+1)
i ’s may be in a different order as a result

of which b
(k+1)
ij (i < j) may be found at a different position (l,m), l > m, and the

new b
(k+1)
ij may not be greater than b

(k)
ij . Hence the sequence of b

(k)
ij ’s may not be a

monotone one as a result of which convergence cannot be guaranteed. For example,
for A1 in (2.7) it is

B(1) =

⎡⎣ 0 0 0.5
0.5 0 0

0 2 0

⎤⎦ and D(1) = diag (0.5, 0.5, 2) .

Since the elements of D(1) are already in a nondecreasing order, the permutation
matrix to be used is P (1) = I3 and (2.11) gives

B(2) =

⎡⎣ 0 0 2
0.5 0 0

0 0.5 0

⎤⎦ and D(2) = diag (2, 0.5, 0.5) .

This time P (2) = [e2e3e1], with ei, i = 1, 2, 3, the columns of the identity matrix,
so by permuting and using the same symbol B(2) for (P (2))−1B(2)P (2) we have that

ALGORITHM FOR H-MATRICES 165

B(2) ≡ B(1). This pattern repeats itself ad infinitum. Observe that the sequence of
differences

max
i=1,2,3

d
(k)
i − min

i=1,2,3
d
(k)
i = 2 − 0.5 = 1.5, k = 1, 2, 3, . . . ,

does not tend to zero as k → ∞ as is claimed in [17]. Note, in view of (2.11), that

b
(1)
13 = 0.5 becomes b

(2)
13 = 2 but after the similarity permutation takes place the new

b
(2)
13 is again 0.5.

So, even in the case of irreducible matrices, for Algorithm L to be valid, a proof
of Theorem 2 in [17] has to be provided in which the quantity ε > 0 should be
used throughout the proof, and this is because the value ε = 0 leads to erroneous
conclusions.

Let us now come to Algorithm B in [19]. Besides the conclusion which follows the
restriction in Step 7 which holds if and only if A is irreducible, one can make similar
observations as in the case of Algorithm L. Consider the following two matrices, where
the first one is reducible and the second irreducible.

(2.12) A3 =

⎡⎢⎢⎣
1 −2 0 0

−2 1 0 0
0 − 1

4 1 − 1
2

− 1
4 0 − 1

2 1

⎤⎥⎥⎦ , A4 =

⎡⎢⎢⎣
1 −2 −1 0

−2 1 0 −1
0 − 1

4 1 − 1
2

− 1
4 0 − 1

2 1

⎤⎥⎥⎦ .

For both matrices s
(1)
3 = s

(1)
4 = mini=1(1)4 s

(1)
i = 3

4 ; let us take m = 3. After the first
iteration we have

(2.13) A
(2)
3 =

⎡⎢⎢⎣
1 −2 0 0

−2 1 0 0
0 − 1

3 1 − 2
3

− 1
2 0 − 3

8 2

⎤⎥⎥⎦ , A
(2)
4 =

⎡⎢⎢⎣
1 −2 − 3

4 0
−2 1 0 −1

0 − 1
3 1 − 2

3
− 1

4 0 − 3
8 1

⎤⎥⎥⎦ .

For the second iteration s
(2)
m = s

(2)
4 = 5

8 and therefore

(2.14) A
(3)
3 =

⎡⎢⎢⎣
1 −2 0 0

−2 1 0 0
0 − 1

3 1 − 5
12

− 2
5 0 − 3

5 1

⎤⎥⎥⎦ , A
(3)
4 =

⎡⎢⎢⎣
1 −2 − 3

4 0
−2 1 0 − 5

8
0 − 1

3 1 − 5
12

− 2
5 0 − 3

5 1

⎤⎥⎥⎦ ,

and then the sequence of sm’s is s
(3)
3 = 3

4 , s
(4)
4 = 17

20 , s
(5)
3 = 33

36 , and so on. Obviously,
for either example, the algorithm does not converge.

Based on all previous examples it is realized that one must distinguish the re-
ducible from the irreducible case. However, because in the case of a large matrix
with an unstructured pattern of nonzero elements checking for irreducibility may be
of prohibitive computational complexity, we leave aside this issue.

3. Preliminaries and background material. For the analysis that will follow,
we have to recall some definitions and give a number of useful statements, most of
which can be found in [2], [12], and [24].

Definition 3.1. A matrix A ∈ R
n,n is called an M -matrix if it can be written

as A = sI −B, where B ≥ 0 and ρ(B) < s, with ρ(.) denoting spectral radius.
Note. In Definition 3.1 and in this context an M -matrix is assumed to be non-

singular.

166 M. ALANELLI AND A. HADJIDIMOS

Lemma 3.1. If A ∈ R
n,n is an M -matrix so is PAPT , where P is a permutation

matrix.
Definition 3.2. The comparison matrix of A ∈ C

n,n is the matrix M(A) with
elements

mij =

{
|aii| if i = j = 1(1)n,
−|aij | if i, j = 1(1)n, i �= j.

Lemma 3.2. A matrix A ∈ C
n,n is an H-matrix if and only if its comparison

matrix is an M -matrix.
Lemma 3.3. A matrix A ∈ C

n,n is an H-matrix if and only if the Jacobi iteration
matrix associated with its comparison matrix is convergent.

Note. Lemmas 3.2 and 3.3 can be used as alternative and equivalent definitions
to Definition 1.1 for an H-matrix.

Lemma 3.4. Let A ∈ C
n,n, with aii �= 0, i = 1(1)n, and B = EA, where

E = diag(e1, e2, . . . , en) ∈ C
n,n is any nonsingular diagonal matrix. Let JA and JB

be the Jacobi iteration matrices associated with A and B, respectively. Then JA and
JB are identical.

Based on the last two lemmas, our objective would be that of approximating
the spectral radius of the Jacobi iteration matrix B = JM(A) associated with the
comparison matrix of a given A ∈ C

n,n. In fact we will be able to prove that if A is
irreducible and ρ(B) < 1 (A is an H-matrix) or ρ(B) > 1 (A is not an H-matrix),
there exists an algorithm that converges. Also, the same algorithm converges in case
A is a reducible H-matrix. In case A is not an H-matrix the algorithm may not
converge.

The algorithm we are to propose is based on a modification of the well-known
Power Method (see, e.g., [25] and, more specifically, [5] and [11]), which all iterative
criteria for H-matrices use indirectly as a starting point. The Power Method is stated
below.

Theorem 3.1 (the Power Method). Let A ∈ C
n,n, with λi, i = 1(1)n, its

eigenvalues that satisfy

|λ1| > |λj |, j = 2(1)n.

Define

(3.1) x(k) = Ax(k−1), k = 1, 2, 3, . . . , for any x(0) ∈ C
n\{0}.

Assume that x(0) has a nonzero component along the eigenvector corresponding to λ1.
Then

(3.2) λ1 = lim
k→∞

(Ax(k))i

x
(k)
i

for x
(k)
i �= 0, i = 1(1)n.

Since, from now on, we are to deal with nonnegative irreducible matrices we give
a number of statements that will be used later on and can be found in either [2] or
[24].

Theorem 3.2 (see [24]). Let A ∈ R
n,n, A ≥ 0, be an irreducible matrix. Then,

its spectral radius ρ(A) is a simple (positive) eigenvalue of A (the Perron root) and a
positive eigenvector (the Perron vector) is associated with it.

Definition 3.3 (see [24]). Let A ∈ R
n,n, A ≥ 0, be an irreducible matrix and

k be the number of eigenvalues of A of modulus equal to its spectral radius ρ(A). If
k = 1, then A is primitive. If k > 1, then A is cyclic of index k.

ALGORITHM FOR H-MATRICES 167

Lemma 3.5 (see [2]). If A ∈ R
n,n, A ≥ 0, is an irreducible matrix with positive

trace,
∑n

i=1 aii > 0, then A is primitive.
Theorem 3.3 (see [24]). For any given irreducible matrix A ∈ R

n,n, A ≥ 0, let
P ∗ be the hyperoctant of vectors x > 0. Then, for any x ∈ P ∗, either

min
i=1(1)n

{∑n
j=1 aijxj

xi

}
< ρ(A) < max

i=1(1)n

{∑n
j=1 aijxj

xi

}
or ∑n

j=1 aijxj

xi
= ρ(A), i = 1(1)n.

Remark 3.1. A fixed vector x ∈ P ∗ in Theorem 3.3 can be considered as repre-
senting all of its positive multiples (cx, c ∈ R+). Obviously, for any positive multiple
cx, the theorem holds true and the three ratios in it remain unchanged.

Below we prove a key statement needed for the application of the Power Method
(3.1) to an irreducible, nonnegative, primitive matrix A ∈ R

n,n. In passing we mention
that for reducible, nonnegative, and primitive matrices, an issue outside this work and
on which we have been working, references [3], [21], and [22] may be of great help
since they refer, among other issues, to the eigenspaces of nonnegative matrices, the
nonnegative Jordan bases, and the orthogonality of some eigenspaces involved.

Theorem 3.4. For any given irreducible and primitive matrix A ∈ R
n,n, A ≥

0, let λ1 = ρ(A) and let A = SJS−1 be its Jordan canonical form, with J =
diag(J1, J2, . . . , Jp), Ji ∈ C

ni,ni , i = 1(1)p,
∑p

i=1 ni = n, and with S = [s1 s2 s3 . . . sn]
being the matrix of the principal vectors of A. Then, any x ∈ P ∗, analyzed along the
principal vectors si, i = 1(1)n, has a positive component along the Perron vector s1

corresponding to the Perron root λ1.
Proof. Due to its properties, A has a unique positive eigenvalue λ1 (Perron root)

equal to its spectral radius and a positive eigenvector s1 (Perron vector) associated
with it. Let x ∈ P ∗ be written as x =

∑n
i=1 ηisi. Since AT and A have identical

eigenvalue spectra, and AT is also nonnegative, irreducible, and primitive, its Perron
root is λ1; let z (> 0) be its Perron vector. Consequently,

(3.3) 0 < zTx =

n∑
i=1

ηiz
T si.

Noting that z is also the left eigenvector of A corresponding to λ1, consider any of
the Jordan blocks Jm ∈ C

nm,nm , m = 2(1)p, of J and let m = 2 for the sake of
convenience. From the Jordan canonical form of A we have AS = SJ and so

(3.4) As1 = λ1s1, As2 = λ2s2, and Asi = si−1 + λ2si, i = 3(1)n2 + 1.

Recalling that z is a left eigenvector and s2 is a (right) eigenvector of A corresponding
to different eigenvalues λ1 and λ2, respectively, there will hold that zT s2 = 0 (see,
e.g., Theorem 1.1.7 of [11]). From the third set of relations in (3.4) we have for i = 3,
zTAs3 = zT (s2 + λ2s3), from which zTAs3 − λ2z

T s3 = 0 or (λ1 − λ2)z
T s3 = 0 and

zT s3 = 0. Inductively, it is found that zT si = 0, i = 3(1)n2 + 1. What we have just
proved for J2 applies to every Jordan block Jm, m = 2(1)p; consequently

(3.5) zT si = 0, i = 2(1)n.

168 M. ALANELLI AND A. HADJIDIMOS

In view of (3.5), (3.3) becomes zTx = η1z
T s1 > 0; hence the positivity of z, x, and

s1 implies directly that η1 > 0 and the theorem has been proved.
In the next section, using some ideas from Algorithms H, L, and B, as well as

some new ones, Definition 1.1, or one of its equivalents in Lemmas 3.2 and 3.3, we
mainly exploit Theorems 3.1, 3.3, and 3.4 and propose a new algorithm (Algorithm
AH) which, in case of an irreducible matrix A ∈ C

n,n, converges.
For our algorithm to identify if an irreducible matrix A ∈ C

n,n, with aii �=
0, i = 1(1)n, is an H-matrix or not we apply the Power Method (3.1) to the irre-
ducible and primitive nonnegative matrix |A(0)|, where A(0) = (diag(A))−1A, with
x(0) = e(∈ P ∗) and e the vector of ones. Considering |A(k)| = I + B(k), k =
0, 1, 2, . . . , and noting that B(0) is the Jacobi matrix associated with the compar-
ison matrix of A, JM(A), we stop iterating as soon as one of the following three

possibilities occurs: all the components of the vector (I − B(k))e are positive, neg-
ative, or zero. It is understood that the similar to A(0) matrix A(k) is given by

A(k) = (diag(x
(k−1)
1 , x

(k−1)
2 , . . . , x

(k−1)
n))−1A(k−1)diag(x

(k−1)
1 , x

(k−1)
2 , . . . , x

(k−1)
n), with

x(0) = e. Then, according to Theorem 3.3, [mini=1(1)n s
(k)
i ,maxi=1(1)n s

(k)
i], s

(k)
i =∑

j=1(1)n |b
(k)
ij |, i = 1(1)n, is an interval in which the Perron root ρ(B(0)) = ρ(|A(0)|)−

1 of JM(A) lies and also the vector diag(x(0))diag(x(1)) · · ·diag(x(k))e is an approxi-

mation to the Perron vector of |A(0)| or of B(0). As is clear, it is not necessary to
go through all the iterations of the Power Method (3.1) since it suffices to go as far
as one of the aforementioned stopping criteria is satisfied. Hence, our algorithm will
converge at a much earlier stage than the Power Method.

4. The new algorithm. In our algorithm we follow Algorithms L, without the
need of a parameter ε in the definition of the di’s, and adopt a more general nor-
malization than that of Algorithm B so that at each stage A(k), k = 0, 1, 2, . . . , has

diagonal elements a
(k)
ii = 1, i = 1(1)n, k = 0, 1, 2, The proofs of our main claims

will be given analytically after the presentation of the new algorithm below.
Algorithm AH.

INPUT: An irreducible matrix A := [aij] ∈ C
n,n.

OUTPUT: D = D(0)D(1) · · ·D(k) ∈ DD−1A ≡ DA or /∈ DA if A is or is not an
H-matrix, respectively
1. If aii = 0 for some i ∈ N, “A is not an H-matrix,” STOP; Otherwise
2. Set D = I, A(0) = (diag(A))

−1
A, D(0) = I, k = 1

3. Compute D = DD(k−1), A(k) =
(
D(k−1)

)−1
A(k−1)D(k−1) = [a

(k)
ij]

4. Compute s
(k)
i =

∑n
j=1, j �=i |a

(k)
ij |, i = 1(1)n, s(k) = mini=1(1)n s

(k)
i , S(k) =

maxi=1(1)n s
(k)
i

5. If s(k) > 1, “A is not an H-matrix,” STOP; Otherwise
6. If S(k) < 1, “A is an H-matrix,” STOP; Otherwise
7. If S(k) = s(k), “M(A) is singular,” STOP; Otherwise
8. Set d = [di], where

di =
1 + s

(k)
i

1 + S(k)
, i = 1(1)n

9. Set D(k) = diag(d), k = k + 1; Go to Step 3.
Theorem 4.1. Under the assumptions on the matrix A ∈ C

n,n and the notation
in the algorithm, AH always converges (except, maybe, when det(M(A)) = 0).

ALGORITHM FOR H-MATRICES 169

Proof. If any aii, i = 1(1)n, is zero the algorithm terminates (Step 1). Assuming
aii �= 0, i = 1(1)n, then by Lemma 3.4, A(0) and A have the same Jacobi iteration
matrices. Therefore, A(0) is an H-matrix if and only if A is (Step 2). Since A is
irreducible so are A(0) and |A(0)|. Also, by Lemma 3.5, |A(0)| is primitive. At the
kth iteration step we form A(k) and indirectly the comparison matrix M(A(k)). Note
that the Jacobi iteration matrix B(k) = |A(k)| − I, associated with M(A(k)), will be

(4.1) JM(A(k)) = B(k) = I−M(A(k)) =

⎡⎢⎢⎢⎢⎣
0 |a(k)

12 | . . . |a(k)
1n |

|a(k)
21 | 0 . . . |a(k)

2n |
...

...
. . .

...

|a(k)
n1 | |a(k)

n2 | . . . 0

⎤⎥⎥⎥⎥⎦ = [b
(k)
ij].

Because of the similarity transformation (Step 3), we have by induction that |A(k)| =
I + B(k) is nonnegative, irreducible, and primitive. Observe that (Step 4)

s
(k)
i =

n∑
j=1

b
(k)
ij =

n∑
j=1, j �=i

|a(k)
ij |, i = 1(1)n,

are the row sums of the off-diagonal elements of −M(A(k)). Furthermore, B(k) =(
D(k−1)

)−1
B(k−1)D(k−1), so B(k) and B(k−1) are similar and inductively so are B(k)

and B(0). Hence all B(k)’s, k = 0, 1, 2, . . . , have the same eigenvalue spectra and the
same spectral radii. If any of the criteria in Steps 5–7 are satisfied, then according to
the discussion in the last paragraph of the previous section the algorithm terminates.
By choosing d(0) = e ∈ P ∗, we define

d(k) = |A(0)|d(k−1) = · · · = |A(0)|kd(0), k = 1, 2, . . . ,

and by induction we have d(k) ∈ P ∗. By the definition of D and D(k)’s in the algorithm
(Steps 8–9, 2), d(k) = [d1 d2 . . . dn]

T
, where the di’s refer to the current matrix D

after Step 2 of the algorithm is executed, is an approximation to the Perron vector
of |A(0)|; the presence of the denominators in Step 8 aims at the avoidance of the

uncontrollable increase of the components of d(k). Forming now the ratios
d
(k)
i

d
(k−1)
i

, i =

1(1)n, where d
(k−1)
i �= 0, i = 1(1)n, ∀ k = 1, 2, . . . , since d(k−1) ∈ P ∗, by (4.1) we

obtain that

(4.2)

d
(k)
i

d
(k−1)
i

=

(
|A(k−1)|d(k−1)

)
i

d
(k−1)
i

=

∑n
j=1 |a

(k−1)
ij |(1 + s

(k−1)
j)

1 + s
(k−1)
i

= 1 + s
(k)
i ,

with s
(0)
i = 0, i = 1(1)n.

By virtue of Theorem 3.4, the requirement of having a nonzero component of d(0) (> 0)
along the Perron vector of |A(0)| is satisfied. Since then all the assumptions of Theorem

3.1 hold, there will be limk→∞ s
(k)
i = ρ(B(0)), i = 1(1)n. Therefore, by Theorem 3.3

(and also by Lemma 4.1 and Theorem 4.3 below) we have that

(4.3) 1 + s(1) ≤ 1 + s(2) ≤ · · · ≤ 1 + ρ(B(0)) ≤ · · · ≤ 1 + S(2) ≤ 1 + S(1),

where s(k) = mini=1(1)n s
(k)
i and S(k) = maxi=1(1)n s

(k)
i , and that

lim
k→∞

s(k) = lim
k→∞

S(k) = ρ(B(0)).

170 M. ALANELLI AND A. HADJIDIMOS

All elements the of the two monotonically convergent sequences s(k) and S(k), k =
1, 2, . . . (nondecreasing and nonincreasing, respectively), except for a finite number
of them, will belong to

(
ρ(B(0)) − ε, ρ(B(0)) + ε

)
for every ε > 0. This, in turn,

guarantees convergence of the algorithm. To prove our claim we have to distinguish
the following three cases.

(i) If ρ(B(0)) < 1, then setting ε = 1− ρ(B(0)), all the terms of S(k), k = 1, 2, . . . ,
but a finite number of them belong to (2ρ(B(0))−1, 1). Consequently, there will exist
an integer kS such that for all k ≥ kS it will be S(k) < 1, and so by Lemma 3.3 A is
an H-matrix.

(ii) If ρ(B(0)) > 1, we set ε = ρ(B(0))− 1; hence analogously only a finite number
of the terms of s(k), k = 1, 2, . . . , will lie outside (1, 2ρ(B(0))− 1), and by Lemma 3.3,
as before, A is not an H-matrix.

(iii) If ρ(B(0)) = 1, the algorithm, theoretically, may converge or not. Computa-
tionally, it is inconclusive.

The converse of Theorem 4.1 is easy to prove. More specifically, we have the
following theorem.

Theorem 4.2. Let A ∈ C
n,n be any irreducible matrix. If Algorithm AH con-

verges, then its output is correct.
Proof. Assume that the algorithm converges. Then, we have to distinguish cases

based on the algorithm’s output and on the step from which the algorithm exited.
(i) Suppose that the output is “A is an H-matrix.” The only possible exit is from

Step 6. In such a case, S(k) < 1. By Theorem 3.3, there holds

s(k) ≤ ρ(B(0)) ≤ S(k) < 1 =⇒ ρ(B(0)) < 1.

Thus by Lemma 3.3, A(k) is an H-matrix and so are A(0) and A.
(ii) Suppose that the output is “A is not an H-matrix.” Possible exits are from

Steps 1 and 5.
(a) If the exit is from Step 1, then aii = 0 for some i ∈ N, meaning that A is not

an H-matrix.
(b) If the exit is from Step 5, then by an analogous argument to that in (i)

previously, there holds ρ(B(0)) > 1; hence A is not an H-matrix.
(iii) If the exit is from Step 7, then since the algorithm has just passed from Steps 5

and 6 it is implied that s(k) ≤ 1 and S(k) ≥ 1, respectively. Therefore s(k) = S(k) = 1;
hence, by Theorem 3.3, ρ(B(k)) = 1 and as a consequence of the matrix similarities we
have from Lemmas 3.1 and 3.2 (or 3.3) that ρ(B(0)) = 1. By virtue of Lemma 3.4 it
follows that A is not an H-matrix. If the aforementioned equality in Step 7 has been
produced computationally, then ρ(B(0)) may be very close to unity and therefore no
conclusion whether A is an H-matrix or not can be drawn.

Remark 4.1. Practically, each iteration of Algorithm AH, excluding initializa-
tions, substitutions, and comparisons, consists of the following three major steps
which show the total cost per iteration step.

1. Compute I +B(k) = (diag(d
(k−1)
1 , . . . , d

(k−1)
n))−1(I +B(k−1))diag(d

(k−1)
1 , . . . ,

d
(k−1)
n).

2. Compute s
(k)
i =

(B(k−1)d(k−1))
i

d
(k−1)
i

, i = 1(1)n.

3. Compute d
(k)
i =

1+s
(k)
i

1+S(k) , i = 1(1)n.
To conclude this section we present a theorem based on the assumptions and

notation of Theorems 4.1 and 4.2 which guarantees that after at most l iterations
(l ≤ [n2]) it will be [s(k+l), S(k+l)] ⊂ [s(k), S(k)] while after at most m iterations

ALGORITHM FOR H-MATRICES 171

(l ≤ m ≤ n − 1) there will hold s(k) < s(k+m) ≤ ρ(B(0)) ≤ S(k+m) < S(k). This
theorem is based on the following lemma.

Lemma 4.1. Under the assumptions and notation of Theorem 4.1, there holds

(4.4) s(k) ≤ s
(k+1)
i =

∑n
j=1 b

(k)
ij (1 + s

(k)
j)

1 + s
(k)
i

≤ S(k), i = 1(1)n,

aii �= 0, i = 1(1)n. In addition, in each iteration there exist at least two rows where
the above two inequalities turn strict for both these rows. Hence it is ensured that the
total number of rows with maximum sum, S(k), as well as that with minimum sum,
s(k), is reduced by at least one from one iteration to the next.

Proof. The first part of the lemma is an immediate consequence of relationships
(4.2) and (4.3), where at least one of the two inequalities is strict for otherwise the

algorithm would terminate. For the second part suppose that there are n
(k)
1 (< n) rows

of B(k) that have the maximum row sum S(k), n
(k)
3 (≤ n − n

(k)
1) rows that have the

minimum row sum s(k) and that for the remaining n
(k)
2 (= n− n

(k)
1 − n

(k)
3 ≥ 0) rows,

the above inequalities are strict. Suppose also that by a similarity permutation with

permutation matrix P (k), we bring the aforementioned n
(k)
1 rows first, the n

(k)
2 rows

next, and the n
(k)
3 rows last, by keeping the same symbol B(k) for P (k)B(k)(P (k))T .

So, the following three series of relationships hold:

(4.5)
S(k) = max

i=1(1)n
(k)
1

s
(k)
i , s(k) < s

(k)
i < S(k), i = n

(k)
1 + 1(1)n

(k)
1 + n

(k)
2 ,

s(k) = min
i=n

(k)
1 +n

(k)
2 +1(1)n

s
(k)
i ,

and, in agreement with (4.5), B(k) will have the block partitioned form

(4.6) B(k) =

⎡⎢⎣ B
(k)
11 B

(k)
12 B

(k)
13

B
(k)
21 B

(k)
22 B

(k)
23

B
(k)
31 B

(k)
32 B

(k)
33

⎤⎥⎦ .

From the irreducibility of A, and therefore of B(k), submatrix [B
(k)
12 B

(k)
13

] will

have at least one nonzero element b
(k)
ij , for otherwise B(k) would be reducible. The

same is true for submatrix [B
(k)
31 B

(k)
32

] and also for at least one of B
(k)
21 and B

(k)
23 .

As we have already seen B(k+1) = (D(k))−1B(k)D(k); therefore, by summing up all
the elements in each row of I + B(k+1), one can find out that for at least one row

i ∈ {1, 2, . . . , n(k)
1 } there will hold

(4.7) 1 + s(k) < 1 + s
(k+1)
i = 1 +

n∑
j=1

b
(k+1)
ij < 1 + S(k).

To prove this, suppose that b
(k)
i1j1

�= 0 for some i1 ∈ {1, . . . , n(k)
1 } and j1 ∈ {n(k)

1 +
1, . . . , n}; then we may see that the second inequality of (4.7) is proved as follows:

s
(k+1)
i1

=

∑n
j=1, j �=i1

b
(k)
i1j

(1 + s
(k)
j)

1 + s
(k)
i1

< S(k) ⇐⇒
n∑

j=1, j �=i1

b
(k)
i1j

+

n∑
j=1, j �=i1

b
(k)
i1j

s
(k)
j

< S(k) + s
(k)
i1

S(k) ⇐⇒

172 M. ALANELLI AND A. HADJIDIMOS

n∑
j=1, j �=i1

b
(k)
i1j

s
(k)
j < s

(k)
i1

S(k) (s
(k)
i1

= S(k)) ⇐⇒
n∑

j=1, j �=i1

b
(k)
i1j

s
(k)
j <

n∑
j=1, j �=i1

b
(k)
i1j

S(k).

Obviously, s
(k)
j ≤ S(k), j = 1(1)n, j �= i1. But since b

(k)
i1j1

�= 0, bi1j1s
(k)
j1

< bi1j1S
(k),

because s
(k)
j1

< S(k), j1 = n
(k)
1 + 1(1)n. Therefore the last strict inequality in the

equivalences is true and so is the very first one. In an analogous way it is proved

that the minimum row sum in the last n
(k)
3 rows is increased in at least one row.

Finally, in a similar way, it can be proved that any of the new row sums in B(k+1),

i = n
(k)
1 +1(1)n

(k)
1 +n

(k)
2 , can become neither as big as S(k) nor as small as s(k).

Theorem 4.3. Under the assumptions and notation of Theorem 4.1 and Lemma
4.1, in any given iteration step k there exist two numbers l(≤

[
n
2

]
) and m(l ≤ m ≤

n− 1) such that there will hold

(4.8) [s(k+q), S(k+q)] ⊂ [s(k), S(k)], q = l,m;

specifically for q = m there hold

(4.9) s(k) < s(k+m) ≤ ρ(B(0)) ≤ S(k+m) < S(k).

Proof. For the inclusion (4.8) to hold for q = l, and hence for q = m, there must
be either s(k) < s(k+l) for the minimum row sum or S(k+l) < S(k) for the maximum
row sum. Using the notation of Lemma 4.1, it is obvious that the “worst” case we

could have is n
(k)
2 = 0, and (i) for n even n

(k)
1 = n

(k)
3 = n

2 , while (ii) for n odd either

n
(k)
1 = n−1

2 and n
(k)
3 = n+1

2 or n
(k)
1 = n+1

2 and n
(k)
3 = n−1

2 . Lemma 4.1 implies that in
either case, n even or odd, the maximum number of iterations needed to have one of
the two inequalities strict is l =

[
n
2

]
. Finally, for the set of strict inequalities in (4.9)

to be satisfied the “worst” case is again to have n
(k)
2 = 0 and either n

(k)
1 = n − 1 or

n
(k)
3 = n− 1. So, combining it with the result of Lemma 4.1 we have that inequalities

(4.9) are both satisfied after at most m = n− 1 iterations.

5. A MATLAB function, examples, and comments. We begin this section
by giving a MATLAB function that implements our AH Algorithm. The MATLAB
function has as a guide Algorithm H of [16].

function [s min, s max, k, dd]=ahalgo(n, a, maxit)
% INPUT: n = dimension of a square (complex) matrix,
% a = an n-by-n (complex) matrix,
% maxit = maximum number of iterations allowed
% OUTPUT: dd = diagonal matrix D (if “A IS an H-matrix” or if “A is NOT an
H-matrix”),
% = [] (if “A is NOT an H-matrix; it has at least one zero diagonal
element”
% or if “M(A) IS SINGULAR”),
% s min = smallest row sum of moduli of the Jacobi matrix of M(A(k)),
% s max = largest row sum of moduli of the Jacobi matrix of M(A(k)),
% k = number of iterations performed
finish=0; k=1; dd=eye(n);
if (1-all(diag(a)))

“A is NOT an H-matrix; It has at least one zero diagonal element”
finish=1; s min=0; s max=Inf; k=k-1; dd=[];

ALGORITHM FOR H-MATRICES 173

end
if (finish == 0)

for i=1:n
a(i,1:n)=abs(a(i,1:n));

end
a=inv(diag(diag(a)))*a;
for i=1:n

a(i,i)=1;
end

end
while (finish == 0 & k < maxit+1)

for i=1:n
s(i)=sum(a(i,1:n))-1;

end
s min=min(s); s max=max(s);
if s min > 1

“s min > 1, A is NOT an H-matrix”
finish=1;
break

elseif s max < 1
“s max < 1, A IS an H-matrix”
finish=1;
break

elseif (s min==s max)
“s min=s max, M(A) (to the MATLAB precision) IS SINGULAR”
finish=1;
break

else
for i=1:n

d(i)=(1+s(i))/(1+s max);
end

end
k=k+1; diagonal=diag(d);
dd=dd*diagonal; d 1=inv(diagonal); a=d 1*a*diagonal;
for i=1:n

a(i,i)=1;
end

end
if (k==maxit+1 & finish==0)

k=k-1; dd=[];
“Inconclusive; increase maxiter”

end
% end of the function ahalgo

A number of numerical examples, where the matrix considered is irreducible, run
with the given MATLAB function are presented.

First we consider the irreducible matrices that played the roles of counterexamples
in section 2 for which Algorithm L, with ε = 0, enters a loop and thus fails to converge.

Example 1. A1 in (2.7):

OUTPUT: “A is an H-matrix,” maxi=1(1)3 s
(4)
i = 0.8750 < 1,

D = diag(0.5000, 0.3125, 0.8750).

174 M. ALANELLI AND A. HADJIDIMOS

Example 2. A2 in (2.7):

OUTPUT: “A is NOT an H-matrix,” mini=1(1)3 s
(4)
i = 1.1429 > 1,

D = diag(0.3333, 0.5333, 0.9333).
Next, the counterexample in (2.12), where Algorithm B fails to converge, is pre-

sented.
Example 3. A4 in (2.12):

OUTPUT: “A is NOT an H-matrix,” mini=1(1)4 s
(2)
i = 1.0714 > 1,

D = diag(1.0000, 1.0000, 0.4375, 0.4375).
The following two examples, taken from [17], verify the conclusion, although not

in the same number of steps.
Example 4. A in [17, Example 1]:

A =

⎡⎢⎢⎢⎢⎣
1 −0.2 −0.1 −0.2 −0.1

−0.4 1 −0.2 −0.1 −0.1
−0.9 −0.2 1 −0.1 −0.1
−0.3 −0.7 −0.3 1 −0.1
−1 −0.3 −0.2 −0.4 1

⎤⎥⎥⎥⎥⎦ .

OUTPUT: “A IS an H-matrix,” maxi=1(1)5 s
(6)
i = 0.9989 < 1,

D = diag(0.4178, 0.4802, 0.6560, 0.7648, 1).
Example 5. A in [17, Example 2]:

A =

⎡⎣ 1 −0.8 −0.1
−0.5 1 c
−0.8 −0.6 1

⎤⎦ .

For c = −0.3951:
OUTPUT: “A IS an H-matrix,” maxi=1(1)3 s

(8)
i = 0.99999417061559 < 1,

D = diag(0.69344055479302, 0.74176649875408, 0.99985294182613).
For c = −0.3952:
OUTPUT: “A is NOT an H-matrix,” mini=1(1)3 s

(9)
i = 1.00001588177980 > 1,

D = diag(0.69343749916264, 0.74183369108397, 0.99983433483175).
Note. Obviously, to the accuracy of four decimal places we consider c, it is clear

that for all |c| ≤ 0.3951 A IS an H-matrix, while for |c| ≥ 0.3952 A is NOT an
H-matrix.

The example below verifies the conclusion drawn by a Gauss–Seidel-type modifi-
cation of Algorithm H of [16] given in an extended compact profile technique in [9].
In addition the case of inconclusiveness we had in [9] is now removed.

Example 6. A in the example of [9],

A =

⎡⎢⎢⎢⎢⎣
−1 a12 0 0 0
0.5 −1 0 −0.6 0

0 −0.1 1 0 0.5
0 0.5 0 1 −0.5

−0.2 0.1 0.3 0 −1

⎤⎥⎥⎥⎥⎦ .

For a12 = 1.146391:
OUTPUT: “A IS an H-matrix,” maxi=1(1)5 s

(32)
i = 0.99999993216569 < 1,

D = diag(1, 0.87230267174610, 0.27158312363400, 0.62050421587928, 0.36870533832715).

For a12 = 1.146392:

ALGORITHM FOR H-MATRICES 175

OUTPUT: “A is NOT an H-matrix,” mini=1(1)5 s
(37)
i = 1.00000002036218 > 1,

D = diag(1, 0.87230203336695, 0.27158269490209, 0.62050348290098, 0.36870499419081).

Note. A similar note to the one in Example 6 is made. To the accuracy of
six decimal places for a12, for all |a12| ≤ 1.146391 A IS an H-matrix, while for
|a12| ≥ 1.146392 A is NOT an H-matrix.

In the following two examples the given irreducible matrices, one of which is
complex, are singular. Even in the first example this is indirectly spotted by our
MATLAB function despite the fact that the output is “A IS an H-matrix.”

Example 7. A is the following matrix:

A =

⎡⎣ 2 −1 −0.5
−1 2 −1

−0.5 −1 7
6

⎤⎦ .

OUTPUT: “A IS an H-matrix,”

mini=1(1)3 s
(33)
i = maxi=1(1)3 s

(33)
i = 1.0000,

D = diag(0.6667, 0.8333, 1.0000).
Example 8. A is the following matrix:

A =

[
1+i

√
3

4 2
√

2(1 + i)√
2(1−i)

8 2(1 − i
√

3)

]
.

OUTPUT: “M(A) (to the MATLAB precision) IS SINGULAR,”

mini=1(1)2 s
(3)
i = maxi=1(1)2 s

(3)
i = 1, D = diag(1.0000, 0.1250).

The last example is the one in Example 6 with a12 = 1.146391 except that a33

was set to zero to check whether our MATLAB function can spot the presence of zero
element(s) in the diagonal of the input matrix A.

Example 9. A4 in (2.12) except that a33 is set to zero:
OUTPUT: “A is NOT an H-matrix; It has at least one zero diagonal element,”

mini=1(1)4 s
(0)
i = 0, maxi=1(1)4 s

(0)
i = ∞, D = [].

To conclude our work we make the following two points.
(i) Our algorithm (and MATLAB function), with a slight modification, works in

case we want to find a good approximation to the spectral radius of an irreducible
matrix with diagonal elements of the same sign and nonpositive (or nonnegative) off-
diagonal elements. It can also find the spectral radius of the Jacobi matrix associated
with a nonnegative (or nonpositive) irreducible matrix. In any of these cases a crite-
rion like, e.g., S(k)−s(k) < η, where η is the accuracy required for the spectral radius,
should be set.

(ii) Our algorithm (and MATLAB function) works as is in case the matrix A IS
an H-matrix regardless of A being irreducible or reducible. A possible extension of
our present algorithm to also fully cover the reducible case is under investigation.

Acknowledgments. The authors would like to express their sincere thanks to
the two unknown referees for their very constructive criticism, to the associate editor,
Prof. Daniel Szyld, for the discussions the second author had with him on a first
version of the paper as well as for various suggestions on later versions, to Prof.
Volker Mehrmann for suggesting [22], and also to Prof. Michael Neumann for some
useful comments. To all who contributed to the improvement of the quality of the
presentation of this work the authors are most indebted.

176 M. ALANELLI AND A. HADJIDIMOS

REFERENCES

[1] B.H. Ahn, Solution of nonsymmetric linear complementarity problems by iterative methods, J.
Optim. Theory Appl., 33 (1981), pp. 175–185.

[2] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics
Appl. Math. 9, SIAM, Philadelphia, 1994.

[3] R. Bru and M. Neumann, Nonnegative Jordan basis, Linear Multilinear Algebra, 23 (1988),
pp. 95–109.

[4] Lj. Cvetković and V. Kostić, New criteria for identifying H-matrices, J. Comput. Appl.
Math., 180 (2005), pp. 265–278.

[5] D.K. Faddeev and V.N. Faddeeva, Computational Methods of Linear Algebra, W.H. Freeman,
San Francisco, 1963.

[6] T.-B. Gan and X.-H. Huang, Simple criteria for nonsingular H-matrices, Linear Algebra
Appl., 374 (2003), pp. 317–326.

[7] Y.-M. Gao and X.-H. Wang, Criteria for generalized diagonally dominant matrices and M-
matrices, Linear Algebra Appl. 169 (1992), pp. 257–268.

[8] Y.-M. Gao and X.-H. Wang, Criteria for generalized diagonally dominant matrices and M-
matrices II, Linear Algebra Appl., 248 (1996), pp. 339–353.

[9] A. Hadjidimos, An extended compact profile iterative method criterion for sparse H-matrices,
Linear Algebra Appl., 389 (2004), pp. 329–345.

[10] M. Harada, M. Usui, and H. Niki, An extension of the criteria for generalized diagonally
dominant matrices, Int. J. Comput. Math., 60 (1996), pp. 115–119.

[11] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

[12] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cam-
bridge, UK, 1991.

[13] T.-Z. Huang, A note on generalized diagonally dominant matrices, Linear Algebra Appl., 225
(1995), pp. 237–242.

[14] D.R. Kincaid, J.R. Respess, D.M. Young, and R.G. Grimes, ITPACK 2C: A Fortran pack-
age for solving large sparse linear systems by adaptive accelerated iterative methods, ACM
Trans. Math. Software, 8 (1982), pp. 302–322.

[15] T. Konho, H. Niki, H. Sawami, and Y.-M. Gao, An iterative test for H-matrix, J. Comput.
Appl. Math., 115 (2000), pp. 349–355.

[16] B. Li, L. Li, M. Harada, H. Niki, and M.J. Tsatsomeros, An iterative criterion for H-
matrices, Linear Algebra Appl., 271 (1998), pp. 179–190.

[17] L. Li, On the iterative criterion for generalized diagonally dominant matrices, SIAM J. Matrix
Anal. Appl., 24 (2002), pp. 17–24.

[18] L. Li, Personal communication, 2006.
[19] K. Ojiro, H. Niki, and M. Usui, A new criterion for H-matrices, J. Comput. Appl. Math.,

150 (2003), pp. 293–302.
[20] A.M. Ostrowski, Über die Determinanten mit Überwiegender Hauptdiagonale, Comment.

Math. Helv., 10 (1937), pp. 69–96.
[21] U.G. Rothblum, Algebraic eigenspaces of nonnegative matrices, Linear Algebra Appl., 12

(1975), pp. 281–292.
[22] H. Schneider, The influence of the marked reduced graph of a nonnegative matrix on the

Jordan form and related properties: A survey, Linear Algebra Appl., 84 (1986), pp. 161–
189.

[23] M.J. Tsatsomeros, Personal communication, 2006.
[24] R.S. Varga, Matrix Iterative Analysis. Second Revised and Expanded Edition, Springer-Verlag,

Berlin, 2000.
[25] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK, 1965.
[26] D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 177–183

SOLVING REAL LINEAR SYSTEMS WITH THE COMPLEX SCHUR
DECOMPOSITION∗

CARLA D. MORAVITZ MARTIN† AND CHARLES F. VAN LOAN‡

Abstract. If the complex Schur decomposition is used to solve a real linear system, then the
computed solution generally has a complex component because of roundoff error. We show that
the real part of the computed solution that is obtained in this way solves a nearby real linear
system. Thus, it is “numerically safe” to obtain real solutions to real linear systems via the complex
Schur decomposition. This result is useful in certain Kronecker product situations where fast linear
equation solving is made possible by reducing the involved matrices to their complex Schur form.
This is critical because in these applications one cannot work with the real Schur form without
greatly increasing the volume of work.

Key words. linear systems, Schur decomposition, back-substitution, Kronecker products

AMS subject classifications. 15A06, 65F05, 65G50

DOI. 10.1137/050631690

1. Introduction. The Schur decomposition states that if A ∈ R
n×n, then there

exists a unitary Q ∈ C
n×n so that QHAQ = T is upper triangular. The eigenvalues

that appear along the diagonal of T can be arbitrarily ordered. See [3, p. 313].

This decomposition, coupled with back-substitution and matrix-vector multipli-
cation, can be used to solve a real linear system Ax = b. Indeed, since QHb =
(QHAQ)(QHx) = T (QHx) we have the following algorithm.

Algorithm SchurSolve

Step 1. Compute the Schur decomposition QHAQ = T .
Step 2. Form c = QHb.
Step 3. Solve Ty = c by back-substitution.
Step 4. Set x = Qy.

Ordinarily, it is preferred to work with the LU factorization because it is much
cheaper. However, there are settings involving Kronecker products when this is not
the case. For example, the Sylvester equation

FX + XGT = B, F ∈ R
m×m, G ∈ R

n×n, B ∈ R
m×n,

can be reshaped as Ax = b, where A = In ⊗ F + G ⊗ Im, x = vec(X), and b =
vec(B). (Here, vec(·) makes a column vector out of a matrix by stacking its columns.)
The LU factorization of A involves O(m3n3) flops. But if we compute the Schur
decompositions QH

F FQF =R and QH
G GQG = S and set Q = QF ⊗QG, then QHAQ =

In⊗R+S⊗Im is the Schur decomposition of A and SchurSolve requires O(n3 +m3)
flops if the Kronecker structure is exploited. See [3, p. 367].

∗Received by the editors May 16, 2005; accepted for publication (in revised form) by B. T.
Kagstrom July 17, 2006; published electronically December 21, 2006. This work was supported by
NSF grant CCR-9901988.

http://www.siam.org/journals/simax/29-1/63169.html
†Center for Applied Mathematics, Cornell University, Ithaca, NY 14853-7510. Current address:

Department of Mathematics and Statistics, James Madison University, MSC 1911, Harrisonburg, VA
22807 (carlam@math.jmu.edu).

‡Department of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853-7510
(cv@cs.cornell.edu).

177

178 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

A problem with SchurSolve is that complex arithmetic arises whenever A has
complex eigenvalues. This increases the volume of work. Moreover, the computed
solution vector x will inevitably have a complex component because of roundoff error.
These problems can be avoided by working with the real Schur decomposition. In
this factorization we find a real orthogonal Q so that QTAQ = T is upper quasi-
triangular, i.e., block triangular with 1-by-1 and 2-by-2 diagonal blocks. Because T
is “almost” triangular, the SchurSolve philosophy essentially applies, except that a
quasi-triangular system is solved in Step 3 of SchurSolve, rather than a (complex)
triangular system.

Therefore, an algorithm to solve a linear system using the real Schur decomposi-
tion appears to involve a simple modification of SchurSolve. However, there are sit-
uations where the real Schur decomposition is much more expensive to compute than
the (complex) Schur decomposition. Consider (again) the Sylvester equation problem.
If we have computed the real Schur decompositions QT

F FQF=R and QT
GGQG = S and

set Q = QF ⊗QG, then QTAQ = In ⊗ R + S ⊗ Im is not the real Schur decomposi-
tion of A. Attempting to compute the canonical form would destroy the Kronecker
structure and would greatly increase the volume of work. Fortunately, there is a way
of handling the subdiagonal blocks of In ⊗ R + S ⊗ Im using clever permutations so
that the overall procedure remains O(m3 + n3). See [3, p. 367].

However, in [4] we describe another Kronecker product situation where the per-
mutation “device” does not work—specifically, the shifted Kronecker product system(

A(p) ⊗ · · · ⊗A(1) − λIN

)
x = b, λ ∈ R, b ∈ R

N , N = n1 · · ·np ,(1.1)

where A(i) ∈ R
ni×ni for i = 1, . . . , p. After computing the real Schur decomposi-

tions of the A(i), a fast recursive procedure exists to solve for x if the A(i) have real
eigenvalues. However, if the A(i) have complex eigenvalues, the resulting p-fold Kro-
necker product of quasi-triangular matrices has a complicated and very problematic
block structure below the diagonal, thus increasing the volume of work needed by
the recursive procedure. This impasse brings us back to SchurSolve and the main
contribution of this paper. In particular, we examine the properties of the real part
of the computed solution x̂.

The analysis to determine if a computed solution of a system solves a nearby sys-
tem of the same form is illustrative of recent work in the general area of “structured”
perturbations and error analysis. For example, in [5, 6] the conditioning of structured
linear systems is examined where the structure includes symmetric, Toeplitz, circu-
lant, and Hankel matrices. In addition, [1] analyzes the stability of algorithms for
solutions of symmetric indefinite systems. In our paper, we show that the real part
of the computed solution solves a nearby real system, a type of structured pertur-
bation. We are not the first to examine complex algorithms for real problems. For
example, [2] compares the condition of a complex eigenvalue of a real matrix under
real and complex perturbations in order to analyze the accuracy of real algorithms
versus complex algorithms. Our work is in this spirit, expanding what we know about
structured perturbations for the case when “structure” means real data.

In section 2 we show that SchurSolve produces a complex solution that solves a
nearby, but complex, linear system. This result is not new but is included for the sake
of completeness. We then proceed to prove a perturbation theorem in section 3. It
shows that when a real linear system is subjected to complex perturbations, then the
real part of the solution to the perturbed system solves a nearby real linear system.
This is followed by a brief summary in section 4.

SOLVING REAL SYSTEMS WITH COMPLEX SCHUR 179

Throughout this paper we use the 2-norm. The 2-norm condition of a matrix M
is denoted by κ(M). The unit roundoff is designated by u. We repeatedly use the
fact that if M ∈ C

m×n, then both ‖ Re(M) ‖ and ‖ Im(M) ‖ are bounded by ‖M ‖.
2. Backward error analysis. We show that if x̂ is the solution produced by

SchurSolve when floating point arithmetic is used, then

(A + ΔA) x̂ = b + Δb,(2.1)

‖ ΔA ‖ ≤ δA‖A ‖,(2.2)

‖ Δb ‖ ≤ δb‖ b ‖,(2.3)

where the δ’s are modest multiples of the unit roundoff u. To present an uncluttered
but sufficiently rigorous analysis, we adopt the convention that all the δ’s below are
O(u) in magnitude. The floating point result of a matrix calculation is indicated by
fl(·). The floating point properties associated with the Schur decomposition, back-
substitution, and other basic computations can be found in [3].

In Step 1 the computed Schur decomposition of A ∈ R
n×n produces a “nearly”

unitary Q̂ ∈ C
n×n. That is, there is an exactly unitary Q ∈ C

n×n such that

Q = Q̂ + ΔQ, ‖ ΔQ ‖ ≤ δ1 .(2.4)

The computed Schur form T̂ satisfies

T̂ = QH(A + H)Q, ‖H ‖ ≤ δ2‖A ‖ ,(2.5)

where H ∈ C
n×n. Accounting for the roundoff error in Step 2, there exists Δb ∈ C

n

such that

ĉ = fl(Q̂Hb) = QH(b + Δb), ‖ Δb ‖ ≤ δb‖ b ‖,(2.6)

while in Step 3 the computed solution to the triangular system satisfies

(T̂ + G)ŷ = ĉ, ‖G ‖ ≤ δ3‖ T̂ ‖ ≤ δ4‖A ‖ .(2.7)

In the last step the computed solution x̂ can be related to ŷ as follows:

x̂ = fl(Q̂ŷ) = Q(ŷ + g), ‖ g ‖ ≤ δ5‖ ŷ ‖ ≤ δ6‖ x̂ ‖ .(2.8)

Now let us combine these results. From (2.6) and (2.7) we have

(T̂ + G)ŷ = QH(b + Δb),

and so by (2.5) and (2.8)

b + Δb = Q
(
T̂ + G

)
QHQŷ =

(
A + H + QGQH

)
(x̂−Qg) .

If M = A + H + QGQH , then

b + Δb = M(x̂−Qg) =

(
M − MQgx̂H

x̂H x̂

)
x̂

=

(
A + H + QGQH − MQgx̂H

x̂H x̂

)
x̂,

180 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

and so if we define

ΔA = H + QGQH − MQgx̂H

x̂H x̂
,(2.9)

then (A + ΔA) x̂ = b + Δb, i.e., x̂ solves a perturbed system. From (2.6) we know
that Δb satisfies (2.3). Thus, the verification of (2.1)–(2.3) is complete once we show
that ‖ ΔA ‖ is sufficiently small. Toward that end we note that

‖M ‖ = ‖A + H + QGQH ‖ ≤ ‖A ‖ + ‖H ‖ + ‖G ‖

≤ (1 + δ2 + δ4)‖A ‖ = (1 + δ7)‖A ‖.

It follows from (2.5), (2.7), (2.8), and (2.9) that

‖ ΔA ‖ ≤ ‖H ‖ + ‖G ‖ + ‖M ‖‖ g ‖‖ x̂ ‖

≤ δ2‖A ‖ + δ4‖A ‖ + δ6(1 + δ7)‖A ‖.

The inequality (2.2) is established by setting δA = δ2 + δ4 + δ6(1 + δ7).

3. A perturbation theorem. In this section we prove a result that will enable
us to say something very favorable about the real part of the computed SchurSolve

solution.
Theorem 3.1. Suppose 0 < ε ≤ 1/6 and that A ∈ R

n×n and b ∈ R
n with

ε · κ(A) ≤ 1/2. If

(A + E)z = b + f,(3.1)

where

E = E1 + iE2, E1, E2 ∈ R
n×n, ‖ E ‖ ≤ ε‖A ‖,

f = f1 + if2, f1, f2 ∈ R
n, ‖ f ‖ ≤ ε‖ b ‖,

z = z1 + iz2, z1, z2 ∈ R
n,

then there exists a real matrix Ẽ ∈ R
n×n such that(

A + Ẽ
)
z1 = b + f1(3.2)

and

‖ Ẽ ‖ ≤ 4ε‖A ‖,(3.3)

‖ f1 ‖ ≤ ε‖ b ‖ .(3.4)

Proof. Since

‖ f1 ‖ ≤ ‖ f1 + if2 ‖ = ‖ f ‖ ≤ ε‖ b ‖,

the inequality (3.4) holds. Note that if b = 0 then ‖ f ‖ = 0 and so ‖ f1 ‖ = 0.
Expanding (3.1) we get

(A + E1 + iE2)(z1 + iz2) = b + f1 + if2

SOLVING REAL SYSTEMS WITH COMPLEX SCHUR 181

from which follows

(A + E1)z1 − E2z2 = b + f1,(3.5)

(A + E1)z2 + E2z1 = f2.(3.6)

If b = 0 and z1 = 0, then any such Ẽ such that ‖ Ẽ ‖ ≤ 4ε‖A ‖ completes the proof.
If z1 �= 0, (3.5) can be rewritten as(

A + E1 −
E2z2z

T
1

zT1 z1

)
z1 = b + f1,

and so (3.2) holds with

Ẽ = E1 −
E2z2z

T
1

zT1 z1
.(3.7)

Now to establish (3.3), we start by taking norms in (3.7):

‖ Ẽ ‖ ≤ ‖ E1 ‖ + ‖ E2 ‖
‖ z2 ‖
‖ z1 ‖

≤ ε‖A ‖
(

1 +
‖ z2 ‖
‖ z1 ‖

)
.(3.8)

Looking at (3.3), we must confirm that ‖ z2 ‖ is not too much bigger than ‖ z1 ‖. From
(3.6) we have

z2 = (A + E1)
−1 (f2 − E2z1) = (I + A−1E1)

−1A−1 (f2 − E2z1) ,

and so

‖ z2 ‖ ≤ ‖ (I + A−1E1)
−1 ‖‖A−1 ‖ (‖ f2 ‖ + ‖ E2 ‖‖ z1 ‖) .

The assumption ε · κ(A) < 1/2 implies

‖ (I + A−1E1)
−1 ‖ ≤ 1

1 − ‖A−1E1 ‖
≤ 1

1 − ε · ‖A ‖‖A−1 ‖ ≤ 2,

and thus

‖ z2 ‖ ≤ 2ε‖A−1 ‖ (‖ b ‖ + ‖A ‖‖ z1 ‖) .(3.9)

By rearranging (3.5) we see that b = (A + E1)z1 − E2z2 − f1 and therefore

‖ b ‖ ≤ (‖A ‖ + ‖ E1 ‖)‖ z1 ‖ + ‖ E2 ‖‖ z2 ‖ + ‖ f1 ‖

≤ (1 + ε) ‖A ‖‖ z1 ‖ + ε ‖A ‖‖ z2 ‖ + ε‖ b ‖

≤ 1 + ε

1 − ε
‖A ‖‖ z1 ‖ +

ε

1 − ε
‖A ‖‖ z2 ‖.

182 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

By substituting this inequality into (3.10) and using the assumption that ε ≤ 1/6 we
get

‖ z2 ‖ ≤ 2ε ‖A−1 ‖
(

1 + ε

1 − ε
‖A ‖‖ z1 ‖ +

ε

1 − ε
‖A ‖‖ z2 ‖ + ‖A ‖‖ z1 ‖

)

= 2εκ(A)

(
2

1 − ε
‖ z1 ‖ +

ε

1 − ε
‖ z2 ‖

)

≤
(

2

1 − ε
‖ z1 ‖ +

ε

1 − ε
‖ z2 ‖

)

≤ 2

1 − 2ε
‖ z1 ‖ ≤ 3‖ z1 ‖.

The inequality (3.3) follows from this and (3.9).
The proof will be complete after we address whether z1 can be zero. By way

of contradiction, assume z1 = 0. Then (3.5) and (3.6) become −E2z2 = b + f1 and
(A + E1)z2 = f2, respectively. So

b = −f1 − E2z2

= −f1 − E2(A + E1)
−1f2.

This implies that

‖ b ‖ ≤ ‖ f1 ‖ + ‖ E2 ‖‖ (A + E1)
−1 ‖‖ f2 ‖

≤ ε‖ b ‖ + 2ε‖A ‖‖A−1 ‖(ε‖ b ‖)
≤ 2ε‖ b ‖,

and therefore 1 ≤ 2ε, which is a contradiction. Since z1 is nonzero, the proof is now
complete.

In section 2 we showed that SchurSolve produces a computed solution x̂ that
exactly solves a (complex) linear system that is “within roundoff” of the original.
Thus,

‖ x̂− x ‖
‖ x ‖ ≈ uκ(A) .

Since ‖ Re(x̂) − x ‖ ≤ ‖ x̂− x ‖ it follows that

‖ Re(x̂) − x ‖
‖ x ‖ ≈ uκ(A),

which is what we would expect from a stable linear equation solving process. But
we can say more in light of Theorem 3.1. The following corollary to Theorem 3.1
shows that using the complex Schur decomposition to solve a real problem results in
a computed solution whose real part solves a nearby real system.

Corollary 3.2. Suppose A ∈ R
n×n and b ∈ R

n, and x̂ is the computed solution
to Ax = b using SchurSolve. In addition suppose that ε = max(δA, δb) ≤ 1/6. Then
there exist ΔA ∈ R

n×n and δb ∈ R
n such that

(A + ΔA)Re(x̂) = b + δb,(3.10)

SOLVING REAL SYSTEMS WITH COMPLEX SCHUR 183

where

‖ ΔA ‖ ≤ δA‖A ‖,(3.11)

‖ δB ‖ ≤ δb‖ b ‖.(3.12)

4. Summary. We have illustrated certain situations where the complex Schur
decomposition is preferred to using the real Schur decomposition when solving a real
system. Thus, we show that it is numerically safe to obtain solutions to the real system
by introducing complex arithmetic. In particular, Theorem 3.1 and Corollary 3.2 show
that the real part of the computed solution obtained using SchurSolve solves a nearby
real linear system.

REFERENCES

[1] J. R. Bunch, J. W. Demmel, and C. F. Van Loan, The strong stability of algorithms for
solving symmetric linear systems, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 494–499.

[2] R. Byers and D. Kressner, On the condition of a complex eigenvalue under real perturbations,
BIT, 44 (2004), pp. 209–214.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[4] C. D. Moravitz Martin and C. F. Van Loan, Shifted Kronecker product systems, SIAM J.
Matrix Anal. Appl., 29 (2006), pp. 184–198.

[5] S. M. Rump, Structured perturbations part I: Normwise distances, SIAM J. Matrix Anal. Appl.,
25 (2003), pp. 1–30.

[6] S. M. Rump, Structured perturbations part II: Componentwise distances, SIAM J. Matrix Anal.
Appl., 25 (2003), pp. 31–56.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 184–198

SHIFTED KRONECKER PRODUCT SYSTEMS∗

CARLA D. MORAVITZ MARTIN† AND CHARLES F. VAN LOAN‡

Abstract. A fast method for solving a linear system of the form (A(p) ⊗ · · · ⊗ A(1) − λI)x = b
is given where each A(i) is an ni-by-ni matrix. The first step is to convert the problem to triangular
form (T (p) ⊗ · · · ⊗ T (1) − λI)y = c by computing the (complex) Schur decompositions of the A(i).
This is followed by a recursive back-substitution process that fully exploits the Kronecker structure
and requires just O(N(n1 + · · ·+np)) flops where N = n1 · · ·np. A similar method is employed when
the real Schur decomposition is used to convert each A(i) to quasi-triangular form. The numerical
properties of these new methods are the same as if we explicitly formed (T (p) ⊗ · · · ⊗ T (1) − λI) and
used conventional back-substitution to solve for y.

Key words. linear systems, Schur decomposition, back-substitution, Kronecker products

AMS subject classifications. 15A06, 65F05, 65G50

DOI. 10.1137/050631707

1. Introduction. Matrix problems with replicated block structure abound in
signal and image processing, semidefinite programming, control theory, and many
other application areas. In these venues fast algorithms have emerged that exploit
the rich algebra of the Kronecker product. Perhaps the best example of this is the
fast Fourier transform which can be described using the “language” of sparse matrix
factorizations and the Kronecker product. This operation is surfacing more and more
as cheap memory prompts the assembly of huge, multidimensional datasets. When
techniques for problems of low dimension are generalized or “tensored” together to
address a high-dimensional, multilinear problem, then one typically finds a computa-
tional challenge that involves the Kronecker product.

It is in the spirit of bringing the fruits of numerical linear algebra to the realm of
numerical multilinear algebra that we present the current paper. Our goal is to present
a methodology for solving a shifted linear system when the matrix of coefficients is
a Kronecker product. Specifically, the question we address is how to solve a shifted
Kronecker product system of the form(

A(p) ⊗ · · · ⊗A(1) − λIN

)
x = b, b ∈ R

N ,(1.1)

where A(i) ∈ R
ni×ni , i = 1:p, are given and N = n1 · · ·np. A reshaped special case

of this problem is the discrete-time Sylvester equation A(1)XA(2)T −X = B. As with
many matrix equations of this variety, the first step is to convert A(1) and A(2) to
triangular form via the Schur decompoistion. The resulting system can then be solved
via a back-substitution process. Jonsson and K̊agström [2] have developed block

∗Received by the editors May 16, 2005; accepted for publication (in revised form) by B. T.
K̊agström July 17, 2006; published electronically December 21, 2006. This work was supported by
NSF grant CCR-9901988.

http://www.siam.org/journals/simax/29-1/63170.html
†Center for Applied Mathematics, Cornell University, Ithaca, NY 14853-7510. Current address:

Department of Mathematics and Statistics, James Madison University, MSC 1911, Harrisonburg, VA
22807 (carlam@math.jmu.edu).

‡Department of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853-7510
(cv@cs.cornell.edu).

184

SHIFTED KRONECKER PRODUCT SYSTEMS 185

recursive methods for these kinds of problems and they are very effective in high-
performance computing environments. The method we present is also recursive and
can be regarded as a generalization of their technique. However, we do not generate
the subproblems by splitting at the block level.

There are other well-known settings where linear equation solving via the Schur,
real Schur, or Hessenberg decompositions is preferred over Gaussian elimination and
the LU factorization. For example, suppose A ∈ R

N×N , b ∈ R
N , d ∈ R

N , and that
we want to explore the behavior of the function

f(λ) = dT (A− λIN)−1b,

where λ is a scalar. Note that for each λ we must solve a system of linear equations

(A− λIN)x = b.(1.2)

If one proceeds to use Gaussian elimination, then each f -evaluation requires O(N3)
flops because the underlying LU factorization must be recomputed from scratch for
each λ.

If many f -evaluations are required, then a better approach is to rely on a similarity
transformation such as the Schur or Hessenberg decomposition:

QHAQ = T.(1.3)

Here Q ∈ C
N×N is unitary, and T ∈ C

N×N is upper triangular, quasi-triangular,
or Hessenberg, depending on whether A has complex eigenvalues and depending on
whether the real or complex Schur (or Hessenberg) decomposition is used. Once this
O(N3) “investment” is performed, then

f(λ) = d̃ T (T − λIN)−1b̃, b̃ = QT b, d̃ = QT d,

can be evaluated in just O(N2) flops. In practice, one typically invokes the Hessen-
berg decomposition because it is cheaper, or the real Schur decomposition because it
permits the handling of the complex eigenvalue case with real arithmetic.

Applying these ideas to (1.1) we first compute the Schur decompositions

Q(i)HA(i)Q(i) = T (i), i = 1:p,(1.4)

a calculation that requires O(n3
1 + · · · + n3

p) flops. If

Q = Q(p) ⊗ · · · ⊗Q(1),

then Q is unitary and

QH
(
A(p) ⊗ · · · ⊗A(1)

)
Q = T (p) ⊗ · · · ⊗ T (1).

Thus, (1.1) transforms to (
T (p) ⊗ · · · ⊗ T (1) − λIN

)
y = c,(1.5)

where y ∈ R
N and c ∈ R

N are defined by

x =
(
Q(p) ⊗ · · · ⊗Q(1)

)
y(1.6)

186 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

and

c =
(
Q(p) ⊗ · · · ⊗Q(1)

)H

b.(1.7)

If the Kronecker structure is exploited, then the computations for x and c require
O(N(n1 + · · · + np)) flops. If the complex Schur decomposition is used, then the
resulting system (1.5) is triangular, and we show that it can also be solved in O(N(n1+
· · · + np)) flops. If the real Schur decomposition is used, then the Kronecker product
in (1.5) has a complicated structure. In this case, we invoke the complex Schur
decomposition to deal with the 2-by-2 bumps in each of the T (i). Regardless, the
system (1.5) is an example where introducing complex arithmetic to solve a real
problem is more advantageous. Our main contribution is to show that we can solve
(1.5) “just as fast” where the T (i) are either upper triangular or upper quasi-triangular.
In both cases, complex operations are used to solve the problem.

Thus, with our new method in place, the overall solution process (1.4)–(1.7) re-
quires just O(N(n1 + · · · + np)) flops to execute. To put this in perspective, O(N2)
flops are typically needed for N -by-N triangular system solving and O(N3) flops for
the preliminary factorization. Note that we are assuming that the Schur decompo-
sitions in (1.4) are insignificant. Exceptions occur, for example, when p = 2 and
n1 � n2.

We stress that it is the presence of the shift λ in (1.5) that creates the problem.
If λ = 0, then we have an easy factorization of the matrix of coefficients. Indeed, if
the T (i) are upper triangular,

(
T (p) ⊗ · · · ⊗ T (1)

)
=

p∏
i=1

(
Iρi

⊗ T (i) ⊗ Iμi

)
,

where ρi = ni+1 · · ·np and μi = n1 · · ·ni−1 for i = 1:p. A sequence of triangular
system solves can then be used to obtain y:

y ← c
for i = 1:p

y ←
(
Iρi ⊗ T (i) ⊗ Iμi

)−1
y

end

(1.8)

This implementation of back-substitution requires N(n1 + · · · + np) flops.
Unfortunately, if λ �= 0 then we are stranded without a “Kronecker-friendly”

factorization for
(
T (p) ⊗ · · · ⊗ T (1) − λIN

)
. However, we can implement a recursive

back-substitution procedure involving the Schur decomposition so that (1.5) can be
solved as fast as (1.8).

Our presentation is structured as follows. In section 2 we review relevant proper-
ties of the Kronecker product. To motivate our general procedure for both the trian-
gular and quasi-triangular case, we consider the p = 2 case in section 3. In section 4
we present the algorithm for general p using both the complex Schur decomposition
and the real Schur decomposition. Numerical behavior and various performance and
implementation issues are discussed at the end in section 5. Finally, the error analysis
is presented in the appendix.

2. Some properties of the Kronecker product. We review a few essential
facts about the Kronecker product. Details and proofs can be found in [4].

SHIFTED KRONECKER PRODUCT SYSTEMS 187

Matrix computations that involve the Kronecker product require an understand-
ing of the vec and reshape operators. If Z ∈ R

m×n, then the vec operator is defined
by

vec(Z) =

⎡⎢⎣ Z(:, 1)
...

Z(:, n)

⎤⎥⎦ ∈ R
mn.

In other words, vec(Z) is a vector obtained by stacking the columns of Z.
The reshape operator is a more general way of rearranging the entries in a matrix.

(It is also a built-in MATLAB function.) If z ∈ R
mn then Z = reshape(z,m, n) is

the m-by-n matrix defined by

Z(:, j) = z(1 + (j − 1)m:jm), j = 1:n.

For example, if m = 3 and n = 5, then

reshape(z, 3, 5) =

⎡⎣ z1 z4 z7 z10 z13

z2 z5 z8 z11 z14

z3 z6 z9 z12 z15

⎤⎦ = Z.

Thus, reshape(z,m, n) makes a matrix out of z by using its components to “fill up”
an m-by-n array in column-major order. We also use reshape to build new matrices
from the components of a given matrix. If Z ∈ R

m1×n1 and m2n2 = m1n1, then
reshape(Z,m2, n2) is the m2-by-n2 matrix reshape(vec(Z),m2, n2).

If F , G, H, and K are matrices and the multiplications FH and GK are defined,
then (F ⊗ G)(H ⊗ K) = FH ⊗ GK. Moreover, (F ⊗ G)−1 = (F−1 ⊗ G−1) and
(F ⊗G)T = FT ⊗GT , assuming in the former case that F and G are nonsingular.

In general, if F ∈ R
m×m and G ∈ R

n×n then F ⊗ G �= G ⊗ F . However, if we
define the permutation matrix Πn,nm ∈ R

mn×mn by

ΠT
n,nmx =

⎡⎢⎢⎢⎢⎢⎣
x(1:n:nm)

x(2:n:nm)
...

x(n− 1:n:nm)

⎤⎥⎥⎥⎥⎥⎦ ,

then it can be shown that

ΠT
n,nm(F ⊗G)Πn,nm = G⊗ F.

The matrix Πn,nm is called the vec permutation matrix and its action on a vector is
very neatly described in terms of the reshape operation:

y = ΠT
n,mnx ⇔ reshape(y,m, n) = reshape(x, n,m)T ,(2.1)

y = Πn,mnx ⇔ reshape(y, n,m) = reshape(x,m, n)T .(2.2)

Note that y = Π2,52x is the perfect shuffle of the “card deck” x ∈ R
52. We mention

that if x (and y) are complex, then (2.1) and (2.2) apply exactly as they are specified;
the transpose is not replaced by a conjugate transpose.

188 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

The vec operator enables us to identify certain matrix-vector products as matrix-
matrix products. In particular, if F ∈ R

m×m, G ∈ R
n×n, and X ∈ R

n×m, then it can
be shown that

Y = GXFT ⇔ vec(Y) = (F ⊗G) vec(X).(2.3)

For matrix-vector products of the form

y = (Fp ⊗ · · · ⊗ F1)x, Fi ∈ R
ni×ni ,(2.4)

it is convenient to make use of the factorization

Fp ⊗ · · · ⊗ F1 = Mp · · ·M1,(2.5)

where

Mi = ΠT
ni,N

(
IN/ni

⊗ Fi

)
(2.6)

and N = n1 · · ·np. This result can be found in [4, p. 153] where it is exploited in
connection with high-dimensional fast Fourier transforms. In practice, here is how
one typically computes the vector y in (2.4):

Z ← x
for i = 1:p

Z ← (Fi · reshape(Z, ni, N/ni))
T

end
y ← reshape(Z,N, 1)

(2.7)

The ith pass through the loop requires (2n2
i)(N/ni) = 2Nni flops so the overall

computation involves 2N(n1 + · · ·np) flops.
We mention that a similar process can be used to solve

(Fp ⊗ · · · ⊗ F1)x = d.

From (2.5) and (2.6) it follows that

(Fp ⊗ · · · ⊗ F1)
−1

= F−1
p ⊗ · · · ⊗ F−1

1 = M−1
1 · · ·M−1

p ,

where

M−1
i =

(
IN/ni

⊗ F−1
i

)
Πni,N ,

and so we obtain

B ← d
for i = p: − 1:1

B ← F−1
i reshape(B,N/ni, ni)

T

end
x ← reshape(B,N, 1)

(2.8)

If the Fi are triangular, then the ith pass through the loop requires n2
i (N/ni) = Nni

flops.

SHIFTED KRONECKER PRODUCT SYSTEMS 189

3. The p = 2 case. To motivate the proposed new method for (1.5) for the
triangular and quasi-triangular case, we first consider the special case when p = 2.
That is, for F ∈ R

m×m and G ∈ R
n×n,

(F ⊗G− λI)y = c.(3.1)

Using (2.3), one can rewrite (3.1) as the real discrete-time Sylvester matrix equation

GY FT − λY = C,

where Y = reshape(y, n,m) and C = reshape(c, n,m). As we mentioned earlier,
a block procedure for solving the real discrete-time Sylvester matrix equation is de-
scribed in [2]. In this section, we describe the details of solving (3.1) in a way that
facilitates the presentation of the general p > 2 algorithm. We begin with a small
particular problem, (F ⊗G− λI3n) y = c, where

F =

⎡⎣ f11 f12 f13

0 f22 f23

0 0 f33

⎤⎦
and G ∈ R

n×n is upper triangular. The shifted Kronecker system has the form⎡⎢⎢⎣
f11G− λIn f12G f13G

0 f22G− λIn f23G

0 0 f33G− λIn

⎤⎥⎥⎦
⎡⎢⎢⎣

y1

y2

y3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
c1

c2

c3

⎤⎥⎥⎦ ,

where yi ∈ R
n and ci ∈ R

n for i = 1:3. Assume that the system is nonsingular. The
first step is to solve the n-by-n triangular system

(f33G− λIn) y3 = c3

for y3. By substituting y3 into the first two equations we obtain[
f11G− λIn f12G

0 f22G− λIn

][
y1

y2

]
=

[
c̃1

c̃2

]
,(3.2)

where c̃i = ci − fi3Gy3, i = 1:2. The vectors y3 and Gy3 require O(n2) flops. This
process is then repeated to render y2, and y1 in turn.

Note from the example that if G is quasi-triangular (or even Hessenberg), then
the systems involving the (fiiG−λIn) still just require O(n2) flops to solve. However,
if F is upper quasi-triangular, then there is a more serious complication. To illustrate
let us examine the system (F ⊗G− λI4n) y = c, where

F =

⎡⎢⎢⎣
f11 f12 f13 f14

0 f22 f23 f24

0 f32 f33 f34

0 0 0 f44

⎤⎥⎥⎦
and G ∈ R

n×n is upper quasi-triangular. In this case the shifted Kronecker system
has the form⎡⎢⎢⎢⎢⎣

f11G− λIn f12G f13G f14G

0 f22G− λIn f23G f24G

0 f32G f33G− λIn f34G

0 0 0 f44G− λIn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
c1

c2

c3

c4

⎤⎥⎥⎥⎥⎦ ,

190 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

where yi ∈ R
n and ci ∈ R

n for i = 1:4. Assume that the system is nonsingular. The
first step is to solve the n-by-n quasi-triangular system

(f44G− λIn) y4 = c4

for y4. Substituting this into the above system reduces it to⎡⎢⎢⎣
f11G− λIn f12G f13G

0 f22G− λIn f23G

0 f32G f33G− λIn

⎤⎥⎥⎦
⎡⎢⎢⎣

y1

y2

y3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
c̃1

c̃2

c̃3

⎤⎥⎥⎦ ,(3.3)

where c̃i = ci − fi4Gy4. The vectors y4 and Gy4 require O(n2) flops. Next we solve
the block 2-by-2 system⎡⎣ f22G− λIn f23G

f32G f33G− λIn

⎤⎦[
y2

y3

]
=

[
c̃2

c̃3

]
(3.4)

for y2 and y3. We are then left with a single system for y1:

(f11G− λIn)y1 = c̃1 − f12Gy2 − f13Gy3.

From this example the general plan is clear. At each stage we solve either an n-by-n
system for a single yi or a 2n-by-2n block system for a pair of yi’s. The results are
then substituted into the remaining equations.

Now let us consider how to solve a system of the form (3.4). For concreteness,
suppose

G =

⎡⎢⎢⎢⎢⎣
× × × × ×
× × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×

⎤⎥⎥⎥⎥⎦ .

It is easy to verify that the 2-by-2 block matrix of coefficients in (3.4) has the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × × × × ×
× × × × × × × × × ×
0 0 × × × 0 0 × × ×
0 0 0 × × 0 0 0 × ×
0 0 0 × × 0 0 0 × ×
× × × × × × × × × ×
× × × × × × × × × ×
0 0 × × × 0 0 × × ×
0 0 0 × × 0 0 0 × ×
0 0 0 × × 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= S.(3.5)

Since S = F (2:3, 2:3) ⊗ G − λI10, we can reverse the order of the Kronecker factors

SHIFTED KRONECKER PRODUCT SYSTEMS 191

via a permutation as discussed in section 2:

ΠT
5,10SΠ5,10 = G⊗ F (2:3, 2:3) − λI10 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
0 0 0 0 × × × × × ×
0 0 0 0 × × × × × ×
0 0 0 0 0 0 × × × ×
0 0 0 0 0 0 × × × ×
0 0 0 0 0 0 × × × ×
0 0 0 0 0 0 × × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Extrapolating from this example it is clear that a block system like (3.4) can be solved
in O(n2) flops by permuting it into a block triangular system with diagonal blocks
that are either 2-by-2 or 4-by-4.

We are now in a position to formulate a complete algorithm for the problem
(F ⊗G− λImn)y = c when F ∈ R

m×m and G ∈ R
n×n are upper quasi-triangular. If

F =

⎡⎢⎢⎢⎣
F11 F12 · · · F1r

0 F22 · · · F2r

...
...

. . .
...

0 0 · · · Frr

⎤⎥⎥⎥⎦
with 1-by-1 and 2-by-2 diagonal blocks, then (F ⊗G− λImn)y = c has the form⎡⎢⎢⎢⎢⎣

F11 ⊗G− λI� F12 ⊗G · · · F1r ⊗G

0 F22 ⊗G− λI� · · · F2r ⊗G
...

...
. . .

...

0 0 · · · Frr ⊗G− λI�

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

y1

y2

...

yr

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
c1

c2
...

cr

⎤⎥⎥⎥⎥⎦ ,

where � = n if Fii is 1-by-1 and � = 2n if Fii is 2-by-2 for i = 1:r. The overall
back-substitution process then looks like this:

for k = r: − 1:1
if Fkk is 1-by-1

Solve (FkkG− λIn)yk = ck for yk ∈ R
n

z ← Gyk

ci ← ci − Fikz, i = 1:k − 1
else

Solve (Fkk ⊗G− λI2n)yk = ck for yk ∈ R
2n

z ← (I2 ⊗G)yk

ci ← ci − (Fik ⊗ In)z, i = 1:k − 1

end

end

(3.6)

Thus, on each pass through the loop we solve an n-by-n quasi-triangular system or
a 2n-by-2n block triangular system obtained via permutation. The exact flop count
depends upon the number of 2-by-2 blocks along the diagonals of F and G, i.e.,
the number of complex conjugate eigenvalue pairs that these matrices have. But
regardless, the volume of computation is O(mn(m + n)).

192 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

4. The general algorithm. Observe that algorithm (3.6) could be a solution
framework for the general (T (p) ⊗ · · · ⊗ T (1))y = c problem if we set

F = T (p),

G = T (p−1) ⊗ · · · ⊗ T (1),

m = np,

n = n1 · · ·np−1.

The “solve” steps in (3.6) become recursive calls. If the T (i) are all upper triangular,
then Fkk is 1-by-1 and algorithm (3.6) can be easily extended for general p. However, if
the T (i) are quasi-triangular, then Fkk is 2-by-2 and the system (Fkk⊗G−λI2n)yk = ck
has the form (

Fkk ⊗ T (p−1) ⊗ · · · ⊗ T (1) − λIm

)
yk = ck.

If we use the methods of the previous section, we can permute this system to obtain(
T (p−1) ⊗ · · · ⊗ T (1) ⊗ Fkk − λIm

)
ỹk = c̃k.(4.1)

However, the permute-to-block-triangular-form approach that we illustrated in
section 3 is much less appealing when we consider the general p case. If G is itself a
Kronecker product, e.g., T (p−1) ⊗ · · · ⊗T (1), then its structure is adversely scrambled
when we permute S in (3.5).

For this reason, if we are confronted with a system of the form

(α⊗G− λI) y = c,(4.2)

where

α =

[
α11 α12

α21 α22

]
has complex eigenvalues, then we compute the complex 2-by-2 Schur decomposition

QHαQ =

[
s11 s12

0 s22

]
.

Equation (4.2) transforms to([
s11 s12

0 s22

]
⊗G− λI

)
z = d,

where z = (QH ⊗ I)y and d = (QH ⊗ I)c. This can be solved recursively when G is a
Kronecker product. The (real) solution to the original system is then prescribed by
y = (Q⊗ I)z.

Therefore, if the T (i) are upper quasi-triangular, extending algorithm (3.6) for
general p involves creating an input parameter, α, that can be either a 1-by-1 or a
2-by-2 matrix. If α is 2-by-2 we compute its complex Schur decomposition and solve([

α11 α12

α21 α22

]
⊗ T (p−1) ⊗ · · · ⊗ T (1) − λI

)
y = c

recursively.

SHIFTED KRONECKER PRODUCT SYSTEMS 193

Of course, the hassle associated with the 2-by-2 bumps can be avoided altogether if
the complex Schur decompositions Q(i)HAQ(i) = T (i) are computed right at the start.
However, the proposed strategy is preferred because it restricts complex arithmetic
to diagonal block subproblems. In pseudo-MATLAB our algorithm, KPShiftSolve,
is given in Figure 1.

To assess the volume of the computation, let νp be the number of flops required
by a call to KPShiftSolve when the matrix of coefficients involves a p-fold Kronecker
product. Ignoring low-order terms,

νp =

⎧⎨⎩
1.5n2

1 if p = 1,

npνp−1 + n1 · · ·np(n1 + · · · + np) if p > 1.
(4.3)

Of course, the exact flop count depends on the number of complex eigenvalues of
the T (i). We mentioned that an alternative, but more costly, algorithm involves
computing the complex Schur decompositions of the T (i) from the start. If p = 1,
then solving (T1 − λI)y = c in complex arithmetic requires 6.5n2

1 as compared with
(4.3). When p > 1, the cost of the update (2.7) also increases by a factor of 6 using
complex arithmetic. Hence, the exact flop count of KPShiftSolve lies between what
is specified in (4.3) and the bounds given above when complex arithmetic is used for
the entire process.

If n1 = · · · = np ≡ n in (4.3), then it can be shown that

νp =
1 + p + p2

2
np+1 =

1 + p + p2

2
Nn.

Things are even more complicated if the ni vary. For example, if the T (i) are triangular
and real, then having n1 ≤ · · · ≤ np is more advantageous than having n1 ≥ · · · ≥ np

to reduce the number of recursive calls. For quasi-triangular T (i), the flop count,
vectorization properties, and recursion overheads depend upon the size ordering and
the number of 2-by-2 bumps in each T (i).

5. Implementation issues and performance. KPShiftSolve can be made
more efficient in two ways. First, the T (i) should be sorted so that T (i+1) has fewer
2-by-2 bumps than T (i), i = 1:p − 1, so there are fewer recursive calls. This can be
accomplished via the perfect shuffle explained in section 2 and reduces the overall flop
count. Second, instead of computing the real Schur form of T (1), we need only compute
the cheaper Hessenberg decomposition. To appreciate why this is sufficient consider
the p = 2 example at the start of section 3. If G is upper Hessenberg then the linear
systems with coefficient matrices fiiG − λI that arise during the back-substitution
process (3.2) are also upper Hessenberg. Hessenberg systems can be solved as quickly
as quasi-triangular systems [1, p. 155].

MATLAB codes for the algorithms discussed in this paper are available at

http://www.math.jmu.edu/∼carlam/.

The reader interested in details, especially as they concern the recursion, should study
the codes directly.

With respect to the roundoff properties of the algorithm, the computed solution
x̂ can be shown to solve(

A(p) ⊗ · · · ⊗A(1) − λIN + E
)
x̂ = b,(5.1)

194 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

function y = KPShiftSolve(T, n, c, λ, α)

% T is a length p cell array and n = (n1, . . . , np). Assume that the
% ith element of T is the upper quasi-triangular matrix Ti.
% Set N = n1 · · ·np. α is a scalar or a 2-by-2 matrix. If λ is a real scalar
% and c ∈ R

N , then y ∈ R
N solves (α⊗ Tp ⊗ · · · ⊗ T1 − λI)y = c assuming that

% the system is nonsingular. α = 1 is the default value when not specified.

p = length(n); N = prod(n);

if α ∈ R

Tp = αTp

if p == 1

Solve (T1 − λIn1
)y = c for y.

else

y = zeros(N, 1); mp = N/np; i = np;

while (i ≥ 1)

if i > 1 & Tp(i, i− 1) �= 0 (Tp has a 2-by-2 bump)

idx = 1 + (i− 2)mp: imp

y(idx) = KPShiftSolve(T, n(1:p− 1), c(idx), λ, Tp(i− 1:i, i− 1:i))

z1 = (Tp−1 ⊗ · · · ⊗ T1) · y(idx(1):(i− 1)mp) (Invoke (2.7))

z2 = (Tp−1 ⊗ · · · ⊗ T1) · y(1 + (i− 1)mp:idx(end)) (Invoke (2.7))

for j = 1:i− 2

jdx = 1 + (j − 1)mp: jmp

c(jdx) = c(jdx) − Tp(j, i− 1)z1 − Tp(j, i)z2

end

i = i− 2
else (Tp does not have a 2-by-2 bump)

idx = 1 + (i− 1)mp: imp

y(idx) = KPShiftSolve(T, n(1:p− 1), c(idx), λ, Tp(i, i))

z = (Tp−1 ⊗ · · · ⊗ T1) y(idx) (Invoke (2.7))

for j = 1:i− 1

jdx = 1 + (j − 1)mp: jmp

c(jdx) = c(jdx) − Tp(j, i)z
end
i = i− 1

end
end

else (α ∈ R
2×2)

Compute Q unitary, S upper triangular so that QHαQ = S

d = (QH ⊗ I)c; Tp+1 = S; np+1 = 2;

z = KPShiftSolve(T, n, d, λ, 1)

y = (Q⊗ I)z; y = real(y);
end

Fig. 1. Pseudo-MATLAB code for KPShiftSolve.

SHIFTED KRONECKER PRODUCT SYSTEMS 195

where for any p-norm

‖ E ‖ ≈ u
(
‖A(p) ‖ · · · ‖A(1) ‖ + |λ|

)
= u

(
‖A(p) ⊗ · · · ⊗A(1) ‖ + |λ|

)
(5.2)

and u is the unit roundoff. See the appendix for details.

We make a three comments related to (5.2). First, the explicit formation of the
coefficient matrix involves rounding errors of the same magnitude as ‖ E ‖. Second,
as with any shifted, nonsymmetric linear system, there is not much we can say about
the forward stability in x̂ because the connection between the condition and the
shift parameter is nontrivial. Finally, if κp(·) denotes the p-norm condition, then
κp(A

(p) ⊗ · · · ⊗ A(1)) = κp(A
(p)) · · ·κp(A

(1)). Thus, modest ill-conditioning among
the A(i) compounds to severe ill-conditioning in the Kronecker product.

6. Conclusion. We have presented an algorithm that solves the shifted system(
A(p) ⊗ · · · ⊗A(1) − λIN

)
x = b,

where A(i) ∈ R
ni×ni for i = 1:p and N = n1 · · ·np. Our algorithm involves taking the

real Schur decompositions to convert this system to a quasi-triangular system and uses
a recursive block back-substitution procedure (KPShiftSolve). When a 2-by-2 bump
is encountered in the leading coefficient matrix, the complex Schur decomposition is
computed by the 2-by-2 matrix. This is faster than computing the complex Schur
decompositions from the start. The error associated with our algorithm is no worse
than the method of actually forming the Kronecker product and using standard back-
substitution.

Appendix. Error analysis. In this appendix, we establish (5.1) and (5.2). Re-
call that the first step in our algorithm is to compute the (real) Schur decompositions
of each A(i). Because of the results in [3], it suffices to show that if ŷ is produced by
KPShiftSolve then

(T (p) ⊗ · · · ⊗ T (1) − λI + ΔT)ŷ = c,(A.1)

‖ ΔT ‖ ≤ δT (||T (p)|| · · · ||T (1)|| + |λ|),(A.2)

where δT is a modest multiple of the unit roundoff u and T (i) is either triangular or
quasi-triangular for i = 1:p. To establish these results we first say something about
the case p = 2. As in [3], we adopt the convention that all the δ’s below are O(u) in
magnitude. In addition, the floating point result of a matrix calculation is indicated
by fl(·) and we use “hat” notation to represent computed quantities.

Lemma A.1. Let F ∈ R
m×m be upper triangular, G ∈ R

n×n be quasi-upper
triangular, c ∈ R

mn, and λ ∈ R. If ŷ is obtained by using KPShiftSolve to solve
(F ⊗G− λI)y = c, then there exists E ∈ R

mn×mn such that

(F ⊗G− λI + E)ŷ = c,(A.3)

‖ E ‖ ≤ δE(‖ F ‖‖G ‖ + |λ|).(A.4)

Proof. The proof is by induction on the dimension of F . If m = 1 then we solve
(f11G − λIn)y = c. This involves first forming M = f11G − λIn and then solving

196 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

My = c using back-substitution. Accounting for the rounding error associated with
forming M , there exists H1 such that

M̂ = fl(M) = f11G− λI + H1, ‖H1 ‖ ≤ δ1(|f11| · ‖G ‖ + |λ|).(A.5)

Next, the computed solution to the triangular system satisfies

(M̂ + H2)ŷ = c,(A.6)

‖H2 ‖ ≤ δ2‖ M̂ ‖ ≤ δ3(|f11| · ‖G ‖ + |λ|),(A.7)

where δ3 = δ1 + δ2 (see [1, p. 89]). Combining (A.5)–(A.7) and setting E = H1 + H2

complete the proof when m = 1.
Now suppose (A.3), (A.4) hold for all k < m. Partition the system as[

f11G− λI F12 ⊗G

0 F22 ⊗G− λI

][
y1

y2

]
=

[
c1

c2

]
,

where F12 = F (1, 2:m), F22 = F (2:m, 2:m), and y1, y2, c1, c2 are appropriate blockings
of y and c, respectively. By induction, ŷ2 solves

(F22 ⊗G− λI + E22)ŷ2 = c2

with

‖ E22 ‖ ≤ δ4(‖ F22 ‖‖G ‖ + |λ|).(A.8)

The next step is to solve for y1 with

(f11G− λI)y1 = fl(c1 − (F12 ⊗G)ŷ2).

The computations associated with the update d1 = c1 − (F12 ⊗G)ŷ2 satisfy

d̂1 = fl(d1) = c1 − (F12 ⊗G + E12)ŷ2 + Δc,

where

‖ E12 ‖ ≤ δ5‖ F12 ‖‖G ‖,(A.9)

‖ Δc ‖ ≤ δ6(‖ c1 ‖ + ‖ F12 ‖‖G ‖‖ ŷ2 ‖).(A.10)

Finally, we form M = f11G−λI and solve My1 = d1 using back-substitution. Forming
M gives

M̂ = fl(M) = f11G− λI + Δ1,(A.11)

‖ Δ1 ‖ ≤ δ7(|f11| · ‖G ‖ + |λ|).(A.12)

Then the computed solution to the triangular system M̂y1 = d̂1 satisfies

(M̂ + Δ2)ŷ1 = d̂1

with

‖ Δ2 ‖ ≤ δ8‖ M̂ ‖ ≤ δ9(|f11 · ‖G ‖ + |λ|).(A.13)

SHIFTED KRONECKER PRODUCT SYSTEMS 197

Let E11 = Δ1 + Δ2 and set

E =

[
E11 E12

0 E22

]
.

The proof follows from (A.8), (A.9), (A.12), (A.13), and by setting δE = δ4 + δ5 +
δ7 + δ9.

Next, we address the error associated with computations when a 2-by-2 bump is
encountered. For simplicity, we show this for p = 2.

Lemma A.2. Let α be a scalar or a 2 × 2 matrix with complex eigenvalues, and
let T be an upper quasi-triangular n × n matrix. Let m = n dim(α), c ∈ R

m, and
λ ∈ R. If ŷ is obtained from using KPShiftSolve to solve (α ⊗ T − λI)y = c, then
there exists E ∈ R

m×m such that

(α⊗ T − λIm + E)ŷ = c,(A.14)

‖ E ‖ ≤ δE(‖ α ‖‖ T ‖ + |λ|).(A.15)

Proof. If α is 1×1, then the proof is completed by using Lemma A.1. If α is 2×2,
then KPShiftSolve computes the complex Schur decomposition of α and then solves
a block upper triangular system. Specifically, KPShiftSolve performs the following
four steps:

1. Compute the complex Schur decomposition QHαQ = S.
2. Form d = (QH ⊗ I)c.
3. Solve the system (S ⊗ T − λI)z = d for z using KPShiftSolve.
4. Set y = (Q⊗ I)z.

These steps are analogous to solving a linear system using the complex Schur
decomposition. The Kronecker product structure does not affect the result and can
be shown using the methods found in [3] and Lemma A.1.

Now that we have dealt with the error associated with solving the system when a
2-by-2 bump is encountered, we are ready to establish the error results for a Kronecker
product of quasi-triangular matrices. In the next lemma, we present the results for
p = 2.

Lemma A.3. Let F and G be quasi-triangular matrices of size m×m and n×n,
respectively. Let λ ∈ R and b ∈ R

mn. If KPShiftSolve is used to solve (F ⊗ G −
λImn)y = c, then there exists E ∈ R

mn×mn such that the computed solution ŷ solves

(F ⊗G− λI + E)ŷ = c,(A.16)

‖ E ‖ ≤ δE(‖ F ‖‖G ‖ + |λ|).(A.17)

Proof. The proof is similar to the proof of Lemma A.1 and is completed by induc-
tion on the dimension of F . Lemma A.2 is used when a 2-by-2 bump is encountered
in F .

We are now ready to establish the final result for general p. The following lemma
establishes (A.1) and (A.2).

Lemma A.4. Let T (1), . . . , T (p) be upper quasi-triangular ni × ni matrices, i =
1, . . . , p. Let λ ∈ R and b ∈ R

n1...np . If KPShiftSolve is used to solve (T (p) ⊗ · · · ⊗
T (1) − λI)y = c, then there exists ΔT ∈ R

N×N where N = n1 · · ·np such that the

198 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

computed solution ŷ solves

(T (p) ⊗ · · · ⊗ T (1) − λI + ΔT)ŷ = c,

‖ ΔT ‖ ≤ δT (||T (p)|| · · · ||T (1)|| + |λ|).

Proof. We prove this by induction on p. Lemma A.3 proves the base case when
p = 2. Now assume Lemma A.4 holds for p − 1. To show this is true for p, we use
induction on dim(A(p)). The proof follows by following the methods similar to the
proof of Lemma A.1 when p = 2. The proof now easily follows from Lemma A.3 by
setting G = T (p−1) ⊗ · · · ⊗ T (1).

REFERENCES

[1] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[2] I. Jonsson and B. Kågström, Recursive blocked algorithm for solving triangular systems. II.
Two-sided and generalized Sylvester and Lyapunov matrix equations, ACM Trans. Math.
Software, 28 (2002), pp. 416–435.

[3] C. D. Moravitz Martin and C. F. Van Loan, Solving real linear systems with the complex
Schur decomposition, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 177–183.

[4] C. F. Van Loan, Computational Frameworks for the Fast Fourier Transform, Front. Appl.
Math. 10, SIAM, Philadelphia, 1992.

SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 199–227

MULTISHIFT VARIANTS OF THE QZ ALGORITHM WITH
AGGRESSIVE EARLY DEFLATION∗

BO KÅGSTRÖM† AND DANIEL KRESSNER†‡

Abstract. New variants of the QZ algorithm for solving the generalized eigenvalue problem are
proposed. An extension of the small-bulge multishift QR algorithm is developed, which chases chains
of many small bulges instead of only one bulge in each QZ iteration. This allows the effective use of
level 3 BLAS operations, which in turn can provide efficient utilization of high performance computing
systems with deep memory hierarchies. Moreover, an extension of the aggressive early deflation
strategy is proposed, which can identify and deflate converged eigenvalues long before classic deflation
strategies would. Consequently, the number of overall QZ iterations needed until convergence is
considerably reduced. As a third ingredient, we reconsider the deflation of infinite eigenvalues and
present a new deflation algorithm, which is particularly effective in the presence of a large number
of infinite eigenvalues. Combining all these developments, our implementation significantly improves
existing implementations of the QZ algorithm. This is demonstrated by numerical experiments with
random matrix pairs as well as with matrix pairs arising from various applications.

Key words. generalized eigenvalue problem, generalized Schur form, QZ algorithm, multishifts,
aggressive early deflation, blocked algorithms

AMS subject classifications. 65F15, 15A18, 15A22, 47A75

DOI. 10.1137/05064521X

1. Introduction. The QZ algorithm is a numerically backward stable method
for computing generalized eigenvalues and deflating subspaces of small- to medium-
sized regular matrix pairs (A,B) with A,B ∈ R

n×n. It goes back to Moler and
Stewart in 1973 [37] and underwent only a few modifications during the following
25 years, notably through works by Ward [47, 48], Kaufman [29], and Dackland and
K̊agström [12]. Nonorthogonal variants of the QZ algorithm include the LZ algorithm
by Kaufman [28] and the AB algorithm for pencils by Kublanovskaya [34].

The purpose of the QZ algorithm is to compute a generalized Schur decomposi-
tion of (A,B), i.e., orthogonal matrices Q and Z so that S = QTAZ is quasi-upper
triangular with 1 × 1 and 2 × 2 blocks on the diagonal, while the matrix T = QTBZ
is upper triangular. This decomposition provides almost everything needed to solve
the generalized nonsymmetric eigenvalue problem (GNEP). Generalized eigenvalues,
defined as root pairs (α, β) of the bivariate polynomial det(βA−αB), can be directly
computed from the diagonal blocks of S and T , although some care must be taken to
implement this computation in a safe manner; see [37, 45]. Moreover, the leading k
columns of the orthogonal matrices Z and Q span a pair of deflating subspaces [40] if
the (k+1, k) subdiagonal entry of the matrix S vanishes. A reordering of the diagonal
blocks of S and T can be used to compute other deflating subspaces; see [26, 25, 44].

The eigenvalues of (A,B) are read off from (S, T) as follows. The 2 × 2 diagonal
blocks correspond to pairs of complex conjugate eigenvalues. The real eigenvalues

∗Received by the editors November 15, 2005; accepted for publication (in revised form) by P.
Benner August 21, 2006; published electronically December 21, 2006. Supported by the DFG Emmy
Noether fellowship KR 2950/1-1 and by the Swedish Research Council under grant VR 621-2001-
3284 and by the Swedish Foundation for Strategic Research under grant A3 02:128. This research
was conducted using the resources of the High Performance Computing Center North (HPC2N).

http://www.siam.org/journals/simax/29-1/64521.html
†Department of Computing Science and HPC2N, Ume̊a University, S-901 87 Ume̊a, Sweden

(bokg@cs.umu.se, kressner@cs.umu.se).
‡Department of Mathematics, Bijenička 30, 10000 Zagreb, Croatia (kressner@math.hr).

199

200 B. KÅGSTRÖM AND D. KRESSNER

are given in pairs (sii, tii) corresponding to the 1 × 1 diagonal blocks of (S, T). The
finite eigenvalues are sii/tii, where tii �= 0. An infinite eigenvalue is represented as
(sii, 0) with sii �= 0. If (sii, tii) �= (0, 0) for all i, then (A,B) is a regular matrix pair,
or equivalently βA − αB is a regular matrix pencil. Otherwise, the matrix pair is
singular and at least one (sii, tii) equals (0, 0). These situations need extra caution,
and so-called staircase-type algorithms can be used for identifying singular cases by
computing a generalized upper triangular (GUPTRI) form of (A,B) (e.g., see Demmel
and K̊agström [13, 14]).

Three ingredients make the QZ algorithm work effectively. First, the matrix pair
(A,B) is reduced to Hessenberg-triangular form; i.e., orthogonal matrices Q and Z
are computed so that H = QTAZ is upper Hessenberg and T = QTBZ is upper
triangular. Second, a sequence of so-called implicit shifted QZ iterations is applied to
(H,T) in order to bring H closer to (block) upper triangular form while preserving the
Hessenberg-triangular form of (H,T). Each of these iterations can be seen as chasing
a pair of bulges from the top left to the bottom right corners along the subdiagonals of
H and T , a point of view that has been emphasized by Watkins and Elsner [49]. The
third ingredient is deflation, which aims at splitting the computation of the generalized
Schur form (S, T) into smaller subproblems. This paper describes improvements for
the latter two ingredients, QZ iterations, and deflations.

Inspired by the works of Braman, Byers, and Mathias [7] and Lang [36] for the
QR algorithm, we propose multishift QZ iterations that chase a tightly coupled chain
of bulge pairs instead of only one bulge pair per iteration. This allows the effective
use of level 3 BLAS operations [15, 23, 24] during the bulge chasing process, which in
turn can provide efficient utilization of today’s high performance computing systems
with deep memory hierarchies. Tightly coupled bulge chasing has also successfully
been used in the reduction of a matrix pair (Hr, T) in block Hessenberg-triangular
form, where Hr has r subdiagonals, to Hessenberg-triangular form (H,T) [12].

Recently, Braman, Byers, and Mathias [6] also presented a new, advanced defla-
tion strategy, the so-called aggressive early deflation. Combining this deflation strat-
egy with multishift QR iterations leads to a variant of the QR algorithm, which may,
for sufficiently large matrices, require less than 10% of the computing time needed by
the LAPACK [2] implementation. We will show that this deflation strategy can be
extended to the QZ algorithm, resulting in similar time savings.

A (nearly) singular matrix B often implies that the triangular matrix T of the
corresponding Hessenberg-triangular form has one or more diagonal entries close to
zero. Each of these diagonal entries admits the deflation of an infinite eigenvalue.
Some applications, such as semidiscretized Stokes equations [42], lead to matrix pairs
that have a large number of infinite eigenvalues. Consequently, a substantial amount
of computational work in the QZ algorithm is spent deflating these eigenvalues. We
will provide a discussion on this matter including preprocessing techniques, and we
propose windowing techniques that lead to more efficient algorithms for deflating
infinite eigenvalues within the QZ algorithm. This approach is conceptually close
to blocked algorithms for reordering eigenvalues in standard and generalized Schur
forms [32].

The rest of this paper is organized as follows. In section 2, we review and extend
conventional multishift QZ iterations and provide some new insight into their numeri-
cal backward stability. Multishift variants that are based on chasing a tightly coupled
chain of bulge pairs are described in section 3. In section 4, a thorough discussion on
dealing with infinite eigenvalues is presented that includes preprocessing and efficient
methods for deflating such eigenvalues within the QZ algorithm. Aggressive early de-

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 201

flation for the QZ algorithm and its connection to the distance of uncontrollability for
descriptor systems are studied in section 6. Computational experiments, presented
in section 7, demonstrate the effectiveness of our newly developed multishift QZ al-
gorithm with advanced deflation techniques. Finally, some concluding remarks are
summarized in section 8.

2. Conventional multishift QZ iterations. Throughout the rest of this paper
we assume that the matrix pair under consideration, which will be denoted by (H,T),
is already in Hessenberg-triangular form. Efficient algorithms for reducing a given
matrix pair to this form can be found in [12, 31]. For the moment, we also assume
that (H,T) is an unreduced matrix pair; i.e., all subdiagonal entries of H as well as all
diagonal entries of T are different from zero. The latter condition implies that only
finite eigenvalues are considered.

A QZ iteration relies on a fortunate choice of m shifts (or shift pairs) (μ1, ν1),
(μ2, ν2), . . . , (μm, νm) with μi ∈ C and νi ∈ R, giving rise to the shift polynomial

p(HT−1) = (ν1HT−1 − μ1In)(ν2HT−1 − μ2In) · · · (νmHT−1 − μmIn).(2.1)

If x denotes the first column of this matrix polynomial, then the first step of an
implicit shifted QZ iteration consists of choosing an orthogonal matrix Q1 such that
QT

1 x is a multiple of the first unit vector e1. The rest of the QZ iteration consists of
reducing the updated matrix pair (QT

1 H,QT
1 T) back to Hessenberg-triangular form,

without modifying the first rows of QT
1 H and QT

1 T by transformations from the left.
In the original formulation of the QZ algorithm [37], this reduction to Hessenberg-

triangular form was described for m ≤ 2, based on combinations of Givens rotations
and Householder matrices. This approach has the negative side-effect that one QZ
iteration with m = 2 shifts requires more flops (floating point operations) than two QZ
iterations with m = 1 shift. Partly avoiding this increase of flops, Ward [47] proposed
the so-called combination shift QZ algorithm which uses m = 1 for real shifts and
m = 2 for complex conjugate pairs of shifts. Later on, Watkins and Elsner [49]
proposed a variant solely based on Householder matrices which requires roughly 27%
fewer flops than the original formulation and may employ an arbitrary number m
of shifts. This variant is currently implemented in the LAPACK subroutine DHGEQZ.
A curiosity of this subroutine is that it still uses Ward’s combination shift strategy
despite the fact that two single shift QZ iterations now require roughly 9% more flops
than one double shift iteration.

2.1. Householder-based variants. In the following, we describe the House-
holder-based variant by Watkins and Elsner in more detail. To simplify the notation,
we make use of the following convention.

Definition 2.1. A Householder matrix which maps the last n− j elements of a
given vector x ∈ R

n to zero without modifying the leading j − 1 elements is denoted
by Hj(x).

Let us illustrate the first few steps of an implicit QZ iteration for n = 6,m = 2.
First, a Householder matrix H1(x) is used to map x, the first column of the shift
polynomial defined in (2.1), to a multiple of e1. Note that only the leading three
elements of x are nonzero. Hence, if H1(x) is applied from the left to H and T , only

the first three rows (denoted by the symbols ĥ and t̂ below) are affected while the

202 B. KÅGSTRÖM AND D. KRESSNER

remaining rows stay unchanged (denoted by h and t):

(H,T) ←

⎛⎜⎜⎝
⎡⎢⎢⎣

ĥ ĥ ĥ ĥ ĥ ĥ

ĥ ĥ ĥ ĥ ĥ ĥ

ĥ ĥ ĥ ĥ ĥ ĥ
0 0 h h h h
0 0 0 h h h
0 0 0 0 h h

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
t̂ t̂ t̂ t̂ t̂ t̂
t̂ t̂ t̂ t̂ t̂ t̂
t̂ t̂ t̂ t̂ t̂ t̂
0 0 0 t t t
0 0 0 0 t t
0 0 0 0 0 t

⎤⎥⎥⎦
⎞⎟⎟⎠.(2.2)

Next, to avoid further fill-in in the factor T , the newly introduced entries (2, 1) and
(3, 1) must be eliminated. Recall that we are not allowed to change the first row of
T by applying a transformation from the left. However, it is still possible to achieve
these eliminations by applying a Householder matrix using the following simple fact.

Lemma 2.2 (see [49]). Let T ∈ R
n×n be an invertible matrix. Then the first

column of T H1(T
−1e1) is a scalar multiple of e1.

Applying a Householder matrix from the right to eliminate several elements in
one column (instead of one row) is somewhat opposite to their standard use. This mo-
tivates us to call such a matrix an opposite Householder matrix. Applying H1(T

−1e1)
from the right yields the following diagram:

(H,T) ←

⎛⎜⎜⎝
⎡⎢⎢⎣

ĥ ĥ ĥ h h h

ĥb ĥb ĥb h h h

ĥb ĥb ĥb h h h

ĥb ĥb ĥb h h h
0 0 0 h h h
0 0 0 0 h h

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
t̂ t̂ t̂ t t t

0̂b t̂b t̂b t t t

0̂b t̂b t̂b t t t
0b 0b 0b t t t
0 0 0 0 t t
0 0 0 0 0 t

⎤⎥⎥⎦
⎞⎟⎟⎠.(2.3)

Here, we have used the subscript b to designate entries that belong to the so-called
bulge pair. The rest of the QZ iteration can be seen as pushing this bulge pair along the
subdiagonals down to the bottom right corners until it vanishes. The next two steps
consist of applying the Householder matrix H2(He1) from the left and the opposite
Householder matrix H2(T

−1e2) from the right:

(H,T) ←

⎛⎜⎜⎝
⎡⎢⎢⎣

h h h h h h

ĥ ĥ ĥ ĥ ĥ ĥ

0̂ ĥ ĥ ĥ ĥ ĥ

0̂ ĥ ĥ ĥ ĥ ĥ
0 0 0 h h h
0 0 0 0 h h

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
t t t t t t
0 t̂ t̂ t̂ t̂ t̂
0 t̂ t̂ t̂ t̂ t̂
0 t̂ t̂ t̂ t̂ t̂
0 0 0 0 t t
0 0 0 0 0 t

⎤⎥⎥⎦
⎞⎟⎟⎠,

(H,T) ←

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

h ĥ ĥ ĥ h h

h ĥ ĥ ĥ h h

0 ĥb ĥb ĥb h h

0 ĥb ĥb ĥb h h

0 ĥb ĥb ĥb h h
0 0 0 0 h h

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎣
t t̂ t̂ t̂ t t
0 t̂ t̂ t̂ t t

0 0̂b t̂b t̂b t t

0 0̂b t̂b t̂b t t
0 0b 0b 0b t t
0 0 0 0 0 t

⎤⎥⎥⎦
⎞⎟⎟⎟⎠.(2.4)

For general m and n, the implicit shifted QZ iteration based on (opposite) Householder
matrices is described in Algorithm 1. Here, the colon notation A(i1 : i2, j1 : j2) is used
to designate the submatrix of a matrix A defined by rows i1 through i2 and columns
j1 through j2.

Note that the shifts employed in Algorithm 1 are based on the generalized eigen-
values of the bottom right m×m submatrix pair, a choice which is sometimes called
generalized Francis shifts and which ensures quadratic local convergence [49]. If
m � n, a proper implementation of this algorithm requires 2(4m + 3)n2 + O(n)
flops for updating H and T . In addition, (4m + 3)n2 + O(n) flops are required for
updating each of the orthogonal factors Q and Z.

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 203

Algorithm 1 Implicit shifted QZ iteration based on Householder matrices

Input: An n× n matrix pair (H,T) in unreduced Hessenberg-triangular form, an
integer m ∈ [2, n].

Output: Orthogonal matrices Q,Z ∈ R
n×n so that QT (H,T)Z is the Hessenberg-

triangular matrix pair obtained after applying a QZ iteration with m shifts.
The matrix pair (H,T) is overwritten by QT (H,T)Z.

Compute (μ1, ν1), (μ2, ν2), . . . , (μm, νm) as generalized eigenvalues of the matrix pair

(H(n−m + 1 : n, n−m + 1 : n), T (n−m + 1 : n, n−m + 1 : n)).

Set x = ((ν1HT−1 − μ1In)(ν2HT−1 − μ2In) · · · (νmHT−1 − μmIn))e1.
(H,T) ← H1(x) · (H,T)
Q ← H1(x), Z ← H1(T

−1e1)
(H,T) ← (H,T) · Z
for j ← 1, 2, . . . , n− 2 do

Q̃ ← Hj+1(Hej)
(H,T) ← Q̃ · (H,T)
Q ← QQ̃
Z̃ ← Hj+1(T

−1ej+1)
(H,T) ← (H,T) · Z̃
Z ← ZZ̃

end for

2.2. Error analysis of opposite Householder matrices. Some authors have
raised concerns that the use of opposite Householder matrices could introduce numeri-
cal instabilities in the QZ algorithm; see, e.g., [12, p. 444]. Such instabilities could arise
if some entries that should be zero after the application of an opposite Householder
matrix are nonnegligible in finite-precision arithmetic. In the following, we provide a
brief error analysis showing that such an event may not occur if some care is taken.

Without loss of generality, we can restrict the analysis to an opposite Householder
matrix of the form H1(T

−1e1) for some nonsingular matrix T ∈ R
n×n. Although an

ill-conditioned T may severely affect the data representing H1(T
−1e1), it has almost

no effect on the purpose of H1(T
−1e1), which is the introduction of zero entries. To

explain this, assume that a numerically backward stable method is employed to solve
the linear system Tx = e1, yielding a computed solution x̂. This implies that x̂ is the
exact solution of a slightly perturbed system

(T + F)x̂ = e1, ‖F‖2 ≤ cT ‖T‖2,(2.5)

where cT is not much larger than the unit roundoff u [21]. Now, consider the House-
holder matrix H1(x̂) = I − β̃ṽṽT , where β̃ ∈ R, ṽ ∈ R

n, such that (I − β̃ṽṽT)x̂ = γ̃e1

for some scalar γ̃. The computation of the quantities β̃, ṽ defining H1(x̂) is also
subject to roundoff errors. Using standard computational methods, the computed
quantities v̂, β̂ satisfy

|β̂ − β̃| ≤ cβ |β̃| ≈ (4n + 8)u|β̃|, ‖v̂ − ṽ‖2 ≤ cv‖ṽ‖2 ≈ (n + 2)u‖ṽ‖2;

see [21, p. 365]. It follows that

‖T · (I − β̂v̂v̂T)e1 − 1/γ̃ · e1‖2 ≤ ‖T · (I − β̃ṽṽT)e1 − 1/γ̃ · e1‖2

+ (2cβ + 4cv)‖T‖2 + O(u2)

≤ (cT + 2cβ + 4cv)‖T‖2 + O(u2).

204 B. KÅGSTRÖM AND D. KRESSNER

This shows that if x̂ is computed by a backward stable method, then the last n − 1
elements in the first column of T (I − βv̂v̂T) can be set to zero without spoiling the
backward stability of the QZ algorithm.

In this paper, we favor the following method for constructing opposite House-
holder matrices. Let T = RQ be an RQ decomposition; i.e., the matrix R ∈ R

n×n is
upper triangular and Q ∈ R

n×n is orthogonal. If T is invertible, then QT e1 is a scalar
multiple of T−1e1 implying that H1(Q

T e1) is an opposite Householder matrix. Even
if T is singular, it can be shown that the first column of T · H1(Q

T e1) is mapped to
a multiple of e1:

T · H1(Q
T e1) = R · [Q · H1(Q

T e1)] =

[
r11 R12

0 R22

] [
q̃11 0

0 Q̃22

]
=

[
r11q̃11 R12Q̃22

0 R22Q̃22

]
.

RQ decompositions enjoy a favorable backward error analysis, and the constant cT
in (2.5) can be bounded by roughly n2u; see, e.g., [21, Thm. 18.4].

2.3. Bulge pairs and shift blurring. Convergence in the implicit shifted QZ
iteration typically becomes manifest in the bottom right corner of the matrix pair;
often the mth-last subdiagonal entry of H converges to zero. As a QZ iteration can
be interpreted as chasing a bulge pair from the top left corner to the bottom right
corner of (H,T), the question arises how the information contained in the shifts is
passed during this chasing process. Watkins [53] discovered a surprisingly simple
relationship; the intended shifts are the finite eigenvalues of the bulge pairs.

To explain this in more detail, suppose that the implicit shifted QZ iteration with
m shifts, Algorithm 1, is applied to (H,T) ∈ R

n×n×R
n×n with n > m. As before, we

assume that (H,T) is in unreduced Hessenberg-triangular form but we do not assume
that T is nonsingular; only the part used for the shift computation (the trailing m×m
principal submatrix of T) and the part involved in the introduction of the bulge pair
(the leading m ×m principal submatrix of T) are required to be nonsingular. Let x
be a multiple of the first column of the shift polynomial defined in (2.1). The initial

bulge pair is the matrix pair
(
B

(H)
0 , B

(T)
0

)
, where

B
(H)
0 = [x(1 : m + 1), H(1 : m + 1 : 1 : m)] =

⎡⎢⎢⎢⎢⎣
x1 h11 · · · h1m

x2 h21
. . .

...
...

. . . hmm

xm+1 0 hm+1,m

⎤⎥⎥⎥⎥⎦ ,

B
(T)
0 = [0, T (1 : m + 1 : 1 : m)] =

⎡⎢⎢⎢⎢⎣
0 t11 · · · t1m

0 0
. . .

...
...

. . . tmm

0 0 · · · 0

⎤⎥⎥⎥⎥⎦ .

Theorem 2.3 (see [53]). If the leading m×m principal submatrix of T is nonsin-
gular, then the shifts (σ1, 1), . . . , (σm, 1) are the finite eigenvalues of the initial bulge

pair
(
B

(H)
0 , B

(T)
0

)
.

During the course of a QZ iteration, a bulge pair is first created at the top left
corners and then chased down to the bottom right corners. Let

(
H(j), T (j)

)
denote

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 205

the updated matrix pair (H,T) obtained after the bulge pair has been chased j − 1
steps, which amounts to applying j−1 loops of Algorithm 1. Then, the jth bulge pair(
B

(H)
j , B

(T)
j

)
is given by

B
(H)
j = H(j)(j + 1 : j + m + 1, j : j + m + 1),

B
(T)
j = T (j)(j + 1 : j + m + 1, j : j + m + 1),

(2.6)

which corresponds to the submatrices designated by the subscript b in (2.3)–(2.4).
Theorem 2.4 (see [53]). If the mth leading principal submatrix of T is non-

singular, then the shifts σ1, . . . , σm are the finite eigenvalues of the jth bulge pair(
B

(H)
j , B

(T)
j

)
.

Note that the definition of a bulge pair is only possible for j ≤ n −m − 1, since
otherwise (2.6) refers to entries outside of H(j) and T (j). This issue can be resolved by
adding virtual rows and columns to the matrix pair (H(j), T (j)); see [53]. Theorem 2.4
can be extended to the case j > n−m− 1.

Early attempts to improve the performance of the QR algorithm focused on using
shift polynomials of high degree [4], leading to medium-order Householder matrices
during the QR iteration and enabling the efficient use of WY representations. This
approach, however, has proved disappointing due to the fact that the convergence of
such a large-bulge multishift QR algorithm is severely affected by roundoff errors [16].
This effect is caused by shift blurring: with increasing m the eigenvalues of the bulge
pairs, which should represent the shifts in exact arithmetic, often become extremely
sensitive to perturbations [51, 52, 33]. Already for moderate m, say, m ≥ 15, the
shifts may be completely contaminated by roundoff errors during the bulge chasing
process. Not surprisingly, we made similar observations in numerical experiments
with implicit shifted QZ iterations, which also suffer from shift blurring.

3. Multishift QZ iterations based on tightly coupled tiny bulge pairs.
The trouble with shift blurring can be avoided by developing variants of the implicit
shifted QZ algorithm that still rely on a large number of simultaneous shifts but
chase several tiny bulge pairs instead of one large bulge pair. Such ideas have already
been successfully applied to the QR algorithm; see, e.g., [7, 36] and the references
therein. In this section, we describe an extension of the work by Braman, Byers, and
Mathias [7] to the QZ algorithm.

For the purpose of describing this new tiny-bulge multishift QZ algorithm, let m
denote the number of simultaneous shifts to be used in each QZ iteration and let ns

denote the number of shifts contained in each bulge pair. It is assumed that m is an
integer multiple of ns. To avoid shift blurring phenomena we use tiny values for ns,
say, ns = 2 or ns = 4.

Our algorithm performs an implicit shifted QZ iteration with m generalized Fran-
cis shifts to a Hessenberg-triangular matrix pair (H,T) and consists of three stages,
which are described in more detail below. First, a tightly coupled chain of m/ns

bulge pairs is bulge-by-bulge introduced in the top left corners of H and T . Sec-
ond, the whole chain at once is chased down along the subdiagonal until the bottom
bulge pair reaches the bottom right corners of H and T . Finally, all bulge pairs are
bulge-by-bulge chased off this corner.

3.1. Introducing a chain of bulge pairs. The tiny-bulge multishift QZ algo-
rithm begins with introducing m/ns bulge pairs in the top left corner of the matrix
pair (H,T). Every bulge pair contains a set of ns shifts. It is assumed that the
((m/ns)(ns + 1) − 1)th leading principal submatrix of T is nonsingular. The first

206 B. KÅGSTRÖM AND D. KRESSNER

Fig. 3.1. Introducing a chain of m/ns = 4 tightly coupled bulge pairs, each of which contains
ns = 3 shifts.

bulge pair is introduced by applying an implicit QZ iteration with ns shifts and in-
terrupting the bulge chasing process as soon as the bottom right corner of the bulge
in H touches the (ph− 1, ph) subdiagonal entry of H, where ph = (m/ns)(ns +1)+1.
The next bulge pair is chased until the bottom right corner of the bulge in H touches
the (ph − ns − 2, ph − ns − 1) subdiagonal entry. This process is continued until all
m/ns bulge pairs are introduced; see Figure 3.1. Note that only the submatrices
marked light gray in Figure 3.1 must be updated during the bulge chasing process.
To update the remaining parts (marked dark gray), all orthogonal transformations
from the left are accumulated into a ph×ph matrix U and applied in terms of general
matrix-matrix multiply (GEMM) operations:

H(1 : ph, (ph + 1) : n) ← UT ·H(1 : ph, (ph + 1) : n),

T (1 : ph, (ph + 1) : n) ← UT · T (1 : ph, (ph + 1) : n).

3.2. Chasing a chain of bulge pairs. In each step of the tiny-bulge multishift
QZ algorithm, the chain of bulge pairs is chased k steps downward. Before the first
step, this chain resides in columns/rows pl : ph with pl = 1, ph = (m/ns)(ns + 1) + 1
as above. Before the next step, we have pl = 1 + k, ph = (m/ns)(ns + 1) + 1 + k, and
so on.

The whole chain is chased in a bulge-by-bulge and bottom-to-top fashion. One
such step is illustrated in Figure 3.2. Again, only the principal submatrices marked
light gray in Figure 3.2 must be updated during the bulge chasing process. All trans-
formations from the left and from the right are accumulated into orthogonal matrices
U and V , respectively. Then, GEMM operations can be used to update the rest of
the matrix pair (marked dark gray in Figure 3.2):

H(pl : ph + k, (ph + 1) : n) ← UT ·H(pl : ph + k, (ph + 1) : n),

T (pl : ph + k, (ph + 1) : n) ← UT · T (pl : ph + k, (ph + 1) : n),

H(1 : pl − 1, pl : ph + k) ← H(1 : pl − 1, pl : ph + k) · V,
T (1 : pl − 1, pl : ph + k) ← T (1 : pl − 1, pl : ph + k) · V.

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 207

Fig. 3.2. Chasing a chain of m/ns = 4 tightly coupled bulge pairs.

Note that both matrices, U and V , have the following block structure:

(3.1)

where l1 = (m/ns)(ns + 1) − ns and l2 = k + ns. If this structure is largely ig-
nored, applying U or V amounts to a single GEMM with one of the factors being an
(l1 + l2) × (l1 + l2) matrix. If, on the other hand, the triangular block structure is
fully exploited, applying U or V amounts to two triangular matrix-matrix multiplies
(TRMMs), one with an l1×l1 factor and the other with an l2×l2 factor, as well as two
rectangular GEMMs, one with an l1 × l2 factor and the other with an l2 × l1 factor.
The ratio between the flops needed by these two options is 1+(l21 +l22)/(l

2
1 +l22 +4l1l2).

Following the suggestion in [7], we set the number of steps the bulge chain is chased to
k = 3/2m, leading to l2 ≈ 3/2l1. In this case, exploiting the triangular block structure
reduces the number of flops by 26%. Whether this reduction leads to an actual saving
of execution time depends on the performance of TRMM relative to GEMM, which
may vary depending on BLAS implementations used for the target architecture and
actual matrix sizes (e.g., see [23, 24]). A recent report [19] has identified computing
environments for which TRMM performs significantly worse than GEMM, especially
for the matrix dimensions arising in our application. In such a setting, it is more
favorable to apply U or V with a single GEMM. However, many BLAS implementa-
tions, including the one proposed in [19], contain TRMM operations that perform well
in comparison to GEMM. In this case, it is often possible to turn the flop reduction
offered by the block triangular structure into an actual decrease of execution time.

As for the tiny-bulge multishift QR algorithm, we have to be aware of so-called
vigilant deflations [7, 50], i.e., zero or tiny subdiagonal elements in H that arise during
the chasing process. In order to preserve the information contained in the bulge pairs,
the chain of bulge pairs must be reintroduced in the row in which the zero appears.
Fortunately, we do not have to be aware of zero or tiny subdiagonal elements in T ,
since the bulge pairs are properly passed through infinite eigenvalues; see section 4.4.

208 B. KÅGSTRÖM AND D. KRESSNER

After a certain number of steps, the bottom bulge pair of the chain reaches the
bottom right corners of the matrix pair. As soon as this happens, the whole chain is
bulge-by-bulge chased off this corner, similarly to the introduction of bulge pairs.

3.3. Classic deflation of finite eigenvalues. The goal of (multishift) QZ it-
erations is to drive the subdiagonal entries of the Hessenberg matrix in (H,T) to zero
while preserving the upper triangular shape of T . Once a subdiagonal entry hk+1,k is
considered zero, the problem is deflated into two smaller problems:([

H11 H12

0 H22

]
,

[
T11 T12

0 T22

])
.

Afterward, the (multishift) QZ iteration is applied separately to the k × k and (n −
k) × (n− k) matrix pairs (H11, T11) and (H22, T22), respectively.

In the original formulation of the QZ algorithm [37] and the current implemen-
tation in LAPACK, a subdiagonal entry hk+1,k is considered zero if

|hk+1,k| ≤ u ‖H‖F .(3.2)

A more conservative criterion, in the spirit of the LAPACK implementation of the
QR algorithm, is to consider hk+1,k zero if

|hk+1,k| ≤ u (|hk,k| + |hk+1,k+1|).(3.3)

It is known for standard eigenvalue problems that, especially in the presence of graded
matrices, the use of the criterion (3.3) gives higher accuracy in the computed eigen-
values [41]. We have observed similar accuracy improvements for the QZ algorithm
when using (3.3) in favor of (3.2). We have also encountered examples where both
criteria give similar accuracy but with slightly shorter execution times for (3.2) due
to earlier deflations.

4. Dealing with infinite eigenvalues. If the degree p of the polynomial det
(βA − αB) is less than n then the matrix pair (A,B) is said to have n − p infinite
eigenvalues. The relationship between infinite eigenvalues and the QZ algorithm is
subtle and calls for caution. In finite-precision arithmetic, the QZ algorithm may
utterly fail to correctly identify infinite eigenvalues, especially if the index of the
matrix pair, defined as the size of the largest Jordan block associated with an infinite
eigenvalue [17], is larger than one [37]. In the context of differential-algebraic equations
(DAEs), the index of (A,B) corresponds to the index of the DAE Bẋ = Ax + f .
Many applications, such as multibody systems and electrical circuits, lead to DAEs
with index at least two; see, e.g., [8, 39, 43].

If the matrix pair (A,B) has an infinite eigenvalue then the matrix B is singular.
This implies that at least one of the diagonal entries in the upper triangular matrix
T in the Hessenberg-triangular form (H,T) and in the generalized Schur form (S, T)
is zero, and vice versa. In finite-precision arithmetic, zero diagonal entries are spoiled
by roundoff errors. While a tiny zero diagonal entry of T implies that T is numerically
singular, the converse is generally not true. There are well-known examples of upper
triangular matrices that are numerically singular but have diagonal entries that are
not significantly smaller than the norm of the matrix [18, Ex. 5.5.1].

In such cases, much more reliable decisions on the nature of infinite eigenvalues can
be met using algorithms that reveal Kronecker structures, such as GUPTRI [13, 14].
In some cases, infinite eigenvalues can be cheaply and reliably deflated by exploiting
the structure of A and B.

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 209

4.1. Preprocessing deflation of infinite eigenvalues. Given a regular ma-
trix pair (A,B) with infinite eigenvalues corresponding to several Jordan blocks, the
QZ algorithm will typically compute eigenvalue pairs (αi, βi) with βi nonzero. More-
over, otherwise well-conditioned eigenvalues can be affected by perturbations from
these defective infinite eigenvalues; e.g., they may coincide or appear in clusters of
eigenvalues corresponding to computed infinite as well as finite eigenvalues. In the
following, we briefly describe two preprocessing techniques for handling such situa-
tions.

Exploiting staircase algorithms. Without having any knowledge of the Jor-
dan structure of the infinite eigenvalue, in principle, the only reliable and robust way
to identify all infinite eigenvalues is to apply a preprocessing step with a staircase-type
algorithm.

By applying the GUPTRI algorithm [13, 14, 27] to a regular pair (A,B) with
infinite eigenvalues, we get

UT (A,B)V =

([
A11 A12

0 Ainf

]
,

[
B11 B12

0 Binf

])
,(4.1)

where U and V are orthogonal transformation matrices, (Ainf , Binf) reveals the Jordan
structure of the infinite eigenvalue, and (A11, B11) is a matrix pair with only finite
eigenvalues.

Let us illustrate the GUPTRI form (4.1) with a small example. We consider a 7×7
pair (A,B) with three finite eigenvalues and an infinite eigenvalue of multiplicity four
corresponding to two nilpotent Jordan blocks N1 and N3. The infinite eigenvalue
is both derogatory and defective, since it has more than one eigenvector (two Jordan
blocks) but lacks a full setting of eigenvectors (four Jordan blocks). Then (Ainf , Binf)
has the following schematic staircase form:

(Ainf , Binf) =

⎛⎜⎜⎝
⎡⎢⎢⎣

z y x x
0 y x x
0 0 x x
0 0 0 x

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 y x x
0 0 x x
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ .

The bold numbers x, y, z in Ainf represent diagonal blocks of full rank, and the
x and y in Binf represent superdiagonal blocks of full row rank. Outgoing from the
bottom right corner of Binf , the sizes of the diagonal blocks (stairs) w = (2, 1, 1)
are the Weyr characteristics of the infinite eigenvalue. These indices relate to the
dimensions of the nullspaces N (Bj) such that

∑j
k=1 wk = dimN (Bj) for j = 1, 2, 3.

In other words, wj is the number of Jordan blocks of size ≥ j. Now, the infinite
Jordan structure can be read off from w giving the Segre characteristics s = (3, 1),
where s1 is the size of the largest Jordan block, s2 is the size of the second largest
block, and so on. Both w and s sum up to the algebraic multiplicity and w1 is the
geometric multiplicity of the infinite eigenvalue.

After such a preprocessing deflation of the infinite eigenvalues of (A,B), we apply
the QZ algorithm to the matrix pair (A11, B11) in (4.1). For more introductory
material on singular matrix pairs and the GUPTRI form see [27] and the references
therein.

Exploiting knowledge of structure. In some cases, infinite eigenvalues can be
reliably deflated by taking into account knowledge on the structure of the matrices A
and B. If this is feasible by orthogonal transformations, this is the recommended way

210 B. KÅGSTRÖM AND D. KRESSNER

of dealing with infinite eigenvalues, as the decision which eigenvalues are considered
infinite is not affected by roundoff error. In the context of DAEs, several frameworks
have been developed that can help identify and exploit such structures; see, e.g., [20,
35]. The following example is closely related to work by Stykel [42], in which (A,B)
arises from a semidiscretized Stokes equation.

Example 4.1. Consider A =
[

K
LT

L
0

]
and B =

[
M
0

0
0

]
, where L is an m× (n−m)

matrix of full column rank (n ≤ 2m) and M is an m×m symmetric positive definite
matrix. By a QR decomposition of L we may transform the matrix pair (A,B) to

(A,B) ←

⎛⎝⎡⎣ K11 K12 L1

K21 K22 0
LT

1 0 0

⎤⎦ ,

⎡⎣ M11 M12 0
M21 M22 0
0 0 0

⎤⎦⎞⎠ ,

where L1 is an m × m invertible matrix. The submatrix M22 is again symmetric
positive definite, which in particular yields its invertibility. By a simple block permu-
tation, A and B can be transformed to block upper triangular form,

(A,B) ←

⎛⎝⎡⎣ L1 K12 K11

0 K22 K21

0 0 LT
1

⎤⎦ ,

⎡⎣ 0 M12 M11

0 M22 M21

0 0 0

⎤⎦⎞⎠ .

Thus, the eigenvalues of the matrix pair (K22,M22) constitute the finite eigenvalues
of (A,B).

4.2. Deflation of infinite eigenvalues within the QZ algorithm. Although
preprocessing is the preferable way of dealing with infinite eigenvalues, there can be
good reasons to let the QZ algorithm do this job, particularly if the reliable detection of
infinite eigenvalues is not a major concern. One reason is that computing a GUPTRI
form is quite a costly procedure [14]. This and the following two subsections are
concerned with existing and new approaches to deflate infinite eigenvalues that are
signaled by tiny diagonal entries of the matrix T in a Hessenberg-triangular matrix
pair (H,T).

For testing the smallness of a diagonal entry tjj we may, similar to (3.2)–(3.3),
either use the norm-wise criterion

|tjj | ≤ u · ‖T‖F ,(4.2)

as implemented in the LAPACK routine DHGEQZ, or the neighbor-wise criterion |tjj | ≤
u·(|tj−1,j |+|tj,j+1|). The latter criterion might help avoid artificial infinite eigenvalues
caused by a poor scaling of the matrix pair. Let us briefly sketch the procedure
developed by Moler and Stewart [37] for deflating an infinite eigenvalue after tjj has
been set to zero, for the case n = 5 and j = 3:

(H,T) =

⎛⎜⎝
⎡⎢⎣ h h h h h

h h h h h
0 h h h h
0 0 h h h
0 0 0 h h

⎤⎥⎦ ,

⎡⎢⎣ t t t t t
0 t t t t
0 0 0 t t
0 0 0 t t
0 0 0 0 t

⎤⎥⎦
⎞⎟⎠ .

First, a Givens rotation is applied to columns 2 and 3 to annihilate t22, followed by
a Givens rotation acting on rows 3 and 4 to annihilate the newly introduced nonzero
entry h42:

(H,T) ←

⎛⎜⎝
⎡⎢⎣

h ĥ ĥ h h

h ĥ ĥ h h

0 ĥ ĥ ĥ ĥ

0 0̂ ĥ ĥ ĥ
0 0 0 h h

⎤⎥⎦ ,

⎡⎢⎣ t t̂ t̂ t t

0 0̂ t̂ t t
0 0 0 t̂ t̂
0 0 0 t̂ t̂
0 0 0 0 t

⎤⎥⎦
⎞⎟⎠ .

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 211

In a similar manner, the two zero diagonal entries in T are pushed one step upward:

(H,T) ←

⎛⎜⎝
⎡⎢⎣ ĥ ĥ h h h

ĥ ĥ ĥ ĥ ĥ

0̂ ĥ ĥ ĥ ĥ
0 0 h h h
0 0 0 h h

⎤⎥⎦ ,

⎡⎢⎣ 0̂ t̂ t t t
0 0 t̂ t̂ t̂
0 0 t̂ t̂ t̂
0 0 0 t t
0 0 0 0 t

⎤⎥⎦
⎞⎟⎠ .

Finally, a Givens rotation acting on rows 1 and 2 is used to deflate the infinite eigen-
value at the top left corner:

(H,T) ←

⎛⎜⎝
⎡⎢⎣ ĥ ĥ ĥ ĥ ĥ

0̂ ĥ ĥ ĥ ĥ
0 h h h h
0 0 h h h
0 0 0 h h

⎤⎥⎦ ,

⎡⎢⎣ 0 t̂ t̂ t̂ t̂

0 t̂ t̂ t̂ t̂
0 0 t t t
0 0 0 t t
0 0 0 0 t

⎤⎥⎦
⎞⎟⎠ .

The outlined procedure requires roughly 6jn flops for updating each of the factors
H,T,Q, and Z. If j > n/2, it is cheaper to push the infinite eigenvalue to the bottom
right corner.

4.3. Windowing techniques for deflating infinite eigenvalues. The algo-
rithm described in the previous subsection performs O(jn) flops while accessing O(jn)
memory, making it costly in terms of execution time on computing systems with deep
memory hierarchies. If the dimension of the matrix pair is large and many infinite
eigenvalues are to be deflated, this degrades the overall performance of the multishift
QZ algorithm. A higher computation/communication ratio can be attained by using
windowing techniques similar to those proposed in [5, 12, 32]. In the following, we il-
lustrate such an algorithm, conceptually close to a recently presented block algorithm
for reordering standard and generalized Schur forms [32].

Consider a matrix pair (H,T) in Hessenberg-triangular form, where the 9th and
the 16th diagonal entries of T are zero; see Figure 4.1(a). Both zero entries will be
pushed simultaneously in a window-by-window fashion to the top left corner. The
first step consists of pushing the lower zero diagonal entry to the top left corner of
the 8-by-8 window marked by the light gray area in Figure 4.1(b). This creates zero
diagonal entries at positions 11 and 12. Note that it makes little sense to push one
step further; the leading zero at position 10 would be destroyed when pushing the
zero diagonal entry at position 9. During this procedure, only the entries of H and T
that reside within the window are updated and the data representing the performed
Givens rotations is pipelined; see [32] for more details. Afterward, the pipelined
transformations are applied to the parts outside the window marked by dark gray areas
in Figure 4.1(b) as well as to the corresponding parts of the transformation matrices
Q and Z. To maintain locality of the memory reference pattern, rows are updated
in stripes of nb columns (in the computational environments we considered, choosing
nb = 32 was nearly optimal). The next window contains the diagonal positions
5, . . . , 12; see Figure 4.1(c). The zeros at positions 9 and 11 are subsequently pushed
to positions 5 and 7, respectively. Again, the update of parts outside the window
as well as the update of the transformation matrices are delayed as described above.
The last 8-by-8 window resides in the top left corner and yields the deflation of two
infinite eigenvalues; see Figure 4.1(d).

Note that we have only provided the generic picture; pushing a zero diagonal
entry in T may leave “traces” in the form of additional zero diagonal entries. A
proper implementation of the windowing algorithm has to take care of such events.

212 B. KÅGSTRÖM AND D. KRESSNER

Fig. 4.1. Illustration of windowing algorithm for deflating two infinite eigenvalues. Only the
T -matrix of (H,T) is shown.

Moreover, to achieve optimal performance, the number of zero diagonal entries to be
simultaneously pushed and the window size should be significantly larger than those
chosen in the descriptive example; see section 7.2.

4.4. Infinite eigenvalues and multishift QZ iterations. An important ob-
servation made in [53] is that the shift transmission mechanism works even if T is
singular, provided that this singularity does not affect the generalized Francis shifts
or the definition of the first column of the shift polynomial. In fact, Theorem 2.4
assumes only that the intended shifts are finite and that the mth leading principal
submatrix of T is nonsingular.

Hence, zero diagonal entries at positions m + 1, . . . , n−m in T do not affect the
information contained in the bulge pairs and consequently do not affect the conver-
gence of the QZ iteration. What happens to such a zero diagonal entry if a bulge pair
passes through it? This question has been addressed by Ward [46, 47] for m ≤ 2, and
by Watkins for general m [53]. The answer is that the zero diagonal entry moves m
positions upward along the diagonal. Note that although it is assumed in [53] that
the multishift QZ iteration is based on Givens rotations, the same answer holds for a
QZ iteration based on (opposite) Householder matrices; see [31].

These results imply that infinite eigenvalues need only be deflated if they corre-
spond to zero diagonal entries at positions 1, . . . ,m and n−m+ 1, . . . , n of T . Other
zero diagonal entries will be automatically moved upward in the course of the QZ
algorithm to the top diagonal positions, where they then can be deflated. Note, how-
ever, that this “transport” of zero diagonal elements holds only under the assumption
of exact arithmetic; it can be severely affected by roundoff error.

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 213

Example 4.2. Consider the 10 × 10 matrix pair

(H,T) =

⎛⎜⎜⎝
⎡⎢⎢⎣

3 3 · · · · · · 3

1 3
. . .

.

.

.
. . .

. . .
. . .

.

.

.. . . 3 3
1 3

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 1 · · · · · · 1

0
. . .

.

.

.
. . .

. . .
.
.
.

0 1
1

⎤⎥⎥⎦
⎞⎟⎟⎠

in Hessenberg-triangular form. It can be shown that this matrix pair has four infinite
eigenvalues. Applying a single-shift QZ iteration, Algorithm 1 with m = 1, once
to (H,T) leads to an updated triangular matrix T with the leading diagonal entry
being exactly zero. None of the other diagonal entries, however, satisfies the deflation
criterion (4.2). Also in the course of further QZ iterations applied to the deflated
matrix pair no other infinite eigenvalue can be detected. After convergence, the three
remaining infinite eigenvalues of (H,T) have been perturbed to finite eigenvalues of
magnitude ≈ 1.9 × 105. On the other hand, if all entries of T satisfying (4.2) are
subsequently deflated before any QZ iteration, then all four infinite eigenvalues are
detected.

Example 4.2 reveals that not taking care of all (nearly) zero diagonal entries in T
increases the chances that infinite eigenvalues go undetected. Besides the obvious dis-
advantages, failing to detect infinite eigenvalues may have an adverse effect on the con-
vergence of the QZ algorithm [29, 53]. There is no simple cure for the effects observed
in Example 4.2. Setting a diagonal entry, which is known to be zero in exact arithmetic
but does not satisfy (4.2), explicitly to zero would spoil the backward stability of the
QZ algorithm. We therefore recommend taking care of all nearly zero diagonal entries
in T before applying a QZ iteration. Small or—in rare circumstances—even zero diag-
onal entries in T may still appear during a multishift QZ iteration. In particular, we
may encounter such a situation when having chased some but not all of the bulge pairs
from a chain of bulge pairs. Then the small diagonal entry resides between two smaller
chains and from the point of view of Example 4.2 it would be desirable to deflate the
corresponding (nearly) infinite eigenvalue. However, with the existing deflation tech-
niques, this can only be achieved by chasing off at least one of the smaller chains.

5. Singular and nearly singular pencils. For a moment, let us consider a
square singular pencil βA − αB. Then the generalized Schur form (S, T) of (A,B)
must (in theory) have at least one pair (sii, tii) with sii = tii = 0. This situation
appears, for example, when A and B have a common column (or row) null space. On
the other hand, given a singular pair (S, T) in generalized Schur form with a regular
part, an equivalence transformation of (S, T) that produces upper triangular matrices
may give no information about the regular part by inspection of the diagonal elements.
For example, the pair

(S, T) =

⎛⎜⎜⎝
⎡⎢⎢⎣

3 1 0 0
0 3 0 0
0 0 2 0
0 0 0 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠

has the finite eigenvalues 3/1, 3/1, and 2/1, besides the singular part (0/0). The
equivalent matrix pair

(SQ, TQ) =

⎛⎜⎜⎝
⎡⎢⎢⎣

0 3 1 0
0 0 3 0
0 0 0 2
0 0 0 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ , with Q =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤⎥⎥⎦ ,

214 B. KÅGSTRÖM AND D. KRESSNER

has all diagonal elements equal to zero (0/0). So examination of the diagonal elements
only gives no indication of the well-defined regular part of (S, T).

In practice, the QZ algorithm will in general not detect the above-mentioned sin-
gularities reliably and otherwise well-conditioned eigenvalues can change drastically,
meaning that the values of the computed pairs (sii, tii) cannot be trusted (e.g., see
Wilkinson [54] for several illustrative examples.) Moreover, it is impossible to decide
just by inspection whether sii = ε1 and tii = ε2, with ε1 and ε2 tiny, correspond to
a finite eigenvalue ε1/ε2 or to a true singular pencil. Anyhow, with this information
we know that βA − αB is close to a singular pencil. (Note that the converse of this
statement is not true [9, 27].)

Although the QZ algorithm delivers erratic results for singular or almost singular
cases, the computed results are still exact for small perturbations of the original matrix
pair (A,B). To robustly deal with such cases, it is recommended to first identify any
singularity and deflate the associated Kronecker structure of (A,B) in a preprocessing
step before the QZ algorithm is applied. As with infinite eigenvalues, this can be done
by exploiting staircase-type algorithms like GUPTRI [13, 14].

6. Aggressive early deflation applied to the QZ algorithm. The idea
behind the aggressive early deflation strategy in the QZ algorithm is to enhance the
deflation strategy described in section 3.3 by taking advantage of perturbations outside
the subdiagonal entries of the Hessenberg matrix, as in the QR algorithm [6]. This
gives the possibility to identify and deflate converged eigenvalues much earlier than
either of the deflation criteria (3.2) and (3.3) would do, which results in fewer QZ
iterations and thereby has the potential to save both floating point operations and
execution time.

6.1. Pairs of reducing perturbations. For simplicity, we consider an n × n
complex unreduced Hessenberg-triangular matrix pair (H,T). Let PH and PT be
complex perturbation matrices. Suppose there exist a unitary matrix Q of the form

Q =
[

1
0

0
Q̃

]
and a unitary matrix Z such that the transformed perturbed matrix pair,

(Ĥ, T̂) ≡ QH(H + PH , T + PT)Z,(6.1)

is in reduced Hessenberg-triangular form:

Ĥ =

[
Ĥ11 Ĥ12

0 Ĥ22

]
, T̂ =

[
T̂11 T̂12

0 T̂22

]
.(6.2)

Then, in analogy to the matrix case, (PH , PT) is called a reducing perturbation pair.
If the norm of (PH , PT) is tiny, the equivalence transformation above has split the
problem of computing the eigenvalues of (H,T) in two (or more) subproblems of
smaller size without affecting the backward stability of the QZ algorithm.

In the following, we derive results that characterize and identify pairs of reducing
perturbations, which are extensions of similar results for the matrix case [6].

Lemma 6.1. Let (H,T) with H,T ∈ C
n×n be in unreduced Hessenberg-triangular

form and PH , PT ∈ C
n×n. Assume that T + PT is invertible. Then (PH , PT) is a

reducing perturbation pair for (H,T) if and only if the regular matrix pair (H +
PH , T + PT) has a left (generalized) eigenvector y ∈ C

n with a zero first component,
y1 = 0.

Proof. Assume (PH , PT) is a reducing perturbation pair for (H,T); i.e., there

exist a unitary matrix Q =
[

1
0

0
Q̃

]
and a unitary matrix Z such that (Ĥ, T̂) defined

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 215

by (6.1) is in reduced block-triangular form (6.2). This implies that (Ĥ, T̂) has a
left (generalized) eigenvector ŷ with ŷ1 = 0; indeed, the first dim(Ĥ11) components
equal to zero. Since Q has block diagonal structure, it follows that y = Qŷ is a left
eigenvector of (H + PH , T + PT) with y1 = ŷ1 = 0.

In the opposite direction, assume that (H + PH , T + PT) has a left (generalized)
eigenvector y ∈ C

n with a zero first component, y1 = 0, associated with the eigenvalue
pair (α, β) ∈ C

2, i.e., βyH(H + PH) = αyH(T + PT). By replacing the initial QR
factorization of B in the standard algorithm for reducing a matrix pair (A,B) to
Hessenberg-triangular form [18, Alg. 7.7.1] by an RQ factorization of B, we construct

unitary matrices Q =
[

1
0

0
Q̃

]
and Z such that QH(H + PH , T + PT)Z = (Ĥ, T̂) is in

Hessenberg-triangular form. It follows that ŷ = QHy is a left (generalized) eigenvector
of (Ĥ, T̂) and ŷ1 = y1 = 0 due to the fact that Q is block diagonal. Let k be the
smallest index for which ŷk �= 0 and partition ŷH = [0, z]H with z ∈ C

n−k+1. If Ĥ
and T̂ are conformably partitioned,

Ĥ =

[
Ĥ11 Ĥ12

hk,k−1e1e
T
k−1 Ĥ22

]
, T̂ =

[
T̂11 T̂12

0 T̂22

]
,

then β ŷHĤ = α ŷH T̂ yields

β [ĥk,k−1ŷke
T
k−1, z

HĤ22] = α [0, zH T̂22].

The nonsingularity of T + PT implies β �= 0, which in turn gives ĥk,k−1 = 0; i.e., Ĥ
is in reduced Hessenberg form.

Note that the second part of the proof of Lemma 6.1 also shows how orthogonal
matrices Q and Z yielding a deflated matrix pair (6.2) can be obtained by a slightly
modified form of Hessenberg-triangular reduction. In the context of aggressive defla-
tion, a useful reducing perturbation pair (PH , PT) must have enough zero structure so
that relatively little work is needed to retransform (H + PH , T + PT) to Hessenberg-
triangular form. By restricting PH and PT to Hessenberg and triangular matrices,
respectively, there will be no extra work.

Lemma 6.2. (PH , PT) is a reducing perturbation pair for (H,T) of minimal
Frobenius norm in the set of Hessenberg-triangular pairs if and only if PT is the zero
matrix and PH is zero except for some subdiagonal entry.

Proof. Let (PH , PT) be a reducing perturbation pair in Hessenberg-triangular

form. Decompose PH = P
(s)
H +P

(u)
H in its subdiagonal part P

(s)
H and its upper triangu-

lar part P
(u)
H . Then (P

(s)
H , 0) is a reducing perturbation pair of smaller

norm.
This choice leads to the small-subdiagonal deflation strategy for the QZ algorithm

described in section 3.3.
In order to reach a more aggressive deflation strategy, we must allow more general

perturbations, where (PH , PT) is not necessarily in Hessenberg-triangular form. Ex-
tending the matrix case, we consider small perturbations PH and PT that are nonzero
only in the last k rows and k+1 columns. Now, if k � n, the cost is small (compared
to a QZ iteration) to retransform the perturbed matrix pair to Hessenberg-triangular
form; see also section 6.2.

216 B. KÅGSTRÖM AND D. KRESSNER

Let the matrix pair (H,T) be in unreduced Hessenberg-triangular form with
H,T ∈ C

n×n and partitioned as follows:

H =

⎡⎣ H11 H12 H13

H21 H22 H23

0 H32 H33

⎤⎦ , T =

⎡⎣ T11 T12 T13

0 T22 T23

0 0 T33

⎤⎦ ,(6.3)

where the block rows from top to bottom (and block columns from left to right) have
n−nw−1, 1, and nw rows (columns), respectively. Let the perturbation pair (PH , PT)
be partitioned conformably with (H,T), but with the following nonzero structure:

PH =

⎡⎣ 0 0 0
0 0 0

0 P
(H)
32 P

(H)
33

⎤⎦ , PT =

⎡⎣ 0 0 0
0 0 0

0 0 P
(T)
33

⎤⎦ .(6.4)

A special choice of such perturbations is given in the following lemma.
Lemma 6.3. If (α, β) is an eigenvalue pair of (H33, T33) with left eigenvector y,

normalized such that ‖y‖2 = 1, then (PH , PT) partitioned as in (6.4) with P
(H)
32 =

−(yHH32)y, P
(H)
33 = 0, and PT = 0 is a reducing perturbation pair.

Proof. We have

β [0, 0, yH](H + PH) = β [0, 0, yHH33] = α [0, 0, yHT33] = α [0, 0, yH]T.

This shows that [0, 0, yH]H is a left eigenvector of the perturbed matrix pair (H +
PH , T +PT) with PT = 0, which together with Lemma 6.1 concludes the proof.

To search for reducing perturbation pairs, we can choose from all, generically nw,
possible perturbations in the sense of Lemma 6.3. Although this strategy will gen-
erally yield only a reducing perturbation of approximately minimal Frobenius norm
among all pairs of the form (6.4), the perturbations of Lemma 6.3 have the major
advantage of being effectively computed and tested. Finding the minimum among all
reducing perturbations of the form (6.4) is closely related to finding the distance to
uncontrollability of a descriptor system [10]. This connection along with numerical
methods for computing the distance to uncontrollability will be studied in a forth-
coming paper. However, in preliminary numerical experiments with the multishift
QR algorithm we observed that rarely can any extra deflations be gained from using
perturbations more general than those of Lemma 6.3.

To illustrate the effectiveness of Lemma 6.3, let us consider the following matrix
pair, which has been considered in [1] as an extension of the motivating example in [6]:

(H,T) =

⎛⎜⎜⎝
⎡⎢⎢⎣

6 5 4 3 2 1
0.001 1 0 0 0 0

0.001 2 0 0 0
0.001 3 0 0

0.001 4 0
0.001 5

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 1 1 1 1 1

1 0 0 0 0
1 0 0 0

1 0 0
1 0

1

⎤⎥⎥⎦
⎞⎟⎟⎠ .(6.5)

Let us consider a partitioning of the form (6.3) for nw = 5. Then the eigenvalues of
(H33, T33) are given by the (α, β) pairs (1, 1), (2, 1), . . . , (5, 1) with λ = α/β. Each of
these eigenvalues yields a reducing perturbation pair in the sense of Lemma 6.3. The

respective norms of ‖P (H)
32 ‖ are as follows:

1 : 1.0 × 10−3, 2 : 1.0 × 10−6, 3 : 5.0 × 10−10, 4 : 1.7 × 10−13, 5 : 4.2 × 10−17.

In double precision, the eigenvalue 5 can thus be safely deflated. In single precision,
even three eigenvalues (3, 4, and 5) correspond to a reducing perturbation of norm
below machine precision. See also section 7.3, where this example is studied for larger
matrices.

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 217

6.2. Implementation aspects. In the following, we describe an efficient method
which puts the aggressive early deflation motivated by Lemma 6.3 into practice. For
this purpose, we consider a partition of (H,T) of the form (6.3) and focus on the
nw × (nw + 1) submatrix pair ([H32, H33], [0, T33]), which defines the deflation win-
dow.

First, by means of the QZ algorithm, orthogonal matrices Q1 and Z1 resulting
in a generalized Schur decomposition of (H33, T33) are computed. This admits the
following partitioning:

QT
1 ([H32, H33], [0, T33])

[
1 0
0 Z1

]
=

([
s3 H̃33 H̃34

s4 0 H̃44

]
,

[
0 T̃33 T̃34

0 0 T̃44

])
,

where s3, s4 are column vectors of appropriate size, and (H̃44, T̃44) is either 1 × 1,
representing a real eigenvalue of (H33, T33), or 2×2, representing a complex conjugate
pair of eigenvalues. If (H̃44, T̃44) represents a real eigenvalue, then the corresponding
reducing perturbation in the sense of Lemma 6.3 is obtained by setting the scalar
s4 to zero. Similarly, if (H̃44, T̃44) is 2 × 2, a reducing perturbation is obtained by
setting the two entries of s4 to zero. This is, strictly speaking, not a perturbation in
the sense of Lemma 6.3 and it may happen that one of the two complex conjugate
eigenvalues of (H̃44, T̃44) considered individually yields a reducing perturbation which
is significantly smaller than ‖s4‖2. However, deflating this eigenvalue alone is not
possible without leaving the realm of real matrices.

There are several possible choices for criteria under which ‖s4‖2, the norm of
the reducing perturbation described above, can be considered negligible. A liberal
deflation criterion, which just preserves numerical backward stability, is given by

‖s4‖2 ≤ u‖H‖F .(6.6)

A more conservative criterion in the spirit of (3.3) is given by

‖s4‖2 ≤
{

u|H̃44| if H̃44 is 1 × 1,

u
√
|det(H̃44)| otherwise.

(6.7)

This is preferred for reasons explained in section 3.3. A range of other criteria can be
found in [6, sec. 2.4].

If ‖s4‖2 satisfies the chosen deflation criterion, we mark (H̃44, T̃44) as deflatable
and apply the described process again to the reduced matrix pair ([s3, H̃33], T̃33]).
Otherwise, we mark (H̃44, T̃44) as undeflatable and reorder the generalized Schur
decomposition of (H33, T33) to construct orthogonal matrices Q2 and Z2 such that

(Q1Q2)
T ([H32, H33], [0, T33])

[
1 0
0 Z1Z2

]
=

([
s̄3 H̄33 H̄34

s̄4 0 H̄44

]
,

[
0 T̄33 T̄34

0 0 T̄44

])
,

where (H̄33, T̄33) is of the same order and has the same eigenvalues as (H̃44, T̃44). In
this case, the described process is applied again to the matrix pair ([s̄4, H̄44], T̄44]).
The whole procedure is repeated until the matrix pair vanishes, i.e., nw − k unde-
flatable and k deflatable eigenvalues have been found yielding a decomposition of the
form

QT ([H32, H33], [0, T33])

[
1 0
0 Z

]
=

([
š3 Ȟ33 Ȟ34

š4 0 Ȟ44

]
,

[
0 Ť33 Ť34

0 0 Ť44

])
,

218 B. KÅGSTRÖM AND D. KRESSNER

where (Ȟ44, Ť44) is k × k and contains all deflatable eigenvalues. Moreover, we have
‖š4‖2 ≤

√
ku‖H‖F no matter whether (6.6) or (6.7) is used. Hence, š4 can be safely

set to zero and the QZ algorithm is continued with the (n− k)× (n− k) matrix pair

(H̃, T̃) =

⎛⎝⎡⎣ H11 H12 H13Z
H21 H22 H23Z
0 š3 Ȟ33

⎤⎦ ,

⎡⎣ T11 T12 T13Z
0 T22 T23Z
0 0 Ť33

⎤⎦⎞⎠ .

Note that the matrix pair (H̃, T̃) is not in Hessenberg-triangular form due to the
“spike” š3. If we apply a Householder matrix H1(š3) = I − βvvT to the last nw − k
rows of (H̃, T̃), we have

H1(š3)Ť33 = Ť33 − βv(ŤT
33v)

T .

Hence, H1(š3)Ť33 is a rank-one update of a triangular matrix. Similar to updating
algorithms for the QR decomposition [18, sec. 12.5], we can construct an orthogonal
matrix Z3 as a sequence of nw − k − 1 Givens rotations such that ZT

3 ŤT
33v = γen for

some γ ∈ R. Consequently,

H1(š3)Ť33Z3 = Ť33Z3 − βγveTn

is an upper Hessenberg matrix. By another sequence of nw − k − 1 Givens rotations
the subdiagonal elements of H1(š3)Ť33Z3 can be eliminated so that H1(š3)Ť33Z3Z4

becomes upper triangular. The described algorithm requires O((nw − k)2) flops
which is favorable compared to the O((nw − k)3) flops needed for computing an
RQ factorization of H1(š3)Ť33 from scratch. Finally, the standard reduction algo-
rithm [18, Alg. 7.7.1] without the initial QR factorization is applied to the matrix

pair H1(š3)(Ȟ33, Ť33)Z3Z4 in order to compute orthogonal matrices Q3 =
[

1
0

0
Q̃3

]
and Z5 such that QT

3 H1(š3)(Ȟ33, Ť33)Z3Z4Z5 is Hessenberg-triangular. Setting

Q̃ =

[
In−nw 0

0 H1(š3)Q3

]
, Z̃ =

[
In−nw 0

0 Z3Z4Z5

]
yields a Hessenberg-triangular matrix pair Q̃T (H̃, T̃)Z̃ from which the multishift QZ
algorithm can be continued. Note that before continuing with a multishift QZ itera-
tion it can be beneficial to apply aggressive early deflation again if sufficiently many
eigenvalues have been deflated, i.e., if the ratio k/nw is above a certain threshold,
which has been set to 40% in our experiments (parameter #3 in Table 7.1).

7. Computational experiments. To assess their performance and robustness,
we have implemented the newly developed variants of the QZ algorithm in Fortran

77 and performed several experiments to be described in the following subsections.

7.1. Computational platform(s). The experiments are carried out on one
processor of two of the HPC2N clusters, seth and sarek, which have advanced mem-
ory systems with different characteristics.

The cluster seth consists of 120 nodes, dual Athlon MP2000+ (1.667Ghz) with
1 GB memory per node. Athlon MP2000+ has a 64 kB instruction, a 64 kB data L1
Cache, and 256 kB of integrated L2 cache. Software used: Debian GNU/Linux 3.0,
Portland F90 6.0, ATLAS BLAS 3.5.9.

The cluster sarek consists of 190 HP DL145 nodes, with dual AMD Opteron 248
(2.2GHz) and 8 GB memory per node. AMD Opteron 248 has a 64 kB instruction

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 219

Table 7.1

Default values for some parameters of the multishift QZ algorithm with aggressive early deflation.

seth sarek

#1 Minimal (sub)matrix pair dimension for multishift QZ iterations 300 300
#2 Minimal (sub)matrix pair dimension for aggressive early deflation 300 300
#3 Minimal success rate for repeated aggressive early deflation 40% 40%
#4 Window size for simultaneous deflation of infinite eigenvalues 60 84
#5 Number of infinite eigenvalues to be deflated simultaneously 20 28

and 64 kB data L1 Cache (2-way associative) and a 1024 kB unified L2 Cache (16-way
associative). Software used: Debian GNU/Linux 3.1, Portland F90 6.0, Goto BLAS
0.94.

All results reported are run in double precision real arithmetic (εmach ≈ 2.2 ×
10−16).

7.2. Random matrix pairs. The described multishift QZ iterations and de-
flation algorithms depend on various parameters, which all have some influence on
the overall execution time of the QZ algorithm. We have performed numerical ex-
periments with randomly generated matrix pairs and numerous sets of parameters to
measure the influence of each individual parameter. In the following, we focus on the
three parameters that have been observed to have the largest impact on the execution
time and therefore require particular attention:

m: number of simultaneous shifts used in each multishift QZ iteration (in-
teger multiple of ns),

ns: number of shifts contained in each bulge during multishift QZ iterations,
nw: aggressive early deflation window size.
All other parameters turned out to have less influence on the performance and

have been set in a heuristic manner. The default values displayed in Table 7.1 yielded
good performance for matrix pairs of size 500, . . . , 3000. If the order of an active
submatrix pair in the course of the multishift QZ algorithm described in section 3
becomes smaller than parameter #1, it is more efficient to resort to double-shift
QZ iterations. Similarly, if the order is smaller than parameter #2, aggressive early
deflation is turned off. It is best to choose #1 not smaller than #2. If aggressive early
deflation yielded the deflation of k eigenvalues and the ratio k/nw exceeds parameter
#3, another search for early deflations is immediately performed on the deflated
matrix pair before applying a (multishift) QZ iteration. Finally, the parameters #4
and #5 represent the window size and the maximal number of infinite eigenvalues
to be pushed simultaneously in the block algorithm for deflating infinite eigenvalues
described in section 4.3. It is necessary to choose #4 larger than two times #5; we
found choosing #4 three times larger nearly optimal.

To make the new implementation better comparable to the LAPACK version
3.0 implementation, we used throughout all experiments the liberal deflation crite-
ria (3.2), (4.2), and (6.6). The use of the more conservative deflation criteria (3.3)
and (6.7) may result in more accurate eigenvalues but may also lead to slightly more
QZ iterations.

7.2.1. Influence of m and ns. To measure the influence of the parameters m
and ns on the performance of the multishift QZ algorithm without aggressive early
deflation, we generated n × n matrices A and B having pseudorandom entries uni-
formly distributed in the interval [−1, 1] and reduced them to Hessenberg-triangular
form by applying the LAPACK version 3.0 routine DGGHRD. Figures 7.1 and 7.2 display

220 B. KÅGSTRÖM AND D. KRESSNER

Fig. 7.1. Random matrix pairs: Execution times on seth of DHGEQZ (dashed line), KDHGEQZ

(solid line), and MULTIQZ without aggressive early deflation for ns = 2 (crosses) and ns = 4 (circles).

Fig. 7.2. Random matrix pairs: Execution times on sarek of DHGEQZ (dashed line), KDHGEQZ

(solid line), and MULTIQZ without aggressive early deflation for ns = 2 (crosses) and ns = 4 (circles).

the measured execution times for the following implementations of the QZ algorithm:
DHGEQZ: LAPACK version 3.0 implementation as described in the original paper

by Moler and Stewart [37] with some of the modifications proposed
in [29, 47, 49]; see also section 2.1.

KDHGEQZ: Blocked variant of DHGEQZ, developed by Dackland and K̊agström [12].
MULTIQZ: Multishift QZ algorithm based on tightly coupled chains of tight bulges

as described in section 3.
The graphs in Figures 7.1 and 7.2 show the sensitivity of the measured execution times
for n = 1000 and n = 2000 as a function of m, the degree of the multishift polynomial
used in MULTIQZ, where m is varying between 20 and 116 with step size 4. Note that
in these and the following figures all results for a fixed value of n are observations
from a single random matrix pair. On seth it can be observed that the optimal time
for MULTIQZ is significantly lower for both ns = 2 and ns = 4 than the time needed
by DHGEQZ and KDHGEQZ. On sarek the gained savings are less substantial. In fact,
for ns = 2 and n = 1000 even with the optimal m, MULTIQZ requires slightly more
execution time than KDHGEQZ.

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 221

Fig. 7.3. Random matrix pairs: Execution times on seth of DHGEQZ with aggressive early defla-
tion (dashed line), KDHGEQZ with aggressive early deflation (solid line), and MULTIQZ with aggressive
early deflation (crosses).

Fig. 7.4. Random matrix pairs: Execution times on sarek of DHGEQZ with aggressive early defla-
tion (dashed line), KDHGEQZ with aggressive early deflation (solid line), and MULTIQZ with aggressive
early deflation (crosses).

7.2.2. Influence of nw. Similar results for the three implementations of the QZ
algorithm with aggressive early deflation are displayed in Figures 7.3 and 7.4. The
graphs show the sensitivity of the measured execution times with respect to nw, the
size of the deflation window, for n = 1000 and n = 2000. For DHGEQZ and KDHGEQZ

aggressive early deflation has not been performed after each QZ iteration but only
after every m/2 (double-shift) QZ iterations, meaning that an overall number of m
shifts is applied before each search for early deflations. For all three implementations,
we have chosen the optimal value for m in the set {20, 24, . . . , 116}. Moreover, we have
set ns = 4 for MULTIQZ. Again, it can be seen that MULTIQZ outperforms LAPACK’s
DHGEQZ, but is also faster than KDHGEQZ.

7.2.3. Infinite eigenvalues. To generate matrix pairs having large numbers of
infinite eigenvalues, we generated Hessenberg-triangular matrix pairs (H,T) in the
same manner as in the previous two subsections and set each diagonal element of
T with probability 0.5 to zero. For n = 2000, this resulted in a matrix pair (H,T)
with roughly 1000 zero entries on the diagonal of T . Either implementation of the

222 B. KÅGSTRÖM AND D. KRESSNER

Table 7.2

Infinite eigenvalues: Execution times in seconds on seth and sarek of MULTIQZ with aggressive
early deflation for a 2000 × 2000 random matrix pair with 656 infinite eigenvalues. The numbers
shown in brackets correspond to the part (number between 0 and 1) of the execution time that was
spent for deflating infinite eigenvalues.

Deflation strategy seth sarek

All ∞ eigenvalues at top left corner (unblocked) 204.8 (0.70) 71.6 (0.66)
All ∞ eigenvalues at top left corner (blocked) 142.1 (0.56) 59.8 (0.54)
All ∞ eigenvalues at nearest corner (unblocked) 137.0 (0.60) 43.5 (0.55)
All ∞ eigenvalues at nearest corner (blocked) 91.6 (0.45) 37.1 (0.44)
Necessary ∞ eigenvalues at nearest corner (unblocked) 99.6 (0.11) 43.9 (0.13)
Necessary ∞ eigenvalues at nearest corner (blocked) 94.1 (0.05) 42.8 (0.11)

QZ algorithm detected 656 infinite eigenvalues. If only those infinite eigenvalues that
correspond to nearly zero diagonal entries at the top left and bottom right corners of
T are deflated in the course of the QZ algorithm (see section 4.4), then a significant
portion remains undetected. For example, when using this strategy together with
DHGEQZ only 399 infinite eigenvalues were detected, which confirms the findings of
Example 4.2. On the other hand, this strategy significantly lowers the time spent for
dealing with infinite eigenvalues. This can be seen in the last two rows of Table 7.2,
which lists execution times for various strategies used in MULTIQZ with ns = 4 and
the optimal values for m and nw obtained from section 7.2.2. Note, however, that
failing to detect infinite eigenvalues adversely affects the convergence of the QZ algo-
rithm; the time spent for QZ iterations increases from 61 to 89 seconds on seth. We
remark that the use of the windowing technique described in section 4.3 is denoted
by “(blocked)” in Table 7.2. There are other interesting observations in the figures of
this table. Deflating infinite eigenvalues at the nearest corner of the matrix T (and
not at only one corner as it is done in DHGEQZ) is a simple means to significantly lower
the execution time. Roughly the same portion of time can be saved by using the
windowing technique. The most efficient strategy, which detects all 656 infinite eigen-
values, is a combination of both techniques, deflation at the nearest corner combined
with windowing.

7.3. Aggressive early deflation at its best. In exceptional cases, aggressive
early deflation can have a dramatic positive effect on the computational time. Such a
case are matrix pairs of the form (6.5), for which rarely any QZ iterations are needed
to deflate eigenvalues. The graphs in Figure 7.5 show the measured execution times
of the three implementations of the QZ algorithm with and without aggressive early
deflation for n = 600 to 3000 (seth) or 4000 (sarek) with step size 200. For all
examples we used nw = n− 1.

We remark that since aggressive early deflation works so well, the time spent
for (multishift) QZ iterations is negligible compared to the overall time. In fact, the
timings for DHGEQZ, KDHGEQZ, and MULTIQZ with aggressive early deflation are virtually
identical and orders of magnitude better than without early deflation. For example,
for n = 4000 the time of DHGEQZ is reduced from nearly one hour to less than 7
seconds.

7.4. Examples from applications. The purpose of this section is to summa-
rize the performance of the multishift QZ algorithm with aggressive early deflation
for matrix pairs that arise from practically relevant applications. We have selected
16 matrix pairs from the Matrix Market collection [3], 6 matrix pairs from model
reduction benchmark collections [11, 30], and 4 matrix pairs arising from the com-

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 223

Fig. 7.5. BBM/ADK example [1, 6]: Execution times (in logarithmic scale) on seth (left figure)
and sarek (right figure) of DHGEQZ (dashed line), KDHGEQZ (solid line), MULTIQZ (crosses) without
aggressive early deflation, and DHGEQZ/KDHGEQZ/MULTIQZ with aggressive early deflation (dots).

putation of corner singularities of elliptic PDEs [38]. A more detailed description of
the selected matrix pairs along with individual performance results can be found in
Appendix A of the technical report version [22] of this paper. In the following, we
summarize these results and sort the matrix pairs into groups according to their order
n as shown in the following table.

Group G1 G2 G3 G4
order n ∈ [485, 1000] n ∈ [1001, 1500] n ∈ [1501, 2000] n ∈ [2001, 3600]
#pairs 6 8 5 7

Matrix pairs arising from applications differ in many aspects from random matrix
pairs. An aspect which can particularly affect the performance of the QZ algorithm is
that the matrix entries in most of the pairs from the Matrix Market collection differ
wildly in magnitude. Bad scaling makes the performance of the QZ algorithm erratic
and much less predictive than for random matrix pairs. For example, LAPACK’s
DHGEQZ requires 338 seconds for a 1900×1900 matrix pair arising from the discretized
heat equation (see section A.19 in [22]) but less than 25 seconds for the 1922 × 1922
matrix pair consisting of the matrices BCSSTK26 and BCSSTM26 from the Matrix
Market collection (see section A.12 in [22]). Balancing can remedy bad scaling but we
have decided not to make use of it since this preprocessing step is by default turned
off in most major software environments such as MATLAB.

We have tested DHGEQZ, KDHGEQZ, and MULTIQZ for all possible combinations of
the parameters nw (aggressive early deflation window size), m (number of shifts before
each aggressive early deflation) and ns (number of shifts per bulge) satisfying nw ∈
{40, 60, 80, . . . , 400}, m ∈ {24, 32, 40, . . . , 160}, and ns ∈ {2, 4}. Due to the memory
limitations of seth, all numerical experiments described in the following have only
been performed on sarek. Also, to limit the variety of parameters, we have turned off
the blocked algorithms for deflating infinite eigenvalues. Column 3 of Table 7.3 shows
for each of the four groups the average times in seconds of DHGEQZ and KDHGEQZ without
aggressive early deflation. The fourth column displays the average computing times
for all three implementations with aggressive early deflation obtained by choosing
m and nw optimally for each matrix pair in the group. The fifth column displays
similar times obtained by choosing m and nw optimally to yield the best average
performance for all matrix pairs together in each group. The corresponding choices

224 B. KÅGSTRÖM AND D. KRESSNER

Table 7.3

Application examples: Summary of measured execution times and choice of parameters m and
nw that give optimal average performance.

Group Implementation W/o agg. Optimal Ave. opt. m nw

G1 DHGEQZ+AGG 8.86 4.61 5.03 24 120
KDHGEQZ+AGG 7.07 3.62 3.78 24 100
MULTIQZ(ns = 2)+AGG – 3.36 3.45 24 60
MULTIQZ(ns = 4)+AGG – 3.40 3.56 24 40

G2 DHGEQZ+AGG 55.5 23.7 26.5 56 180
KDHGEQZ+AGG 41.4 17.2 18.9 40 140
MULTIQZ(ns = 2)+AGG – 15.3 16.5 72 160
MULTIQZ(ns = 4)+AGG – 15.1 16.3 88 180

G3 DHGEQZ+AGG 130.3 53.6 56.4 48 220
KDHGEQZ+AGG 89.9 36.5 38.8 72 200
MULTIQZ(ns = 2)+AGG – 30.3 30.7 56 200
MULTIQZ(ns = 4)+AGG – 27.5 30.0 88 200

G4 DHGEQZ+AGG 479 157 170 48 340
KDHGEQZ+AGG 271 97 104 40 220
MULTIQZ(ns = 2)+AGG – 80 85 72 220
MULTIQZ(ns = 4)+AGG – 115 124 80 220

of m and nw are listed in columns 6 and 7, respectively. The difference between the
figures of columns 4 and 5 is roughly 10%, which demonstrates that nearly optimal
average performance can be obtained without having to optimize m and nw for each
matrix pair individually. Ideally, m and nw should be chosen adaptively within the
QZ algorithm, but it is not clear how such a strategy can be effectively realized.

On average, the multishift QZ algorithm with aggressive early deflation (MULTIQZ
+AGG, ns = 2) is between 2.6 and 6 times faster than the original LAPACK implemen-
tation (DHGEQZ). Surprisingly, the block version of Dackland and K̊agström is, when
equipped with aggressive early deflation (KDHGEQZ+AGG), only 10% to 20% slower than
the multishift QZ algorithm. There is little justification for setting ns, the number of
shifts per bulge, to ns = 4 in favor of ns = 2, in contrast to the results for random
matrix pairs.

We have also tested the backward stability of the new variants of the QZ algo-
rithm by measuring the residual ‖(Q̂TAẐ − Ŝ, Q̂TBẐ − T̂)‖F of the computed Schur
decomposition (Ŝ, T̂) as well as the orthogonality ‖Q̂T Q̂ − I‖F , ‖ẐT Ẑ − I‖F of the
computed transformation matrices Q̂ and Ẑ. The obtained results are of the same
order as those obtained using the LAPACK implementation.

8. Conclusions. In this paper, we have developed new multishift variants of
the QZ algorithm using advanced deflation techniques which significantly improve
upon the performance compared to all existing implementations. It is planned that
an implementation of our multishift QZ algorithm with aggressive early deflation is
included in a coming release of LAPACK. The ideas presented here are currently
applied to the development of a distributed memory QZ algorithm. Future work also
includes the investigation of extending the described results to even more general
versions of the QR algorithm, such as the periodic QR and QZ algorithms.

9. Final remarks and acknowledgments. The work presented in this article
is based on preliminary results derived in [1, 31]. The authors are greatly indebted
to Ralph Byers and David Watkins for several discussions on the odds and ends of
multishift QR and QZ algorithms. The computational experiments in section 7 were

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 225

performed using facilities of the High Performance Computing Center North (HPC2N)
in Ume̊a.

REFERENCES

[1] B. Adlerborn, K. Dackland, and B. Kågström, Parallel and blocked algorithms for re-
duction of a regular matrix pair to Hessenberg-triangular and generalized Schur forms, in
PARA 2002, J. Fagerholm et al., eds., Lecture Notes in Comput. Sci. 2367, Springer-Verlag,
Berlin, 2002, pp. 319–328.

[2] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen,
LAPACK Users’ Guide, 3rd ed., Software Environ. Tools 9, SIAM, Philadelphia, 1999.

[3] Z. Bai, D. Day, J. W. Demmel, and J. J. Dongarra, A Test Matrix Collection for Non-
Hermitian Eigenvalue Problems (Release 1.0), Technical report CS-97-355, Department
of Computer Science, University of Tennessee, Knoxville, TN, 1997. Also available online
from http://math.nist.gov/MatrixMarket.

[4] Z. Bai and J. W. Demmel, On a block implementation of the Hessenberg multishift QR iter-
ations, Internat. J. High Speed Comput., 1 (1989), pp. 97–112.

[5] C. H. Bischof, B. Lang, and X. Sun, A framework for symmetric band reduction, ACM
Trans. Math. Software, 26 (2000), pp. 581–601.

[6] K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. Part II: Aggressive
early deflation, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 948–973.

[7] K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. Part I: Maintain-
ing well-focused shifts and level 3 performance, SIAM J. Matrix Anal. Appl., 23 (2002),
pp. 929–947.

[8] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, Classics Appl. Math. 14, SIAM, Philadel-
phia, 1995.

[9] R. Byers, C. He, and V. Mehrmann, Where is the nearest non-regular pencil?, Linear Algebra
Appl., 285 (1998), pp. 81–105.

[10] R. Byers, The descriptor controllability radius, in Proceedings of the Conference on the Math-
ematical Theory of Networks and Systems, U. Helmke, R. Mennicken, and J. Saurer, eds.,
MTNS ’93, Akademie Verlag, Berlin, 1994, pp. 85–88.

[11] Y. Chahlaoui and P. Van Dooren, A Collection of Benchmark Examples for Model Reduction
of Linear Time Invariant Dynamical Systems, SLICOT working note 2002-2, WGS, 2002.

[12] K. Dackland and B. Kågström, Blocked algorithms and software for reduction of a regular
matrix pair to generalized Schur form, ACM Trans. Math. Software, 25 (1999), pp. 425–
454.

[13] J. W. Demmel and B. Kågström, The generalized Schur decomposition of an arbitrary pencil
A − λB: Robust software with error bounds and applications. I. Theory and algorithms,
ACM Trans. Math. Software, 19 (1993), pp. 160–174.

[14] J. W. Demmel and B. Kågström, The generalized Schur decomposition of an arbitrary pencil
A−λB: Robust software with error bounds and applications. II. Software and applications,
ACM Trans. Math. Software, 19 (1993), pp. 175–201.

[15] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1–17.

[16] A. A. Dubrulle, The Multishift QR Algorithm—Is it Worth the Trouble?, Technical report
TR 6320-3558, IBM Scientific Center, Palo Alto, CA, 1991.

[17] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1960.
[18] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University

Press, Baltimore, MD, 1996.
[19] K. Goto and R. van de Geijn, High-Performance Implementation of the Level-3 BLAS,

Technical report TR-2006-23, Department of Computer Sciences, The University of Texas
at Austin, Austin, TX, 2006.

[20] E. Griepentrog and R. März, Differential-Algebraic Equations and Their Numerical Treat-
ment, Teubner Texte zur Mathematik, Teubner-Verlag, Leipzig, 1986.

[21] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[22] B. Kågström and D. Kressner, Multishift Variants of the QZ Algorithm with Aggressive

Early Deflation, Report UMINF-05.11, Department of Computing Science, Ume̊a Univer-
sity, Ume̊a, Sweden, 2005. Also appeared as LAPACK Working Note 173.

226 B. KÅGSTRÖM AND D. KRESSNER

[23] B. Kågström, P. Ling, and C. F. Van Loan, GEMM-based level 3 BLAS: Algorithms for the
model implementations, ACM Trans. Math. Software, 24 (1999), pp. 268–302.

[24] B. Kågström, P. Ling, and C. F. Van Loan, GEMM-based level 3 BLAS: High-performance
model implementations and performance evaluation benchmark, ACM Trans. Math. Soft-
ware, 24 (1999), pp. 303–316.

[25] B. Kågström and P. Poromaa, Computing eigenspaces with specified eigenvalues of a regular
matrix pair (A,B) and condition estimation: Theory, algorithms and software, Numer.
Algorithms, 12 (1996), pp. 369–407.

[26] B. Kågström, A direct method for reordering eigenvalues in the generalized real Schur form of
a regular matrix pair (A,B), in Linear Algebra for Large Scale and Real-Time Applications
(Leuven, 1992), M. S. Moonen, G. H. Golub, and B. L. R. De Moor, eds., NATO Adv.
Sci. Inst. Ser. E Appl. Sci. 232, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1993, pp. 195–218.

[27] B. Kågström, Singular matrix pencils, in Templates for the Solution of Algebraic Eigenvalue
Problems, Z. Bai, J. W. Demmel, J. J. Dongarra, A. Ruhe, and H. van der Vorst, eds.,
Software Environ. Tools 11, SIAM, Philadelphia, 2000, pp. 260–277.

[28] L. Kaufman, The LZ-algorithm to solve the generalized eigenvalue problem, SIAM J. Numer.
Anal., 11 (1974), pp. 997–1024.

[29] L. Kaufman, Some thoughts on the QZ algorithm for solving the generalized eigenvalue prob-
lem, ACM Trans. Math. Software, 3 (1977), pp. 65–75.

[30] J. G. Korvink and B. R. Evgenii, Oberwolfach benchmark collection, in Dimension Reduction
of Large-Scale Systems, P. Benner, V. Mehrmann, and D. C. Sorensen, eds., Lecture Notes
Comput. Sci. Eng. 45, Springer-Verlag, Heidelberg, 2005, pp. 311–316.

[31] D. Kressner, Numerical Methods and Software for General and Structured Eigenvalue Prob-
lems, Ph.D. thesis, Institut für Mathematik, TU Berlin, Berlin, Germany, 2004.

[32] D. Kressner, Block algorithms for reordering standard and generalized Schur forms, LAPACK
working note 171, September 2005. ACM Trans. Math. Software, to appear.

[33] D. Kressner, On the use of larger bulges in the QR algorithm, Electron. Trans. Numer. Anal.,
20 (2005), pp. 50–63.

[34] V. N. Kublanovskaya, AB-algorithm and its modifications for the spectral problems of linear
pencils of matrices, Numer. Math., 43 (1984), pp. 329–342.

[35] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations. Analysis and Numerical
Solution, EMS Publishing House, Zürich, Switzerland, 2006.

[36] B. Lang, Effiziente Orthogonaltransformationen bei der Eigen- und Singulärwertzerlegung,
Habilitationsschrift, 1997.

[37] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems,
SIAM J. Numer. Anal., 10 (1973), pp. 241–256.

[38] C. Pester, CoCoS—Computation of Corner Singularities, preprint SFB393/05-03, Technische
Universität Chemnitz, Chemnitz, Germany, 2005.

[39] P. J. Rabier and W. C. Rheinboldt, Nonholonomic Motion of Rigid Mechanical Systems
from a DAE Viewpoint, SIAM, Philadelphia, 2000.

[40] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York,
1990.

[41] G. W. Stewart, On the eigensystems of graded matrices, Numer. Math., 90 (2001), pp. 349–
370.

[42] T. Stykel, Balanced truncation model reduction for semidiscretized Stokes equation, Technical
report 04-2003, Institut für Mathematik, TU Berlin, Berlin, Germany, 2003.

[43] C. Tischendorf, Solution of Index-2-DAEs and Its Application in Circuit Simulation, Disser-
tation, Humboldt-Univ. zu Berlin, Berlin, Germany, 1996.

[44] P. Van Dooren, Algorithm 590: DSUBSP and EXCHQZ: Fortran subroutines for computing
deflating subspaces with specified spectrum, ACM Trans. Math. Software, 8 (1982), pp. 376–
382.

[45] C. F. Van Loan, Generalized Singular Values with Algorithms and Applications, Ph.D. thesis,
The University of Michigan, Ann Arbor, MI, 1973.

[46] R. C. Ward, A Numerical Solution to the Generalized Eigenvalue Problem., Ph.D. thesis,
University of Virginia, Charlottesville, VA., 1974.

[47] R. C. Ward, The combination shift QZ algorithm, SIAM J. Numer. Anal., 12 (1975), pp. 835–
853.

[48] R. C. Ward, Balancing the generalized eigenvalue problem, SIAM J. Sci. Statist. Comput., 2
(1981), pp. 141–152.

[49] D. S. Watkins and L. Elsner, Theory of decomposition and bulge-chasing algorithms for the
generalized eigenvalue problem, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 943–967.

MULTISHIFT VARIANTS OF THE QZ ALGORITHM 227

[50] D. S. Watkins, Shifting strategies for the parallel QR algorithm, SIAM J. Sci. Comput., 15
(1994), pp. 953–958.

[51] D. S. Watkins, Forward stability and transmission of shifts in the QR algorithm, SIAM J.
Matrix Anal. Appl., 16 (1995), pp. 469–487.

[52] D. S. Watkins, The transmission of shifts and shift blurring in the QR algorithm, Linear
Algebra Appl., 241/243 (1996), pp. 877–896.

[53] D. S. Watkins, Performance of the QZ algorithm in the presence of infinite eigenvalues, SIAM
J. Matrix Anal. Appl., 22 (2000), pp. 364–375.

[54] J. H. Wilkinson, Kronecker’s canonical form and the QZ algorithm, Linear Algebra Appl.,
28 (1979), pp. 285–303.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 228–244

DIAGONAL MARKOWITZ SCHEME WITH
LOCAL SYMMETRIZATION∗

PATRICK R. AMESTOY† , XIAOYE S. LI‡ , AND ESMOND G. NG‡

Abstract. We describe a fill-reducing ordering algorithm for sparse, nonsymmetric LU fac-
torizations, where the pivots are restricted to the diagonal and are selected greedily. The ordering
algorithm uses only the structural information. Most of the existing methods are based on some
type of symmetrization of the original matrix. Our algorithm exploits the nonsymmetric structure
of the given matrix as much as possible. The new algorithm is thus more complex than classical
symmetric orderings, but we show that our algorithm can be implemented in space bounded by the
number of nonzero entries in the original matrix, and has the same time complexity as the analogous
algorithms for symmetric matrices. We provide numerical experiments to demonstrate the ordering
quality and the runtime of the new ordering algorithm.

Key words. sparse nonsymmetric matrices, linear equations, ordering methods

AMS subject classifications. 65F05, 65F50

DOI. 10.1137/050637315

1. Introduction. We consider the direct solution of sparse linear equations
Ax = b using Gaussian elimination, where A is an n×n nonsymmetric sparse matrix.
A major difficulty with nonsymmetric matrices is that they are rarely diagonally dom-
inant, which means that during numerical factorization one must compromise fill-in
reduction with numerical stability. Many nonsymmetric solvers deal with this situ-
ation using the three-phase approach, which includes an analysis phase, a numerical
factorization phase, and a triangular solution phase [2, 6, 16]. Iterative refinements
may be included in the triangular solution. The analysis phase includes a (numerical)
preprocessing of the matrix and a symbolic phase that builds the computational graph
for the numerical factorization phase. An advantage of the three-phase approach lies
in its ability to anticipate the choice of the next pivot, which decouples the analysis
from factorization and makes parallelization of numerical factorization easier. There-
fore, it is a very important class of methods on high performance computers. In this
context, it has been observed in [3] that it is critical to put numerically large entries on
the diagonal during the preprocessing phase to limit the scope of numerical pivoting
during numerical factorization. One may then want to preserve this diagonal dur-
ing sparsity reordering. That is, only a symmetric permutation is allowed afterward.
One common practice to obtain such an ordering is to apply a symmetric ordering
algorithm, either minimum-degree or nested-dissection variant, to the symmetrized
pattern of A + AT . Such reordering algorithms do not exploit the fact that during
factorization the solvers can exploit the asymmetry of the permuted matrix.

∗Received by the editors August 1, 2005; accepted for publication (in revised form) by M. Benzi
July 31, 2006; published electronically January 12, 2007. This work was supported in part by the
Director, Office of Advanced Scientific Computing Research, Division of Mathematical, Information,
and Computational Sciences of the U.S. Department of Energy under contract DE-AC03-76SF00098,
and in part by NSF-INRIA grant NSF-INT-0003274.

http://www.siam.org/journals/simax/29-1/63731.html
†ENSEEIHT-IRIT, 2 rue Camichel, 31071 Toulouse, France (amestoy@enseeiht.fr). Part of the

work of this author was performed while he was on a sabbatical visit to Lawrence Berkeley National
Laboratory.

‡Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F-1650, Berkeley,
CA 94720 (xsli@lbl.gov, egng@lbl.gov).

228

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 229

In this article, we propose a new symmetric ordering algorithm, working directly
on A and exploiting the nonsymmetric structure of A, to compute a “good” symmetric
permutation of A. It is based on greedy heuristics that preserve the large diagonal
entries and at the same time take into account the asymmetry of the matrix. In the
symmetric case, the minimum-degree algorithm is a very effective greedy heuristic
for fill-in reduction. By using the quotient graph elimination model [12, 13] and the
approximate degree updates [1], the minimum-degree algorithm can be implemented
very efficiently both in time and space. The nonsymmetric variant of minimum-
degree was actually discovered earlier and was named after Markowitz [19], in which
the “degree” of a vertex is the product of the row count and column count (known as
the Markowitz count). But the original Markowitz algorithm is asymptotically slower
than the minimum-degree algorithm, mainly due to the lack of a concise quotient
graph model. A theoretical advancement was made by Pagallo and Maulino [22], who
extended the quotient graph idea for symmetric matrices to the nonsymmetric case
by introducing the bipartite quotient graph and showed that the bipartite quotient
graph model can be implemented in space bounded by the size of A. But timewise,
using only the quotient graph model does not lead to an ordering algorithm that is as
fast as the minimum-degree algorithm. This is because the lengths of the reachable
paths to be searched when updating the Markowitz counts are not bounded. One main
contribution of our work is the introduction of a local symmetrization mechanism that
bounds the lengths of the reachable paths as in the symmetric case while capturing
most of the asymmetry in the matrix. A secondary contribution is to adapt and
extend the metrics to select pivots based on approximate degree [1] to metrics based
on approximate Markowitz count and deficiency [24, 20]. Indeed, in our context all
metrics have to anticipate the effect that local symmetrization would have on the pivot
to be selected. Our algorithm has the same asymptotic complexity as the minimum-
degree algorithm, both in space and in time.

The remainder of the paper is organized as follows. In section 2, we first briefly
introduce the bipartite quotient graph notation and properties. We then present
the local symmetrization technique and describe our new ordering algorithm. In
particular, we discuss how to update the quotient graph and how to compute metrics
to select pivots within this framework. Section 3 describes the numerical experiments
we have performed and analyzes the effect of the new ordering algorithm on the
multifrontal code MA41 UNS [2, 6]. Section 4 provides a summary of this research.

2. Diagonal Markowitz with local symmetrization. This section presents
the algorithmic ingredients of our new Markowitz ordering framework. We show
that the Markowitz algorithm can be implemented as efficiently as the approximate
minimum-degree algorithm by using bipartite quotient graphs, the local symmetriza-
tion scheme, and the metrics based on approximate row and column degrees.

2.1. The Markowitz criterion. The Markowitz ordering algorithm [19] has
been used successfully in general-purpose solvers [11]. This local greedy strategy can
be described succinctly as follows. After k steps of Gaussian elimination, let rki (resp.,
ckj) denote the number of nonzero entries in row i (resp., column j) of the remaining
(n− k)× (n− k) submatrix. The (structural) Markowitz criterion is to select, as the
next pivot, a nonzero entry akij from the remaining submatrix that has the minimum

Markowitz count (rki −1)×(ckj −1). This attempts to minimize an upper bound on the
amount of fill-in generated at step k+1. Note that, in our context, we want to restrict
the pivot selection to the diagonal of the remaining submatrix. This restriction of the

230 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

Markowitz scheme will be referred to as the diagonal Markowitz scheme.
The simple rule above for choosing the next pivot does not immediately render

an efficient implementation, because it requires updating the sparsity pattern of the
remaining submatrix at each step, which may generate fill-in. From the development
of the minimum-degree algorithm, which can be considered as a symmetric variant
of Markowitz algorithm, we learned that by using the quotient graph elimination
model [13], the algorithm can be implemented in space bounded by the size of the
original matrix rather than that of the filled matrix. This is the so-called in-place
property and is very much desirable in an efficient ordering algorithm. Pagallo and
Maulino [22] extended the quotient graph model by using bipartite quotient graphs
to model the nonsymmetric elimination and showed that this model indeed has the
in-place property. Now we briefly review this concept and illustrate how we can use
and modify this model to design our ordering algorithm.

2.2. Bipartite quotient graphs. Let A be a nonsymmetric n×n matrix. The
nonzero pattern of A can be represented by a bipartite graph G = (Vr, Vc, E), where
Vr and Vc are the sets of row and column vertices, respectively. For a row vertex
ri ∈ Vr and a column vertex cj ∈ Vc, an edge (ri, cj) ∈ E exists if and only if aij �= 0.
Let G0 = (V 0

r , V
0
c , E

0) be the same as G. We use a bipartite graph Gk = (V k
r , V k

c , Ek)
to represent the nonzero pattern of the remaining submatrix after k steps of Gaussian
elimination. Assuming pivots are chosen from the main diagonal, at step k, the
transformation from Gk−1 to Gk is based on the following elimination rule. Suppose
the kth pivot node (rp, cp), p ≥ k, is selected for elimination. The vertex sets become
V k
r = V k−1

r \{rp} and V k
c = V k−1

c \{cp}. The edge set Ek is derived from Ek−1 by
deleting the edges incident on cp and rp and adding edges (ri, cj) for all ri and cj
that are adjacent to cp and rp, respectively. This creates a fully connected bipartite
subgraph (a clique in the symmetric analogue). We may refer to this as a bipartite
clique, or biclique in short.

We now briefly review the symmetric quotient graph elimination model. The main
idea is to use a compact representation to implicitly store the subgraph induced by the
vertices that have been eliminated. Suppose Gs is a undirected graph corresponding
to a sparse symmetric matrix. Let S denote the subset of vertices in Gs that have
been eliminated. Consider the subgraph Gs(S) induced by S in Gs. In the quotient
graph model, each connected component1 in G(S) will be represented by a single
“supervertex.” As a result, any path in Gs from a vertex i �∈ S to a vertex j �∈ S
through S corresponds to a path through at most one supervertex in S. The set
of vertices adjacent to i in the remaining filled subgraph is given precisely by the
reachable set of i through S. See [13] for details.

We now describe the nonsymmetric elimination process using the bipartite quo-
tient graph model. We will use calligraphic letters to denote the sets associated with
the bipartite quotient graph. Let Gk denote the bipartite quotient graph which rep-
resents the structure of the reduced submatrix after k steps of Gaussian elimination,
and define G0 = G0. When there is no ambiguity, we will omit superscript k. Both
row and column vertices are partitioned into two sets: the set of uneliminated vertices
referred to as variables and the set of eliminated vertices referred to as elements. That
is, G = (Vr∪V̄r,Vc∪V̄c, E∪Ē). Members of Vr (Vc) will be referred to as row (column)
variables (to distinguish them from the row vertices in Vr (Vc)), while members of
V̄r (V̄c) will be referred to as row (column) elements. The edge set E contains the

1A connected component is a graph in which there is a path between every pair of vertices.

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 231

edges between row (column) and column (row) variables. The edge set Ē contains
the edges between row (column) variables and column (row) elements, as well as the
edges between row elements and column elements. An eliminated pivot e = (re, ce)
has two vertices re ∈ V̄r and ce ∈ V̄c referred to as a coupled element. Similarly an
uneliminated pivot entry (a diagonal entry in the reduced matrix) i = (ri, ci) will be
referred to as a coupled variable. A nonzero entry (ri, cj) exists in the factors if and
only if there exists a path of the form ri → ce1 → re1 . . . → cel → rel → cj , where
ei = (rei , cei), 1 ≤ i ≤ l, are the coupled elements associated with the pivots already
eliminated [23]. Therefore, following such paths, we can determine the nonzero entries
of any row i or column j in the reduced submatrix.

Let Ai∗ be the set of column variables adjacent to row variable ri in G which have
never been modified after k steps of elimination. A∗j is defined similarly for column
variable cj . For each row variable ri and column variable cj , define the element
adjacency lists:

Ri ≡ {e = (re, ce) : (ri, ce) ∈ Ē} ⊆ V̄c, the set of coupled elements adjacent to ri ,

Cj ≡ {e = (re, ce) : (re, cj) ∈ Ē} ⊆ V̄r, the set of coupled elements adjacent to cj .

The adjacency lists of variables in the current bipartite quotient graph are then defined
as

Ui ≡ AdjrowG (ri) = Ai∗ ∪Ri ,(1)

Lj ≡ AdjcolG (cj) = A∗j ∪ Cj .(2)

For each coupled element e = (re, ce) define the variable adjacency lists:

Le ≡ {ri : (ri, ce) ∈ Ē} ⊆ Vr, the set of row variables adjacent to ce ,

Ue ≡ {cj : (re, cj) ∈ Ē} ⊆ Vc, the set of column variables adjacent to re .

In other words, Le and Ue are, respectively, the sets of row and column vertices in
the biclique induced after elimination of the coupled element e.

Now, suppose a pivot p = (rp, cp), p ≥ k, is chosen to be eliminated next. If there
exists a cycle of the form rp → ce1 → re1 . . . → cel → rel → cp → rp (ei ≤ k, 1 ≤ i ≤ l)
(referred to as a strongly connected component in [22]), then Lei ⊆ Lp and Uei ⊆ Up

for all i. Hence, except for (rp, cp), the other coupled elements in the cycle are no
longer needed. See Figure 1(a) for an illustration. When updating the quotient graph,
we can coalesce the coupled elements in the cycle into a single “supervertex,” using
the last element p as the representative vertex and removing the other elements and
the incident edges. This process will be referred to as element absorption.

The transformation from bipartite quotient graph Gk−1 to Gk at step k is carried
out as follows. We search in the subgraph of Gk−1 induced by V̄k−1

r ∪ V̄k−1
c for cycles

that include the pivot (rp, cp). We then perform the element absorptions and form
the new adjacency lists Lp and Up. The structure of a column k in the reduced
submatrix, L∗k, can be determined very easily using Gk−1: �ik �= 0 if and only if ri is
reachable from ck through the coupled elements in Gk−1. The structure of Uk∗ can be
determined in a similar way. The biclique introduced by the current pivot is then used
to prune the edges in Ek. This process will be referred to as variable pruning. From
the variable pruning process it results that (ri, cj) ∈ Ek if and only if (ri, cj) ∈ E and
entry ai,j of the original matrix has not been modified during steps 1 through k of the
elimination. It was proved that using this scheme, the in-place property is maintained

232 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

e1

p

i

x

x

x

r

e2r

cce1 e2

e1

e2

 r

cp

 p

(a) Quotient graph with a cycle.

e1

e2

p

x

x

i

j

k

(b) Quotient graph without cycle.

Fig. 1. (a) Quotient graph with a cycle: rp → ce1 → re1 → ce2 → re2 → cp. (b) Quotient
graph without cycle.

for each Gk [22]. But unlike the symmetric case, here, computing the reachable sets
can be very expensive, because the length of the search path is not bounded by two.
(In fact, it can be as long as |V̄r ∪ V̄c| + 1 if no cycle is found.) This is illustrated by
the example in Figure 1(b). There is only a simple path between p and elements e1

and e2, which results in Le1 ⊆ Le2 ⊆ Lp. However, Ue1 ⊆/ Up and Ue2 ⊆/ Up. For
an uneliminated variable i such that ri ∈ Lp ∩ Le1 ∩ Le2 , all the column variables
in Up ∪ Ue2 ∪ Ue1 need to be included in Ui∗. In an in-place algorithm, one must
store ri only in Le1 , and then via the path ce1 → re1 → ce2 → re2 → cp one can
deduct that Ui∗ should contain the union Up∪Ue2 ∪Ue1 . We also note that, although
Le1 ⊆ Le2 ⊆ Lp, Le1 alone may be required to build L∗j for any j such that cj ∈ Ue1

and cj �∈ Ue2 ∪Up. This means that Le1 should not be absorbed into Lp. Furthermore,
if one considers a variable k such that ck ∈ Up but ck �∈ Ue1 ∪ Ue2 , then Lp will need
to be included in Lk. If we maintain the in-place property, the entries belonging to
both Lei , i = 1, 2, and Lp are stored only in Lei , then we must be able to reach ei,
i = 1, 2, through a path starting at p: cp → re2 → ce2 → re1 .

2.3. Local symmetrization. To avoid the long search path in a truly nonsym-
metric algorithm, we have designed a relaxed diagonal Markowitz scheme. Figure 2
illustrates such a relaxation. The entry marked s shows an artificial nonzero in-
troduced to symmetrize only a local part of the matrix. In the example, we assume
that (rp, cp) is the current pivot, and Rp = ∅ and Cp = {e1, e2}. We also assume
that Ue1 ⊆/ Up and Ue2 ⊆/ Up. For the sake of clearness, we have assumed that
Ue1 ∩ Up = ∅ and Ue2 ∩ Up = ∅. In order to obtain the row structure Ui∗, where
ri ∈ Le1 ∩ Le1 ∩ Lp, Ri must contain elements e1, e2, and p. In other words, all the
variables in Ue1 ∪ Ue2 ∪ Up should be included in Ui∗. With symmetrization (shown
on the right part of Figure 2), we pretend that Rp = {e1, e2} and Cp = {e1, e2}.
Therefore, Ue1 ⊆ Up and Ue2 ⊆ Up. Hence, the coupled element p can absorb the
coupled elements e1 and e2. As a result, we now need only the adjacency lists of rp
and cp to get the adjacency lists of ri and ci. This eliminates the need to keep the
adjacency lists of re1 , re2 , ce1 , and ce2 .

In summary, the local symmetrization works as follows. Suppose the current pivot

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 233

ss

e1

e2

p

i

x

x

Elimination of p WITH local symmetrization

e1

e2

p

i

x

x

Elimination of p WITHOUT symmetrization

Fig. 2. Illustration of local symmetrization.

is (rp, cp). The adjacency lists Up and Lp are computed by

Up =

⎛⎝Ap∗ ∪
⋃

e∈Rp

Ue ∪
⋃
e∈Cp

Ue

⎞⎠ \{cp} ,(3)

Lp =

⎛⎝A∗p ∪
⋃
e∈Cp

Le ∪
⋃

e∈Rp

Le

⎞⎠ \{rp} .(4)

The third terms in the unions result from the local symmetrization. The adjacency
lists in the bipartite quotient graph (see (1) and (2)) of all the row (column) variables
in the adjacency lists of the newly formed coupled element p should then be updated.
All the row and column elements in Rp ∪ Cp are absorbed by the coupled element
p. Therefore, if (re, ce) is such an absorbed element, then re (ce) will be replaced by
rp (cp) each time it appears in an edge of Ē and will be excluded from the quotient
graph together with Le (Ue). Furthermore, because of local symmetrization, more
variable pruning can be performed. Let i = (ri, ci) be a coupled variable (diagonal
entry in the reduced matrix) such that ri ∈ Lp and ci /∈ Up. We can anticipate local
symmetrization between i and the coupled element p to prune all the row variables
in A∗i that belong to Lp. Entries in Ai∗ can also be pruned in a similar way (even if
ri /∈ Lp).

Our relaxation mechanism will be referred to as local symmetrization, because
the symmetrization is applied to only the local part of the graph involving only those
row and column elements adjacent to cp and rp. Globally, the nonzero structure
generally still remains nonsymmetric (the index sets {k : rk ∈ L∗i} and {k : ck ∈ Ui∗}
are different). By construction, the length of a search path is bounded by three. In
essence, we trade off some amount of asymmetry and space (because some zero entries
may be stored) with a much faster search algorithm. We show in Theorem 2.1 that
although the local symmetrization may introduce extra (zero) entries in the factors
with respect to a pure nonsymmetric scheme (see Figure 2), it leads to an in-place
algorithm.

Theorem 2.1. Let v denote a row or a column variable in Gk, and let Ak
v∗ (resp.,

Ak
∗v) denote the set of column (resp., row) variables adjacent to v which have not been

234 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

modified after k steps of elimination; then for all 2 ≤ k ≤ n, |Ak
v∗|+ |Rk

v | ≤ |Ak−1
v∗ |+

|Rk−1
v | ≤ |A0

v∗|, and |Ak
∗v| + |Ck

v | ≤ |Ak−1
∗v | + |Ck−1

v | ≤ |A0
∗v| .

Proof . We focus on the row structures in this proof. The proof for the column
structures is similar. We prove this theorem by induction. By construction, R0

i = ∅,
so |A0

i∗|+ |R0
i | = |A0

i∗|. Suppose at the kth step of elimination that (rp, cp) is selected
as the pivot. We first build Uk

p using (3). The entries in Uk
p either come from the

original matrix Ap∗ or from the entries in Ue such that e ∈ Rp ∪ Cp. Because of local
symmetrization, the coupled element e will be absorbed by p, and the space of Ue

can be used by Uk
p to store the new entries from Ue. To take into account the fill-in

we have to update the adjacency lists of all variables adjacent to the pivot. We focus
on the row structures and thus consider the updating of Uk

i for ri ∈ Lk
p using (1).

By construction, all the entries in Uk
p ∩ Ak−1

i∗ are pruned from Ak−1
i∗ , showing that

|Ak
i∗| ≤ |Ak−1

i∗ |, and cp is added to Rk
i . Now we consider the size of Rk

i . If ri ∈ Lk
p,

then there exists a coupled element ej = (rj , cj) in the supervertex p = (rp, cp) such
that (ri, cj) is in the original graph. Since (ri, cj) has been pruned and cj cannot
belong to any other supervertex, then we have |Ak

i∗| + |Rk
i | ≤ |Ak−1

i∗ | + |Rk−1
i |. This

concludes our proof of the in-place property of the algorithm.
Corollary 2.2. The quotient graphs Gk generated at each step of the diagonal

Markowitz scheme with local symmetrization can be stored in the space of the original
graph G0. More precisely, |Ek ∪ Ēk| ≤ |Ek−1 ∪ Ēk−1| ≤ |E0| for all 2 ≤ k ≤ n.

Theorem 2.1 implies that the in-place property holds for the row adjacency lists
and for the column adjacency lists so that we could have an in-place implementation
while keeping two separate lists to store entries in rows and in columns at each step
of the elimination.

We will call our relaxed scheme diagonal Markowitz with local symmetrization
(DMLS). We now illustrate its main properties with an example. In Figure 3, we apply
the DMLS algorithm assuming that pivots are in the natural ordering. The matrix
on the right is the structure of the LU factors. The elimination tree [18] built by
the DMLS algorithm is shown in Figure 4. Each node of the tree corresponds to the
elimination of a pivot. The nonsymmetric frontal matrix of each node corresponds
to the structure of Up and Lp as defined by (3) and (4). The dark area corresponds
to the entries in the reduced matrix updated during the node elimination (i.e., the
nonsymmetric contribution block sent by one node to its parent).

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

S

F F

LU factors with DMLS Original Matrix

Fig. 3. Illustration of the fill-ins introduced by the DMLS algorithm. F corresponds to the normal
fill-in when eliminating pivot (1, 1). S corresponds to the fill-in due to the local symmetrization when
eliminating pivot (2, 2).

At the first step, pivot (1, 1) is eliminated resulting in two fill-ins (F in positions
(4, 2) and (4, 3)). In the quotient graph G1, these fill-ins are implicitly represented
by removing r1 from A∗2 and A∗3 and adding r1 to C2 and C3. Note that at this
step there is no symmetrization of the column and row adjacency lists of r1 and c1,
which otherwise would result in a completely full reduced matrix. When eliminating

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 235

1

1

1 32

2 3

4

4

2

3 4

3

2

3

4

4

4

S

4

Fig. 4. Elimination tree built by the DMLS algorithm applied to the matrix of Figure 3.

pivot (2, 2), since r1 ∈ C2 and c1 /∈ R2, local symmetrization is applied, and when
computing U2 by (3) entry S in position (2, 3) is added to the quotient graph G2 (i.e.,
the coupled element 1 is absorbed by 2, and r2 is added to C3). One should note
that entry (2, 1) is only virtually considered as nonzero and is never added in the LU
factors. Similarly, when eliminating pivot (3, 3) at the next step, only the effect of
adding entry (3, 2), by symmetrization of (2, 3), on the structure of the column L3 is
considered (it happens to have no effect in our example). Even if entry (3, 2) is not
effectively stored and has no effect on the size of the factors, it still has an effect on
the structure of the dependency graph, as shown in Figure 4. The fact that pivot 3
can absorb the coupled element 2 because of the artificial (3, 2) nonzero entry also
means that node 3 in Figure 4 becomes the unique parent of node 2 in the dependency
graph, which in turn becomes a tree (or forest when the matrix is reducible). It is
also interesting to note that, since entry (2, 3) (S in the figure) is considered nonzero,
column 3 is added to the frontal matrix of node 2. But entry (4, 3) will not be modified
during elimination of pivot (2, 2), because entry (2, 3) is structurally zero. Entry (4, 3)
is a contribution resulting only from elimination of pivot (1, 1), and it is needed only
when eliminating pivot (3, 3). Because of this newly added column, the frontal matrix
of node 2 has the minimum structure to carry all the contributions of node 1 to all of
its ancestral nodes 2 and 3. The edge between nodes 1 and 3 can be removed, which
corresponds to the coupled element 2 absorbing the coupled element 1 in the quotient
graph.

We have shown that even if local symmetrization may result in extra fill-ins, it
does not symmetrize the adjacency lists of the pivot; it builds at each elimination step
the minimal nonsymmetric structure capable of absorbing all the nonsymmetric con-
tributions from all the elements adjacent to the pivot. This nonsymmetric structure
is called the nonsymmetric frontal matrix , similar to the symmetric case. By doing
so, node p becomes the unique parent of all the nodes e such that ce ∈ Rp or re ∈ Cp
in a tree rooted with the last pivot. The DMLS algorithm thus explicitly builds an
elimination tree in which each node corresponds to the processing of a nonsymmet-
ric frontal matrix whose structure is defined by Lp and Up. This elimination tree is
identical to the dependency graph that MA41 UNS [6] would build if the same ordering
were provided. In fact, the DMLS ordering is searching for an ordering that provides a
good nonsymmetric elimination tree with respect to some local criterion/metric. The
DMLS ordering also provides a good estimation of the size of the factors and all the

236 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

working space required during numerical factorization using the MA41 UNS approach.
This estimation is exact if the diagonal pivots are numerically stable.

2.4. The DMLS algorithm. To design the DMLS algorithm, we have exploited
many algorithmic techniques from the AMD approach [1] and have extended them to
the nonsymmetric case. The main difficulty is handling local symmetrization during
degree calculation. We first explain how to adapt the symmetric algorithms, then
describe the modifications needed for local symmetrization, and conclude this section
with a description of the metrics used in pivot selection.

Exploiting identical structures in the graph can greatly speed up the degree up-
date at each elimination step. Two coupled variables i = (ri, ci) and j = (rj , cj)
are said to be indistinguishable in G if they have the same row adjacency structure
and the same column adjacency structure in G (although the row structure may be
different from the column structure). Indistinguishable coupled variables can then
be merged into a single so-called supervariable. We use a boldface letter to denote a
supervariable. Thus, i = (ri, ci), with ri ≡ {ri, rj}, and ci ≡ {ci, cj}.

For each row supervariable ri, let dri denote its external row degree [1, 17]. Simi-
larly, for each column supervariable ci, let dci denote its external column degree. The
external degrees are defined as

dri =
∣∣Ai∗\ci

∣∣ +

∣∣∣∣ (⋃
e∈Ri∪Ci

Ue

)
\ ci

∣∣∣∣ ,(5)

dci =
∣∣A∗i\ri

∣∣ +

∣∣∣∣ (⋃
e∈Ci∪Ri

Le

)
\ ri

∣∣∣∣ .(6)

Note that we should consider all the elements in both Ri and Ci contributing to the
row degree and column degree. Indeed, because of local symmetrization, when (ri, ci)
is selected as the pivot at a later step, those elements will contribute to the structure
of both Ui and Li (see (3) and (4)). Therefore, we must ensure that the computed
degrees are also consistent with the local symmetrization scheme. This does not mean
that we symmetrize all the edges in Ē . It means only that our degree evaluation must
anticipate what would happen if (ri, ci) were selected as the pivot. That is, during
the degree calculation of the uneliminated variables, we need to simulate the effect
of local symmetrization. The local symmetrization actually takes place only when a
variable is selected as the pivot. This has been illustrated in Figure 3.

Following the symmetric AMD algorithm [1], we can approximate the true degrees
by their upper bounds, d̄ri and d̄ci , which, at step k, can be computed by

d̄ri
k

= min

⎧⎪⎪⎨⎪⎪⎩
n− k,

d̄ri
k−1

+ |Up\ci|,
|Ai∗\ci| + |Up\ci| +

∑
e∈Ri∪Ci

|Ue\Up| − αi,
(7)

d̄ci
k

= min

⎧⎪⎪⎨⎪⎪⎩
n− k,

d̄ci
k−1

+ |Lp\ri|,
|A∗i\ri| + |Lp\ri| +

∑
e∈Ci∪Ri

|Le\Lp| − βi.
(8)

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 237

Note that, unlike the symmetric case, two correction terms αi and βi have been
introduced to improve the accuracy of the approximation to the external degree. Let
us justify the αi term in (7). In the nonsymmetric case, it may happen that ci /∈ Up,
whereas for an accurate prediction of d̄ri in the context of local symmetrization, we
need to pretend that ci ∈ Up. In this case, |ci| was mistakenly counted in every
|Ue\Up| for e ∈ Ci and should thus be deducted. The total amount that should be
deducted is αi = |Ci| × |ci|; see [4] for details.

Once d̄ri and d̄ci are computed, we have many choices of minimization criteria
to select the next pivot. Each choice will lead to a different ordering. One set of
criteria or metrics is degree-based, which is a direct function of the degrees (e.g.,
Min(d̄ri × d̄ci), Min(d̄ri + d̄ci), Min(Min(d̄ri , d̄ci)), Min(Max(d̄ri , d̄ci))). Another set
is deficiency-based, which is based on estimates of the amount of new fill-in generated
at each step. We have experimented several variants of the approximations of the
deficiency. Most of the heuristics in [20, 24] can be adapted easily to the nonsymmetric
case. Moreover, we have considered a deficiency heuristic that results from discussions
with T. Davis and I. S. Duff while working on the approximate minimum degree
ordering for symmetric matrices AMD. This approximation of the deficiency (referred
to as AMDF in the symmetric context) is based on the following observation. Suppose
{rp, cp} is the current pivot and the two column elements e1 and e2 are adjacent to
ri ∈ Lp. In our approximate degree d̄ci we count twice the row variables that belong
to (Le1\Lp) ∩ (Le2\Lp). This property can be exploited to improve the estimation
of the deficiency, since, in this context, we try to deduct from the degree product
the cliques of all the elements adjacent to the current variable. We can consider that
(Le1\Lp) ∩ (Le2\Lp) = ∅, because this overlapped term also occurs in the degree
product, which is cancelled after subtraction. Thus, for each ri ∈ Lp, we can deduct
both the area relative to the current clique p (i.e., |Lp| × |Up|) and the sum of the
“external areas” of all the elements adjacent to (ri, ci) (i.e.,

∑
e∈Ci∪Ri

|Le\Lp|× |Up|).
The external area is readily available, since |Le\Lp| has already been computed during
the approximate degree calculation. This leads to a more accurate approximation
of the deficiency than the approximations introduced in [20, 24] when used in an
approximate minimum degree code. This approximation of the deficiency can be
easily adapted to our nonsymmetric ordering and will be referred to as DMLS-MF. Note
that using AMDF on symmetric matrices, the amounts of reduction in fill-in and flop
count relative to AMD have been found to be similar to those reported in [20, 24].

3. Numerical experiments. We now evaluate the DMLS ordering algorithm and
compare its ordering quality with that obtained by applying both approximate mini-
mum degree and minimum deficiency algorithms on A + AT .

3.1. Testing environment. To experiment with our ordering algorithm, we
will consider the unsymmetrized multifrontal code MA41 UNS [2, 6], which automati-
cally detects and exploits the structural asymmetry of the submatrices involved when
processing the elimination tree associated with the pattern of the symmetric matrix
A + AT. In [7], MA41 UNS with AMD ordering was shown to be very competitive with
SuperLU and UMFPACK on a large class of matrices including very nonsymmetric ones.
We will show in this section that using DMLS ordering can significantly improve the
speed of MA41 UNS. MA41 UNS is a tree-based multifrontal algorithm, in which some
steps of Gaussian elimination are performed on a dense frontal matrix at each node of
the assembly tree, and the Schur complement (or the contribution block) that remains
is passed for assembly at the parent node.

238 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

MA41 UNS can benefit from a numerical scaling of the matrix followed by a nu-
merical preordering (row or column permutations) to maximize the magnitude of the
diagonal entries. After numerical pivoting and scaling, a sparsity preserving ordering
(symmetric permutation of A) based on an analysis of the pattern of A + AT can be
used. The computational graph of the factorization is then computed assuming that
diagonal pivots are numerically stable. Since this assumption may not be entirely true
during numerical factorization, the solver uses partial pivoting with a threshold value
to select numerically stable pivots. It is thus possible that some variables cannot be
eliminated from a frontal matrix. The rows and columns containing the noneliminated
variables of a frontal matrix are then added to the contribution block and passed to
the parent node. Those delayed eliminations will result in an increase in the size of the
LU factors estimated in the analysis and an increase in the number of operations. In
practice, it has been observed that using MC64 [21, 9, 10] from HSL [15] as preordering
can significantly reduce the number of delayed pivots during factorization [3]. This
preordering will thus be applied on all our test matrices.

Our test matrices are from the forthcoming Rutherford-Boeing Sparse Matrix
Collection [8], the industrial partners of the PARASOL Project,2 Tim Davis’s collec-
tion3, and SPARSEKIT2.4 Only matrices with structural symmetry less than 0.5 and
dimension greater than 1000 were chosen. We define the structural symmetry as the
fraction of the nonzeros matched by nonzeros in symmetric locations. Thus, a sym-
metric matrix has a value of 1, and a highly nonsymmetric matrix has a value close
to 0. When there were many similar matrices from the same application domain, we
used only a subset with the largest dimensions. Altogether, there were 61 structurally
nonsymmetric matrices in our study.

Our computer platform comprises a 2.8 GHz Pentium 4 processor, 2 GBytes of
memory, and 1 MByte of cache, with a Linux operating system. We used gcc -O to
compile the DMLS code and pgf90 -O to compile all the FORTRAN routines. We also
used Goto’s BLAS library libgoto p4 512-r0.94.so [14].

We systematically applied random row and column permutations to each matrix.
Eleven different permutations were applied to each matrix, and the run that provided
the median value of the LU factor size was used in the report.

3.2. Results. We first evaluated the quality of the DMLS ordering when using
different minimization metrics and heuristics mentioned in section 2.4 (min-prod, min-
sum, min-min, min-max, and minimum deficiency). Our study showed that DMLS-MF

(i.e., DMLS with approximate minimum deficiency) gives the best quality in terms of
fill-in and flop reductions. Therefore, we used DMLS-MF in the rest of the experiments.
To illustrate the gain in quality we compared DMLS-MF with the standard approximate
minimum degree algorithm AMD as well as AMDF (our best local heuristic to approximate
the deficiency for the symmetrized matrix A + AT).

We observed that for five highly reducible matrices (raefsky5.rua, raefsky6.rua,
meg1.rua, bayer05.rua and bayer07.rua) DMLS-MF significantly outperformed both AMD

and AMDF—the factor sizes were reduced by 4 to 10 times. Although this is a nice
property of DMLS it not the scope of our work, since on highly reducible matrices one
could consider preprocessing the matrices to first permute them to a block triangular
form (BTF) and then search for a symmetric permutation within the diagonal blocks
of the BTF format. We have thus excluded these five matrices when reporting the

2EU ESPRIT IV LTR Project 20160, http://www.parallab.uib.no/projects/parasol.
3http://www.cise.ufl.edu/research/sparse/matrices.
4 http://math.nist.gov/MatrixMarket/data/SPARSKIT.

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 239

results, because they will skew the statistics. For the other 56 matrices, we compare
in Figure 5 the actual size of the factors (including the extra fill-ins due to numerical
pivoting) of the DMLS-MF, AMD, and AMDF orderings. For a relatively large number of
matrices (23 with respect to AMD and 18 with respect to AMDF), the DMLS-MF ordering
leads to ratios greater than 1.20. Sometimes DMLS-MF may give worse ordering than
AMD or AMDF, but it is never less than a ratio of 0.70. Note that there are eight
matrices which have structural symmetry less than 0.5 initially but larger than 0.5
after preordering with MC64. As expected, for these matrices, relatively smaller gains
are obtained from DMLS.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

1

1.2

1.4

1.6

1.8

2

Structural Symmetry

R
a

ti
o

 N
Z

 i
n

 L
U

 (
A

M
D

/D
M

L
S

−
M

F
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Structural Symmetry

R
a
tio

 N
Z

 in
 L

U
 (

A
M

D
F

/D
M

L
S

−
M

F
)

Fig. 5. Actual fill-in ratios. The x-axis shows the structural symmetry after preprocessing.
Left: AMD/DMLS-MF, mean ratio is 1.22, median ratio is 1.14; right: AMDF/DMLS-MF, mean ratio is
1.20, median ratio is 1.6.

In Figure 6, we compare the number of floating-point operations performed during
factorization (including numerical pivoting) using the three orderings. For a large
number of matrices, the DMLS-MF ordering leads to ratios greater than 1.30 for the flop
reduction compared to AMD (34 matrices) and AMDF (23 matrices).

We now focus on 19 large matrices of dimension larger than 10000 and having
initial structural symmetry smaller than 0.5 (except for Sandia/mult dcop 03 and
Zhao/Zhao2). This is a subset of the 61 matrices studied above. For this subset, we
perform a more detailed quantitative comparison of the AMDF and DMLS-MF algorithms.
These matrices are listed in Table 1 and are sorted in increasing symmetry after
the matrices are randomly permuted and reordered using the maximum transversal
given by MC64. Here, among the 11 symmetry numbers from the 11 initial random
permutations, we report the one corresponding to the permutation that gives the
mean fill ratio of AMDF over DMLS-MF.

In Table 2 we report both the estimated factor size given by the analysis phase
(columns 2 and 3) and the actual factor size computed during factorization using
MA41 UNS (columns 5 and 6). Since the pruned frontal matrix structures appeared in
factorization are exactly those on which the DMLS algorithm is based, the estimation
given by DMLS-MF is correct modulo small variation due to numerical pivoting. In fact,
in addition to an ordering, DMLS also gives an assembly tree with the correct frontal
size that MA41 UNS can use. It is important to note that numerical pivoting has little
effect on the structural changes. But this is not the case with AMDF, which is based
on the graph of the symmetrized matrix A+AT . We see that the difference between

240 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5
0.7

1

1.3

2

3

4

Structural Symmetry

R
a

ti
o

 f
lo

p
s
 (

A
M

D
/D

M
L

S
−

M
F

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5
0.7

1

1.3

2

3

4

Structural Symmetry

R
a

ti
o

 f
lo

p
s
 (

A
M

D
F

/D
M

L
S

−
M

F
)

Fig. 6. Ratio of the number of floating-point operations in factorization. Left: AMD/DMLS-MF,
mean ratio is 1.64, median ratio is 1.39; right: AMDF/DMLS-MF, mean ratio is 1.56, median ratio is
1.17; note that matrix orani678 was excluded from the two plots because its flop reduction is almost
8 when compared to AMDF.

Table 1

Test matrices. StructSym denotes the structural symmetry (both before and after preprocessing).

Group/matrix n nnz StructSym Description
Before After

Vavasis/av41092 41092 1683902 0.00 0.08 Unstructured finite element
Hollinger/g7jac200sc 59310 837936 0.10 0.10 Economic model
Hollinger/jan99jac120sc 41374 260202 0.00 0.16 Economic model
Mallya/lhr34c 35152 764014 0.00 0.19 Light hydrocarbon recovery
Mallya/lhr71c 70304 1528092 0.00 0.21 Light hydrocarbon recovery
Hollinger/mark3jac140sc 64089 399735 0.22 0.21 Economic model
Grund/bayer01 57735 277774 0.00 0.25 Chemical process simulation
Hohn/sinc18 16428 973826 0.01 0.27 Single-material crack problem
Hohn/sinc15 11532 568526 0.01 0.27 Single-material crack problem
Zhao/Zhao2 33861 166453 0.94 0.27 Electromagnetism
Hohn/fd18 16428 63406 0.00 0.29 Crack problem
Sandia/mult dcop 03 25187 193216 0.66 0.37 Circuit simulation
ATandT/twotone 120750 1224224 0.28 0.43 Harmonic balance method
ATandT/onetone1 36057 341088 0.10 0.43 Harmonic balance method
Norris/torso1 116158 8516500 0.43 0.43 Bioengineering
Grund/poli large 15575 33074 0.47 0.47 Chemical process simulation
Shen/shermanACb 18510 145149 0.26 0.50 Circuit simulation
ATandT/pre2 659033 5959282 0.36 0.58 Harmonic balance method
Shen/e40r0100 17281 553562 0.33 0.89 Fluid dynamics

estimation and actual size is significant, and the estimation is often much larger than
the actual size. This is because the MA41 UNS factorization algorithm can dynamically
exploit a more precise frontal matrix structure at each pivot, which can be rectangular
and smaller than the frontal matrix structure predicted by AMDF. (The frontal matrix
predicted by AMDF is always square due to initial, global symmetrization A + AT .)
Furthermore, it has been observed in [6] that an even larger difference can occur in the
size of the stack memory. Therefore, after AMDF (or AMD) ordering and before numerical
factorization, one should run a nonsymmetric symbolic factorization algorithm to
identify the nonsymmetric structures needed to perform numerical factorization. In

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 241

our context this extra cost should thus be added to the analysis time when an ordering
based on A + AT is used.

In addition to the actual factor size and the floating-point operations, we also
report the peak memory (labeled “Real memory” in Table 2) needed to factorize the
matrix, which is measured in the number of double precision words. For some classes
of matrices (ATandT, Mallya, Norris, Sandia) the DMLS-MF ordering leads to much less
memory usage than that of AMDF. For some other classes of matrices (Grund, Vavasis,
Shen), the results are comparable. We found that the Hollinger matrices are very
sensitive to the initial random permutations. For example, the number of operations
varies between 6.5× 108 and 8.3× 108 using AMDF, between 12.7× 108 and 18.4× 108

using DMLS-MF, and between 17.1×108 and 20.7×108 using AMD. Moreover, for this class
of matrices, MA41 UNS combined with the AMD ordering applied to A+AT significantly
outperforms all the nonsymmetric solvers considered in [7]. Using AMDF thus further
reduced the number of operations, and the attempt to exploit the asymmetry of the
original matrix did not improve the ordering quality (as shown by the UMPFPACK code
which attempts to exploit all the asymmetry [7]).

For smaller matrices in the same classes, which are among the complete set of 61
matrices but not shown in Table 2, we have observed a similar behavior. One should
point out that on reducible matrices it is always beneficial to first permute to BTF
and then apply the ordering to the diagonal block. Furthermore, it has been observed
(private communication with Stan Einsenstat) that if one compares the orderings on
the largest diagonal block of the BTF, the gains of DMLS relative to AMDF as reported
in this paper are reduced. We feel that this can be only partially explained by the
fact that the diagonal blocks of the BTF permuted reducible matrices tend to be
structurally more symmetric than the original matrices.

Finally, we report in Table 2 the runtimes of the ordering algorithms. Since both
AMDF and DMLS-MF exploit approximate degree calculations, the complexity of these two
codes is directly related to that of the AMD ordering. For DMLS, since we need to maintain
the adjacency structures and the approximate degrees both rowwise and columnwise,
we expect DMLS-MF to be twice as slow as AMDF. This is in general true except for Hohn
and Norris classes of matrices, for which DMLS-MF is much slower. For Hohn/Sinc*
matrices, large dense off-diagonal blocks lead to larger supervariables in the graph of
A + AT than in the graph of A. In this case, the asymmetry prevents DMLS-MF from
selecting larger supervariables, whereas it is not sufficiently nonsymmetric to lead to
better ordering. For the matrix Norris/Torso1, the situation is different for at least
two reasons. First, taking into account the asymmmetry of the matrix significantly
improves the quality of the ordering. Second, it has been shown in our recent work [5]
(generalization of the DMLS approach to allow off-diagonal and numerical-based pivot
selection) that using separate row and column supervariables, one can significantly
decrease the ordering time on this class of matrices, and this is true even when pivot
selection is restricted to the diagonal as in DMLS. However, considering separate row
and column supervariables is not at all natural in the DMLS context; it would require
significant modifications of the data structures used in DMLS code and is out of the
scope of this work.

In this section, we have focused on the comparison among the local heuristic-
based orderings. We believe that improving local heuristics will also benefit the global
heuristic orderings that often combine global and local heuristics. Furthermore, we
also observed (experiments not reported in this paper) that DMLS-MF ordering is at
least as good as a nested dissection ordering in preserving sparsity of the factors for
most matrices from our set of 19 large matrices.

242 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

T
a
b
l
e

2

C
o
m

pa
ri

so
n

o
f
D
M
L
S
-
M
F

a
n
d
A
M
D
F

o
rd

er
in

gs
.

M
a
tr

ix
S
iz

e
o
f
fa

c
to

rs
(1

0
6
)

F
lo

p
s

(1
0
9
)

R
e
a
l
m

e
m

o
ry

O
rd

e
ri

n
g

ti
m

e
E
st

im
a
te

d
A

c
tu

a
l

(1
0
6
)

(s
e
c
o
n
d
s)

A
M

D
F

D
M

L
S

R
a
ti

o
A

M
D

F
D

M
L
S

R
a
ti

o
A

M
D

F
D

M
L
S

R
a
ti

o
A

M
D

F
D

M
L
S

R
a
ti

o
A

M
D

F
D

M
L
S

R
a
ti

o
a
v
4
1
0
9
2
.r

u
a

1
1
.9

8
9
.2

9
1
.2

9
9
.1

6
9
.5

0
.9

6
3
.5

6
3
.4

8
1
.0

2
9
.4

3
9
.6

3
0
.9

8
0
.6

9
2
.8

0
.2

4
g
7
ja

c
2
0
0
sc

.r
u
a

3
0
.6

2
2
9
.8

4
1
.0

3
2
6
.1

2
2
9
.8

7
0
.8

7
2
5
.2

5
3
0
.9

8
0
.8

2
2
6
.9

4
3
0
.8

8
0
.8

7
4
.7

5
9
.3

1
0
.5

1
ja

n
9
9
ja

c
1
2
0
sc

.r
u
a

4
.5

4
.2

9
1
.0

5
3
.1

1
4
.2

9
0
.7

3
0
.7

7
1
.6

6
0
.4

6
3
.1

4
4
.5

3
0
.6

9
1
.2

3
2
.8

1
0
.4

4
lh

r3
4
c
.r

u
a

6
.2

2
3
.4

9
1
.7

8
5
.2

5
3
.6

2
1
.4

5
0
.6

0
.4

3
1
.4

1
5
.2

9
3
.6

9
1
.4

3
0
.5

5
2
.2

6
0
.2

4
lh

r7
1
c
.r

u
a

1
2
.7

7
7
.2

1
1
.7

7
1
0
.7

5
7
.4

3
1
.4

5
1
.2

7
0
.8

9
1
.4

3
1
0
.7

7
7
.4

9
1
.4

4
1
.2

4
5
.3

1
0
.2

3
m

a
rk

3
ja

c
1
4
0
sc

.r
u
a

1
9
.3

4
1
4
.8

9
1
.3

1
4
.9

1
4
.9

3
1

7
.6

8
7
.2

6
1
.0

6
1
5
.2

6
1
5
.4

1
0
.9

9
1
.3

8
4
.2

3
0
.3

3
b
a
y
e
r0

1
.r

u
a

2
.5

1
1
.9

9
1
.2

6
1
.8

8
1
.9

9
0
.9

5
0
.0

9
0
.1

1
0
.7

9
1
.8

8
2

0
.9

4
0
.5

9
1
.2

2
0
.4

9
si

n
c
1
8
.r

u
a

3
6
.7

6
3
1
.6

5
1
.1

6
2
9
.2

8
3
1
.7

2
0
.9

2
4
0
.8

4
6
0
.2

2
0
.6

8
3
0
.1

1
3
5
.3

9
0
.8

5
0
.9

8
1
0
.8

4
0
.0

9
si

n
c
1
5
.r

u
a

1
8
.0

3
1
5
.3

9
1
.1

7
1
4
.3

7
1
5
.4

7
0
.9

3
1
4
.3

1
2
1
.3

5
0
.6

7
1
4
.7

9
1
7
.5

4
0
.8

4
0
.4

9
4
.3

3
0
.1

1
Z
h
a
o
2
.r

u
a

1
5
.7

9
1
3
.9

1
.1

4
1
2
.9

7
1
4
.2

3
0
.9

1
7
.6

9
9
.1

9
0
.8

4
1
3
.7

8
1
5
.0

4
0
.9

2
0
.4

5
0
.9

5
0
.4

7
fd

1
8
.r

u
a

1
.4

4
1
.0

5
1
.3

8
1
.1

1
.0

7
1
.0

3
0
.1

1
0
.1

2
0
.9

5
1
.1

1
1
.1

2
0
.9

9
0
.1

0
.1

8
0
.5

3
m

u
lt

d
c
o
p

0
3
.r

u
a

2
.7

3
0
.9

4
2
.9

1
.8

7
0
.9

1
2
.0

7
0
.5

1
0
.1

2
4
.3

4
1
.9

6
0
.9

7
2
.0

2
3
.9

8
0
.4

3
9
.2

6
tw

o
to

n
e
.r

u
a

2
2
.0

5
8
.2

2
2
.6

8
1
5
.5

4
8
.2

2
1
.8

9
1
4
.7

4
5
.0

7
2
.9

1
1
5
.7

5
9
.0

5
1
.7

4
1
.7

9
2
.0

8
0
.8

6
o
n
e
to

n
e
1
.r

u
a

4
.8

5
3
.2

1
.5

1
4
.0

4
3
.2

1
.2

6
1
.9

4
1
.2

8
1
.5

1
4
.0

9
3
.6

5
1
.1

2
0
.3

3
0
.5

1
0
.6

4
to

rs
o
1
.r

u
a

4
1
.2

9
3
4
.0

8
1
.2

1
4
1
.2

8
3
4
.1

9
1
.2

1
5
8
.6

9
3
5
.9

1
1
.6

3
4
2
.3

4
3
6
.6

2
1
.1

6
1
.7

6
9
.4

2
0
.0

2
p
o
li

la
rg

e
.r

u
a

0
.0

6
0
.0

3
1
.7

0
.0

4
0
.0

3
1
.1

0
0

2
.1

9
0
.0

4
0
.0

3
1
.1

1
0
.0

2
0
.0

1
2
.1

6
sh

e
rm

a
n
A

C
b
.r

u
a

0
.5

5
0
.4

4
1
.2

6
0
.4

4
0
.4

4
1
.0

1
0
.0

3
0
.0

3
0
.9

1
0
.4

9
0
.5

1
0
.9

6
2
.1

7
0
.1

5
1
4
.4

4
p
re

2
.r

u
a

1
1
5
.5

8
9
0
.1

2
1
.2

8
1
0
7
.5

3
9
0
.2

3
1
.1

9
4
0
5
.9

3
2
2
6
.6

1
.7

9
1
6
1
.3

2
9
9
.9

8
1
.6

1
1
7
.0

3
6
1
.2

0
.2

8
e
4
0
r0

1
0
0
.r

u
a

2
.8

6
2
.1

8
1
.3

1
2
.7

8
2
.1

9
1
.2

7
0
.3

4
0
.2

8
1
.2

2
2
.8

3
2
.2

8
1
.2

4
0
.0

5
0
.1

2
0
.4

2
M

e
a
n

1
.4

8
1
.1

7
1
.4

0
1
.1

5
1
.6

7
M

e
d
ia

n
1
.2

9
1
.0

3
1
.0

6
0
.9

9
0
.4

4

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 243

4. Summary. In this paper, we have considered the ordering problem for the
triangular factorization of a sparse nonsymmetric matrix when pivots can be cho-
sen on the main diagonal. We have described a bipartite quotient graph model for
nonsymmetric elimination and have used it as a compact way to represent the elimi-
nation graph. The model was first proposed by Pagallo and Maulino [22], but to our
knowledge, its implementation did not appear in any literature. Using this model,
an ordering algorithm can be implemented in space bounded by the size of the orig-
inal matrix. This is the so-called in-place property. However, we have found that
a straightforward implementation may lead to an algorithm with much higher com-
plexity than an AMD type of algorithm applied to the graph of A + AT . In order to
speed up the ordering algorithm itself, we have introduced the local symmetrization
mechanism in the diagonal Markowitz scheme, which allows us to reduce the amount
of backtracking needed to update the Schur complement structure at each step. As a
result, we have obtained an efficient ordering algorithm both in space and in time—it
has the in-place property and the same time complexity as the AMD type of algorithms.

We have performed numerical experiments on large numbers of matrices (61)
that come from a wide range of applications. The results have showed that our modi-
fied diagonal Markowitz scheme indeed can produce better orderings. Compared to
the best local greedy algorithms that cannot exploit asymmetry, our algorithm has
achieved average gain ratios of 1.22 in factor size and 1.56 in flop count.

Acknowledgment. We owe a great deal to the anonymous referees whose careful
reading of the initial manuscript and valuable comments have helped us significantly
improved the presentation.

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] P. R. Amestoy and I. S. Duff, Vectorization of a multiprocessor multifrontal code, Int. J.
Supercomputer Appl., 3 (1989), pp. 41–59.

[3] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li, Analysis and comparison of
two general sparse solvers for distributed memory computers, ACM Trans. Math. Software,
27 (2001), pp. 388–421.

[4] P. R. Amestoy, X. S. Li, and E. G. Ng, Diagonal Markowitz Scheme with Local Symmetriza-
tion, Technical report LBNL-53854, Lawrence Berkeley National Laboratory, Berkeley, CA,
2003; also appeared as ENSEEIHT-IRIT report RT/APO/03/05.

[5] P. R. Amestoy, X. S. Li, and S. Pralet, Unsymmetric ordering using a constrained
Markowitz scheme, SIAM J. Matrix Anal. Appl., to appear.

[6] P. R. Amestoy and C. Puglisi, An unsymmetrized multifrontal LU factorization, SIAM J.
Matrix Anal. Appl., 24 (2002), pp. 553–569.

[7] T. A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method,
ACM Trans. Math. Software, 30 (2004), pp. 165–195.

[8] I. S. Duff, R. G. Grimes, and J. G. Lewis, The Rutherford-Boeing Sparse Matrix Collection,
Technical report RAL-TR-97-031, Rutherford Appleton Laboratory, Didcot, UK, 1997;
also Technical report ISSTECH-97-017 from Boeing Information & Support Services and
Report TR/PA/97/36 from CERFACS, Toulouse; http://www.cse.clrc.ac.uk/Activity/
SparseMatrices/.

[9] I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to
the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889–901.

[10] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a
sparse matrix, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973–996.

[11] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, Oxford, UK, 1987.

[12] I. S Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325, 1983.

244 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

[13] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall, Englewood Cliffs, NJ, 1981.

[14] K. Goto, High-Performance BLAS, http://www.cs.utexas.edu/users/flame/goto/.
[15] hsl, A Collection of Fortran Codes for Large Scale Scientific Computation, http://www.cse.

clrc.ac.uk/Activity/HSL (2000).
[16] X. S. Li and J. W. Demmel, SuperLU DIST: A scalable distributed-memory sparse direct

solver for unsymmetric linear systems, ACM Trans. Math. Software, 29 (2003), pp. 110–
140.

[17] J. W. H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM
Trans. Math. Software, 11 (1985), pp. 141–153.

[18] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134–172.

[19] H. M. Markowitz, The elimination form of the inverse and its application to linear program-
ming, Management Sci., 3 (1957), pp. 255–269.

[20] E. G. Ng and P. Raghavan, Performance of greedy ordering heuristics for sparse Cholesky
factorization, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 902–914.

[21] M. Olshowka and A. Neumaier, A new pivoting strategy for Gaussian elimination, Linear
Algebra Appl., 240 (1996), pp. 131–151.

[22] G. Pagallo and C. Maulino, A bipartite quotient graph model for unsymmetric matrices,
in Numerical Methods, Lecture Notes in Math. 1005, Springer-Verlag, New York, 1983,
pp. 227–239.

[23] D. J. Rose and R. E. Tarjan, Algorithmics aspects of vertex elimination on directed graphs,
SIAM J. Appl. Math., 34 (1978), pp. 176–197.

[24] E. Rothberg and S. C. Eisenstat, Node selection strategies for bottom-up sparse matrix
ordering, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 682–695.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 245–259

COMBINATORIAL ANALYSIS OF SINGULAR
MATRIX PENCILS∗

SATORU IWATA† AND RYO SHIMIZU‡

Abstract. This paper investigates the Kronecker canonical form of matrix pencils under the
genericity assumption that the set of nonzero entries is algebraically independent. We provide a
combinatorial characterization of the sums of the row/column indices supported by efficient bipartite
matching algorithms. We also give a simple alternative proof for a theorem of Poljak on the generic
ranks of matrix powers.

Key words. Kronecker canonical form, matrix pencil, combinatorial matrix theory, bipartite
matching, Dulmage–Mendelsohn decomposition

AMS subject classifications. 15A22, 05C50

DOI. 10.1137/S0895479804442450

1. Introduction. A matrix pencil is a pair of matrices of the same size. It is
often treated as a polynomial matrix whose nonzero entries are of degree at most one.
Based on the theory of elementary divisors, Weierstrass established a criterion for
strict equivalence, as well as a canonical form, of regular matrix pencils. Somewhat
later, Kronecker investigated singular pencils to obtain a canonical form for matrix
pencils in general under strict equivalence transformations, which is now called the
Kronecker canonical form [12].

The Kronecker canonical form finds a variety of applications in control theory
of linear dynamical systems [2, 22, 31, 32]. It is also closely related to the index of
differential algebraic equations [13, 14, 29].

Numerically stable algorithms are already available for computing the Kronecker
canonical form [1, 3, 8, 19, 20, 35, 36]. Nevertheless, these algorithms are not very
accurate in the presence of round-off errors. The numerical difficulty is inherent in the
problem as the Kronecker canonical form is highly sensitive to perturbation, which
has motivated extensive research on perturbation of matrix pencils [9, 10].

On the other side, matrix pencils arising in applications are often very sparse. It
is then desirable to predict the structure of the Kronecker canonical form efficiently
from combinatorial information such as the zero/nonzero pattern without numerical
computation. Of course, one cannot always obtain exact prediction of the Kronecker
canonical form without numerical information. The zero/nonzero pattern, however,
determines the indices in the Kronecker canonical form under a genericity assumption
that there is no algebraic relation among nonzero entries. One may hope to devise an
efficient method for computing them.

∗Received by the editors March 24, 2004; accepted for publication (in revised form) by B. T.
K̊agström July 17, 2006; published electronically January 26, 2007. This research is supported in
part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports,
Science and Technology of Japan.

http://www.siam.org/journals/simax/29-1/44245.html
†Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656,

Japan (iwata@mist.i.u-tokyo.ac.jp).
‡Fuji Photo Film Co., Ltd., Asaka, Saitama 351-8585, Japan.

245

246 SATORU IWATA AND RYO SHIMIZU

Such a structural approach has been developed for regular matrix pencils by Duff
and Gear [5] and Pantelides [29] in the context of differential algebraic equations.
Murota [26] described a complete characterization of the Kronecker canonical form of
regular matrix pencils in terms of the maximum degree of minors, which is tantamount
to the maximum weight of bipartite matchings under the genericity assumption. A
recent paper of van der Woude [34] provides another combinatorial characterization
based on the Smith normal form [25].

In this paper, we extend the structural approach to the analysis of singular matrix
pencils. The possible existence of the minimal row/column indices (rectangular blocks
in the canonical form) makes this problem much more complicated than the regular
case. In fact, it remains open to design an efficient algorithm for determining the
row/column indices. The main result of this paper, however, provides a combinatorial
characterization of the sums of the minimal row/column indices using the Dulmage–
Mendelsohn decomposition and weighted bipartite matchings. Thus our combinatorial
characterization is supported by efficient algorithms.

The structure of the Kronecker canonical form is closely related to the ranks of
certain sequences of embedded matrices, called the expanded matrices. We investigate
those expanded matrices to show that their ranks are equal to the term-ranks in most
cases. As a byproduct, we give a simple alternative proof for a theorem of Poljak [30]
on the generic ranks of matrix powers.

The genericity assumption certainly needs some refinement to deal with practical
situations. In the description of dynamical systems such as electric circuits, entries
that come from conservation laws are exact integers, while other entries that represent
physical characteristics of devices are not precise in value because of noises. It should
be reasonable to assume the algebraic independence only among the latter types of
entries. Based on such an observation, Murota [24, 28] introduced the concept of
mixed matrices and investigated their fundamental properties with the aid of matroid
theory. In particular, a complete characterization of the Kronecker canonical form of
regular mixed matrix pencils is presented in [27]. With a view towards applications,
our ultimate target is an extension of this result to singular mixed matrix pencils.
Such an investigation, however, requires a solution on generic matrix pencils as the
first step.

The outline of this paper is as follows. Section 2 recapitulates the Kronecker
canonical form. In section 3, we introduce generic matrix pencils. In section 4, we
explain the Dulmage–Mendelsohn decomposition, which plays an essential role in our
result on the minimal row/column indices presented in section 5. Sections 6 and 7
are devoted to the analysis of expanded matrices. The simple proof for the theorem
of Poljak is shown in section 8. Sections 6 and 8 are independent of sections 4 and 5.
Finally, in section 9, we briefly discuss how to use results of combinatorial analysis in
the context of numerical computation.

2. The Kronecker canonical form of matrix pencils. Let D(s) = A + sB
be an m× n matrix pencil with the row set R and the column set C. We denote by
D(s)[X,Y] the submatrix of D(s) determined by X ⊆ R and Y ⊆ C. A matrix pencil
D(s) = A+ sB is said to be regular if detD(s) �= 0 as a polynomial in s. It is strictly
regular if both A and B are nonsingular matrices. The rank of D(s) is the maximum
size of its submatrix that is a regular matrix pencil. A matrix pencil D̄(s) is said to
be strictly equivalent to D(s) if there exists a pair of nonsingular constant matrices
U and V such that D̄(s) = UD(s)V .

COMBINATORIAL ANALYSIS OF SINGULAR MATRIX PENCILS 247

For a positive integer μ, we consider μ× μ matrix pencils Kμ and Nμ defined by

Kμ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s 1 0 · · · 0

0 s 1
. . .

...
...

. . .
. . .

. . . 0
...

. . . s 1
0 · · · · · · 0 s

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Nμ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 s 0 · · · 0

0 1 s
. . .

...
...

. . .
. . .

. . . 0
...

. . . 1 s
0 · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

For a positive integer ε, we further denote by Lε an ε× (ε + 1) matrix pencil

Lε =

⎛⎜⎜⎜⎜⎝
s 1 0 · · · 0

0 s 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 s 1

⎞⎟⎟⎟⎟⎠ .

We also denote by L�
η the transpose matrix of Lη.

The following theorem establishes the Kronecker canonical form of matrix pencils
under strict equivalence transformations. We denote by block-diag(D1, . . . , Db) the
block-diagonal matrix pencil with diagonal blocks D1, . . . , Db.

Theorem 2.1 (Kronecker, Weierstrass). For any matrix pencil D(s), there exists
a pair of nonsingular constant matrices U and V such that D̄(s) = UD(s)V is in a
block-diagonal form

D̄(s) = block-diag(Hν ,Kρ1 , . . . ,Kρc , Nμ1 , . . . , Nμd
, Lε1 , . . . , Lεp , L

�
η1
, . . . , L�

ηq
, O),

where ρ1 ≥ · · · ≥ ρc > 0, μ1 ≥ · · · ≥ μd > 0, ε1 ≥ · · · ≥ εp > 0, η1 ≥ · · · ≥ ηq > 0,
and Hν is a strictly regular matrix pencil of size ν. The numbers c, d, p, q, ν,
ρ1, . . . , ρc, μ1, . . . , μd, ε1, . . . , εp, η1, . . . , ηq are uniquely determined.

The block-diagonal matrix pencil D̄(s) in Theorem 2.1 is often referred to as the
Kronecker canonical form of D(s). The numbers μ1, . . . , μd are called the indices of
nilpotency. The numbers ε1, . . . , εp and η1, . . . , ηq are the minimal column and row
indices, respectively. These numbers together with ν, ρ1, . . . , ρc are collectively called
the structural indices of D(s).

For a polynomial g(s) in s, let deg g(s) and ord g(s) denote the highest and lowest
degrees of nonvanishing terms of g(s), respectively. By convention, we put deg 0 =
−∞ and ord 0 = ∞. Let r be the rank of D(s). For each k = 1, . . . , r, we denote

δk(D) = max{deg detD(s)[X,Y] | |X| = |Y | = k,X ⊆ R, Y ⊆ C},

ζk(D) = min{ord detD(s)[X,Y] | |X| = |Y | = k,X ⊆ R, Y ⊆ C}.

The following well-known lemma asserts that δk and ζk are invariant under strict
equivalence transformations.

Lemma 2.2. If D̄(s) is strictly equivalent to D(s), then δk(D̄) = δk(D) and
ζk(D̄) = ζk(D) hold.

Proof. Since any nonsingular matrix is a product of elementary matrices, it suffices
to show that δk and ζk are invariant under strict equivalence transformations by
elementary matrices. In particular, we consider a row transformation D̄(s) = UD(s)

248 SATORU IWATA AND RYO SHIMIZU

by an elementary matrix U that is identical with the unit matrix except for the (v, u)-
component Uvu = λ. This corresponds to adding a multiple of a row u to another
row v. Let D(s)[X,Y] be an arbitrary submatrix with |X| = |Y | = k. Note that
D(s)[X,Y] = D̄(s)[X,Y] unless u ∈ R \X and v ∈ X. If u ∈ R \X and v ∈ X, then
we have

det D̄(s)[X,Y] = detD(s)[X,Y] + λ detD(s)[X \ {v} ∪ {v}, Y],

which implies deg det D̄(s)[X,Y] ≤ δk(D). If, in addition, detD(s)[X,Y] attains
the maximum degree for δk(D), either deg det D̄(s)[X,Y] = deg detD(s)[X,Y] or
deg det D̄(s)[X,Y] < deg detD(s)[X,Y] = deg detD(s)[X \{v}∪{u}, Y] holds. Since
D̄(s)[X\{v}∪{u}, Y] = D(s)[X\{v}∪{u}, Y], we have deg det D̄(s)[X\{v}∪{u}, Y] =
δk(D) in the latter case. Thus we obtain δk(D̄) = δk(D).

The same argument applies to an elementary column transformation. Moreover,
the invariance of ζk can be shown in a similar manner.

For the Kronecker canonical form D̄(s) of D(s), we have

ζk(D) = ζk(D̄) =

c∑
i=r−k+1

ρi, δk(D) = δk(D̄) = k −
d∑

i=r−k+1

μi.(2.1)

In particular, ζk(D) = 0 for k = 1, . . . , r−c, and δk(D) = k for k = 1, . . . , r−d. Hence,
c = r−max{k | ζk(D) = 0} and d = r−max{k | δk(D) = k} hold. Note that δk(D) is
concave in k and ζk(D) is convex in k. Moreover, we have ρi = ζr−i+1(D) − ζr−i(D)
for i = 1, . . . , c and μi = δr−i(D) − δr−i+1(D) + 1 for i = 1, . . . , d. Since the sum of
the structural indices is equal to the rank of D(s), the equalities in (2.1) for k = r
imply that

ν +

p∑
i=1

εi +

q∑
i=1

ηi = r −
d∑

i=1

μi −
c∑

i=1

ρi = δr(D) − ζr(D).(2.2)

For an m × n matrix pencil D(s) = A + sB, we construct a pair of km × kn
matrices Θk(D) and Ωk(D) defined by

Θk(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A O · · · · · · O

B A
. . .

...

O B
. . .

. . .
...

...
. . .

. . . A O
O · · · O B A

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Ωk(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

B O · · · · · · O

A B
. . .

...

O A
. . .

. . .
...

...
. . .

. . . B O
O · · · O A B

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We denote θk(D) = rank Θk(D) and ωk(D) = rank Ωk(D). We also construct a
(k + 1)m× kn matrix Ψk(D) and a km× (k + 1)n matrix Φk(D) defined by

Ψk(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A O · · · O

B A
. . .

...

O B
. . . O

...
. . .

. . . A
O · · · O B

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Φk(D) =

⎛⎜⎜⎜⎜⎝
A B O · · · O

O A B
. . .

...
...

. . .
. . .

. . . O
O · · · O A B

⎞⎟⎟⎟⎟⎠ .

COMBINATORIAL ANALYSIS OF SINGULAR MATRIX PENCILS 249

We denote ψk(D) = rank Ψk(D) and ϕk(D) = rank Φk(D). Then it is easy to see
that the ranks of these expanded matrices are expressed by the structural indices as
follows.

Theorem 2.3. Let D(s) be a matrix pencil of rank r with structural indices
(ν, ρ1, . . . , ρc, μ1, . . . , μd, ε1, . . . , εp, η1, . . . , ηq). Then we have

θk(D) = rk −
c∑

i=1

min{k, ρi}, ωk(D) = rk −
d∑

i=1

min{k, μi},

ψk(D) = rk +

p∑
i=1

min{k, εi}, ϕk(D) = rk +

q∑
i=1

min{k, ηi}.

In particular, ψ1(D) = r + p and ϕ1(D) = r + q.
Proof. For the matrix pencils Kρ, Nμ, Lε, L

�
η , we have

θk(Kρ) = μk − min{ρ, k}, θk(Nμ) = μk, θk(Lε) = εk, θk(L
�
η) = ηk,

ωk(Kρ) = ρk, ωk(Nμ) = μk − min{μ, k}, ωk(Lε) = εk, ωk(L
�
η) = ηk,

ψk(Kρ) = ρk, ψk(Nμ) = μk, ψk(Lε) = εk + min{ε, k}, ψk(L
�
η) = ηk,

ϕk(Kρ) = ρk, ϕk(Kμ) = μk, ϕk(Lε) = εk, ϕk(L
�
η) = ηk + min{η, k}.

Summing up these equalities for the blocks in the Kronecker canonical form, we obtain
the above formulas.

Corollary 2.4. If D(s) is of column-full rank, so is Ψk(D) for each k. If D(s)
is of row-full rank, so is Φk(D) for each k.

Proof. If D(s) is of column-full rank, the Kronecker canonical form has no minimal
column indices. Hence Theorem 2.3 implies ψk(D) = rk. Similarly, if D(s) is of row-
full rank, the Kronecker canonical form has no minimal row indices, which together
with Theorem 2.3 implies ϕk(D) = rk.

Theorem 2.3 together with (2.1) implies the following corollary.
Corollary 2.5. Let D(s) be a matrix pencil of rank r. For k ≥ r, we have

θk(D) = rk − ζr(D) and ωk(D) = r(k − 1) + δr(D).

Proof. For k ≥ r, we have θk(D) = rk −
∑c

i=1 ρi and ωk(D) = rk −
∑d

i=1 μi

by Theorem 2.3. Then it follows from (2.1) that θk(D) = rk − ζk(D) and ωk(D) =
r(k − 1) + δr(D) hold for k ≥ r.

3. Generic matrix pencils. Given a matrix A with the row set R and the
column set C, we construct a bipartite graph G(A) = (R,C;E) with the vertex sets
R and C and the edge set E that consists of nonzero entries of A. A subset M ⊆ E
is called a matching if no two edges in M share an end-vertex. The term-rank of A,
denoted by t-rankA, is the maximum size of a matching in G(A). The term-rank
provides an upper bound on the rank of A. Under the genericity assumption that
the set of nonzero entries is algebraically independent, this upper bound is tight.
That is, rankA = t-rankA holds for a generic matrix. The set function τ defined by
τ(X) = t-rankA[X,C] for X ⊆ R is submodular; i.e.,

τ(X) + τ(Z) ≥ τ(X ∪ Z) + τ(X ∩ Z)

holds for any X,Z ⊆ R. This submodularity will be used in section 7.

250 SATORU IWATA AND RYO SHIMIZU

A matrix pencil D(s) = A + sB is called a generic matrix pencil if the nonzero
entries in A and B are indeterminates (independent parameters). To be more precise,
suppose D(s) is a matrix pencil over a field F. That is, A and B are matrices over
the field F. Let K be the prime field of F. A finite set T = {ξ1, . . . , ξt} ⊆ F is said to
be algebraically independent over K if there is no nontrivial polynomial g(x1, . . . , xt)
over K such that g(ξ1, . . . , ξt) = 0. A matrix pencil D(s) is generic if the set T of
nonzero entries in A and B is algebraically independent over the prime field K. A
typical setting in practice is F = R and K = Q.

For a matrix pencil D(s) = A + sB with the row set R and the column set C,
let E and F be the sets of edges that correspond to the positions of nonzero entries
in A and B, respectively. Thus we construct a bipartite graph G(D) = (R,C;E ∪ F)
with the vertex sets R and C and the edge set E ∪F . Since the edges in E and F are
distinguished, there may be parallel edges in G(D). Each edge e has a weight w(e)
defined by w(e) = 1 for e ∈ E and w(e) = 0 for e ∈ F . A subset M of E∪F is called a
matching if no two edges in M share an end-vertex. The maximum size of a matching
in G(D) is the term-rank, denoted by t-rankD(s). The weight w(M) =

∑
e∈M w(e)

of a matching M is equal to the number of edges in M ∩ E. We denote by δ̂k(D)

the maximum weight of a matching of size k. We also denote by ζ̂k(D) the minimum
weight of a matching of size k.

The following two lemmas demonstrate that fundamental quantities of a generic
matrix pencil coincide with their combinatorial counterparts; see [28, Theorem 6.2.2]
for the proof of Lemma 3.2. It should be emphasized here that these combinatorial
counterparts are easy to compute with efficient combinatorial algorithms for bipartite
matchings [11, 15, 16, 21, 23, 33].

Lemma 3.1. For a generic matrix pencil D(s), we have rankD(s) = t-rankD(s).

Lemma 3.2. For a generic matrix pencil D(s), we have δk(D) = δ̂k(D) and

ζk(D) = ζ̂k(D).

It should be remarked that the above definition of genericity is different from
that in the previous works [9, 10], where the Kronecker canonical form of a “generic”
matrix pencil is known to have a very simple structure with at most two types of
blocks [9, section 3.3].

4. Dulmage–Mendelsohn decomposition. In this section, we recapitulate
the Dulmage–Mendelsohn decomposition of bipartite graphs [6, 7, 8] following the
exposition in [28, section 2.2.3].

For a generic matrix pencil D(s) with the row set R and the column set C,
let (R0;R1;R∞) and (C0;C1;C∞) be partitions of R and C such that |R0| < |C0|
(unless R0 = C0 = ∅), |R1| = |C1|, and |R∞| > |C∞| (unless R∞ = C∞ = ∅).
Then D(s) is said to be in a block-triangular form with respect to these partitions
if it satisfies D(s)[R1, C0] = O, D(s)[R∞, C0] = O, and D(s)[R∞, C1] = O. If,
in addition, rankD(s)[Rj , Cj] = min(|Rj |, |Cj |) holds for j = 0, 1,∞, then D(s) is
in a proper block-triangular form. The Dulmage–Mendelsohn decomposition (DM-
decomposition) is such a pair of partitions with largest |R1| = |C1| that gives a proper
block-triangular form. The existence and uniqueness of the DM-decomposition can
be verified through the construction below.

Let Γ(Y) ⊆ R denote the set of vertices adjacent to Y ⊆ C in G(D). Then the
function f defined by

f(Y) = |Γ(Y)| − |Y | (Y ⊆ C)

COMBINATORIAL ANALYSIS OF SINGULAR MATRIX PENCILS 251

is submodular, i.e.,

f(Y) + f(Z) ≥ f(Y ∪ Z) + f(Y ∩ Z)

holds for any Y,Z ⊆ C. The term-rank of the matrix pencil D(s) is characterized by
the minimum value of this submodular function f , i.e.,

t-rankD(s) = min{f(Y) | Y ⊆ C} + |C|,

which follows from the Hall–Ore theorem for bipartite graphs. Note that the set of
minimizers of a submodular function forms a distributive lattice.

Let Y0 denote the unique minimal minimizer of f , and Y1 the unique maximal
minimizer of f . We put

C0 = Y0, R0 = Γ(Y0),

C1 = Y1 \ Y0, R1 = Γ(Y1) \ Γ(Y0),

C∞ = C \ Y1, R∞ = R \ Γ(Y1).

Since f(Y0) ≤ f(∅) = 0, we have |R0| ≤ |C0|, where the equality holds only if C0 = ∅.
It follows from f(Y0) = f(Y1) that |R1| = |C1|. Moreover, f(Y1) ≤ f(C) implies
|R∞| ≥ |C∞|, where the equality holds only if R∞ = ∅. The resulting partition
(R0;R1;R∞) and (C0;C1;C∞) provides the DM-decomposition of D(s). We call
D0(s) = D(s)[R0, C0] the horizontal tail and denote its rank by r0 = |R0|. We also
call D∞(s) = D(s)[R∞, C∞] the vertical tail and denote its rank by r∞ = |C∞|. The
DM-decomposition can be computed efficiently with the aid of bipartite matching
algorithms.

5. The Kronecker canonical form via DM-decomposition. In this section,
we investigate the Kronecker canonical form of a generic matrix pencil D(s) via the
DM-decomposition.

Lemma 5.1. For the horizontal tail D0 of a generic matrix pencil D(s), we have
ψk(D) = ψk(D0) + k(r − r0).

Proof. Recall r = |R0|+|C \C0| and r0 = |R0|. Since D∗(s) = D(s)[R\R0, C \C0]
is of column-full rank, so is Ψk(D∗) by Corollary 2.4, namely, ψk(D∗) = k(r − r0).
Then it follows from D(s)[R \R0, C0] = O that ψk(D) = ψk(D0) + k(r − r0).

Lemma 5.1 together with Theorem 2.3 implies that the minimal column indices
of D(s) coincide with those of D0(s). We now investigate the Kronecker canonical
form of the horizontal tail D0.

Let g0(s) be the monic determinantal divisor

g0(s) = gcd{detD(s)[R0, Y] | |Y | = r0, Y ⊆ C0},

where gcd designates the greatest common divisor whose leading coefficient is equal
to one. The following lemma is a special case of a theorem of Murota [25] (see also
[28, Theorem 6.3.8]). We describe its proof here for completeness.

Lemma 5.2. The monic determinantal divisor g0(s) is a monomial in s.
Proof. We first claim that g0(s) belongs to K[s]. For any column j ∈ C0, there

exists a column subset Y ⊆ C0 \ {j} such that |Y | = r0 and detD(s)[R0, Y] �= 0.
Therefore, for any independent parameter ξ ∈ T , the monic determinantal divisor
g0(s) is free from ξ. Thus g0(s) is a polynomial over K.

252 SATORU IWATA AND RYO SHIMIZU

We now suppose that g0(s) is not a monomial in s. Let K be the algebraic closure
of K. Then T is algebraically independent over K. On the other hand, there exists
a root σ ∈ K \ {0} that satisfies g0(σ) = 0. For a regular submatrix D(s)[R0, Y], we
have detD(σ)[R0, Y] = 0. Since detD(σ)[R0, Y] is a polynomial in T , this contradicts
the algebraic independence of T over K.

The determinantal divisor is invariant under strict equivalence transformations.
Hence g0(s) is equal to the determinantal divisor of the Kronecker canonical form D̄0

of D0. Then Lemma 5.2 implies that D̄0 does not contain a strictly regular block.
Theorem 5.3. The sum of the minimal column indices is obtained by

p∑
i=1

εi = δ̂r0(D0) − ζ̂r0(D0),(5.1)

where δ̂r0(D0) and ζ̂r0(D0) are the maximum and minimum weights of matchings of
size r0 in G(D0), respectively.

Proof. Since the Kronecker canonical form D̄0 of D0 does not contain a strictly
regular block or a rectangular block L�

η , it follows from (2.2) and Lemma 3.2 that∑p
i=1 εi = δr0(D0) − ζr0(D0) = δ̂r0(D0) − ζ̂r0(D0).

A similar argument applied to the vertical tail D∞ leads to the following results.
Lemma 5.4 together with Theorem 2.3 implies that the minimal row indices of D(s)
coincide with those of D∞(s). Lemma 5.5 shows that the Kronecker canonical form
D̄∞(s) of D∞(s) does not contain a strictly regular block.

Lemma 5.4. For the vertical tail D∞ of a generic matrix pencil D(s), we have
ϕk(D) = ϕk(D∞) + k(r − r∞).

Lemma 5.5. The monic determinantal divisor

g∞(s) = gcd{detD(s)[X,C∞] | X ⊆ R∞, |X| = r∞}

is a monomial in s.
Theorem 5.6. The sum of the minimal row indices is obtained by

q∑
i=1

ηi = δ̂r∞(D∞) − ζ̂r∞(D∞),(5.2)

where δ̂r∞(D∞) and ζ̂r∞(D∞) are the maximum and minimum weights of matchings
of size r∞ in G(D∞), respectively.

As an immediate consequence of Theorems 5.3 and 5.6, we have the following
theorem implied by (2.2).

Theorem 5.7. The size ν of the strictly regular block in the Kronecker canonical
form D̄(s) of D(s) is obtained by

ν = δ̂r(D) − ζ̂r(D) − δ̂r0(D0) + ζ̂r0(D0) − δ̂r∞(D∞) + ζ̂r∞(D∞).(5.3)

Note that all these right-hand sides of (5.1), (5.2), and (5.3) can be computed
efficiently by the DM-decomposition and weighted bipartite matching algorithms. We
have thus obtained a useful combinatorial characterization of the sums of the minimal
row/column indices as well as the size of the strictly regular block in the Kronecker
canonical form.

Among the structural indices of a generic matrix pencil, μ1, . . . , μd and ρ1, . . . , ρc
are known to be efficiently computable by weighted bipartite matching algorithms.

COMBINATORIAL ANALYSIS OF SINGULAR MATRIX PENCILS 253

The results in this section enable us to compute ν,
∑p

i=1 εi and
∑q

i=1 ηi as well.
It still remains open to determine the values of the minimal row/column indices.
The obtained partial results, however, provide sufficient information to discern if the
Kronecker canonical form contains vertical/horizontal rectangular blocks.

6. Expanded matrices for indices of nilpotency. We now turn to the ranks
of the expanded matrices, which are in close relation to the structural indices as shown
in Theorem 2.3, for a generic matrix pencil D(s) = A + sB. Even though the set
of nonzero entries in A and B are algebraically independent, the expanded matrices
are not generic matrices. It will be shown, however, that the ranks of the expanded
matrices are equal to their term-ranks in most cases. In this section, we deal with
the expanded matrices Θk(D) and Ωk(D), which are particularly related to μ1, . . . , μd

and ρ1, . . . , ρc. The other expanded matrices Ψk(D) and Φk(D) will be investigated
in section 7.

In order to examine the ranks of Θk(D) and Ωk(D), we consider the bipartite
graphs G(Θk(D)) and G(Ωk(D)) associated with the expanded matrices. It will turn
out that these bipartite graphs allow maximum matchings with periodic structures.
As a consequence, the ranks of these expanded matrices are equal to their term-ranks
denoted by θ̂k(D) and ω̂k(D).

We first investigate Θk(D). Let R̄ and C̄ be the row set and the column set of
Θk(D). Then R̄ = R1 ∪ · · · ∪ Rk and C̄ = C1 ∪ · · · ∪ Ck, where Rh and Ch are the
copies of the row set R and the column set C of D for h = 1, . . . , k. For vertices
u ∈ R and v ∈ C, we denote by uh and vh the corresponding vertices in Rh and
Ch. The edge set of the bipartite graph G(Θk(D)) consists of Ē = E1 ∪ · · · ∪Ek and
F̄ = F 1 ∪ · · · ∪ F k−1, where Eh and Fh are the copies of E and F . The edges in Eh

connect Rh and Ch, whereas the edges in Fh connect Rh and Ch+1. In other words,
Eh = {(uh, vh) | (u, v) ∈ E} and Fh = {(uh, vh+1) | (u, v) ∈ F}.

For a matching M in G(D), let M◦ be the set of edges (uh, vh) with (u, v) ∈ E∩M
for h = 1, . . . , k and (uh, vh+1) with (u, v) ∈ F ∩M for h = 1, . . . , k − 1. Then M◦

forms a matching in G(Θk(D)). A matching in G(Θk(D)) is called a periodic matching
if it can be represented as M◦ with a certain matching M in G(D).

We now introduce the weight wk on the edge set of G(D) by wk(e) = k for e ∈ E
and wk(e) = k − 1 for e ∈ F . For a matching M in G(D), we consider the weight of
M by wk(M) =

∑
e∈M wk(e).

Lemma 6.1. Let M be a matching that maximizes wk(M) in G(D). Then the
corresponding periodic matching M◦ is a maximum matching in G(Θk(D)).

Proof. Suppose to the contrary that M◦ is not a maximum matching in G(Θk(D)).
Then there exists an augmenting path with respect to M◦ in G(Θk(D)). Let P ◦ be
such an augmenting path with a minimum number of edges. The corresponding set
of edges in G(D) forms an augmenting path P with respect to M in G(D). Then we
analyze the weight of a matching M ′ = M�P , which is the symmetric difference of
M and P , i.e., M�P = (M ∪ P) \ (M ∩ P). Suppose that the end-vertices of P ◦ are
uh ∈ Rh and vl ∈ Cl. If h < l, then the weight of M ′ satisfies wk(M

′) − wk(M) =
(l − h)(k − 1) − k(l − h − 1) = k − l + h. On the other hand, if h ≥ l, then we have
wk(M

′) − wk(M) = (h − l + 1)k − (h − l)(k − 1) = k + h − l. Thus, in either case,
we have wk(M

′) = wk(M) + k + h− l > wk(M), which contradicts the maximality of
wk(M).

Let M◦ be a maximum periodic matching in G(Θk(D)) corresponding to the
maximum-weight matching M in G(D). We denote by ∂M◦ the set of end-vertices of
the edges in M◦. Consider the submatrix Θk(D)[X,Y] determined by X = R̄ ∩ ∂M

254 SATORU IWATA AND RYO SHIMIZU

and Y = C̄ ∩ ∂M . Then the expansion of det Θk(D)[X,Y] contains a nonzero term∏
(u,v)∈M∩E

Auv
k

∏
(u,v)∈M∩F

Buv
k−1,

where Auv and Buv denote the (u, v)-components of A and B. Each Auv appears
exactly k times in Θk(D) and Buv appears exactly k − 1 times in Θk(D). Hence no
other matching cancels this term in the expansion. Thus Θk(D)[X,Y] is a nonsingular

submatrix of size |M◦|, which implies θk(D) = θ̂k(D) by Lemma 6.1.

By interchanging the roles of A and B, essentially the same argument leads to
ωk(D) = ω̂k(D). Thus we obtain the following theorem.

Theorem 6.2. For a generic matrix pencil D(s), we have θk(D) = θ̂k(D) and
ωk(D) = ω̂k(D).

7. Expanded matrices for column/row indices. This section is devoted to
a combinatorial analysis of the ranks of the expanded matrices Ψk(D) and Φk(D) for

a generic matrix pencil D(s). Let ψ̂k(D) and ϕ̂k(D) denote the term-ranks of these
matrices.

For k = 1, the expanded matrices Ψ1(D) and Φ1(D) are generic matrices and
hence their ranks are equal to the term-ranks. This together with Theorem 2.3 enables
us to compute p and q, the numbers of horizontal and vertical blocks in the Kronecker
canonical form, by efficient bipartite matching algorithms.

For general k, however, it is not immediately clear that the ranks are equal to the
term-ranks. This is because the expanded matrices admit the same entries to appear
in different places. In fact, the ranks of the expanded matrices may be less than their
term-ranks. For instance, consider a generic matrix pencil

D(s) = A + sB =

⎛⎜⎜⎜⎜⎜⎜⎝
α1 sβ1 0 0 0 0 0 0
0 α2 sβ2 0 0 0 0 0
0 0 0 sβ3 α3 0 0 0
0 0 α4 0 sβ4 α5 0 0
0 0 0 0 0 α6 + sβ5 sβ6 α7

0 0 0 0 0 0 α8 sβ7

⎞⎟⎟⎟⎟⎟⎟⎠ .

The Kronecker canonical form of D(s) is D̄(s) = block-diag(L4, L2), which implies

ψk(D) =

⎧⎪⎨⎪⎩
8k (k ≤ 2),

7k + 2 (2 ≤ k ≤ 4),

6k + 6 (k ≥ 4),

whereas

ψ̂k(D) =

{
8k (k ≤ 3),

6k + 6 (k ≥ 3).

Thus ψk(D) = ψ̂k(D) holds for k �= 3. For k = 3, however, we have ψ3(D) = 23 and

ψ̂3(D) = 24.

For k = 2, in contrast, the ranks of the expanded matrices coincide with their
term-ranks.

COMBINATORIAL ANALYSIS OF SINGULAR MATRIX PENCILS 255

Theorem 7.1. For a generic matrix pencil D(s), we have ψ2(D) = ψ̂2(D) and
ϕ2(D) = ϕ̂2(D).

Proof. Let M∗ be a maximum matching in G(Ψ2(D)). The row set R̄ and the
column set C̄ are given by R̄ = R1 ∪ R2 ∪ R3 and C̄ = C1 ∪ C2, where Rh and Ch

are copies of R and C. For u ∈ R and v ∈ C, we denote their copies by uh ∈ Rh and
vh ∈ Ch. We also denote X = R̄ ∩ ∂M∗ and Y = C̄ ∩ ∂M∗. Then it suffices to show
that W = Ψ2(D)[X,Y] is nonsingular.

Let M∗
1 and M∗

2 be the sets of edges in M∗ incident to C1 and C2, respectively.
We denote X1 = X ∩ ∂M∗

1 , X2 = X ∩ ∂M∗
2 , Y1 = C1 ∩ ∂M∗, and Y2 = C2 ∩ ∂M∗.

Let P denote the family of perfect matchings in G(W). For each matching M ∈ P,
we denote π(M) =

∏
(u,v)∈M Wuv, where Wuv is the (u, v)-component of W . Recall

that

detW =
∑
M∈P

σMπ(M),

where σM takes 1 or −1. We also denote by P• the family of perfect matchings
M = M1 ∪M2 such that ∂M1 = ∂M∗

1 and ∂M2 = ∂M∗
2 .

We now claim that π(M•) �= π(M ′) for any pair of M• ∈ P• and M ′ ∈ P \ P•.
Suppose to the contrary that π(M•) = π(M ′). The matching M ′ contains an edge
(u2, v2) with u2 ∈ X1. Then we have (u1, v1) ∈ M• \M ′, and hence (u1, z1) ∈ M ′ for
some z ∈ C \ {v}, which implies (u2, z2) ∈ M•. This is a contradiction to u2 ∈ X1.

Since both W [X1, Y1] and W [X2, Y2] are generic matrices, we have∑
M∈P•

σMπ(M) = detW [X1, Y1] · detW [X2, Y2] �= 0.

Then the claim above implies detW �= 0, which means W is nonsingular.
Furthermore, our analysis on the Kronecker canonical form implies that the ranks

of the expanded matrices are equal to their term-ranks for sufficiently large k as
follows.

Theorem 7.2. For a generic matrix pencil D(s) of rank r, let r0 be the rank of
the horizontal tail D0. If k ≥ r0, we have

ψk(D) = ψ̂k(D) = kr + δ̂r0(D0) − ζ̂r0(D0).

Proof. Due to the submodularity of the term-rank, we have

ψ̂k(D0) + ϕ̂k−1(D0) ≤ θ̂k(D0) + ω̂k(D0).

Since D0 is of row-full rank, Corollary 2.4 implies ϕ̂k−1(D0) = (k − 1)r0. It follows

from Corollary 2.5 and Theorem 6.2 that θ̂k(D0) = θk(D0) = r0(k− 1)− δr0(D0) and
ω̂k(D0) = ωk(D0) = r0k − ζr0(D0) hold for k ≥ r0 Thus, we obtain

ψ̂k(D0) ≤ kr0 + δr0(D0) − ζr0(D0).

Since ψ̂k(D) ≤ ψ̂k(D0) + k(r − r0), we have

ψ̂k(D) ≤ kr + δ̂r0(D0) − ζ̂r0(D0).

On the other hand, Theorems 2.3 and 5.3 imply ψk(D) = rk + δ̂r0(D0) − ζ̂r0(D0) for

k ≥ r0. Since ψk(D0) ≤ ψ̂k(D0), we have ψk(D) = ψ̂k(D) = kr + δ̂r0(D0) − ζ̂r0(D0)
for k ≥ r0.

256 SATORU IWATA AND RYO SHIMIZU

A similar argument applied to the vertical tail D∞ leads to the following theorem.

Theorem 7.3. For a generic matrix pencil D(s) of rank r, let r∞ be the rank of
the vertical tail D∞. If k ≥ r∞, we have

ϕk(D) = ϕ̂k(D) = kr + δ̂r∞(D∞) − ζ̂r∞(D∞).

8. Generic matrix powers. As a byproduct of our combinatorial analysis in
section 6, we give a simple alternative proof for a theorem of Poljak [30] on the ranks
of powers of generic square matrices.

Let A be an n× n generic matrix. We associate a directed graph �G(A) = (R, �E)

with the vertex set R identical with the row/column set of A. The arc set �E is the

set of nonzero entries of A, namely �E = {(u, v) | Auv �= 0}. A k-walk in �G(A) is

an alternating sequence (v0, e1, v1, . . . , ek, vk) of vertices vh ∈ R and eh ∈ �E such
that eh = (vh−1, vh) for h = 1, . . . , k. A pair of k-walks (v0, e1, v1, . . . , ek, vk) and
(v′0, e

′
1, v

′
1, . . . , e

′
k, v

′
k) is called independent if vh �= v′h holds for h = 0, 1, . . . , k. The

following theorem characterizes the rank of Ak in terms of independent k-walks.

Theorem 8.1 (Poljak [30]). For a generic square matrix A, the rank of Ak is

equal to the maximum number of mutually independent k-walks in �G(A).

Consider a regular matrix pencil D(s) = A+sI, where I denotes the unit matrix.
Then a k-walk naturally corresponds to a path P in G(Θk(D)) from C1 to Rk. To be
more specific, the path P is given by

P = {(vh−1
h, v̄h

h) | h = 1, . . . , k} ∪ {(vhh, v̄hh) | h = 1, . . . , k},

where v̄h denotes the column that is identical to the row vh ∈ R. Then a pair of
independent k-walks correspond to a pair of vertex-disjoint paths in G(Θk(D)). Let
P̄ = P1 ∪ · · · ∪P� denote the edge set of � such vertex-disjoint paths that come from �
independent k-walks. Then the symmetric difference P̄�F̄ forms a matching of size
� + n(k − 1). Conversely, any periodic matching M◦ can be obtained in this way
from a set of independent k walks. Therefore, Lemma 6.1 implies that the maximum
number of independent k-walks is equal to θ̂k(D) − (k − 1)n.

On the other hand, we have

rankAk = θk(D) − (k − 1)n.

Therefore, in order to prove Theorem 8.1, it suffices to show that θk(D) = θ̂k(D).
Since D(s) is not a generic matrix, we cannot directly apply Theorem 6.2. However,
we can use essentially the same argument.

Let M◦ be a maximum periodic matching in G(Θk(D)) that corresponds to a
matching M in G(D). Consider the submatrix Θk(D)[X,Y] with X = R̄ ∩ ∂M and
Y = C̄ ∩ ∂M . Then the expansion of det Θk(D)[X,Y] contains a nonzero term∏

(u,v)∈M∩E

Auv
k,

where Auv denotes the (u, v)-component of A. Since each Auv appears exactly k times
in Θk(D), no other matching cancels this term in the expansion. Thus Θk(D)[X,Y]

is a nonsingular submatrix of size |M◦|, which implies θk(D) = θ̂k(D) by Lemma 6.1.

COMBINATORIAL ANALYSIS OF SINGULAR MATRIX PENCILS 257

9. Discussions. This paper has investigated the Kronecker canonical form of
generic matrix pencils. Even if the genericity assumption is not valid, we can efficiently
compute the combinatorial estimates of the sums of the minimal row/column indices
as well as the size of the strictly regular block. These estimates may differ from the
exact values. However, we can use them for checking if the result of a numerical
computation is consistent with the combinatorial information.

For instance, consider a real matrix pencil

D(s) = A + sB =

⎛⎜⎜⎜⎜⎝
1 s 0 30 0 0
60 0 sβ 0 1 s
0 5 0 s 0 0
0 0 1 0 s 1
0 0 0 s 0 0

⎞⎟⎟⎟⎟⎠
with a parameter β. The DM-decomposition provides a pair of permutations of the
rows and the columns that transforms D(s) into a block-triangular matrix

D̃(s) =

⎛⎜⎜⎜⎜⎝
s 1 1 0 0 0
1 s sβ 60 0 0
0 0 0 1 s 30
0 0 0 0 5 s
0 0 0 0 0 s

⎞⎟⎟⎟⎟⎠ .

The Kronecker canonical form of D(s) is D̄(s) = block-diag(K1, N2, L2) unless β = 1.
If β = 1, then D̄(s) = block-diag(H2,K1, N2, O), where H2 is a strictly regular
matrix pencil of size 2. This is consistent with the combinatorial estimates obtained
as follows.

Let D′(s) be the generic matrix pencil having the same zero/nonzero pattern as
D(s). Finding maximum weight bipartite matchings in G(D′), we obtain δ1(D

′) = 1,
δ2(D

′) = 2, δ3(D
′) = 3, δ4(D

′) = 4, and δ5(D
′) = 3, which imply that the Kronecker

canonical form of D′(s) contains N2. Similarly, we obtain ζ1(D
′) = 0, ζ2(D

′) = 0,
ζ3(D

′) = 0, ζ4(D
′) = 0, and ζ5(D

′) = 1, which imply that the Kronecker canonical
form contains K1. The horizontal tail D′

0 is of size 2 × 3, which means r0 = 2.
Furthermore, we have δ2(D

′
0) = 2 and ζ2(D

′
0) = 0. It follows from Theorem 5.3 that

the sum of the column indices is equal to 2. Since the DM-decomposition of D(s)
does not have a vertical tail, Theorem 5.7 implies ν = 0. Therefore, the Kronecker
canonical form of D′(s) is block-diag(K1, N2, L2), which coincides with that of D(s)
unless β = 1.

On the other hand, computer software guptri [3, 4] that implements a staircase
algorithm may fail to return the correct answer in its default setting of the deflation
tolerance EPSU = 10−8. For example, if we assign β = 40, then guptri returns
block-diag(K2, N2, L1) as the Kronecker canonical form. If we assign β = 4, then
the output is block-diag(K2, N1, L2), which is still different from the solution. These
phenomena reflect computational difficulty inherent in the problem. In the latter case,
however, we are able to detect an error with the aid of combinatorial estimates. In fact,
if the Kronecker canonical form is block-diag(K2, N1, L2), we must have δ5(D) = 4,
which contradicts δ5(D) ≤ δ5(D

′). Then one can obtain the correct answer by trying
smaller EPSU. Thus, combinatorial analysis may help us to make numerical solutions
more reliable.

Another way to use the combinatorial estimates is to design a numerical algorithm
that exploits the combinatorial information. If one had an easier way to check the

258 SATORU IWATA AND RYO SHIMIZU

correctness of the estimates, it would lead to a new algorithm particularly efficient for
sparse matrices. In fact, such algorithms of combinatorial relaxation type have been
developed for the maximum degree of subdeterminants [17, 18, 26, 28]. It would be
interesting to devise the same type of algorithms for minimal row/column indices.

Acknowledgments. The authors are grateful to Kazuo Murota for fruitful dis-
cussions and helpful comments. The authors also thank anonymous referees for many
constructive suggestions to improve the presentation.

REFERENCES

[1] T. Beelen and P. Van Dooren, An improved algorithm for the computation of Kronecker’s
canonical form of a singular pencil, Linear Algebra Appl., 105 (1988), pp. 9–65.

[2] J. Demmel and B. Kågström, Accurate solutions of ill-posed problems in control theory,
SIAM J. Matrix Anal. Appl., 9 (1988), pp. 126–145.

[3] J. Demmel and B. Kågström, The generalized Schur decomposition of an arbitrary pencil
A−λB: Robust software with error bounds and applications. Part I: Theory and algorithms,
ACM Trans. Math. Software, 19 (1993), pp. 160–174.

[4] J. Demmel and B. Kågström, The generalized Schur decomposition of an arbitrary pencil
A− λB: Robust software with error bounds and applications. Part II: Software and appli-
cations, ACM Trans. Math. Software, 19 (1993), pp. 175–201.

[5] I. Duff and C. W. Gear, Computing the structural index, SIAM J. Algebraic Discrete Meth-
ods, 7 (1986), pp. 594–603.

[6] A. L. Dulmage and N. S. Mendelsohn, Coverings of bipartite graphs, Canad. J. Math., 10
(1958), pp. 517–534.

[7] A. L. Dulmage and N. S. Mendelsohn, A structure theory of bipartite graphs of finite exterior
dimension, Trans. Roy. Soc. Canada, Ser. III, 53 (1959), pp. 1–13.

[8] A. L. Dulmage and N. S. Mendelsohn, Two algorithms for bipartite graphs, J. Soc. Indust.
Appl. Math., 11 (1963), pp. 183–194.

[9] A. Edelman, E. Elmroth, and B. Kågström, A geometric approach to perturbation theory
of matrices and matrix pencils. Part I: Versal deformations, SIAM J. Matrix Anal. Appl.,
18 (1997), pp. 653–692.

[10] A. Edelman, E. Elmroth, and B. Kågström, A geometric approach to perturbation theory of
matrices and matrix pencils. Part II: A stratification-enhanced staircase algorithm, SIAM
J. Matrix Anal. Appl., 20 (1999), pp. 667–699.

[11] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network
flow problems, in Combinatorial Optimization—Eureka, You Shrink!, Lecture Notes in
Comput. Sci. 2570, Springer-Verlag, Berlin, 2003, pp. 31–33.

[12] F. R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.
[13] C. W. Gear, Differential-algebraic equation index transformations, SIAM J. Sci. Statist. Com-

put., 9 (1988), pp. 39–47.
[14] C. W. Gear, Differential algebraic equations, indices, and integral algebraic equations, SIAM

J. Numer. Anal., 27 (1990), pp. 1527–1534.
[15] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite

graphs, SIAM J. Comput., 2 (1973), pp. 225–231.
[16] M. Iri, A new method of solving transportation-network problems, J. Oper. Res. Soc. Japan, 3

(1960), pp. 27–87.
[17] S. Iwata, Computing the maximum degree of minors in matrix pencils via combinatorial re-

laxation, Algorithmica, 36 (2003), pp. 331–341.
[18] S. Iwata, K. Murota, and I. Sakuta, Primal-dual combinatorial relaxation algorithms for

the maximum degree of subdeterminants, SIAM J. Sci. Comput., 17 (1996), pp. 993–1012.
[19] B. Kågström, RGSVD—An algorithm for computing the Kronecker structure and reducing

subspaces of singular A−λB pencils, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 185–211.
[20] V. Kublanovskaya, AB-algorithm and its modification for the spectral problems of linear

pencils of matrices, Numer. Math., 43 (1984), pp. 329–342.
[21] H. W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Quart.,

2 (1955), pp. 83–97.
[22] A. S. Morse, Structural invariants of linear multivariable systems, SIAM J. Control, 11 (1973),

pp. 446–465.

COMBINATORIAL ANALYSIS OF SINGULAR MATRIX PENCILS 259

[23] J. Munkres, Algorithms for the assignment and transportation problems, J. Soc. Indust. Appl.
Math., 5 (1957), pp. 32–38.

[24] K. Murota, Systems Analysis by Graphs and Matroids: Structural Solvability and Controlla-
bility, Springer-Verlag, Berlin, 1987.

[25] K. Murota, On the Smith normal form of structured polynomial matrices, SIAM J. Matrix
Anal. Appl., 12 (1991), pp. 747–765.

[26] K. Murota, Combinatorial relaxation algorithm for the maximum degree of subdeterminants:
Computing Smith-McMillan form at infinity and structural indices in Kronecker form,
Appl. Algebra Engrg. Comm. Comput., 6 (1995), pp. 251–273.

[27] K. Murota, On the degree of mixed polynomial matrices, SIAM J. Matrix Anal. Appl., 20
(1999), pp. 196–227.

[28] K. Murota, Matrices and Matroids for Systems Analysis, Springer-Verlag, Berlin, 2000.
[29] C. C. Pantelides, The consistent initialization of differential-algebraic systems, SIAM J. Sci.

Statist. Comput., 9 (1988), pp. 213–231.
[30] S. Poljak, Maximum rank of powers of a matrix of a given pattern, Proc. Amer. Math. Soc.,

106 (1989), pp. 1137–1144.
[31] H. H. Rosenbrock, State-Space and Multivariable Theory, John Wiley, New York, 1970.
[32] J. S. Thorp, The singular pencil of a linear dynamical system, Internat. J. Control, 18 (1973),

pp. 577–596.
[33] N. Tomizawa, On some techniques useful for solution of transportation network problems,

Networks, 1 (1971), pp. 173–194.
[34] J. W. van der Woude, The generic canonical form of a regular structured matrix pencil,

Linear Algebra Appl., 353 (2002), pp. 267–288.
[35] P. Van Dooren, The computation of Kronecker’s canonical form of a singular pencil, Linear

Algebra Appl., 27 (1979), pp. 103–140.
[36] J. H. Wilkinson, Kronecker’s canonical form and the QZ algorithm, Linear Algebra Appl., 28

(1979), pp. 285–303.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 260–278

SPECTRAL ANALYSIS OF A PRECONDITIONED ITERATIVE
METHOD FOR THE CONVECTION-DIFFUSION EQUATION∗

DANIELE BERTACCINI† , GENE H. GOLUB‡ , AND STEFANO SERRA-CAPIZZANO§

Abstract. The convergence features of a preconditioned algorithm for the convection-diffusion
equation based on its diffusion part are considered. Analyses of the distribution of the eigenvalues of
the preconditioned matrix in arbitrary dimensions and of the fundamental parameters of convergence
are provided, showing the existence of a proper cluster of eigenvalues. The structure of the cluster
is not influenced by the discretization. An upper bound on the condition number of the eigenvector
matrix under some assumptions is provided as well. The overall cost of the algorithm is O(n), where
n is the size of the underlying matrices.

Key words. finite differences discretization, preconditioning, multilevel structures, convection-
diffusion equation

AMS subject classifications. 65F10, 65N22, 15A18, 15A12, 47B65

DOI. 10.1137/050627381

1. Introduction. The aim of this work is to study the convergence behavior of
a preconditioned algorithm to solve the linear systems generated by the discretization
of the convection-diffusion equation

−ν ∇ · (a(x)∇u) + q(x) · ∇u =f, x ∈ Ω,(1.1)

u =g, x ∈ ∂Ω,(1.2)

where Ω is an open region of R
d with a(x) a uniformly positive function, q(x) ∈

R
d a convective velocity field (the wind), ∇ = (∂

∂x1
, . . . , ∂

∂xd
)T , and ν the viscosity

(or diffusion) coefficient. We stress that models based on similar equations, whose
domains can be of dimension d > 3, arise, e.g., in finance, where each spatial dimension
is related to an asset in a basket.

Discretizing problem (1.1) by using centered or upwinding finite differences on
equispaced meshes, we reduce the approximate solution of the above problem to the
solution of the linear system

Ay = b,

where the matrix A is nonsymmetric and positive definite and n is the size of A; see
section 2.2 for more details. If Ω coincides with (0, 1)d and the stepsizes are given by
(Nj + 1)−1, Nj ∈ N, j = 1, . . . , d, N = (N1, . . . , Nd)

T , then the dimension of A is

∗Received by the editors March 23, 2005; accepted for publication (in revised form) by A. J.
Wathen July 31, 2006; published electronically February 9, 2007.

http://www.siam.org/journals/simax/29-1/62738.html
†Dipartimento di Matematica, Università di Roma “La Sapienza,” P.le A. Moro 2, 00185 Roma,

Italy (bertaccini@mat.uniroma1.it). The work of this author was supported in part by MIUR grant
2002014121.

‡Department of Computer Science, Stanford University, Gates 2B, Stanford, CA 94305 (golub@
stanford.edu). The work of this author was supported in part by DOE grant DE-FC02-01ER41177.

§Dipartimento di Fisica e Matematica, Università dell’Insubria, Via Valleggio 11, 22100 Como,
Italy (stefano.serrac@uninsubria.it, serra@mail.dm.unipi.it). The work of this author was supported
in part by MIUR grants 2002014121 and 2004015437, and by Swedish Science Council grant VR
2002-5532.

260

SPECTRAL ANALYSIS FOR CONVECTION-DIFFUSION 261

n = N1 · N2 · · ·Nd. In the case when Ω ⊂ (0, 1)d is a connected domain formed by
a finite union of d-dimensional rectangles (e.g., L, T, U-shaped domains, etc.), the
discretization of the diffusion part of (1.1) is symmetric and positive definite, and the
size n will be approximately equal to m(Ω) ·N1 ·N2 · · ·Nd, with m(·) being the usual
Lebesgue measure (m(Ω) = 1 for Ω = (0, 1)d). Therefore, when the number of the
mesh points in the domain Ω is large enough, A is large and sparse.

Let us emphasize the dependence of the matrix A on the parameters a and q
in (1.1) by writing A = A(a, q) or A = A(a, q,Ω), where Ω is the domain. The
preconditioner we consider is defined as

P = P (a) := D1/2(a)A(1, 0)D1/2(a),(1.3)

where D(a) is a suitably scaled main diagonal of A(a, 0), and A(1, 0) denotes the
discrete Laplacian (a = 1). Preconditioning with a scaled discrete Laplacian operator
for nonself-adjoint and nonseparable elliptic boundary value problems was considered
in [12] and [15]. Moreover, in [15] the independence of preconditioned iterations from
the mesh was observed. The eigenvalue distribution for the diffusive part of the latter
problem was investigated in [23, 26, 25].

In this paper we focus our attention on the case when q is nonzero and Ω is a
connected finite union of d-dimensional rectangles (a plurirectangle) so that A(1, 0)
(and consequently the whole preconditioner P (a)) is symmetric and positive definite
as proven in [26]. In particular, the authors of [23, 26] found that, if a(x) is positive
and regular enough and q(x) ≡ 0, then the preconditioned sequence shows a proper
eigenvalue clustering at the unity (for the notion of proper eigenvalue and singular
value clustering, see Definition 2.2), and we prove here that the same holds true in
the complex field for problem (1.1) as well. Moreover, under mild assumptions on the
coefficients of the problem, we prove that all the eigenvalues of the preconditioned
system belong in a complex rectangle {z ∈ C : Re(z) ∈ [c, C], Im(z) ∈ [−ĉ, ĉ]} with
c, C > 0, ĉ ≥ 0 independent of the dimension n. Note that the existence of a proper
eigenvalue cluster and the aforementioned localization results in the preconditioned
spectrum can be very important for fast convergence of preconditioned iterations (see,
e.g., [4]): here we will use and generalize to the case of nonnormal preconditioners
a recent general tool devised in [24] for deducing the eigenvalue clustering from the
singular value clustering, the latter being much easier to check.

In previous works [1, 5] solvers based on the symmetric/skew-symmetric splittings
of A were considered. We stress that symmetric/skew-symmetric splittings can be
used successfully as preconditioners; see [2].

Indeed, beside the spectral theoretical analysis of the preconditioned structures,
the idea is to propose a technique that can be easily used. In fact, the ingredients
are a Krylov method (e.g., GMRES, BiCGSTAB, etc.), a matrix vector routine (for
sparse or even diagonal matrices), and a solver for the related diffusion equation with
a constant coefficient (a method based, e.g., on the cyclic reduction approach [9, 14] or
on multigrid methods [27, 19] for which professional software is available). Of course,
if the convection part is dominating, then the considered approach can be enriched
by approximating the related discrete operator. We stress that convection-dominated
problems require appropriate upwind discretization to avoid spurious oscillations.

1.1. Outline. The paper is organized as follows. In section 2 some tools and
definitions from structured linear algebra are introduced, while in section 3 the pre-
conditioner and some of its basic properties are introduced. In sections 4 and 5 we
first derive specific tools for dealing with eigenvalue clusters and then we study the

262 D. BERTACCINI, G. H. GOLUB, AND S. SERRA-CAPIZZANO

spectral properties of the preconditioned matrix sequences, with special emphasis on
the eigenvalue and singular value clusterings. Section 6 is devoted to the convergence
analysis of GMRES. Moreover, some numerical experiments in both two dimensions
and three dimensions, and their computational aspects, are presented and discussed.
Section 7 concludes the paper with some final comments and remarks.

2. Preliminaries. We start by stating a few results from the spectral theory of
Toeplitz matrix sequences (subsection 2.1) and then we briefly analyze the structure
of the coefficient matrix A (subsection 2.2).

2.1. Definitions and tools for sequences of Toeplitz matrices. Let f be
a d-variate Lebesgue integrable function defined over the hypercube T d, with T =
(−π, π] and d ≥ 1. From the Fourier coefficients of f (called a symbol or generating
function)

aj =
1

(2π)d

∫
T d

f(z)e−i(j,z) dz, i2 = −1, j = (j1, . . . , jd) ∈ Z
d,(2.1)

with (j, z) =
∑d

r=1 jrzr, one can build the sequence of Toeplitz matrices {TN (f)}N ,

N = (N1, . . . , Nd), where TN (f) ∈ C
n×n and n =

∏d
r=1 Nr. The matrix TN (f) is said

to be the Toeplitz matrix of order N generated by f (see, e.g., [8] for more details).
For example, if d = 1 we have that aj , j = −(N1 − 1), . . . , 0, . . . , (N1 − 1), is

the value on the jth diagonal of the N1 × N1 Toeplitz matrix TN1
. The Fourier

coefficients aj are equal to zero (for |j| large enough) if f is a (multivariate) trigono-
metric polynomial. Therefore, the corresponding Toeplitz matrix is multilevel and
banded. A typical example is the case of the classical d-level Laplacian with Dirichlet
boundary conditions, discretized by equispaced finite difference formulas over a square
region. For instance, the generating function of the (negative) Laplacian (discretized
by centered differences of accuracy order 2 and minimal bandwidth) is expressed by

d∑
j=1

(2 − 2 cos(zj)).

For d = 1 the corresponding matrix is the symmetric tridiagonal matrix TN1
=

Toeplitz(−1, 2,−1) while, in the general case, it corresponds to
∑d

j=1 Pj with

Pj = IN1 ⊗ · · · ⊗ INj−1 ⊗ TNj ⊗ INj+1 ⊗ · · · ⊗ INd
.

The spectral properties of the sequence {TN (f)}N and of related preconditioned
sequences are completely understood and characterized in terms of the underlying
generating functions. For instance, TN (f) = T ∗

N (f) (∗ is the transpose conjugate
operator) for every N if and only if f is real valued: more results are given in Theorem
2.1 following. Before stating it we clarify some notation that we will use throughout
the paper.

We consider two nonnegative function α(·) and β(·) defined over a domain D with
accumulation point x̄ (if D = N, then x̄ = ∞; if D = T d, then x̄ can be any point of
D). We write

• α(·) = O(β(·)) if and only if there exists a pure positive constant K, such
that α(x) ≤ Kβ(x), for every (or for almost every) x ∈ D (here and in the
following, by pure or universal constant we mean a quantity not depending
on the variable x ∈ D);

SPECTRAL ANALYSIS FOR CONVECTION-DIFFUSION 263

• α(·) = o(β(·)) if and only if α(·) = O(β(·)) and limx→x̄ α(x)/β(x) = 0 with x̄
a given accumulation point of D, which will be clear from the context;

• α(·) ∼ β(·) if and only if α(·) = O(β(·)) and β(·) = O(α(·));
• α(·) ≈ β(·) if and only if α(·) ∼ β(·) and limx→x̄ α(x)/β(x) = 1 with x̄ a given

accumulation point of D (the latter can be rewritten as α(x) = β(x)(1+o(1))
with 1 + o(1) uniformly positive in D).

Theorem 2.1 (see [8, 22]). Let f and g be two d-variate Lebesgue integrable real
valued functions defined over T d, and assume that g is nonnegative with a positive
essential supremum. Then, the following holds:

1. If f is not identically a constant, then every eigenvalue of TN (f) lies in
(m,M), where m =essinf f and M =esssup f ;

2. if we denote by λmin(TN) and λmax(TN) the minimal and maximal eigenvalues
of TN (f), then

lim
N→∞

λmin(TN) = m, lim
N→∞

λmax(TN) = M ;

3. if Ni ∼ Nj for every i and j, then λmin(TN)−m ∼ n−α/d and M−λmax(TN) ∼
n−β/d, while if Ni ≈ αi,jNj for every i, j, and αi,j are universal constants,
then λmin(TN) − m ≈ cmn−α/d and M − λmax(TN) ≈ cMn−β/d; here α is
the maximum among the orders of the zeros of f(z) −m, β is the maximum
among the orders of the zeros of M−f(z), and cm, cM are universal constants
which can be explicitly evaluated, at least for smooth symbols.

Definition 2.2. A sequence {An}n (An of size n) is properly (or strongly)
clustered at p ∈ C in the eigenvalue sense if for any ε > 0 the number of the eigenvalues
of An not belonging to D(p, ε) = {z ∈ C : |z−p| < ε} can be bounded by a pure constant
possibly depending on ε, but not on n. Of course if every An has, at least definitely
(i.e., for n large enough), only real eigenvalues, then p has to be real, and the disk
D(p, ε) reduces to the interval (p− ε, p + ε).

Moreover, a sequence {An}n (An of size n) is properly (or strongly) clustered at
p ∈ R

+
0 , in the singular value sense, if for any ε > 0 the number of the singular

values of An not belonging to (p− ε, p+ ε) can be bounded by a pure constant possibly
depending on ε, but not on n.

2.2. The discrete problem and splitting the contribution of convection
and diffusion. We denote with Re(G) the symmetric and with i Im(G) the skew-
symmetric part of a real coefficient matrix G, i.e., Re(G) = (G+G∗)/2 and Im(G) =
(G−G∗)/(2i), respectively.

The analysis is performed without restrictions on the dimension d of problem
(1.1), provided that a(x) > 0 and that the domain is a hypercube (by exploiting
the analysis in [26], the same can be extended to the case when the domain is a
connected finite union of d-dimensional rectangles by using the same arguments as in
[5]). Conversely, we emphasize that here the numerical tests are performed mainly on
two-dimensional problems with a(x) > 0.

Note that we can always write

A = Θ(a) + Ψ(q),

where the matrix Θ(a) = A(a, 0) is the discretization of the diffusion term, and the
matrix Ψ(q) is the discretization of the convection term. We observe that when
q(x) = (w1, w2, . . . , wd)

T is a constant vector and a centered difference discretization

264 D. BERTACCINI, G. H. GOLUB, AND S. SERRA-CAPIZZANO

is used, the matrix Ψ(q) is skew-symmetric and coincides with the d-level Toeplitz
structure that, for d = 2, is given by

SN1 ⊗ IN2 + IN1 ⊗ SN2 ,

where SNk
, k = 1, 2, is the Toeplitz matrix generated by f(z) = (−2iwk/(2hk)) sin(z),

i.e.,

SNk
=

wk

2hk

⎛⎜⎜⎜⎜⎜⎝
0 1
−1

. . .
. . .

. . .

1
−1 0

⎞⎟⎟⎟⎟⎟⎠
Nk×Nk

.(2.2)

On the other hand, Θ(a) is a d-level Toeplitz matrix which, for d = 2, is given by

TN1 ⊗ IN2 + IN1 ⊗ TN2 ,

where, if a(x) = 1, TNk
is the usual one-dimensional discrete Laplacian with generating

function given by (ν/h2
k)(2 − 2 cos(z)), i.e., the tridiagonal Toeplitz matrix

TNk
=

ν

h2
k

⎛⎜⎜⎜⎜⎜⎝
2 −1
−1

. . .
. . .

. . .

−1
−1 2

⎞⎟⎟⎟⎟⎟⎠
Nk×Nk

.

For the upwind scheme we consider here, if q(x) is a constant vector, the matrix A is
as before with the exception of SNk

as in (2.2), which is now the following bidiagonal
matrix:

S′
Nk

=
wk

hk

⎛⎜⎜⎜⎜⎜⎝
1 0
−1

. . .
. . .

. . .

0
−1 1

⎞⎟⎟⎟⎟⎟⎠
Nk×Nk

.(2.3)

For simplicity, from here on we consider hk = h, k = 1, . . . , d, and we normalize the
underlying linear systems by multiplying the left and right sides by h2.

As in the case of the upwind scheme considered above, the symmetric part of
A cannot be exactly the discretization of the diffusion term Θ(a), and the skew-
symmetric part of A cannot be exactly the discretization of the convection term Ψ(q).
Indeed, we observed (see [5, Theorem 3.5, p. 466] and Remark 3.2 in [5]) the following
property for a centered difference discretization of (1.1).

Theorem 2.3. Let us assume that the function ∇ · q(x) in (1.1) is a vector with
bounded components and that (1.1) is discretized with centered differences (of precision
order 2 and minimal bandwidth). Then

Re(A(a, q)) = Θ(a) + E,

iIm(A(a, q)) = Ψ(q) − E,

SPECTRAL ANALYSIS FOR CONVECTION-DIFFUSION 265

where

E =
Ψ(q) + Ψ∗(q)

2
(2.4)

with

‖E‖2 ≤ cd h
2(2.5)

cd = αd‖∇ · q‖∞

(αd = 2d with d = 2 or d = 3 when Ω = (0, 1)d).

For the upwind scheme based on (2.3), we have that

||E||2 ≤ hα′
d max

x∈Ω
|q(x)|,

where α′
d is a constant of the order of unity which depends only on d and the dis-

cretization.

Under the assumption that ‖∇ · q‖∞ is smaller than a suitable positive constant,
by using the same arguments as in [5], we can prove that Re(A) is real symmetric
positive definite but ill-conditioned with a condition number asymptotic to h−2.

3. The preconditioner. Here we focus on certain Krylov methods (e.g.,
GMRES; see [20] and [10]) preconditioned by

P := P (a,Ω) = D1/2(a)Θ(1)D1/2(a), Θ(1) = A(1, 0),(3.1)

where D(a) is a diagonal matrix which, in MATLAB notation, is given by

D(a) =
1

γ
diag (diag (Θ(a))) , γ = Θ(1)j,j .

For example, if we consider the centered difference approximation of the Laplacian
Θ(1), we have γ = 4 for d = 2 and γ = 6 for d = 3, where d is the dimension of
the domain of the problem. Note that P in (3.1) is an approximation of the matrix
generated by the discretization of the diffusive part of (1.1). Similar strategies were
used in [11], in [15], and in [23, 25] for the purely diffusive equation, or, in other
words, with q as a null vector in (1.1).

The resolution of linear systems with matrices as in (3.1) can be performed within
a linear arithmetic cost by means of fast Poisson solvers, and this is important for an
efficient implementation of (3.1). Classical (direct) Poisson solvers are mainly based
on cyclic reduction or on multigrid algorithms (see [9, 14] and, e.g., [27, 19]). From
Theorem 2.3, we infer that A is certainly positive definite if the norm of E is smaller
than the minimum (positive) eigenvalue of Θ(a). More specifically

min
j

(λj(Θ(a))) ≥ νh2 m(Ω)βd min
Ω

a,

with m(·) denoting the Lebesgue measure. Therefore, by using again the bound in
Theorem 2.3 and by following the same arguments as in [5, Theorems 3.6 and 3.7],

266 D. BERTACCINI, G. H. GOLUB, AND S. SERRA-CAPIZZANO

it is easy to prove the following two results, which are important in order to gain
insight into the convergence of preconditioned iterations. From here on, where not
otherwise stated, we will consider the centered differences discretization of precision
order 2 and minimal bandwidth for (1.1).

Theorem 3.1. Let A ∈ R
n×n be the positive definite matrix generated by the

discretization of (1.1). If

‖∇ · q‖∞ < ν
βd

αd
m(Ω) min

Ω
a

and if the coefficient a(x) is strictly positive and belongs to C2(Ω), then the sequence
{P−1Re(A)}n is properly clustered at 1 in the eigenvalue sense. Moreover, the eigen-
values belong to a positive interval [c, C] well separated from zero.

Theorem 3.2. Let the hypotheses of Theorem 3.1 hold true. Then the sequence
{P−1Im(A)}n is properly clustered at 0 in the eigenvalue sense. Moreover, the eigen-
values belong to an interval [−ĉ, ĉ], ĉ > 0.

In reference to Theorem 3.1 we have β3 = 3π2 (i.e., for d = 3) and β2 = 2π2

if centered differences are used in (1.1). Therefore, for d = 3, Ω = (0, 1)d (three
dimensions), the hypothesis on q in Theorem 3.1 reads ||∇ · q||∞ < νπ2/2, which
can be quite restrictive. However, if the latter is not satisfied, then everything in
Theorems 3.1 and 3.2 can be stated identically, except for the fact that the interval
[c, C] (only in Theorem 3.1), with c, C still independent of n, may include 0. The same
can be stated for the subsequent and more important Theorem 4.3. In conclusion,
the eigenvalue spectral clustering is not affected by the considered assumption, while
the localization is affected only partially. However, we stress that we experienced
the existence of good localization results even with weaker hypotheses than those in
Theorems 3.1 and 3.2.

4. The cluster. To understand the behavior of preconditioned iterations, we
analyze the spectrum of the coefficient matrix associated with (1.1) after precondi-
tioning and the related matrix of eigenvectors; see, e.g., [10, 4]. First, we prove the
existence of a proper cluster of the singular values through the decomposition of the
preconditioned matrices as identity plus low-norm plus low-rank (Theorem 4.1). Sec-
ond, we derive a general result (Theorem 4.3) on the relationships between proper
eigenvalue and singular value clusters. From the latter result and from Theorems
3.1 and 3.2, we deduce the eigenvalue uniform boundedness and proper eigenvalue
clustering in Corollary 4.4 and, in section 5, we provide some inequalities for the
eigenvalues. Finally, we give a bound for the condition number of the matrix of the
eigenvectors and discuss the convergence of GMRES in section 6.

Theorem 4.1. Under the assumptions of Theorem 3.1, fixed ε > 0 small enough,
there exist integers N̄ = (N̄1, . . . , N̄d) (with respect to the partial ordering of N

d),
N̄ = N̄(ε), r = r(ε) < n such that, for

N = (N1, . . . , Nd) > N̄(ε) = (N̄1, . . . , N̄d),

we have

P−1/2AP−1/2 = I + R(1) + R(2),(4.1)

where ||R(1)||2 ≤ ε and rank(R(2)) ≤ r. Moreover, the sequence {P−1/2AP−1/2}n
shows a proper singular value cluster at 1.

SPECTRAL ANALYSIS FOR CONVECTION-DIFFUSION 267

Proof. We can write

P−1/2AP−1/2 = P−1/2(Re(A) + iIm(A))P−1/2

= P−1/2(Θ(a) + E)P−1/2 + P−1/2(Ψ(q) − E)P−1/2,

and, from Theorem 3.1, we have that, with fixed ε1 > 0 small enough, there exist Ñ =
(Ñ1, . . . , Ñd) and a constant r1 such that for N > Ñ (to be intended componentwise),
n−r1 eigenvalues of the matrix P−1/2Re(A)P−1/2 belong to the interval (1−ε1, 1+ε1),
and all the eigenvalues of P−1/2Re(A)P−1/2 belong to an interval [c, C], 0 < c < C;
i.e., we can write

P−1/2Re(A)P−1/2 = I + R
(1)
1 + R

(2)
1 ,(4.2)

where ||R(1)
1 ||2 ≤ ε1 and rank(R

(2)
1) ≤ r1.

Moreover, from Theorem 3.2, we infer that the matrix sequence

{P−1/2Im(A)P−1/2}n

is spectrally bounded and clustered at zero; i.e., for N large enough,

iP−1/2Im(A)P−1/2

is a skew-symmetric matrix whose eigenvalues are in [−iĉ, iĉ]. Therefore, there exist
N̂ = (N̂1, . . . , N̂d) and a constant r2 such that for N > N̂ , n − r2 eigenvalues of
P−1/2Im(A)P−1/2 belong to (−ε2, ε2) and all the eigenvalues of P−1/2Im(A)P−1/2

belong to [−ĉ, ĉ]. Then, we can write

P−1/2Im(A)P−1/2 = R
(1)
2 + R

(2)
2 ,(4.3)

where ||R(1)
2 ||2 ≤ ε2 and rank(R

(2)
2) ≤ r2, ||P−1/2Im(A)P−1/2||2 = ĉ. The claimed

results follow by taking

R(1) = R
(1)
1 + R

(1)
2 , ε = ε1 + ε2; r = r1 + r2, N̄ = max{N̂ , Ñ},(4.4)

where the condition for N̄ is to be intended componentwise. Finally, the existence
of a proper singular value cluster at 1 of the sequence {P−1/2AP−1/2}n is a direct
consequence of (4.1) and of the singular value decomposition [17].

Note that r in (4.4) does not depend on N for N > N because of the existence
of a proper cluster for the spectrum of

{P−1/2Re(A)P−1/2}n

and of

{P−1/2Im(A)P−1/2}n.

Now we introduce a general tool, i.e., Theorem 4.3, for analyzing eigenvalue clusters
of a preconditioned matrix sequence. We will take recourse to the following result
(Theorem 4.2) essentially based on the majorization theory (see, e.g., [7]).

Theorem 4.2 (see [24]). Let {An}n be a sequence such that the singular values
are properly clustered at zero and their spectral norm is uniformly bounded (by a
constant independent of n). Then, the eigenvalues of {An}n are properly clustered
as well.

268 D. BERTACCINI, G. H. GOLUB, AND S. SERRA-CAPIZZANO

Theorem 4.3. Let {An}n and {Pn}n be two sequences of matrices with invertible
Pn. Suppose that there exist Bn, Cn, and Un such that the Un are invertible, An =
Bn + Cn, and such that

1. the matrices Vn = UnP
−1
n BnU

−1
n , Wn = UnP

−1
n CnU

−1
n are normal;

2. {P−1
n Bn}n is clustered at r ∈ C in the eigenvalue sense and the spectral radius

ρ(P−1
n Bn) is uniformly bounded by b with b ≥ 0 independent of n;

3. {P−1
n Cn}n is clustered at s ∈ C in the eigenvalue sense and the spectral radius

ρ(P−1
n Cn) is uniformly bounded by c with c ≥ 0 independent of n.

Then {P−1
n An}n is clustered at r + s in the eigenvalue sense and the spectral radius

ρ(P−1
n An) is uniformly bounded by b + c.
Proof. Since we are interested in the eigenvalues of P−1

n An, it is natural to
consider UnP

−1
n AnU

−1
n which is similar to the original matrix. Moreover,

UnP
−1
n AnU

−1
n =Vn+Wn = (r+s)In+(Vn−rIn)+(Wn−sIn), In identity matrix.

By items 2 and 3 it is evident that {Vn − rIn}n and {Wn − sIn}n are both properly
clustered at zero in the eigenvalue sense. Moreover, Vn and Wn are normal (item 1)
and so are Vn−rIn and Wn−sIn: as a consequence, {Vn−rIn}n and {Wn−sIn}n are
also both properly clustered at zero in the singular value sense (the singular values
are the moduli of the eigenvalues). Moreover, by the triangle inequality and from the
assumption on the spectral radii, we have

‖Vn − rIn‖2 ≤ |r| + ‖Vn‖2 = |r| + ρ(P−1
n Bn) ≤ |r| + b

and

‖Wn − sIn‖2 ≤ |r| + ‖Wn‖2 = |s| + ρ(P−1
n Cn) ≤ |s| + c.

Finally, the matrix sequence

{Zn = Vn − rIn + Wn − sIn}n

is properly clustered at zero in the singular value sense (by the singular value decom-
position) and its spectral norm is bounded, by the triangle inequality, by |r|+b+|s|+c
which is independent of n. Therefore, by Theorem 4.2, the sequence {Zn}n is prop-
erly clustered at zero in the eigenvalue sense and {P−1

n An}n is properly clustered at
r + s in the eigenvalue sense with ρ(P−1

n An) ≤ |r + s| + |r| + b + |s| + c. However,
by exploiting again similarity and normality, the latter estimate can be substantially
improved (leading to a more natural estimate) by observing that

ρ(P−1
n An) = ρ(Vn + Wn) ≤ ‖Vn + Wn‖2 ≤ ‖Vn‖2 + ‖Wn‖2

= ρ(P−1
n Bn) + ρ(P−1

n Cn) ≤ b + c.

It is worth mentioning that the latter result is an extension (potentially for non-
symmetric preconditioners) of Proposition 2.1 in [24]. Moreover, Theorem 4.3 works
unchanged if the assumption of normality of Xn ∈ {Vn,Wn} is replaced with a weaker
one such as the existence of a pure constant d ≥ 1 (independent of n) such that for
all j and uniformly with respect to n it holds that σj ≤ d|λj |, where the values λj

and σj are the eigenvalues and the singular values of Xn, respectively, arranged by
nondecreasing moduli.

Corollary 4.4. Under the hypotheses of Theorem 4.1, the eigenvalues of the
preconditioned matrix {P−1A}n are properly clustered at 1 ∈ C

+ (C+ being the right

SPECTRAL ANALYSIS FOR CONVECTION-DIFFUSION 269

0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

3

4

(a)
0 0.5 1 1.5 2

−4

−3

−2

−1

0

1

2

3

4

(b)

Fig. 4.1. Eigenvalues for the preconditioned problem with ν = 1/30, a = 1, discretization in
two dimensions using centered differences and q = [−

√
2/2

√
2/2]T . (a) h = 1/16; (b) h = 1/32,

h stepsize.

half plane) and all belong to a uniformly (with respect to the grid) bounded rectangle
with positive real part, well separated from zero.

Proof. The localization result simply follows from Bendixson (see, e.g., [17]):
indeed, it is clear that any eigenvalue of P−1A has to belong to the field of values

F =

{
z ∈ C : z =

x∗Re(A)x

x∗Px
+ i

x∗Im(A)x

x∗Px
, x ∈ C

n\{0}
}

(4.5)

and that any eigenvalue of P−1Re(A) and any eigenvalue of P−1Im(A) must stay in{
z ∈ C : z =

x∗Re(A)x

x∗Px
, x ∈ C

n\{0}
}

and

{
z ∈ C : z =

x∗Im(A)x

x∗Px
, x ∈ C

n\{0}
}
,

respectively. Therefore, from Theorems 3.1 and 3.2 we deduce that all the eigenvalues
of P−1A belong to {z ∈ C : Re(z) ∈ [c, C], Im(z) ∈ [−ĉ, ĉ]} with c, C > 0, ĉ ≥ 0
independent of the dimension n, as in Theorems 3.1 and 3.2.

Now setting Un = P 1/2, Pn = P , and An = A we have (a) the eigenvalues
of {P−1Re(A)}n are properly clustered to 1 and all lie in a uniformly bounded in-
terval (Theorem 3.1), and Vn = P−1/2Re(A)P−1/2 is symmetric and therefore nor-
mal; (b) the eigenvalues of {P−1Im(A)}n are properly clustered to 0 and all lie in
a uniformly bounded interval (Theorem 3.2), and Wn = iP−1/2Im(A)P−1/2 is skew-
symmetric and therefore normal.

Statements (a) and (b) are the assumptions of Theorem 4.3 from which we deduce
that the eigenvalues of {P−1A}n are properly clustered at 1 ∈ C

+.
Figures 4.1 and 4.2 report some examples of the spectrum of the coefficient matrix

associated with equation (1.1) in two dimensions after preconditioning. Note the
presence of the cluster in 1 in the complex field.

270 D. BERTACCINI, G. H. GOLUB, AND S. SERRA-CAPIZZANO

0 0.5 1 1.5 2
−8

−6

−4

−2

0

2

4

6

8

(a)
0 0.5 1 1.5 2

−8

−6

−4

−2

0

2

4

6

8

(b)

Fig. 4.2. Eigenvalues for the preconditioned matrix with ν = 1/60, a = 1, discretization in two
dimensions using centered differences and q = [−

√
2/2

√
2/2]T . (a) h = 1/16; (b) h = 1/32, h

stepsize.

5. Spectrum of the preconditioned matrix. We state here some a-priori
bounds on the spectrum of the underlying preconditioned matrix.

In what follows, the numbers γj , j ∈ N, denote constants of the order of unity,
and αd is defined as in section 2 (see Theorem 2.3). All these constants, in general,
depend on the discretization and on the dimension d of the considered domain Ω. To
simplify the notation, here we will focus on the two-dimensional case, where Ω is the
rectangle [0, 1] × [0, 1]. The extension to any connected finite union of rectangles in
any d dimension and therefore for the three-dimensional case (by just changing some
constants) can be performed with the same arguments. In the result below, d = 2
and centered differences are used for (1.1), γ1 → 2 for n → ∞, and γj → 1 j = 2, 3.
As usual, with λj(X) we denote the generic eigenvalue of a square matrix X.

Theorem 5.1. Under the assumptions of Theorem 4.1, λj

(
P−1Re(A)

)
belongs

to the interval[
minx∈Ω(a)

maxx∈Ω(a)
− 1

ν

αd

2γ2π2

||∇ · q||∞
minx∈Ω(a)

,
maxx∈Ω(a)

minx∈Ω(a)
+

1

ν

αd

2γ2π2

||∇ · q||∞
minx∈Ω(a)

]
.(5.1)

Similarly,

∣∣λj

(
P−1Im(A)

)∣∣ ∈ [0, (1 + π−3
) αd

ν
γ1 ||q||∞

maxx∈Ω(a)

[minx∈Ω(a)]2

]
.(5.2)

Proof. By (4.5) and the properties of the field of values, we have

Re
(
λj

(
P−1A

))
∈
[

min
x∈Cn\{0}

x∗Re(A)x

x∗Px
, max
x∈Cn\{0}

x∗Re(A)x

x∗Px

]
(5.3)

SPECTRAL ANALYSIS FOR CONVECTION-DIFFUSION 271

and

Im
(
λj

(
P−1A

))
∈
[

min
x∈Cn\{0}

x∗Im(A)x

x∗Px
, max
x∈Cn\{0}

x∗Im(A)x

x∗Px

]
.(5.4)

For the sake of clarity, we prove the statements through three progressive steps.
• Let a ∈ R and q ∈ R

d be constants in (1.1). Then, P ≡ Re(A) and

P−1A = I + iP−1Im(A).

Therefore, the real part of the eigenvalues of the preconditioned matrix is
equal to 1. Moreover, by using similar arguments as in [5, Theorem 3.2], we
have the following bound for λj(P

−1Im(A)):

∣∣λj

(
P−1Im(A)

)∣∣ ∈ [0, 1

ν
||q||∞ ·

(
1 + π−3

)
γ1

]
.

• Let q(x) = q be constant and a(x) > 0 in (1.1). The discretization of the
diffusive part Θ(a) is exactly Re(A). Therefore, by [23, Theorem 8.1],

λj

(
P−1Re(A)

)
∈
[

minx∈Ω(a)

maxx∈Ω(a)
,

maxx∈Ω(a)

minx∈Ω(a)

]
.(5.5)

Moreover, Ψ(q) ≡ iIm(A) (i.e., the discretization of the convective part is
exactly iIm(A)). As a consequence, by [5, Theorem 3.2, 3.3, and 3.4], we
have ∣∣λj

(
P−1Im(A)

)∣∣ ∈ [0, 1

ν
||q||∞ ·

maxx∈Ω(a)

[minx∈Ω(a)]2
(
1 + π−3

)
γ1

]
.(5.6)

• Finally, let us consider the general case, i.e., a(x) : Ω → R
+ and q(x) : Ω →

R
d. Recalling Theorem 2.3, we deduce

Re(A(a, q)) = Θ(a) + E, i Im(A(a, q)) = Ψ(q) − E,

x∗Re(A)x

x∗P x
=

x∗Θ(a)x

x∗P x
+

x∗Ex

x∗P x
,(5.7)

x∗Im(A)x

x∗P x
=

x∗Ψ(q)x

x∗P x
− x∗Ex

x∗P x
.(5.8)

By (3.1), we observe that

minλj(P) ≥ 2γ2π
2h2 min

x∈Ω
(a), maxλj(P) ≤ 8γ3 max

x∈Ω
(a),

and invoking Theorem 2.3 (i.e., ||E||2 ≤ h2αd‖∇ · q‖∞), that∣∣∣∣x∗Ex

x∗Px

∣∣∣∣ ≤ 1

ν

αd

2γ2π2

||∇ · q||∞
minx∈Ω(a)

.

Therefore, from (5.5), (5.7), and Theorem 2.3, we have (5.1). On the other
hand,

P−1Im(A) = − i

2
P−1 (Ψ(q) − Ψ(q)∗) ,(5.9)

272 D. BERTACCINI, G. H. GOLUB, AND S. SERRA-CAPIZZANO

and hence, by the same arguments as in [5, Theorem 3.4], we deduce

minx∈Ω(a)

[maxx∈Ω(a)]2
Z ≤ P−1/2Im(A)P−1/2 ≤

maxx∈Ω(a)

[minx∈Ω(a)]2
Z,(5.10)

with

Z = [A(1,Ω)]−1/2Im(A)[A(1,Ω)]−1/2.

Finally, by the similarity of the two sequences of matrices{
P−1Im(A)

}
n

and
{
P−1/2Im(A)P−1/2

}
n
,

and considering expressions (5.9), (5.10), and (5.8), Theorems 3.2 and 2.3,
and [5, Theorem 3.2], we infer (5.2), i.e., the desired result.

If q(x) is not a constant function, we note that the eigenvalues of the spectrum of
the preconditioned matrix can have negative real part if ||∇ · q||∞ is huge and/or ν is
small. This may slow down the initial phase of the convergence process of the Krylov
subspace projection method used to solve the underlying preconditioned linear system.
However, if the convection is overly dominant, a preconditioning strategy based on a
suitable upwind discretization can be used. The related eigenvalue analysis can be
adapted by using tools similar to those considered here.

6. Notes on the convergence of iterative methods.

6.1. The condition number of the eigenvector matrix. Here we will focus
on the case

q = [cos(φ) sin(φ)]T , 0 ≤ φ < π,

where φ is a constant angle; i.e., the wind is constant. In this case, the following result
holds true. For simplicity, here we focus on the case when N1 = N2 = · · · = Nd = n1/d,
where n is the size of A (uniform grid).

Lemma 6.1. Let q(x) and a(x) in (1.1) be constant and (1.1) be discretized with
centered differences. Then, the matrix P−1A is diagonalized by a set of n eigenvectors,
and if V is the matrix of the eigenvectors of P−1A, V can be chosen such that κ2(V) ∼
n1/d; moreover, if Ni ≈ αi,jNj for every i, j, and αi,j are universal constants, then
κ2(V) ≈ cn1/d, where c is a pure positive constant.

Proof. Under our assumptions, since q(x) and a(x) in (1.1) are constant, then
P ≡ Θ(1) and Ψ(q) is a skew-symmetric matrix. Moreover, the preconditioned matrix
P−1A can be written as

P−1A = (Θ(1))
−1 · (Θ(1) + Ψ(q)) = I + (Θ(1))−1Ψ(q) = I + (Θ(1))−1/2S(Θ(1))1/2,

where Θ(1) and Ψ(q) are the matrices generated by the discretization of the dif-
fusive and convective parts of (1.1), respectively. However, by construction S =

(Θ(1))
−1/2

Ψ(q) (Θ(1))
−1/2

is a skew-symmetric matrix since (Θ(1))−1/2 is a symmet-
ric positive definite matrix and Ψ(q) is a skew-symmetric matrix. Therefore, I + S is
normal because

(I + S)∗ · (I + S) = (I − S)(I + S) = I − S2,

SPECTRAL ANALYSIS FOR CONVECTION-DIFFUSION 273

which is the same matrix obtained as (I + S) · (I + S)∗. Consequently,

P−1A = (Θ(1))−1/2(I + S)(Θ(1))1/2

= (Θ(1))−1/2QDQ∗(Θ(1))1/2,

where D is diagonal (the eigenvalue matrix), Q is unitary, and V = (Θ(1))−1/2Q is
the eigenvector matrix. Since κ2(P

−1) = κ2((Θ(1))−1) ∼ n2/d (it is a classical result
on the discrete Laplacian; refer, e.g., to part 3 of Theorem 2.1), it directly follows that
κ2(V) = κ2((Θ(1))−1/2Q) = κ2((Θ(1))−1/2) ∼ n1/d. Moreover, if Ni ≈ αi,jNj for
every i, j and αi,j are universal constants, then κ2((Θ(1))−1) ≈ c2n2/d, where c is a
pure positive constant, and therefore κ2(V) = κ2((Θ(1))−1/2Q) = κ2((Θ(1))−1/2) ≈
cn1/d.

Note that if we could use P−1/2 as a split preconditioner instead of P as a left
(or right) preconditioner, then κ2(V) = 1 because P−1/2AP−1/2 = I + S is normal.
This, in theory, could have some relevance for the convergence (see the next section);
in practice we observed no changes.

6.2. Analysis of the convergence. To study the convergence of GMRES, we
report a few tools based on polynomials related to the minimal polynomial of the
matrix K of the underlying linear system, which have been introduced in [10].

Recall the bound on the convergence of GMRES (see [20, sections 6.11.2, 6.11.4]):

||rj ||2 ≤ κ2(V) · min
pj(0)=1

max
λ∈λ(K)

|pj(λ)| · ‖r0‖2,(6.1)

where λ(K) is the set of all the eigenvalues of the matrix K, κ2(V) is the spectral con-
dition number of the matrix of the eigenvectors of K, V is chosen to minimize κ2(V),
is and pj(z) is a polynomial of degree at most j. Note that, under the assumptions
of Lemma 6.1, we have κ2(V) = c n1/d, with c a universal constant.

Let us consider the preconditioned sequence {K = P−1A}n whose spectrum
{λ(K)}n is clustered (recall Corollary 4.4) and partition λ(K) as in [4]:

λ(K) = λ(c)(K) ∪ λ(0)(K) ∪ λ(1)(K),

where λ(c)(K) denotes the clustered set of eigenvalues of K and λ(0)(K) ∪ λ(1)(K)
denotes the set of the (distinct) outliers. We assume that the clustered set λ(c)(K) of
eigenvalues is contained in a convex set C whose closure must not contain the origin.

The sets

λ(0)(K) = {λ̂1, λ̂2, . . . , λ̂j0} and λ(1)(K) = {λ̃1, λ̃2, . . . , λ̃j1}

denoting two sets of j0 and j1 outliers, respectively, are defined as in [4]; i.e., if

λ̂j ∈ λ(0)(K), we have

1 <

∣∣∣∣∣1 − z

λ̂j

∣∣∣∣∣ ≤ cj ∀z ∈ C,

while, for λ̃j ∈ λ(1)(K),

0 <

∣∣∣∣∣1 − z

λ̃j

∣∣∣∣∣ < 1 ∀z ∈ C,

respectively.

274 D. BERTACCINI, G. H. GOLUB, AND S. SERRA-CAPIZZANO

From (6.1) and the above definitions, we have

min
pj(0)=1

max
z∈λ(K)

|pj(z)| ≤ max
z∈λ(K)

|p̂(z) · q(z) · p̃(z)|,(6.2)

where

p̂(z) =

(
1 − z

λ̂1

)
· · ·
(

1 − z

λ̂j0

)
, p̃(z) =

(
1 − z

λ̃1

)
· · ·
(

1 − z

λ̃j1

)

are the polynomials whose roots are the (distinct) outlying eigenvalues in λ(0)(K) ∪
λ(1)(K) and q(z) is a polynomial of degree at most j− j0 − j1 ≥ 0 such that q(0) = 1.
The polynomial q(z) can be chosen to be the shifted and scaled complex Chebyshev
polynomial q(z) = Ck((c−z)/d)/Ck(c/d) which is small on the set containing λ(c)(K);
see [20, sections 6.11.2, 6.11.4]. Therefore, by using the same arguments as in [4], we
have the following.

Theorem 6.2. The number of (full) GMRES iterations j needed to attain a
tolerance ε on the relative residual in the 2-norm ||rj ||2/||r0||2 for the preconditioned
linear system Kx = b (K is assumed diagonalizable) is bounded above by

min

{
j0 + j1 +

⌈
log(ε) − log(κ2(V))

log(ρ)
−

j0∑
�=1

log(c�)

log(ρ)

⌉
, n

}
,(6.3)

where

ρk =

(
a/d +

√
(a/d)2 − 1

)k
+
(
a/d +

√
(a/d)2 − 1

)−k

(
c/d +

√
(c/d)2 − 1

)k
+
(
c/d +

√
(c/d)2 − 1

)−k
,(6.4)

and the set C ∈ C
+ is the ellipse with center c, focal distance d, and major semi-axis

a.
The bound (6.3) suggests that there will be a latency of j0 + j1 steps before the

asymptotic behavior is observed. If j0 > 0, then there may be some additional delay
proportional to (

∑
l log cl)

−1
. In practice, the asymptotic convergence behavior will

not be manifested until the expression

max
z∈λ(c)(K)

|p̂(z) · p̃(z)|ρk

is less than 1, where k is the degree of the shifted and scaled Chebyshev polynomial.
Of course, these are theoretical arguments because ||pj || can be arbitrarily large,
and then no general statements can be made about how much larger the delay in
convergence can be in practice or when superlinear convergence sets in.

6.3. Examples and comments. In this section we report on a few experiments
with a centered difference discretization and constant coefficients for problem (1.1)
in order to compare the theoretical results and notes above. The preconditioner
P is implemented here in MATLAB by using a fast Poisson solver. Performances
(timings) can be improved with a multigrid-based fast Poisson solver, but this will be
considered in a future work together with more general test problems. Experiments are
performed with GMRES but we include also two-dimensional tests and (total) timings
with preconditioned and nonpreconditioned BiCGSTAB. In three or more dimensions,

SPECTRAL ANALYSIS FOR CONVECTION-DIFFUSION 275

Table 6.1

Preconditioned GMRES iterations for centered differences discretization of (1.1), two-
dimensional problem, q = [−

√
2/2

√
2/2]T , a = 1, ε = 10−6. In parentheses: nonpreconditioned

(full) GMRES iterations.

h \ ν 1/10 1/20 1/30 1/40 1/60 1/80
1/16 11(31) 18 (29) 23 (29) 27 (31) 35 (31) 44 (31)
1/32 11 (47) 17 (51) 23 (51) 27 (54) 36 (58) 47 (61)
1/64 10 (52) 15 (57) 21 (75) 25 (85) 35 (97) 45 (106)
1/128 8 (51) 13 (52) 19 (54) 23 (55) 31 (77) 43 (109)

Table 6.2

Preconditioned matrix-vector products (2 × iterations) for BiCGSTAB on centered differences
discretization of (1.1), two-dimensional problem, q = [−

√
2/2

√
2/2]T , a = 1, ε = 10−6. In

parentheses: nonpreconditioned BiCGSTAB matrix-vector products.

h \ ν 1/10 1/20 1/40 1/60 1/80
1/128 11 (447) 17 (427) 39 (483) 61 (499) 93 (400)
1/256 9 (786) 17 (817) 36 (929) 56 (967) 80 (981)
1/512 6 (785) 15 (1609) 31 (1935) 47 (1953) 71 (1963)
1/1024 5 (1873) 13 (†) 25 (†) 42 (†) 59 (†)

Table 6.3

Timings (in seconds) for BiCGSTAB on centered differences discretization of (1.1), two-
dimensional problem, q = [−

√
2/2

√
2/2]T , a = 1, ε = 10−6. In parentheses: nonpreconditioned

BiCGSTAB timings. Note that halving the stepsize means that the sizes of matrices are multiplied
by four.

h \ ν 1/10 1/20 1/40 1/60 1/80
1/128 1.2 (1.5) 4.5 (1.5) 4.3 (1.3) 6.2 (1.6) 8.8 (1.2)
1/256 3. (13.1) 6.2 (13.53) 31.1 (15.9) 20 (16) 30.9 (17)
1/512 7.9 (111) 19.7 (113) 40.4 (138) 56 (145) 82.3 (139)
1/1024 27.28 (1019) 62.2 (†) 120.5 (†) 191 (†) 248 (†)

fair timings require a more efficient implementation. For memory limitations, we
provide large tests for BiCGSTAB only. A dagger † in the tables means that the
solver does not converge after 1000 iterations (i.e., 1000 matrix-vector products for
GMRES and 2000 for BiCGSTAB).

Our experiments are performed under the assumptions of Lemma 6.1. By Theo-
rem 5.1, we have j0 = 0. Therefore, the delay for asymptotic convergence behavior is
mainly related to the number of distinct outlying eigenvalues. However, if ε is large
enough, GMRES may treat as multiple eigenvalues those which belong to λ(1), are
nondefective, and form small satellite clusters, as observed in [10]. In this case, the
above mentioned delay can be less than j1 iterations.

We stress that the presence of a proper cluster of eigenvalues means also that the
number of the outliers does not increase with N , provided that it is large enough,
and that their influence is limited to an initial delay for the asymptotic phase of
convergence.

In Tables 6.1, 6.2, and 6.3, we report the number of preconditioned and non-
preconditioned GMRES iterations for the underlying two-dimensional problem with

q = [−
√

(2)/2
√

(2)/2]T ,

a = 1, ε = 10−6 for h = 1/16 to h = 1/128, and ν = 1/10 to ν = 1/80, and similarly
for BiCGSTAB. The boundary conditions in (1.1) are

u(0, y) = u(1, y) = 1, 0 < y < 1; u(x, 0) = u(x, 1) = 0, 0 < x < 1.

276 D. BERTACCINI, G. H. GOLUB, AND S. SERRA-CAPIZZANO

Table 6.4

Preconditioned GMRES iterations for centered differences discretization of (1.1), three-
dimensional problem with q = [1/

√
3 1/

√
3 1/

√
3]T , a = 1, ε = 10−6. In parentheses: non-

preconditioned (full) GMRES iterations.

h \ ν 1/10 1/20 1/30 1/40 1/60 1/80
1/8 12 (25) 17 (23) 22 (21) 26 (25) 33 (31) 40 (37)
1/16 12 (51) 18 (50) 24 (48) 29 (47) 38 (45) 49 (50)
1/32 11 (93) 17 (97) 23 (97) 28 (97) 38 (95) 49 (94)

In Table 6.4 we report similar tests with the three-dimensional problem using GMRES
but with

q = [1/
√

3 1/
√

3 1/
√

3]T ,

and the boundary conditions are u(0, 0, 0) = 1 and zero elsewhere. Similar results are
obtained with other Dirichlet boundary conditions.

We note that halving the stepsize means that the sizes of matrices are multiplied
by four. The theoretical computational cost is O(N), where the mesh is equispaced,
and thus N = nd, with d the dimension of the domain. However, we can see that
when we halve the stepzise, timings for preconditioned iterations (see Table 6.3, where
d = 2) are always less than quadruple.

6.4. Convergence and the viscosity parameter. In the analysis performed
in section 5 we observed that, if q in (1.1) is constant, then the imaginary parts of the
eigenvalues of the preconditioned matrix are proportional to ν−1; see Theorem 5.1.
Moreover, the number of the distinct outliers does not depend on ν or on the mesh,
but it does depend on the choice of the function q; see the results on the existence
of a proper cluster in the previous sections. For example, if a(x) is also constant, we
have

β = max
j

{
∣∣Im (λj(P

−1A)
)∣∣} =

c

ν
,

where c is a universal positive constant. Another evidence of this can be found in
Figures 4.1 and 4.2.

Moreover, by denoting with β the radius of the cluster and provided that β > 0,
with the notation of Theorem 6.2, the contribution to the number of the iterations of
the eigenvalues in the cluster is bounded from above by

log(ε)

log(ρ)
= c′

log(ε)
−1
1+β

= c′(1 + β) log(ε−1).(6.5)

Here, c′ is a pure positive constant which takes into account that ρ is approximated
by

ρ̃ =
β

1 +
√

1 + β2
<

β

1 + β
= 1 − 1

1 + β

and that, provided that β > 0, log(ρ) is approximated by the Taylor expansion of
log(ρ̃), with ρ̃ being defined as above. Again, note that we are in the hypotheses of
Lemma 6.1, and then the convergence is dictated by the distribution of the eigenval-
ues. Therefore, the number of iterations is expected to grow with ν−1. However, in
practice, the number of iterations seems to be proportional to

√
ν−1 (see Tables 6.1

SPECTRAL ANALYSIS FOR CONVECTION-DIFFUSION 277

and 6.4), and this behavior is confirmed for various functions a(x) and q(x); see also
the numerical experiments in [6].

The above discussion was done under restrictive hypotheses. However, the expe-
rience of several different choices of functions a(x) and q(x) and values of the viscosity
parameter ν (always such that the hypotheses of Theorem 4.1 are satisfied) suggests
that the number of the iterations depends on a function of ν−1, even under more
general assumptions, but it is independent of the mesh and of the dimension d of
problem (1.1).

7. Conclusions. The purpose of this work was to explore some properties of
the preconditioned operator P−1A, where P is defined in (3.1) and A is the matrix
generated by a finite difference discretization (using centered differences or upwind)
of the convection-diffusion equation (1.1). In particular, we proved the existence of a
cluster in the spectrum of {P−1A}n and gave a bound for the condition number of
the matrix of the eigenvector. Moreover, we found that eigenvalue distribution and
convergence rates are independent of the discretization mesh size and of the dimension
of the problem but do depend (weakly) on ν−1.

Indeed, beside the spectral theoretical analysis of the preconditioned structures,
we stress that our technique can be easily implemented. In fact, the ingredients are
constituted by the following blocks: a Krylov method (e.g., GMRES, BiCGSTAB,
etc.), a matrix vector routine (for sparse or even diagonal matrices), and a solver
for the related diffusion equation with a constant coefficient (a method based, e.g.,
on the cyclic reduction approach [9, 14] or on multigrid methods [27, 19] for which
professional software is available). Of course, if the convection part is dominating,
then the considered approach can be enriched by alternating the discussed diffusion-
based preconditioning with a preconditioner for an upwind discretization. At this
point, we recall that the idea of using, e.g., a multigrid (for a simpler differential
problem) as a preconditioner in a Krylov-type method is quite classical, as it emerges
in [18, 27]. In this direction, we must quote the following statements from Greenbaum
[18, subsection 12.1.5, p. 197]:

Some multigrid aficionados will argue that if one has used the proper
restriction, prolongation, and relaxation operators, then the multi-
grid algorithm will require so few cycles . . . that it is almost point-
less to try to accelerate it with CG-like methods. This may be
true, but unfortunately such restriction, prolongation, and relaxation
schemes are not always known. In such cases, CG, GMRES QMR,
or BiCGSTAB acceleration may help.

Equivalently, one can consider multigrid as a preconditioner for
one of these Krylov subspace methods.

A future work will be in the direction of combining different iterative solvers
(the multi-iterative idea [21]) and more specifically we would like (A) to use the
preconditioner considered in this paper as one of the smoothers for a V-cycle directly
in the original problem; (B) to make a comparison between the present approach and
the one in (A); and (C) to enrich the analysis in the case of convection-dominated
problems in order to achieve more robustness.

Acknowledgments. We are grateful to the referees for useful comments which
have improved this presentation.

278 D. BERTACCINI, G. H. GOLUB, AND S. SERRA-CAPIZZANO

REFERENCES

[1] Z. Z. Bai, G. H. Golub, and M. K. Ng, Hermitian and Skew-Hermitian splitting methods for
non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003),
pp. 603–626.

[2] M. Benzi and G. H. Golub, A preconditioner for generalized saddle point problems, SIAM
J. Matrix Anal. Appl., 26 (2004), pp. 20–41.

[3] D. Bertaccini and M. K. Ng, The convergence rate of block preconditioned systems arising
from LMF-based ODE codes, BIT, 41 (2001), pp. 433–450.

[4] D. Bertaccini and Michael K. Ng, Band-Toeplitz preconditioned GMRES iterations for
time-dependent PDEs, BIT, 40 (2003), pp. 901–914.

[5] D. Bertaccini, G. H. Golub, S. Serra-Capizzano, and C. Tablino-Possio, Preconditioned
HSS methods for the solution of non-Hermitian positive definite linear systems and applica-
tions to the discrete convection-diffusion equation, Numer. Math., 99 (2005), pp. 441–484.

[6] D. Bertaccini, G. H. Golub, and S. Serra-Capizzano, Analysis of a Preconditioned Itera-
tive Method for the Convection-Diffusion Equation, preprint SCCM-03-13, Stanford Uni-
versity, Stanford, CA, 2003. Available online at http://www-sccm.stanford.edu/wrap/pub-
tech.html.

[7] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[8] A. Böttcher and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices,

Springer-Verlag, New York, 1998.
[9] B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson’s

equations, SIAM J. Numer. Anal., 7 (1970), pp. 627–656.
[10] S. L. Campbell, I. C. F. Ipsen, C. T. Kelley, and C. D. Meyer, GMRES and the minimal

polynomial, BIT, 36 (1996), pp. 664–675.
[11] P. Concus and G. H. Golub, Use of fast direct methods for the efficient numerical solution

of nonseparable elliptic equations, SIAM J. Numer. Anal., 10 (1973), pp. 1103–1120.
[12] P. Concus and G. Golub, A generalized conjugate gradient method for nonsymmetric systems

of linear equations, in Computing Methods in Applied Sciences and Engineering, Lecture
Notes in Econom. and Math. Systems 134, Springer, Berlin, 1976, pp. 56–65.

[13] P. Concus, G. H. Golub, and G. Meurant, Block preconditioning for the conjugate gradient
method, SIAM J. Sci. Stat. Comput., 6 (1985), pp. 220-252.

[14] F. W. Dorr, The direct solution of the discrete Poisson equation on a rectangle, SIAM Rev.,
12 (1970), pp. 248–263.

[15] H. C. Elman and M. H. Schultz, Preconditioning by fast direct methods for nonself-adjoint
nonseparable elliptic equations, SIAM J. Numer. Anal., 23 (1986), pp. 44–57.

[16] H. C. Elman, D. J. Silvester, and A. J. Wathen, Performance and analysis of saddle point
preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90
(2002), pp. 641–664.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, 1996.

[18] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.
[19] W. Hackbusch, Multigrid Methods and Applications. Springer-Verlag, Berlin, 1985.
[20] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[21] S. Serra Capizzano, Multi-iterative methods, Comput. Math. Appl., 26 (1993), pp. 65–87.
[22] S. Serra Capizzano, On the extreme eigenvalues of Hermitian (block) Toeplitz matrices,

Linear Algebra Appl., 270 (1998), pp. 109–129.
[23] S. Serra Capizzano, The rate of convergence of Toeplitz based PCG methods for second order

nonlinear boundary value problems, Numer. Math., 81 (1999), pp. 461–495.
[24] S. Serra-Capizzano, D. Bertaccini, and G. H. Golub, How to deduce a proper eigenvalue

cluster from a proper singular value cluster in the nonnormal case, SIAM J. Matrix Anal.
Appl., 27 (2005), pp. 82–86.

[25] S. Serra Capizzano and C. Tablino Possio, Preconditioning strategies for 2D finite differ-
ence matrix sequences, Electr. Trans. Numer. Anal., 16 (2003), pp. 1–29.

[26] S. Serra Capizzano and C. Tablino Possio, Superlinear preconditioners for finite differences
linear systems, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 152–164.

[27] U. Trottenberg, C.W. Oosterlee, and A. Schüller, Multigrid, Academic Press, London,
2001.

[28] H. A. van der Vorst and C. Vuik, The superlinear convergence behavior of GMRES, J.
Comput. Appl. Math., 48 (1993), pp. 327–341.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 279–301

INVERSE SPECTRAL PROBLEMS FOR SEMISIMPLE DAMPED
VIBRATING SYSTEMS∗

PETER LANCASTER†

This paper is dedicated to the memory of Miron Tismenetsky, a good friend and colleague

Abstract. Computational schemes are investigated for the solution of inverse spectral problems
for n× n real systems of the form L(λ) = Mλ2 +Dλ+K. Thus, admissible sets of data concerning
systems of eigenvalues and eigenvectors are examined, and procedures for generating associated
(isospectral) families of systems are developed. The analysis includes symmetric systems, systems
with mixed real/nonreal spectrum, systems with positive definite coefficients, and hyperbolic systems
(with real spectrum). A one-to-one correspondence between Jordan pairs and structure preserving
similarities is clarified. An examination of complex symmetric matrices is included.

Key words. inverse problems, vibrating systems, structure preserving transformations

AMS subject classifications. Primary, 74A15; Secondary, 15A29

DOI. 10.1137/050640187

1. Introduction. Inverse eigenvalue problems are addressed here in the context
of vibrating systems which, for our present purposes, are defined as follows.

Definition 1. A (vibrating) system is a triple of n×n real matrices {M, D, K}
for which M is nonsingular.

Many problems of physical interest also require that some or all of the coefficients
M, D, K be symmetric and positive definite or semidefinite (see [2] and [16], for
example).

In this paper, an idea introduced in [10] is extended from the restriction to systems
with purely nonreal spectrum to the full range of real and nonreal spectrum, but with
the continuing limitation (seen as nonrestrictive by many in the field) to semisim-
ple eigenvalues; i.e., an eigenvalue of multiplicity m ≥ 1 has m associated linearly
independent eigenvectors. This hypothesis has the added advantage that analysis is
simplified considerably. The generation of real systems, real symmetric systems, and
systems with positive semidefinite or positive definite coefficients will be considered,
in this order.

First, it is necessary to summarize the spectral properties admitted in this analy-
sis. Since the systems of interest have real coefficients, the eigenvalues may be real or
may appear in complex conjugate pairs. All eigenvalues are required to be semisimple
for both real and nonreal eigenvalues. The set of all the eigenvalues, both real and
complex, is denoted by σ.

The central problem considered here is, given an admissible set of spectral data
(real and complex eigenvalues and, where required, a sign characteristic), to construct
a family of systems consistent with this data. Another closely related problem is,

∗Received by the editors September 12, 2005; accepted for publication (in revised form) by Q. Ye
August 4, 2006; published electronically February 9, 2007. Much of this work was done while the
author held an Honorary Research Fellowship in the School of Mathematics at the University of
Manchester. The author gratefully acknowledges partial support from the Natural Sciences and
Engineering Research Council of Canada.

http://www.siam.org/journals/simax/29-1/64018.html
†Department of Mathematics and Statistics, University of Calgary, Calgary, AB, T2N 1N4,

Canada (lancaste@ucalgary.ca).

279

280 PETER LANCASTER

given a real system (with spectral data implicitly defined), to construct a family of
systems consistent with this data. In both cases the objective is the construction of
isospectral families of systems; i.e., each member of the family has spectrum σ and it
is semisimple.

For the second formulation, in particular, it is natural to reformulate the problem
in terms of the well-known companion matrices, in which case all eigenvalues, at
least, are preserved by similarity transformations. This, in turn, leads to the notion of
structure preserving similarities, which have been discussed elsewhere (in [10] and [15],
for example) and which are developed further in sections 2 and 3. In section 4 these
ideas are re-examined in terms of Jordan pairs (see Theorem 3), and this leads to
constructions for families of real systems in section 5.

The study of symmetric systems (in which M, D, K are real and symmetric) is
taken up in sections 6 and 7. A strategy is adopted in which the real eigenvectors are
assigned (subject to some necessary constraints) and then the eigenvectors for nonreal
eigenvalues are determined from them. This requires the symmetric factorization of a
complex symmetric matrix and is accomplished with the aid of Takagi’s factorization
(section 7 and Appendix A). This also requires some detailed knowledge of the rank
of complex symmetric matrices which is presented in Appendix C.

Hypotheses that ensure the positivity conditions of M, D, K are the subject of
section 8, where Theorem 5 is the central (new) result. Systems with all eigenvalues
real (quasi hyperbolic or overdamped, for instance) are the subject of section 9, where
Corollary 6 is the main contribution.

2. Massaging the spectrum. If the system is n× n, then 2r real eigenvalues
are admitted (0 ≤ r ≤ n). The nonreal eigenvalues in the upper half of the complex
plane are determined by a complex diagonal matrix Λ = U1+iW of size (n−r)×(n−r)
with W > 0. Their complex conjugates are also eigenvalues and make up the diagonal
entries of Λ̄. Then there are 2r real eigenvalues which are distributed between the
diagonal entries of two r × r real diagonal matrices U2 and U3. The way in which
these two matrices are formed will be discussed in what follows.

A complex (canonical) diagonal 2n × 2n matrix including all the eigenvalues is
now

J =

⎡⎢⎢⎣
Λ 0 0 0
0 U2 0 0
0 0 U3 0
0 0 0 Λ̄

⎤⎥⎥⎦ =

⎡⎢⎢⎣
U1 + iW 0 0 0

0 U2 0 0
0 0 U3 0
0 0 0 U1 − iW

⎤⎥⎥⎦ .(1)

Defining Ω2
1 = U2

1 + W 2, it is easily seen that there is an associated (diagonal, real
symmetric) vibrating system:

L0(λ) := λ2In − 2λ

[
U1 0
0 1

2 (U2 + U3)

]
+

[
Ω2

1 0
0 U2U3

]
.(2)

It is simply a direct sum of the two diagonal systems

λ2In−r − 2λU1 + Ω2
1 = (λIn−r − Λ)(λIn−r − Λ)

and

λ2I2r − λ(U2 + U3) + U2U3 = (λIr − U2)(λIr − U3)

with nonreal and real eigenvalues, respectively.

INVERSE PROBLEMS FOR VIBRATING SYSTEMS 281

Construct the abbreviations

U =

[
U1 0
0 1

2 (U2 + U3)

]
and Ω2 =

[
Ω2

1 0
0 U2U3

]
(3)

so that (2) takes the form

L0(λ) = λ2I − 2λU + Ω2.

Now a particular linearization of L0(λ) is λI2n − C0, where C0 is the associated
companion matrix :

C0 :=

[
0 In

−Ω2 2U

]
.(4)

Our objective is to generate vibrating systems whose companion matrices are similar
to C0, and which, consequently, are isospectral.

A first step in the analysis is to show that, under a weak assumption on the
distribution of the real eigenvalues, an explicit similarity can be formulated which
transforms the companion matrix C0 into the diagonal matrix, J , of its eigenvalues.
First, define a 2n× 2n block matrix in terms of the blocks of J :

Z =

⎡⎢⎢⎣
Λ̄ 0 0 −In−r

0 −U3 Ir 0
0 −U2 −Ir 0
Λ 0 0 −In−r

⎤⎥⎥⎦ .(5)

Lemma 1. Let real eigenvalues be prescribed in such a way that

det(U2 − U3) �= 0.(6)

Then Z (as defined above) is nonsingular and, with the diagonal matrix J of (1),

ZC0Z
−1 = J.(7)

Proof. Elementary block operations can be applied to Z to reduce it to the block
triangular form ⎡⎢⎢⎣

−2iW 0 In−r 0
0 U2 − U3 0 Ir
0 0 −In−r 0
0 0 0 Ir

⎤⎥⎥⎦ .

Since W > 0, it is apparent that Z is nonsingular if and only if condition (6) is
satisfied.

Then write C0 in partitioned form consistent with that of Z:

C0 =

⎡⎢⎢⎣
0 0 In−r 0
0 0 0 Ir

−Ω2
1 0 2U1 0

0 −U2U3 0 U2 + U3

⎤⎥⎥⎦ .

Now a simple calculation with block matrices shows that ZC0 = JZ. Thus, when (6)
holds, Z is nonsingular and ZC0Z

−1 = J .
Notice that condition (6), together with our standing hypotheses, ensures that

the systems investigated here are regular in the sense of Definition 8 of [15]. These
conditions also appear in Theorem 7 of [14].

282 PETER LANCASTER

3. Structure preserving similarities. The following two-part definition re-
flects a definition introduced in the paper [10]. The underlying idea concerns sim-
ilarity transformations of C0 which preserve the companion matrix structure (and,
necessarily, the spectrum, σ). For brevity, the term “SPS” (for structure preserving
similarity) is introduced.

Definition 2. A matrix V ∈ R
2n×2n is said to define an SPS of C0 if the matrix

C := V C0V
−1 = V

[
0 In

−Ω2 2U

]
V −1(8)

is a block companion matrix, i.e., C can be partitioned into n× n blocks:

C =

[
0 In

C21 C22

]
.

It is clear that all matrices C of (8) determined by an SPS are isospectral with
spectrum σ. Furthermore, the corresponding vibrating systems are isospectral and
have real coefficients.

A simple lemma from [10] will be useful.
Lemma 2 (see [10]). A nonsingular V ∈ R

2n×2n (with n × n partitions Vij)
defines an SPS of C0 if and only if

V21 = −V12Ω
2 and V22 = V11 + 2V12U.(9)

Proof. With V nonsingular, (8) is equivalent to

CV = V

[
0 In

−Ω2 2U

]
.

Comparing blocks, it is found that C11 = 0 and C12 = In if and only if (9) holds.
Example 1. A simple class of SPS is defined by matrices

V =

[
A 0
0 A

]
,

where A is nonsingular. These transformations generate a narrow class of systems
which are similar to the canonical system and for which the coefficients M, D, K
commute.

Example 2. Another class of SPS is generated by nonsingular matrices V which
commute with C0. They could be described as “automorphisms” because they satisfy
V C0V

−1 = C0; they transform C0 into itself. Our interest is in transformations for
which the greatest possible freedom in the coefficients is achieved (consistent with
preservation of the spectrum).

4. Jordan pairs and SPS. A right eigenvector (say, xj �= 0) can be associated
with each diagonal entry of J (each eigenvalue), and these form the columns of an
associated n × 2n matrix of eigenvectors, say, X. More generally, if X ∈ C

n×2n, the
pair (X, J) (with J as in (1)) forms a Jordan pair if [X

XJ] is nonsingular.1 It is well
known (see [4], [9], or Chapter 14 of [12], for example) that a Jordan pair, together
with a mass matrix M , defines a system completely.

1This guarantees, in particular, that every column of X (every eigenvector) is nonzero.

INVERSE PROBLEMS FOR VIBRATING SYSTEMS 283

Here, with our hypotheses on the spectrum, we may define an n × 2n matrix of
eigenvectors of L(λ) in the form

X =
[
Xc XR1 XR2 Xc

]
,(10)

where Xc is an n × (n − r) matrix of (generally) nonreal eigenvectors corresponding
to the eigenvalues in Λ1, and matrices XR1 and XR2 are n × r real matrices of
eigenvectors corresponding to the real eigenvalues in U2 and U3, respectively. Note
that the structure of X is consistent with that of J in (1).

The following theorem establishes a one-to-one connection between Jordan pairs
constructed in this way and matrices V which define SPS transformations of C0 as
defined in Definition 2.

Theorem 3. Let J be a diagonal Jordan form as in (1) for which det(U2−U3) �=
0.

(a) If X is any matrix of the form (10) for which (X, J) form a Jordan pair,
then with Z defined by (5),

V =

[
X
XJ

]
Z(11)

defines an SPS of C0.
(b) Conversely, if V defines an SPS of C0 and Z is defined by (5), then there is

an X of the form (10) such that (11) holds (and, hence, (X, J) is a Jordan pair).
Proof. By definition of a Jordan pair and using Lemma 1, it is found that V

of (11) is nonsingular. Then compute with block matrices to find

V21 =
[

(Xc + Xc)Ω
2
1 −(XR1 + XR2)U2U3

]
,

V12 =
[
−(Xc + Xc) XR1 + XR2

]
,

and it can be checked that V21 = −V12Ω
2. Similarly, it is found that

V11 =
[
XcΛ + XcΛ −XR1U3 −XR2U2

]
,

V22 =
[
−(XcΛ + XcΛ) XR1U2 + XR2U3

]
,

and, finally, that V22 = V11 + 2V12U . Now part (a) follows from Lemma 2, provided
that V is a real matrix.

However, using (5), it follows that

(12)

V =

[
Xc XR1 XR2 Xc

XcΛ1 XR1U2 XR2U3 XcΛ

]
Z

=

[
XcΛ + XcΛ −XR1U3 −XR2U2 XR1 + XR2 −(Xc + Xc)
(Xc + Xc)Ω

2
1 −(XR1 + XR2)U2U3 XR1U2 + XR2U3 −(XcΛ1 + XcΛ1)

]
and is clearly a real matrix (as Definition 2 requires).

For the converse, observe first that, under condition (6), C0Z
−1 = Z−1J , and it

follows from this equation that the columns of Z−1 are right eigenvectors of C0. If V
defines an SPS of C0, then using the defining equation (8),

C = V Z−1J(V Z−1)−1.(13)

284 PETER LANCASTER

Thus, the columns of V Z−1 are eigenvectors of C. Since C has the same spectrum as
C0 (and J), this matrix of eigenvectors can be written in the form

V Z−1 =

[
X
XJ

]
=

[
Xc XR1 XR2 Xc

XcΛ XR1U2 XR2U3 XcΛ

]
.(14)

Thus, X has the required form and, since V Z−1 is nonsingular, (X, J) form a Jordan
pair.

5. Generating real isospectral systems. Computational procedures for gen-
erating isospectral families of real systems can be formulated from the preceding
analysis. This is done first in the language of SPS, and then in terms of Jordan pairs.

1. Fix the diagonal matrix of eigenvalues, J , with the form (1). Form matrices
Z of (5) and C0 of (4).

2. Assign the n×2n matrix of eigenvectors, X with the form (10), in such a way
that (X, J) form a Jordan pair. (Clearly, this can be done in many ways.)

3. Compute V = [X
XJ]Z.

4. Compute C = V C0V
−1 and read off the submatrices M−1K = −C21 and

M−1D = −C22.
5. Assign a nonsingular real mass matrix M and compute K = −MC21, D =

−MC22.
The alternative procedure is based on the notion of a Jordan triple. Thus, given

the Jordan pair of item 2 above, assign a real nonsingular mass matrix M and deter-
mine a 2n× n matrix Y satisfying[

X
XJ

]
Y =

[
0

M−1

]
,(15)

and (X, J, Y) is known as a Jordan triple.
When Y has been determined, the moments

Γj = XJjY, j = 0, 1, 2, 3,(16)

can be formed, and the system coefficients can be defined recursively in terms of the
moments (see Theorem 2 of [9], for example):

M = Γ−1
1 , D = −MΓ2M, K = −MΓ3M + DΓ1D.(17)

The alternative procedure for generating an isospectral family of real systems is
now as follows:

1. Fix the diagonal matrix of eigenvalues, J , with the form (1).
2. Assign the n×2n matrix of eigenvectors, X with the form (10), in such a way

that (X, J) form a Jordan pair. (Clearly, this can be done in many ways.)
3. Assign a nonsingular real mass matrix M and solve (15) for Y .
4. Compute the moments (16) and hence the coefficients D and K from (17).

Consider first an obvious construction of isospectral systems. Given a set of eigen-
values with self-conjugate symmetry (as in (1)), the diagonal system L0(λ) of (2) has
this spectrum. Then a class of real isospectral systems is obtained by applying a real
strict equivalence transformation to L0(λ). Indeed, a class of real symmetric (resp.,
Hermitian) systems can be generated by applying a real (resp., complex) congruence.
However, it is easily seen that with any of these constructions, each pair of eigenvalues
determined by a diagonal entry of L0(λ) has a common eigenspace of dimension at

INVERSE PROBLEMS FOR VIBRATING SYSTEMS 285

least one. This property is generally unnatural for systems of physical origin, and our
interest is in more general constructions.

Example 3. We will construct a 4 × 4 real system with 4 real eigenvalues and
4 nonreal eigenvalues. Take a Jordan matrix of the form (1) with blocks

Λ = diag[−1 + i, −4 + i], U2 = diag[−0.5, −1], U3 = diag[−3,−4].

Then take a matrix X of the form (10) with blocks

Xc =

⎡⎢⎢⎣
0.0625(1 − i) (0.6)(1 − 0.1i)
0.2500(1 − i) (0.6)(1 − 0.1i)
0.5625(1 − i) 0
1.0000(1 − i) (−1)(1 − 0.1i)

⎤⎥⎥⎦ ,

XR1 =

⎡⎢⎢⎣
1 1
1 −1
1 1
1 −1

⎤⎥⎥⎦ , XR2 =

⎡⎢⎢⎣
1 1
1 1

−1 1
−1 −1

⎤⎥⎥⎦ .

It is found that this data generate the real monic system with

D =

⎡⎢⎢⎣
−6.0008 6.5981 5.8527 −4.4416
−8.4540 8.7557 6.1483 −4.6190

7.2668 −8.8863 6.8695 −0.9717
22.9877 −21.5283 −5.2094 8.8756

⎤⎥⎥⎦ ,

K =

⎡⎢⎢⎣
−20.7791 15.4356 19.5039 −13.4062
−22.8678 16.8592 20.4793 −13.8052

1.2225 −7.0538 11.2192 −3.4988
35.3128 −32.9667 −18.4409 18.4076

⎤⎥⎥⎦ .

These calculations can then be checked by showing that the eigenvalues of this
monic system are, indeed, those specified in J .

6. Symmetric systems, part 1. The next objective is, of course, to determine
the matrices V defining an SPS of C0, and which also generate symmetric systems.
The question of when these coefficients satisfy positivity conditions will be considered
later.

At this point it is necessary to introduce the rather subtle notion of the sign
characteristic2 associated with the real eigenvalues. (The reader is referred to the
references listed in the footnote for formal definitions, but for the uninitiated, Ap-
pendix B gives an intuitive introduction to this important notion.) For systems with
symmetries it is not enough to allocate arbitrary real eigenvalues; the invariants of
the sign characteristic must also be specified. With our hypotheses on the spectrum,
this can be accomplished by introducing the matrix

P =

⎡⎢⎢⎣
0 0 0 In−r

0 Ir 0 0
0 0 −Ir 0

In−r 0 0 0

⎤⎥⎥⎦ .(18)

2See [3], [4], [9], and the expository Appendix B to this paper.

286 PETER LANCASTER

Notice that, with J of the form (1), (PJ)∗ = PJ . Thus, although J is generally not
Hermitian, PJ is so.

Symmetry of the coefficients of the system follows if a symmetric M is chosen
and, also, if Y = PX∗ is the only solution of (15). For then the Γ’s are Hermitian
and, using (17), so are D and K (and when this is the case, (X, J, PX∗) is said to be
a self-adjoint Jordan triple). If, in addition, X has the block structure of (10), then
the moments and the system coefficients will be real and symmetric.

Thus, if a self-adjoint triple is to be constructed, then (see (15)) XY = XPX∗ =
0. Thus, once admissible matrices J and P have been assigned, the crux of the
problem is to find an X such that XPX∗ = 0 and X(PJ)X∗ is nonsingular. In [9] a
geometric approach is taken for the determination of such matrices X. Here, attention
is focused on real systems so that the structure of (10) is also to be imposed on X.
In this case, XPX∗ = 0 can be written in the form

XcX
T
c + XcXT

c = −XR1X
T
R1 + XR2X

T
R2.(19)

Now this equation simply says that the real part of the matrix XcX
T
c takes the value

1
2 (−XR1X

T
R1 + XR2X

T
R2) and does not constrain the imaginary part.

Consequently, it follows from (19) that

XcX
T
c = R1 − iR,(20)

where

R1 :=
1

2
(−XR1X

T
R1 + XR2X

T
R2) =

[
XR1 XR2

] [−Ir 0
0 Ir

][
XT

R1

XT
R2

]
(21)

and R is a real symmetric matrix.
Notice also that, if R1− iR is designed to have rank n−r, then rank(Xc) ≥ n−r.

(To see that equality need not be the case, consider the product A0A
T
0 where A0 =[

1 i
i −1

]
.)

The broad strategy suggested here is to assign all the real eigenvectors, and hence
the matrix R1. Generically, it can be expected that the eigenvectors associated with
the eigenvalues in the upper half-plane will be linearly independent. Thus, the matrix
Xc ∈ C

n×(n−r) of (10) will have full rank, n− r. Now there is a standard method for
finding a symmetric factorization of a complex symmetrix matrix (as required in (20)),
in which the rank of the factors is equal to that of the given right-hand side. So the
problem reduces to the following: Given R1, with rank determined by the choice of
real eigenvectors, find an R such that R1 − iR has rank n− r.

The “standard method” for symmetric factorization referred to above was de-
veloped by Takagi in the 1920s. A quick introduction, based on the exposition and
algorithm of [1], is given in Appendix A of this paper.

It is instructive to consider a simple example at this stage.
Example 4. We construct a 2 × 2 system with two real eigenvalues and one

complex pair. The spectral data are

J =

⎡⎢⎢⎣
−2 + i 0 0 0

0 −1 0 0
0 0 −2 0
0 0 0 −2 − i

⎤⎥⎥⎦ , P =

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 −1 0
1 0 0 0

⎤⎥⎥⎦ .

INVERSE PROBLEMS FOR VIBRATING SYSTEMS 287

(a) We first prescribe the real eigenvectors:

XR1 =

[
1
0

]
, XR2 =

[
0
1

]
.

Then calculate to find

R1 =
1

2
(−XR1X

T
R1 + XR2X

T
R2) =

[
− 1

2 0
0 1

2

]
.

Choosing

R =

[
0 1

2
1
2 0

]
yields the rank one matrix

R1 − iR =
1

2

[
−1 −i
−i 1

]
,

and this has the factorization (cf. (20)) R1 − iR = XcX
T
c , where

Xc =
1√
2

[
−i
1

]
.

Now compute with (16) and (17) to find the real symmetric system

M =

[
0 1
1 −1

]
, D =

[
1 3
3 −5

]
, K =

[
1 2
2 −6

]
,

and it can be checked that the spectrum is, indeed, that prescribed.
(b) In contrast to (a), if XR1 = XR2 = [10], then R1 = 0 and R is chosen so that

R1 − iR has rank one, say R =
[
0 0
0 −1

]
, so that R1 − iR =

[
0 0
0 i

]
, in which case we

take

Xc =

[
0

eiπ/4

]
=

[
0

1√
2
(1 + i)

]
and

X =

[
0 1 1 0

1√
2
(1 + i) 0 0 1√

2
(1 − i)

]
.

Following the steps above, it is found that this determines the diagonal system,

M =

[
1 0
0 − 1

2

]
, D =

[
3 0
0 −2

]
, K =

[
2 0
0 −5

2

]
.

The fact that the system is diagonal can be attributed to the choice of linearly de-
pendent real eigenvectors (see the discussion before Example 3).

An interesting feature of Example 4 is the fact that R is first chosen to reduce the
rank of R1 − iR relative to that of R1. Clearly, this was necessary, as Xc must have
rank one. In the second case, R is chosen to augment the rank of R1. Features of
this kind are a major difficulty in the design of a general strategy for finding solutions
to (19). Notice also that the necessary condition that X have full rank was guaranteed
by our choice of the real eigenvectors the first time around, but not the second.

Another approach to the determination of solutions of (19) begins with assigning
a complex matrix of eigenvectors Xc and then solving (19) for real matrices XR1 and
XR2. This line of attack is postponed to a future investigation.

288 PETER LANCASTER

7. Symmetric systems, part 2. The problem of finding matrices X of the
form (10) which also satisfy XPX∗ = 0 has been reformulated in the form of (20),
where R1 is given by (21). This matrix is to be assigned, and then a real symmetric
matrix R is to be chosen in such a way that R1 − iR has rank n− r. To ensure that
both real and nonreal eigenvalues appear, it is assumed that 1 ≤ r ≤ n− 1.

It appears that the rank of R1 can take any value between zero (when XR2 = XR1)
and n (when the real eigenvectors span the whole space). A complete understanding
of our problem seems to require knowledge of the connections between

rank(R1), rank(R), and rank(R1 − iR).

As this seems not to be well known, the details are provided in Appendix C. In
particular, Theorem 9 shows that, to achieve

n− r = rank(R1 − iR) < rank(R1),

which can certainly be physically reasonable, R must be chosen so that ±i become
eigenvalues of the real symmetric pencil R1 − λR. Now this phenomenon arose in
Example 4, apparently fortuitously! But, in fact, Theorem 9 shows that this choice
of R was essentially unique.

More generally, notice that although the factor[
−Ir 0
0 Ir

]
in (21) has rank 2r, the “modified” matrix[

−Ir iIr
iIr Ir

]
has rank r with eigenvalues ±i repeated r times. Thus, by choosing

R =
[
XR1 XR2

] [0 Ir
Ir 0

][
XT

R1

XT
R2

]
,(22)

R1 − iR =
[
XR1 XR2

] [−Ir iIr
iIr Ir

][
XT

R1

XT
R2

]
,

we introduce eigenvalues ±i of multiplicity r into the pencil R1 − iR. Modifications
of this definition for R are easily devised to generate real symmetric matrices R1 − iR
with rank ρ, where r ≤ ρ ≤ 2r.

If R1 has rank n−r, then by choosing an R with the same range as R1, an R1+iR
can be constructed with the same rank, n − r. However, with this construction, the
necessary condition that the range of X have dimension n cannot be satisfied. Indeed,
there seems to be a difficult problem here when the rank of R1 is low. There may
be a deep property that is not fully understood to the effect that, although linear
dependencies among the real eigenvectors are known to be possible, the dimension
of the span of the real eigenvectors cannot be “too low.” The parameters used in
Theorem 9 of Appendix C will probably play a role in any resolution of this problem.
Indeed, the sets of admissible parameters can be analyzed using the canonical forms
found in Theorem 9.2 of [11] and described in Appendix C.

INVERSE PROBLEMS FOR VIBRATING SYSTEMS 289

These techniques are not investigated more deeply here, and we conclude the
present discussion with a numerical illustration.

Example 5. The program here is to take the data from Example 3, which were
used in the design of a real (nonsymmetric) system, augment it with a sign charac-
teristic, and design a real symmetric system. Thus, as in Example 3, we take n = 4,
r = 2, and

Λ = diag[−1 + i, −4 + i], U2 = diag[−0.5, −1], U3 = diag[−3,−4].

Now consider (20). Since there are two pairs of nonreal eigenvalues, Xc is to be
constructed with rank 2. Following the strategy leading to (22) results in

A = R1 + iR =

⎡⎢⎢⎣
2i 1 + i −1 + i −1 − i

0 0 −2
0 −2i

0

⎤⎥⎥⎦ .

Notice that R1 is defined by the data of Example 3 and R is chosen as in (22). Using
the Takagi algorithm, we obtain

Xc =

⎡⎢⎢⎣
−1.0082(1 + i) 0.1281(−1 + i)

−0.8801 (−0.8801)i
(−0.8801)i 0.8801

1.1362 (−1.1362)i

⎤⎥⎥⎦ ,

and construction of the 4 × 8 matrix X is complete.
The Jordan matrix is now diag[−1+i, −4+i, −0.5, −1, −3, −4, −1−i, −4−i],

and (see (18))

P =

⎡⎢⎢⎣
0 0 0 I2
0 I2 0 0
0 0 −I2 0
I2 0 0 0

⎤⎥⎥⎦ .

It can be verified that XPX∗ = 0, and the formulae of (16) and (17) are applied to
produce the real symmetric system:

M =

⎡⎢⎢⎣
0.4496 −0.3267 1.6481 −0.2840

0.2748 −0.6290 0.0519
0.8991 0.2533

−0.0696

⎤⎥⎥⎦ ,

D =

⎡⎢⎢⎣
−8.4914 4.2104 4.9463 −4.5620

−1.6488 −0.6350 1.7465
6.5591 −1.7314

−0.3876

⎤⎥⎥⎦ ,

K =

⎡⎢⎢⎣
0.4612 −3.0335 −4.5721 4.8244

3.8425 6.4105 −5.2257
12.0600 −9.8717

7.8178

⎤⎥⎥⎦ .

290 PETER LANCASTER

As usual, it can be verified that this system has the spectrum determined by J . It
is interesting that, in spite of the location of all the eigenvalues in the left half-plane,
all three coefficients are indefinite.

Of course, the analysis simplifies if there are to be no real eigenvalues (as in [10]),
for then Xc is nonsingular and it is necessary only to assign a nonsingular real sym-
metric R. On the other hand, if Xc is a solution of (19), so is XcΘ for any real
orthogonal matrix Θ. Thus, for a fixed right-hand side of (19), a family of solutions
X is obtained depending on 1

2 (n − r)(n − r − 1) real parameters. This is consistent
with results obtained in [10] for the case r = 0.

The situation in which there are no nonreal eigenvalues is also of great interest and
includes the so-called overdamped, hyperbolic, and quasi-hyperbolic systems. They
are the topics of section 10 below.

8. Positivity of M , D, and K. In this section it is assumed that the spectral
data are consistent with real and symmetric systems, and we examine the further
conditions required to ensure positive definite (or possibly semidefinite) coefficients
M, D, K. It will be convenient to make a further simplifying hypothesis, namely, that
systems are to be designed which are nonsingular. This is equivalent to the hypothesis
that K is nonsingular. This can be justified here on the grounds that, in this section,
our major interest is in stable systems, i.e., those with all eigenvalues in the open left
half of the complex plane. In other words, J of (1) is to be a stable matrix.

In this case there is a nice alternative to the formula

K = −MΓ3M + DΓ1D

of (17) (see Theorem 2 of [10], for example). Thus, given a self-adjoint triple (X, J,
PX∗), we have

Γ−1 := X(J−1P)X∗ = −K−1.(23)

This follows immediately from the resolvent form for L(λ) expressed here in terms of
any Jordan triple:

L(λ)−1 = X(λI2n − J)−1Y.

Lemma 4. If zero is not an eigenvalue of J and Γ1 is nonsingular, then the
inertias of M, D, K are equal to those of Γ1, −Γ2, and −Γ−1, respectively.

Proof. Observe that, if 0 is not an eigenvalue of J , then Γ−1 is well defined, and
the lemma follows from the first two relations of (17) together with (23).

Since the moments are readily computed from a Jordan triple, this immediately
suggests that the positivity of M, D, K could be checked by trial and error. However,
a more precise result can be proved, which generalizes Theorem 9 of [10]. Notice the
important role played by positivity of the second moment in this result.

Theorem 5. If J is stable (has all eigenvalues in the open left half-plane), Γ2 ≤ 0,
and Γ1,Γ−1 are nonsingular, then M > 0, D ≥ 0, and K > 0.

Proof. Since Γ1 and Γ−1 are nonsingular, M and K are well defined by (17) and
(23). Then the stability of J , together with Theorem 7 of [13], implies that M > 0
and K > 0. Then D ≥ 0 follows from Γ2 ≤ 0 and (17).

Note that there is, of course, a classical converse statement for Theorem 5: If
M > 0, D ≥ 0, and K > 0, then all eigenvalues are in the (possibly closed) left
half-plane.

INVERSE PROBLEMS FOR VIBRATING SYSTEMS 291

In general, it will be difficult to apply the last result numerically ab initio. A
major open question (to which partial contributions are made here) is the following.

Problem 1. Given that the spectrum is stable, what further conditions on X
(the matrix of eigenvectors) will ensure that the coefficients of the system are positive
definite?

A closely connected question arising in section 7 is as follows.
Problem 2. What are the constraints linking the dimensions of the ranges of the

matrices
[
XR1 XR2

]
and

[
Xc Xc

]
?

Example 6. Reconsider Example 4. Modify the data and take XR1 = XR2 =
[
1
0

]
,

and retain the same matrices J and P . Now R1 = 0 and we choose R =
[
0 0
0 1

]
. It is

found that a diagonal system with positive definite coefficients is generated:

M =

[
1 0
0 0.5

]
, D =

[
3 0
0 2

]
, K =

[
2 0
0 2.5

]
.

9. Hyperbolic and overdamped systems. For the purpose of this discussion,
consider systems with a positive definite leading coefficient, M . It is well known that
there are symmetric vibrating systems of practical interest for which all eigenvalues
are real. An early and influential paper on this subject was that of Duffin [2] con-
cerning overdamped systems. Subsequently, it has been realized that systems with
real spectrum arise more generally. Thus, systems with all 2n eigenvalues real with
n of positive type (with a +1 in the sign characteristic) and n of negative type (with
a −1 in the sign characteristic) are said to be quasi hyperbolic. If, furthermore, the
sets of eigenvalues of the two types are separated (all positive-type eigenvalues greater
than all negative-type eigenvalues), then the system is hyperbolic. Finally, a system
which is hyperbolic and in which D > 0, K ≥ 0 is said to be overdamped. Given
these inequalities it is equivalent to say that a hyperbolic system is overdamped if
all eigenvalues are negative. (Numerical methods for such problems are the topic of
[7] and [6], for example.)

The distinction between these classes of systems is quite clear in our context of
inverse problems. Let us begin with hyperbolic systems. Thus, all eigenvalues are
real, and the data for the inverse problem consist of diagonal matrices

J =

[
U2 0
0 U3

]
, P =

[
In 0
0 −In

]
(24)

(cf. (1) and (18)). Furthermore, the smallest eigenvalue of U2 (having positive type)
exceeds the largest eigenvalue of U3 (having negative type). Thus,

maxuj∈U3(uj) < minuk∈U2(uk).(25)

Then the necessary condition (6) of Lemma 1 is satisfied.
For the more general quasi-hyperbolic systems, U2 and U3 are simply specified in

such a way that (6) holds but (25) does not necessarily hold.
Now an isospectral family of quasi-hyperbolic systems with spectrum defined by

U2 and U3 is determined by full rank eigenvector matrices

X =
[
XR1 XR2

]
,

where XR1, XR2 ∈ R
n×n and

XPX∗ = XR1X
T
R1 −XR2X

T
R2 = 0

292 PETER LANCASTER

(cf. (10), (19)). This condition is easily satisfied: Since X has full rank, both XR1

and XR2 must be nonsingular, so we may take an arbitrary A > 0 in R
n×n and then

choose XR1 and XR2 so that

XR1X
T
R1 = XR2X

T
R2 = A.(26)

Natural choices for XR1 and XR2 are then A1/2, or a lower triangular matrix generated
by a Cholesky factorization of A (see [5], for example). Having made a first choice of
XR1 and XR2, infinitely many more candidates are generated by multiplying on the
right with a real orthogonal matrix. In particular, once a nonsingular XR1 is chosen,
one may take

XR2 = XR1Θ,

where Θ is real orthogonal. We adopt this strategy.
Then it is easily verified that the following formulae hold: For the moments,

Γ1 = XR1(U2 − ΘU3Θ
T)XT

R1,

Γ2 = XR1(U
2
2 − ΘU2

3 ΘT)XT
R1,(27)

Γ−1 = XR1(U
−1
2 − ΘU−1

3 ΘT)XT
R1,

and for the coefficients,

M = X−T
R1 (U2 − ΘU3Θ

T)−1X−1
R1 ,

D = −X−T
R1 (U2 − ΘU3Θ

T)−1(U2
2 − ΘU2

3 ΘT)(U2 − ΘU3Θ
T)−1X−1

R1 ,(28)

K = −X−T
R1 (U−1

2 − ΘU−1
3 ΘT)−1X−1

R1 .

It is immediately apparent that XR1 merely determines a simultaneous congruence
applied to the three system coefficients. Once the spectrum is specified in the form of
U2 and U3, the coefficients are determined (to within this simultaneous congruence)
by the choice of Θ. Thus, the inertias of M, D, K do not depend on XR1. (A similar
phenomenon arises in the case when all eigenvalues are nonreal; see (34)–(36) and
Theorem 13 of [10].)

Theorem 5 now provides criteria for generating families of real hyperbolic systems.
Corollary 6. Assume that Λ and W do not appear in (1) (i.e., all eigenvalues

are real) and U2 < 0, U3 < 0 are chosen so that det(U2 − U3) �= 0. Let
(a) XR1 ∈ Rn×n be nonsingular,
(b) Θ be a real orthogonal matrix for which

U2
2 ≤ ΘU2

3 ΘT(29)

and U2 − ΘU3Θ
T , U−1

2 − ΘU−1
3 ΘT are nonsingular.

Then (in (28)), M > 0, D ≥ 0, K > 0, and the system Mλ2 + Dλ + K is quasi
hyperbolic.

If, in addition, (25) holds, then the system is overdamped.
Proof. Condition (29) and the equation for Γ2 in (27) ensure that Γ2 ≥ 0. Also,

from (27), Γ1 and Γ−1 are nonsingular. So the result follows from Theorem 5.

INVERSE PROBLEMS FOR VIBRATING SYSTEMS 293

Example 7. Clearly, given the hypotheses of the corollary on U2 and U3, XR1 = In
and Θ = In are admissible choices. If we write

U2 = diag[μ
(2)
1 , μ

(2)
2 , . . . , μ(2)

n], U3 = diag[μ
(3)
1 , μ

(3)
2 , . . . , μ(3)

n],

(28) determines the diagonal system with diagonal entries

λ2 − (μ
(2)
j + μ

(3)
j)λ + μ

(2)
j μ

(3)
j

μ
(2)
j − μ

(3)
j

=
(λ− μ

(2)
j)(λ− μ

(3)
j)

μ
(2)
j − μ

(3)
j

.

Example 8. Take XR1 = I4 and

U2 = diag[−1, −2, −3, −4], U3 = diag[−5, −6, −7, −8].

Consider the orthogonal matrix

Θ =
1

10

⎡⎢⎢⎣
2 −8 4 −4
8 −2 −4 4
4 4 −3 −8
4 4 8 2

⎤⎥⎥⎦
and verify that the hypotheses of the corollary are satisfied. Apply the formulae
of (28) to generate the overdamped system (with truncated decimal form)

M =

⎡⎢⎢⎣
0.1886 0.0269 −0.0168 −0.0051

0.2896 0.0690 0.0707
0.2694 0.0808

0.42342

⎤⎥⎥⎦ ,

D =

⎡⎢⎢⎣
1.3771 0.0808 −0.0673 −0.0253

2.1582 0.3451 0.4242
2.6162 0.5657

4.3939

⎤⎥⎥⎦ ,

K =

⎡⎢⎢⎣
1.1886 0.0539 −0.0505 −0.0202

3.1582 0.4141 0.5657
5.4242 0.9697

10.7879

⎤⎥⎥⎦ ,

with eigenvalues −1, −2, −3, −4 of positive type, and −5, −6, −7, −8 of negative
type. An associated matrix of eigenvectors has the form

X =
[
I Θ

]
=

⎡⎢⎢⎣
1 0 0 0 0.2 −0.8 0.4 −0.4
0 1 0 0 0.8 −0.2 −0.4 0.4
0 0 1 0 0.4 0.4 −0.2 −0.8
0 0 0 1 0.4 0.4 0.8 0.2

⎤⎥⎥⎦ .

10. Conclusions. Real damped vibrating systems defined by n × n coefficient
matrices M , D, and K have been studied, with the simplifying hypothesis of semi-
simple Jordan structure, i.e., associated 2n× 2n Jordan canonical forms, J , are diag-
onal. A corresponding primitive companion matrix, C0, is formulated (equation (4))
and plays a significant role. The equivalence between “structure preserving similari-
ties” of C0 and Jordan pairs for the system has been established in Theorem 3.

294 PETER LANCASTER

These constructions have been used to find solutions to the following inverse
problem: Given J , find consistent real vibrating systems (see section 5). The corre-
sponding problem for consistent symmetric real systems (with mixed real and nonreal
spectrum) is more complicated. A partial solution for this problem (taking advantage
of Takagi’s factorization of symmetric complex matrices) is the subject of sections
6 and 7. To ensure that coefficient matrices M, D, K have definiteness properties
is more difficult again, but significant insight is provided in section 8 in terms of
“moments” of the system.

Similar methods applied to systems having only real eigenvalues are more tractable
(and include systems of hyperbolic and overdamped types). They are developed in
section 9, where parametrizations of isospectral systems by real orthogonal matrices
arise naturally. This compares nicely with similar results of [10] for systems at the
other (elliptic) extreme with no real eigenvalues.

The analysis developed here requires knowledge of the relationship between the
ranks of a complex symmetric matrix and its real and imaginary parts. This is clarified
in Theorem 9 of Appendix C. The result seems to be new and may be of more general
interest.

Appendix A. Takagi’s factorization. A method for making the factorization
needed in sections 6 and 7 is attributed to Takagi and dates from the 1920s. For a
given complex symmetric matrix A ∈ C

n×n of rank n− r, a factorization A = XcX
T
c

is produced in which Xc also has rank n − r. Computer programs are now available
for this task (see Bunse-Gerstner and Gragg [1]). There is also a careful discussion of
this in section 4.4.4 of Horn and Johnson [8]. Here, an introduction is made to the
relatively simple case in which nonzero singular values of the right-hand side of (20)
(i.e., when A = R1 − iR) are distinct. It is based on the presentation of [1].

1. Let A denote the (given) complex symmetric right-hand side of (20) and
assume that rank(A) = n − r. Form the singular value decomposition A =
UΣV ∗, where U and V are unitary matrices and

Σ = diag
[
σ1 σ2 · · · σn

]
with σ1 > σ2 > · · · > σn−r > 0 and σn−r+1 = . . . = σn = 0 (see [5] for
further details).

2. Let uj and vj denote the columns of U and V , respectively, and compute
q2
j := uT

j vj , j = 1, 2, . . . , n− r (note that q2
j will generally be complex).

3. Form Σ1 := diag
[
σ1 σ2 · · · σn−r

]
of size (n − r) × (n − r) and form

the n× (n− r) matrix U0 =
[
u1 u2 · · · un−r

]
.

4. Compute a matrix Q = diag
[
q1 q2 · · · qn−r

]
.

5. Compute Xc = U0Q̄Σ
1/2
1 (of size n× (n− r)).

Let us quickly confirm that this produces the required symmetric factorization.
Since A is symmetric,

A = UΣV ∗ = V ΣUT .

But the singular vectors for the (distinct) nonzero singular values are unique to within
a scalar multiplier of modulus one. Thus, there are numbers ω1, . . . , ωn−r such that

vj = ωjuj , |ωj | = 1, j = 1, 2, . . . , n− r.

INVERSE PROBLEMS FOR VIBRATING SYSTEMS 295

Defining U0 as in item 3, V0 =
[
v1 · · · vn−r

]
and Ω = diag

[
ω1 . . . ωn−r

]
,

we have V0 = U0Ω, or

V ∗
0 = ΩUT

0 .

Furthermore, uT
j vj = ωj(u

T
j uj) = ωj for j = 1, 2, . . . , n − r, so that (see item 4)

Ω = Q2.
Now compute

XcX
T
c = (U0QΣ

1
2)(Σ

1
2QUT

0)

= U0ΣQ
2
UT

0 = U0Σ(ΩUT
0)

= U0ΣV ∗
0 = UΣV ∗ = A.

The purpose of the next example is simply to illustrate this scheme. Calculations
are completed in MATLAB.

Example 9. Let A =
[
i i
i 0

]
and note that n = 2, r = 0 (so no singular values are

equal to zero). The MATLAB singular value decomposition yields (with truncated
numbers)

U =

[
−0.8507 −0.5257
−0.5257 0.8507

]
i, V =

[
−0.8507 0.5257
−0.5257 −0.8507

]
.

Also, σ2
1 = (1 +

√
5)/2, and σ2

2 = (1 −
√

5)/2. It is found that q2
1 = i and q2

2 = −i,

and then q1 =
√

2
2 (1 + i), q2 =

√
2

2 (1 − i). Finally,

Xc = UQ̄Σ1/2 =

[
−0.7651(1 + i) 0.2923(1 − i)
−0.4729(1 + i) −0.4729(1 − i)

]
.

It can be verified that, indeed, XcX
T
c = A.

Appendix B. The sign characteristic and an expository example. We
first indicate that the sign characteristic is an intrinsic property of the matrix function
L(λ) := λ2M + λD + K, where M, D, K are Hermitian and M is nonsingular. For
simplicity, and in the spirit of this exposition, it is assumed that all eigenvalues of
L(λ) are semisimple. The following theorem is a special case of Theorem 3.7 of [3].

Theorem 7. Let L(λ) be as specified above. Let μ1(λ), . . . , μn(λ) be real analytic
functions of real λ such that

det(μj(λ)I − L(λ)) = 0, j = 1, 2, . . . , n.

Let λ1, . . . , λr be the different real eigenvalues of L(λ). Then, for every i, 1 ≤ i ≤ r,
write

μj(λ) = (λ− λi)νij(λ), νij(λi) �= 0.(30)

Then sgn(νij(λi)) is the sign attached to λi in the sign characteristic.
For each real eigenvalue λi of L(λ) there must be at least one function μj(λ) which

vanishes at λ = λi. Thus, implicitly, (30) determines a function μj(λ) of the matrix
function L(λ) which vanishes at λi. Since μ′

j(λi) = νij(λi), the sign characteristic
tells us whether this particular function has a positive or negative slope at λi.

296 PETER LANCASTER

Now, for illustration, consider the problem of constructing 2×2 symmetric systems
with the simple (mixed) spectrum: 1, −1, i, −i. One such system is obvious, namely,
the monic system

L(λ) =

[
λ2 − 1 0

0 λ2 + 1

]
.(31)

Let us first examine the forward problem for this system. Using the theorem above, it
is easily seen that the sign characteristic associated with the real eigenvalues {1, −1}
of this system is {+1, −1}. Then observe that this system has associated matrices

X =

[
0 1 1 0
1 0 0 1

]
, J =

⎡⎢⎢⎣
i 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −i

⎤⎥⎥⎦ , P =

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 −1 0
1 0 0 0

⎤⎥⎥⎦ .(32)

Since det
[
X
XJ

]
�= 0, (X, J) form a Jordan pair. However,

Y :=

[
X
XJ

]−1 [
0
M

]
�= PX∗,

so (X, J) is not part of a self-adjoint triple. The eigenvectors must be renormalized
to achieve this. (Such a renormalization leaves the moments and the coefficients
invariant.) It is found that if we set κ = e−iπ/4 and define

X =
1√
2

[
0 1 1 0
κ 0 0 κ

]
,

then Y = PX∗. It is now a matter of computation to verify that (16) and (17) lead
back to the coefficients of system (31).

Now consider the inverse problem in which the data consist of matrices J and P
of (32). Observe first that XR1 and XR2 will be 2 × 1 vectors and, to find an Xc of
rank one, it is convenient to assume that XR1 and XR2 are linearly dependent (see
section 6). Indeed, with α, β ∈ R let us take XR1 = XR2 = [αβ]. Then R1 = 0 in (20)

and we may choose R = [00
0
γ], where γ ∈ R, so that the equation for Xc becomes

XcX
T
c = [00

0
−iγ].

It is easily verified that

Xc =

[
0

γ
1
2κ

]
is a solution of this equation. Thus, a complete eigenvector matrix X is

X =

[
0 α α 0

γ
1
2κ β β γ

1
2κ

]
.(33)

Now compute to find Γ0 = 0 and

Γ1 = 2

[
α2 αβ
αβ β2 + γ

]
, Γ2 = 0, Γ3 = 2

[
α2 αβ
αβ β2 − γ

]
,

INVERSE PROBLEMS FOR VIBRATING SYSTEMS 297

and then, assuming αγ �= 0,

M = Γ−1
1 = (2α2γ)−1

[
β2 + γ −αβ
−αβ α2

]
, D = 0,

K = (2α2γ)−1

[
β2 − γ −αβ
−αβ α2

]
.

Thus, a three-parameter family of isospectral systems is obtained. The system (31),
with which this discussion began, is obtained by taking α = 1/

√
2, β = 0, γ = 1/2. In

contrast with matrix X of (32), (33) evaluated at these parameter values is a member
of a self-adjoint triple.

To illustrate the role played by the sign characteristic, consider the following
special cases:

Case 1. α = 1, β = 0, γ = 1.

M1λ
2 + K1 =

1

2

[
λ2 − 1 0

0 λ2 + 1

]
.

Case 2. α = 1, β = −1, γ = 1.

M2λ
2 + K2 =

1

2

[
2λ2 λ2 + 1

λ2 + 1 λ2 + 1

]
.

Case 3. α = 1, β = 0, γ = −1.

M3λ
2 + K3 =

1

2

[
λ2 − 1 0

0 −(λ2 + 1)

]
.

Theorem 7 tells us that the sign characteristic determines the derivatives of the
eigenvalue functions μ1(λ), μ2(λ) of the matrix function L(λ) at the points where
they cross the real axis. Obviously, in Case 1, the nature of these eigenvalue functions
corresponds to the left side of Figure 1, and the eigenvalue functions are μ1(λ) =
1
2 (λ2 − 1), μ2(λ) = 1

2 (λ2 + 1). The sign characteristic {−1, +1} corresponds to the
sign of the derivative of μ1(λ) at the points λ = −1 and λ = +1, respectively.

The system of Case 2 has a similar structure (the matrix polynomials are congru-
ent) but now μ1(λ) = 1

2 (λ2 − 1), μ2(λ) = λ2 + 1.
In contrast, Case 3 has μ1(λ) = 1

2 (λ2−1), μ2(λ) = − 1
2 (λ2+1), and M is indefinite

(right side of Figure 1). However, it is clear from both sides of the figure that both
the real spectrum of L(λ) and the sign characteristic are the same in every case.

Appendix C. The rank of complex symmetric matrices. Let M be a
complex symmetric matrix in C

n×n. Thus, there are real symmetric matrices A and
B such that X = A + iB. Our objective is to show how the ranks of matrices X, A,
and B are connected. Notice that there are no other hypotheses on A and B, such as
invertibility or positivity.

The rank of a square matrix is invariant under congruence transformations so, if
S ∈ R

n×n is nonsingular, then rankX = rank(SXST). Our problem will be resolved
by applying a congruence with matrix S which simultaneously reduces A and B to a
canonical form. The canonical forms in question can be found in the recent work [11]
and are described here. It is convenient to use the language of spectral analysis and
consider our problem in the context of the reduction of the pencil A + λB by real
congruence.

298 PETER LANCASTER

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

λ

μ(
λ)

CASE 1.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

λ

μ(
λ)

CASE 3.

Fig. 1. Eigenvalue functions μj(λ).

The general canonical forms are quite complicated. They are block diagonal with
blocks of several different types as follows.

• Square matrices Fm of size m with ones on the NE–SW diagonal and zeros
elsewhere (also known as the sip matrices).

• Matrices Gm:

Gm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 1 0
... 0 0
...

...

1 0
...

0 0 · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

[
Fm−1 0

0 0

]
.

• Matrices H2m:

H2m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 1 0
0 0 −1
... 1 0

0 −1

.
...

1 0 0
0 −1 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the canonical form for A is a direct sum of blocks of (up to) five distinct
types, say,

A = A1 ⊕A2 ⊕A3 ⊕A4 ⊕A5,

INVERSE PROBLEMS FOR VIBRATING SYSTEMS 299

and similarly for B. The blocks Ar and Br will have the same size for each r and are
as follows:

1. A1 = B1 = 0 (a square zero matrix).
2. A2 =

∑
j ⊕G2εj+1,

B2 =
∑
j

⊕

⎡⎣ 0 0 Fεj

0 0 0
Fεj 0 0

⎤⎦ .

3. A3 =
∑

j ⊕δjFkj , B3 =
∑

j ⊕δjGkj , where each δj is ±1 and, together, they
define the sign characteristic of the eigenvalue of A + λB at infinity (if any).

4. A4 =
∑

j ⊕(ηjαjFlj + Glj), B4 =
∑

j ⊕ηjFlj , where each ηj is ±1 and, to-
gether, they define the sign characteristic associated with the real eigenvalues
(if any).

5.

A5 =
∑
j

⊕
(
μjF2mj + νjH2mj

+

[
F2mj−2 0

0 02

])
, B5 =

∑
j

⊕F2mj
,

where μj ± iνj with νj �= 0 are the complex eigenvalues (if any), and 02 is the
2 × 2 zero matrix.

It is clear that rank(A) =
∑5

r=1 rank(Ar), rank(B) =
∑5

r=1 rank(Br), and

rank(A + iB) =
∑5

r=1 rank(Ar + iBr). However, the ranks of these component ma-
trices are easily obtained from those of the F ’s, G’s, and H’s. Notice, in particular,
that for the first four types the component diagonal blocks are triangular, and the
rank can be read off by observation. For the fifth type, the structures will be clear if
we just examine the case mj = 3 more closely. It is easily seen that, if we define

Δj :=

[
νj μj

μj −νj

]
,

then, in this case,

A5 =

⎡⎣ 02 F2 Δj + iF2

F2 Δj + iF2 02

Δj + iF2 02 02

⎤⎦ ,

so that det(A5) = 0 if and only if det(Δj + iF2) = 0 (and this is the case whatever
the value of mj). However,

det(Δj + iF2) = −(μ2
j + ν2

j) − 2iμj + 1,

and this vanishes if and only if μj = 0 and νj = ±1; i.e., the corresponding complex
eigenvalue pair is ±i.

Notice also that, when μj + iνj = i, then

Δj + iF2 =

[
1 i
i −1

]
,

a matrix of rank one.

300 PETER LANCASTER

The important conclusion of this argument is the following.

Proposition 8.

rank(A5) = 2
∑
j

mj ,(34)

where the sum is over all j associated with nonreal eigenvalues if and only if there are
no eigenvalue pairs ±i.

If there are such pairs, then the rank of A5 is decreased from the value (34) by
the algebraic multiplicity of the eigenvalue i (or −i).

It will be convenient to denote the algebraic multiplicity of the eigenvalue i by
a(i) so that, in general,

rank(A5) = 2
∑
j

mj − a(i).

Now it can be seen that

1. rank(A1) = rank(B1) = rank(A1 + iB1) = 0;
2. rank(A2) = rank(B2) = rank(A2 + iB2) =

∑
j 2εj ;

3. rank(A3) =
∑

j kj , rankB3 =
∑

j(kj − 1), rank(A3 + iB3) =
∑

j kj ;
4. rank(A4) =

∑
j:αj �=0 lj+

∑
j:αj=0(lj−1), rank(B4) =

∑
j lj , rank(A4+iB4) =∑

j lj ;
5. rank(A5) = 2

∑
j mj −a(i), rank(B5) = 2

∑
j mj , rank(A5 + iB5) = 2

∑
j mj .

Now consider how the ranks of A and B can differ from that of A + iB. Items 1
and 2 produce no differences. Due to item 3, however, the rank of B3 (and hence B)
is less than the other two ranks by one for each canonical block associated with the
eigenvalue at infinity (if there is such an eigenvalue), i.e., the geometric multiplicity
of the eigenvalue at infinity, say g(∞).

Similarly, it can be deduced from item 4 that rank(A4) is less than rank(B4) and
rank(A4 + iB4) by the geometric multiplicity of the zero eigenvalue, say, g(0). The
case of blocks of the fifth type is covered by Proposition 8.

Since rank(A) =
∑5

r=1 rank(Ar) and rank(B) =
∑5

r=1 rank(Br), the results can
be brought together in the following form (and we keep in mind that a(i), g(o), and
g(∞) refer to eigenvalues of the pencil A + λB).

Theorem 9.

rank(A + iB) = rank(A) − a(i) + g(0) = rank(B) − a(i) + g(∞).

Examples. Let us illustrate with Example 4 of the main text. The first case
arising there is

A + iB =
1

2

[
−1 −i
−i 1

]
,

so that

A + λB =
1

2

[
−1 −λ
−λ 1

]
.

We have a(i) = 1, g(0) = g(∞) = 0, and rank(A + iB) = 1.

INVERSE PROBLEMS FOR VIBRATING SYSTEMS 301

The second case is

A + iB =

[
0 0
0 i

]
,

so that

A + λB =

[
0 0
0 λ

]
.

Notice first that, in this case, A1 = B1 = [0]. Then a(i) = 0, g(0) = 1, g(∞) = 0, and
rank(A + iB) = 1.

Acknowledgment. The author is grateful to Prof. N. J. Higham for the provi-
sion of an excellent research environment.

REFERENCES

[1] A. Bunse-Gerstner and W. B. Gragg, Singular value decompositions of complex symmetric
matrices, J. Comput. Appl. Math., 21 (1988), pp. 41–54.

[2] R. J. Duffin, A minimax theory for overdamped networks, J. Rational Mech. Anal., 4 (1955),
pp. 221–233.

[3] I. Gohberg, P. Lancaster, and L. Rodman, Spectral analysis of selfadjoint matrix polyno-
mials, Ann. of Math. (2), 112 (1980), pp. 33–71.

[4] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York,
1982.

[5] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, 1996.

[6] C.-H. Guo and P. Lancaster, Algorithms for hyperbolic quadratic eigenvalue problems, Math.
Comp., 74 (2005), pp. 1777–1791.

[7] N. J. Higham, F. Tisseur, and P. M. Van Dooren, Detecting a definite Hermitian pair and
a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems,
Linear Algebra Appl., 351/352 (2002), pp. 455–474.

[8] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

[9] P. Lancaster, Isospectral vibrating systems. Part 1: The spectral method, Linear Algebra
Appl., 409 (2005), pp. 51–69.

[10] P. Lancaster and U. Prells, Inverse problems for damped vibrating systems, J. Sound Vi-
bration, 283 (2005), pp. 891–914.

[11] P. Lancaster and L. Rodman, Canonical forms for Hermitian matrix pairs under strict
equivalence and congruence, SIAM Rev., 47 (2005), pp. 407–443.

[12] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, Orlando, 1985.
[13] P. Lancaster and M. Tismenetsky, Inertia characteristics of self-adjoint matrix polynomials,

Linear Algebra Appl., 52/53 (1983), pp. 479–496.
[14] P. Lancaster and Q. Ye, Inverse spectral problems for linear and quadratic matrix pencils,

Linear Algebra Appl., 107 (1988), pp. 293–309.
[15] U. Prells and P. Lancaster, Isospectral vibrating systems. II. Structure preserving trans-

formations, in Operator Theory and Indefinite Inner Product Spaces, Oper. Theory Adv.
Appl. 163, Birkhäuser, Basel, 2006, pp. 275–298.

[16] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001),
pp. 235–286.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 302–327

UNSYMMETRIC ORDERING USING A CONSTRAINED
MARKOWITZ SCHEME∗

PATRICK R. AMESTOY† , XIAOYE S. LI‡ , AND STÉPHANE PRALET†

Abstract. We present a family of ordering algorithms that can be used as a preprocessing
step prior to performing sparse LU factorization. The ordering algorithms simultaneously achieve
the objectives of selecting numerically good pivots and preserving the sparsity. We describe the
algorithmic properties and challenges in their implementation. By mixing the two objectives we
show that we can reduce the amount of fill-in in the factors and reduce the number of numerical
problems during factorization. On a set of large unsymmetric real problems, we obtained the median
reductions of 12% in the factorization time, of 13% in the size of the LU factors, of 20% in the number
of operations performed during the factorization phase, and of 11% in the memory needed by the
multifrontal solver MA41 UNS. A byproduct of this ordering strategy is an incomplete LU-factored
matrix that can be used as a preconditioner in an iterative solver.

Key words. sparse unsymmetric matrices, greedy heuristics, ordering methods, bipartite quo-
tient graph

AMS subject classifications. 05C50, 65F05, 65F50

DOI. 10.1137/050622547

1. Introduction. Direct methods for sparse unsymmetric linear systems usually
involve an analysis phase preceding the effective LU factorization [2, 10, 14, 20, 21].
The analysis phase transforms A into Ã with better properties for sparse factorization.
It exploits the structural information to reduce the amount of fill-in in the LU factors
and exploits the numerical information to reduce the need for numerical pivoting
during factorization.

Two separate steps can be used in sequence for these two objectives:
1. Scaling and maximum transversal algorithms are used to transform A into

A1 with large entries in magnitude on the diagonal.
2. A symmetric fill-reducing ordering, which preserves the large diagonal, is used

to permute A1 into Ã so that the factors of Ã are sparser than those of A1.
Thus, the ultimate factorization is

LU = P3P2DrADcQ1P
T
2 Q3,(1.1)

where Dr and Dc are diagonal scaling matrices, Q1 is a permutation obtained from the
maximum transversal algorithm, P2 corresponds to the fill-reducing permutation, and
P3 and Q3 are permutations corresponding to numerical pivoting during factorization.

It has been observed in [4] that permuting large entries on the diagonal (com-
puting Q1 based on [17]) can significantly reduce the number of numerical problems

∗Received by the editors August 17, 2005; accepted for publication (in revised form) August 10,
2006; published electronically February 13, 2007. Part of this research was supported by NSF-INRIA
grant NSF-INT-0003274.

http://www.siam.org/journals/simax/29-1/62254.html
†ENSEEIHT-IRIT, 2, rue Camichel, BP 7122 - F 31071 Toulouse Cedex 7, France (Patrick.

Amestoy@enseeiht.fr, Stephane.Pralet@enseeiht.fr). The work of the third author was partially sup-
ported by CERFACS, 42, av. G. Coriolis, 31057 Toulouse Cedex 01, France, during his Ph.D.

‡Lawrence Berkeley National Lab, MS 50F-1650, 1 Cyclotron Rd., Berkeley, CA 94720 (xsli@lbl.
gov). The work of the second author was supported in part by the Director, Office of Advanced
Scientific Computing Research, Division of Mathematical, Information, and Computational Sciences
of the U.S. Department of Energy under contract DE-AC03-76SF00098, and was supported in part
by the National Science Foundation Cooperative Agreement ACI-9619020, NSF grant ACI-9813362.

302

CONSTRAINED MARKOWITZ 303

during factorization. A standard way to find P2 is to apply a symmetric ordering
algorithm (e.g., AMD [1]) to the structure of A1 + AT

1 , where A1 = DrADcQ1. A
better algorithm, called diagonal Markowitz with local symmetrization (or DMLS), was
developed in [5], which could exploit the unsymmetric structure of A1 and was shown
to give sparser factors than with AMD.

The above two-step approach has two drawbacks:
• The numerical treatment forces the fill-reducing ordering to restrict pivot

selection on the diagonal of A1, and so to compute a symmetric permutation.
• The ordering phase does not have numerical information to select pivots.

To improve sparsity preservation and numerical quality of the preselected pivots,
we describe in this paper a family of orderings that can select off-diagonal pivots using
a combination of structural and numerical criteria. Based on a numerical preprocess-
ing of the matrix we build a set of numerically acceptable pivots, referred to as matrix
C, that may contain off-diagonal entries. We then compute an unsymmetric ordering
taking into account both the structure of A and the numerical information in C. The
C matrix serves as a constraint matrix for the pivot selection, and nontrivial float-
ing point operations can be performed on this matrix to update the characteristics
of the pivots. The new algorithm is referred to as constrained Markowitz with local
symmetrization (or CMLS).

In summary, this work extended and generalized the DMLS work in several ways:
1. We do not limit our choice of pivots to the maximum transversal of DrADc.

Our pivots can be chosen from a constraint matrix C that includes a transver-
sal but is not limited to this transversal.

2. The constraint matrix C is updated both structurally and numerically after
each step of elimination. The final C is an incomplete LU factor of DrADc.

Thus, instead of computing the permutations Q1 and P2 of (1.1) in two separate
steps, CMLS simultaneously computes row and column permutations P2 and Q2, and
the final factorization is

LU = P3P2DrADcQ
T
2 Q3.(1.2)

We evaluated the new ordering algorithms using two state-of-the-art direct solvers:
the multifrontal code MA41 UNS [2, 7] and the supernodal code SuperLU DIST [27, 28].
In MA41 UNS, standard partial pivoting with a threshold value is applied to locally
select numerically stable pivots within a so-called frontal matrix. It is possible that
some variables cannot be locally eliminated and are postponed for later eliminations,
which may result in an increase in the size of the LU factors and the number of
operations compared with those predicted during analysis. In SuperLU DIST, a static
pivoting strategy is used and the pivotal sequence chosen during analysis is kept the
same (i.e., P3 and Q3 are the identity matrices in (1.1) and (1.2)). Iterative refinement
may be needed to improve the solution.

The rest of the paper is organized as follows. Section 2 introduces the main
components of our algorithm. Section 3 defines the graph-theoretic notation and
describes the use of local symmetrization in our context. Section 4 describes the
algorithmic contributions of the proposed CMLS method. A full detailed presentation
of our implementation is given in [32]. Section 5 analyzes the results of the newly
implemented CMLS algorithm when applied to real-life unsymmetric test cases.

2. Components of our unsymmetric ordering. Given a matrix A, let
Pattern(A) be the set of nonzero entries of A: Pattern(A) = {(i, j) such that aij �=
0}. Our unsymmetric ordering consists of two main steps:

304 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

• Step 1. Based on a numerical pretreatment of the matrix A, we extract a set
of numerically acceptable pivots, referred to as the constraint matrix C. We
have Pattern(C) ⊆ Pattern(A), and if cij �= 0 then cij = aij .

• Step 2. Constrained unsymmetric ordering: the constraint matrix is used at
each step of the symbolic Gaussian elimination to control the set of eligible
pivots (possibly with respect to both numerical and structural criteria).

Before describing these two steps more precisely, we introduce definitions and notation
that will be used to describe our algorithms.

Let M = (mij) be a matrix of order n. If M can be permuted to have n nonzeros
on the diagonal then M is structurally nonsingular. Let GM = (Vr, Vc, E) be the
bipartite graph associated with the matrix M. Vr is the set of row vertices and Vc is
the set of column vertices. Let (i, j) ∈ Vr × Vc; then (i, j) ∈ E if and only if mij �= 0.
A matching is a subset of edges M ⊆ E such that for all vertices v ∈ Vr ∪Vc, at most
one edge of M is incident on v. If M is structurally nonsingular, then there exists a
matching M with n edges and M is said to be a perfect matching. We will also say
that M is a perfect transversal.

For the sake of clarity, in the remainder of this paper we assume that A is
structurally nonsingular. The adaptation of our algorithms to structurally singu-
lar matrices is straightforward but would have severely complicated our notation and
comments.

2.1. Step 1: Numerical preprocessing. The objective of this preprocessing
step is to extract the most significant (structurally and numerically) entries of the
matrix A and to use them to build the constraint matrix C.

First, we scale the matrix A with the diagonal matrices Dr and Dc, resulting
in A ← DrADc. The objective of this scaling is to homogenize the magnitude of
the entries of the matrix. In particular, it helps us to compare the magnitude of
entries belonging to different rows and columns and thus to decide which entries will
be selected in our constraint matrix C. In this paper we use the scaling computed
with the maximum weighted matching algorithm [17]. All entries in our scaled matrix
then have entries lower than 1 in magnitude with a perfect transversal with entries of
magnitude equal to 1.

Second, a constraint matrix C can be constructed from A such that Pattern(C) ⊆
Pattern(A) and C satisfies certain numerical and/or structural properties. Since the
entries in C correspond to the potential pivots for the subsequent step, we keep only
a subset of bounded size (typically less than 3n) of the largest entries in the scaled
matrix. Furthermore, we want C to be structurally nonsingular, and thus we add
entries from A to guarantee that C includes a perfect transversal M.

2.2. Step 2: Constrained unsymmetric ordering. Let A1 = A be the orig-
inal matrix of order n and Ak be the reduced matrix after eliminating the first k− 1
pivots (not necessarily on the diagonal). Let C1 = C be such that Pattern(C1) ⊆
Pattern(A1). At each step k, a pivot pk such that pk ∈ Pattern(Ck) is selected.
This selection may combine structural heuristics based on the structure of Ak (e.g.,
approximate Markowitz count, approximate minimum fill, etc.) and numerical heuris-
tics carried by the Ck matrix. Matrix Ak is updated (remove the row and the col-
umn of the pivot and add fill-ins in the Schur complement). Matrix Ck is updated
such that Ck+1 remains structurally nonsingular and Pattern(Ck+1) is included in
Pattern(C̄k), where C̄k is defined as the reduced matrix after the elimination of
pivot pk in Ck. The structure of Ak+1 contains the structure of C̄k. This implies

CONSTRAINED MARKOWITZ 305

that Pattern(Ck+1) ⊆ Pattern(Ak+1). To keep Ck structurally nonsingular, a per-
fect matching in Ck is maintained at each step. When there is no ambiguity, we will
omit the superscript k from the matrix notation.

The following two considerations influence the update that will be performed on
C:

• Which metric do we use to select a pivot?
• Which entries and/or values are added/updated in C at each step of the

elimination?
Note that if we consider the magnitude of C’s entries to select a pivot, both the
pattern of C and the numerical values need to be stored and updated. Furthermore,
any structural information about each entry (i, j) in C should carry information on
the reduced matrix associated with the complete matrix A.

The ordering algorithm also depends on how C is updated at each step. As
mentioned before in the description of Step 2, we want at each step to guarantee that

C must remain structurally nonsingular, and(2.1)

Pattern(Ck+1) ⊆ Pattern(C̄k).(2.2)

3. Notation and definitions. Before giving the algorithmic details of the pro-
posed CMLS method, we introduce the graph structures and notation that will be used
in this paper. We first describe the main properties of bipartite graphs and bipartite
quotient graphs and their relationship with Gaussian elimination. We then introduce
the notation that will be used to describe our algorithms and define local symmetriza-
tion [5], a technique that simplifies the bipartite quotient graph implementation. Note
that we use calligraphic font for notation related to quotient graphs and Roman font
for other graphs.

3.1. Bipartite graph. Let M = (mij) be a matrix and GM = (Vr, Vc, E)
be its associated bipartite graph. Let Ri denote the structure of row i; i.e., Ri =
{j ∈ Vc s.t. (i, j) ∈ E}. Let Cj denote the structure of column j; i.e., Cj = {i ∈
Vr s.t. (i, j) ∈ E}.

In Gaussian elimination, when a pivot p = (rp, cp) is eliminated, a new matrix,
referred to as the reduced matrix M̄, is computed. M̄ is obtained from M by removing
row rp and column cp and by adding the Schur complement entries. In terms of graph
manipulations, this elimination adds edges in the bipartite graph of M to connect all
the rows adjacent to cp to all the columns adjacent to rp. This set of connected rows
and columns is referred to as a biclique.

The symbolic factorization of M is done by building Mk for k = 1 to n, with
M1 = M. After eliminating the kth pivot, we compute Mk+1 = M̄k.

3.2. Bipartite quotient graph. In the previous section we have shown that to
update the bipartite graph we must add, at each elimination step, entries to the Schur
complement matrix which may be costly to update and to store. It has been shown
that quotient graphs can be used to efficiently model the factorization of symmetric
matrices [20, 24]. The main idea is to use a compact representation of the cliques
associated with the eliminated vertices. This concept can be extended (see [31]) to
model the LU factorization. In this case, a bipartite quotient graph can be used to
represent the edges in a biclique. It has then been shown in [31] that doing so the
elimination can be modeled in space bounded by the size of the original matrix A.

306 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

In this section, we first explain why the quotient graph model leads to more complex
algorithms on unsymmetric matrices than on symmetric matrices. We then briefly
define element absorption and explain the use of local symmetrization to reduce the
quotient graph complexity. Finally, we introduce notation that will be used to describe
our algorithms.

Let Pr ⊆ 2Vr and Pc ⊆ 2Vc be two partitions of Vr and Vc, respectively. We define
the bipartite quotient graph GA = (Pr,Pc, ξ) of A such that an edge (I,J) belongs
to ξ ⊆ Pr × Pc if and only if there exists an edge in G between a node of I and a
node of J .

Let Gk
A be the bipartite quotient graph used to represent the structure of the

reduced submatrix Ak after k steps of elimination. Initially the bipartite quotient
graph G1

A is initialized with the partitions Pr = {{i} such that i ∈ Vr} and Pc =
{{j} such that j ∈ Vc}. Thus it is equivalent to the bipartite graph G1. At step
k of Gaussian elimination, any eliminated pivot e = (re, ce) will be referred to as
a coupled row and column element. All the row and column vertices that are not
coupled elements are referred to as the row and column variables of Gk

A. Both row and
column vertices of the graph are thus partitioned into two sets composed of variables
(uneliminated vertices) and elements (eliminated vertices). We then define Gk

A = (Vk
r ∪

Vk

r ,Vk
c ∪Vk

c , Ek ∪Ek
). When it is clear from the context, we will omit the superscript

k. The vertices in Vr (resp., Vc) correspond to the row (resp., column) variables. The
vertices in Vr (resp., Vc) correspond to the row (resp., column) elements. The edge set
E is such that E ⊆ (Vr×Vc), whereas E is such that E ⊆ (Vr×Vc)∪(Vr×Vc)∪(Vr×Vc).
With our definitions (i, j) is a nonzero entry in the reduced matrix at step k if and only
if there exists a path joining i and j which visits only the elements and for which all the
edges in the even positions correspond to already eliminated pivots. In other words,
the structure of a row i at step k is the set of reachable columns j through all the
paths of the form i → ce1 → re1 · · · → cel → rel → j, where et = (ret , cet), 1 ≤ t ≤ l,
are coupled elements. Similarly, the structure of a column j at step k is the set of
reachable rows i through all the paths of the form j → re1 → ce1 · · · → rel → cel → i.
This process may involve paths of arbitrary length in Gk

A [31] and in particular through
more than one coupled element. For example, in Figure 3.1, we assume that the entry
(rp, ce2) is initially zero and corresponds to fill-in due to the elimination of element
e1. Because of the path rp → ce1 → re1 , we know that the row structure of rp
contains the row structure of e1 and in particular the entry (rp, ce2). We know also
that the row structure of rp contains the row structure of e2 because of the path
rp → ce1 → re1 → ce2 → re2 .

In the context of sparse Cholesky factorization, an undirected quotient graph (the
row and column vertices are merged) is preferred and commonly used to compute an
ordering for symmetric matrices (e.g., multiple minimum degree [29] and approximate
minimum degree [1]). The structure of the factors can be computed following the
paths of length at most two in this quotient graph. There are no edges between the
elements.

In the unsymmetric case, when a pivot p = (rp, cp) is selected, if there exists a
cycle of the form rp → ce1 → re1 · · · → cel → rel → cp → rp, then, except for rp
and cp, the row and column elements in the cycle are no longer needed to retrieve the
structure of the remaining variables. This process will be called element absorption
and is illustrated in Figure 3.1. This absorption can be explained by the two following
remarks (see [31] for further details):

• The row and the column of p contain the structures of, respectively, the row

CONSTRAINED MARKOWITZ 307

c

r

r

r

e

e

cc

x

x

F

e

e e

2

p

2

e

2

1

p

1 p

1 x

Fig. 3.1. Illustration of a cycle (rp → ce1 → re1 → ce2 → re2 → cp → rp).

elements and the column elements in the cycle.
• If one of the elements is reachable from a variable i, then the other elements

in the cycle are also reachable from i (in particular p).

During the absorption, each path from i to an element in the cycle is thus replaced
by an edge from i to the current pivot.

To avoid long search paths when we compute the structure of the row and the
column of a pivot we decided to relax the element absorption rule as done in [5].
A row (resp., column) element is absorbed by the current row (resp., column) pivot
if either it is adjacent to the column (resp., row) pivot or its associated column
(resp., row) element is adjacent to the row (resp., column) pivot. This is referred
to as local symmetrization in [5]. It implies that the resulting quotient graph Gk

A

at step k models only an approximation of the structure of the reduced submatrix.
It has been shown in [5] that the exploitation of element absorption combined with
local symmetrization results in an in-place algorithm: at each step of the Gaussian
elimination, the size of the quotient graph is bounded by the size of G1

A. Note that
because of local symmetrization, an approximation of the symbolic factors can be
computed following the paths of length at most three of the form i → ce → re → j,
where (re, ce) denotes a coupled row and column element. Note that applying local
symmetrization is significantly different from symmetrization of the complete matrix.
In fact we add at most n− 1 virtual entries (at most one per absorbed element), and
thus the structure of the factors computed with local symmetrization is equal to the
real structure of the factors of a matrix A + D where D has fewer than n entries.

To simplify the description of how the bipartite quotient graph is modified at each
elimination step, we define V ⊆ (Vr × Vc) to be the set of coupled row and column
elements corresponding to already eliminated pivots. Entries of the set V will also
be referred to as coupled elements or elements when it is clear from the context. Let
Up (resp., Lp) be the column (resp., row) variables adjacent in Gk

A to the row (resp.,
column) element of a pivot p = (rp, cp). Thanks to local symmetrization, the concept
of absorption can be extended to coupled elements: an element e = (re, ce) such that
(rp, ce) ∈ E or (re, cp) ∈ E can be absorbed by p when p is selected as a pivot. A
consequence of this absorption is that our ordering also generates a dependency graph
between elements that is in fact a forest. This forest will be fully exploited by the
unsymmetrized multifrontal approach [7].

For each row variable i ∈ Vr and column variable j ∈ Vc, we define the element

308 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

lists Ri and Cj as follows:

Ri = {e = (re, ce) ∈ V s.t. (i, ce) ∈ E}

and

Cj = {e = (re, ce) ∈ V s.t. (re, j) ∈ E}.

Let e = (re, ce) be an element; if e ∈ Ri then we will say that element e is adjacent
to row variable i. Similarly, if e ∈ Cj we will say that element e is adjacent to column
j.

Using this notation, the adjacency of a row variable i (resp., column j) in GA

consists of a list of column variables denoted as Ai∗ (resp., a list of row variables
A∗j) and a list of elements Ri (resp., Cj). Initially Ri = Cj = ∅ and Ai∗ and A∗j
correspond to the original entries of A. Each step of Gaussian elimination involves
changes in the sets Ri and Cj as well as the computation of the structure of a current
pivot p. The variable lists Ai∗ and A∗j can also be pruned. Indeed, the edges in
GA between the variables and the elements implicitly represent the biclique of the
element and can thus be used to remove the redundant entries in Ai∗ and A∗j . This
important point will be further discussed in detail in section 4.3.

When (rp, cp) ∈ Vr ×Vc is selected as the next pivot we build the element p such
that

Up = Arp∗ ∪
⋃

e∈Rrp

Ue ∪
⋃

e∈Ccp

Ue(3.1)

and

Lp = A∗rp ∪
⋃

e∈Ccp

Le ∪
⋃

e∈Rrp

Le.(3.2)

The third term in each equation results from local symmetrization and will enable
the current pivot to absorb all the elements which it was adjacent to. For example,
let us assume that the entry p1 is selected as pivot in Figure 3.2. Since cp1 is adjacent
to e1, local symmetrization adds the virtual Sp1 entry so that the row structure of p1
contains Ue1 .

Let Fp = Ccp ∪ Rrp be the set of elements adjacent to the current pivot. The
elements in Fp are absorbed by p and the adjacency of each column variable j in Up

(resp., i in Lp) is updated so that Cj ← (Cj \Fp)∪ {p} (resp., Ri ← (Ri \Fp)∪ {p}).
The structure of column j of the factors in the reduced matrix is then given by
A∗j ∪

⋃
e∈Cj

Le. The structure of row i of the factors is Ai∗ ∪
⋃

e∈Ri
Ue.

Note that, although the above structural changes of the reduced submatrix are
correct, they should not be used to estimate the structure of the factors. Indeed,
if (i, j) were selected as the next pivot, then the correctly computed structure of
the reduced matrix should include the local symmetrization terms (similar to (3.1)
and (3.2)). In Figure 3.2, we illustrate the effect of local symmetrization on the
structure of the selected pivot. Let us consider two candidate pivots belonging to the
same row rp, p1 = (rp, cp1) and p2 = (rp, cp2). We assume that all the elements in
GA adjacent to p1 and p2 are indicated in the figure. The structure of row rp is then
given by Arp∗∪Ue3 . This, however, does not give enough information on the structure
of row rp if either p1 or p2 were selected as the next pivot. If p1 were the next pivot

CONSTRAINED MARKOWITZ 309

cp2cp1

X

X

p1 p2Sp2p1S X

e3

e

e

2

1

rp

Fig. 3.2. Influence of local symmetrization on the pivot structure.

then the structure of row rp would be given by Up1 = Arp∗ ∪Ue3 ∪Ue1 because of the
locally symmetrized entry Sp1. If p2 were the next pivot then the structure of row rp
would be given by Up2 = Arp∗ ∪ Ue3 ∪ Ue2 because of the locally symmetrized entry
Sp2. This shows that, even if we cannot anticipate the effect of local symmetrization
on the quotient graph GA before the pivot selection, we should anticipate its effect on
the metrics used to select the best pivot between p1 and p2.

4. CMLS algorithm. In this section, we describe the main features and prop-
erties of the CMLS algorithm. At each step of the algorithm, we need to know the exact
structure of each row and column in C. Moreover, we need to compute a metric that
reflects the quality of each nonzero entry in C. It is thus natural to use a bipartite
graph (with possibly weighted edges) for C. Each edge corresponding to a nonzero
entry may have one or more weights that will be used to select a pivot. For example,
a numerical value that approximates the magnitude of the entries and a structural
metric that approximates the Markowitz cost (i.e., the product of the row and column
degree) can be used. On the other hand, in order to have a fast computation of a
structural metric based on the pattern of A and to have an in-place algorithm, A is
represented by its quotient graph and local symmetrization is employed. The notation
used to represent the quotient graph at each step of the algorithm is summarized in
Table 4.1.

In section 4.1, we first describe the pivot selection algorithms. Updating the
graphs GC and GA associated with C and A, respectively, is discussed in sections 4.2
and 4.3. In section 4.4 we describe how to compute, at each step k and for each entry
in the constraint matrix Ck, structural metrics relative to Gk

A. Section 4.5 finally
explains how supervariables are defined and used in our context.

4.1. Pivot selection. At each step, the best pivot according to a given metric
is selected. The metric choice determines the underlying algorithmic strategy. We
say that we use structural strategies in our algorithms when the entries are selected
with respect to only information about the structure of the factors. In that case we
will say that we use a structural metric. When we combine a structural metric and a
numerical metric to select the pivot we will say that we use a hybrid strategy.

Moreover, in sparse matrix factorization, we also want to preserve the sparsity of
the factors while controlling the numerical growth in the factors. Numerical thresholds
are introduced to give freedom for the pivot selection to balance numerical precision
with sparsity preservation. An entry (i, j) ∈ Ck is said to be numerically acceptable

310 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

Table 4.1

Notation used for bipartite quotient graph.

Bipartite quotient graph of A: GA = (Vr ∪ Vr,Vc ∪ Vc, E ∪ E)
Ri elements adjacent to row i
Ai∗ variables adjacent to row i
Cj elements adjacent to column j
A∗j variables adjacent to column j
Up row structure of pivot p after its elimination.
Lp column structure of the pivot p after its elimination.
Fp elements that are adjacent to the row rp or the column cp of a noneliminated

pivot p (F = Rrp ∪ Ccp)

F elements that are adjacent to row i or column j where i and j will depend on
the context (F = Ri ∪ Cj)

(or acceptable) according to a threshold τ if and only if |cij | ≥ τ × ||c.j ||∞, where
τ ∈ [0, 1]. To reduce the complexity of the algorithms, it is also common to limit the
pivot search to a set of candidate pivots. For example, in [13] the authors proposed
to visit the entries of a fixed number of columns using the Zlatev-style search [37]. A
similar strategy is used in [34] to find a pivot set in the context of parallel sparse LU
factorization.

We use a slightly different algorithm: our pivot search is not restricted to columns
but to a more complex set of entries in order to achieve a better fill-in reduction. At
each step of the ordering, we look for the best entry p = (rp, cp) within a subset
(say, S) of the entries in the bipartite graph GC . The subset S is defined by two
threshold parameters MS > 0 and ncol ≥ 0 as follows. First, the MS entries with the
smallest structural metric m0 are added to S. Second, those MS entries may belong to
several columns. We then add in S all the other nonzero entries of those columns, but
restricted to at most the first ncol columns. The set S is thus composed of a first set
of MS entries, the so-called MS-set, and a second set, the so-called ncol-set = S\MS-set.

We now explain how we select the entry of minimum structural metric in S among
the numerically acceptable pivots. We first visit the MS-set sorted in increasing order of
the structural metric m0. The first numerically acceptable entry found corresponds to
the minimum with respect to our hybrid strategy and we stop the search. Otherwise,
none of the values in the MS-set entries is numerically acceptable. However, if ncol > 0
then we are sure that at least ncol entries will be numerically acceptable since τ ≤ 1.
Finally, if ncol = 0 and none of the entries in the MS-set is numerically acceptable
then the first entry of the MS-set is selected even if it is not numerically acceptable.
(In our experiments MS = 100 and ncol = 10 are used.)

4.2. Update of the bipartite graph GC . A bipartite graph is used to repre-
sent C. At each step k, we need to add new entries in GCk+1 corresponding to the
fill-ins in Ck+1. Since GC holds the set of candidate pivots, we need to guarantee
that properties (2.1) and (2.2) hold.

Let M be a matching in Ck. The following two extreme strategies preserve these
two properties:

• MATCH UPDATE will refer to the strategy that performs incomplete Gaussian
elimination on C to preserve only the perfect matching property (2.1). Let
p = (rp, cp) be the current pivot. Let (rp, match col) and (match row, cp)
be the matched entries of C in row rp and column cp, respectively. That
is, (rp, match col) ∈ M and (match row, cp) ∈ M. If these entries are the
same (i.e., (rp, cp) is a matched entry), nothing needs to be done to maintain

CONSTRAINED MARKOWITZ 311

property (2.1). Otherwise, entry (match row, match col) is added to C and
M to maintain property (2.1). Note that this entry corresponds to an entry
in Pattern(C̄k), so that property (2.2) remains true.

• TOTAL UPDATE will refer to the strategy which performs all the updates in
C (i.e., Ck+1 = C̄k). Note that even if this strategy naturally preserves
property (2.2), our perfect matching on Ck+1 may have to be updated as in
the MATCH UPDATE strategy.

In practice, a mixed strategy, exploiting both MATCH UPDATE and TOTAL UPDATE, will
be used for the experiments. (The decision is based on memory and cost estimations
of the algorithm.)

4.3. Update of the bipartite quotient graph GA. In Algorithm 4.1 we de-
scribe how the bipartite quotient graph associated with the reduced matrix is updated.

Algorithm 4.1 CMLS update of the bipartite quotient graph Gk
A

Let p = (rp, cp) be the current pivot at step k and Fp = Rrp ∪ Ccp .
if Up �= ∅ and Lp �= ∅ then

for each row i ∈ Lp do
1 Ai∗ = (Ai∗ \ Up) \ {cp} /* variable elimination in row direction */
2 Ri = (Ri \ Fp) ∪ p

end for
for each column j ∈ Up do

3 A∗j = (A∗j \ Lp) \ {rp} /* variable elimination in column direction */
4 Cj = (Cj \ Fp) ∪ p

end for
else /* pivot pruning: delete all that is related to p, if Up = ∅ or Lp = ∅ */

for each row i ∈ Lp do
Ri = (Ri \ Fp)
Ai∗ = Ai∗ \ {cp}

end for
for each column j ∈ Up do

Cj = (Cj \ Fp)
A∗j = A∗j \ {rp}

end for
end if

The “if” block of Algorithm 4.1 shows how the elements and variables are pruned.
The element pruning performed at lines 2 and 4 includes pruning due to local sym-
metrization. The variable pruning performed at lines 1 and 3 removes the intersection
of the adjacency structures. For each row i in Lp, variables of Ai∗ that appear in Up

are removed and we say that we perform variable elimination in the row direction.
For each column j in Up, variables of A∗j that appear in Lp are removed. This will
be referred to as variable elimination in the column direction. We then say that our
algorithm performs variable elimination in one direction. Note that if, at a given step,
variables are removed from both row i and column i, it means that i ∈ Lp and i ∈ Up.
In section 4.3.1, we will prove that under additional assumptions more pruning of the
variables could have been introduced. We then however comment in section 4.3.2 that
doing so makes impossible the detection of the reducibility as done in the “else” block
of Algorithm 4.1. We will also explain why it is correlated with the strategy used to
prune variables. Note that this additional pruning would have improved the accuracy
of our structural metrics as explained in section 4.4.

4.3.1. Two-way variable elimination. Property 4.1 shows that under addi-
tional assumptions the structure of the quotient graph can be further pruned.

312 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

Property 4.1. When local symmetrization is applied, and if at step k, the entry
at position (i, j) is the only entry in row i and column j of Ck, then the following
hold:

(1) if i ∈ Lp, all the variables belonging to Lp can then be removed from A∗j
(even though j /∈ Up),

(2) if j ∈ Up, all the variables belonging to Up can then be removed from Ai∗
(even though i /∈ Lp).

Proof. From (2.2), we have Pattern(Ck+1) ⊆ Pattern(C̄k). Therefore, if at step
k, (i, j) is the only entry in row i and column j of Ck, it will remain the only entry
in its row and column for all subsequent Cl for l > k. Thus (i, j) will be selected as a
pivot in a future step, and we can anticipate where local symmetrization will occur.
So the entries in A∗j ∩Lp for Property 4.1(1) (or in Ai∗ ∩Up for Property 4.1(2)) can
be pruned and will be retrieved from Lp (or Up) when (i, j) is eliminated.

When we apply Property 4.1, we say that the algorithm performs elimination in
both row and column directions. This process will be referred to as two-way variable
elimination. For example, when the pivot choice is limited to a transversal, the two-
way variable elimination can be performed at each step of the elimination, as in the
DMLS algorithm [5]. This is illustrated in Figure 4.1(a). We assume, for the sake of
clarity, that the input matrix has been permuted to have all the candidate pivots on
the diagonal. The shaded areas correspond to the variables that can be removed from
the variable adjacency lists because they are implicitly stored through the adjacency
lists of element p.

XX

XX

X

j

i

i j

p 0

0

(a) Illustration of two-way variable elimination.

X

X

X X

S

e

p 0 0

(1)

0 0

i

j

(b) Effect of variable elimination in both direc-

tions on reducibility detection (S indicates the
position of local symmetrization).

Fig. 4.1. Variable elimination and reducibility detection.

If the hypothesis of Property 4.1 is not true, the two-way variable elimination
cannot be applied because we do not know whether local symmetrization will be
performed or not. Let us consider Figure 4.1(a) again. If all three entries (i, i), (j, j),
and (j, i) belong to C, then we cannot prune all the shaded areas. This is because
both (i, i) and (j, i) are potential pivots from column i. If (i, i) were chosen as the
pivot from column i, then the shaded area in column i could have been pruned during
the elimination of p thanks to local symmetrization relative to entry i in column Lp.
However, if (j, i) were selected as the pivot from column i, then since j /∈ Lp and
i /∈ Up, the element p would not be used to build the row and column adjacency
of (j, i). In this case the shaded area in column i should not be pruned during the
elimination of p since it would be impossible to retrieve those variables. Note that

CONSTRAINED MARKOWITZ 313

the shaded area in column j can be pruned, because the entry (p, j) is not a locally
symmetrized entry, and so the variable elimination in the column direction can be
applied.

4.3.2. Reducibility detection. If the input matrix is reducible, we may en-
counter a pivot p such that either (1) both Lp = ∅ and Up = ∅ (referred to as strongly
reducible) or (2) Lp = ∅ or Up = ∅ (referred to as weakly reducible). Ideally, we would
like to remove p from the quotient graph GA in both reducible cases. (In our context
removing a pivot from GA means that both the pivot and its adjacency structure can
be suppressed without any further update of the graph.) However, we will show that
whether p can be removed or not depends on whether we use only one-way variable
elimination or we use two-way variable elimination as well.

Property 4.2. If the variable elimination is always done in one direction, then
the current pivot p can be removed from the quotient graph if it is weakly reducible.

Property 4.2 comes from the fact that the pruning of the structures due to local
symmetrization has not been anticipated. Thus, none of the entries in Lp (if Up = ∅)
or Up (if Lp = ∅) will be needed by the other variables to represent their adjacency
structure in GA. Therefore, pivot p can be removed from GA.

Property 4.3. If the two-way variable elimination has been done at least once,
then the current pivot p can be safely removed from the quotient graph if and only if
it is strongly reducible.

Proof. First, when Up = ∅ and Lp = ∅, p becomes a singleton element and can
certainly be removed from the quotient graph. Second, let us suppose that two-way
variable elimination has been performed at least once. We now build a counterexample
to show that we cannot safely (in all possible cases) remove a weakly reducible pivot
p. Let us assume without loss of generality that Up = ∅ and Lp �= ∅. Let us assume
that there exists a variable i ∈ Lp and that there is an entry (i, j) that is the only
entry in row i and column j in C. We also assume that variables in A∗j have been
pruned under two-way variable elimination. Therefore, p must be used to retrieve
those entries and cannot be removed from GA. This is illustrated in Figure 4.1(b)
where the shaded area (1) in column j is first stored through element e and then
stored through element p (after pivot p absorbs element e).

Property 4.3 indicates a drawback of the two-way variable elimination: we can
only prune the pivot in the strongly reducible case. The algorithm may be very
inefficient if the matrix is very reducible in the weak sense.

When the matrix is reducible to block triangular form (BTF), the reducibility
detection may have a significant impact on the ordering quality [15]. In that case many
instances in which an element is strongly or weakly reducible can appear. Property 4.2
can then be used to show that thanks to one-way variable elimination CMLS will better
detect and exploit the BTF of a matrix (see [6, 32] for further details).

4.4. Update of the structural metric. In this section, we describe heuristics
to estimate the structural quality of a pivot.

In the preamble section, we first describe how we approximate the row and column
degrees. In section 4.4.2, we describe a metric based on an upper bound on the fill-ins
introduced at each step of elimination. This approximation of the fill-ins has been
studied by the authors of AMD [1] for symmetric matrices. We provide a generalization
of this approximation to unsymmetric matrices and prove that it is a tighter upper
bound on the fill-ins than the approximations proposed for symmetric matrices in
[33]. Note that concerning the deficiency approximation in [30], there is no guarantee

314 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

that it is an upper bound of the fill-in. Our approximate minimum fill-in heuristic
will be referred to as AMFI.

4.4.1. Preamble. Let us assume that the kth pivot p = (rp, cp) has been se-
lected. All the entries in (Lp × Vc ∪ Vr × Up) ∩ Pattern(C) are involved in the
structural metric updates. The size of this area is thus larger than the area involved
in the update of the structure of C. The algorithm to update the structural metrics
is one of the most costly steps of our algorithm.

We want the metrics to reflect the structural quality of an entry if it were selected
as the next pivot. That is why we compute metrics which are related to the structure
of our quotient graph and for which local symmetrization is anticipated. In the
following, the degrees, approximate degrees, fill-ins, and approximate fill-ins are all
related to this quotient graph structure.

Let dr(i, j) and dc(i, j) denote, respectively, the external row and the external
column degrees of entry (i, j). Similarly to the AMD [1] and DMLS [5] algorithms, ap-
proximate row and column external degrees are computed. The AMD-like approximate
external row and column degrees, amdr(i, j) > dr(i, j) and amdc(i, j) > dc(i, j),
respectively, are then defined by the following two equations:

amdr(i, j) = |Ai∗ \ Up| + |Up \ j| +
∑

e∈Ri∪Cj
(|Ue \ Up|) − αj ,

with αj = max(|Cj |, 1) if j /∈ Up else αj = 0.
(4.1)

amdc(i, j) = |A∗j \ Lp| + |Lp \ i| +
∑

e∈Cj∪Ri
(|Le \ Lp|) − βi,

with βi = max(|Ri|, 1) if i /∈ Lp else βi = 0.
(4.2)

As was done in [5], degree corrections (αj and βi in (4.1) and (4.2)) are introduced to
improve the approximations of the row and column external degrees in the presence
of local symmetrization. To justify these correction terms, one can observe that if
j /∈ Up then j is counted in every Ue \ Up for e that is adjacent to column j (e ∈ Cj).
Furthermore, if Cj is empty and j /∈ Up then column j has been counted in Ai∗ \ Up

and should then be subtracted. This explains the use of αj in the correction. βi can
be justified in a similar way. The |Ue \ Up| and |Le \ Lp| quantities are computed
similarly in the AMD algorithm.

Note that since only one-way variable elimination is employed, the computation
of the metric is less accurate than with two-way variable elimination. This is because
in the latter case, for any element e, row index i ∈ Up, and column index j ∈ Lp, we
have Ai∗ ∩ Ue = ∅ and A∗j ∩ Le = ∅. This is no longer true when one-way variable
elimination is used (see Algorithm 4.1). But as was explained in section 4.3, the
benefit of one-way variable elimination is to better exploit the BTF of the matrix.

After eliminating the kth pivot, we approximate the row and column degree by

amdr(i, j) = min(amdr(i, j), n− k − 1)(4.3)

and

amdc(i, j) = min(amdc(i, j), n− k − 1).(4.4)

Note that these approximations do not use the values of the previous approximate
row and column degrees because it would be costly to store these quantities for each
entry in C.

CONSTRAINED MARKOWITZ 315

4.4.2. Approximation of the fill-in. We want to estimate the amount of new
fill-in that would occur in the reduced matrix if an entry were selected as the next
pivot. A coarse upper bound of the fill-in that would occur can be obtained by
removing the area corresponding to Lp × Up from the Markowitz cost or the area
corresponding to the largest adjacent clique [33]. A tighter approximation of the fill-
in in the factors can be obtained by removing all the areas already filled during the
elimination of the previous elements.

Suppose that i ∈ Lp or j ∈ Up. Let F = Ri ∪ Cj . Let e be an element that
belongs to F . Let S(i, j) denote the union of the areas associated with all the elements
adjacent to entry (i, j):

S(i, j) =

∣∣∣∣∣ ⋃
e∈F

(Le \ {i}) × (Ue \ {j}) \ (Lp × Up)

∣∣∣∣∣ .
Ideally one might want to subtract both | (Lp \ {i}) × (Up \ {j}) | and S(i, j) from
the Markowitz cost dr(i, j) × dc(i, j). An upper bound of the fill-in that would occur
(including local symmetrization) if an entry (i, j) were eliminated is

dr(i, j)dc(i, j) − | (Up \ {j}) | | (Lp \ {i}) | − S(i, j).

The authors of [33] have observed that instead of using the exact external degrees
one could use the approximate (in the sense of the AMD algorithm) external degrees
since both produce results of comparable quality and since AMD-based metrics are
significantly faster to compute. In this context, the corresponding upper bound of the
fill-in metric becomes

amdr(i, j)amdc(i, j) − | (Up \ {j}) | | (Lp \ {i}) | − S(i, j).(4.5)

Let AS be an overestimation of area S,

AS(i, j) =
∑
e∈F

| (Le \ {i}) × (Ue \ {j}) \ (Lp × Up)|.(4.6)

Property 4.4 proves that one can in fact subtract area AS(i, j), instead of S(i, j), to
obtain a more accurate upper bound of the fill-in metric than expression (4.5).

Property 4.4. amdr(i, j)amdc(i, j) − | (Up \ {j}) | | (Lp \ {i}) | − AS(i, j)
is an upper bound of the fill-in that would occur in the quotient graph if (i, j) were
eliminated.

An intuitive proof of Property 4.4 is that, during the computation of the approx-
imate degree, the submatrix is expanded in such a way that the intersections between
all (Ue \ Up \ {j}) and between all (Le \ Lp \ {i}) for e ∈ F are empty. The area
AS corresponds to a real surface in the expanded matrix and can be removed from
the area amdr(i, j)amdc(i, j) to compute the fill-in that would occur in the expanded
matrix. Moreover, this fill-in in the expanded matrix is an upper bound of the exact
fill-in in the quotient graph. A formal proof of Property 4.4 is given in [32].

In practice we use amdr(i, j) and amdc(i, j) as defined in (4.3) and (4.4) instead of
amdr(i, j) and amdc(i, j). Because of that it may happen that amdr(i, j)amdc(i, j)−
|Up\j||Lp\i|−AS(i, j) becomes negative, meaning that either amdr(i, j) < amdr(i, j)
or amdc(i, j) < amdc(i, j). In such cases, as it is done in AMD and DMLS, one can
artificially set the metric to 0. We propose here an alternative that could also be

316 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

applied to these approaches to limit the tie-breaking. We introduce row and column
scaling terms

rowscale =
amdr(i, j) − |Up \ j|
amdr(i, j) − |Up \ j|

and colscale =
amdc(i, j) − |Lp \ i|
amdc(i, j) − |Lp \ i|

.

If one systematically scales the area AS by rowscale × colscale, then we ensure a
positive metric and avoid tie-breaking problems due to metrics equal to 0. Our final
AMFI metric is then defined as follows:

metric(k+1)(i, j) = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
amdr(i, j)amdc(i, j) − |Up \ j||Lp \ i|

− rowscale× colscale×AS(i, j)

metric(k)(i, j) +|Up \ j| × amdr(i, j)

+|Lp \ i| × amdc(i, j)
−2 × |Up \ j| × |Lp \ i|.

(4.7)

4.5. Supervariables and mass elimination. For the sake of clarity, the algo-
rithms described in the previous section did not include supervariables. In this section,
we first define our generalization of supervariables and mass elimination to bipartite
quotient graphs with off-diagonal pivots. We then revisit the previous algorithms and
explain what has to be modified to detect and exploit supervariables.

In our context, we want supervariables to exploit identical adjacency structures
in the graph at each step of the elimination. Supervariables are thus defined on
the bipartite quotient graph of A, whereas on the bipartite graph of C we use only
simple variables. With the CMLS algorithm we cannot use exactly the same kinds
of supervariables as in [1, 5, 19, 23] because they assume that pivots are on the
diagonal so that a row can be associated with a column before being selected as a
pivot. That is why our concept of supervariable is closer to the one used in [22]:
we define indistinguishable row variables (resp., indistinguishable column variables) as
row variables (resp., columns variables) which have the same adjacency in GA. To
limit the cost of supervariable detection, two hash functions (see, for example, [9])
are then used for each row and column direction.

If i and j are two indistinguishable row variables, they are replaced in GA by a row
supervariable containing both i and j, labeled by its principal row variable (i, say) [18,
19, 20]. The notation i is used to denote this row supervariable and i = {i, j}. i and j
are said to be constituent row variables of the row supervariable i and the notations i ∈
i and j ∈ i are then used. At the beginning of Gaussian elimination, the row variables
are said to be simple row variables. Each simple row variable i can also be seen as a
row supervariable i = {i}. For each row supervariable i, |i| corresponds to its size, i.e.,
its number of constituent variables. Similar definitions and notation can be introduced
for the column supervariables, the principal column variables, the constituent column
variables, and the simple column variables. When it is clear from the context, we do
not differentiate between a column or a row supervariable. Furthermore, let r1 and
r2 be two row variables which belong to the same row supervariable r and c1 and
c2 be two column variables which belong to the same column supervariable c. After
the elimination of pivot p1 = (r1, c1), p2 = (r2, c2) can be eliminated in GA without
causing extra fill-in. This process, commonly referred to as mass elimination [25],
creates a new (super)element e = (re, ce) in the quotient graph with re = {r1, r2} and
ce = {c1, c2}. In the following, we comment on the algorithmic modifications due to
the introduction of supervariables.

CONSTRAINED MARKOWITZ 317

Let p be the current pivot. The first modification of the algorithm concerns the
introduction of a scaling of the structural metric as defined by (4.7). The structural
metric of an entry (i, j) adjacent to p either in the row or in the column direction is
divided by min(|i|, |j|). Indeed, min(|i|, |j|) corresponds to the size of the largest pivot
block which could be eliminated if a pivot at the intersection of these row and column
supervariables were selected.

The second modification of the algorithm concerns the elimination process which
is performed in the following three main steps. During the first step, the scaled metric
is used to select a pivot in C. During the second step, we retrieve its associated row
rp and column cp supervariables in A. During the third step, we eliminate “as many
as possible” variables belonging to (rp × cp) ∩ C. Note that the meaning of “as
many as possible” will depend on the context. If a hybrid strategy is used then pivot
entries might be rejected because of numerical criteria. Furthermore, since the C
matrix is updated when eliminating a pivot, the new nonzero entries that might be at
the intersection of the pattern of C and the supervariables need also be considered.
The same modified three steps are also applied when the mass elimination process of
supervariables adjacent to the current pivot is involved. Finally, if some constituent
variables of a supervariable have not been eliminated, then they are used to build a
new supervariable and are reinserted in GA.

The final modification concerns the update of the structural metric. After the
elimination of a pivot p, the approximate external row and column degrees as defined
by (4.1) and (4.2) become

amdr(i, j) = |Ai∗ \ Up| + |Up \ {j}| +
∑

e∈Ri∪Cj
(|Ue \ Up|) − αj |j|,

with αj = max(|Cj|, 1) if j /∈ Up else αj = 0,
(4.8)

amdc(i, j) = |A∗j \ Lp| + |Lp \ {i}| +
∑

e∈Ri∪Cj
(|Le \ Lp|) − βi |i|,

with βi = max(|Ri|, 1) if i /∈ Lp else βi = 0.
(4.9)

5. Experiments. In this section we analyze the effect of the CMLS ordering on
the performance of sparse solvers. Our new ordering will be compared to the combi-
nation of DMLS ordering and MC64 [16, 17] because it is the most robust in-place local
heuristic (better than the combination of AMD and MC64; see [5]) in terms of numerical
stability and fill-in reduction in the factors. DMLS takes into account the asymmetry
of the matrices, selects pivots on the diagonal, and applies local symmetrization and
two-way variable elimination. Thus it can be considered a restricted CMLS. We recall
that MC64 permutes the matrix such that the product of the diagonal elements is
maximized.

With the CMLS ordering, our pivot sequence results from a combination of struc-
tural and numerical information (even when only structural metrics are used to select
the pivots, the initialization of our constraint matrix is based on numerical consider-
ations). Therefore it is important to analyze the numerical quality of the proposed
sequence of pivots. In this context, for very different motivations, we may want to ex-
periment with both an approach that performs partial pivoting to preserve numerical
stability and an approach based on static pivoting. In the first case, the numerical
quality of the proposed sequence of pivots is not so critical to obtaining a backward
stable factorization, and we expect to improve the sparsity of the factors because
of the freedom to select entries in the constraint matrix C. In the case of a static
pivoting, we expect that the capacity of CMLS to select pivots according to numerical

318 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

criteria can be used to better control the numerical quality of the sequence while still
offering more freedom than a diagonal Markowitz algorithm. In fact with the CMLS

algorithm we can define a family of orderings and expect that two probably different
members of this family can be used in these two cases: a CMLS ordering in which C
offers a lot of freedom to choose the pivots, and a CMLS ordering in which the selection
of the pivots is strongly guided by the numerical values in C.

To represent each class of solver techniques, we consider the multifrontal code
MA41 UNS [2, 7] which performs numerical pivoting during the factorization and the
supernodal code SuperLU DIST [28] which performs static pivoting. Both codes are
run in sequential mode. As shown in [4, 7, 12, 26] the approaches used to factorize the
matrix in MA41 UNS and SuperLU DIST are very competitive in shared/sequential and
distributed memory environments, respectively. Note that because of the important
algorithmic similarities between MA41 UNS and the distributed memory code MUMPS [3],
this work also will be very beneficial to the distributed memory multifrontal code.

In section 5.1, we present our experimental environment. In section 5.2, we discuss
the case where the pivot choice in CMLS is restricted to the matching provided by MC64.
In section 5.3, we analyze the behavior of our ordering when a structural strategy is
used to select the pivots. We report performance obtained with MA41 UNS in terms of
time and memory used during factorization. In section 5.4, we illustrate the benefits
resulting from the use of hybrid strategies for pivot selection in SuperLU DIST and
focus on the numerical effects.

5.1. Experimental environment.

5.1.1. Test matrices and computing environment. Consider a matrix A =
(aij) and let nnz(A) be its number of nonzero entries. We define the structural
symmetry s(A) as

s(A) =
|{(i, j) s.t. aij �= 0 and aji �= 0}|

nnz(A)
.

If A is symmetric, then s(A) = 1, and if A is strictly triangular, then s(A) = 0. In
the remainder of this section, the symmetry of a matrix always refers to the structural
symmetry after the MC64 permutation has been applied (see column sym of Table 5.1).

A representative set of 19 large unsymmetric matrices has been selected from
Davis’s collection [11]; see Table 5.1. Only matrices with a structural symmetry lower
than 0.5 and of order greater than 10000 were chosen. Moreover, we limited the num-
ber of similar matrices from the same family to two in order to avoid the class effects.
We also added to our test set four matrices (mixtank, invextr1, fidapm11, and cav-
ity16) from the PARASOL test data1 and Matrix Market,2 because we have observed
that for these matrices SuperLU DIST needs iterative refinement to improve the accu-
racy of the solution [4]. These four matrices will be used in section 5.4 to illustrate
that using the CMLS ordering improves the numerical behavior of SuperLU DIST.

All our results were obtained on a Linux PC computer (Pentium 4, 2.8 GHz,
2 GBytes of memory, and 1 MByte of cache). We used the Portland Fortran 90
compiler pgf90, C compiler gcc (both with -O3 option), and ATLAS BLAS [35, 36].

We systematically applied random row and column permutations to our initial
matrix so that the ordering algorithms were less sensitive to the effects of tie-breaking.
We ran each problem with eleven random permutations and selected the run whose

1http://www.parallab.uib.no/projects/parasol/data
2http://math.nist.gov/MatrixMarket

CONSTRAINED MARKOWITZ 319

Table 5.1

Test matrices.

Group/Matrix n nnz sym Description
Vavasis/av41092 41092 1683902 0.08 Unstructured finite element
Hollinger/g7jac200sc 59310 837936 0.10 Economic model
Hollinger/g7jac180sc 53370 747276 0.10 Economic model
Hollinger/jan99jac120sc 41374 260202 0.16 Economic model
Hollinger/jan99jac100sc 34454 215862 0.16 Economic model
Mallya/lhr34c 35152 764014 0.19 Light hydrocarbon recovery
Mallya/lhr71c 70304 1528092 0.20 Light hydrocarbon recovery
Hollinger/mark3jac120sc 54929 342475 0.21 Economic model
Hollinger/mark3jac140sc 64089 399735 0.21 Economic model
Grund/bayer01 57735 277774 0.25 Chemical process simulation
Hohn/sinc18 16428 973826 0.27 Single-material crack problem (sinc-basis)
Hohn/sinc15 11532 568526 0.27 Single-material crack problem (sinc-basis)
Zhao/Zhao2 33861 166453 0.27 Electromagnetism
Sandia/mult dcop 03 25187 193216 0.36 Circuit simulation
ATandT/twotone 120750 1224224 0.42 Harmonic balance method
ATandT/onetone1 36057 341088 0.42 Harmonic balance method
Norris/torso1 116158 8516500 0.43 Finite element matrices from bioengineering
Simon/bbmat 38744 1771722 0.49 2D airfoil, turbulence
Shen/shermanACb 18510 145149 0.50 Matrices from Kai Shen
mixtank 29957 1995041 0.91 fluid flow (PARASOL, Polyflow S.A.)
invextr1 30412 1793881 0.85 fluid flow (PARASOL, Polyflow S.A.)
fidapm11 22294 623554 0.45 CFD (SPARSKIT2 collection)
cavity16 4562 138187 0.84 Finite element modeling (SPARSKIT2 collection)

ordering returns the median fill-in in the factors. We did not observe large variations
of the amount of fill-in in the factors from these random permutations except for
matrix bbmat. (In general variations are smaller than 10%.)

5.1.2. CMLS and DMLS testing environment. The initialization of C is
done using a scaled matrix and the maximum weighted matching returned by MC64.
To limit the size of C and the complexity (cost and memory) of the ordering phase,
the initial number of entries in C0 is set between n and 4n (computation based on
a function that depends on both n and nnz(A)). We then drop the entries that are
smaller than 0.1 in magnitude and the entries whose structural metrics are too large.
While dropping, we still maintain the nonsingularity property (2.1). In our test set,
we observed that the size of C0 is between n and 3n after this last dropping phase.

We use the metric AMFI of section 4.4.2 since it is the most efficient metric for
both CMLS and DMLS orderings. In the CMLS implementation, we use rowscale and
colscale coefficients (see end of section 4.4.2) to reduce the amount of tie-breaking
between variables that would have a negative metric (reset to 0) with DMLS. This
algorithmic modification has also been implemented in the DMLS code to simplify our
discussions in this section.

5.2. Preliminary remarks about diagonal constraint matrix. When C0

contains only the entries from the MC64 matching and thus the set of candidate pivots
for CMLS and DMLS is identical, one should expect a comparable behavior of the two
algorithms in terms of fill-in in the factors. However, we have noticed that CMLS

ordering tends to produce sparser factors (see [32] for detailed results) even if DMLS
uses two-way variable elimination which leads to more accurate structural metrics,
as explained in section 4.4.1. This can be explained by the following algorithmic
differences:

320 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

Table 5.2

MA41 UNS size of the factors and analysis reliability. Each number for the factor size is in
thousands. std: Standard deviation over the eleven runs. Mean (resp., Median): Mean (resp.,
median) value of the ratio CMLS statistic / DMLS statistic.

Estimated size of factors Real size of factors Ratio: Actual/predicted
Matrix CMLS std DMLS std CMLS DMLS CMLS DMLS

av41092 6609 0.01 9323 0.02 6849 9553 1.03 1.02
g7jac200sc 27912 0.06 30424 0.02 28282 30443 1.01 1.00
g7jac180sc 24755 0.04 26789 0.03 25077 26810 1.01 1.00
jan99jac120sc 3191 0.02 4326 0.03 3197 4330 1.00 1.00
jan99jac100sc 2651 0.02 3373 0.03 2656 3376 1.00 1.00
lhr34c 4264 0.05 3571 0.03 4405 3668 1.03 1.02
lhr71c 9142 0.02 7189 0.02 9557 7377 1.04 1.02
mark3jac120sc 13333 0.02 12963 0.04 13386 12998 1.00 1.00
mark3jac140sc 15380 0.02 15093 0.01 15453 15136 1.00 1.00
bayer01 1253 0.03 2220 0.04 1253 2220 1.00 1.00
sinc18 26505 0.05 31722 0.04 27427 31926 1.03 1.00
sinc15 12596 0.03 15367 0.04 12917 15455 1.02 1.00
Zhao2 12258 0.01 14069 0.02 12588 14434 1.02 1.02
mult dcop 03 713 0.01 940 0.07 714 906 1.00 0.96
twotone 7552 0.01 8458 0.02 7552 8458 1.00 1.00
onetone1 2913 0.02 3204 0.02 2921 3204 1.00 1.00
torso1 30656 0.02 34200 0.01 30656 34326 1.00 1.00
bbmat 38088 0.10 46436 0.14 38888 46471 1.02 1.00
shermanACb 362 0.01 426 0.01 362 426 1.00 1.00
Mean/Median 0.88/0.87 0.89/0.87

• Thanks to the one-way variable elimination, CMLS can eliminate all the el-
ements in both the strongly reducible and the weakly reducible situations.
This is well illustrated by the mult dcop 3 matrix, which has 7448 irreducible
components. DMLS and CMLS detect 875 singletons during a common prepro-
cessing step. Then during ordering, DMLS detects 95 additional blocks versus
229 blocks for CMLS.

• CMLS can create a row (column) supervariable if two rows (columns) have
the same structure. DMLS can create a supervariable only if both rows and
columns have the same structure. Thus, on the same quotient graph CMLS

will detect more supervariables than DMLS. Note that the use of supervariables
improves the accuracy of the structural metric. For example, if we consider
that variables i and j belong to the same row supervariable, then the entries
in Ai∗ and Aj∗ will not be counted as fill-in.

We should stress that these algorithmic differences were justified because CMLS is
designed to handle more general and complex situations than DMLS. What was not at
all predicted is that even a DMLS-like algorithm—pivot choice limited to the diagonal—
could benefit from the more general framework of the CMLS ordering.

5.3. Structural strategy.

5.3.1. Structure of the factors. In this section, we analyze the effect of the
ordering on the size of the factors and compare the predicted size and the actual size
of the factors. When there are no off-diagonal pivoting and node amalgamation, the
actual size would be the same as the predicted size.

Table 5.2 compares CMLS with DMLS for both the estimated and the real size of
the factors, using the MA41 UNS solver. For most matrices, the CMLS ordering results
in sparser factors. The gains in sparsity vary from −22% to 56%, with gains very

CONSTRAINED MARKOWITZ 321

much comparable for both the estimated and the real size of the factors. On all
matrices CMLS is either comparable or significantly better than DMLS except for lhr34c
and lhr71c for which DMLS performs better. For the two matrices CMLS performs many
mass eliminations (approximatively 25% of the variables are eliminated during mass
elimination). Instead of dividing our minimum fill-in estimation by the minimum of
the sizes of the column and row supervariables, one could anticipate the number of
mass eliminations and divide the AMFI estimation by the maximum of the sizes of the
column and row supervariables. With this modification, we observed similar results
in terms of fill-in between CMLS and DMLS for these two matrices.

As expected, the fact that more flexibility has been offered to select off-diagonal
pivots in the constraint matrix helps CMLS to preserve the sparsity of the factors.
However, in doing so we have allowed CMLS to select pivots that do not belong to the
maximum weighted matching. Since a structural metric is then used by CMLS to select
pivots, it is thus critical to evaluate the numerical quality of this pivot sequence with
MA41 UNS. We recall that, thanks to partial threshold pivoting, the factorization phase
of MA41 UNS (the default value of the threshold is used in all experiments) will modify
the pivot sequence to control the growth of the size of the factors. This may result
in an increase in the estimated factor size and number of operations. We thus also
provide in Table 5.2 the ratio between the number of nonzeros in the factors and the
forecast number of nonzeros in the factors. Note that from a software point of view it
is also critical for the estimation to reflect reality. Clearly an accurate estimation is
important for algorithms that are implemented without dynamic memory allocation.
Even for C, C++, or Fortran 90 based implementations that allow dynamic memory
allocations, their cost may be not negligible. Finally, the accuracy of the memory
estimation is even more critical in a distributed memory environment. For example,
the buffers used for communications need to be well estimated. We see in Table 5.2
that the increase in the size of the factors is reasonable.

5.3.2. Run-time and memory usage. In this section, we examine the num-
ber of operations, run-time, and memory usage of MA41 UNS. The extra cost due to
numerical pivoting during factorization is always included in the number of opera-
tions. Note that the timings for the factorization and the solution phases have to be
interpreted carefully because they strongly depend on the basic linear algebra kernels
used.

We see in Table 5.3 that on almost all the matrices, the CMLS ordering reduces
the amount of memory used, with an average reduction around 11%. The reduction
in the number of operations is even larger (median value of 20%) and will contribute
to the reduction in the factorization time.

Table 5.4 then compares the time of the three main steps of the solution process.
Note that the ordering time of both orderings depends on two opposite effects that are
difficult to assess. The better we preserve sparsity, the smaller might be the quotient
graph, and the faster we can process it. On the other hand, the better we preserve
sparsity, the fewer elements are absorbed, the fewer supervariables are detected, and
the higher the complexity might be. However, our new ordering is a real unsymmetric
ordering that selects off-diagonal pivots and updates a constraint matrix. One should
thus expect the time spent in the ordering to be higher with CMLS than with DMLS.
Indeed, CMLS performs more metric computations and has to explicitly store and
manipulate the constraint matrix C. The metric update is the most costly step of
the ordering so that the complexity of the ordering is tightly linked to the size of C.
Considering that the size of C0 is typically between 2n and 3n, we see in Table 5.4
that CMLS is quite competitive with respect to DMLS (we observe that the cost of CMLS

322 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

Table 5.3

MA41 UNS memory used (in thousands of reals) and number of operations (in millions). Ratio:
Ratio of CMLS statistic / DMLS statistic. Mean (resp., Median): Mean (resp., median) of the ratio
CMLS statistic / DMLS statistic.

Memory needed Number of operations
Matrix CMLS DMLS ratio CMLS DMLS ratio
av41092 7104 9998 0.71 1760 3533 0.49
g7jac200sc 29082 32912 0.88 27717 32553 0.85
g7jac180sc 26500 27566 0.96 24272 28190 0.86
jan99jac120sc 3245 4615 0.70 1042 1691 0.61
jan99jac100sc 2711 3579 0.69 867 1196 0.72
lhr34c 4501 3684 1.22 731 422 1.73
lhr71c 9786 7465 1.31 1949 852 2.28
mark3jac120sc 13909 13511 1.02 7524 6465 1.16
mark3jac140sc 15937 15963 1.00 8592 7558 1.13
bayer01 1256 2231 0.56 41 140 0.29
sinc18 32375 35409 0.91 49281 60152 0.81
sinc15 15031 16885 0.93 16515 19376 0.85
Zhao2 13200 15492 0.85 7622 9655 0.78
mult dcop 03 746 969 0.76 51 117 0.43
twotone 8038 9006 0.89 4791 5412 0.88
onetone1 3437 3652 0.94 1035 1284 0.80
torso1 33759 36761 0.91 24620 36523 0.67
bbmat 39303 47156 0.83 31576 54061 0.58
shermanACb 394 452 0.87 20 30 0.66
Mean/Median 0.89/0.89 0.87/0.80

Table 5.4

MA41 UNS ordering, factorization and solution time (in seconds). Ratio: Ratio of CMLS statistic
/ DMLS statistic. Mean (resp., Median): Mean (resp., median) of the ratio CMLS statistic / DMLS

statistic.

Ordering time Factorization time Solution time
Matrix CMLS DMLS ratio CMLS DMLS ratio CMLS DMLS ratio
av41092 3.38 2.72 1.24 1.95 2.98 0.65 0.042 0.051 0.82
g7jac200sc 27.13 9.96 2.72 23.37 25.63 0.91 0.125 0.135 0.92
g7jac180sc 24.34 8.11 3.00 22.15 24.04 0.92 0.113 0.119 0.94
jan99jac120sc 5.29 3.01 1.75 1.48 2.04 0.72 0.037 0.043 0.86
jan99jac100sc 4.16 2.03 2.04 1.14 1.83 0.62 0.028 0.031 0.90
lhr34c 5.01 2.27 2.20 1.22 0.95 1.28 0.041 0.037 1.10
lhr71c 11.19 5.13 2.18 3.16 2.33 1.35 0.096 0.084 1.14
mark3jac120sc 8.26 3.59 2.30 5.88 4.90 1.20 0.069 0.070 0.98
mark3jac140sc 9.84 4.18 2.35 6.77 5.85 1.15 0.083 0.081 1.02
bayer01 1.66 1.19 1.39 0.36 0.49 0.73 0.037 0.039 0.94
sinc18 25.63 12.66 2.02 33.72 32.10 1.05 0.079 0.077 1.02
sinc15 10.89 4.60 2.36 10.98 10.79 1.01 0.040 0.040 1.00
Zhao2 2.22 0.93 2.38 5.67 6.97 0.81 0.052 0.053 0.98
mult dcop 03 0.86 0.42 2.04 0.22 0.25 0.88 0.014 0.013 1.07
twotone 3.59 2.28 1.57 6.05 7.06 0.85 0.094 0.109 0.86
onetone1 1.52 0.50 3.04 1.25 1.70 0.73 0.026 0.030 0.86
torso1 14.49 70.20 0.20 15.87 25.25 0.62 0.180 0.191 0.94
bbmat 40.88 14.07 2.90 41.42 48.74 0.84 0.190 0.184 1.03
shermanACb 0.31 0.14 2.21 0.10 0.11 0.90 0.009 0.009 1.00
Mean/Median 2.1/2.2 0.91/0.88 0.97/0.98

does not linearly increase with the size of C0). Two algorithmic differences might
explain the good behavior of the CMLS ordering (see, for example, torso1 matrix).

• Since CMLS has the flexibility to select pivots in the constraint matrix it may
not be critical to know the metric of the entries that belong to a fairly dense

CONSTRAINED MARKOWITZ 323

row or column. That is why our CMLS implementation can easily avoid metric
updates of such entries in the C matrix.

• Furthermore, supervariables have been generalized in our context resulting
in separated row and column supervariables. This feature helps CMLS exploit
the unsymmetric structure of the matrix in a more efficient way.

We then see in Table 5.3 that the decrease in fill-in and in the number of operations
performed during the factorization phase leads to a decrease in the factorization time.
The reductions in factorization time are slightly smaller than those in the number of
operations (the average reduction in the number of operations is around 20%). This is
because sparser factors often lead to smaller full blocks for which basic linear algebra
kernels are slower. We observed that the flop rate of MA41 UNS tends to be smaller
with CMLS than with DMLS: the average flop rate is nearly 1.02 GFlops with the DMLS

ordering, whereas it is around 0.99 GFlops with the CMLS ordering.

5.4. Impact of the hybrid strategies on SuperLU DISTSuperLU DISTSuperLU DIST. We now study the
numerical behavior of SuperLU DIST using CMLS ordering. Because of the static piv-
oting strategy used during factorization, SuperLU DIST is expected to be numerically
more sensitive than MA41 UNS to the use of hybrid strategies in pivot selection, and
iterative refinement may be required to obtain an accurate solution, as was observed
in [4]. We thus analyze the componentwise backward error of the solution [8] during
iterative refinement. Note that one step of iterative refinement costs at least as much
as one forward and backward substitution. The cost of the solution phase is closely
related to the number of steps of iterative refinement. In the hybrid strategy (see
section 4.1), a relative threshold is set to avoid the selection of small pivots in C.
This was chosen to be 0.01 in all our experiments.

Table 5.5 shows that SuperLU DIST often does not compute an accurate solution if
the CMLS ordering is obtained with a structural metric (compare the number of entries
with � in columns STR and HYB). With the hybrid strategy to select pivots, some more
pivots are postponed by CMLS because of their numerical values. We observe that this
often results in an increase in the fill-in in the factor with respect to a structural metric
(compare columns STR and HYB) but improves the numerical reliability of the CMLS

pivot sequence. Note that we report only the median values because large variations
of gains perturb the average statistics.

Figure 5.1 compares the componentwise backward errors during iterative refine-
ment with the CMLS and DMLS orderings (results after two and four steps). In each
plot, a data point above the diagonal corresponds to a matrix for which CMLS performs
better in terms of componentwise backward error. Is it clear that using the CMLS or-
dering improves the numerical behavior of SuperLU DIST. There are still two matrices
(av41092 and Zhao2) for which, with either CMLS or DMLS ordering, iterative refinement
does not converge to an accurate solution (upper right corner). The torso1 matrix
is the only one for which the DMLS approach succeeds, whereas the CMLS approach
fails (bottom right corner). There are four matrices in the upper left corner (lhr34c,
lhr71c, mult dcop3, and fidapm11) for which the backward error of SuperLU DIST

combined with DMLS remains larger than 10−8, whereas SuperLU DIST combined with
CMLS converges in less than four iterations. It is interesting to observe that the only
matrices for which CMLS with the hybrid strategy leads to significantly more fill-in in
the factors are the lhr34c, lhr71c, and mult dcop3 matrices on which DMLS did not
converge after iterative refinement (and independently of the number of steps). Note
finally that, with CMLS, on all problems except three we obtain an accurate solution
(backward error smaller than 10−8) with four steps of iterative refinement, whereas,

324 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

Table 5.5

SuperLU DIST size of the factors (in thousands) and number of operations (in millions). STR:
The pivots are selected according to the AMFI structural metric. HYB: The pivots are selected using
a hybrid strategy. Ratio: Ratio of CMLS statistic / DMLS statistic. Median: Median value of the
ratio CMLS statistic / DMLS statistic. �: After iterative refinement, the backward error is greater than
10−8.

Size of factors Number of operations
Matrix STR ratio HYB ratio STR ratio HYB ratio
av41092 �5773 0.72 �5993 0.74 1.12e+09 0.46 1.28e+09 0.52
g7jac200sc �20394 0.92 20404 0.93 1.08e+10 1.18 1.11e+10 1.21
g7jac180sc �19537 1.01 17426 0.90 1.26e+10 1.47 8.75e+09 1.02
jan99jac120sc 1923 0.82 1923 0.82 2.57e+08 0.64 2.57e+08 0.64
jan99jac100sc 1532 0.87 1532 0.87 2.04e+08 0.80 2.04e+08 0.80
lhr34c �3342 1.19 3645 1.30 2.80e+08 2.09 4.19e+08 3.13
lhr71c �7241 1.15 9434 1.50 7.25e+08 1.73 2.07e+09 4.93
mark3jac120sc 10847 1.04 10624 1.02 4.84e+09 1.17 4.29e+09 1.04
mark3jac140sc �12552 1.01 12673 1.02 5.56e+09 1.13 5.53e+09 1.12
bayer01 909 0.66 909 0.66 1.80e+07 0.37 1.80e+07 0.37
sinc18 �24234 0.84 26702 0.93 3.46e+10 0.82 4.18e+10 1.00
sinc15 �11768 0.88 13447 1.00 1.17e+10 0.86 1.50e+10 1.10
Zhao2 �10954 0.87 �11174 0.89 5.94e+09 0.78 6.36e+09 0.84
mult dcop 03 524 1.40 520 1.39 1.45e+07 4.84 1.30e+07 4.35
twotone 7118 0.90 7030 0.89 4.45e+09 1.06 4.38e+09 1.05
onetone1 2579 0.93 3020 1.09 7.98e+08 0.83 1.05e+09 1.10
torso1 �30156 0.88 �29455 0.86 2.35e+10 1.05 1.98e+10 0.88
fidapm11 �20777 0.99 21373 1.02 1.31e+10 0.96 1.41e+10 1.04
bbmat 36522 0.70 43074 0.82 2.07e+10 0.33 2.92e+10 0.47
shermanACb 342 0.85 347 0.87 1.62e+07 0.64 1.74e+07 0.69
cavity16 �321 0.77 330 0.79 1.86e+07 0.57 1.91e+07 0.58
INV-EXTRUSION-1 �25550 1.06 25973 1.08 2.15e+10 1.19 2.26e+10 1.25
MIXING-TANK �44762 1.07 41760 1.00 7.54e+10 1.18 6.50e+10 1.02
Median 0.89 0.92 0.96 1.01

10
−15

10
−10

10
−5

10
0

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

CMLS

D
M

LS

(a) Component-wise backward, step 2.

10
−15

10
−10

10
−5

10
0

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

CMLS

D
M

LS

(b) Component-wise backward, step 4.

Fig. 5.1. SuperLU DIST componentwise backward error during iterative refinement.

with DMLS, iterative refinement did not converge on six matrices.

6. Concluding remarks. The originality of the CMLS algorithm relies on its
ability to compute an unsymmetric permutation with the following goals in mind:
to reduce the fill-in in the factors and to preselect numerically good pivots for the
factorization. It is based on a constraint matrix which contains the candidate pivots
and a quotient graph that is used to compute the structural metrics. The CMLS

algorithm can be used to design a family of orderings that can address a large class
of problems. The main results and the properties of the algorithm are summarized as

CONSTRAINED MARKOWITZ 325

follows:
• Significant reductions in terms of fill-in (13%) and flops (20%) have been

obtained with the structural strategy to select the pivots.
• Using structural metrics to select the pivots does not affect the numerical

behavior of the MA41 UNS solver.
• On numerically difficult problems, CMLS can be used to improve the accuracy

of SuperLU DIST and reduce the number of steps of iterative refinement during
the solution phase.

• Our generalized supervariables could be used in the context of DMLS to also
improve the metric computation.

One indirect but important consequence of our work is that we do not need to
limit our pivot choice to a maximum weighted transversal of the original matrix.
Preliminary experiments have shown that the maximum weighted matching can in
fact be replaced by a simpler structural maximum transversal during the preprocessing
phase (Step 1 as defined in section 2). One possible direction for future work could
then be to design a parallel version of the preprocessing phase.

Furthermore, the constraint matrix C contains the information of an incomplete
factorization. We intend to use it as a preconditioner and to compare its quality and
cost with existing incomplete LU factorizations.

Finally, in our paper we have focused on local strategies and on very unsymmetric
matrices. We also did experiments to compare our algorithms with global strategies
such as nested dissection and observed that our approach was generally better on this
set of test matrices. Combining our numerically based local heuristics with struc-
turally based global strategies is another interesting direction for future work.

Acknowledgments. We want to thank Cleve Ashcraft and the two anonymous
referees for their useful and constructive indications on how to improve the presenta-
tion of this paper.

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] P. R. Amestoy and I. S. Duff, Vectorization of a multiprocessor multifrontal code, Interna-
tional Journal of Supercomputer Applications, 3 (1989), pp. 41–59.

[3] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multi-
frontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001),
pp. 15–41.

[4] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li, Analysis and comparison of
two general sparse solvers for distributed memory computers, ACM Trans. Math. Software,
27 (2001), pp. 388–421.

[5] P. R. Amestoy, X. S. Li, and E. Ng, Diagonal Markowitz scheme with local symmetrization,
Tech. rep. RT/APO/03/5, ENSEEIHT-IRIT, Toulouse, France, 2003. Also appeared as
Lawrence Berkeley Lab report LBNL-53854, Berkeley, CA, 2003.

[6] P. R. Amestoy, X. S. Li, and S. Pralet, Constrained Markowitz with local symmetrization,
Technical rep. RT/APO/04/05, ENSEEIHT-IRIT, Toulouse, France, 2004. Also appeared
as Lawrence Berkeley Lab report LBNL-56861, Berkeley, CA, 2005, and CERFACS report
TR/PA/04/137, Toulouse, France, 2004.

[7] P. R. Amestoy and C. Puglisi, An unsymmetrized multifrontal LU factorization, SIAM J.
Matrix Anal. Appl., 24 (2002), pp. 553–569.

[8] M. Arioli, J. Demmel, and I. S. Duff, Solving sparse linear systems with sparse backward
error, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165–190.

[9] C. Ashcraft, Compressed graphs and the minimum degree algorithm, SIAM J. Sci. Comput.,
16 (1995), pp. 1404–1411.

326 PATRICK AMESTOY, XIAOYE LI, AND STÉPHANE PRALET

[10] C. Ashcraft and R. G. Grimes, SPOOLES: An object-oriented sparse matrix library, in
Proceedings of the Ninth Annual SIAM Conference on Parallel Processing for Scientific
Computing (San Antonio, TX), SIAM, Philadelphia, 1999.

[11] T. A. Davis, University of Florida sparse matrix collection, http://www.cise.ufl.edu/research/
sparse/matrices, 2002.

[12] T. A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method,
ACM Trans. Math. Software, 30 (2004), pp. 196–199.

[13] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse LU
factorization, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 140–158.

[14] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 720–755.

[15] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, London, 1986.

[16] I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to
the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889–901.

[17] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a
sparse matrix, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973–996.

[18] I. S. Duff and J. K. Reid, A comparison of sparsity orderings for obtaining a pivotal sequence
in Gaussian elimination, J. Inst. Math. Appl., 14 (1974), pp. 281–291.

[19] I. S. Duff and J. K. Reid, MA27—a set of Fortran subroutines for solving sparse symmetric
sets of linear equations, Technical rep. R.10533, AERE, Harwell, England, 1982.

[20] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
systems, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[21] I. S. Duff and J. K. Reid, The multifrontal solution of unsymmetric sets of linear equations,
SIAM J. Sci. Statist. Comput., 5 (1984), pp. 633–641.

[22] I. S. Duff and J. K. Reid, MA47, a Fortran code for direct solution of indefinite sparse sym-
metric linear systems, Tech. Rep. RAL 95-001, Rutherford Appleton Laboratory, Chilton,
Didcot, Oxon, UK, 1995.

[23] A. George and J. W. H. Liu, A fast implementation of the minimum degree algorithm using
quotient graphs, ACM Trans. Math. Software, 6 (1980), pp. 337–358.

[24] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall, Englewood Cliffs, NJ, 1981.

[25] A. George and D. R. McIntyre, On the application of the minimum degree algorithm to
finite element systems, SIAM J. Numer. Anal., 15 (1978), pp. 90–112.

[26] A. Gupta, Recent advances in direct methods for solving unsymmetric sparse systems of linear
equations, ACM Trans. Math. Software, 28 (2002), pp. 301–324.

[27] X. S. Li and J. W. Demmel, A scalable sparse direct solver using static pivoting, in Proceedings
of the Ninth Annual SIAM Conference on Parallel Processing for Scientific Computing (San
Antonio, TX), SIAM, Philadelphia, 1999.

[28] X. S. Li and J. W. Demmel, SuperLU DIST: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems, ACM Trans. Math. Software, 29 (2003), pp. 110–
140.

[29] J. W. H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM
Trans. Math. Software, 11 (1985), pp. 141–153.

[30] E. Ng and P. Raghavan, Performance of greedy ordering heuristics for sparse Cholesky fac-
torization, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 902–914.

[31] G. Pagallo and C. Maulino, A bipartite quotient graph model for unsymmetric matrices, in
Numerical Methods, Lecture Notes in Math. 1005, Springer-Verlag, Berlin, 1983, pp. 227–
239.

[32] S. Pralet, Constrained Orderings and Scheduling for Parallel Sparse Linear Algebra, Ph.D.
thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2004. Available as
CERFACS technical report, TH/PA/04/105, 2004.

[33] E. Rothberg and S. C. Eisenstat, Node selection strategies for bottom-up sparse matrix
ordering, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 682–695.

[34] A. F. van der Stappen, R. H. Bisseling, and J. G. G. van de Vorst, Parallel sparse LU
decomposition on a mesh network of transputers, SIAM J. Matrix Anal. Appl., 14 (1993),
pp. 853–879.

[35] R. C. Whaley and A. Petitet, Minimizing development and maintenance costs in supporting
persistently optimized BLAS, Software: Practice and Experience, 35 (2005), pp. 101–121.
Also available online from http://www.cs.utsa.edu/˜whaley/papers/spercw04.ps.

CONSTRAINED MARKOWITZ 327

[36] R. C. Whaley, A. Petitet, and J. J. Dongarra, Automated empirical optimization of soft-
ware and the ATLAS project, Parallel Computing, 27 (2001), pp. 3–35. Also available as
University of Tennessee LAPACK Working Note 147, UT-CS-00-448, University of Ten-
nessee, Knoxville, TN, 2000, http://www.netlib.org/lapack/lawns/lawn147.ps, 2000.

[37] Z. Zlatev, On some pivotal strategies in Gaussian elimination by sparse technique, SIAM J.
Numer. Anal., 17 (1980), pp. 18–30.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 328–347

GEOMETRIC MEANS IN A NOVEL VECTOR SPACE STRUCTURE
ON SYMMETRIC POSITIVE-DEFINITE MATRICES∗

VINCENT ARSIGNY† , PIERRE FILLARD† , XAVIER PENNEC† , AND

NICHOLAS AYACHE†

Abstract. In this work we present a new generalization of the geometric mean of positive
numbers on symmetric positive-definite matrices, called Log-Euclidean. The approach is based on
two novel algebraic structures on symmetric positive-definite matrices: first, a lie group structure
which is compatible with the usual algebraic properties of this matrix space; second, a new scalar
multiplication that smoothly extends the Lie group structure into a vector space structure. From bi-
invariant metrics on the Lie group structure, we define the Log-Euclidean mean from a Riemannian
point of view. This notion coincides with the usual Euclidean mean associated with the novel vector
space structure. Furthermore, this means corresponds to an arithmetic mean in the domain of matrix
logarithms. We detail the invariance properties of this novel geometric mean and compare it to the
recently introduced affine-invariant mean. The two means have the same determinant and are equal
in a number of cases, yet they are not identical in general. Indeed, the Log-Euclidean mean has a
larger trace whenever they are not equal. Last but not least, the Log-Euclidean mean is much easier
to compute.

Key words. geometric mean, symmetric positive-definite matrices, Lie groups, bi-invariant
metrics, geodesics

AMS subject classifications. 47A64, 26E60, 53C35, 22E99, 32F45, 53C22

DOI. 10.1137/050637996

1. Introduction. Symmetric positive-definite (SPD) matrices of real numbers
appear in many contexts. In medical imaging, their use has become common during
the last 10 years with the growing interest in diffusion tensor magnetic resonance
imaging (DT-MRI, or simply DTI) [3]. In this imaging technique, based on nuclear
magnetic resonance (NMR), the assumption is made that the random diffusion of
water molecules at a given position in a biological tissue is Gaussian. As a conse-
quence, a diffusion tensor image is an SPD matrix-valued image in which the SPD
matrix associated with the current volume element (or voxel) is the covariance matrix
of the local diffusion process. SPD matrices also provide a powerful framework for
modeling the anatomical variability of the brain, as shown in [15]. More generally,
they are widely used in image analysis, especially for segmentation, grouping, motion
analysis, and texture segmentation [16]. They are also used intensively in mechan-
ics, for example, with strain or stress tensors [4]. Last, but not least, SPD matrices
are becoming a common tool in numerical analysis for generating adapted meshes to
reduce the computational cost of solving partial differential equations (PDEs) in three
dimensions [17].

As a consequence, there has been a growing need to carry out computations
with these objects, for instance to interpolate, restore, and enhance images SPD
matrices. To this end, one needs to define a complete operational framework. This

∗Received by the editors August 11, 2005; accepted for publication (in revised form) by L. Reichel
August 23, 2006; published electronically February 23, 2007. This work was supported by the INRIA,
France.

http://www.siam.org/journals/simax/29-1/63799.html
†ASCLEPIOS Research Project, INRIA, Sophia-Antipolis, FR-06902, France (Vincent.

Arsigny@Sophia.inria.fr, Pierre.Fillard@Sophia.inria.fr, Xavier.Pennec@Sophia.inria.fr, Nicholas.
Ayache@Sophia.inria.fr).

328

LOG-EUCLIDEAN MEANS 329

is necessary to fully generalize to the SPD case the usual statistical tools or PDEs
on vector-valued images. The framework of Riemannian geometry [8] is particularly
adapted to this task, since many statistical tools [18] and PDEs can be generalized to
this framework.

To evaluate the relevance of a given Riemannian metric, the properties of the
associated notion of mean are of great importance. Indeed, most computations useful
in practice involve averaging procedures. This is the case in particular for the inter-
polation, regularization, and extrapolation of SPD matrices, where mean values are
implicitly computed to generate new data. For instance, the classical regularization
technique based on the heat equation is equivalent to the convolution of the original
data with Gaussian kernels.

Let M be an abstract manifold endowed with a Riemannian metric, whose asso-
ciated distance is d(., .). Then the classical generalization of the Euclidean mean is
given by the Fréchet mean (also called the Riemannian mean) [18, 19]. Let (xi)

N
i=1 be

N points of M. Their Fréchet mean E(xi) (possibly not uniquely defined) is defined
as the point minimizing the following metric dispersion:

E(xi) = arg
x

min

N∑
i=1

d2(x, xi).(1.1)

One can directly use a Euclidean structure on square matrices to define a metric
on the space of SPD matrices. This is straightforward, and in this setting, the Rie-
mannian mean of a system of SPD matrices is their arithmetic mean, which is an SPD
matrix since SPD matrices form a convex set. However, this mean is not adequate in
many situations, for two main reasons. First, symmetric matrices with nonpositive
eigenvalues are at a finite distance from any SPD matrix in this framework. In the
case of DT-MRI, this is not physically acceptable, since this amounts to assuming
that small diffusions (i.e., small eigenvalues) are much more likely than large diffu-
sions (i.e., large eigenvalues). A priori, large and small diffusions are equally unlikely
in DT-MRI, and a symmetry with respect to matrix inversion should be respected.
In particular, a matrix and its inverse should be at the same distance from the iden-
tity. Therefore, the use of a generalization to SPD matrices of the geometric mean of
positive numbers would be preferable, since such a mean is precisely invariant with
respect to inversion.

Second, an SPD matrix corresponds typically to a covariance matrix. The value
of its determinant is a direct measure of the dispersion of the associated multivariate
Gaussian. The reason is that the volumes of associated trust regions are proportional
to the square root of this determinant. But the Euclidean averaging of SPD matrices
often leads to a swelling effect: the determinant of the Euclidean mean can be strictly
larger than the original determinants. The reason is that the induced interpolation of
determinants is polynomial and not monotonic in general. In DTI, diffusion tensors are
assumed to be covariance matrices of the local Brownian motion of water molecules.
Introducing more dispersion in computations amounts to introducing more diffusion,
which is physically unacceptable. For illustrations of this effect, see [20, 21]. As a
consequence, the determinant of a mean of SPD matrices should remain bounded by
the values of the determinants of the averaged matrices.

To fully circumvent these difficulties, other metrics have been recently proposed
for SPD matrices. With the affine-invariant metrics proposed in [12, 22, 23, 19],
symmetric matrices with negative and null eigenvalues are at an infinite distance from
any SPD matrix. The swelling effect has disappeared, and the symmetry with respect

330 V. ARSIGNY, P. FILLARD, X. PENNEC, AND N. AYACHE

to inversion is respected. These new metrics provide an affine-invariant generalization
of the geometric mean of positive numbers on SPD matrices. But the price paid
for this success is a high computational burden in practice, essentially due to the
curvature induced on the space of SPD matrices. This leads in many cases to slow
and hard-to-implement algorithms (especially for PDEs) [12].

We propose here a new Riemannian framework on SPD matrices, which gives rise
to a novel generalization of the geometric mean to SPD matrices. It fully overcomes
the computational limitations of the affine-invariant framework, while conserving ex-
cellent theoretical properties. This is obtained with a new family of metrics named
Log-Euclidean. Such metrics are particularly simple to use. They result in classical
Euclidean computations in the domain of matrix logarithms. As a consequence, there
is a closed form for the Log-Euclidean mean, contrary to the affine-invariant case. It
results in a drastic reduction in computation time: the Log-Euclidean mean can be
computed approximately 20 times faster.

The remainder of this article is organized as follows. In section 2, we recall a
number of elementary properties of the space of SPD matrices. Then we proceed in
section 3 to the theory of Log-Euclidean metrics which is based on two novel algebraic
structures on SPD matrices: a Lie group structure and a new scalar multiplication
which complements the new multiplication to obtain a new vector space structure.
The definition of the Log-Euclidean mean is deduced from these new structures. Con-
trary to the affine-invariant mean, there is a closed form for the Log-Euclidean mean
and it is simple to compute. In section 4 we highlight the resemblances and differences
between affine-invariant and Log-Euclidean means. They are quite similar, since they
have the same determinant, which is the classical geometric mean of the determinants
of the averaged SPD matrices. They even coincide in a number of cases, and yet are
different in general. We prove that Log-Euclidean means are strictly more anisotropic
when averaged SPD matrices are isotropic enough.

2. Preliminaries. We begin with a description of the fundamental properties
and tools used in this work. First, we recall the elementary properties of the matrix
exponential. Then we examine the general properties of SPD matrices. These prop-
erties are of two types: algebraic and differential. On the one hand, SPD matrices
have algebraic properties because they are a special kind of invertible matrices, and
on the other hand they can be considered globally as a smooth manifold and therefore
have differential geometry properties. These properties are not independent: on the
contrary, they are compatible in a profound way. This compatibility is the core of the
approach developed here.

2.1. Notation. We will use the following definitions and notation:
• Sym+

� (n) is the space of SPD real n× n matrices.
• Sym(n) is the vector space of real n× n symmetric matrices.
• GL(n) is the group of real invertible n× n matrices.
• M(n) is the space of real n× n square matrices.
• Diag(λ1, . . . , λn) is the diagonal matrix constructed with the real values

(λi)i∈1...n in its diagonal.
• For any square matrix M , Sp(M) is the spectrum of M , i.e., the set of its

eigenvalues.
• φ : E → F is differentiable mapping between two smooth manifolds. Its

differential at a point M ∈ E acting on a infinitesimal displacement dM in
the tangent space to E at M is written as DMφ.dM .

LOG-EUCLIDEAN MEANS 331

2.2. Matrix exponential. The exponential plays a central role in Lie groups
(see [11, 5, 8]). We will consider here only the matrix version of the exponential, which
is a tool that we extensively use in the next sections. We recall its definition and give
its elementary properties. Last but not least, we give the Baker–Campbell–Hausdorff
formula. It is a powerful tool that provides fine information on the structure of Lie
groups around the identity. We will see in section 4 how it can be used to compare
Log-Euclidean means to affine-invariant means in terms of anisotropy.

Definition 2.1. The exponential exp(M) of a matrix M is given by exp(M) =∑∞
n=0

Mk

k! . Let G ∈ GL(n). If there exists M ∈ M(n) such that G = exp(M), then
M is said to be a logarithm of N .

In general, the logarithm of a real invertible matrix may not exist, and if it exists
it may not be unique. The lack of existence is a general phenomenon in connected Lie
groups. One generally needs two exponentials to reach every element [10]. The lack
of uniqueness is essentially due to the influence of rotations: rotating of an angle α is
the same as rotating of an angle α + 2kπ, where k is an integer. Since the logarithm
of a rotation matrix directly depends on its rotation angles (one angle suffices in three
dimensions, but several angles are necessary when n > 3), it is not unique. However,
when a real invertible matrix has no (complex) eigenvalue on the (closed) negative
real line, then it has a unique real logarithm whose (complex) eigenvalues have an
imaginary part in] − π, π[[2]. This particular logarithm is called principal. We will
write log(M) for the principal logarithm of a matrix M whenever it is defined.

Theorem 2.2. exp : M(n) → GL(n) is a C∞ mapping. Its differential map at a
point M ∈ M(n) acting on an infinitesimal displacement dM ∈ M(n) is given by

DM exp .dM =

∞∑
k=1

1

k!

(
k−1∑
l=0

Mk−l−1.dM.M l

)
.(2.1)

Proof. The smoothness of exp is simply a consequence of the uniform absolute
convergence of its series expansion in any compact set of M(n). The differential is
obtained classically by a term by term derivation of the series defining the expo-
nential.

We see here that the noncommutativity of the matrix multiplication seriously
complicates the differentiation of the exponential, which is much simpler in the scalar
case. However, taking the trace in (2.1) yields the following.

Corollary 2.3. We have the following simplification in terms of traces:

Trace(DM exp .dM) = Trace(exp(M).dM).(2.2)

In the following we will also use this property on determinants.
Proposition 2.4. Let M ∈ M(n). Then det(exp(M)) = exp(Trace(M)).
Proof. This is easily seen in terms of eigenvalues of M . The Jordan decomposition

of M [1] ensures that Trace(M) is the sum of its eigenvalues. But the exponential
of a triangular matrix transforms the diagonal values of this matrix into their scalar
exponential. The determinant of exp(M) is simply the product of its eigenvalues,
which is precisely the exponential of the trace of M .

Theorem 2.5 (Baker–Campbell–Hausdorff formula [9] (matrix case)). Let
M,N ∈ M(n) and t ∈ R. When t is small enough, we have the following devel-

332 V. ARSIGNY, P. FILLARD, X. PENNEC, AND N. AYACHE

opment, in which the logarithm used is the principal logarithm:

log(exp(t.M). exp(t.N)) = t.(M + N) + t2/2([M,N])
+ t3/12([M, [M,N]] + [N, [N,M]])
+ t4/24([[M, [M,N]], N]) + O(t5).

(2.3)

We recall that [M,N] = MN −NM is the Lie bracket of M and N .
The Baker–Campbell–Hausdorff formula shows how much exp(log(M). log(N))

deviates from M + N due to the noncommutativity of the matrix product. Remark-
ably, this deviation can be expressed only in terms of Lie brackets between M and N
[14].

2.3. Algebraic properties. SPD matrices have remarkable algebraic proper-
ties. First, there always exists a unique real and symmetric logarithm for any SPD
matrix, which is its principal logarithm. Second, if the space of SPD matrices is not
a subgroup of GL(n), it is stable with respect to inversion. Moreover, its spectral
decomposition is particularly simple.1

Theorem 2.6. For any S ∈ Sym(n), there exists an orthonormal coordinate sys-
tem in which S is diagonal. This is particularly the case for SPD matrices. Sym+

� (n)
is not a subgroup of GL(n), but it is stable by inversion. Moreover, the matrix expo-
nential exp : Sym(n) → Sym+

� (n) is one-to-one.
Proof. For a proof of the first assertion, see elementary linear algebra manuals,

or [1]. For the second assertion, we see from section 2.2 that SPD matrices have a
unique real logarithm whose eigenvalues have an imaginary part between −π and +π,
since the eigenvalues of SPD matrices are real and always positive. The principal
logarithm of an SPD matrix can be obtained simply by replacing its eigenvalues with
their natural logarithms, which shows that this logarithm is symmetric.

Thanks to the existence of an orthonormal basis in which an SPD matrix (resp.,
a symmetric matrix) is diagonal, the logarithm (resp., the exponential) has a particu-
larly simple expression. In such a basis, taking the log (resp., the exp) is simply done
by applying its scalar version to eigenvalues:{

log(R.Diag(λ1, . . . , λN).RT) = R.Diag(log(λ1), . . . , log(λN)).RT ,
exp(R.Diag(λ1, . . . , λN).RT) = R.Diag(exp(λ1), . . . , exp(λN)).RT .

These formulae provide a particularly efficient method to calculate the logarithms
and exponentials of symmetric matrices, whenever the cost of a diagonalization is less
than that of the many matrix multiplications (in the case of the exponential) and
inversions (in the case of the logarithm) used in the general matrix case by classical
algorithms [13, 24]. For small values of n, and in particular n = 3, we found such
formulae to be extremely useful.

2.4. Differential properties. From the point of view of topology and differen-
tial geometry, the space of SPD matrices also has many particularities. The properties
recalled here are elementary and will not be detailed. See [25] for complete proofs.

Proposition 2.7. Sym+
� (n) is an open convex half-cone of Sym(n) and is there-

fore a submanifold of Sym(n), whose dimension is n(n + 1)/2.

2.5. Compatibility between algebraic and differential properties. We
have seen that exp is a smooth bijection. We show here that the logarithm, i.e.,

1This is due to the fact that SPD matrices are normal operators, like rotations and antisymmetric
matrices [1].

LOG-EUCLIDEAN MEANS 333

its inverse, is also smooth. As a consequence, all the algebraic operations on SPD
matrices presented before are also smooth, in particular the inversion. Thus, the two
structures are fully compatible.

Theorem 2.8. log : Sym+
� (n) → Sym(n) is C∞. Thus, exp and its inverse

log are both smooth, i.e., they are diffeomorphisms. This is due to the fact that the
differential of exp is nowhere singular.

Proof. In fact, we need only prove the last assertion. If it is true, the implicit
function theorem [6] applies and ensures that log is also smooth. Since the differential
of exp at 0 is simply given by the identity, it is invertible by continuity in a neighbor-
hood of 0. We now show that this propagates to the entire space Sym(n). Indeed,
let us then suppose that for a point M , the differential DM/2 exp is invertible. We
claim that then DM exp is also invertible, which suffices to prove the point. To show
this, let us take dM ∈ Sym(n) such that DM exp .dM = 0. If DM exp is invertible,
we should have dM = 0. To see this, remark that exp(M) = exp(M/2). exp(M/2).
By differentiation and applying to dM , we get

DM exp .dM = 1/2((DM/2 exp .dM). exp(M/2) + exp(M/2).(DM/2 exp .dM)) = 0.

This implies by multiplication by exp(−M/2):

exp(−M/2)(DM/2 exp .dM). exp(M/2) + (DM/2 exp .dM) = 0.

Since

A−1. exp(B).A = exp(A−1.B.A)

we have also by differentiation

A−1.DB exp(dB).A = DB exp(A−1.dB.A).

Using this simplification and the hypothesis that DM/2 exp is invertible, we obtain

exp(−M/2).dM. exp(M/2) + dM = 0.

Let us rewrite this equation in an orthonormal basis in which M is diagonal with a
rotation matrix R. Let (λi) be the eigenvalues of M and let dN := R.dM.RT . Then
we have

dN = −Diag(exp(−λ1/2), . . . , exp(−λN/2)).dN.Diag(exp(λ1/2), . . . , exp(λN/2)).

Coordinate by coordinate, this is written as:

∀i, j : dNi,j(1 + exp(−λi/2 + λj/2)) = 0.

Hence for all i, j : dNi,j = 0 which is equivalent to dM = 0. We are done.
Corollary 2.9. In the space of SPD matrices, for all α ∈ R, the power mapping:

S �→ Sα is smooth. In particular, this is true for the inversion mapping (i.e., when
α = −1).

Proof. We have Sα = exp(α log(S)). The composition of smooth mappings is
smooth.

334 V. ARSIGNY, P. FILLARD, X. PENNEC, AND N. AYACHE

3. Log-Euclidean means. In this section we focus on the construction of Log-
Euclidean means. They are derived from two new structures on SPD matrices.

The first is a Lie group structure [11], i.e., an algebraic group structure that is
compatible with the differential structure of the Space of SPD matrices. The second
structure is a vector space structure. Indeed, one can define a logarithmic scalar mul-
tiplication that complements the Lie group structure to form a vector space structure
on the space of SPD matrices. In this context, Log-Euclidean metrics are defined as
bi-invariant metrics on the Lie group of SPD matrices. The Log-Euclidean mean is
the Fréchet mean associated with these metrics. It is particularly simple to compute.

3.1. Multiplication of SPD matrices. It is not a priori obvious how one could
define a multiplication on the space of SPD matrices compatible with classical alge-
braic and differential properties. How can one combine smoothly two SPD matrices
to make a third one, in such a way that Id is still the identity and the usual inverse
remains its inverse? Moreover, if we obtain a new Lie group structure, we would
also like the matrix exponential to be the exponential associated with the Lie group
structure which, a priori, can be different.

The first idea that comes to mind is to directly use matrix multiplication. But
then the noncommutativity of matrix multiplication between SPD matrices stops the
attempt: if S1, S2 ∈ Sym+

� (n), S1.S2 is an SPD matrix (or equivalently, is symmetric)
if and only if S1 and S2 commute. To overcome the possible asymmetry of the matrix
product of two SPD matrices, one can simply take the symmetric part (i.e., the closest
symmetric matrix in the sense of the Frobenius norm [7]) of the product and define
the new product �:

S1 � S2 :=
1

2
(S1.S2 + S2.S1).

This multiplication is smooth and conserves the identity and the inverse. But S1�S2 is
not necessarily positive! Also, since the set of SPD matrices is not closed, one cannot
define in general a closest SPD matrix, but only a closest symmetric semidefinite
matrix [7].

In [12], affine-invariant distances between two SPD matrices S1, S2 are of the form

d(S1, S2) = ‖ log(S
−1/2
1 .S2.S

−1/2
1)‖,(3.1)

where ‖.‖ is a Euclidean norm defined on Sym(n). Let us define the following multi-
plication �:

S1 � S2 := S
1/2
1 .S2.S

1/2
1 .

With this multiplication, the affine-invariant metric constructed in [12] can be inter-
preted then as a left-invariant metric. Moreover, this multiplication is smooth and
compatible with matrix inversion and matrix exponential, and the product truly de-
fines an SPD matrix. Everything works fine, except that it is not associative. This
makes everything fail, because associativity is an essential requirement of group struc-
ture. Without it, many fundamental properties disappear. For Lie groups, the notion
of adjoint representation no longer exists without associativity.

Theorem 2.8 points to an important fact: Sym+
� (n) is diffeomorphic to its tangent

space at the identity, Sym(n). But Sym(n) has an additive group structure, and to
obtain a group structure on the space of SPD matrices, one can simply transport the
additive structure of Sym(n) to Sym+

� (n) with the exponential. More precisely, we
have the following.

LOG-EUCLIDEAN MEANS 335

Definition 3.1. Let S1, S2 ∈ Sym+
� (n). We define their logarithmic product

S1 � S2 by

S1 � S2 := exp(log(S1) + log(S2)).(3.2)

Proposition 3.2. (Sym+
� (n),�) is a group. The neutral element is the usual

identity matrix, and the group inverse of an SPD matrix is its inverse in the matrix
sense. Moreover, whenever two SPD matrices commute in the matrix sense, the
logarithmic multiplication is equal to their matrix product. Last but not least, the
multiplication is commutative.

Proof. The multiplication is defined by addition on logarithms. It is therefore
associative and commutative. Since log(Id) = 0, the neutral element is Id, and
since log(S−1) = − log(S), the new inverse is the matrix inverse. Finally, we have
exp(log(S1) + log(S2)) = exp(log(S1)). exp(log(S2)) = S1.S2 when [S1, S2] = 0.

Theorem 3.3. The logarithmic multiplication � on Sym+
� (n) is compatible with

its structure of smooth manifold: (S1, S2) �→ S1 �S−1
2 is C∞. Therefore, Sym+

� (n) is
given a commutative Lie group structure by �.

Proof. (S1, S2) �→ S1 � S−1
2 = exp(log(S1) − log(S2)). But since exp and log and

the addition are smooth, their composition is also smooth. By definition (see [8, page
29]), Sym+

� (n) is a Lie group.
Proposition 3.4. exp : (Sym(n),+) → (Sym+

� (n),�) is a Lie group isomor-
phism. In particular, one-parameter subgroups of Sym+

� (n) are obtained by taking the
matrix exponential of those of Sym(n), which are simply of the form (t.V)t∈R, where
V ∈ Sym(n). As a consequence, the Lie group exponential in Sym+

� (n) is given by
the classical matrix exponential on the Lie algebra Sym(n).

Proof. We have explicitly transported the group structure of Sym(n) into Sym+
� (n)

so exp is a morphism. It is also a bijection, and thus an isomorphism. The smoothness
of exp then ensures its compatibility with the differential structure.

Let us recall the definition of one-parameter subgroups. (S(t))t∈R is such a sub-
group if and only if we have for all t, s: S(t + s) = S(t) � S(s) = S(s) � S(t). But
then log(S(t+s) = log(S(t)�S(s)) = log(S(t))+log(S(s)) by definition of �. There-
fore logS(t) is also a one-parameter subgroup of (Sym(n),+), which is necessarily of
the form t.V , where V ∈ Sym(n). V is the infinitesimal generator of S(t). Finally,
the exponential is obtained from one-parameter subgroups, which are all of the form
(exp(t.V))t∈R (see [5, Chap. V]).

Thus, we have given the space of SPD matrices a structure of Lie group that leaves
unchanged the classical matrix notions of inverse and exponential. The new multipli-
cation used, i.e., the logarithmic multiplication, generalizes the matrix multiplication
when two SPD matrices do not commute in the matrix sense.

The associated Lie algebra is the space of symmetric matrices, which is diffeo-
morphic and isomorphic to the group itself. The associated Lie bracket is the null
bracket: [S1, S2] = 0 for all S1, S2 ∈ Sym(n).

The reader should note that this Lie group structure is, to our knowledge, new in
the literature. For a space as commonly used as SPD matrices, this is quite surprising.
The probable reason is that the Lie group of SPD matrices is not a multiplicative
matrix group, contrary to most Lie groups.

3.2. Log-Euclidean metrics on the Lie group of SPD matrices. Now that
we have given Sym+

� (n) a Lie group structure, we turn to the task of exploring metrics
compatible with this new structure. Among Riemannian metrics in Lie groups, bi-
invariant metrics are the most convenient. We have the following definition.

336 V. ARSIGNY, P. FILLARD, X. PENNEC, AND N. AYACHE

Definition 3.5. A metric 〈, 〉 defined on a Lie group G is said to be bi-invariant
if for all m ∈ G, the left- and right-multiplication by m do not change distances
between points, i.e., are isometries.

Theorem 3.6. From [5, Chap. V], bi-invariant metrics have the following prop-
erties:

1. A bi-invariant metric is also invariant w.r.t. inversion.
2. It is bi-invariant if and only if for all m ∈ G,Ad(m) is an isometry of the

Lie algebra g, where Ad(m) is the adjoint representation of m.
3. One-parameter subgroups of G are geodesics for the bi-invariant metric.

Conversely, geodesics are simply given by left- or right-translations of
one-parameter subgroups.

Corollary 3.7. Any metric 〈, 〉 on TIdSym
+
� (n) = Sym(n) extended to Sym+

� (n)
by left- or right-multiplication is a bi-invariant metric.

Proof. The commutativity of the multiplication implies that Ad(Sym+
� (n)) =

{Id}, which is trivially an isometry group.
This result is striking. In general Lie groups, the existence of bi-invariant metrics

is not guaranteed. More precisely, it is guaranteed if and only if the adjoint represen-
tation Ad(G) is relatively compact, i.e., (the dimension is assumed finite) if the group
of matrices given by Ad(G) is bounded (see [5, Theorem V.5.3]). This is trivially the
case when the group is commutative, as here, since Ad(G) = {e}, which is obviously
bounded. Other remarkable cases where Ad(G) is bounded are compact groups, such
as rotations. But for noncompact noncommutative groups, there is in general no
bi-invariant metric, as in the case of rigid transformations.

Definition 3.8. Any bi-invariant metric on the lie group of SPD matrices is
also called a Log-Euclidean metric because it corresponds to a Euclidean metric in the
logarithmic domain, as is shown in Corollary 3.9.

Corollary 3.9. Let 〈, 〉 be a bi-invariant metric on Sym+
� (n). Then its geodesics

are simply given by the translated versions of one-parameter subgroups, namely,

(exp(V1 + t.V2))t∈R, where V1, V2 ∈ Sym(n).(3.3)

The exponential and logarithmic maps associated with the metric can be expressed in
terms of matrix exponential and logarithms in the following way:{

logS1
(S2) = Dlog(S1) exp .(log(S2) − log(S1)),

expS1
(L) = exp(log(S1) + DS1 log .L).

(3.4)

The scalar product between two tangent vectors V1, V2 at a point S is given by

〈V1, V2〉S = 〈DS log .V1, DS log .V2〉Id.(3.5)

From this equation, we get the distance between two SPD matrices:

d(S1, S2) = ‖ logS1
(S2)‖S1

= ‖ log(S2) − log(S1)‖Id,(3.6)

where ‖.‖ is the norm associated with the metric.
Proof. Theorem 3.6 states that geodesics are obtained by translating one-parameter

subgroups, and Proposition 3.4 gives the form of these subgroups in terms of the
matrix exponential. By definition, the metric exponential expS1

: TS1
Sym+

� (n) →
Sym+

� (n) is the mapping that associates with a tangent vector L the value at time
1 of the geodesic starting at time 0 from S1 with an initial speed vector L. Differ-
entiating the geodesic equation (3.3) at time 0 yields an initial vector speed equal to

LOG-EUCLIDEAN MEANS 337

DV1
exp .V2. As a consequence, expS1

(L) = exp(log(S1) + (Dlog(S1) exp)−1.L). The
differentiation of the equality log ◦ exp = Id yields (Dlog(S1) exp)−1 = DS1 log. Hence
we have the formula for expS1

(L). Solving in L the equation expS1
(L) = S2 provides

the formula for logS1
(S2).

The metric at a point S is obtained by propagating by translation the scalar
product on the tangent space at the identity. Let LS : Sym+

� (n) → Sym+
� (n) be

the logarithmic multiplication by S. We have 〈V1, V2〉S = 〈DSLS−1 .V1, DSLS−1 .V2〉.
But simple computations show that DSLS−1 = DS log. Hence we have (3.5). Finally,
we combine (3.4) and (3.5) to obtain the (simple this time!) formula for the
distance.

Corollary 3.10. Endowed with a bi-invariant metric, the space of SPD ma-
trices is a flat Riemannian space: its sectional curvature (see [8, page 107]) is null
everywhere.

This is clear, since it is isometric to the Sym(n) endowed with the Euclidean
distance associated with the metric.

In [12], the metric defined on the space of SPD matrices is affine invariant. The
action act(A) of an invertible matrix A on the space of SPD matrices is defined by

∀S, act(A)(S) = A.S.AT .

Affine-invariance means that for all invertible matrices A, the mapping act(A) :
Sym+

� (n) → Sym+
� (n) is an isometry. This group action describes how an SPD

matrix, assimilated to a covariance matrix, is affected by a general affine change of
coordinates.

Here, the Log-Euclidean Riemannian framework will not yield full affine-invariance.
However, it is not far from it, because we can obtain invariance by similarity (isometry
plus scaling).

Proposition 3.11. We can endow Sym+
� (n) with a similarity-invariant metric,

for instance, by choosing 〈V1, V2〉 := Trace(V1.V2) for V1, V2 ∈ Sym(n).
Proof. Let R ∈ SO(n) be a rotation and s > 0 be a scaling factor. Let S be an

SPD matrix. V is transformed by the action of s.R into act(sR)(S) = s2.R.S.RT .
From (3.6), the distance between two SPD matrices S1 and S2 transformed by sR is

d(act(sR)(S1), act(sR)(S2)) = Trace({log(act(sR)(S1)) − log(act(sR)(S2))}2).

A scaling by a positive factor λ on an SPD matrix corresponds to a translation
by log(λ).Id in the domain of logarithms. Furthermore, we have log(R.S.RT) =
R. log(S).RT for any SPD matrix S and any rotation R. Consequently, the scaling
zeros out in the previous formula and we have

d(act(sR)(S1), act(sR)(S2)) = Trace({R.(log(S1) − log(S2)).R
T }2)

= Trace({log(S1) − log(S2)}2)

= d(S1, S2).

Hence we have the result.
Thus, we see that the Lie group of SPD matrices with an appropriate Log-

Euclidean metric has many invariance properties: Lie group bi-invariance and similarity-
invariance. Moreover, Theorem 3.6 shows that the inversion mapping S �→ S−1 is an
isometry.

338 V. ARSIGNY, P. FILLARD, X. PENNEC, AND N. AYACHE

3.3. A vector space structure on SPD matrices. We have already seen that
the Lie group of SPD matrices is isomorphic and diffeomorphic to the additive group
of symmetric matrices. We have also seen that with a Log-Euclidean metric, the Lie
group of SPD matrices is also isometric to the space of symmetric matrices endowed
with the associated Euclidean metric. There is more: the Lie group isomorphism
exp from the Lie algebra of symmetric matrices to the space of SPD matrices can be
smoothly extended into an isomorphism of vector spaces. Indeed, let us define the
following operation.

Definition 3.12. The logarithmic scalar multiplication � of an SPD matrix by
a scalar λ ∈ R is

λ � S = exp(λ. log(S)) = Sλ.(3.7)

When we assimilate the logarithmic multiplication to an addition and the loga-
rithmic scalar multiplication to a usual scalar multiplication, we have all the prop-
erties of a vector space. By construction, the mapping exp : (Sym(N),+, .) →
(Sym+

� (n),�,�) is a vector space isomorphism. Since all algebraic operations on
this vector space are smooth, this defines what could be called a “Lie vector space
structure” on SPD matrices.

Of course, this result does not imply that the space of SPD matrices is a vector
subspace of the vector space of square matrices. But it shows that we can view this
space as a vector space when we identify an SPD matrix with its logarithm. The
question of whether or not the SPD matrix space is a vector space depends on the
vector space structure we are considering, and not on the space itself.

From this point of view, bi-invariant metrics on the Lie group of SPD matrices
are simply the classical Euclidean metrics on the vector space (Sym(n),+, .). Thus,
we have in fact defined a new Euclidean structure on the space of SPD matrices by
transporting that of its Lie algebra Sym(n) on SPD matrices. But this Euclidean
structure does not have the defects mentioned in the introduction of this article:
matrices with null eigenvalues are at infinite distance and the symmetry principle is
respected. Last but not least, with an appropriate metric, similarity-invariance is also
guaranteed.

3.4. Log-Euclidean mean. We present here the definition of the Log-Euclidean
mean of SPD matrices and its invariance properties.

Theorem 3.13. Let (Si)
N
1 be a finite number of SPD matrices. Then their

Log-Euclidean Fréchet mean exists and is unique. It is given explicitly by

ELE(S1, . . . , SN) = exp

(
1

N

N∑
i=1

log(Si)

)
.(3.8)

The Log-Euclidean mean is similarity-invariant, invariant by group multiplication and
inversion, and is exponential-invariant (i.e., invariant with respect to scaling in the
domain of logarithms).

Proof. When one expresses distances in the logarithm domain, one is faced with
the classical computation of an Euclidean mean. Hence we have the formula by
mapping back the results with exp in the domain of SPD matrices. Now, this mean
does not depend on the chosen Log-Euclidean metric, and since there exist similarity-
invariant metrics among Log-Euclidean metrics, this property propagates to the mean.
The three last invariance properties are reformulations in the domain of SPD matrices
of classical properties of the arithmetic mean in the domain of logarithms.

LOG-EUCLIDEAN MEANS 339

Table 4.1

Comparison between affine-invariant and Log-Euclidean metrics. Note on the one hand
the important simplifications in terms of distance and geodesics in the Log-Euclidean case. On the
other hand, this results in the use of the differentials of the matrix exponential and logarithm in the
exponential and logarithm maps.

Affine-invariant metrics Log-Euclidean metrics

Exponential map: expS1
(L) =

S
1/2
1 . exp(S

−1/2
1 .L.S

−1/2
1).S

1/2
1 exp(log(S1) + DS1

log .L)

Logarithm map: logS1
(S2) =

S
1/2
1 . log(S

−1/2
1 .S2.S

−1/2
1).S

1/2
1 Dlog(S1) exp .(log(S2) − log(S1))

Dot product: 〈L1, L2〉S =

〈S−1/2.L1.S−1/2, S−1/2.L2.S−1/2〉Id 〈DS log .L1, DS log .L2〉Id
Distance: d(S1, S2) =

‖ log(S
−1/2
1 .S2.S

−1/2
1)‖ ‖ log(S2) − log(S1)‖

Geodesic between S1 and S2:

S
1/2
1 . exp(tW).S

1/2
1 exp ((1 − t) log(S1) + t log(S2))

with W = log
(
S
−1/2
1 .L.S

−1/2
1

)
Invariance properties

Lie group bi-invariance,
Affine-invariance Similarity-invariance

4. Comparison with the affine-invariant mean. In this section we compare
the Log-Euclidean mean to the recently introduced affine-invariant mean [12, 19,
23, 22]. To this end, we first recall the differences between affine-invariant metrics
and Log-Euclidean metrics in terms of elementary operators, distance, and geodesics.
Then we turn to a study of the algebraic properties of Fréchet means in the Log-
Euclidean and affine-invariant cases.

4.1. Elementary metric operations and invariance. Distances, geodesics,
and Riemannian means take a much simpler form in the Log-Euclidean than in
the affine-invariant case. Invariance properties are comparable: some Log-Euclidean
metrics are not only bi-invariant but also similarity invariant. These properties are
summarized in Table 4.1. However, we see in this table that the exponential and
logarithmic mappings are complicated in the Log-Euclidean case by the use of the
differentials of the matrix exponential and logarithm. This is the price to pay to
obtain simple distances and geodesics. Interestingly, using spectral properties of sym-
metric matrices, one can obtain a closed form for the differential of both matrix
logarithm and exponential and it is possible compute them very efficiently. See [26]
for more details.

4.2. Affine-invariant means. Let (Si)
N
i=1 be a system of SPD matrices. Con-

trary to the Log-Euclidean case, there is in general no closed form for the affine-
invariant Fréchet mean EAff (S1, . . . , SN) associated with affine-invariant metrics.
The affine-invariant mean is defined implicitly by a barycentric equation, which is
the following:

N∑
i=1

log(EAff (S1, . . . , SN)−1/2.Si.EAff (S1, . . . , SN)−1/2) = 0.(4.1)

340 V. ARSIGNY, P. FILLARD, X. PENNEC, AND N. AYACHE

This equation is equivalent to the following other barycentric equation, given in [19]:

N∑
i=1

log(EAff (S1, . . . , SN)−1.Si) = 0.(4.2)

The two equations are equivalent simply because for all i,

EAff (S1, . . . , SN)−1/2.Si.EAff (S1, . . . , SN)−1/2 = A.EAff (S1, . . . , SN)−1.Si.A
−1

with A = EAff (S1, . . . , SN)−1/2. The fact that log(A.S.A−1) = A. log(S).A−1 suffices
to conclude.

To solve (4.1), the only known strategy is to resort to an iterative numerical
procedure, such as the Gauss–Newton gradient descent method described in [12].

4.3. Geometric interpolation of determinants. The definition of the Log-
Euclidean mean given by (3.8) is extremely similar to that of the classical scalar
geometrical mean. We have the following classical definition.

Definition 4.1. The geometrical mean of positive numbers d1, . . . , dN ,is given
by

E(d1, . . . , dN) = exp

(
1

N

N∑
i=1

log(di)

)
.

The Log-Euclidean and affine-invariant Fréchet means can both be considered as
generalizations of the geometric mean. Indeed, their determinants are both equal to
the scalar geometric mean of the determinants of the original SPD matrices. This
fundamental property can be thought of as the common property that should have all
generalizations of the geometric mean to SPD matrices.

Theorem 4.2. Let (Si)
N
i=1 be N SPD matrices. Then the determinant of their

Log-Euclidean and affine-invariant means is the geometric mean of their determi-
nants.

Proof. From Proposition 2.4 we know that det(exp(M)) = exp(Trace(M)) for
any square matrix M . Then for the geometric mean, we get

det(ELE(S1, . . . , SN)) = exp(Trace(log(ELE(S1, . . . , SN))))

= exp

(
Trace

(
1

N

N∑
i=1

log(Si)

))

= exp

(
1

N

N∑
i=1

log(det(Si))

)
= exp (E(log(det(S1, . . . , SN)))) .

For affine-invariant means, there is no closed form for the mean. But there is
the barycentric equation given by (4.1). By applying the same formula as before
after having taken the exponential and using det(S.T) = det(S).det(T) we obtain the
result.

Theorem 4.2 shows that the Log-Euclidean and affine-invariant means of SPD
matrices are quite similar. In terms of interpolation, this result is satisfactory, since
it implies that the interpolated determinant, i.e., the volume of the associated inter-
polated ellipsoids, will vary between the values of the determinants of the source SPD
matrices. Indeed, we have the following.

LOG-EUCLIDEAN MEANS 341

Corollary 4.3. Let (Si)
N
i=1 be N SPD matrices. Then the determinant of their

Log-Euclidean and affine-invariant means are within the interval[
inf

i∈1...N
(Si), sup

i∈1...N
(Si)

]
.

Proof. This is simply a consequence of the monotonicity of the scalar exponential
and of the scalar integral.

Corollary 4.4. Let S1 and S2 be two SPD matrices. The geodesic interpola-
tions provided by the affine-invariant and Log-Euclidean metrics lead to a geometric
interpolation of determinants. As a consequence, this interpolation of determinants
is monotonic.

Proof. Indeed, in both cases, the interpolated determinant Det(t) is the geometric
mean of the two determinants, i.e., at t ∈ [0, 1]: Det(t) = exp((1 − t) log(det(S1)) +
t log(det(S2))). This interpolation is monotonic, since the differentiation yields

d

dt
Det(t) = Det(t) log(det(S2.S

−1
1)).

As a consequence, Det(t) is equal to det(S1). exp(t. log(det(S2.S
−1
1))), and the sign of

d
dtDet(t) is constant and given by log(det(S2.S

−1
1)).

4.4. Criterion for the equality of the two means. In general, Log-Euclidean
and affine-invariant means are similar, yet they are not identical. Nonetheless, there
are a number of cases where they are identical, for example, when the logarithms
of averaged SPD matrices all commute with one another. In fact, we have more as
follows.

Proposition 4.5. Let (Si)
N
i=1 be N SPD matrices. If the Euclidean mean of

the associated logarithms commutes with all log(Si), then the Log-Euclidean and the
affine-invariant means are identical.

Proof. Let L̄ := 1
N

∑N
i=1 log(Si). The hypothesis is that [L̄, log(Si)] = 0 for

all i. This implies that log(exp(− 1
2 L̄).Si. exp(− 1

2 L̄)) = log(Si) − L̄ for all i. We see
then that exp L̄, i.e., the Log-Euclidean mean, is the solution of (4.1), i.e., is the
affine-invariant mean.

So far, we have not been able to prove the converse part of this proposition.
However, the next subsection provides a partial proof, valid when SPD matrices are
isotropic enough, i.e., close to a scaled version of the identity. The intensive numerical
experiments we have carried out strongly suggest that the result given in the next
section is true in general. The full proof of this assertion will be the subject of future
work.

4.5. Larger anisotropy in Log-Euclidean means. In section 4.6, we will
verify experimentally that affine-invariant means tend to be less anisotropic than
Log-Euclidean means. The following theorem accounts for this phenomenon when
SPD matrices are isotropic enough.

Theorem 4.6. Let (Si)
N
i=1 be a finite number of SPD matrices close enough to

the identity, so that we can apply the Baker–Campbell–Hausdorff formula in all cases
(see section 2). When the logarithm of the Log-Euclidean mean does not commute
with all log(Si), then we have the following inequality:

Trace(EAff (S1, . . . , SN)) < Trace(ELE(S1, . . . , SN)).(4.3)

342 V. ARSIGNY, P. FILLARD, X. PENNEC, AND N. AYACHE

Proof. The idea is to see how the two means differ close to the identity. To this
end, we introduce a small scaling factor t and see how the two means vary when t
is close to zero. For all i, let Si,t be the version of Si scaled by t in the logarithmic
domain. Around the identity, we can use the Baker–Campbell–Hausdorff formula
to simplify the barycentric equation (4.1). Let us denote both Riemannian cases as
E(St) = E(S1,t, . . . , SN,t) and E(S) := E(S1, . . . , SN). We will also use the following
notation: log(Si) := Li, L̄t;Aff := log(EAff (St)) and L̄LE := log(ELE(S)).

%pagebreak
First, we use twice the Baker–Campbell–Hausdorff formula to obtain the following

approximation:

log(EAff (St)
−1/2.Si,t.EAff (St)

−1/2) = tLi − L̄t;Aff − t3 1
12 [Li, [Li, L̄t;Aff]]

+ t3 1
24 [L̄t;Aff , [L̄t;Aff , Li]] + O(t5).

(4.4)

Then we average over i to obtain the following approximation lemma.
Lemma 4.7. When t is small enough, we have:

L̄t;Aff = tL̄LE +
t3

12.N

N∑
i=1

[Li, [L̄LE , Li]] + O(t5).(4.5)

Proof. To obtain the approximation, note that the second factor t3 1
24 [L̄t;Aff ,

[L̄t;Aff , Li]] in (4.4) becomes an O(t5). Indeed, when the sum over i is done, Li

becomes L̄LE . But we can replace L̄LE with its value in term of the affine-invariance
mean by using (4.4). Then, using the fact that [L̄t;Aff , L̄t;Aff] = 0 we see that we
obtain an O(t5).

Note also that, thanks to the symmetry with respect to inversion, L̄t;Aff becomes
−L̄t;Aff when t is changed into −t, i.e., t �→ L̄t;Aff is odd. As a consequence, only
odd terms appear in the development in powers of t.

Next, we take the exponential of (4.5) and differentiate the exponential to obtain

EAff (St) = ELE(St) + DtL̄LE
exp .

(
t3

12.N

N∑
i=1

[Li, [L̄LE , Li]]

)
+ O(t5).

Then we use several properties to approximate the trace of affine-invariant means.
First, we use Corollary 2.3 to simplify the use of the differential of the exponential.
Then we approximate the exponential by the first two terms of its series expansion.
We obtain

Trace(EAff (St)) = Trace(ELE(St)) + t3.F (t, Li, L̄LE) + O(t5),

with F (t, Li, L̄LE) = Trace(exp(tL̄LE). 1
12.N

∑N
i=1[Li, [L̄LE , Li]]). This expression can

be simplified as follows:

F (t, Li, L̄LE) = Trace

(
(Id + tL̄LE).

1

12.N

N∑
i=1

[Li, [L̄LE , Li]]

)
+ O(t2)

=
t

12.N

N∑
i=1

Trace
(
L̄LE .[Li, [L̄LE , Li]]

)
+ O(t2)

= − t

12.N

N∑
i=1

Trace
(
L2
i .L̄

2
LE − (Li.L̄LE)2

)
+ O(t2).

LOG-EUCLIDEAN MEANS 343

As a consequence, the difference between the two traces can be written as

Trace(EAff (St)) − Trace(ELE(St)) = − t4

12.N

N∑
i=1

Trace
(
L2
i .L̄

2
LE − (Li.L̄LE)2

)
+ O(t5).

To conclude, we use the following lemma.
Lemma 4.8. Let A, B ∈ Sym(n). Then Trace(A2.B2 − (A.B)2) ≥ 0. The

inequality is strict if and only if A and B do not commute.
Proof. Let (Ai) (resp., (Bi)) be the column vectors of A (resp., B). Let 〈, 〉 be

the usual scalar product. Then we have{
Trace(A2.B2) =

∑
i,j〈Ai, Aj〉〈Bi, Bj〉,

Trace((A.B)2) =
∑

i,j〈Ai, Bj〉〈Bi, Aj〉.

Let us now chose a rotation matrix R that makes A diagonal: R.A.RT =
Diag(λ1, . . . , λn) =: D. Let us define C := R.B.RT and use the notation (Ci) and
(Di) for the column vectors of C and D. We have{

Trace(A2.B2) =
∑

i,j〈Di, Dj〉〈Ci, Cj〉 =
∑

i λ
2
i 〈Ci, Ci〉,

Trace((A.B)2) =
∑

i,j〈Di, Cj〉〈Ci, Dj〉 =
∑

i,j λi.λj〈Ci, Cj〉.

Then the Cauchy–Schwarz inequality yields∣∣∣∣∣∣
∑
i,j

λi.λj〈Ci, Cj〉

∣∣∣∣∣∣ ≤
∑
i

λ2
i 〈Ci, Ci〉,

which proves the first point. But the Cauchy–Schwarz inequality is an equality if and
only if there is a constant μ such that D.C = μC.D. But only μ = 1 allows the
inequality of the lemma to be an equality. This is equivalent to C.D = D.C, which is
equivalent in turn to A.B = B.A. Hence we have the result.

End of proof of Theorem 4.6. When we apply Lemma 4.8 to the obtained estima-
tion for the trace, we see that for a t �= 0 small enough, the trace of the affine-invariant
mean is indeed strictly inferior to the trace of the Log-Euclidean mean whenever the
mean logarithm does not commute with all logarithms log(Si).

Corollary 4.9. By invariance of the two means with respect to scaling, the
strict inequality given in Theorem 4.6 is valid in a neighborhood of any SPD matrix
of the form λId with λ > 0.

Corollary 4.10. When the dimension is equal to 2, the Log-Euclidean mean
of SPD matrices which are isotropic enough is strictly more anisotropic than their
affine-invariant mean when those means do not coincide.

Proof. In this case, there are only two eigenvalues for each mean. Their products
are equal and we have a strict inequality between their sums. Consequently, the largest
eigenvalue of the Log-Euclidean mean is strictly larger than the affine-invariant one,
and we have the opposite result for the smallest eigenvalue.

4.6. Linear and bilinear interpolation of SPD matrices. Volume elements
(or voxels) in clinical DT images are often spatially anisotropic. Yet, in many prac-
tical situations where DT images are used, it is recommended (see [27]) to work
with isotropic voxels to avoid spatial biases. A preliminary resampling step with an
adequate interpolation method is therefore important in many cases. Proper inter-
polation methods are also required to generalize to the SPD case usual registration

344 V. ARSIGNY, P. FILLARD, X. PENNEC, AND N. AYACHE

Fig. 4.1. Linear interpolation of two SPD matrices. Top: linear interpolation on coefficients.
Middle: affine-invariant interpolation. Bottom: Log-Euclidean interpolation. The shading of el-
lipsoids is based on the direction of dominant eigenvectors. Note the characteristic swelling effect
observed in the Euclidean case, which is not present in both Riemannian frameworks. Note also that
Log-Euclidean means are slightly more anisotropic their affine-invariant counterparts.

techniques used on scalar or vector images. The framework of Riemannian metrics
allows a direct generalization to SPD matrices of classical resampling methods with
the use of associated Fréchet means instead of the Euclidean (i.e., arithmetic) mean.

In the Riemannian case, the equivalent of linear interpolation is geodesic inter-
polation. To interpolate between two SPD matrices, intermediate values are taken
along the shortest path joining the two matrices. Figure 4.1 presents a typical result
of linear interpolation between two SPD matrices. The Euclidean, affine-invariant,
and Log-Euclidean results are given. The “swelling effect” is clearly visible in the
Euclidean case: the volume of associated ellipsoids is parabolically interpolated and
reaches a global maximum between the two extremities! This effect disappears in both
Riemannian cases, where volumes are interpolated geometrically. As expected, Log-
Euclidean means are a little more anisotropic than their affine-invariant counterparts.

To resample images, bilinear (resp., trilinear) interpolation generalizes in two
dimensions (resp., in three dimensions) the linear interpolation and offers an efficient
compromise between simplicity and accuracy in the scalar and vector cases. With this
technique, the value at any given point is inferred from known values measured at
the vertices of a regular grid whose elementary cells are rectangles in two dimensions
(resp., right parallelepipeds in three dimensions), which is usually the case with MR
images. More precisely, the interpolated value at a given point is given by the weighted
mean of the values at the vertices of the current cell. The weights are the barycentric
coordinates of the current point with respect to the vertices of the current cell.

Figure 4.2 presents the results of the bilinear interpolation of four SPD matri-
ces placed at the extremities of a rectangle. Again, a large swelling effect is present
in Euclidean results and not in both Riemannian results, and Log-Euclidean means
are slightly more anisotropic than their affine-invariant equivalents. One should note
that the computation of the affine-invariant mean here is iterative, since the number
of averaged matrices is larger than 2 (we use the Gauss–Newton method described
in [12]), whereas the closed form given by 3.8 is used directly in the Log-Euclidean
case. This has a large impact on computation times: 0.003s (Euclidean), 0.009s

LOG-EUCLIDEAN MEANS 345

Fig. 4.2. Bilinear interpolation of four SPD matrices at the corners of a regular grid. Left:
Euclidean interpolation. Middle: affine-invariant interpolation. Right: Log-Euclidean interpola-
tion. Again, a characteristic swelling effect is observed in the Euclidean case and not in both
Riemannian frameworks. As expected, Log-Euclidean means are slightly more anisotropic than their
affine-invariant counterparts.

(Log-Euclidean), and 1s (affine-invariant) for a 5 × 5 grid on a Pentium M 2 GHz.
Computations were carried out with MATLAB, which explains the poor computa-
tional performance. Here, Log-Euclidean means were calculated approximately 100
times faster than affine-invariant means because the logarithms of the four interpo-
lated tensors were computed only once, instead of being computing each time a new
barycenter is calculated. When only one mean is computed, the typical ratio is closer
to 20, since between 15 and 20 iterations are typically needed (for 3×3 SPD matrices)
to obtain the affine-invariant mean with a precision of the order of 10−12.

One should note that from a numerical point of view the computation of Log-
Euclidean means is not only much faster but also more stable than in the affine-
invariant case. On synthetic examples, as soon as SPD matrices are quite anisotropic
(for instance, with the dominant eigenvalue larger than 500 times the smallest), nu-
merical instabilities appear, essentially due to limited numerical precision (even with
double precision). This can greatly complicate the computation of affine-invariant
means. On the contrary, the computation of Log-Euclidean means is more sta-
ble since the logarithm and exponential are taken only once and thus even very
large anisotropies can be dealt with. In applications where very high anisotropies
are present, such as the generation of adapted meshes [17], this phenomenon could
severely limit the use of affine-invariant means, whereas no such limitation exists in
the Log-Euclidean case.

5. Conclusion and perspectives. In this work, we have presented a particu-
larly simple and efficient generalization of the geometric mean to SPD matrices, called
Log-Euclidean. It is simply an arithmetic mean in the domain of matrix logarithms.
This mean corresponds to a bi-invariant mean in our novel Lie group structure on
SPD matrices, or equivalently to a Euclidean mean when this structure is smoothly
extended into a vector space by a novel scalar multiplication.

The Log-Euclidean mean is similar to the recently introduced affine-invariant
mean, which is another generalization of the geometric mean to SPD matrices. In-
deed, the Log-Euclidean mean is similarity invariant, and two means have the same
determinant, which is the geometric mean of the determinants of averaged SPD ma-
trices. However, they are not equal: the Log-Euclidean trace is larger when the two
means differ. The most striking difference between the two means resides in their com-
putational cost: the Log-Euclidean mean can be calculated approximately 20 times
faster than the affine-invariant mean. This property can be crucial in applications

346 V. ARSIGNY, P. FILLARD, X. PENNEC, AND N. AYACHE

where large amounts of data are processed. This is especially the case in medical
imaging with DTI and in numerical analysis with the generation of adapted meshes.

We have shown in this work that there are indeed several generalizations of the
geometric mean to SPD matrices. Other variants may exist, and we will investigate
other possible generalizations in future work. This is important, since situations in
applied mathematics, mechanics, medical imaging, etc., where SPD matrices need to
be processed, are highly varied. As a consequence, the relevance of each generalization
of the geometric mean and of the associated metric framework may depend on the
application considered. We have already begun to compare the Log-Euclidean and
affine-invariant frameworks in the case of DT-MRI processing [28]. In future work,
we will proceed to variability tensors, which we began to use in [15] to model and
analyze the variability of brain anatomy.

REFERENCES

[1] S. Lang, Algebra, 3rd rev. ed. Grad. Texts in Math., 211 Springer-Verlag, New York, 2002.
[2] M. L. Curtis, Matrix Groups, Springer-Verlag, New York, Heidelberg, 1979.
[3] D. Le Bihan, Diffusion MNR imaging, Magnetic Resonance Quarterly, 7 (1991), pp. 1–30.
[4] J. Salencon, Handbook of Continuum Mechanics, Springer-Verlag, Berlin, 2001.
[5] S. Sternberg, Lectures on Differential Geometry, Prentice–Hall, Englewood Cliffs, NJ, 1964.
[6] L. Schwartz, Analyse Tome 2: Calcul Differentiel, Hermann, Paris, 1997.
[7] N. J. Higham, Matrix nearness problems and applications, in Applications of Matrix Theory,

M. J. C. Gover and S. Barnett, eds., Oxford University Press, Oxford, UK, 1989, pp. 1–27.
[8] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, 2nd ed., Springer-Verlag,

Berlin, 1990.
[9] R. Godement, Introduction à la Théorie des Groupes de Lie, Publications Mathématiques de

l’Université Paris VII, Paris, 1982.
[10] M. Wüstner, A connected lie group equals the square of the exponential image, J. Lie Theory,

13 (2003), pp. 307–309.
[11] N. Bourbaki, Elements of Mathematics: Lie Groups and Lie Algebra. Chapters 1–3, Springer-

Verlag, Berlin, 1989.
[12] X. Pennec, P. Fillard, and N. Ayache, A Riemannian framework for tensor computing,

International J. Computer Vision, 66 (2006), pp. 41–66. A preliminary version appeared
as Research Report 5255, INRIA, Sophia-Antipolis, France, 2004.

[13] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J.
Matrix Anal. Appl., 26 (2005), pp. 1179–1193.

[14] B. C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction,
Grad. Texts in Math., Springer-Verlag, New York, 2003.

[15] P. Fillard, V. Arsigny, X. Pennec, K. M. Hayashi, P. M. Thompson, and N. Ayache,
Measuring brain variability by extrapolating sparse tensor fields measured on sulcal lines,
Neuroimage, 34 (2007), pp. 639–650.

[16] T. Broxand, M. Roussonand, R. Deriche, and J. Weickert, Unsupervised segmentation
incorporating colour, texture, and motion, in Computer Analysis of Images and Patterns N.
Petkov and M.A. Westenbere, eds., Lecture Notes in Comput. Sci. 2756, Springer, Berlin,
2003, pp. 353–360.

[17] B. Mohammadi, H. Borouchaki, and P. L. George, Delaunay mesh generation governed by
metric specifications. II. Applications, Finite Elem. Anal. Des. as, (1997), pp. 85–109.

[18] X. Pennec, Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measure-
ments, J. Math. Imaging Vision, 25 (2006), pp. 127–154. A preliminary version appeared
as Research Report RR-5093, INRIA, Sophia-Antipolis, France, 2004.

[19] M. Moakher, A differential geometry approach to the geometric mean of symmetric positive-
definite matrices, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 735–747.

[20] C. Feddern, J. Weickert, B. Burgeth, and M. Welk, Curvature-driven PDE methods for
matrix-valued images, Internat. J. Comput. Vision, 69 (2006), pp. 91–103. Revised ver-
sion of Tech. Report 104, Department of Mathematics, Saarland University, Saarbrücken,
Germany, 2004.

[21] C. Chefd’hotel, D. Tschumperlé, R. Deriche, and O. Faugeras, Regularizing flows for
constrained matrix-valued images, J. Math. Imaging Vision, 20 (2004), pp. 147–162.

[22] P.T. Fletcher and S.C. Joshi, Principal geodesic analysis on symmetric spaces: Statistics

LOG-EUCLIDEAN MEANS 347

of diffusion tensors., in Proceedings of the CVAMIA and MMBIA Workshops, (Prague,
Czech Republic, May 15, 2004), Lecture Notes in Comput. Sci. 3117, Springer, Berlin,
2004, pp. 87–98.

[23] C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras, Statistics on the manifold of mul-
tivariate normal distributions: Theory and application to diffusion tensor MRI processing,
J. Math. Imaging Vision, 25 (2006), pp. 423–444.

%pagebreak
[24] S. Hun Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub, Approximating the logarithm

of a matrix to specified accuracy, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1112–1125.
[25] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Fast and Simple Computations on

Tensors with Log-Euclidean Metrics, Research Report RR-5584, INRIA, Sophia-Antipolis,
France, 2005.

[26] P. Fillard, V. Arsigny, X. Pennec, and N. Ayache, Clinical DT-MRI estimation, smooth-
ing and fiber tracking with log-Euclidean metrics, in Proceedings of the Third IEEE In-
ternational Symposium on Biomedical Imaging (ISBI 2006), Arlington, Virginia, 2006,
pp. 786–789.

[27] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, In vivo fiber tractography
using DT-MRI data, Magnetic Resonance in Medicine, 44 (2000), pp. 625–632.

[28] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Log-Euclidean metrics for fast and
simple calculus on diffusion tensors, Magnetic Resonance in Medicine, 56 (2006), pp. 411–
421.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 349–369

CONVERGENCE OF A BLOCK-ORIENTED QUASI-CYCLIC
JACOBI METHOD∗

VJERAN HARI†

Abstract. This paper proves the global convergence of a block-oriented, quasi-cyclic Jacobi
method for symmetric matrices. The result applies to the new fast one-sided Jacobi method, proposed
by Drmač and Veselić, for computing the singular value decomposition. There is no restriction on
the matrix block-partition which defines the pivot strategy.

Key words. eigenvalues, Jacobi method, global convergence

AMS subject classification. 65F15

DOI. 10.1137/05064552X

1. Introduction. Recently, Drmač and Veselić [5, 6] have proposed an improved
modification of the one-sided Jacobi method for computing the singular value decom-
position (SVD) of rectangular matrices. It is fast (somewhat faster than QR and
somewhat slower than divide and conquer (DC); see [6]) and is accurate in a rel-
ative sense (which cannot be said for QR and DC; see [1]). It also requires less
workspace and applies to a wider class of matrices (the matrix elements can vary in
a wider range of magnitudes) than its competitors. The modified Jacobi method first
prepares the initial matrix for the iteration by applying to it one or two QR factoriza-
tions (cf. [19, 4, 5]). In the iterative part, many ideas from [3] have been implemented.
In addition, to better exploit the computer resources, like the cache memory, it uses
a new block-oriented, quasi-cyclic pivot strategy. This strategy mimics the BLAS
blocking, thus exploiting contiguous memory benefits. It also takes into account the
fact that after QR factorization, the larger elements typically lie in the vicinity of the
diagonal, so more work has to be done within the diagonal blocks.

Still lacking are the global and the asymptotic convergence proofs of the modifi-
cation of [5, 6]. The latter is less critical, since it is well known that Jacobi methods
are quadratically convergent per sweep under usual cyclic strategies (see [20, 11]),
and therefore, the quasi-cyclic methods should be (at least; see [17]) quadratically
convergent per quasi sweep.

The aim of this paper is to fill the missing gap, i.e., to prove the global conver-
gence of the Jacobi method, defined by the pivot strategy proposed in [6]. The proof
presented here covers the main algorithm from [6, Algorithm 1, case k = 1]. The
other cases (k = 0, which is trivial, and k = 2, which is even more complicated) can
be proved by the same technique.

Note that the global convergence of a one-sided SVD Jacobi method for the
matrix G actually means the global convergence of the corresponding two-sided Jacobi
method for the nonnegative definite Gram matrix GTG. For this reason, we consider
here the two-sided Jacobi method for general symmetric matrices, under the special
quasi-cyclic pivot strategy which has been used in [6].

For any quadratic matrix X = (xij), the function Off(X) = ‖X − diag(X)‖F ,
where diag(X) is the diagonal part of X and ‖ · ‖F is the Frobenius norm, is referred

∗Received by the editors November 17, 2005; accepted for publication (in revised form) by N. J.
Higham August 30, 2006; published electronically March 19, 2007.

http://www.siam.org/journals/simax/29-2/64552.html
†Department of Mathematics, University of Zagreb, 10000 Zagreb, Croatia (hari@math.hr).

349

350 VJERAN HARI

to as departure from the diagonal form of X. Then, for any symmetric A, a useful
measure of almost diagonality is

S(A) = Off(A)/
√

2 =

√√√√n−1∑
i=1

n∑
j=i+1

|aij |2.

In [15] Mascarenhas has proved that the diagonal elements of the iterated symmet-
ric matrix A(k), obtained by the Jacobi method under any pivot strategy, converge.
Therefore, it is sufficient to prove that for any initial symmetric matrix A, S(A(k)) → 0
as k → ∞. Actually, we shall prove that under the pivot strategy used in [6],

S2(A(M)) ≤ tnS
2(A), 0 ≤ tn < 1.(1.1)

Here A(M) is obtained from A after one quasi sweep, and tn depends just on n. This
is sufficient for the proof since the sequence S(A(k)) is nonincreasing.

The paper is divided into three sections. In section 2 we introduce notation and
the quasi-cyclic strategy, and we formulate the main theorem. In section 3 we prove
the theorem.

2. The quasi-cyclic Jacobi method JM. Although the method and the proof
can be considered for complex Hermitian matrices, for simplicity we restrict our con-
siderations to real symmetric matrices.

2.1. Simple symmetric quasi-cyclic Jacobi methods. A (two-sided) Jacobi
method for diagonalizing a symmetric n×n matrix A performs a sequence of similarity
transformations

A(k+1) = [R(k)]TA(k)R(k), V (k+1) = V (k)R(k), k ≥ 0 ,(2.1)

where A(0) = A, V (0) = In, and R(0), R(1), . . . are plane rotations. For each k, R(k)

is defined by a pair of indices (p, q) = (p(k), q(k)) called a pivot pair and by four

essential elements R
(k)
pp = R

(k)
qq = cosφk, R

(k)
pq = −R

(k)
qp = sinφk. All other elements

of R(k) are as in the identity matrix In. The process (2.1) is defined by a rule for
computing the elements of R(k) and by a way of selecting pivot pairs (pivot strategy).
We assume the standard angle choice

tan 2φk =
2a

(k)
pq

a
(k)
qq − a

(k)
pp

, φk ∈
[
−π

4
,
π

4

]
,(2.2)

which makes the pivot element a
(k)
pq zero; i.e., a

(k+1)
p(k)q(k) = 0, k ≥ 0, holds. Consequently,

we have

S2(A(k+1)) = S2(A(k)) −
(
a
(k)
p(k)q(k)

)2

, k ≥ 0,

and limk→∞ a
(k)
p(k)q(k) = 0. Here we have assumed A(k) = (a

(k)
ij).

If A is a 1×1 matrix, we set S(A) = 0, and if A is 2×2, the process is completed
for k = 1 since S(A(1)) = 0. So, we assume n ≥ 3.

Let N = n(n − 1)/2, Pn = {(i, j) : 1 ≤ i < j ≤ n} and N0 = {0, 1, 2, . . . }.
Each pivot strategy can be identified with a function I from N0 to Pn, defined by
I(k) = (p(k), q(k)), k ≥ 0. If I is periodic, then I is called a periodic strategy. Let I

CONVERGENCE OF A JACOBI METHOD 351

be a periodic strategy with period M . If {I(k) : 0 ≤ k ≤ M − 1} = Pn and M > N
(M = N), then I is called a quasi-cyclic (cyclic) strategy.

Let S be a subset of Pn and let ν(S) denote its cardinality. By O(S) we mean a
collection of all finite sequences made of the elements from S. If O ∈ O(S), we assume
that each element of S appears at least once in O (otherwise S is replaced with some
of its proper subsets). Thus, each sequence from O(S) contains at least ν(S) terms.
If S is an empty set, ν(S) = 0 and O(S) consists of a singleton, which is an empty
sequence.

A cyclic or a quasi-cyclic strategy can be specified in the following way. For any
O = {(ir, jr)}M−1

r=0 ∈ O(Pn), the cyclic or the quasi-cyclic strategy IO, generated by
O, is given by

IO(k) ≡ (p(k), q(k)) = (ir, jr), 0 ≤ r ≤ M − 1, k ≥ 0,

provided that k ≡ r (mod M). Thus,

(p(0), q(0)) = (i0, j0), (p(1), q(1)) = (i1, j1), . . . ,

(p(M − 1), q(M − 1)) = (iM−1, jM−1), (p(M), q(M)) = (i0, j0),

(p(M + 1), q(M + 1)) = (i1, j1),

We denote the Jacobi method, which defines φk by (2.2) and uses the pivot strategy
I by J(I). J(I) is called a quasi-cyclic/cyclic (Jacobi) method if I is the quasi-
cyclic/cyclic strategy. Since n is fixed, in what follows we write P for Pn.

Let S be any subset of P. By OR(S) we denote the “rowwise ordering” of S, that
is, the sequence satisfying the following two conditions: (i) Each element (i, j) ∈ S
appears exactly once in OR(S); (ii) for any two terms (i1, j1) and (i2, j2) in OR(S),
(i1, j1) precedes (i2, j2) if i1 < i2 or i1 = i2 and j1 < j2. In an obvious manner we
can define the “columnwise” ordering of S denoted by OC(S).

Let Si, 1 ≤ i ≤ σ, be subsets of P and let Oi ∈ O(Si), 1 ≤ i ≤ σ, be arbi-
trary sequences. By [O1, O2, . . . , Oσ], we mean the sequence which is obtained by the
concatenation of the sequences O1, O2, . . . , Oσ. Often, we shall omit the brackets.

2.2. Quasi-cyclic strategies. To prove the convergence theorem (Theorem 2.1
below), we need the notion of equivalent strategies. This notion is extended from
cyclic [8, 9, 18] to quasi-cyclic strategies, as it has been done in [17]. In what follows,
strategy means quasi-cyclic pivot strategy.

Let S be a subset of P. Let O = {(ir, jr)}sr=0 ∈ O(S). An admissible transposi-
tion on O is any transposition of two adjacent terms (ir, jr), (ir+1, jr+1) → (ir+1, jr+1),
(ir, jr), provided that the sets {ir, jr} and {ir+1, jr+1} are disjoint. Such pairs will
also be called interchangeable or commuting.

The sequences O,O′ ∈ O(S) are equivalent if one can be obtained from the other
by a finite number of admissible transpositions. In this case we write O ∼ O′. For
example, if S = {(1, 2), (2, 3), (1, 4)}, then O = (1, 2), (1, 2), (1, 4), (2, 3), (2, 3) ∈ O(S)
and O′ = (1, 2), (1, 2), (2, 3), (2, 3), (1, 4) ∈ O(S) are equivalent.

Let I be a strategy with period M . By OI we mean the sequence {I(k)}M−1
k=0 . If

I and I ′ are two strategies with the same period M , then I and I ′ are equivalent if
OI ∼ OI′ . In such a case we write I ∼ I ′.

For a given symmetric matrix A and a given strategy I, the sequence {R(k)} is
well defined. Let TI(k)(X) mean [R(k)]TXR(k). Then the recursion in (2.1) can be

written A(k+1) = TI(k)(A
(k)), implying

A(k+1) = TI(k)TI(k−1) · · ·TI(0)(A), k ≥ 0,

352 VJERAN HARI

where TI(k)TI(k−1) · · ·TI(0) denotes the composition of the underlying linear opera-
tors. Let

T I
k = TI(k−1)TI(k−2) · · ·TI(0), k ≥ 1; T I

0 = E,

where E is the identity operator. Note that TI(k) commutes with TI(k+1) if (p(k), q(k))
and (p(k + 1), q(k + 1)) are commuting. Hence using the same argument as in [11,
Lemma 1.1], we obtain the following implication (see also [8]):

If I ∼ I ′, then T I
kM (A) = T I′

kM (A), k ≥ 0.(2.3)

That is, equivalent strategies give the same matrices at the end of each quasi sweep
consisting of M iterations of the form (2.1). Since {S(A(k))}∞k=0 makes a non-
increasing sequence, (2.3) implies that J(I) is convergent iff J(I ′) is convergent,
provided that I ∼ I ′. In particular, if the relation (1.1) holds for I ′ and I ∼ I ′, then
it holds for I.

2.3. The special quasi-cyclic block-oriented method. Let A = (ars) be a
real symmetric matrix of order n. The starting point in describing the method is the
following block-partition of A:

A =

⎡⎢⎢⎢⎣
A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm

⎤⎥⎥⎥⎦
}n1

}n2

...
}nm

,

where Aij is an ni × nj block of A. Since n1 + · · · + nm = n, M = (n1, n2, . . . , nm)
is a partition of n. In practical computations, it is desirable that no ni exceeds some
n0 which depends on the machine and its available fast (cache) memory. The cache
memory is several times faster than the main computer memory (according to [2,
section 1.3.2] 5 to 10 times faster).

With each submatrix B contained in the uppertriangle of A (or with each principal
submatrix B of A) one can associate the set S(B) ⊆ P of those pairs which are
subscripts of the elements of B (and of the upper triangle of B). By abuse of notation,
the row- and columnwise orderings of S(B) are denoted by OR(B) (= OR(S(B))) and
OC(B) (= OC(S(B))), respectively. We shall also use Sij = S(Aij) and Rij =
OR(Aij) (= OR(Sij)), Cij = OC(Aij) (= OC(Sij)) for i ≤ j.

Let OM denote the sequence of pairs which defines one quasi sweep of the method
from [6]. It is defined as follows.

First, define sequences

Ri = [Ri+1,i+1,Rii,Ri,i+1,Ri,i+2, . . . ,Rim], 1 ≤ i ≤ m− 1.

Then,

OM = [R11,R1,R2, . . . ,Rm−1,Rmm].(2.4)

The quasi-cyclic Jacobi method from [6] is defined by the strategy IM = IOM and
we denote it by JM. Its pivot strategy IM uses the rowwise ordering within each
block Aij . IM fetches the blocks in a rowwise fashion, and all the diagonal blocks
Aii are operated twice. Therefore, we call it the special quasi-cyclic block-oriented
method. The quasi sweep contains M ordinary Jacobi steps, where M is the number

CONVERGENCE OF A JACOBI METHOD 353

of pairs in the sequence OM from (2.4). The aim of this paper is to prove the global
convergence of JM. In particular, we shall prove the following.

Theorem 2.1. Let m ≥ 1 be an integer. Then for all n ≥ max{m, 2} the
following assertion holds.

Let M = (n1, . . . , nm) be any partition of n into m positive integers. Let A be
any symmetric matrix of order n. Let (Aij) be the corresponding block-partition of A,
consisting of m block-rows and m block-columns, such that Aii is ni × ni, 1 ≤ i ≤ m.
Let the quasi-cyclic Jacobi method JM be applied to A, generating the sequence of
iterates A(0) = A, A(1), A(2), Then after one quasi sweep consisting of

M = n(n− 1)/2 +

m∑
i=1

ni(ni − 1)/2

Jacobi steps, the relation

S2(A(M)) ≤ t(M)
n S2(A), 0 ≤ t(M)

n < 1,(2.5)

holds, where for the given partition M, the bound t
(M)
n depends only on n.

3. Proof of Theorem 2.1. To prove Theorem 2.1, it is sufficient to prove (2.5)
for some strategy I which is equivalent to IM. We shall find such an I with the
special property that it fetches the matrix elements by block-columns, and within
each block-column by columns, plus some extra work within the diagonal blocks.

3.1. Obtaining I. We call two sets S1 and S2 from P commuting if each pair
from S1 commutes with all the pairs from S2. In the same way we define two commut-
ing sequences made of the elements from P. Obviously, if S1 and S2 are commuting,
then each sequence made of the elements from S1 commutes with all the sequences
made of the elements from S2 and vice versa. If the two commuting subsequences take
adjacent positions in the sequence which defines some pivot strategy, then we can in-
terchange the positions of these two subsequences, obtaining an equivalent (sequence
and) pivot strategy.

To define I, we start with the sequence OM and transform it using admissible
transpositions. We divide the process into several stages. In the first stage, we
transform OM into O1; in the second stage we transform O1 into O2; and finally, we
transform O2 into O which defines I.

We shall illustrate the transitions for the case m = 5. After this illustration, we
shall provide the result which holds for general m. Except for the first line, we shall
omit writing [] which denotes the concatenation of sequences. Vertical bars | are used
only to better recognize the obtained subsequences. We have

OM = [R11,R1,R2,R3,R4,R55]

= R11, |R22,R11,R12,R13,R14,R15, |R33,R22,R23,R24,R25, |
R44,R33,R34,R35|R55,R44,R45, |R55 .

Note that Rii commutes with Ri+1,i+1 and that Rij commutes with Rpq provided that
(i, j) and (p, q) are commuting. Using these facts, we can “move left” the subsequence
R22 from the ninth position to the fifth position, just behind R12, and we can “move
right” R22 from the second position to the third position. Continuing this process,

354 VJERAN HARI

we obtain the following equivalent sequences:

OM ∼ R11, |R11, |R22,R12,R22, |R13,R14,R15,R33,R23,R24,R25,

R44,R33,R34,R35, |R55,R44,R45, |R55

∼ R11, R11, |R22,R12,R22, |R13,R33,R23,R33, |R14,R15,R24,R25,

R44,R34,R35,R55,R44,R45, |R55

∼ R11, R11, |R22,R12,R22, |R13,R33,R23,R33, |R14,R24,R44,R34, |
R15,R25,R35,R55,R44,R45, |R55

∼ R11, R11, |R22,R12,R22, |R13,R33,R23,R33, |
R14,R24,R44,R34,R44, |R15,R25,R35,R55,R45, R55 .

Using the same technique, we can conclude that for general m, OM ∼ O1, where

O1 = R11, R11, |R22,R12,R22, |R13,R33,R23,R33, | . . .
|R1m,R2m,R3m, . . . ,Rm−2,m,Rmm,Rm−1,m,Rmm.

We see that O1 is obtained by the concatenation of m subsequences, the jth one
having the form

R1j ,R2j ,R3j , . . . ,Rj−2,j ,Rjj ,Rj−1,jRjj , 3 ≤ j ≤ m.

Note that the first subsequence R11,R11 and the second one R22,R12,R22 also fit
into this pattern. Therefore, we can write

OM ∼ � m
j=1 R1j ,R2j ,R3j , . . . ,Rj−2,j ,Rj,j ,Rj−1,jRj,j ,(3.1)

where � stands for the concatenation. Now, remember that (see [8, 9]) the row-cyclic
and the column-cyclic orderings are equivalent. This means that we can replace each
Rii with Cii. Furthermore, the rowwise ordering of each rectangular block is equivalent
to the columnwise ordering of that block. Hence, for 3 ≤ j ≤ m, we have

R1j ,R2j ,R3j , . . . ,Rj−2,j ∼ OR(Bj) ∼ OC(Bj) ≡ Cj , where Bj =

⎡⎢⎢⎢⎣
A1j

A2j

...
Aj−2,j

⎤⎥⎥⎥⎦ .

Note that Bj ∈ Rsj−2×nj , where

sj = n1 + n2 + · · · + nj , 1 ≤ j ≤ m, s0 = 0.

Let

cjk = OC(Bjek) = (1, sj−1 + k), (2, sj−1 + k), . . . , (sj−2, sj−1 + k), 1 ≤ k ≤ nj ,

where ek is the kth column of the identity matrix, so that Bjek is the kth column of
Bj . Then

Cj = cj1, cj2, . . . , cjnj , 3 ≤ j ≤ m.

Furthermore, we can write

R1j ,R2j ,R3j , . . . ,Rj−2,j ,Rjj ,Rj−1,jRjj ∼ Cj , Cjj , Cj−1,j , Cjj ≡ Cj .(3.2)

CONVERGENCE OF A JACOBI METHOD 355

If we set

c′jk = OC(Aj−1,jek), 1 ≤ k ≤ nj , and

c′′jk = OC([e1, . . . , ek−1]
TAjjek), 2 ≤ k ≤ nj ,

then

Cj−1,j = c′j1, c
′
j2, . . . , c

′
jnj

and Cjj = c′′j2, c
′′
j3, . . . , c

′′
jnj

.

Hence we can write for 3 ≤ j ≤ m,

Cj = cj1, cj2, . . . , cjnj , c
′′
j2, . . . , c

′′
jnj

, c′j1, c
′
j2, . . . , c

′
jnj

, c′′j2, . . . , c
′′
jnj

.(3.3)

For j = 1 the above formula reduces to c′′12, . . . , c
′′
1n1

, c′′12, . . . , c
′′
1n1

and for j = 2 to
c′′22, . . . , c

′′
2n2

, c′21, c
′
22, . . . , c

′
2n2

, c′′22, . . . , c
′′
2n2

.
Lemma 3.1. The following assertions hold:
(i) Cj ∼ Cj = cj1, cj2, c

′′
j2, cj3, c

′′
j3, . . . , cjnj , c

′′
jnj

, c′j1, c
′
j2, c

′′
j2, . . . , c

′
jnj

, c′′jnj
, 3 ≤ j ≤ m.

(ii) If we set C1 = C11, C11, C2 = C22, c
′
21, c

′
22, c

′′
22, . . . , c

′
2n2

, c′′2n2
, then

OM ∼ O = �m
j=1 Cj .(3.4)

Proof. (i) We start from the sequence Cj in the relation (3.3) and transform
it by admissible transformations into Cj . Since c′′j2 commutes with the subsequence
cj3, . . . , cjnj , we can move it left to the position just behind cj2. In a similar fash-
ion, we move c′′j3 just behind cj3 and so on. Note that, c′j1, . . . , c

′
jnj

, c′′j2, . . . , c
′′
jnj

,

can be replaced with c′j1, c
′
j2, c

′′
j2, . . . , c

′
jnj

, c′′jnj
, which is the columnwise ordering of

[AT
j−1,j , A

T
jj]

T .
(ii) As has been shown in the lines after the relation (3.3),

R11R11 ∼ C1 = C11C11 = C1,

R22R12R22 ∼ C2 = C22C12C22 ∼ C2 .

Using (3.1), (3.2), (3.3), and (i), we obtain (3.4).
Thus, in considering the off-norm reduction after one quasi sweep of the original

method JM, we can replace the initial pivot strategy defined by OM with the pivot
strategy defined by O.

To prove Theorem 2.1, we use mathematical induction with respect to m.

The induction basis. For m = 1, OM = R11R11 ∼ C11C11 = O and by the
well-known result of Henrici and Zimmermann [14], we have

S2(A(M)) ≤
(
1 − 2−

(n1−1)(n1−2)
2

)2

S2(A) .

Since for m = 1, n = n1, we can take t
(M)
n = (1− 2−

n2

2)2, which is smaller than 1 for
all n ≥ 2.

For m = 2, OM = R11R22R11R12R22 ∼ O, and hence by the same result,

S2(A(M)) ≤
(
1 − 2−

(n−1)(n−2)
2

)
S2(A(

n1(n1−1)
2 +

n2(n2−1)
2)) ≤

(
1 − 2−

(n−1)(n−2)
2

)
S2(A) ,

so we can take t
(M)
n = 1 − 2−

n2

2 , n ≥ 2.

356 VJERAN HARI

The induction hypothesis. Let us assume that the assertion of Theorem 2.1
holds for m′ = m−1. This means that (2.5) holds for any partition M′ = (n′

1, . . . , n
′
m′)

of n′, n′ ≥ max{2,m′}, and for any symmetric matrix A′ of order n′ such that
(a) A′ is partitioned into m′ block-rows and block-columns, according to the

partition M′.
(b) the sequence A(0) = A′, A(1),. . . is generated by the Jacobi method, which

is defined by the quasi-cyclic strategy IOM′ , and OM′ is defined by (2.4),
provided that m and M are replaced with m′ and M′, respectively.

Since OM′ ∼ O′, where O′ is defined as in (3.4), the induction hypothesis implies
that (2.5) holds for the strategy defined by O′.

3.2. The induction step. To prove the induction step, we assume that M =
(n1, . . . , nm) is an arbitrary partition of n, n ≥ m ≥ 3, and A = (Aij) is an arbitrary
symmetric matrix of order n, partitioned into m block-rows and m block-columns,
according to the partition M. We have to prove Theorem 2.1 for A and JM defined
by OM, provided the induction hypothesis holds.

Since OM ∼ O, the same matrix A(M) is obtained if the quasi-cyclic Jacobi
method JM is replaced with J , which is defined by O. So, from here on, we assume
that A = A(0), A(1),. . . ,A(M) are generated by J .

Notation. Let In = [e1, . . . , en] be the column-partition of the identity matrix.
Using the coordinate vectors ej , we define

Ej = [e1, . . . , ej], 1 ≤ j ≤ n,

so that En = In. Let

ñ = sm−1 = n1 + n2 + · · · + nm−1,

M̃ =
ñ(ñ− 1)

2
+

m−1∑
i=1

ni(ni − 1)

2
,

Ã = A(M̃), B = ET
ñAEñ, B̃ = ET

ñ ÃEñ,

Σ2 = S2(A) , S2(B) = εΣ2 , 0 ≤ ε ≤ 1 .

Note that after M̃ steps, one full quasi sweep is performed on B. The underlying
strategy is defined by Õ, which is defined via M̃ = (n1, . . . , nm−1). This Õ is one
of those O′ described above, and the induction hypothesis can be applied to B. We
obtain

S2(B̃) ≤ t
(M̃)
ñ S2(B) = t

(M̃)
ñ εΣ2, 0 ≤ t

(M̃)
ñ < 1 .

Hence

S2(Ã) = S2(B̃) + (1 − ε)Σ2 ≤ t
(M̃)
ñ εΣ2 + (1 − ε)Σ2 = [1 − ε(1 − t

(M̃)
ñ)]Σ2 .

Although S2(A(M)) ≤ S2(Ã), we cannot set t
(M)
n = 1 − ε(1 − t

(M̃)
ñ), since ε can be

arbitrarily small or even zero. Therefore, we have to estimate the contribution to the
further off-norm reduction coming from the last M − M̃ steps.

Let

ε1Σ
2 = S2(ET

ñ−nm−1
ÃEñ−nm−1),

ε2Σ
2 =

∑m−2
i=1 ‖Ãi,m−1‖2

F ,

ε3Σ
2 = S2(Ãm−1,m−1) .

(3.5)

CONVERGENCE OF A JACOBI METHOD 357

j
1 2 3 4

ñ

ñ− nm−1

nm−1

nm

Fig. 1. Matrices Ã and B̃ for the case ni = 4, 1 ≤ i ≤ m, m = 6.

Then

ε1 + ε2 + ε3 ≤ t
(M̃)
ñ ε ≤ ε .(3.6)

In Figure 1, the areas of Ã which have contributed to ε1Σ
2, ε2Σ

2, and ε3Σ
2 are shaded

, , and , respectively.

3.2.1. The case nm = 1. In this case, the proof of the induction step imme-
diately follows from the third assertion of the following proposition. One just has to

set Γ = Σ (= S(A(0))) and μ = t
(M̃)
ñ .

The first and third assertions of this proposition are modifications of a similar
result from [12].

Proposition 3.2. Let A = (apq) be a symmetric matrix of order n ≥ 3 and let
B = ET

n−1AEn−1. Suppose that r, 1 ≤ r ≤ n − 1, Jacobi steps are applied to the
last column of A, to successively annihilate the elements at positions (1, n), (2, n), . . . ,
(r, n). For the obtained sequence of iterates A(0) = A,A(1), . . . , A(n−1), the following
assertions hold:

(i)

[
r∑

i=1

|a(i−1)
in |2

]1/2

≥
[

21−r

r

r∑
i=1

|ain|2
]1/2

−
[
r − 1

4

r∑
i=1

i−1∑
k=1

|aik|2
]1/2

, r ≤ n− 1.

(ii)

[
t∑

i=r+1

|a(r)
in |2

]1/2

≥
[

2−r

t− r

t∑
i=r+1

|ain|2
]1/2

−
[
r

2

t∑
i=r+1

r∑
k=1

|aik|2
]1/2

, t > r.

(iii) Suppose there exist real numbers 0 ≤ μ < 1, 0 ≤ α ≤ 1, and Γ, such that

S2(B) ≤ μ(αΓ2) and

n−1∑
i=1

|ain|2 = (1 − α)Γ2 .(3.7)

Then there exists μ′, 0 ≤ μ′ < 1, depending on n and μ, such that

S2(A(n−1)) ≤ μ′ Γ2 .

Proof. (i) Let us denote the rotation angle which is used to annihilate the element
at position (k, n) by φkn. Consider the history of the element at position (i, n), i > 1,
up to its annihilation. We have

358 VJERAN HARI

a
(1)
in = cosφ1n ain + sinφ1n ai1

a
(2)
in = cosφ2n a

(1)
in + sinφ2n ai2

...

a
(i−1)
in = cosφi−1,n a

(i−2)
in

+ sinφi-1,n ai,i−1

These relations imply

ainai1

∗ sinφ1n

ai2

∗ sinφ2n

·

·

ai,i-1

∗ sinφi-1,n

a
(i−1)
in = ain cosφ1n cosφ2n · · · cosφi−1,n + ai,i−1 sinφi−1,n

+ ai,i−2 sinφi−2,n cosφi−1,n + · · · + ai1 sinφ1n cosφ2n · · · cosφi−1,n .

Note that z = x + y implies |z| ≥ |x| − |y|. Applying this to the above relation, one
obtains

|a(i−1)
in | ≥ cosφ1n cosφ2n · · · cosφi−1,n|ain|

−
i−1∑
k=1

|aik| | sinφkn| cosφk+1,n · · · cosφi−1,n

≥ |ain| · (2−
1
2)i−1 −

i−1∑
k=1

|aik| | sinφkn| .

This inequality holds for i = 1 provided that an empty sum is defined as zero.
Summing up over 1 ≤ i ≤ r and using the Cauchy–Schwarz inequality, we obtain

r∑
i=1

|a(i−1)
in | ≥

r∑
i=1

2−
i−1
2 |ain| −

r∑
i=1

i−1∑
k=1

|aik| | sinφkn|

≥ 2−
r−1
2

r∑
i=1

|ain| −
[

r∑
i=1

i−1∑
k=1

|aik|2
]1/2 [

1

2

r(r − 1)

2

]1/2

≥
√

21−r

[
r∑

i=1

|ain|2
]1/2

−
√
r(r − 1)

2

[
r∑

i=1

i−1∑
k=1

|aik|2
]1/2

.

Since by the Cauchy–Schwarz inequality

r∑
i=1

|a(i−1)
in | ≤

√
r

[
r∑

i=1

|a(i−1)
in |2

]1/2

,

the first assertion easily follows.
(ii) In this case we have for r + 1 ≤ i ≤ t, t ≤ n− 1,

a
(r)
in = ain cosφ1n cosφ2n · · · cosφrn + air sinφrn + ai,r−1 sinφr−1,n cosφrn

+ · · · + ai1 sinφ1n cosφ2n · · · cosφrn

CONVERGENCE OF A JACOBI METHOD 359

and

|a(r)
in | ≥ cosφ1n · · · cosφrn|ain| −

r∑
k=1

|aik| | sinφkn| cosφk+1,n · · · cosφrn

≥ |ain| · (2−
1
2)r −

r∑
k=1

|aik| | sinφkn| .

Hence

t∑
i=r+1

|a(r)
in | ≥

t∑
i=r+1

2−
r
2 |ain| −

t∑
i=r+1

r∑
k=1

|aik| | sinφkn|

≥ 2−
r
2

[
t∑

i=r+1

|ain|2
]1/2

−
[

t∑
i=r+1

r∑
k=1

|aik|2
]1/2 [

r(t− r)

2

]1/2

,

and an application of the Cauchy–Schwarz inequality yields (ii).
(iii) Using (i) with r = n− 1 and the assumption (3.7), we obtain[

n−1∑
i=1

|a(i−1)
in |2

]1/2

≥
{[

22−n

n− 1

]1/2 √
1 − α−

√
n− 2

2

√
α

}
Γ .(3.8)

The function

fn(α) =

[
22−n

n− 1

]1/2 √
1 − α−

√
n− 2

2

√
α

is continuous and decreasing on the segment [0, 1] with the only root

ξn =
1

1 + 2n−4(n− 1)(n− 2)
.

In the above relation, note that n ≥ 3. If we take

ζn =
ξn
2

=
1

2 + 2n−3(n− 1)(n− 2)
,

we obtain from the relation (3.8)

n−1∑
i=1

|a(i−1)
in |2 ≥ ηnΓ2 , ηn = [fn(ζn)]2 > 0, α ∈ [0, ζn] .

Thus, during the last n−1 steps, S2(A) = S2(B)+(1−α)Γ2 ≤ μ(αΓ2)+(1−α)Γ2 =
[1 − α(1 − μ)]Γ2 ≤ Γ2 has decreased by an amount not smaller than ηnΓ2, ηn > 0.
Hence

S2(A(n−1)) ≤
{

(1 − ηn)Γ2 if α ∈ [0, ζn],
[1 − α(1 − μ)]Γ2 if α ∈ [ζn , 1].

So, we can complete the proof by setting

μ′ = max{1 − ζn(1 − μ) , 1 − ηn} .

Note that μ′ depends only on n and μ.

360 VJERAN HARI

Remark 3.3. Proposition 3.2(iii) provides a basis for the simplest proof of global
convergence of the serial symmetric Jacobi method. Indeed, the proof uses induction
with respect to n. The induction basis takes advantage of the fact that for n = 2,

S(A(1)) = 0. The induction hypothesis assumes that S(A((n−1)(n−2)
2)) ≤ μS(A) for

any initial symmetric matrix of order n− 1, where 0 ≤ μ < 1 depends only on n− 1
(that is, on n). The induction step is then proved by Proposition 3.2(iii) and the
assumption that Γ = S(A).

However, the proof presented here can easily be generalized for strategies slightly
more general than the column-cyclic strategy. We can consider any strategy which
annihilates the elements in columnwise fashion so that in the jth column, 2 ≤ j ≤
n, the annihilation ordering is (πj−1(1), j), (πj−1(2), j), . . . , (πj−1(j − 1), j) for any
permutation πj−1 of the set {1, 2, . . . , j − 1}. The proof of the induction step is
almost the same as that of Proposition 3.2. Just consider the history of the element
at position (πn−1(i), n), i > 1, up to its annihilation. This means that at step i−1 (of
the last n − 1 steps) the element at position (πn−1(i), n) is annihilated. Now, follow
the proof of Proposition 3.2(iii) and replace all the subscripts i and k (but not the
superscript i) with π(i) and π(k), respectively.

Remark 3.4. The first proof of global convergence of the serial methods is given
by Forsythe and Henrici [13] and the first estimate of the form S(A(N)) ≤ tnS(A) by
Henrici and Zimmermann [14] who obtained the known estimate

tn =

⎡⎣1 −
n−2∏
i=1

n∏
j=i+2

cosφ2
ij

⎤⎦1/2

.

See also similar results in [16, 10, 7].

3.2.2. The case nm ≥ 2. Note that m ≥ 3, n ≥ m, and nm ≥ 2; hence n ≥ 4.
We assume Σ > 0, since otherwise there is nothing to prove. According to the pivot
strategy, during the subsequent

μ = nm(ñ− nm−1) + nm(nm − 1)/2(3.9)

Jacobi steps defined by the pivot pairs sequence cm1, cm2, c
′′
m2, . . . , cm,nm

, c′′m,nm
, we

have

‖A(M̃+k)
m−1,m‖2

F +

m−2∑
i=1

‖A(M̃+k)
i,m−1 ‖2

F = ‖Ãm−1,m‖2
F + ε2Σ

2 , 0 ≤ k ≤ μ .

Therefore, for 0 ≤ k ≤ μ, we split A(M̃+k) into

A(M̃+k) = H(M̃+k) + T (M̃+k),

where

H(M̃+k) =

⎡⎢⎣ B
(M̃+k)
ñ−nm−1

0 Γ(M̃+k)

0 0 0

[Γ(M̃+k)]T 0 A
(M̃+k)
mm

⎤⎥⎦ , Γ(M̃+k) =

⎡⎢⎢⎣
A

(M̃+k)
1m

...

A
(M̃+k)
m−2,m

⎤⎥⎥⎦ , 0 ≤ k ≤ μ .

CONVERGENCE OF A JACOBI METHOD 361

Since the off-norm of T (M̃+k) is invariant under Jacobi transformations during all
these μ steps, we shall use the matrix

W (M̃+k) =

[
B

(M̃+k)
ñ−nm−1

Γ(M̃+k)

[Γ(M̃+k)]T A
(M̃+k)
mm

]
, 0 ≤ k ≤ μ .(3.10)

Since the annihilations advance in a block-columnwise fashion, we have

(1 − ε)Σ2 = S2(Amm) +

m−1∑
i=1

‖Aim‖2
F = S2(Ãmm) +

m−1∑
i=1

‖Ãim‖2
F .(3.11)

This follows from the fact that the Frobenius norm is invariant under orthogonal
transformations. Recall that ε can be arbitrarily small. Because of (3.11), we consider
the following two cases:

(a) S2(Ãmm) +

m−2∑
i=1

‖Ãim‖2
F ≥ 2−n

1 − 2−2n
Σ2,

(b) ‖Ãm−1,m‖2
F >

(
1 − ε− 2−n

1 − 2−2n

)
Σ2.

We start with case (a).
(a) In this case, there exists j, 1 ≤ j ≤ nm, such that∑

i∈Nj

|ãi,ñ+j|2 ≥ 2−(2(nm−j)+1)n · Σ2,(3.12)

where

Nj = {1, 2, . . . , ñ + j − 1} \ {ñ− nm−1 + 1, . . . , ñ}, 1 ≤ j ≤ nm ,

and Ã = (ãij). Indeed, if (3.12) were false, then we would have

S2(Ãmm) +

m−2∑
i=1

‖Ãim‖2
F =

nm∑
j=1

∑
i∈Nj

|ãi,ñ+j |2 <

nm∑
j=1

2−(2(nm−j)+1)nΣ2

=
(
2−n + 2−3n + · · · + 2−(2nm−1)n

)
Σ2 =

2−n

1 − 2−2n
(1 − 2−2nmn) Σ2

<
2−n

1 − 2−2n
Σ2 ,

which contradicts (a). If there are more than one j satisfying (3.12), we define j as
the smallest one.

Let Â = (âij), Â = A(M̂), Ŵ = W (M̂), where W (M̂) is given by (3.10), and

M̂ = M̃ + (ñ− nm−1) + (ñ− nm−1 + 1) + · · · + (ñ− nm−1 + j− 2) .

In other words, Â is the matrix iterate at the stage just before the annihilations
in column j of the mth block-column have begun. Thus, Â is obtained from Ã by
applying

μj = (j− 1)(ñ− nm−1) + (j− 2)(j− 1)/2

362 VJERAN HARI

additional Jacobi steps. They are defined by the sequence of pivot pairs cm1, cm2, c
′′
m2,

. . . , cm,j−1, c
′′
m,j−1. Now, consider the matrices Ŵñ−nm−1+j and W

(k)
ñ−nm−1+j, where

Ŵi = ET
i ŴEi and W

(k)
i = ET

i A
(k)Ei, k ≥ M̃ .

Since all the Jacobi steps involved in the transition from Ã to Â cannot increase the

off-norm of any W
(k)
ñ−nm−1+j−1, M̃ ≤ k ≤ M̂ , we have

S2(Ŵñ−nm−1+j−1) ≤ S2(W
(M̃)
ñ−nm−1+j−1) ≤ S2(B̃ñ−nm−1

) +

j−1∑
j=1

∑
i∈Nj

|ãi,ñ+j |2

≤ ε1Σ
2 +

(
2−(2nm−1)n + 2−(2nm−3)n + · · · + 2−(2(nm−j)+3)n

)
Σ2

≤
(
ε1 +

2(−2nm+2j−3)n

1 − 2−2n

)
Σ2 .(3.13)

We also know that none of these μj Jacobi steps has changed the sum of squares of

the affected elements in the last column of W
(M̃+k)
ñ−nm−1+j, M̃ ≤ k ≤ M̂ . Therefore,∑

i∈Nj

|âi,ñ+j|2 =
∑
i∈Nj

|ãi,ñ+j|2 .(3.14)

In order to estimate the contribution to the off-norm reduction, coming from the an-
nihilations in the (ñ−nm−1 +j)th column, we apply Proposition 3.2(i) to Ŵñ−nm−1+j

with r = ñ− nm−1 + j− 1. This, together with (3.12), (3.13), and (3.14), implies⎡⎣∑
i∈Nj

|â(M̂+i−1)
i,ñ+j |2

⎤⎦1/2

≥ 2√
(ñ− nm−1 + j− 1)2ñ−nm−1+j

⎡⎣∑
i∈Nj

|âi,ñ+j|2
⎤⎦1/2

−
√

ñ− nm−1 + j− 2

2

[
ε1 +

2(−2nm+2j−3)n

1 − 2−2n

]1/2

Σ

≥ 2 · 2−(nm−j)n−n
2 · 2−

n−nm−1
2

√
n− nm−1 − 1

Σ −
√
n− nm−1 − 2

2

[
ε1 +

2(−2nm+2j−3)n

1 − 2−2n

]1/2

Σ

≥
{

2
√

2 · 2−(nm−j+1)n

√
n− nm−1

−
√
n− nm−1

2

[
ε1 +

2(−2nm+2j−3)n

1 − 2−2n

]1/2
}

Σ .

We can write ⎡⎣∑
i∈Nj

|â(M̂+i−1)
i,ñ+j |2

⎤⎦1/2

≥ gn,nm,nm−1,j(ε1)Σ,

where

gn,nm,nm−1,j(x) =

√
n− nm−1

2

{
4
√

2 · 2−(nm−j+1)n

n− nm−1
−
[
x +

2(−2nm+2j−3)n

1 − 2−2n

]1/2
}
.

CONVERGENCE OF A JACOBI METHOD 363

The function gn,nm,nm−1,j is decreasing and convex for 0 ≤ x ≤ 1,

gn,nm,nm−1,j(0) =

√
n− nm−1

2
2−(nm−j+1)n

[
4
√

2

n− nm−1
− 2−

n
2

√
1 − 2−2n

]

>

√
3

2
2−(n−2)n

[
4
√

2

n− 1
− 2−

n
2

]
>

4

n
2−(n−2)n ,

and with the positive root

ηn,nm,nm−1,j = 2(−2nm+2j−2)n

(
32

(n− nm−1)2
− 2−n

1 − 2−2n

)
.

Let

ζn,nm,j =
16

n2
· 2−2(nm−j+1)n.

Then

1

2
ηn,nm,nm−1,j > ζn,nm,j >

16

n2
2−2(n−2)n ≡ ξn ,

and we have∑
i∈Nj

|â(M̂+i−1)
i,ñ+j |2 ≥ [gn,nm,nm−1(ζn,nm,j)]

2Σ2 whenever 0 ≤ ε1 ≤ ζn,nm,j .

Note that

[gn,nm,nm−1
(ζn,nm,j)]

2 =
n− nm−1

4
2−2(nm−j+1)n

×
{

2
√

2

n− nm−1
− 4

n

[
1 − n2

16

2−n

1 − 2−2n

]1/2
}2

>
1

2
2−2(n−2)n

{
2
√

2

n− nm−1
− 4

n

[
1 − n2

16

2−n

1 − 2−2n

]1/2
}2

.

Hence if 0 ≤ ε1 ≤ ζn,nm,j, we have

∑
i∈Nj

|â(M̂+i−1)
i,ñ+j |2 > �nΣ2, ρn =

8

n2

{
√

2 −
[
1 − n2

16

2−n

1 − 2−2n

]1/2
}2

2−2(n−2)n .

This inequality certainly holds for 0 ≤ ε1 ≤ ξn. Thus, during the last M − M̃ Jacobi
steps, S2(Ã) = S2(B̃)+(1−ε)Σ2 has decreased by an amount not smaller than �nΣ2,
�n > 0, provided that ε ≤ ξn. Hence

S2(A(M)) ≤
{

(1 − �n)Σ2 if ε ∈ [0, ξn],

[1 − ε(1 − t
(M̃)
ñ)]Σ2 if ε ∈ [ξn , 1].

So, we can complete the proof of the theorem by setting

t(M)
n = max{[1 − ξn(1 − t

(M̃)
ñ) , 1 − �n} .

364 VJERAN HARI

(b) In this case we begin the proof by assuming

ε <
2−n

1 − 2−4n
.(3.15)

This implies

‖Ãm−1,m‖2
F >

(
1 − 2−n

1 − 2−4n
− 2−n

1 − 2−2n

)
Σ2 >

(
1 − 2−n+1

1 − 2−2n

)
Σ2 .(3.16)

Let F̃ = [Ãm−1,1, Ãm−1,2, . . . , Ãm−1,m], and let [f̃1, f̃2, . . . , f̃n] be the column-partition

of F̃ . We claim that there exists j, 1 ≤ j ≤ nm, not necessarily the same as above,
such that

‖f̃ñ+j‖ >

{
2−2(nm−j)n Σ if 1 ≤ j ≤ nm − 1,

(1 − 2−n+1) Σ if j = nm .
(3.17)

In fact, if (3.17) were false, we would have

‖Ãm−1,m‖2
F =

nm∑
j=1

‖f̃ñ+j‖2 ≤
[
2−4(nm−1)n + 2−4(nm−2)n + · · · + 2−4n

]
Σ2

+
(
1 − 2−n+2 + 2−2n+2

)
Σ2 =

1 − 2−4nmn

1 − 2−4n
Σ2 − (2−n+2 + 2−2n+2)Σ2

=

[
1 − 2−n+2

(
1 − 2−n − 2−3n−2 − 2−4nmn+n−2

1 − 2−4n

)]
Σ2 <

(
1 − 2−n+1

1 − 2−2n

)
Σ2 ,

which contradicts (3.16).
Recall that cm1, cm2, c

′′
m2, cm3, c

′′
m3, . . . , cmnm , c′′mnm

∼ cm1, cm2, cm3, . . . , cmnm ,

c′′m2, c
′′
m3, . . . , c

′′
mnm

. Hence the same matrix A(M̃+μ) (thus, the same block A
(M̃+μ)
m−1,m,

where μ is given by (3.9)) is obtained if we assume that the annihilation ordering is
defined by cm1, cm2, cm3, . . . , cmnm , c′′m2, c

′′
m3, . . . , c

′′
mnm

. Accepting that, note that the

rotations which annihilate the elements in the diagonal block A
(k)
mm do not change the

Frobenius norm of A
(k)
m−1,m.

Therefore, we divide the proof into two stages. In Stage I we estimate the weight

remaining in A
(k)
m−1,m after all Jacobi steps defined by the sequence cm1, cm2, . . . , cmnm

are completed. Actually, we shall compute a lower bound of ‖A(M̃+nm(ñ−nm−1))
m−1,m ‖F =

‖A(M̃+μ)
m−1,m‖F .
In Stage II, we use a similar proof as in case (a), but we apply it only to the part

of the mth block-column consisting of the blocks A
(k)
m−1,m and A

(k)
mm. In this stage,

the annihilation ordering is defined by the sequence of pairs c′j1, c
′
j2, c

′′
j2 . . . , c

′
jnj

, c′′jnj
.

Stage I. Let j be the first (smallest) index for which (3.17) holds. Let Â = (âij)

be the matrix A(M̂), where

M̂ = M̃ + μ̃j, μ̃j = (ñ− nm−1)(j− 1) .

Thus, Â is obtained from Ã by applying additional μ̃j Jacobi steps according to the

sequence of pivot pairs cm1, cm2, . . . , cm,j−1. Let F̂ = [Âm−1,1, Âm−1,2, . . . , Âm−1,m]

CONVERGENCE OF A JACOBI METHOD 365

and let F̂ = [f̂1, f̂2, . . . , f̂n] be its column-partition. More generally, for 0 ≤ k ≤ μ̃j ,
let

F̃ (k) = [A
(M̃+k)
m−1,1 , A

(M̃+k)
m−1,2 , . . . , A

(M̃+k)
m−1,m] = [f̃

(k)
1 , f̃

(k)
2 , . . . , f̃ (k)

n].

The Jacobi transformations involved in the transition from F̃ to F̂ do not change
the Frobenius norm of any F̃ (k)Eñ+j−1, 0 ≤ k ≤ μ̃j , and they do not transform any

element of Ãm−1,m−1. Therefore, we have

ñ−nm−1∑
j=1

‖f̂j‖2 +

ñ+j−1∑
j=ñ+1

‖f̂j‖2 =

ñ−nm−1∑
j=1

‖f̃j‖2 +

ñ+j−1∑
j=ñ+1

‖f̃j‖2

+
(
2−4(nm−1)n + · · · + 2−(4(nm−j+1)n

)
Σ2 ≤

(
ε2 +

2−4(nm−j+1)n

1 − 2−4n

)
Σ2 .(3.18)

We know that none of these μ̃j Jacobi transformations has affected any of the elements

of f̃
(k)
ñ+j. Therefore,

f̂n̂+j = f̃ñ+j .(3.19)

We also know that the later transformations, defined by cm,j+1, . . . , cm,nm
, will not

affect the jth column of A
(M̂+ñ−nm−1)
m−1,m .

So, let us consider the transformations which do affect f̂n̂+j, i.e., those which
annihilate the elements at positions given in cm,j.

For 1 ≤ k ≤ ñ− nm−1, let

F̂ (k) = [A
(M̂+k)
m−1,1 , A

(M̂+k)
m−1,2 , . . . , A

(M̂+k)
m−1,m] = [f̂

(k)
1 , f̂

(k)
2 , . . . , f̂ (k)

n].

We can apply Proposition 3.2(ii) to ET
ñ+jÂEñ+j, with r = ñ− nm−1, to obtain

‖f̂ (ñ−nm−1)
ñ+j ‖ ≥

[
2−(ñ−nm−1)

nm−1

]1/2

‖f̂ñ+j‖ −
[
ñ− nm−1

2

]1/2
[
ñ−nm−1∑

i=1

‖f̂i‖2

]1/2

≥ 2−
n−3

2

√
nm−1

‖f̃ñ+j‖ −
[
ñ− nm−1

2

]1/2 [
ε2 +

2−4(nm+1−j)n

1 − 2−4n

]1/2

Σ .

Here we have used (3.19), (3.18), and ñ− nm−1 = n− nm − nm−1 ≤ n− 2− 1. If we
require

ε2 +
2−4(nm+1−j)n

1 − 2−4n
≤ 2 · 2−4(nm+1−j)n,(3.20)

we obtain

‖f̂ (ñ−nm−1)
ñ+j ‖ ≥ 2−

n−3
2

√
nm−1

‖f̃ñ+j‖ −
√

ñ− nm−1 2−2(nm+1−j)n Σ .

Now, we consider the two possible cases j < nm and j = nm.
If j < nm, then (3.17) implies

‖f̂ (ñ−nm−1)
ñ+j ‖ ≥ 2−2(nm+1−j)n

√
nm−1

[
2−

n−3
2 22n − ñ

2

]
Σ ≥ 2−2(nm+1−j)n

√
nm−1

[
2

3
2n+ 3

2 − n− 2

2

]
Σ .

366 VJERAN HARI

Here we have used the fact that nm−1(ñ− nm−1) ≤ ñ2/4 and ñ ≤ n− 2.
If j = nm, then (3.17) implies

‖f̂ (ñ−nm−1)
ñ+j ‖ ≥ 2−

n−3
2 (1 − 2−n+1)
√
nm−1

Σ −
√
ñ− nm−12

−2nΣ

≥ 2−2n

√
nm−1

[
7

8
2

3
2n+ 3

2 − n− 2

2

]
Σ .

Here we have used the inequality 2−n+1 ≤ 1/8 since n ≥ 4.
Taking into account (3.20), we can conclude that, if

ε2 ≤ 1 − 2−4n+1

1 − 2−4n
2−4nmn,(3.21)

then

‖f̂ (ñ−nm−1)
ñ+j ‖ ≥ αn,nm,nm−1Σ , αn,nm,nm−1 =

2−2nmn

√
nm−1

[
7
√

2

4
2

3
2n − n− 2

2

]
holds for all possible choices of j.

As we have noted, the later transformations, defined by cm,j+1, . . . , cm,nm , do

not affect the jth column of A
(M̂+ñ−nm−1)
m−1,m , so f̃

((ñ−nm−1)nm)
ñ+j = f̂

(ñ−nm−1)
ñ+j . The

subsequent nm(nm−1)/2 rotations which annihilate the off-diagonal elements of A
(k)
mm

do not change the Frobenius norm of Ã((ñ−nm−1)nm). Therefore, if (3.21) holds, then

‖A(M̄)
m−1,m‖F ≥ αn,nm,nm−1Σ ,(3.22)

where

M̄ = M − nm−1nm − nm(nm − 1)

2
.

We complete the considerations in Stage I by making some preparations for Stage II.
Let r be the smallest positive integer such that

α2
n,nm,nm−1

≥ 2−rn

1 − 2−2n
.

Obviously, r depends on nm−1 and nm. Since nm ≤ n− 2, we have

αn,nm,nm−1 ≥ 2−2(n−2)n

√
n− 2

[
7
√

2

4
· 2 3

2n − n− 2

2

]
.

Running the following simple program (m-file) in MATLAB, one finds out that all
y-z are positive. Since for larger n, (n − 2)/2 is negligible compared to 2(3/2)n, we
have shown that r ≤ 4n− 10.

format long e;

for n=4:100

x=2^(n);

y=((7/4)*sqrt(2/(n-2))*x*sqrt(x)-sqrt(n-2)/2);

z=x^(1.46)/sqrt(1-x^(-2));

display([n,y,z,y-z])

end

CONVERGENCE OF A JACOBI METHOD 367

Now, we can conclude that there is some j, not necessarily the same as earlier, such
that

‖f̄ñ+j‖2 ≥ 2−(2(nm−j)+r)n Σ2 .(3.23)

Indeed, on the contrary we would have

‖A(M̄)
m−1,m‖2

F =

nm∑
j=1

‖f̄ñ+j‖2 <

nm∑
j=1

2−(2(nm−j)+r)n · Σ2

= 2−rn
[
2−2(nm−1)n + 2−2(nm−2)n + · · · + 1

]
Σ2

= 2−rn 1 − 2−2nmn

1 − 2−2n
Σ2 <

2−rn

1 − 2−2n
Σ2 ≤ α2

n,nm,nm−1
Σ2 ,

which contradicts (3.22). Let j be the smallest index satisfying (3.23).

For 1 ≤ k ≤ M−M̄ , let Ā(k) = (A
(M̄+k)
ij). Then Ā = Ā(0) is the matrix appearing

at the beginning of Stage II.
Stage II. Note that the rotations applied to A(k) for M̃ ≤ k ≤ M̄ have not

changed any element of A
(k)
m−1,m−1, so S2(Ām−1,m−1) = ε3Σ

2. Let G(k) = (g
(k)
pq) with

1 ≤ p, q ≤ nm−1 + nm, be defined by

G(k) =

[
G

(k)
11 G

(k)
12

G
(k)
21 G

(k)
22

]
=

[
Ā

(k)
m−1,m−1 Ā

(k)
m−1,m

Ā
(k)
m,m−1 Ā

(k)
mm

]
, 0 ≤ k ≤ M − M̄,

and let G = G(0). We shall now estimate the contribution to the off-norm reduction
coming from the last M − M̄ Jacobi steps. We can restrict our attention to the
matrices G(k), since the sum of squares of other off-diagonal elements of Ā(k) remains
invariant during these transformations.

The method applies Jacobi rotations in a columnwise fashion, following the
ordering defined by c′j1, c

′
j2, c

′′
j2, . . . , c

′
jnj

, c′′jnj
. Let

νj = νj−1 + nm−1 + j − 1, 1 ≤ j ≤ nm, ν0 = 0,

and let G
(k)
j be the leading j × j submatrix of G(k). Let g

(k)
2 , g

(k)
3 , . . . , g

(k)
nm−1+nm

be

the columns of the strict uppertriangle of G(k), i.e. g
(k)
j = [g

(k)
1j , g

(k)
2j , . . . , g

(k)
j−1,j]

T and

let gj = g
(0)
j . Because of (3.23), it is obvious that

‖gnm−1+j‖2 ≥ ‖f̄ñ+j‖2 ≥ 2−(2(nm−j)+r)nΣ2

holds. Note that j is the smallest integer satisfying the second inequality. Let us
redefine j to be the smallest of the numbers in the set {1, 2, . . . , nm}, satisfying

‖gnm−1+j‖2 ≥ 2−(2(nm−j)+r)nΣ2 .

Since the Jacobi rotations cannot increase the off-norm, this assumption yields

S2(G
(νj−1)
nm−1+j−1) ≤ S2(G

(0)
11) +

j−1∑
j=1

‖gnm−1+j‖2 ≤ ε3Σ
2 +

2−(2(nm−j+1)+r)n

1 − 2−2n
Σ2 .

Here, the empty sum is considered zero.

368 VJERAN HARI

Now, consider the contribution to the off-norm reduction coming from the anni-

hilations in the vector g
(νj−1)
nm−1+j. Applying Proposition 3.2(i) to G

(νj−1)
nm−1+j, we obtain

[
nm−1+j−1∑

i=1

|g(νj−1+i−1)
i,nm−1+j |2

]1/2

≥
{[

2−(nm−1+j−2)

nm−1 + j− 1
2−(2(nm−j)+r)n

]1/2

−
[
nm−1 + j− 2

4

(
ε3 +

2−(2(nm−j+1)+r)n

1 − 2−2n

)]1/2
}

Σ ≥ 2−(nm−j+1+ r
2)n

√
nm−1 + nm − 1

×
{

2n+1−nm−1+nm
2 − nm−1+nm-1

2

[
2(2(nm−j+1)+r)nε3 +

1

1 − 2−2n

]1/2
}

Σ .

To simplify the expression under the square root, we can require

ε3 ≤ 1 − 2−2n+1

1 − 2−2n
2−(2nm+r)n .(3.24)

Then the expression under the square root is not larger than 2 and we have[
nm−1+j−1∑

i=1

|g(νj+i−1)
i,nm−1+j|2

]1/2

≥ 2−(nm−j+1+ r
2)n

√
nm−1 + nm

[
2

n
2 +1 − nm−1 + nm√

2

]
Σ

≥ 2−(nm+ r
2)n

√
nm−1 + nm

[
2

n
2 +1 − nm−1 + nm√

2

]
Σ ≡

√
θnm−1,nm

(n) Σ > 0 ,(3.25)

with θnm−1,nm(n) > 0. Looking back at the relations (3.5), (3.6), (3.15), (3.21), and
(3.24), we can conclude that (3.25) holds, provided that

ε ≤ 2−(2nm+r+1)n .

Thus, during the last M − M̄ Jacobi steps, S2(Ā) has decreased by the amount not
smaller than θnm−1,nm(n)Σ2. Hence

S2(A(M)) ≤
{

[1 − θnm−1,nm(n)] Σ2 if ε ∈ [0, 2(−2nm+r+1)n],

[1 − ε(1 − t
(M̃)
ñ)] Σ2 if ε ∈ [2(−2nm+r+1)n , 1].

Since r < 4n− 10, we can complete the proof by setting

t(M)
n = max{[1 − 2−(4n+2nm−9)n(1 − t

(M̃)
ñ) , 1 − θnm−1,nm

(n)} .

Remark 3.5. Theorem 2.1 holds even if in [6, Algorithm 1] one dynamically com-
bines the cases k = 0 and k = 1, that is to say if some diagonal blocks are operated
twice and some are operated once. Indeed, the proof can use the same induction per
block-columns. If Arr is operated once, then the appropriate equivalent pivot strategy
within this block-column is simply the columnwise one and the proof of the induction
step is similar to case (a).

Acknowledgments. The author is thankful to Z. Drmač and D. Kressner, and
especially to N. J. Higham and the anonymous referees for reading and improving the
paper.

CONVERGENCE OF A JACOBI METHOD 369

REFERENCES

[1] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 1204–1245.

[2] J. J. Dongarra, I. Duff, D. C. Sorensen, and H. A. van der Vorst, Solving Linear Systems
on Vector and Shared Memory Computers, SIAM, Philadelphia, 1991.

[3] Z. Drmač, Implementation of Jacobi rotations for accurate singular value computation in
floating point arithmetic, SIAM J. Sci. Comput., 18 (1997), pp. 1200–1222.

[4] Z. Drmač, A posteriori computation of the singular vectors in a preconditioned Jacobi SVD
algorithm, IMA J. Numer. Anal., 19 (1999), pp. 191–213.

[5] Z. Drmač and K. Veselić, New Fast and Accurate Jacobi SVD Algorithm: I, LAPACK Work-
ing Note 169, 2005. Available online at http://www.netlib.org/lapack/lawns/downloads/

[6] Z. Drmač and K. Veselić, New Fast and Accurate Jacobi SVD Algorithm: II, LAPACK Work-
ing Note 170, 2005. Available online at http://www.netlib.org/lapack/lawns/downloads/

[7] K. V. Fernando, Linear convergence of the row cyclic Jacobi and Kogbetliantz methods, Nu-
mer. Math., 56 (1989), pp. 73–94.

[8] E. R. Hansen, On Jacobi Methods and Block Jacobi Methods for Computing Matrix Eigenval-
ues, Ph.D. thesis, Stanford University, Stanford, CA, 1960.

[9] E. R. Hansen, On cyclic Jacobi methods, SIAM J. Appl. Math., 11 (1963), pp. 448–459.
[10] V. Hari, On the convergence of cyclic Jacobi-like processes, Linear Algebra Appl., 81 (1986),

pp. 105–127.
[11] V. Hari, On sharp quadratic convergence bounds for the serial Jacobi methods, Numer. Math.,

60 (1991), pp. 375–406.
[12] V. Hari and K. Veselić, On Jacobi methods for singular value decompositions, SIAM J. Sci.

Stat. Comput., 8 (1987), pp. 741–754.
[13] G. E. Forsythe and P. Henrici, The cyclic Jacobi method for computing the principal values

of a complex matrix, Trans. Amer. Math. Soc., 94 (1960), pp. 1–23.
[14] P. Henrici and K. Zimmermann, An estimate for the norms of certain cyclic Jacobi operators,

Linear Algebra Appl., 1 (1968), pp. 489–501.
[15] W. Mascarenhas, On the convergence of the Jacobi method for arbitrary orderings, SIAM J.

Matrix Anal. Appl., 16 (1995), pp. 1197–1209.
[16] L. Nazareth, On the convergence of the cyclic Jacobi method, Linear Algebra Appl., 12 (1975),

pp. 151–164.
[17] N. Rhee and V. Hari, On the global and cubic convergence of a quasi-cyclic Jacobi method,

Numer. Math., 66 (1993), pp. 97–122.
[18] G. Shroff and R. Schreiber, On the convergence of the cyclic Jacobi method for parallel

block orderings, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 326–346.
[19] K. Veselić and V. Hari, A note on a one-sided Jacobi algorithm, Numer. Math., 56 (1989),

pp. 627–633.
[20] J. Wilkinson, Note on the quadratic convergence of the cyclic Jacobi process, Numer. Math.,

4 (1962), pp. 296–300.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 370–376

PATH PRODUCT MATRICES AND EVENTUALLY INVERSE
M -MATRICES∗

CHARLES R. JOHNSON† AND RONALD L. SMITH‡

Abstract. Those nonnegative matrices, some Hadamard power of which are inverse M -matrices,
are characterized. This requires a refinement of the strict path product necessary condition
[C. R. Johnson and R. L. Smith, Linear Multilinear Algebra, 46 (1999), pp. 177–191] for an in-
verse M -matrix. The smallest such Hadamard power may be arbitrarily large. It is also shown that,
beyond some threshold, all continuous Hadamard powers of an inverse M -matrix are inverse M . In
the process, several new results about inverse M -matrices are given.

Key words. M -matrices, inverse M -matrices, path product matrices

AMS subject classifications. 15A48, 15A45

DOI. 10.1137/050636048

1. Path product matrices and eventually inverse M-matrices. An in-
verse M (IM) matrix is an invertible n-by-n nonnegative matrix whose inverse has
nonpositive off-diagonal entries [2, 8, 9]. The M -matrices (those square matrices with
positive principal minors and nonpositive off-diagonal entries) comprise the inverse
class of IM matrices and have a wide variety of applications. For example, M -
matrices arise in various aspects of numerical linear algebra, in cost model matrices
in economics, and in the numerical solution of certain types of differential equations.
In addition to their obvious application to inverse problems involving M -matrices, IM
matrices themselves arise in a number of applications such as numerical integration
[15], the Ising model of ferromagnetism [15], taxonomy [1], and random energy models
in statistical physics [6]. Many applications of IM matrices involve the subclass of
strictly ultrametric matrices. Consequently, there has been a great deal of work on
this particular type of IM matrix (see, for example, [4, 5, 7, 13]). However, other
special types of IM matrices have also been considered (see [12, 14]).

An n-by-n entry wise nonnegative matrix A = (aij) is called a strict path product
(SPP) matrix if, for any triple of indices i, j, k ∈ N = {1, 2, . . . , n},

aijajk
ajj

≤ aik(1)

with strict inequality whenever i �= j and k = i [10]. We say that a nonnegative matrix
is normalized if it has ones on the diagonal and off-diagonal entries less than 1. In the
event that A is a normalized SPP matrix, the basic path product inequalities become

aijajk ≤ aik(2)

(with strict inequality whenever i �= j and k = i).
∗Received by the editors July 14, 2005; accepted for publication (in revised form) by H. J. Wo-

erdeman October 11, 2006; published electronically March 19, 2007.
http://www.siam.org/journals/simax/29-2/63604.html

†Department of Mathematics, College of William and Mary, Williamsburg, VA 23187
(crjohnso@math.wm.edu). The work of this author was supported, in part, by National Science
Foundation grant DMS 92–00899 and by Office of Naval Research contract N00014–90–J1739.

‡Department of Mathematics, University of Tennessee at Chattanooga, 615 McCallie Avenue,
Chattanooga, TN 37403-2598 (ronald-smith@utc.edu). The work of this author was supported,
in part, by the Center of Excellence in Computer Applications at the University of Tennessee at
Chattanooga and by the University of Chattanooga Foundation and was completed while the author
was on sabbatical in 2004–2005.

370

EVENTUALLY INVERSE M -MATRICES 371

In [10], it was noted that any IM matrix is SPP and that for n ≤ 3 (but
not greater) the two classes are the same. See also [15]. Our interest here lay in
further relating these two classes via consideration of Hadamard powers: by the pth
Hadamard power A(p) of A we mean the matrix (apij) for a real number p. We were
motivated, in part, by the main result of a recent paper [3] in which it was shown that
if A is IM , then A(k) is IM for any positive integer k ≥ 1. If A is SPP and p > 0,
it is clear that A(p) remains SPP . (In fact, a Hadamard product of any two SPP
matrices is again SPP , and this remains so for the variants of SPP to be mentioned
in the following.) This raises the question as to whether A(p) eventually becomes IM
as p increases without bound. If there is a P > 0 such that A(p) is IM for all p > P ,
we call A an eventually IM (EIM) matrix. Our question, then, is: which nonnegative
matrices are EIM? It is clear that it is necessary that an EIM matrix be SPP , but
it is not sufficient.

Example 1. Consider the normalized SPP matrix

A =

⎡⎢⎢⎣
1 0.5 0.7 0.4

0.5 1 0.5 0.25
0.7 0.5 1 0.5
0.4 0.25 0.5 1

⎤⎥⎥⎦ .

Since the 2, 4 cofactor of A(p) is c
(p)
24 = [(0.5)p − (0.35)p][(0.4)p − (0.35)p], which is

positive for all p > 0, we see that A is not EIM .
We also address the question of whether there is some converse to the statement

that IM implies (some kind of) SPP .
In order to answer these questions, we refine further the path product conditions

for IM matrices and identify the appropriate additional necessary conditions. These
involve the arrangement of occurrences of equality in the path product inequalities
(1). We say that (i, j, k) is a path product equality triple (for the SPP matrix A)
if equality occurs in (1). For instance, (2, 3, 4) is a path product equality triple in
Example 1. Note that the path product equality triples of A and a normalized version
of A are the same. When n ≥ 4, we will see that path product equalities in an IM
matrix (which can occur) necessarily imply others. In view of previous work [11], this
is not surprising, as a path product equality implies that a 2-by-2 almost principal
minor is 0, so that a certain 3-by-3 principal submatrix has a 0 in its inverse. By [11]
this implies further 0’s in the inverse of the full matrix (though it is not necessary
that all inverse 0’s stem from path product equalities).

Example 2. Consider the IM matrix

A =

⎡⎢⎢⎣
1 0.4 0.4 0.3

0.4 1 0.5 0.5
0.4 0.4 1 0.6
0.4 0.4 0.4 1

⎤⎥⎥⎦ .

Matrix A contains no path product equalities. However, A−1 has a 0 in the 1, 4
position.

It was noted in [10, Corollary 2.6] that if A is an n-by-n SPP matrix, then there
exist positive diagonal matrices D and E such that B = DAE, in which B is a
normalized SPP matrix. Thus, B(p) = DpA(p)Ep for p ≥ 0 and, since it is apparent
that SPP matrices are closed under positive diagonal equivalence, A(p) is SPP if
and only if B(p) is. Therefore, it suffices to consider normalized SPP matrices when

372 CHARLES R. JOHNSON AND RONALD L. SMITH

studying (positive) Hadamard powers of SPP matrices. In that IM matrices are
closed under positive diagonal equivalence, the same can be said for IM matrices.

First, we identify the case in which no path product equalities occur, i.e., all
inequalities (1) are strict, and call such SPP matrices totally strict path product
(totally SPP). Observe that totally SPP matrices are necessarily positive. Totally
SPP is not necessary for EIM (just consider the IM matrix B = A[{2, 3, 4}] of
Example 1), but we will see (Theorem 3) that totally SPP is sufficient for EIM .

Consider the following condition (3) on the collection of path product inequalities:
for all distinct indices i, j, k ∈ N and for all m ∈ N − {i, j, k},

aik =
aijajk
ajj

implies that either aim =
aijajm
ajj

or amk =
amjajk
ajj

.(3)

If (3) is satisfied by an SPP matrix, we say that A is purely strict path product
(purely SPP). We will see (Lemma 1) that, in purely SPP matrices, path product
equalities force certain cofactors to vanish. Notice that condition (3) does not hold
for Example 1 since a24 = 0.25 = (0.5)(0.5) = a23a34 while a14 = 0.4 > (0.7)(0.5) =
a13a34 and a21 = 0.5 > (0.5)(0.7) = a23a31. We show that any IM matrix is purely
SPP (Theorem 1) and that EIM is equivalent to purely SPP (Theorem 4).We note
that purely SPP and SPP coincide (vacuously) when n ≤ 3 and that generally
the totally SPP matrices are contained in the purely SPP matrices (vacuously).
Lastly, but importantly, observe that, if A is totally (purely) SPP , then so is any
normalization of A. Thus, in trying to show that a totally (purely) SPP matrix is
IM , by positive diagonal equivalence, we may, and do, assume that A is normalized.

Below is our first key result. We follow traditional submatrix notation: for φ �=
α, β ⊆ N , A[α, β] (A(α, β)) denotes the submatrix of A with rows indexed by α (αc)
and columns by β (βc). For brevity, we denote A[α, α] (A(α, α)) by A[α] (A(α)).

Theorem 1. Any IM matrix is purely SPP .
Proof. Without loss of generality, let A = (aij) be a normalized IM matrix. If

n ≤ 3, then A is purely SPP vacuously. So we may assume that n ≥ 4. Assume that
aik = aijajk for the distinct indices i, j, k of N and let m ∈ N − {i, j, k}. Consider
the principal submatrix

A[{m, j, k, i}] =

⎡⎢⎢⎣
1 amj amk ami

ajm 1 ajk aji
akm akj 1 aki
aim aij aik 1

⎤⎥⎥⎦
of A. This submatrix is IM by inheritance. So (via, for instance, the special case
of Sylvester’s identity for determinants given in [11]) the k, i cofactor cki = (amk −
amjajk)(aim − aijajm) ≤ 0. Hence, by condition (2), either amk = amjajk or aim =
aijajm. Thus, A is purely SPP .

A graph may be constructed on the path product equality triples with an edge
corresponding to coincidence of the first two or last two indices. This can be in-
formative about the structure of path product equalities, but all we need here is the
following lemma. The important idea is that the occurrence of path product equalities
ensure that certain submatrices have rank 1 and, moreover, these rank 1 submatrices
are large enough to guarantee that certain almost principal minors vanish. We make
use of the well-known fact that an n-by-n matrix is singular if it contains an s-by-t
submatrix of rank r such that s + t ≥ n + r + 1.

EVENTUALLY INVERSE M -MATRICES 373

Lemma 1. If (i, j, k) is a path product equality for the n-by-n purely SPP matrix
A, n ≥ 4, then detA({k}, {i}) = 0; i.e., the (k, i) cofactor of A vanishes. Moreover,
for all real p, detA(p)({k}, {i}) = 0.

Proof. Without loss of generality, assume that A is an n-by-n normalized purely
SPP matrix, n ≥ 4, and that (i, j, k) is a path product equality for A. By permutation
similarity, we may assume that (i, j, k) = (1, 2, 3) so that a13 = a12a23. Then, since A
is purely SPP , for each c ∈ N−{1, 2, 3}, either a1c = a12a2c or ac3 = ac2a23. Without
loss of generality, assume that { c | c ∈ N − {1, 2, 3} and a1c = a12a2c} �= φ. By
permutation similarity, we may assume, again without loss of generality, that, for
some q ∈ N − {1, 2, 3},

(i) a1c = a12a2c, c = 3, . . . , q;
(ii) a1c �= a12a2c, c = q + 1, . . . , n.

Note that, for c ∈ {3, . . . , q} and r ∈ {q + 1, . . . , n} ⊆ N − {1, 2, c}, (i) implies (by
condition (3)) that either a1r = a12a2r or arc = ar2a2c. Hence, by (ii), we have
iii) arc = ar2a2c, r = q + 1, . . . , n, c = 3, . . . , q.

If q = n and B = A[{1, 2}, {2, . . . , q}], then (i) implies that [a12 a13 . . . a1q], the
first row of B, is a12 times [1 a23 a24 . . . a2q], the second row of B. Thus, B is a 2-by-
(n−1) rank 1 submatrix of A({3}, {1}). Since 2+(n−1) = n+1 ≥ n+1 = (n−1)+1+1,
A({3}, {1}) is singular.

On the other hand, if 3 ≤ q < n, let C = A[{1, 2, q + 1, . . . , n}, {2, . . . , q}]. Then,
(i) implies that [a12 a13 . . . a1q], the first row of C, is a12 times [1 a23 a24 . . . a2q], the
second row of C. Now consider [ar2 ar3 . . . arq], the rth row of C, r = q + 1, . . . , n.
It follows from (iii) that the rth row of C is ar2 times the second row of C, r =
q + 1, . . . , n. Hence, C is an (n − q + 2)-by-(q − 1) rank 1 submatrix of A({3}, {1}).
Since (n− q+2)+ (q− 1) = n+1 ≥ n+1 = (n− 1)+1+1, A({3}, {1}) is singular in
this case also. Thus, detA({3}, {1}) = 0 in either case, completing the proof of the
first part.

The second part follows by the same argument, since condition (3) holds for A if
and only if it holds for A(p) for any real number p.

Now using Theorem 1, we have the following.
Corollary 1. If (i, j, k) is a path product equality for the n-by-n IM matrix A,

n ≥ 4, then (A−1)ki = 0.
Theorem 2. Let A be an n-by-n SPP matrix. Then there exists P > 0 such

that detA(p) > 0 for all p > P .
Proof. Without loss of generality, let A be an n-by-n normalized SPP matrix

and let maxi �=j aij = M < 1. Denote the set of permutations of N by Sn and the
identity permutation by id. Then,

detA(p) =
∑
τ∈Sn

sgn(τ)ap1,τ(1)a
p
2,τ(2) . . . a

p
n,τ(n)

= 1 +
∑
τ∈Sn
τ �=id

sgn(τ)ap1,τ(1)a
p
2,τ(2) . . . a

p
n,τ(n)

> 1 −
∑
τ∈Sn
τ �=id

ap1,τ(1)a
p
2,τ(2) . . . a

p
n,τ(n)

> 1 − (n! − 1)Mp.

It is clear that there exists P > 0 such that for all p > P , 1 − (n! − 1)Mp > 0,
completing the proof.

374 CHARLES R. JOHNSON AND RONALD L. SMITH

Theorem 3. Let A be an n-by-n totally SPP matrix. Then there exists P > 0
such that A(p) ∈ IM for all p > P .

Proof. Without loss of generality, let A be an n-by-n normalized, totally SPP
matrix. As in the proof of Theorem 2, let maxi �=j aij = M < 1, let Sn denote the set
of permutations of N , and let id denote the identity permutation. Then, it follows
from Theorem 2 that there exists P1 > 0 such that, for all p > P1, det A(p) > 0.

Now let i, j ∈ N with i �= j, and let N1 = N − {i, j}. Consider c
(p)
ij , the i, j

cofactor of A(p). Without loss of generality, assume that i < j. Then, if B =[
A(p)[N1] A(p)[N1, i]
A(p)[j,N1] apji

]
,

c
(p)
ij = (−1)i+j det A(p)({i, j})

= (−1)i+j(−1)n−i−1(−1)n−j det B
= (−1) det B

= −
∑

τ∈Sn−1

sgn(τ)b1,τ(1)b2,τ(2) . . . bn−1,τ(n−1)

= −apji −
∑

τ∈Sn−1
τ �=id

sgn(τ)b1,τ(1)b2,τ(2) . . . bn−1,τ(n−1)

≤ −apji +
∑

τ∈Sn−1
τ �=id

b1,τ(1)b2,τ(2) . . . bn−1,τ(n−1).

Now let

Λ1 = { τ ∈ Sn−1 | τ �= id and τ(n− 1) = n− 1 }
= { τ ∈ Sn−1 | τ �= id and bn−1,τ(n−1) = apji}

and

Λ2 = { τ ∈ Sn−1 | τ(n− 1) �= n− 1 }
= { τ ∈ Sn−1 | bn−1,τ(n−1) �= apji},

so that {id}, Λ1, and Λ2 form a partition of Sn−1. Thus,∑
τ∈Sn−1

τ �=id

b1,τ(1)b2,τ(2) . . . bn−1,τ(n−1) =
∑
τ∈Λ1

b1,τ(1)b2,τ(2) . . . bn−1,τ(n−1)

+
∑
τ∈Λ2

b1,τ(1)b2,τ(2) . . . bn−1,τ(n−1).

(4)

Each term of the first summation on the right-hand side of (4) is the product
of bn−1,τ(n−1) = apji and a “nonidentity” term of the expansion of det A[N1] (since
τ �= id). Hence, each term in this summation has a factor of the form

apjia
p
si1

api1i2 . . . a
p
ik−1ik

apiks(5)

in which s, i1, . . . , ik are distinct indices in N1 and k ≥ 1. Therefore, the cycle product
(5) has at least three terms. Since the factors of this term distinct from apji are < 1,

each term in the first summation is < apjiM
2p, and there are |Sn−2| − 1 = (n− 2)!− 1

such terms.

EVENTUALLY INVERSE M -MATRICES 375

On the other hand, each term of the second summation on the right-hand side of
(4) has a factor of the form

apji1a
p
i1i2

api2i3 . . . a
p
ik−1ik

apiki(6)

in which i1, . . . , ik are distinct indices in N1 with k ≥ 1. Hence, the path product
(6) has at least two terms. Let mji denote the maximum (j, i) path product given
by (6). Therefore, each term in the second summation is ≤ mji, and there are
(n−1)!− (n−2)! = (n−2)((n−2)!) such terms. Notice that, since A is totally SPP ,
mji < aji. Thus,

c
(p)
ij ≤ −apji + ((n− 2)! − 1) apji M

2p + (n− 2)((n− 2)!)mp
ji

= −apji

(
1 − ((n− 2)! − 1)M2p − (n− 2)((n− 2)!) (

mji

aji
)p
)
.

(7)

Since M < 1 and mji < aji, there exists Pij > 0 such that, for all p > Pij , c
(p)
ij ≤ 0.

Let P2 = maxi �=j Pij . Then, for all p > max(P1, P2) = P , the inverse of A(p) has
non-positive off-diagonal entries and, hence, A(p) ∈ IM , completing the proof.

Our main result characterizes EIM matrices and, in a certain sense, provides a
converse to the statement that IM implies (some kind of) SPP .

Theorem 4. Let A be an n-by-n nonnegative matrix. Then, A is purely SPP if
and only if A ∈ EIM .

Proof. We observe that, for either of the two properties in question, purely SPP
or EIM , we may assume that A is an n-by-n normalized SPP matrix. Necessity
of the condition purely SPP then follows from Theorem 1 and the previously noted
fact that the path product inequalities (and equalities) are preserved for any positive
Hadamard power p.

For sufficiency, let A be an n-by-n normalized purely SPP matrix. It follows from
Theorem 2 that there exists P1 > 0 such that det A(p) > 0 for all p > P1. So we are
left to show that, for some P > 0, the off-diagonal entries of (A(p))−1 are nonpositive
for all p > P . To this end, let i, j ∈ N with i �= j, and N1 = N−{i, j}. If aji = ajkaki

for some k ∈ N1, then it follows from Lemma 1 that c
(p)
ij , the i, j cofactor of A(p),

vanishes for all positive p. Let Pij = 1 in this case. On the other hand, suppose that

aji > ajkaki(8)

for all k ∈ N1. Following the proof of Theorem 3, let maxi �=j aij = M < 1 and let mji

denote the maximum (j, i) path product given by (6). That mji < aji follows from
(8). Hence, (7) implies that there is a positive constant Pij such that, for all p > Pij ,

c
(p)
ij , the i, j cofactor of A(p), is ≤ 0. Letting P2 = maxi �=j Pij and P = max(P1, P2),

we see that for all p > P , A(p) is invertible, and its inverse has nonpositive off-diagonal
entries; that is, A(p) is IM . So A is EIM , completing the proof.

Remark. Suppose that we have a totally (purely) SPP matrix that is not IM .
Since the totally (purely) SPP matrices are closed under any positive Hadamard
power, extraction of a small enough Hadamard root will produce a totally (purely)
SPP matrix in which P must be arbitrarily large, while raising the matrix to a large
enough Hadamard power will produce a totally (purely) SPP matrix in which P may
be taken to be an arbitrarily small positive number. In fact, P can be 0.

Immediately from Theorem 1, we have the following result.
Corollary 2. If A is an IM matrix, then there exists P > 0 such that A(p) ∈

IM for all p > P .

376 CHARLES R. JOHNSON AND RONALD L. SMITH

REFERENCES

[1] J. P. Benzécri, ed., L’Analyse des Données, Vol. I: La Taxinomie, Dunod, Paris, 1973.
[2] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Aca-

demic Press, San Diego, 1979.
[3] S. Chen, A property concerning the Hadamard powers of inverse M-matrices, Linear Algebra

Appl., 381 (2004), pp. 53–60.
[4] C. Dellacherie, S. Mart́inez, and J. San Mart́in, Ultrametric matrices and induced Markov

chains, Adv. Appl. Math., 17 (1996), pp. 169–183.
[5] C. Dellacherie, S. Mart́inez, and J. San Mart́in, Description of the sub-Markov kernel

associated to generalized ultrametric matrices: An algorithmic approach, Linear Algebra
Appl., 318 (2000), pp. 1–21.

[6] D. Capocacia, M. Cassandro, and P. Picco, On the existence of thermodynamics for the
generalized random energy model, J. Statist. Physics, 46 (1987), pp. 493–505.

[7] M. Fiedler, Special ultrametric matrices and graphs, SIAM J. Matrix Anal. Appl., 22 (2000),
pp. 106–6113.

[8] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New
York, 1991.

[9] C. R. Johnson, Inverse M-matrices, Linear Algebra Appl., 47 (1982), pp. 195–216.
[10] C. R. Johnson and R. L. Smith, Path product matrices, Linear Multilinear Algebra, 46 (1999),

pp. 177–191.
[11] C. R. Johnson and R. L. Smith, Almost principal minors of inverse M-matrices, Linear

Algebra Appl., 337 (2001), pp. 253–265.
[12] I. Koltracht and M. Neumann, On the Inverse M-matrix problem for real symmetric positive-

definite Toeplitz matrices, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 310–320.
[13] S. Mart́inez, G. Michon, and J. San Mart́in, Inverse of strictly ultrametric matrices are of

Stieltjes type, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 98–106.
[14] S. Mart́inez, J. San Mart́in, and X.-D. Zhang, A new class of inverse M-matrices of tree-like

type, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 1136–1148.
[15] R. A. Willoughby, The inverse M-matrix problem, Linear Algebra Appl., 18 (1977), pp. 75–

94.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 377–395

A SUBSPACE-BASED METHOD FOR SOLVING
LAGRANGE–SYLVESTER INTERPOLATION PROBLEMS∗

HÜSEYIN AKÇAY† AND SEMIHA TÜRKAY†

Abstract. In this paper, we study the Lagrange–Sylvester interpolation of rational matrix
functions which are analytic at infinity, and propose a new interpolation algorithm based on the
recent subspace-based identification methods. The proposed algorithm is numerically efficient and
delivers a minimal interpolant in state-space form. The solvability condition for the subspace-based
algorithm is particularly simple and depends only on the total multiplicity of the interpolation nodes.
As an application, we consider subspace-based system identification with interpolation constraints,
which arises, for example, in the identification of continuous-time systems with a given relative
degree.

Key words. rational interpolation, Lagrange–Sylvester, identification, subspace-based

AMS subject classifications. 93A30, 30E05, 65D05

DOI. 10.1137/050622171

1. Introduction. Many problems in control, circuit theory, and signal process-
ing can be reduced to the solution of matrix rational interpolation problems which
have been widely studied (see, for example, [14, 15, 2, 19, 21, 3, 4, 1, 5, 6, 7, 31,
30, 11, 10] and the references therein). Applications arise, for example, in robust
controller synthesis [19, 21], in the Q-parameterization of stabilizing controllers for
unstable plants [18], in the problem of model validation [32], in circuit theory [34], in
spectral estimation [12], and in adaptive filtering and control [31, 26].

In the simplest form, given complex numbers zk and wk for k = 1, . . . , N , an inter-
polation problem asks for scalar rational functions G(z) which meet the interpolation
conditions

G(zk) = wk, k = 1, . . . , N.

The interpolants can further be required to have minimal complexity in terms of their
McMillan degree. Let R and C denote the fields of the real and complex numbers,
respectively. An extension of this problem to the matrix case is as follows.

Given: a subset ϑ ⊂ C, points z1, . . . , zL in ϑ, rational 1 × p row vector func-
tions v1(z), . . . , vL(z) with vk(zk) �= 0 for all k, and rational 1 × m row vectors
w1(z), . . . , wL(z).

Find: (at least one or all) p×m rational matrix functions G(z) with no poles in
ϑ which satisfy the tangential interpolation conditions

dj

dzj
{vk(z)G(z)}

∣∣∣∣
z=zk

=
dj

dzj
wk(z)

∣∣∣∣
z=zk

(1.1)

for 0 ≤ j ≤ Nk, 1 ≤ k ≤ L.
This problem is known as the tangential Lagrange–Sylvester rational interpolation

problem. One approach to finding a solution is to reduce the problem to a system of

∗Received by the editors January 7, 2005; accepted for publication (in revised form) by P. Benner
October 26, 2006; published electronically March 19, 2007.

http://www.siam.org/journals/simax/29-2/62217.html
†Department of Electrical and Electronics Engineering, Anadolu University, 26470 Eskişehir,

Turkey (huakcay@anadolu.edu.tr, semihaturkay@anadolu.edu.tr).

377

378 HÜSEYIN AKÇAY AND SEMIHA TÜRKAY

independent scalar problems, which is not interesting from the viewpoint of matrix
interpolation theory. In addition, a minimal realization can be obtained only after
the elimination of unobservable or/and uncontrollable modes. The contour integral
version of this problem is treated in the comprehensive work [6]. The bitangential or
bidirectional version is studied, for example, in [14, 15, 7, 4]. Related problems are
the nonhomogenous interpolation problem with metric constraints, as in the various
types of Nevanlinna–Pick interpolation and its generalizations [10, 20], and the partial
realization problem, that is, finding a rational matrix function analytic at infinity of
the smallest possible McMillan degree with prescribed values of itself and a few of its
derivatives at infinity [17, 1, 6, 27, 28]. Further applications of interpolation theory
to control and systems theory and estimation are presented in [6, 13, 29].

Prior work on the unconstrained tangential interpolation problem has been largely
carried out by Ball, Gohberg, and Rodman [6, 7]. The solvability issues of the inter-
polation problem, i.e., the existence and the uniqueness of the solutions, have been
analyzed in [8] by using a residual interpolation framework. A more direct algebraic
approach in [11] shows that solving a tangential interpolation problem is equivalent
to solving a matrix Padé approximation problem with Taylor coefficients obeying a
set of linear constraints. In [1, 2, 3, 4], the tangential interpolation problem above
was studied using a tool called the Löwner matrix. In [4], the problem of finding
admissible degrees of complexity of the solutions to the above interpolation problem,
that is, finding all positive integers n for which there exits an interpolant with McMil-
lan degree n, and the problem of parameterizing all solutions for a given admissible
degree of complexity were investigated. Clearly, the solutions of minimal complexity
are of special interest.

The main result in [7] states that the family of rational matrix functions satis-
fying (1.1) can be parameterized in terms of a certain linear fractional map. First,
the interpolation data is translated into a so-called left null pair that describes the
zero structure of a (p + m) × (p + m) resolvent matrix. The computation of the
resolvent matrix requires that the solution of a particular Sylvester equation be in-
vertible. The details can be found in [6]. In [11], a recursive method for computing
the resolvent matrix as a product of elementary first-order rational matrix functions
is presented. This scheme allows recursive updating of the resolvent matrix when-
ever a new interpolation point is added to the input data. In the special case when
the resolvent matrix is in column-reduced form, it is possible to extract the admissible
degrees of complexity as well as the minimal degree of complexity from the linear frac-
tional parameterization formula. The resolvent matrix obtained by an unconstrained
algorithm can be transformed into column-reduced form via a sequence of elemen-
tary unimodular transformations [16]. A detailed algorithm for the construction of a
column-reduced rational matrix function from a given null-pole triple is given in [9].
This algorithm is not recursive, whereas in [11] a column-reduced transfer function is
recursively obtained.

In this paper, we present a numerically efficient algorithm for solving the un-
constrained tangential interpolation problem formulated above. This algorithm is
inspired by the recent work on the frequency domain subspace-based identification
[23, 24, 25, 33]. The solvability conditions for the proposed algorithm are simple,
and depend only on the total multiplicities of the interpolation points. The resulting
interpolating function is in the minimal state-space form. To this date, interpolation
properties of the subspace-based methods have not been investigated in the gener-
ality of this paper. Only in [24] was an interpolation result obtained for uniformly
spaced data on the unit circle of the complex plane. The problem of curve fitting is

SUBSPACE-BASED RATIONAL INTERPOLATION 379

also closely related to the interpolation problem. The use of the frequency domain
subspace-based methods for curve fitting is briefly described in [22].

Let us reformulate the tangential interpolation problem described above in terms
of system properties. More precisely, let us consider a multi-input/multi-output,
linear-time invariant, discrete-time system represented by the state-space equations

x(k + 1) = Ax(k) + Bu(k),
(1.2)

y(k) = Cx(k) + Du(k),

where x(k) ∈ Rn is the state and u(k) ∈ Rm and y(k) ∈ Rp are, respectively, the
input and the output of the system. The transfer function of the system (1.2) denoted
by G(z) is computed as

G(z) = D + C(zIn −A)−1B,(1.3)

where In is the n×n identity matrix. We assume that that the system (1.2) is stable
and the pairs (A,B) and (C,A) are controllable and observable, respectively. The
stability of (1.2) means that G(z) is a proper rational matrix that is analytic and
bounded in the region ϑ = {z ∈ C : |z| ≥ 1}, and both the controllability and the
observability of the pairs (A,B) and (C,A) mean that the quadruplet (A,B,C,D) is
a minimal realization of G(z).

The interpolation problem studied in this paper can be stated as follows.
Given: noise-free samples of G(z) and its derivatives at L distinct points zk ∈ ϑ,

dj

dzj
G(z)

∣∣∣∣
z=zk

= wkj , j = 0, 1, . . . , Nk, k = 1, 2, . . . , L.(1.4)

Find: a quadruplet (Â, B̂, Ĉ, D̂) that is a minimal realization of G(z).
Clearly, (1.4) is a special case of (1.1) with suitably selected left vectors vk(z) and

nodes zk. A subspace-based algorithm handling the tangential-type constraints (1.1)
as well can be derived along the same lines of the proposed algorithm. The minimality
and the uniqueness of the interpolant are the parts of the problem formulation. What
is left unanswered is a condition on the number of the interpolation nodes, counting
multiplicities. It is also clear that, if it exists, the subspace-based solution is a minimal
interpolating function in the set of all possible solutions.

The proposed interpolation scheme is particularly useful when the samples of G(z)
and its derivatives are corrupted by noise and the amount of data is large with respect
to n. In the noisy case, most interpolation schemes deliver state-space realizations
with McMillan degrees tending to infinity as the amount of data grows unboundedly;
thus such schemes are sensitive to inaccuracies in the interpolation data. Since our
algorithm is subspace-based, it inherits robustness properties of the subspace-based
identification algorithms. In particular, there is no need for explicit model param-
eterization, and this algorithm is computationally efficient since it uses numerically
robust QR factorization and the singular value decomposition. In the paper, we also
consider subspace-based system identification with interpolation constraints.

Note that a given interpolation problem on the right half complex plane can be
converted to an interpolation problem on the unit disk by using the Möbius transfor-
mation:

s = ψ(z)
Δ
= λ

z − 1

z + 1
(λ > 0).(1.5)

We omit the details.

380 HÜSEYIN AKÇAY AND SEMIHA TÜRKAY

2. Subspace-based interpolation algorithm. We begin by taking the z-
transform of (1.2),

zX(z) = AX(z) + BU(z),
(2.1)

Y (z) = CX(z) + DU(z),

assuming x(0) = 0, where X(z), Y (z), and U(z) denote respectively the z-transforms
of x(k), y(k), and u(k) defined by

U(z)
Δ
=

∞∑
k=0

u(k) z−k.(2.2)

Let Xj(x) be the resulting state z-transform when

u(k) =

{
ej , k = 0,
0, otherwise,

where ej denotes the unit vector in Rm with 1 on the jth position and 0 elsewhere.
By defining the compound state z-transform matrix,

XC(z)
Δ
= [X1(z) X2(z) · · · Xm(z)] ,(2.3)

G(z) can implicitly be described as

G(z) = CXC(z) + D(2.4)

with

zXC(z) = AXC(z) + B.(2.5)

By recursive use of (2.5), we obtain the relation

zkXC(z) = AkXC(z) +

k−1∑
j=0

Ak−1−jBzj , k ≥ 1.(2.6)

Multiplying both sides of (2.6) with C and using (2.4), we get

zkG(z) = CAkXC(z) + Dzk +

k−1∑
j=0

CAk−1−jBzj , k ≥ 1.(2.7)

Now, recall that the impulse response coefficients of G(z) are given by

gk =

{
D, k = 0,
CAk−1B, k ≥ 1.

(2.8)

Thus, from (2.4), (2.7), and (2.8),

zkG(z) = CAkXC(z) +

k∑
j=0

gk−j z
j , k ≥ 0.(2.9)

SUBSPACE-BASED RATIONAL INTERPOLATION 381

Hence from (2.9), ⎡⎢⎢⎢⎣
G(z)
zG(z)

...
zq−1G(z)

⎤⎥⎥⎥⎦ = OqXC(z) + Γq

⎡⎢⎢⎢⎣
Im
zIm

...
zq−1Im

⎤⎥⎥⎥⎦ ,(2.10)

where

Oq
Δ
=

⎡⎢⎢⎢⎣
C
CA
...

CAq−1

⎤⎥⎥⎥⎦ ,(2.11)

Γq
Δ
=

⎡⎢⎢⎢⎣
g0 0 · · · 0
g1 g0 · · · 0
...

...
. . .

...
gq−1 gq−2 · · · g0

⎤⎥⎥⎥⎦ .(2.12)

For later use, let us write (2.10) in a compact form. The matrix Oq is known
as the extended observability matrix and has full rank n if (A,C) is an observable
pair and q ≥ n. We define the Kronecker product of two matrices E ∈ Cm×n and
F ∈ Cp×q by

E ⊗ F
Δ
=

⎡⎢⎢⎢⎣
E11F E12F · · · E1nB
E21F E22F · · · E2nF

...
...

. . .
...

Em1F Em2F · · · EmnF

⎤⎥⎥⎥⎦ ∈ Cmp×nq.(2.13)

Let

Zq(z)
Δ
=

⎡⎢⎢⎢⎣
1
z
...

zq−1

⎤⎥⎥⎥⎦ ,(2.14)

Jq,2
Δ
=

⎡⎢⎢⎢⎢⎢⎣
0 · · · 0
1 0
0 1 0
...

. . .
...

0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦ ∈ Rq×q.(2.15)

By a slight abuse of notation, let Jq,1 denote the q × q identity matrix Iq. Observe
that Jq,2 is obtained by shifting the elements of Jq,1 one row down and filling its first
row with zeros. Let Jq,j denote the matrix obtained by j − 1 repeated applications
of this process to Jq,1 and J0

q,2 = Iq. Note the following relations:

Jq,j =

{
J j−1
q,2 , j ≤ q

0, j > q.
(2.16)

382 HÜSEYIN AKÇAY AND SEMIHA TÜRKAY

Thus, the lower triangular block Toeplitz matrix in (2.12) can be written as

Γq =

q−1∑
j=0

Jq,1+j ⊗ gj .(2.17)

Hence, from (2.11)–(2.17) we arrive at the following compact expression for (2.10):

Zq(z) ⊗G(z) = OqXC(z) +

q−1∑
j=0

[J j
q,2 ⊗ gj] [Zq(z) ⊗ Im] .(2.18)

This equation forms the basis of the frequency domain subspace-based identifi-
cation algorithms [24, 23]. In subspace-based identification algorithms, Zq(z) ⊗G(z)
and the right-hand side of (2.18) are evaluated at a set of distinct points on the unit
circle and then stacked into columns of long matrices. This procedure yields a matrix
equation affine in Oq. From this equation, the range space of Oq is recovered by a
projection. Once the observability range space is recovered, a realization of G(z) is
derived in a routine manner. We will adapt the same strategy.

First, we differentiate both sides of (2.18) l times with respect to z:

dl

dzl
Hq(z) =

l∑
j=0

(
l
j

)
dj

dzj
Zq(z) ⊗

dl−j

dzl−j
G(z)

(2.19)

= Oq
dl

dzl
XC(z) +

q−1∑
j=0

[J j
q,2 ⊗ gj]

[
dl

dzl
Zq(z) ⊗ Im

]
, l ≥ 0,

where

Hq(z)
Δ
= Zq(z) ⊗G(z).(2.20)

Then, we augment Hq(zk) and the first Nk derivatives of Hq(z) at zk in a data matrix:

Hk
Δ
=

[
Hq(z)

d

dz
Hq(z) · · · dNk

dzNk
Hq(z)

]
z=zk

, k = 1, . . . , L.(2.21)

Using the right-hand side of the first equality in (2.19), let us derive a compact
expression for Hk in terms of the elementary matrices

Dk
Δ
=

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0

0 2
0 · · ·

...
. . . Nk

0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ ∈ R(Nk+1)×(Nk+1)(2.22)

and

Wk
Δ
=

[
Zq(z)

d

dz
Zq(z) · · · dNk

dzNk
Zq(z)

]
z=zk

, k = 1, . . . , L,(2.23)

SUBSPACE-BASED RATIONAL INTERPOLATION 383

as follows:

Hk =

[
Zq(z)

d

dz
Zq(z)

d2

dz2
Zq(z) · · · dNk

dzNk
Zq(z)

]
z=zk

⊗G(zk)

+

[
0 Zq(z) 2

d

dz
Zq(z) · · ·

(
Nk

1

)
dNk−1

dzNk−1
Zq(z)

]
z=zk

⊗ d

dz
G(zk)

+

[
0 0 Zq(z) · · ·

(
Nk

2

)
dNk−2

dzNk−2
Zq(z)

]
z=zk

⊗ d2

dz2
G(zk) + · · ·

+ [0 0 0 · · · Zq(z)]z=zk
⊗ dNk

dzNk
G(zk)

= Wk ⊗G(zk) + [WkDk] ⊗
d

dz
G(zk) +

1

2!
[WkD2

k] ⊗
d2

dz2
G(zk)

+
1

Nk!
[WkDNk

k] ⊗ dNk

dzNk
G(zk).

Note that Dj
k = 0 for all j > Nk. Hence,

Hk =

Nk∑
j=0

1

j!
[Wk Dj

k] ⊗ wkj , k = 1, . . . , L.(2.24)

It remains to compute the derivatives of Zq(z). To this end, let

Tq
Δ
=

⎡⎢⎢⎢⎣
0! 0 · · · 0
0 1! · · · 0
...

...
. . .

...
0 0 · · · (q − 1)!

⎤⎥⎥⎥⎦ ∈ Rq×q.(2.25)

Then, it is easy to verify that

dl

dzl
Zq(z) = TqJ l

q,2T −1
q Zq(z), l ≥ 0.(2.26)

Hence from (2.23) and (2.26),

Wk = Tq
[
Iq Jq,2 · · · JNk

q,2

] [
INk+1 ⊗ T −1

q Zq(zk)
]
, k = 1, . . . , L.(2.27)

An alternative compact expression for Hk is obtained by evaluating the right-hand
side of the second equality in (2.19) for l = 0, . . . , Nk, k = 1, . . . , L, and augmenting
the similar terms in compound matrices as follows:

Hk = Oq Xk +

q−1∑
j=0

[J j
q,2 ⊗ gj] [Wk ⊗ Im], k = 1, . . . , L,(2.28)

where

Xk
Δ
=

[
XC(z)

d

dz
XC(z) · · · dNk

dzNk
XC(z)

]
z=zk

, k = 1, . . . , L.(2.29)

Now, we collect Hk, Xk, and Wk, k = 1, . . . , L, in the compound matrices

H Δ
= [H1 H2 · · · HL] ,(2.30)

X Δ
= [X1 X2 · · · XL] ,(2.31)

W Δ
= [W1 W2 · · · WL] .(2.32)

384 HÜSEYIN AKÇAY AND SEMIHA TÜRKAY

Hence,

H = Oq X +

q−1∑
j=0

[J j
q,2 ⊗ gj] [W ⊗ Im],(2.33)

where H and W are computed from the problem data {zk, {wkj}Nk
j=0}Lk=1 by the for-

mulae (2.30), (2.32), (2.27), (2.24), (2.22), (2.14), (2.15), (2.25). This completes the
first stage of our subspace-based interpolation algorithm. Observe that H is affine in
Oq as advertised.

Since Oq is a real matrix and we are interested in the real range space, we can
convert (2.33) into a relation involving only real valued matrices:

Ĥ = Oq X̂ +

q−1∑
j=0

[J j
q,2 ⊗ gj]F ,(2.34)

where

Ĥ Δ
= [ReH ImH] ,(2.35)

F Δ
= [ReW ImW] ⊗ Im,(2.36)

X̂ Δ
= [ReX ImX] .(2.37)

Let z∗ denote the complex conjugate of z. When zk ∈ R, from (2.14) we have
Zq(zk) ∈ Rq. This, by (2.27), implies that Wk ∈ Rq×(Nk+1). From (2.5),

XC(z) = (zIn −A)−1B.(2.38)

Then, from (2.4), (2.38), and (2.29), it follows that Xk ∈ Rn×m(Nk+1) and, for all
j = 0, . . . , Nk, wkj ∈ Rp×m whenever zk ∈ R. Thus, whenever zk ∈ R from (2.24) we
have Hk ∈ Rpq×m(Nk+1). Hence, the imaginary parts of Hk, F , and Xk are all zero,
and they need not be included in (2.35)–(2.37) if zk ∈ R; without loss of generality,
we will assume this in what follows. Let

N
Δ
=

∑
k:zk∈R

(Nk + 1) +
∑

k:zk∈C−R

2(Nk + 1).(2.39)

Then, Ĥ ∈ Rpq×mN , F ∈ Rmq×mN , and X̂ ∈ Rn×mN .

2.1. Projection onto the observability range space. Let F⊥ be the pro-
jection matrix onto the null space of F given by

F⊥ Δ
= ImN −FT (FFT)−1F ,(2.40)

where FT denotes the transpose of F . The summand in (2.34) is cancelled for all j
when multiplied from right by F⊥. Thus,

ĤF⊥ = Oq X̂F⊥.(2.41)

A numerically efficient way of forming ĤF⊥ is to use the QR-factorization[
F
Ĥ

]
=

[
R11 0
R21 R22

] [
QT

1

QT
2

]
.(2.42)

SUBSPACE-BASED RATIONAL INTERPOLATION 385

A simple derivation yields

ĤF⊥ = R22Q
T
2 ,(2.43)

and it suffices to use R22 ∈ Rpq×m(N−q) in the extraction of the observability range
space since QT

2 is a matrix of full rank.

The range space of ĤF⊥ equals the range space of Oq unless rank cancellations
occur. A sufficient condition for the range spaces to be equal is that the intersection of
the row spaces of F and X̂ be empty. In the following, we present sufficient conditions
in terms of the data and the system.

Lemma 2.1. Let X̂ , F , and N be as in (2.37), (2.36), and (2.39), respectively.
Suppose that N ≥ q + n and the eigenvalues of A do not coincide with the distinct
complex numbers zk. Then,

rank

[
F
X̂

]
= qm + n ⇐⇒ (A,B) controllable pair.(2.44)

Proof. The matrix
[
W ⊗ Im

X

]
is rank deficient if and only if there exists a row

vector

[α0 · · · αq−1 β] �= 0(2.45)

with αT
k ∈ Rm, k = 0, . . . , q − 1, and βT ∈ Rn such that

[α0 · · · αq−1 β]

[
W ⊗ Im

X

]
= 0.(2.46)

From (2.32), (2.23), and (2.31), (2.29), equation (2.46) holds if and only if

[α0 · · · αq−1 β]
dj

dzj

[
Zq(z) ⊗ Im

XC(z)

]
z=zk

= 0, 0 ≤ j ≤ Nk, k = 1, . . . , L,

dj

dzj
E(z)

∣∣∣∣
z=zk

= 0, 0 ≤ j ≤ Nk, k = 1, . . . , L,(2.47)

where

E(z)
Δ
=

q−1∑
k=0

αkz
k + β(zIn −A)−1B.

Equation (2.47) implies that for each k the elements of the rational vector E(z) have
common zeros at zk with multiplicity Nk + 1. Since E(z) is real-rational, zk is a zero
of E(z) if and only if z∗k is also a zero of E(z). Therefore, E(z) happens to have a
total number of N zeros counting multiplicities. However, the elements of E(z) have
numerator degrees not exceeding n + q − 1. Hence, any element of E(z) cannot have
N zeros. Thus, E(z) ≡ 0. This implies that αk = 0 for all k and β(zIn −A)−1B ≡ 0.
The latter result follows from the fact that β(zIn−A)−1B is analytic and has a zero at

z = ∞; hence it is orthogonal to
∑q−1

k=0 αkz
k. Recall that (A,B) is an uncontrollable

386 HÜSEYIN AKÇAY AND SEMIHA TÜRKAY

pair if and only if it is possible to find a vector β �= 0 such that β(zIn − A)−1B ≡ 0.

Finally, note that
[
F
X̂

]
is rank deficient if and only if

[
W ⊗ Im

X

]
is rank deficient. The

last assertion is due to the fact that, for any complex matrix Z and real vector x,

xTZ = 0 ⇐⇒ x [ReZ ImZ] = 0.

Since all the eigenvalues of A are inside the unit circle, none of them coincide
with any of zk. Thus, by applying Lemma 2.1, we conclude that the two row spaces
of X̂ and F do not intersect and the range space of ĤF⊥ coincides with the range
space of Oq. Then, using the singular value factorization of ĤF⊥,

ĤF⊥ = Û Σ̂V̂ T

(2.48)

=
[
Ûs Ûo

] [
Σ̂s 0

0 Σ̂o

][
V̂ T
s

V̂ T
o

]
,

where Σ̂s ∈ Rn×n, we determine the system matrices Â and Ĉ as

Â = (J1Ûs)
†J2Ûs,

(2.49)
Ĉ = J3Ûs,

where

J1 =
[
I(q−1)p 0(q−1)p×p

]
,(2.50)

J2 =
[
0(q−1)p×p I(q−1)p

]
,(2.51)

J3 =
[
Ip 0p×(q−1)p

]
,(2.52)

0i×j is the i× j zero matrix, and X† = (XTX)−1XT is the Moore–Penrose pseudoin-
verse of the full column rank matrix X. Provided that (C,A) is an observable pair,
the pseudoinverse in (2.49) exists if and only if q > n. Therefore, in order to apply
the lemma it suffices to let q = n + 1. In this case, we have the sole requirement
N > 2n with N defined by (2.39). From Lemma 2.1, it follows that Â and Ĉ defined
in (2.49) are related to A and C in (1.2) by

Â = T−1AT,
(2.53)

Ĉ = CT

for some T ∈ Rn×n.
As noted before, in (2.48) ĤF⊥ can be replaced with R22.

2.2. Extracting B and D from the data. We will now determine B and D
matrices in the realization using the given frequency domain data. Repeated applica-
tion of the differentiation formula

d

dz
X−1 = −X−1 dX

dz
X−1

to XC(z) = (zIn −A)−1B yields the derivatives of G(z) as follows:

dj

dzj
G(z) = δ0j D + (−1)jj!C(zIn −A)−j−1B, j ≥ 0,(2.54)

SUBSPACE-BASED RATIONAL INTERPOLATION 387

where δks is the Kronecker delta. Now, let

Gk
Δ
=

⎡⎢⎢⎢⎣
wk0

wk1

...
wkNk

⎤⎥⎥⎥⎦ , k = 1, . . . , L,(2.55)

and

G Δ
=

⎡⎢⎢⎢⎣
G1

G2

...
GL

⎤⎥⎥⎥⎦ .(2.56)

Observe from (2.54) that, for fixed A and C, the matrices B and D appear
linearly in G. Hence, we can uniquely determine B and D by solving the following
linear least-squares problem

B̂, D̂ = arg min
B,D

∥∥∥∥Ĝ − Ŷ
[

B
D

]∥∥∥∥2

F

,(2.57)

where

‖X‖F
Δ
=

[∑
k

∑
s

|xks|2
]1/2

is the Frobenius norm,

Ĝ Δ
=

[
ReG
ImG

]
∈ RpN×m,(2.58)

Ŷ Δ
=

[
ReY
ImY

]
∈ RpN×(n+p),(2.59)

and

Yk
Δ
=

⎡⎢⎢⎢⎣
C(zkIn −A)−1 Ip
−C(zkIn −A)−2 0

...
(−1)NkNk!C(zkIn −A)−Nk−1 0

⎤⎥⎥⎥⎦ ,(2.60)

Y Δ
=

⎡⎢⎢⎢⎣
Y1

Y2

...
YL

⎤⎥⎥⎥⎦ ,(2.61)

provided that Ŷ is not rank deficient. For the last requirement, a sufficient condition
is presented next.

Lemma 2.2. Let N and Ŷ be as in (2.39) and (2.59), respectively. Suppose that
N > n and the eigenvalues of A do not coincide with the distinct complex numbers
zk. Then,

rankŶ = p + n ⇐⇒ (C,A) observable pair.(2.62)

388 HÜSEYIN AKÇAY AND SEMIHA TÜRKAY

Proof. The matrix Y is rank deficient if and only if there exists
[
B
D

]
�= 0 such that

Y
[

B
D

]
= 0 ⇐⇒ dj

dzj
G(z)

∣∣∣∣
z=zk

= 0, 0 ≤ j ≤ Nk, k = 1, . . . , L.

As in the proof of Lemma 2.1, this equation implies that every element of G(z)
has a total number of N zeros counting multiplicities, a contradiction if G(z) is not
identically zero unless N ≤ n.

Thus, from (2.53) and Lemma 2.2, if N ≥ q + n and q > n, we have

B̂ = T−1B,
(2.63)

D̂ = D.

Moreover,

Ĝ(z)
Δ
= Ĉ(zIn − Â)−1B̂ + D̂ = G(z).(2.64)

2.3. Solvability conditions. By picking q = n + 1 in the subspace-based al-
gorithm developed above, we obtain a sufficient condition for the interpolation of
G(z) from its noise-free samples and derivatives evaluated at L distinct points in ϑ as
N ≥ 2n+ 1, where N is defined by (2.39). This condition turns out to be a necessary
condition for the interpolation of G(z), as demonstrated next by a simple example.

Consider an nth-order stable single-input/single-output system represented by
the transfer function

G(z) =
b0z

n + b1z + · · · + bn
zn + a1z + · · · + an

.(2.65)

We are to determine 2n + 1 unknown real coefficients a1, . . . , an, b0, . . . , bn from the
evaluations of G(z) and its derivatives at a given set of distinct frequencies zk ∈ ϑ.
Let N be as in (2.39).

Let us first assume in (1.4) that Nk = 0 and zk ∈ C − R for all k; i.e., the
interpolation nodes are simple and purely complex numbers. Then, N = 2L. With
q = n + 1, the subspace-based algorithm delivers a minimal realization of G(z),
provided that 2L ≥ 2n + 1. This condition is satisfied by choosing L = n + 1.
Clearly, this is the least amount of data one could use to interpolate an arbitrary nth-
order system, as can directly be verified by writing 2L-linear equations down from
(1.4) and (2.65) to determine the unknowns a1, . . . , an, b0, . . . , bn. Notice that if some
interpolation nodes have multiplicities, then the resulting equations become nonlinear
in a1, . . . , an, b0, . . . , bn.

Now, as a special case, let us consider the situation that all zk are on the unit
circle excluding the points ±1. Thus, Algorithm 2.1 recovers nth-order stable systems
from n + 1 noise-free frequency response measurements, excluding the frequencies 0
and π. If the frequencies contain 0, from (2.39) we then have N = 2L − 1. Hence,
with q = n + 1 selected, we must have 2L − 1 ≥ 2n + 1, which is fulfilled by letting
L = n + 1. If, in addition, the frequencies contain π as well, we end up with the
interpolation condition L = n+2. The last conclusion extends an interpolation result
in [24] derived for the uniformly spaced frequencies case to the nonuniformly spaced
frequencies case.

It is easy to see, for example, by the partial fraction expansion or similar tech-
niques, that these results hold for multi-input/multi-output systems with multiple

SUBSPACE-BASED RATIONAL INTERPOLATION 389

interpolation nodes as well. Therefore, Algorithm 2.1 is capable of using a minimum
amount of the frequency domain data for the Lagrange–Sylvester interpolation of
stable systems.

2.4. Summary of the subspace-based interpolation algorithm. Let us
summarize the interpolation algorithm in the following.

Algorithm 2.1. Subspace-based interpolation algorithm.
1. Given the data (1.4), compute the matrices Ĥ and F defined by (2.35) and

(2.36) through (2.30), (2.32), (2.24), (2.27), (2.22), (2.25), (2.15), and (2.14).
2. Perform the QR-factorization in (2.42).

3. Calculate the singular value decomposition in (2.48) with ĤF⊥ replaced by
R22 defined in (2.42).

4. Determine the system order by inspecting the singular values, and partition
the singular value decomposition such that Σ̂s contains the n largest singular
values.

5. With J1, J2, and J3 defined by (2.50)–(2.52), calculate Â and Ĉ from (2.49).

6. Solve the least-squares problem (2.57) for B̂ and D̂, where Ĝ and Ŷ are defined
by (2.58) and (2.59) through (2.60)–(2.61) and (2.55)–(2.56).

Clearly, Σ̂o = 0 in (2.48) when the data are not corrupted by noise, the system that
has generated the data is of McMillan degree n, N ≥ q + n, and q > n. As we stated
earlier, Algorithm 2.1 produces a minimal stable realization of the interpolant, given
that the latter exits. In most interpolation problems, the existence and the uniqueness
questions are easily settled, and the construction of a solution (or all solutions) with
certain properties such as the McMillan degree constraints, in particular minimality,
remains a difficult one. The algorithm outlined above is straightforward to implement.
In the implementation of the algorithm, it suffices to let q = n + 1 and N = 2n +
1, where N is defined by (2.39). The system order, if unknown a priori, can be
determined in step 4 of Algorithm 2.1 from the inspection of the singular values. This
process also reveals redundancies in the data. Numerically, the most expensive step
in the algorithm is the singular value decomposition of R22. Notice with q = n + 1
and N = 2n + 1 selected, that R22 ∈ Rp(n+1)×mn.

The main result of this paper is captured in the following.
Theorem 2.3. Consider Algorithm 2.1 with the data in (1.4) originating from

a discrete-time stable system of order n. Let N be as in (2.39). If N ≥ q + n and

q > n, then the quadruplet (Â, B̂, Ĉ, D̂) is a minimal realization of G(z).

2.5. Discussion. In the rest of this section, we will briefly comment on the
similarities and the differences between Algorithm 2.1 and the Löwner matrix–based
approach [1].

The most striking difference between the methods appears to be the formation
of data matrices. In [1], elements of a Löwner matrix are computed by taking partial
derivatives of the divided differences [G(z) − G(s)]/(z − s) evaluated at z = zk and
s = zl, where the number of the derivatives is determined by the particular choice of
the (block) row and column sets and the multiplicities of the nodes. If zk equals zl, a
limiting process has to be used to define that particular element. It is required that
the numbers of the chosen block rows and columns add up to N . The elements of H
in the proposed algorithm, on the other hand, consist of linear combinations of the
derivatives of the products zlG(z) evaluated at z = zk, where for each k, l satisfies
0 ≤ l ≤ Nk. A simple transformation that relates H to a Löwner matrix does not
seem possible unless all the zk are the same, in which case the problem solved reduces

390 HÜSEYIN AKÇAY AND SEMIHA TÜRKAY

to a conventional partial realization problem. In the latter case, notice that this link
is provided by the bilinear map (1.5).

Both algorithms rely on the factorization of the data matrices discussed above as
a product of two matrices which are directly related to the observability and control-
lability concepts. In [1], the Löwner matrix is expressed as a product of the so-called
generalized observability and the controllability matrices, whereas in the proposed
algorithm this relation is recovered after some projections. In fact, the proofs of
Lemmas 2.1, 2.2, and 3.1R in [1] use the same ideas.

The most striking similarity between the algorithms is the condition N > 2n. It
should be noted that the stability assumption is not essential in the formulation of the
interpolation problem, since the data are already assumed to originate from a finite-
dimensional dynamical system with a complexity bounded above and the number of
the nodes is finite. This assumption is necessary in an identification setup. Without
the knowledge that the data have originated from a dynamical system with a com-
plexity bounded above, the condition N > 2n is precisely one of the requirements for
the existence of a unique minimal-order interpolating rational matrix [1]. In addition
to this requirement, there is also a more stringent rank condition captured in As-
sumption 4.1 in [1]. Thus, both algorithms operate under the same conditions which
assure the existence of a unique minimal interpolating rational matrix. We have not
addressed the properness issue in this paper due to our standing assumption on the
origins of the data. Again, without the knowledge of the origins of the data, one has
to secure that the solution of the interpolation problem is a proper transfer function.
The properness is guaranteed by Assumption 4.2 in [1]. It is also noted there that this
assumption can be eliminated by means of a suitably chosen bilinear transformation.

The Löwner matrix–based and proposed algorithms cannot be directly applied
when there does not exist a unique minimal interpolating function and the data are
not scalar. This may happen either in the presence of noise which corrupts transfer
function evaluations or when the true dynamics is of higher dimension. The problem
is then to find the admissible degrees of complexity, i.e., those positive integers n for
which there exist solutions G(z) to the interpolation problem (1.4) with deg G = n,
and to construct all corresponding solutions for a given admissible degree n. This
problem is known as the partial realization problem. If the original data do not sat-
isfy the criterion for the existence of a unique minimal interpolating function, one
needs to add interpolation data until the criterion becomes satisfied. The fact that
the data can be found so that the increase in degree is finite is nontrivial. The added
data will necessarily drive up the degree of the interpolating transfer function. In the
scalar case, dealt with in [2], the way this can be done is set out and is rather compli-
cated. The multivariable case is studied in [4] using the generating system approach.
While [4] gives the theory behind the determination of the minimal McMillan degree
and all admissible degrees, the current paper and [1] provide the theory behind the
construction in state-space terms of the solution of admissible degrees.

A departure of Algorithm 2.1 from the Löwner matrix–based approach is the
determination of the minimal order. Under the stated conditions, in Algorithm 2.1
the minimal order and the observability range space are extracted by a singular value
decomposition, while in the Löwner matrix–based approach the minimal order is
determined by checking ranks of several (generalized) Löwner matrices. The singular
value decomposition is not sensitive to random inaccuracies in data; that is, the true
singular values and the observability range space are consistently estimated as N
increases unboundedly, provided that n is finite or increases more slowly than N
[24, 25]. To our best knowledge, an asymptotic error analysis for randomly corrupted

SUBSPACE-BASED RATIONAL INTERPOLATION 391

transfer function evaluations has not been performed for any of the interpolation
algorithms in the literature.

Deficiencies of the proposed interpolation algorithm and the Löwner matrix–based
approach are the same. As pointed out in [1], a parameterization of solutions when
the original data have to be added and derivation of recursive formulae for allowing
update of a realization when one or more interpolation data become available are
absent. It would be interesting to develop connections between the constrained in-
terpolation problems such as the Nevanlinna–Pick and the positive-real interpolation
and Algorithm 2.1. It is worth mentioning that the Nevanlinna–Pick interpolation
can be transformed into an interpolation problem without norm constraint by adding
the mirror image interpolation points to the original data [3].

3. Subspace-based identification with interpolation constraints. In this
section, we will consider identification of an nth-order stable system with transfer
function G(z) from noisy samples of the frequency response,

wl = G(eiθl) + ηl, l = 1, . . . ,M,(3.1)

with the interpolation constraints

dj

dzj
G(z)

∣∣∣∣
z=zk

= Ekj , j = 0, 1, . . . , Nk, k = 1, . . . , L,(3.2)

where 0 ≤ θl ≤ π, l = 1, . . . ,M , denote the discrete-time frequencies and ηl is a
sequence of independent zero-mean complex random variables with a known covari-
ance function that is uniformly bounded. The number of the constraints defined in
(2.39) satisfies N < n. The interpolation constraints (3.2) reflect the prior knowledge
on G(z). For example, by taking Ekj = 0 for all j ≤ Nk, we enforce a zero with
multiplicity Nk + 1 at zk. These constraints may also be used as design variables to
focus on a frequency band of interest.

We would like to find an identification algorithm which maps the data {wl, θl}Ml=1

to an nth-order model ĜM (z) that satisfies the interpolation constraints in (3.2) such
that, with probability one,

lim
M→∞

‖ĜM −G‖∞ = 0,

where

‖X‖∞
Δ
= sup

ω
σ1(X(eiω))

and σ1 denotes the largest singular value. Algorithms with this property are called
strongly consistent. This identification setup except for the constraints in (3.2) can
be found, for example, in [24].

A motivating example for the constraints in (3.2) is as follows. Suppose that the
system to be identified is nth order stable single-input/single-output continuous-time
system represented by the transfer function

Gc(s) =
b0s

m + b1s + · · · + bm
sn + a1s + · · · + an

,(3.3)

where the denominator degree n is greater than the numerator degree m, and we are
given M noise corrupted frequency response measurements

wl = G(iωl) + ηl, l = 1, . . . ,M.(3.4)

Assuming b0 �= 0, the relative degree of Gc(s) is defined as τ
Δ
= n−m.

392 HÜSEYIN AKÇAY AND SEMIHA TÜRKAY

A direct use of the Möbius transform technique (1.5) targets identifying the
discrete-time equivalent of Gc(s) defined by

Gd(z)
Δ
= Gc (ψ(z)) ,(3.5)

using wl, l = 1, . . . ,M , at the transformed discrete-time frequencies

θk = 2 arctan
(ωk

λ

)
, k = 1, . . . ,M.(3.6)

Then, the continuous-time identified transfer function denoted by Ĝc
M (s) is obtained

from the discrete-time identified transfer function denoted by Ĝd
M (z) by using the

inverse Möbius map z = ψ−1(s); i.e., Ĝc
M (s) = Ĝd

M (ψ−1(s)). Due to noise and
unmodeled dynamics, the former is only a proper transfer function.

If maintaining the relative degree is a concern, we then high-pass filter Ĝc
M (s) as

follows:

ĜM (s) =
Ĝc

M (s)

(s + μ)τ
,

where μ > 0 is chosen sufficiently outside the bandwidth of Ĝc
M (s). This filtering

increases the order of the identified model by τ . This problem can be circumvented
by including the constraints

dj

dzj
Gd(z)

∣∣∣∣
z=−1

= 0, j = 1, . . . , τ,

in the problem formulation. Observe that when applied to (3.3), the Möbius map
(1.5) introduces a zero of Gd(z) at z = −1 with multiplicity τ .

Now, the solution of the constrained identification problem (3.1)–(3.2) is partic-
ularly simple if one notes from (2.54) the following set of equations:

δ0j D + (−1)jj!C(zkIn −A)−j−1B = Ekj , j = 0, . . . , Nk, k = 1, . . . , L,(3.7)

which describe N hyperplanes in the parameter space of B and D for fixed C and
A. Hence, it suffices to solve the linear least-squares problem (2.57) with the lin-
ear constraints (3.7). With this modification, the frequency domain subspace-based
identification algorithm presented in [24] is strongly consistent. The inclusion of the
noise covariance information in the algorithm is straightforward and can be found in
[24]. This extension can be viewed as the tangential version of the Lagrange–Sylvester
interpolation problem (1.1).

4. Example. The purpose of this section is to illustrate Algorithm 2.1 with a
step-by-step numerical example. Suppose that the system to be found by interpolation
has the following state-space representation:

A =

⎡⎢⎢⎣
−0.5 0.5 0 0
−0.5 −0.5 0 0

0 0 0.5 0
0 0 0 −0.25

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
1 0 0
1 1 0
0 −1 0
1 1 1

⎤⎥⎥⎦ ,

C =

[
1 1 1 0
0 1 0 1

]
, D =

[
1 −1 0
0 1 1

]
.

SUBSPACE-BASED RATIONAL INTERPOLATION 393

Thus, n = 4, p = 2, and m = 3. This system has the transfer function

G(z) =

⎡⎢⎢⎣
z2 + 3z + 1.5

z2 + z + 0.5
−z3 + 0.5z2 + 0.5z + 0.75

z3 + 0.5z2 − 0.25
0

2z2 + 1.25z + 0.5

z3 + 1.25z2 + 0.75z + 0.125

z3 + 3.25z2 + 2.5z + 0.75

z3 + 1.25z2 + 0.75z + 0.125

z + 1.25

z + 0.25

⎤⎥⎥⎦ .

Let us assume that the interpolation data are as follows:

z1 = 1 + i, N1 = 0, z2 = 1 − i, N2 = 0, z3 = 2, N3 = 4

and

w10 =

[
1.9333 − 0.5333i −0.8667 + 0.4000i 0
0.8878 − 0.5236i 1.9545 − 0.6569i 1.4878 − 0.3902i

]
,

w20 =

[
1.9333 + 0.5333i −0.8667 − 0.4000i 0
0.8878 + 0.5236i 1.9545 + 0.6569i 1.4878 + 0.3902i

]
,

w30 =

[
1.7692 −1.2051 0
0.7521 1.8291 1.4444

]
, w31 =

[
−0.2840 0.2433 0
−0.2804 −0.3395 −0.1975

]
,

w32 =

[
0.2003 −0.4251 0
0.2084 0.2757 0.1756

]
, w33 =

[
−0.2000 0.9844 0
−0.2333 −0.3341 −0.2341

]
,

w34 =

[
0.2456 −2.8518 0
0.3531 0.5390 0.4162

]
.

Then we set q = 5 and compute N = 9. Therefore, the inequalities N ≥ q + n
and q > n are both satisfied. In step 1, we compute the matrices Ĥ ∈ R10×27 and
F ∈ R15×27. The QR-factorization in step 2 results in R22 ∈ R10×12 given by

R22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4622 0 0 0 0 · · · 0

0.0381 −0.0518 0 0
...

. . .
...

−0.2544 0.0203 −0.0240 0
−0.0176 0.0194 −0.0075 −0.0009
−0.1144 −0.0070 0.0091 −0.0089

0.0094 −0.0110 0.0094 −0.0025
−0.0583 0.0035 −0.0045 0.0045
−0.0033 0.0057 −0.0061 0.0037

−0.0344 0.0033 −0.0037 −0.0022
...

. . .
...

−0.0007 −0.0013 0.0015 −0.0027 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is not unexpected since n = 4. In step 3, we compute the nonzero singular
values 0.5460, 0.0609, 0.0249, and 0.0098. The matrices Â and Ĉ computed in step 5
are

Â =

⎡⎢⎢⎣
0.5204 −0.1361 0.3199 0.5352
0.0882 −0.4983 0.4848 −0.1035
0.0052 0.0820 −0.4810 0.7195

−0.0295 0.1919 −0.3546 −0.2911

⎤⎥⎥⎦ ,

Ĉ =

[
0.8460 0.2123 −0.2149 −0.3233

−0.0721 0.8069 0.5289 0.1046

]
.

394 HÜSEYIN AKÇAY AND SEMIHA TÜRKAY

In step 6, we compute Ĝ ∈ R18×3 and Ŷ ∈ R18×6 matrices, and the solution of the
least-squares problem is

B̂ =

⎡⎢⎢⎣
1.0502 −0.5390 −0.0816
2.8626 1.8321 0.9041

−0.1545 1.0984 0.4896
−1.4555 −0.9375 0.0547

⎤⎥⎥⎦ ,

D̂ =

[
1.0000 −1.0000 −0.0000

−0.0000 1.0000 1.0000

]
.

The realization (Â, B̂, Ĉ, D̂) is similar to (A,B,C,D). In fact, the estimates of the
interpolation data computed from the former has a maximum error 5.9746 × 10−14.

5. Conclusions. In this paper, we presented a new algorithm for the Lagrange–
Sylvester interpolation of rational matrix functions that are analytic at infinity. This
algorithm is related to the recent frequency domain subspace-based identification
methods and is not sensitive to inaccuracies in data. A necessary and sufficient
condition for the existence and the uniqueness of a minimal interpolant was formulated
in terms of the total multiplicity of the interpolation nodes. The purpose of this
contribution was to pinpoint the kinship between the frequency domain subspace-
based identification of stable linear systems and the minimal rational interpolation of
stable systems.

Acknowledgment. The authors would like to thank the associate editor and
the reviewers of the manuscript for helpful remarks and references.

REFERENCES

[1] B. D. O. Anderson and A. C Antoulas, Rational interpolation and state-variable realiza-
tions, Linear Algebra Appl., 137/138 (1990), pp. 479–509.

[2] A. C. Antoulas and B. D. O. Anderson, On the scalar rational interpolation problem, IMA
J. Math. Control Inform., 3 (1986), pp. 61–88.

[3] A. C. Antoulas and B. D. O. Anderson, On the problem of stable rational interpolation,
Linear Algebra Appl., 122/123/124 (1989), pp. 301–329.

[4] A. C Antoulas, J. A. Ball, J. Kang, and J. C. Willems, On the solution of the minimal
rational interpolation problem, Linear Algebra Appl., 137/138 (1990), pp. 511–573.

[5] J. A. Ball and J. Kang, Matrix polynomial solution of tangential Lagrange-Sylvester interpo-
lation conditions of low McMillan degree, Linear Algebra Appl., 137/138 (1990), pp. 699–
746.

[6] J. A. Ball, I. Gohberg, and L. Rodman, Interpolation of Rational Matrix Functions,
Birkhäuser, Basel, Switzerland, 1990.

[7] J. A. Ball, I. Gohberg, and L. Rodman, Two-sided Lagrange-Sylvester interpolation problem
for rational matrix functions, in Proc. Sympos. Pure Math. 51, AMS, Providence, RI, 1990,
pp. 17–83.

[8] J. A. Ball, I. Gohberg, and L. Rodman, Simultaneous residue interpolation for rational
matrix functions, Integral Equations Operator Theory, 13 (1990), pp. 611–637.

[9] J. A. Ball, M. A. Kaashoek, G. Groenewald, and J. Kim, Column reduced rational matrix
functions with given null-pole data in the complex plane, Linear Algebra Appl., 203/204
(1994), pp. 111–138.

[10] A. Blomqvist, A. Lindquist, and R. Nagamune, Matrix-valued Nevanlinna-Pick interpola-
tion with complexity constraints: An optimization approach, IEEE Trans. Automat. Con-
trol, 48 (2003), pp. 2172–2190.

[11] T. Boros, A. H. Sayed, and T. Kailath, A recursive method for solving unconstrained
tangential interpolation problems, IEEE Trans. Automat. Control, 44 (1999), pp. 454–470.

[12] C. I. Byrnes, T. T. Georgiou, and A. Lindquist, A new approach to spectral estima-
tion: A tunable high-resolution spectral estimator, IEEE Trans. Signal Process., 48 (2000),
pp. 3189–3205.

SUBSPACE-BASED RATIONAL INTERPOLATION 395

[13] J. Chen and G. Gu, Control Oriented System Identification: An H∞ Approach, Wiley-
Interscience, New York, 2000.

[14] I. P. Fedcina, A description of the solution of the Nevanlinna-Pick tangent problem, Akad.
Nauk Armyan. SSR. Dokl., 60 (1975), pp. 37–42 (in Russian).

[15] I. P. Fedcina, The Nevanlinna-Pick tangent problem with multiple points, Akad. Nauk
Armyan. SSR. Dokl., 61 (1975), pp. 214–218 (in Russian).

[16] T. Kailath, Linear Systems, Prentice–Hall, Englewood Cliffs, NJ, 1980.
[17] R. E. Kalman, On partial realization, transfer-functions and canonical forms, Acta. Polytech.

Scand. Math., 31 (1979), pp. 9–32.
[18] J. Kamali, T. Boros, T. Kailath, and G. Franklin, Q-parametrization for unstable plants:

A displacement structure approach, in Proceedings of the American Control Conference,
1995, pp. 4401–4402.

[19] H. Kimura, Directional interpolation approach to H∞-optimization and robust stabilization,
IEEE Trans. Automat. Control, AC-32 (1987), pp. 1085–1093.

[20] H. Langer and A. Lasarow, Solution of a multiple Nevanlinna-Pick problem via orthogonal
rational functions, J. Math. Anal. Appl., 293 (2004), pp. 605–632.

[21] D. J. N. Limebeer and B. D. O. Anderson, An interpolation theory approach to H∞-
controller degree bounds, Linear Algebra Appl., 98 (1988), pp. 347–386.

[22] L. Ljung, Linear system identification as curve fitting, in Directions in Mathematical Systems
Theory and Optimization, A. Rantzer and C. I. Byrnes, eds., LNCIS 286, Springer-Verlag,
Berlin, Heidelberg, 2003, pp. 203–215.

[23] K. Liu, R. N. Jacgues, and D. W. Miller, Frequency domain structural system identification
by observability range space extraction, in Proceedings of the American Control Conference,
Baltimore, MD, 1994, pp. 107–111.

[24] T. McKelvey, H. Akçay, and L. Ljung, Subspace-based multivariable system identification
from frequency response data, IEEE Trans. Automat. Control, 41 (1996), pp. 960–979.

[25] T. McKelvey, H. Akçay, and L. Ljung, Subspace-based identification of infinite-dimensional
multivariable systems from from frequency response data, Automatica, 32 (1996), pp. 885–
902.

[26] C. Mosquera and F. Pérez, Algebraic solution to the robust SPR problem for two polynomials,
Automatica, 37 (2001), pp. 757–762.

[27] Nikolai K. Nikolski, Operators, Functions, and Systems: An Easy Reading, Vol. 1: Hardy,
Hankel, and Toeplitz, AMS, Providence, RI, 2002.

[28] Nikolai K. Nikolski, Operators, Functions, and Systems: An Easy Reading, Vol. 2: Model
Operators and Systems, AMS, Providence, RI, 2002.

[29] K. Y. Osipenko, Optimal Recovery of Analytic Functions, Nova Science Publishers, New York,
2000.

[30] A. H. Sayed, T. Kailath, H. Lev-Ari, and T. Constantinescu, Recursive solutions of
rational interpolation problems via fast matrix factorization, Integral Equations Operator
Theory, 20 (1994), pp. 84–118.

[31] A. H. Sayed, T. Constantinescu, and T. Kailath, Time-variant displacement structure and
interpolation problems, IEEE Trans. Automat. Control, 39 (1994), pp. 960–976.

[32] R. S. Smith and J. C. Doyle, Model validation: A connection between robust control and
identification, IEEE Trans. Automat. Control, 37 (1992), pp. 942–952.

[33] P. Van Overschee and B. De Moor, Continuous-time frequency domain subspace identifi-
cation, Signal Processing, 52 (1996), pp. 179–194.

[34] D. C. Youla and M. Saito, Interpolation with positive-real functions, J. Franklin Inst., 284
(1967), pp. 77–108.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 396–412

ITERATIVE SOLUTION OF A NONSYMMETRIC ALGEBRAIC
RICCATI EQUATION∗

CHUN-HUA GUO† AND NICHOLAS J. HIGHAM‡

Abstract. We study the nonsymmetric algebraic Riccati equation whose four coefficient matri-
ces are the blocks of a nonsingular M -matrix or an irreducible singular M -matrix M . The solution
of practical interest is the minimal nonnegative solution. We show that Newton’s method with zero
initial guess can be used to find this solution without any further assumptions. We also present
a qualitative perturbation analysis for the minimal solution, which is instructive in designing al-
gorithms for finding more accurate approximations. For the most practically important case, in
which M is an irreducible singular M -matrix with zero row sums, the minimal solution is either
stochastic or substochastic and the Riccati equation can be transformed into a unilateral matrix
equation by a procedure of Ramaswami. The minimal solution of the Riccati equation can then be
found by computing the minimal nonnegative solution of the unilateral equation using the Latouche–
Ramaswami algorithm. When the minimal solution of the Riccati equation is stochastic, we show
that the Latouche–Ramaswami algorithm, combined with a shift technique suggested by He, Meini,
and Rhee, is breakdown-free and is able to find the minimal solution more efficiently and more ac-
curately than the algorithm without a shift. When the minimal solution of the Riccati equation
is substochastic, we show how the substochastic minimal solution can be found by computing the
stochastic minimal solution of a related Riccati equation of the same type.

Key words. nonsymmetric algebraic Riccati equation, M -matrix, minimal nonnegative solution,
perturbation analysis, Newton’s method, Latouche–Ramaswami algorithm, shifts

AMS subject classifications. 15A24, 15A48, 65F30, 65H10

DOI. 10.1137/050647669

1. Introduction. We consider the nonsymmetric algebraic Riccati equation (or
NARE)

R(X) = XCX −XD −AX + B = 0,(1.1)

where A,B,C,D are real matrices of sizes m×m,m× n, n×m,n× n, respectively,
and we assume throughout that

M =

[
D −C
−B A

]
(1.2)

is a nonsingular M -matrix or an irreducible singular M -matrix. Some relevant defi-
nitions are as follows. For any matrices A,B ∈ R

m×n, we write A ≥ B (A > B) if
aij ≥ bij(aij > bij) for all i, j. A real square matrix A is called a Z-matrix if all its
off-diagonal elements are nonpositive. It is clear that any Z-matrix A can be written
as sI −B with B ≥ 0. A Z-matrix A is called an M -matrix if s ≥ ρ(B), where ρ(·) is
the spectral radius; it is a singular M -matrix if s = ρ(B) and a nonsingular M -matrix
if s > ρ(B).

∗Received by the editors December 15, 2005; accepted for publication (in revised form) by Q. Ye
October 3, 2006; published electronically March 22, 2007. This work was supported in part by a
Royal Society-Wolfson Research Merit Award to the second author.

http://www.siam.org/journals/simax/29-2/64766.html
†Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2, Canada

(chguo@math.uregina.ca, http://www.math.uregina.ca/∼chguo/). The work of this author was sup-
ported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.

‡School of Mathematics, The University of Manchester, Sackville Street, Manchester, M60 1QD,
UK (higham@ma.man.ac.uk, http://www.ma.man.ac.uk/∼higham/).

396

A NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 397

The NARE (1.1) has applications in transport theory and Markov models [20,
27, 28]. The solution of practical interest is the minimal nonnegative solution. The
equation has attracted much attention recently [1, 4, 10, 11, 14, 16, 17, 18, 21, 24, 26].

For application to Markov models, the case of primary interest is the one where
M is an irreducible singular M -matrix with zero row sums. When M is an irreducible
singular M -matrix, we have M = ρ(N)I−N for some irreducible nonnegative matrix
N . Thus, by applying the Perron–Frobenius theorem to N , there are positive vectors
u1, v1 ∈ R

n and u2, v2 ∈ R
m such that

M(vT1 vT2)T = 0, (uT
1 uT

2)M = 0,(1.3)

and the vectors (vT1 vT2) and (uT
1 uT

2) are each unique up to a scalar multiple.
Since M is a nonsingular M -matrix or an irreducible singular M -matrix, we have

B,C ≥ 0, and A and D are nonsingular M -matrices (see [10], for example). Therefore,
the matrix I ⊗A+DT ⊗ I is also a nonsingular M -matrix, where ⊗ is the Kronecker
product. Some properties of the NARE (1.1) are summarized below. See [10, 11, 13]
for more details.

Theorem 1.1. Assume that M is a nonsingular M -matrix or an irreducible
singular M -matrix. Then the NARE (1.1) has a minimal nonnegative solution S. If
M is irreducible, then S > 0 and A − SC and D − CS are irreducible M -matrices.
If M is a nonsingular M -matrix, then A − SC and D − CS are nonsingular M -
matrices. If M is a nonsingular M -matrix or an irreducible singular M -matrix with
uT

1 v1 �= uT
2 v2, then

MS = I ⊗ (A− SC) + (D − CS)T ⊗ I

is a nonsingular M -matrix. If M is an irreducible singular M -matrix with uT
1 v1 =

uT
2 v2, then MS is an irreducible singular M -matrix.

We will also need the dual equation of (1.1):

Y BY − Y A−DY + C = 0.(1.4)

This equation has the same type as (1.1): the matrix[
A −B
−C D

]
is a nonsingular M -matrix or an irreducible singular M -matrix if and only if the matrix
M has the same property. The minimal nonnegative solution of (1.4) is denoted by Ŝ.

A number of numerical methods have been studied for finding the minimal solu-
tion S, some of which require additional assumptions on the NARE (1.1). In particu-
lar, a class of basic fixed-point iterations has been studied in [10] and [16]. The Schur
method has been studied in [10] and a modified Schur method is given in [14]. These
methods are applicable without further assumptions on (1.1). Newton’s method has
also been studied in [10] and [16], where convergence of the Newton sequence {Xk},
with X0 = 0, to the minimal solution S has been established under the additional
assumption that

B,C �= 0, (I ⊗A + DT ⊗ I)−1vecB > 0.(1.5)

Here, the vec operator stacks the columns of a matrix into one long vector. When M
is irreducible, we have B,C �= 0. However, the condition (I⊗A+DT ⊗ I)−1vecB > 0

398 CHUN-HUA GUO AND NICHOLAS J. HIGHAM

is not guaranteed by the irreducibility of M , as is shown in [10]. The question then
arises as to whether (1.5) is necessary for the convergence of the Newton iteration.
Our first contribution in this paper is a proof of convergence without this additional
condition.

When M is an irreducible singular M -matrix and uT
1 v1 = uT

2 v2, the matrix MS

is a singular M -matrix. In this case, Newton’s method has a singular Jacobian at
the solution, and thus we cannot expect to find an accurate solution by the Newton
iteration in finite precision arithmetic. A modified Schur method has been proposed
in [14] to find a more accurate solution when uT

1 v1 ≈ uT
2 v2. Another approach is

to transform the bilateral equation (1.1) into a unilateral equation and use methods
based on cyclic reduction, including the Latouche–Ramaswami (LR) algorithm [23],
in combination with a shift technique proposed in [19].

The design of numerical methods for finding the minimal solution with higher
accuracy is related to the perturbation behavior of the minimal solution. The minimal
solution S is a function of M in (1.2). If the matrix M is perturbed to M̃ , which is
always assumed to be again a nonsingular M -matrix or an irreducible singular M -
matrix, and S̃ is the new minimal solution, we would like to know the relation between
‖S̃ − S‖ and ‖M̃ −M‖, where ‖ · ‖ is any matrix norm. Our second contribution is
to prove the following.

• If M is a nonsingular M -matrix or an irreducible singular M -matrix with
uT

1 v1 �= uT
2 v2, then there exist constants γ > 0 and ε > 0 such that ‖S̃−S‖ ≤

γ‖M̃ −M‖ for all M̃ with ‖M̃ −M‖ < ε.
• If M is an irreducible singular M -matrix with uT

1 v1 = uT
2 v2, then there exist

constants γ > 0 and ε > 0 such that
(a) ‖S̃ − S‖ ≤ γ‖M̃ −M‖1/2 for all M̃ with ‖M̃ −M‖ < ε;

(b) ‖S̃ − S‖ ≤ γ‖M̃ −M‖ for all singular M̃ with ‖M̃ −M‖ < ε.
This result tells us that to achieve high accuracy for S when M is an irreducible
singular M -matrix with uT

1 v1 ≈ uT
2 v2, it is necessary to use the singularity of M in

the design of algorithms. Otherwise, we can only expect to achieve an accuracy of

O(ε
1/2
m), where εm is the machine epsilon. The modified Schur method in [14] and the

methods using a shift technique in [4] and [14] all use the singularity of M . However,
the use of the shift technique creates a new problem: it is not clear whether the
resulting algorithm may break down, although quadratic convergence is guaranteed
if no breakdown occurs. Our third contribution is to show that the (simplified) LR
algorithm with a shift technique, presented in [14], is breakdown-free.

2. Convergence of Newton’s method. The Riccati function R is a mapping
from R

m×n into itself. The Fréchet derivative of R at a matrix X is a linear map
R′

X : R
m×n → R

m×n given by

R′
X(Z) = −

(
(A−XC)Z + Z(D − CX)

)
.(2.1)

The Newton method for the solution of (1.1) is

Xi+1 = Xi − (R′
Xi

)−1R(Xi), i = 0, 1, . . . ,(2.2)

where the maps R′
Xi

all need to be nonsingular. In view of (2.1), the iteration (2.2)
is equivalent to

(A−XiC)Xi+1 + Xi+1(D − CXi) = B −XiCXi, i = 0, 1,(2.3)

A NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 399

We will need the following well-known result (see [2], for example).
Theorem 2.1. For a Z-matrix A, the following are equivalent:
(a) A is a nonsingular M -matrix.
(b) A−1 ≥ 0.
(c) Av > 0 for some vector v > 0.
(d) All eigenvalues of A have positive real parts.
The equivalence of (a) and (c) in Theorem 2.1 implies the next result.
Lemma 2.2. Let A be a nonsingular M -matrix. If B ≥ A is a Z-matrix, then B

is also a nonsingular M -matrix.
We can now give a proof of convergence of the Newton iteration that does not

require the assumption (1.5) made in [10].
Theorem 2.3. Let S be the minimal nonnegative solution of (1.1). Then for the

Newton iteration (2.3) with X0 = 0, the sequence {Xi} is well defined, Xk ≤ Xk+1 ≤ S
for all k ≥ 0, and limi→∞ Xi = S.

Proof. Throughout the proof, we use the notation

MX = I ⊗ (A−XC) + (D − CX)T ⊗ I

for a given matrix X (this notation is consistent with the notation MS already used
in Theorem 1.1). Since S is a solution of (1.1),

SCS − SD −AS + B = 0.(2.4)

For the Newton iteration (2.3) with X0 = 0, we have AX1 + X1D = B, which is
equivalent to

(I ⊗A + DT ⊗ I)vecX1 = vecB.(2.5)

Since I ⊗ A + DT ⊗ I is a nonsingular M -matrix, Theorem 2.1(b) and (2.5) imply
vecX1 ≥ 0, i.e., X1 ≥ 0.

We first assume that M is a nonsingular M -matrix, and we will prove by induction
that

Xk ≤ Xk+1, Xk ≤ S, MXk
is a nonsingular M -matrix(2.6)

for k ≥ 0. It is clear that (2.6) is true for k = 0. We now assume that (2.6) is true
for k = i ≥ 0. By (2.3) and (2.4) we have

(A−XiC)(Xi+1 − S) + (Xi+1 − S)(D − CXi)(2.7)

= B −XiCXi −AS + XiCS − SD + SCXi

= −(S −Xi)C(S −Xi).

Since Xi ≤ S and MXi is a nonsingular M -matrix, it follows from Theorem 2.1(b)
and (2.7) that Xi+1 ≤ S. Since MS is a nonsingular M -matrix by Theorem 1.1, it
follows from Lemma 2.2 that MXi+1

is a nonsingular M -matrix. By (2.3),

(A−Xi+1C)Xi+1 + Xi+1(D − CXi+1)(2.8)

=
(
A−XiC − (Xi+1 −Xi)C

)
Xi+1 + Xi+1

(
D − CXi − C(Xi+1 −Xi)

)
= B −XiCXi − (Xi+1 −Xi)CXi+1 − (Xi + Xi+1 −Xi)C(Xi+1 −Xi)

= B −Xi+1CXi+1 − (Xi+1 −Xi)C(Xi+1 −Xi).

400 CHUN-HUA GUO AND NICHOLAS J. HIGHAM

By (2.8) and (2.3),

(A−Xi+1C)(Xi+1 −Xi+2) + (Xi+1 −Xi+2)(D − CXi+1)

= −(Xi+1 −Xi)C(Xi+1 −Xi) ≤ 0.

Therefore, Xi+1 ≤ Xi+2. We have thus proved that (2.6) is true for k = i+ 1. Hence
(2.6) is true for all k ≥ 0 by induction.

We now assume that M is an irreducible singular M -matrix. Then S > 0 by
Theorem 1.1. Thus, the statement

Xk ≤ Xk+1, Xk < S, MXk
is a nonsingular M -matrix(2.9)

is true for k = 0. Assume that (2.9) is true for k = i ≥ 0. Then, by (2.7) we get
Xi+1 < S. It follows from (2.8) and (2.4) that

(A−Xi+1C)(Xi+1 − S) + (Xi+1 − S)(D − CXi+1)

= −(Xi+1 −Xi)C(Xi+1 −Xi) − (Xi+1 − S)C(Xi+1 − S) < 0.

Therefore, MXi+1
vec(S − Xi+1) > 0. Thus MXi+1

is a nonsingular M -matrix by
Theorem 2.1(c). It follows as before that Xi+1 ≤ Xi+2. So (2.9) is true for k = i+ 1,
and hence for all k ≥ 0 by induction.

Therefore, in both cases, the Newton sequence Xk is well defined, monotonically
increasing, and bounded above by S. Let limk→∞ Xk = X∗. Then X∗ is a nonnegative
solution of (1.1) by (2.3). Since X∗ ≤ S and S is minimal, we have X∗ = S.

3. Perturbation analysis for the minimal solution. In this section we are
interested in a qualitative description of the perturbation of the minimal nonnegative
solution S of (1.1) as a function of M . The perturbation analysis of the minimal
solution will be carried out through the perturbation analysis of a proper invariant
subspace of the matrix

L =

[
D −C
B −A

]
=

[
I 0
0 −I

]
M.(3.1)

Let all eigenvalues of L be arranged in descending order of their real parts and
be denoted by λ1, . . . , λn, λn+1, . . . , λn+m. Then (see [10])

σ(D − CS) = {λ1, . . . , λn}

and

σ(A− SC) = σ(A−BŜ) = {−λn+1, . . . ,−λn+m},(3.2)

where Ŝ is the minimal nonnegative solution of the dual equation (1.4). If M is
a nonsingular M -matrix, then λ1, . . . , λn ∈ C

+ (the open right half plane) and
λn+1, . . . , λn+m ∈ C

− (the open left half plane). If M is an irreducible singular
M -matrix, then λ1, . . . , λn−1 ∈ C

+, λn+2, . . . , λn+m ∈ C
−. Moreover,

• if uT
1 v1 > uT

2 v2, then λn = 0 and λn+1 < 0 are simple eigenvalues;
• if uT

1 v1 < uT
2 v2, then λn > 0 and λn+1 = 0 are simple eigenvalues;

• if uT
1 v1 = uT

2 v2, then λn = λn+1 = 0 is a double eigenvalue with only one
linearly independent eigenvector.

A NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 401

Therefore, in all cases, there is a unique invariant subspace of L corresponding to the
eigenvalues λ1, . . . , λn. Let the invariant subspace be Im [UT

1 UT
2]T , where U1 ∈ C

n×n,
U2 ∈ C

m×n and Im U denotes the image (or range) of the matrix U . Then U1 is
nonsingular and S = U2U

−1
1 (see [10]).

When M is an irreducible M -matrix, the matrices D − CS and A− SC are also
irreducible M -matrices by Theorem 1.1. Since A−SC and (D−CS)T can be written
in the form sI −N , where N ≥ 0 is irreducible, it follows from the Perron–Frobenius
theorem that there exist unique positive vectors a and b with unit 1-norm such that

(A− SC)a = −λn+1a, bT (D − CS) = λnb
T .(3.3)

Since M is irreducible, we have C �= 0 and thus bTCa > 0. We will need the following
result [7] in the perturbation analysis below.

Theorem 3.1. Assume that M is an irreducible nonsingular M -matrix or an
irreducible singular M -matrix with uT

1 v1 �= uT
2 v2. Then there exists a second positive

solution S+ of (1.1) given by

S+ = S + δabT ,(3.4)

where the vectors a, b are specified in (3.3) and δ = (λn − λn+1)/b
TCa. Moreover,

σ(D − CS+) = {λ1, . . . , λn−1, λn+1}.(3.5)

Let M and N be any invariant subspaces of L. For any fixed norm ‖ · ‖ (for
definiteness we use the spectral norm), let θ(M,N) be the gap between M and N ,
defined by

θ(M,N) = ‖PM − PN ‖,

where PM and PN are the orthogonal projectors on M and N , respectively, with
orthogonality defined by the standard scalar product on C

m+n. See [8] or [22] for
properties of the gap metric.

We first consider the case where M is a nonsingular M -matrix or an irreducible
singular M -matrix with uT

1 v1 �= uT
2 v2. In this case, since the eigenvalues λ1, . . . , λn are

disjoint from the eigenvalues λn+1, . . . , λn+m, the invariant subspace corresponding
to the eigenvalues λ1, . . . , λn,

M = Im

[
U1

U2

]
= Im

[
I
S

]
,

is known to be Lipschitz stable [8], i.e., there exist constants γ1, ε > 0 such that every
matrix K satisfying ‖K − L‖ < ε has an invariant subspace N for which θ(M,N) ≤
γ1‖K−L‖. In particular, every L̃ = diag(I,−I)M̃ with ‖L̃−L‖ < ε has an invariant

subspace N for which θ(M,N) ≤ γ1‖L̃−L‖. Let N = Im[V T
1 V T

2]T . Then for ε small

enough, V1 is nonsingular and we let T = V2V
−1
1 . Then for ‖M̃ −M‖ = ‖L̃−L‖ < ε

θ

(
Im

[
I
S

]
, Im

[
I
T

])
≤ γ1‖M̃ −M‖.

Note that there is a constant γ2 > 0 such that [8]

γ−1
2 ‖T − S‖ ≤ θ

(
Im

[
I
S

]
, Im

[
I
T

])
≤ γ2‖T − S‖.

402 CHUN-HUA GUO AND NICHOLAS J. HIGHAM

Thus

‖T − S‖ ≤ γ1γ2‖M̃ −M‖.

For ε small enough, we know that the eigenvalues of D̃− C̃T are individually close to
the eigenvalues of D−CS, and hence they are the n eigenvalues of L̃ with the largest
real parts. It follows that T = S̃, the minimal nonnegative solution of (1.1) with M

replaced by M̃ .

We have thus proved the following result.

Theorem 3.2. If M is a nonsingular M -matrix or an irreducible singular M -
matrix with uT

1 v1 �= uT
2 v2, then there exist constants γ > 0 and ε > 0 such that

‖S̃ − S‖ ≤ γ‖M̃ −M‖ for all M̃ with ‖M̃ −M‖ < ε.

We now consider the case where M is an irreducible singular M -matrix with
uT

1 v1 = uT
2 v2. Let q1, q2, . . . , qn−1 be the eigenvectors and generalized eigenvectors

corresponding to the eigenvalues λ1, . . . , λn−1 and let v be the eigenvector correspond-
ing to the zero eigenvalue. Now,

Im

[
I
S

]
= Im[q1 q2 . . . qn−1] +̇ Im[v].

As in the previous case, there exist constants γ1, ε > 0 such that for any M̃ with
‖M̃ −M‖ < ε, L̃ has an invariant subspace N1 for which

θ(Im[q1 q2 . . . qn−1],N1) ≤ γ1‖M̃ −M‖.

We assume that ε is small enough such that the eigenvalues of L̃ corresponding to N1

are the n− 1 eigenvalues of L̃ with the largest real parts. Note that when M̃ is close
enough to M , M̃ is also irreducible. We consider two cases: (a) M̃ is nonsingular and

(b) M̃ is singular.

For case (a), L̃ has an eigenvalue λ̃n > 0 that is a perturbation of the zero

eigenvalue (with index two) of L. The eigenvector ṽ corresponding to λ̃n is such that

θ(Im[v], Im[ṽ]) ≤ γ2‖M̃ −M‖1/2

for some γ2 > 0 (see section 16.5 of [8] or section 5 of [9]). Now, there are constants
γ3, γ4 > 0 such that [8]

θ(Im[q1 q2 . . . qn−1] +̇ Im[v],N1 +̇ Im[ṽ])

≤ γ3[θ(Im[q1 q2 . . . qn−1],N1) + θ(Im[v], Im[ṽ])]

≤ γ4‖M̃ −M‖1/2.

It then follows as before that ‖S̃ − S‖ ≤ γ‖M̃ −M‖1/2 for some γ > 0.

For case (b), let ṽ be the eigenvector corresponding to the zero eigenvalue of L̃.

Then v and ṽ are also eigenvectors of M and M̃ corresponding to its simple zero
eigenvalue. It is known that

θ(Im[v], Im[ṽ]) ≤ γ2‖M̃ −M‖

A NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 403

for some γ2 > 0. If 0 = λ̃n ≥ λ̃n+1 then as before ‖S̃ − S‖ ≤ γ‖M̃ − M‖ for some

γ > 0. If 0 = λ̃n+1 < λ̃n then we use Theorem 3.1 with M replaced by M̃ (so

accordingly we have S̃, S̃+, ã, b̃, etc.) to get

‖S̃+ − S‖ ≤ γ3‖M̃ −M‖

for some γ3 > 0. Note that ‖S̃+ − S̃‖ ≤ ‖δ̃ ã b̃T ‖ ≤ γ4|λ̃n| for some γ4 > 0. The

eigenvalues of Ã − S̃+C̃ are −λ̃n,−λ̃n+2, . . . ,−λ̃n+m. The simple eigenvalue −λ̃n of

Ã − S̃+C̃ is a perturbation of the simple eigenvalue −λn+1 = 0 of A − SC. Thus

|λ̃n| ≤ γ5‖(Ã − S̃+C̃) − (A − SC)‖ ≤ γ6‖M̃ − M‖ for some γ5, γ6 > 0. Therefore

‖S̃ − S‖ ≤ ‖S̃+ − S‖ + ‖S̃+ − S̃‖ ≤ γ‖M̃ −M‖ for some γ > 0.
In summary, we have shown the following.
Theorem 3.3. If M is an irreducible singular M -matrix with uT

1 v1 = uT
2 v2, then

there exist constants γ > 0 and ε > 0 such that
(a) ‖S̃ − S‖ ≤ γ‖M̃ −M‖1/2 for all M̃ with ‖M̃ −M‖ < ε;

(b) ‖S̃ − S‖ ≤ γ‖M̃ −M‖ for all singular M̃ with ‖M̃ −M‖ < ε.
We illustrate the results in Theorem 3.3 with a simple example.
Consider the matrix

M =

[
1 −1
−1 1

]
and its three different perturbations

M1 =

[
1 + ε −1
−1 1

]
, M2 =

[
1 −(1 + ε)
−1 1 + ε

]
, M3 =

[
1 −1

−(1 + ε) 1

]
,

where 0 < ε < 1. Note that M satisfies the condition in Theorem 3.3, and that
S = 1 for the corresponding NARE (1.1). M1 is a nonsingular M -matrix and the
corresponding minimal solution is S1 = 1

2 (2 + ε −
√

4ε + ε2) ∼ 1 − ε1/2, which is
the situation in Theorem 3.3(a). M2 is an irreducible singular M -matrix and the
corresponding minimal solution is S2 = 1/(1 + ε) ∼ 1 − ε, which is the situation in
Theorem 3.3(b). M3 is not an M -matrix and the corresponding NARE does not have
real solutions.

The continuity of the minimal solution shown in Theorem 3.3 can be used to prove
the next result, where the statements are stronger than those given in [10, Thm. 4.8].
The result will be needed in section 4.

Theorem 3.4. Let M be an irreducible singular M -matrix.
(a) If uT

1 v1 = uT
2 v2, then Sv1 = v2 and Ŝv2 = v1.

(b) If uT
1 v1 > uT

2 v2, then Sv1 = v2 and Ŝv2 < v1.

(c) If uT
1 v1 < uT

2 v2, then Sv1 < v2 and Ŝv2 = v1.

Proof. We only need to prove the result for S since the result for Ŝ follows
immediately by duality. So we need to show Sv1 = v2 when uT

1 v1 ≥ uT
2 v2 and

Sv1 < v2 when uT
1 v1 < uT

2 v2. In fact,

(A− SC)(v2 − Sv1) = Av2 − SCv2 + (SCS −AS)v1

= Bv1 − SDv1 + (SD −B)v1 = 0.

If uT
1 v1 > uT

2 v2, then A − SC is nonsingular and so Sv1 = v2. If uT
1 v1 < uT

2 v2,
then A− SC is an irreducible singular M -matrix and v2 − Sv1 ≥ 0 is an eigenvector

404 CHUN-HUA GUO AND NICHOLAS J. HIGHAM

corresponding to the zero eigenvalue (it is already proved in [10] that Sv1 ≤ v2 and
Sv1 �= v2). By the Perron–Frobenius theorem, v2 − Sv1 > 0 and so Sv1 < v2. If
uT

1 v1 = uT
2 v2, then for

M(α) =

[
D −C

−αB αA

]
with α > 1, we have

u1(α) = u1, u2(α) = α−1u2, v1(α) = v1, v2(α) = v2.

So we have u1(α)T v1(α) > u2(α)T v2(α). It follows that S(α)v1(α) = v2(α). However,
limα→1+ S(α) = S by Theorem 3.3 and so Sv1 = v2.

4. Applicability of the shifted LR algorithm. In this section we assume
that M is an irreducible singular M -matrix. For the NARE (1.1) arising in the study
of Markov models, we have Me = 0, where e is the vector of ones. In that case, we
may take v1 = e ∈ R

n and v2 = e ∈ R
m in (1.3).

If M is a general irreducible singular M -matrix, we can transform (1.1) into a
new equation for which v1 = e and v2 = e. More precisely, (1.1) can be rewritten as

W (V −1
1 CV2)W −W (V −1

1 DV1) − (V −1
2 AV2)W + V −1

2 BV1 = 0(4.1)

with V1 = diag(v1), V2 = diag(v2), and W = V −1
2 XV1. Note that the minimal

nonnegative solution of (4.1) is S = V −1
2 SV1 and that[

V −1
1 DV1 −V −1

1 CV2

−V −1
2 BV1 V −1

2 AV2

] [
e
e

]
=

[
0
0

]
.(4.2)

It is clear that the leftmost matrix in (4.2) is still an irreducible singular M -matrix.
From now on, we assume that M is an irreducible singular M -matrix with Me = 0.

Ramaswami [26] made the interesting observation that the matrix equation (1.1)
is closely related to a quadratic matrix equation arising in quasi-birth-death processes.
To see this connection, let

a∗ = max
1≤i≤m

aii, d∗ = max
1≤i≤n

dii, θ∗ = max (a∗, d∗).(4.3)

Choose a number θ ≥ θ∗ and let P = I − 1
θM . Then P is nonnegative with Pe = e,

i.e., P is a stochastic matrix. Let

P =

[
P11 P12

P21 P22

]
,

where the partitioning is conformable with that for the matrix M . Thus

P11 = I − 1

θ
D, P12 =

1

θ
C, P21 =

1

θ
B, P22 = I − 1

θ
A.(4.4)

Ramaswami [26] constructed three nonnegative matrices from P :

A0 =

[
P11 0
1
2P21 0

]
, A1 =

[
0 P12

0 1
2P22

]
, A2 =

[
0 0
0 1

2I

]
.(4.5)

A NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 405

Associated with the matrices A0, A1, A2 are the matrix equation

G = A0 + A1G + A2G
2(4.6)

and its dual equation

F = A2 + A1F + A0F
2.(4.7)

We let G and F be the minimal nonnegative solutions of (4.6) and (4.7), respectively.
The next two results are known (see [26, Thm. 4.1] and [14]).
Proposition 4.1. The minimal nonnegative solution of (4.6) is

G =

[
P11 + P12S 0

S 0

]
,

where S is the minimal nonnegative solution of (1.1).
Proposition 4.2. The minimal nonnegative solution of (4.7) is

F =

[
0 Ŝ

0 (2I − P22 − P21Ŝ)−1

]
,

where Ŝ is the minimal nonnegative solution of (1.4).

Since (2I −P22 −P21Ŝ)−1 = (I + 1
θ (A−BŜ))−1 is a nonnegative matrix, ρ(F) =

ρ((2I −P22 −P21Ŝ)−1) is the largest positive eigenvalue of (I + 1
θ (A−BŜ))−1, which

is 1/(1 − 1
θλn+1). Similarly, ρ(G) = ρ(P11 + P12S) = ρ(I − 1

θ (D − CS)) = 1 − 1
θλn.

The solution G can be computed by the LR algorithm [23], which is essentially
the cyclic reduction algorithm combined with block-diagonal scaling (see [12]).

Algorithm 4.3. Set

L(0) = (I −A1)
−1A0,

H(0) = (I −A1)
−1A2,

G(0) = L(0),

T (0) = H(0).

For k = 0, 1, . . . , compute

U (k) = H(k)L(k) + L(k)H(k),

L(k+1) = (I − U (k))−1(L(k))2,

H(k+1) = (I − U (k))−1(H(k))2,

G(k+1) = G(k) + T (k)L(k+1),

T (k+1) = T (k)H(k+1).

It is shown in [23] that the matrices H(k) and L(k) are well defined and nonnegative
and that the sequence {G(k)} converges quadratically to the matrix G, except for a
critical case which corresponds to the case uT

1 e = uT
2 e in the NARE (1.1). In the

latter case, the convergence is expected to be linear with rate 1/2 (see [12] and [14]).

406 CHUN-HUA GUO AND NICHOLAS J. HIGHAM

When m = n, the LR algorithm needs about 400
3 n3 flops each iteration. Using the

special structure of the matrices A0, A1, A2, we can simplify the LR algorithm and
the simplified algorithm requires about 124

3 n3 flops each iteration [14]. The simplified
LR algorithm is less expensive than Newton’s method, which requires roughly 60n3

flops each iteration when m = n. However, there are examples [1] for which the
(simplified) LR algorithm requires many more iterations than Newton’s method, even
though they both have quadratic convergence.

The matrix G(k) from Algorithm 4.3 has the form

G(k) =

[
G

(k)
1 0

G
(k)
2 0

]
,

and the solution S is approximated by the matrices Sk = G
(k)
2 . It is shown in [14]

that

lim sup
k→∞

2k+1
√
‖Sk − S‖ ≤ ρ(F)ρ(G),(4.8)

so Sk converges to S quadratically when ρ(F)ρ(G) < 1 and the convergence will be
fast if ρ(F)ρ(G) is not close to 1.

Since

ρ(F) = 1/

(
1 − 1

θ
λn+1

)
, ρ(G) = 1 − 1

θ
λn

are nondecreasing functions of θ for θ ≥ θ∗, we should take θ = θ∗ in (4.4) to have
faster convergence for the (simplified) LR algorithm.

Note that when uT
1 e = uT

2 e, Se = e and Ŝe = e by Theorem 3.4. So Fe = Ge = e,
ρ(F) = ρ(G) = 1 and the convergence is expected to be linear with rate 1/2. To have
faster convergence when uT

1 e ≥ uT
2 e, we need to use a shift technique [19] for the

(simplified) LR algorithm. The case uT
1 e < uT

2 e for the NARE will be reduced to the
case uT

1 e > uT
2 e for a new NARE of the same type.

4.1. Case uT
1 e ≥ uT

2 e. In this subsection we assume uT
1 e ≥ uT

2 e. In this case
Se = e and so G is stochastic. It is shown in [14] that the only eigenvalue of G on the
unit circle is the simple eigenvalue 1.

The shift technique introduced in [19] is H = G− evT , where v > 0 and vT e = 1.
For our purposes here, we only require that v ≥ 0 and vT e = 1. Then the eigenvalues
of H are those of G except that the eigenvalue 1 of G is replaced by 0, and H is a
solution of the new equation

H = B0 + B1H + B2H
2,(4.9)

where

B0 = A0(I − evT), B1 = A1 + A2ev
T , B2 = A2.(4.10)

It is shown in [14] that there is a matrix K with ρ(K) = ρ(F) such that

K = B2 + B1K + B0K
2.(4.11)

A NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 407

To find the solution H of (4.9), we can apply Algorithm 4.3 with the triple
(A0, A1, A2) replaced by the triple (B0, B1, B2). To avoid confusion, we will put a
“hat” on each sequence generated. We take

v =

[
p
0

]
,(4.12)

where p ∈ R
n is positive and pT e = 1. In this way we can get a simplified LR

algorithm as before, with no increase in computational work for each iteration. Note

that S is now approximated by Ŝk = Ĝ
(k)
2 + epT .

It is shown in [14] that when Algorithm 4.3 is applied with (A0, A1, A2) replaced
by (B0, B1, B2), the matrix I − B1 in the initialization step is always invertible.

Assuming that I − Û (k) is invertible for each k ≥ 0, it is shown in [14] that

lim sup
k→∞

2k+1
√
‖Ŝ(k) − S‖ ≤ ρ(K)ρ(H) = ρ(F)ρ(H) < 1.(4.13)

Since ρ(H) < ρ(G), the shift technique has improved the speed of convergence. In

particular, Ŝ(k) converges to S quadratically whenever uT
1 e ≥ uT

2 e. It is also shown in

[14] that I − Û (k) converges to I quadratically, assuming that I − Û (k) is nonsingular
for all k ≥ 0.

The problem as to whether the matrices I − Û (k) could be singular for small k
was unsolved in [14]. We will now solve this problem.

We proceed as in [6] but depart from [6] at some point. Let

Tk =

⎡⎢⎢⎢⎢⎣
I −A1 −A2

−A0 I −A1
. . .

. . .
. . . −A2

−A0 I −A1

⎤⎥⎥⎥⎥⎦
and

T̂k =

⎡⎢⎢⎢⎢⎣
I −B1 −B2

−B0 I −B1
. . .

. . .
. . . −B2

−B0 I −B1

⎤⎥⎥⎥⎥⎦
be block k × k Toeplitz matrices. Since the LR algorithm is well defined if and only
if the cyclic reduction (CR) algorithm is well defined [5], it follows from Theorem 13

of [3] that the matrices T2j−1 are nonsingular for all j ≥ 1 and that I − Û (k) are

nonsingular for all k ≥ 0 if T̂2j−1 are nonsingular for all j ≥ 2. The relation between

Tk and T̂k (for k ≥ 3) has been obtained in [6] as

T̂k = Tk

⎡⎢⎢⎢⎣
I
V I
...

. . .
. . .

V . . . V I

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
0
...
0

−A2

⎤⎥⎥⎥⎦ [
V V . . . V

]
,(4.14)

where V = evT . Note that this relation can be obtained directly from (4.10). Let
Qk and Pk be the (k, 1) block and (k, k) block of T−1

k , respectively. From (4.14), it

408 CHUN-HUA GUO AND NICHOLAS J. HIGHAM

is shown in [6] that T̂k is nonsingular if and only if vTPkA2e �= 1. From the proof of
Theorem 9 in [6] we also know that

vTQkA0e + vTPkA2e = 1.(4.15)

In the case where v is taken to be positive and uT
1 e > uT

2 e, it has been shown in [6]
that vTPkA2e �= 1, using, among other things, the canonical factorizations of matrix
polynomials and the so-called asymptotic applicability of the SCR (CR with a shift
technique). So, the argument in [6] is very involved and it does not cover the case
uT

1 e = uT
2 e. Suppose SCR were to break down for the case uT

1 e = uT
2 e. Then near-

breakdown would happen to SCR with uT
1 e > uT

2 e, but uT
1 e ≈ uT

2 e. Moreover, as
we mentioned earlier, we need to take the vector v in the form (4.12) to avoid an
increase in computational work when using the shift technique. Fortunately, we can
prove the applicability of the LR algorithm, with a shift given by (4.12), for all cases
with uT

1 e ≥ uT
2 e and θ > θ∗. Moreover, the proof is very simple.

In fact, what we need to prove is vTQkA0e > 0, which implies vTPkA2e �= 1 by
(4.15). Note that

T−1
k ≥

⎡⎢⎢⎢⎣
I

−A0 I
. . .

. . .

−A0 I

⎤⎥⎥⎥⎦
−1

=

⎡⎢⎢⎢⎣
I
A0 I
...

. . .
. . .

Ak−1
0 · · · A0 I

⎤⎥⎥⎥⎦ .(4.16)

So Qk ≥ Ak−1
0 and hence vTQkA0e ≥ vTAk

0e. For A0 given by (4.5), we have

Ak
0 =

[
P k

11 0
1
2P21P

k−1
11 0

]
.

Therefore, vTQkA0e ≥ pTP k
11e, by (4.12). Recall that the nonnegative matrix P11 is

given by P11 = I − 1
θD. If the diagonal elements dii of D are not all equal or a∗ and

d∗ defined in (4.3) satisfy d∗ < a∗, then P11 has at least one nonzero diagonal element
and hence pTP k

11e > 0 for all k ≥ 1 and for all θ ≥ θ∗. If the elements dii are all equal
and d∗ ≥ a∗, then pTP k

11e > 0 for all k ≥ 1 and all θ > θ∗ = d∗.
Theorem 4.4. Algorithm 4.3 can be applied with no breakdown when the shift

technique is used, i.e., when the matrices A0, A1, A2 in (4.5) are replaced by the ma-
trices B0, B1, B2 defined in (4.10), for all θ ≥ θ∗ if the diagonal elements dii of D
are not all equal or d∗ < a∗, and for all θ > θ∗ if the elements dii are all equal and
d∗ ≥ a∗.

When the elements dii of D are all equal, it is possible for P11 to be nilpotent if
we take θ = θ∗. One simple example is

M =

⎡⎢⎢⎣
1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

⎤⎥⎥⎦ .(4.17)

For this example with θ = 1, pTP k
11e = 0 for k ≥ 2. However, it is very likely that we

still have vTQkA0e > 0 since the lower bound in (4.16) is not tight.
For the LR algorithm without a shift, the number ρ(F)ρ(G) in (4.8) in minimized

for θ = θ∗. So θ = θ∗ is optimal in this sense and should be recommended. For the LR
algorithm with a shift, however, the optimal θ should minimize ρ(F)ρ(H) in (4.13).

A NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 409

When uT
1 e = uT

2 e, we have λn+1 = 0 and ρ(F) = 1 for any θ. When uT
1 e > uT

2 e
but uT

1 e ≈ uT
2 e, we have λn+1 ≈ 0 and hence the effect of θ on ρ(F) is very limited.

So one should try to minimize ρ(H). Note that ρ(H) = max1≤i≤n−1 |1− 1
θλi|. For the

matrix M given by (4.17), the corresponding matrix L has eigenvalues
√

2, 0, 0,−
√

2.
So ρ(F) = 1 and ρ(H) is minimized for θ =

√
2 and the minimum is 0. This exam-

ple shows that θ = θ∗ is not necessarily optimal when the shift technique is used.
We can also give a necessary and sufficient condition for θ∗ to be optimal. Let
D = {z ∈ C : |z − 1| < 1}. Then λi/θ∗ ∈ D for i = 1, . . . , n− 1 since ρ(H) < 1. Let
D1 = {z ∈ C : |z− 1/2| ≤ 1/2}, D2 = D \D1, I1 = {1 ≤ i ≤ n− 1 : λi/θ∗ ∈ D1}, and
I2 = {1 ≤ i ≤ n− 1 : λi/θ∗ ∈ D2}. Then we have the following result.

Proposition 4.5. For θ ∈ [θ∗,∞), ρ(H) attains its minimum at θ = θ∗ if and
only if

max
i∈I1

|1 − λi/θ∗| ≥ max
i∈I2

|1 − λi/θ∗|,

where the maximum over an empty set is defined to be zero.
Proof. Note that for any point (other than 0) on the circle |z − 1/2| = 1/2, the

boundary of D1, the line passing through z and 0 is perpendicular to the line passing
through z and 1. If maxi∈I1 |1−λi/θ∗| ≥ maxi∈I2 |1−λi/θ∗|, then for any θ > θ∗ and
i ∈ I1, which is nonempty, |1− λi/θ| > |1− λi/θ∗| and thus ρ(H) is minimized at θ∗.
On the other hand, if maxi∈I1 |1 − λi/θ∗| < maxi∈I2 |1 − λi/θ∗|, we can take θ > θ∗
such that

max
i∈I1

|1 − λi/θ| < max
i∈I2

|1 − λi/θ| < max
i∈I2

|1 − λi/θ∗|.

(The first inequality holds when θ−θ∗ is small enough and the second inequality holds
when θ− θ∗ is small enough so that λi/θ ∈ D2 for i ∈ I2.) Thus ρ(H) does not attain
its minimum at θ∗.

In practice, we would not compute the eigenvalues λ1, . . . , λn−1 when we use the
LR algorithm. However, the above result shows that θ = θ∗ is often not optimal when
the shift technique is used. Therefore, when the diagonal elements dii of D are all
equal and d∗ ≥ a∗, we can simply take θ > θ∗ = d∗ (say θ = 1.1θ∗) to ensure the
applicability of the LR algorithm with a shift.

4.2. Case uT
1 e < uT

2 e. We now assume uT
1 e < uT

2 e. Then Se < e by Theo-
rem 3.4. We will reduce this case to the case uT

1 e > uT
2 e for a new NARE of the same

type, and the substochastic minimal solution S of the original NARE will be obtained
from the stochastic minimal solution of the new NARE. This reduction process is in
essence similar to the one given in [25]. The difference is that the reduction here is
given directly on the Riccati equation, rather than on the unilateral matrix equation
obtained through the Ramaswami construction.

As in [15, Lem. 5.1] we note that the minimal nonnegative solution S of the NARE
(1.1) is such that S = ZT , where Z is the minimal nonnegative solution of the new
NARE

ZCTZ − ZAT −DTZ + BT = 0.(4.18)

As at the beginning of section 4, (4.18) can be rewritten as

W (U−1
2 CTU1)W −W (U−1

2 ATU2) − (U−1
1 DTU1)W + U−1

1 BTU2 = 0,(4.19)

410 CHUN-HUA GUO AND NICHOLAS J. HIGHAM

with U1 = diag(u1), U2 = diag(u2), and W = U−1
1 ZU2. Now the irreducible singular

M -matrix corresponding to (4.19) is

M̂ =

[
U−1

2 ATU2 −U−1
2 CTU1

−U−1
1 BTU2 U−1

1 DTU1

]
.

It is easy to see that (uT
2 uT

1)M̂ = 0 and M̂e = 0. Since uT
2 e > uT

1 e, the new
NARE (4.19) has a stochastic minimal solution W and it can be computed as in
section 4.1. The substochastic minimal solution S of the original NARE is obtained
through S = U−1

2 WTU1.

For the above procedure, we need to compute the vector (uT
1 uT

2)T accurately since
it determines the coefficient matrices of the NARE (4.19). This can be done by using
the LU factorization of the irreducible singular M -matrix MT , and the computational
work is very minor compared with that required by each iteration for the simplified LR
algorithm. So the shift technique is worthwhile as long as we can save one iteration.
Moreover, as our perturbation analysis in section 3 suggests, the minimal solution
computed by the LR algorithm without a shift is much more vulnerable to rounding
errors when uT

1 e ≈ uT
2 e.

We use one example to illustrate the usefulness of the above procedure. Consider
the NARE (1.1) with m = n = 100 and

A =

⎡⎢⎢⎢⎣
3 −1

. . .
. . .

3 −1
−1 1.9

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
1 1

. . .
. . .

1 1
0.9

⎤⎥⎥⎥⎦ ,

C =

⎡⎢⎢⎢⎣
1
1 1

. . .
. . .

1 1

⎤⎥⎥⎥⎦ , D =

⎡⎢⎢⎢⎢⎣
2 −1

3
. . .

. . . −1
−1 3

⎤⎥⎥⎥⎥⎦ .

It is easily verified that Me = 0 and uT
1 e < uT

2 e. We apply the (simplified) LR algo-
rithm with a shift to the NARE (4.19) (so the matrices A,B,C,D in (4.4) are replaced
accordingly), with θ = 3 in (4.4) and p = m−1e in (4.12). After 6 iterations we find

an approximation W̃ to W with ‖R(W̃)‖∞ = 4.4 × 10−11. We then use W̃ to get an

approximation S̃ to S with ‖R(S̃)‖∞ = 6.1 × 10−11. A very accurate approximation
to S (with residual 2.3 × 10−14) can be obtained by performing 7 iterations instead
and we take it as the “exact” solution S. We now apply the (simplified) LR algorithm
without a shift to the NARE (1.1), with θ = 3 in (4.4). We find after 13 iterations an

approximation S̃′ to S, with ‖R(S̃′)‖∞ = 6.0× 10−10. However, the accuracy in this

case is much lower than the residual suggests. Indeed, we find ‖S̃−S‖∞ = 1.4×10−10

but ‖S̃′ − S‖∞ = 4.2 × 10−7. So the (simplified) LR algorithm with a shift is more
efficient and more accurate.

5. Conclusions. In this further study of a class of NAREs, we have been able to
relax the condition for the convergence of Newton’s method to the minimal solution.
The qualitative perturbation analysis for the minimal solution, while of independent

A NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 411

interest, is instructive in designing algorithms for finding more accurate approxima-
tions. For the NAREs arising in Markov models, we have shown that the LR algo-
rithm, combined with a shift technique, is breakdown-free in all cases and therefore
is guaranteed to find the minimal solution more efficiently and more accurately.

Acknowledgments. This work was carried out while the first author visited
MIMS in the School of Mathematics at the University of Manchester; he thanks the
School for its hospitality. Both authors thank the referees for their helpful com-
ments. In particular, comments from one referee led to a significant improvement of
section 4.2.

REFERENCES

[1] N. G. Bean, M. M. O’Reilly, and P. G. Taylor, Algorithms for return probabilities for
stochastic fluid flows, Stoch. Models, 21 (2005), pp. 149–184.

[2] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, revised
reprint of the 1979 Academic Press original, SIAM, Philadelphia, PA, 1994.

[3] D. A. Bini, L. Gemignani, and B. Meini, Computations with infinite Toeplitz matrices and
polynomials, Linear Algebra Appl., 343–344 (2002), pp. 21–61.

[4] D. A. Bini, B. Iannazzo, G. Latouche, and B. Meini, On the solution of Riccati equations
arising in fluid queues, Linear Algebra Appl., 413 (2006), pp. 474–494.

[5] D. A. Bini, G. Latouche, and B. Meini, Solving matrix polynomial equations arising in
queueing problems, Linear Algebra Appl., 340 (2002), pp. 225–244.

[6] D. A. Bini, B. Meini, and I. M. Spitkovsky, Shift techniques and canonical factorizations in
the solution of M/G/1-type Markov chains, Stoch. Models, 21 (2005), pp. 279–302.

[7] S. Fital and C.-H. Guo, Convergence of the solution of a nonsymmetric matrix Riccati dif-
ferential equation to its stable equilibrium solution, J. Math. Anal. Appl., 318 (2006),
pp. 648–657.

[8] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Matrices with Applica-
tions, John Wiley & Sons, New York, 1986.

[9] I. Gohberg and L. Rodman, On the distance between lattices of invariant subspaces of ma-
trices, Linear Algebra Appl., 76 (1986), pp. 85–120.

[10] C.-H. Guo, Nonsymmetric algebraic Riccati equations and Wiener–Hopf factorization for M-
matrices, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 225–242.

[11] C.-H. Guo, A note on the minimal nonnegative solution of a nonsymmetric algebraic Riccati
equation, Linear Algebra Appl., 357 (2002), pp. 299–302.

[12] C.-H. Guo, Convergence analysis of the Latouche–Ramaswami algorithm for null recurrent
quasi-birth-death processes, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 744–760.

[13] C.-H. Guo, On a quadratic matrix equation associated with an M-matrix, IMA J. Numer.
Anal., 23 (2003), pp. 11–27.

[14] C.-H. Guo, Efficient methods for solving a nonsymmetric algebraic Riccati equation arising in
stochastic fluid models, J. Comput. Appl. Math., 192 (2006), pp. 353–373.

[15] C.-H. Guo, B. Iannazzo, and B. Meini, On the Doubling Algorithm for a (Shifted) Nonsym-
metric Algebraic Riccati Equation, Technical Report, 2006; available online at http://www.
math.uregina.ca/~chguo/gim06.pdf.

[16] C.-H. Guo and A. J. Laub, On the iterative solution of a class of nonsymmetric algebraic
Riccati equations, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 376–391.

[17] X.-X. Guo and Z.-Z. Bai, On the minimal nonnegative solution of nonsymmetric algebraic
Riccati equation, J. Comput. Math., 23 (2005), pp. 305–320.

[18] X.-X. Guo, W.-W. Lin, and S.-F. Xu, A structure-preserving doubling algorithm for nonsym-
metric algebraic Riccati equation, Numer. Math., 103 (2006), pp. 393–412.

[19] C. He, B. Meini, and N. H. Rhee, A shifted cyclic reduction algorithm for quasi-birth-death
problems, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 673–691.

[20] J. Juang, Existence of algebraic matrix Riccati equations arising in transport theory, Linear
Algebra Appl., 230 (1995), pp. 89–100.

[21] J. Juang and W.-W. Lin, Nonsymmetric algebraic Riccati equations and Hamiltonian-like
matrices, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 228–243.

[22] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford, 1995.
[23] G. Latouche and V. Ramaswami, A logarithmic reduction algorithm for quasi-birth-death

processes, J. Appl. Probab., 30 (1993), pp. 650–674.

412 CHUN-HUA GUO AND NICHOLAS J. HIGHAM

[24] L.-Z. Lu, Solution form and simple iteration of a nonsymmetric algebraic Riccati equation
arising in transport theory, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 679–685.

[25] V. Ramaswami, A duality theorem for the matrix paradigms in queueing theory, Comm. Statist.
Stochastic Models, 6 (1990), pp. 151–161.

[26] V. Ramaswami, Matrix analytic methods for stochastic fluid flows, in Proceedings of the 16th
International Teletraffic Congress, Elsevier Science B. V., Edinburgh, 1999, pp. 1019–1030.

[27] L. C. G. Rogers, Fluid models in queueing theory and Wiener–Hopf factorization of Markov
chains, Ann. Appl. Probab., 4 (1994), pp. 390–413.

[28] L. C. G. Rogers and Z. Shi, Computing the invariant law of a fluid model, J. Appl. Probab.,
31 (1994), pp. 885–896.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 413–433

A PARTIAL CONDITION NUMBER FOR LINEAR LEAST SQUARES
PROBLEMS∗

MARIO ARIOLI† , MARC BABOULIN‡ , AND SERGE GRATTON‡

Abstract. We consider here the linear least squares problem miny∈Rn ‖Ay− b‖2, where b ∈ R
m

and A ∈ R
m×n is a matrix of full column rank n, and we denote x its solution. We assume that

both A and b can be perturbed and that these perturbations are measured using the Frobenius or
the spectral norm for A and the Euclidean norm for b. In this paper, we are concerned with the
condition number of a linear function of x (LT x, where L ∈ R

n×k) for which we provide a sharp
estimate that lies within a factor

√
3 of the true condition number. Provided the triangular R factor

of A from ATA = RTR is available, this estimate can be computed in 2kn2 flops. We also propose a
statistical method that estimates the partial condition number by using the exact condition numbers
in random orthogonal directions. If R is available, this statistical approach enables us to obtain a
condition estimate at a lower computational cost. In the case of the Frobenius norm, we derive a
closed formula for the partial condition number that is based on the singular values and the right
singular vectors of the matrix A.

Key words. linear least squares, normwise condition number, statistical condition estimate,
parameter estimation

AMS subject classifications. 65F20, 65F35, 15A09, 15A12

DOI. 10.1137/050643088

1. Introduction. Perturbation theory has been applied to many problems of
linear algebra such as linear systems, linear least squares, or eigenvalue problems [1,
4, 11, 18]. In this paper we consider the problem of calculating the quantity LTx,
where x is the solution of the linear least squares problem (LLSP) minx∈Rn ‖Ax−b‖2,
where b ∈ R

m and A ∈ R
m×n is a matrix of full column rank n. This estimation is a

fundamental problem of parameter estimation in the framework of the Gauss–Markov
model [17, p. 137]. More precisely, we focus here on the evaluation of the sensitivity
of LTx to small perturbations of the matrix A and/or the right-hand side b, where
L ∈ R

n×k and x is the solution of the LLSP.
The interest for this question stems, for instance, from parameter estimation

where the parameters of the model can often be divided into two parts: the variables
of physical significance and a set of ancillary variables involved in the models. For
example, this situation occurs in the determination of positions using the GPS sys-
tem, where the three-dimensional coordinates are the quantities of interest, but the
statistical model involves other parameters such as clock drift and GPS ambiguities
[12] that are generally estimated during the solution process. It is then crucial to
ensure that the solution components of interest can be computed with satisfactory
accuracy. The main goal of this paper is to formalize this problem in terms of a condi-
tion number and to describe practical methods to compute or estimate this quantity.
Note that as far as the sensitivity of a subset of the solution components is concerned,
the matrix L is a projection whose columns consist of vectors of the canonical basis
of R

n.

∗Received by the editors October 19, 2005; accepted for publication (in revised form) by H. Park
September 28, 2006; published electronically April 3, 2007.

http://www.siam.org/journals/simax/29-2/64308.html
†Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK (m.arioli@rl.ac.uk).
‡CERFACS, 42 av. Gaspard Coriolis, 31057 Toulouse Cedex, France (baboulin@cerfacs.fr,

gratton@cerfacs.fr).

413

414 MARIO ARIOLI, MARC BABOULIN, AND SERGE GRATTON

The condition number of a map g : R
m �→ R

n at y0 measures the sensitivity of
g(y0) to perturbations of y0. If we assume that the data space R

m and the solution
space R

n are equipped, respectively, with the norms ‖.‖D and ‖.‖S , the condition
number K(y0) is defined by

K(y0) = lim
δ→0

sup
0<‖y0−y‖D≤δ

‖g(y0) − g(y)‖S
‖y0 − y‖D

,(1.1)

whereas the relative condition number is defined by K(rel)(y0) =K(y0)‖y0‖D/
‖g(y0)‖S . This definition shows that K(y0) measures an asymptotic sensitivity and
that this quantity depends on the chosen norms for the data and solution spaces. If
g is a Fréchet-differentiable (F-differentiable) function at y0, then K(y0) is the norm
of the F-derivative |||g′(y0)|||) (see [6]), where |||.||| is the operator norm induced by
the choice of the norms on the data and solution spaces.

For the full rank LLSP, we have g(A, b) = (ATA)−1AT b. If we consider the

product norm ‖(A, b)‖F =
√
‖A‖2

F + ‖b‖2
2 for the data space and ‖x‖2 for the solution

space, then [8] gives an explicit formula for the relative condition number K(rel)(A, b):

K(rel)(A, b) =
∥∥A†∥∥

2

(∥∥A†∥∥2

2
‖r‖2

2 + ‖x‖2
2 + 1

) 1
2 ‖(A, b)‖F

‖x‖2

,

where A† denotes the pseudoinverse of A, r = b−Ax is the residual vector, and ‖.‖F

and ‖.‖2 are, respectively, the Frobenius and Euclidean norms. But does the value of
K(rel)(A, b) give us useful information about the sensitivity of LTx? Can it in some
cases overestimate the error in components or on the contrary be too optimistic?

Let us consider the following example:

A =

⎛⎜⎜⎝
1 1 ε2

ε 0 ε2

0 ε ε2

ε2 ε2 2

⎞⎟⎟⎠ , x =

⎛⎝ ε
ε
1
ε

⎞⎠ , and b =

⎛⎜⎜⎝
3ε

ε2 + ε
ε2 + ε

2ε3 + 2
ε

⎞⎟⎟⎠ ,

where x is the exact solution of the LLSP minx∈R3 ‖Ax − b‖2. If we take ε = 10−8,
then we have x = (10−8, 10−8, 108)T and the solution computed in MATLAB using a
machine precision 2.22 ·10−16 is x̃ = (1.5 ·10−8, 1.5 ·10−8, 108)T . The LLSP condition
number is K(rel)(A, b) = 2.4 · 108 and the relative errors on the components of x are

|x1 − x̃1|
|x1|

=
|x2 − x̃2|

|x2|
= 0.5 and

|x3 − x̃3|
|x3|

= 0.

Then, if L =
(1 0

0 1
0 0

)
, we expect a large value for the condition number of LTx because

there is a 50% relative error on x1 and x2. If now L = (0, 0, 1)T , then we expect that
the condition number of LTx would be close to 1 because x̃3 = x3. For these two
values of L, the LLSP condition number is far from giving a good idea of the sensitivity
of LTx. Note in this case that the perturbations are due to roundoff errors.

Let us now consider a simple example in the framework of parameter estimation
where, in addition to roundoff errors, random errors are involved. Let b = {bi}i=1,...,10

be a series of observed values depending on data s = {si}, where si = 10 + i, i =
1, . . . , 10. We determine a 3-degree polynomial that approximates b in the least
squares sense, and we suppose that the following relationship holds:

b = x1 + x2
1

s
+ x3

1

s2
+ x4

1

s3
with x1 = x2 = x3 = x4 = 1.

A PARTIAL CONDITION NUMBER FOR LLSP 415

We assume that the perturbation on each bi is 10−8 multiplied by a normally dis-
tributed random number and denote by b̃ = {b̃i}i=1,...,10 the perturbed quantity.

This corresponds to the LLSP minx∈R4 ‖Ax− b̃‖2, where A is the Vandermonde ma-
trix defined by Aij = 1

sj−1
i

. Let x̃ and ỹ be the computed solutions corresponding to

two perturbed right-hand sides. Then we obtain the following relative errors on each
component:

|x̃1 − ỹ1|
|x̃1|

= 2 · 10−7,
|x̃2 − ỹ2|

|x̃2|
= 6 · 10−6,

|x̃3 − ỹ3|
|x̃3|

= 6 · 10−5, and
|x̃4 − ỹ4|

|x̃4|
= 10−4.

We have K(rel)(A, b) = 3.1 · 105. Regarding the disparity between the sensitivity of
each component, we need a quantity that evaluates more precisely the sensitivity of
each solution component of the LLSP.

The idea of analyzing the accuracy of some solution components in linear algebra
is by no means new. For linear systems Ax = b, A ∈ R

n and for LLSP, [3] defines
so-called componentwise condition numbers that correspond to amplification factors
of the relative errors in solution components due to perturbations of data A or b and
explains how to estimate them. In our formalism, these quantities are upper bounds
of the condition number of LTx, where L is a column of the identity matrix. We also
emphasize that the term “componentwise” refers here to the solution components and
must be distinguished from the metric used for matrices and for which [21] provides
a condition number for generalized inversion and linear least squares.

For LLSP, [14] provides a statistical estimate for componentwise condition num-
bers due to either relative or structured perturbations. In the case of linear systems, [2]
proposes a statistical approach, based on [13] that enables one to compute the condi-
tion number of LTx in O(n2).

Our approach differs from the previous studies in the following aspects:
1. We are interested in the condition of LTx, where L is a general matrix and

not only a canonical vector of R
n.

2. We are looking for a condition number based on the F-derivative, and not
only for an upper bound of this quantity.

We present in this paper three ways to obtain information on the condition of LTx.
The first one uses an explicit formula based on the singular value decomposition (SVD)
of A. The second is at the same time an upper bound of this condition number and
a sharp estimate of it. The third method supplies a statistical estimate. The choice
between these three methods will depend on the size of the problem (computational
cost) and on the accuracy desired for this quantity.

This paper is organized as follows. In section 2, we define the notion of a partial
condition number. Then, when perturbations on A are measured using a Frobenius
norm, we give a closed formula for this condition number in the general case where
L ∈ R

n×k and in the particular case when L ∈ R
n. In section 3, we establish bounds

of the partial condition number in Frobenius as well as in spectral norm, and we show
that these bounds can be considered as sharp estimates of it. In section 4 we describe
a statistical method that enables us to estimate the partial condition number. In
section 5 we present numerical results in order to compare the statistical estimate
and the exact condition number on sample matrices A and L. In section 6 we give
a summary comparing the three ways to compute the condition of LTx as well as a
numerical illustration. Finally some concluding remarks are given in section 7.

Throughout this paper we will use the following notation. We use the Frobenius
norm ‖.‖F and the spectral norm ‖.‖2 on matrices and the usual Euclidean ‖.‖2 on

416 MARIO ARIOLI, MARC BABOULIN, AND SERGE GRATTON

vectors. The matrix I is the identity matrix and ei is the ith canonical vector. We
also denote by Im(A) the space spanned by the columns of A and by Ker(A) the null
space of A.

2. The partial condition number of an LLSP. Let L be an n × k matrix,
with k ≤ n. We consider the function

g : R
m×n × R

m −→ R
k,

A, b �−→ g(A, b) = LTx(A, b) = LT (ATA)−1AT b.
(2.1)

Since A has full rank n, g is continuously F-differentiable in a neighborhood of (A, b)
and we denote by g′ its F-derivative. Let α and β be two positive real numbers. In
the present paper we consider the Euclidean norm for the solution space R

k. For the
data space R

m×n × R
m, we use the product norms defined by

‖(A, b)‖F =

√
α2 ‖A‖2

F + β2 ‖b‖2
2, α, β > 0,

and

‖(A, b)‖2 =

√
α2 ‖A‖2

2 + β2 ‖b‖2
2, α, β > 0.

These norms are very flexible since they allow us to monitor the perturbations on A
and b. For instance, large values of α (resp., β) enable us to obtain condition number
problems where mainly b (resp., A) are perturbed. A more general weighted Frobenius
norm ‖(AT, βb)‖F, where T is a positive diagonal matrix, is sometimes chosen. This
is the case, for instance, in [20], which gives an explicit expression for the condition
number of rank deficient linear least squares using this norm.

According to [6], the absolute condition numbers of g at the point (A, b) using
the two product norms defined above is given by

κg,F (A, b) = max
(ΔA,Δb)

‖g′(A, b).(ΔA,Δb)‖2

‖(ΔA,Δb)‖F

and

κg,2(A, b) = max
(ΔA,Δb)

‖g′(A, b).(ΔA,Δb)‖2

‖(ΔA,Δb)‖2

.

The corresponding relative condition numbers of g at (A, b) are expressed by

κ
(rel)
g,F (A, b) =

κg,F (A, b) ‖(A, b)‖F
‖g(A, b)‖2

and

κ
(rel)
g,2 (A, b) =

κg,2(A, b) ‖(A, b)‖2

‖g(A, b)‖2

.

We call the condition numbers related to LTx(A, b) partial condition numbers of the
LLSP with respect to the linear operator L. The partial condition number defined
using the product norm ‖(., .)‖F is given by the following theorem.

A PARTIAL CONDITION NUMBER FOR LLSP 417

Theorem 1. Let A = UΣV T be the thin singular value decomposition of A
defined in [7] with Σ = diag(σi) and σ1 ≥ σ2 · · · ≥ σn > 0. The absolute condition
number of g(A, b) = LTx(A, b) is given by

κg,F (A, b) =
∥∥SV TL

∥∥
2
,

where S ∈ R
n×n is the diagonal matrix with diagonal elements Sii = σi

−1√
σi

−2‖r‖2
2+‖x‖2

2

α2 + 1
β2 .

Proof. The demonstration is divided into three parts. In Part 1, we establish
an explicit formula of g′(A, b).(ΔA,Δb). In Part 2, we derive an upper bound for
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖F
. In Part 3, we show that this bound is reached for a particular

(ΔA,Δb).
Part 1. Let ΔA ∈ R

m×n and Δb ∈ R
m. Using the chain rules of composition of

derivatives, we get

g′(A, b).(ΔA,Δb) = LT (ATA)−1ΔAT (b−A(ATA)−1AT b)

− LT (ATA)−1ATΔA(ATA)−1AT b + LTA†Δb,

i.e.,

g′(A, b).(ΔA,Δb) = LT (ATA)−1ΔAT r − LTA†ΔAx + LTA†Δb.(2.2)

We write ΔA = ΔA1 + ΔA2 by defining ΔA1 = AA†ΔA (projection of ΔA onto
Im(A)) and ΔA2 = (I−AA†)ΔA (projection of ΔA onto Im(A)⊥). We have ΔAT

1 r =
0 (because r ∈ Im(A)⊥) and A†ΔA2 = 0. Then we obtain

g′(A, b).(ΔA,Δb) = LT (ATA)−1ΔAT
2 r − LTA†ΔA1x + LTA†Δb.(2.3)

Part 2. We now prove that κg,F (A, b) ≤
∥∥SV TL

∥∥
2
. Let ui and vi be the ith

column of U and V , respectively.
From A† = V Σ−1UT , we get AA† = UUT =

∑n
i=1 uiu

T
i and since

∑n
i=1 viv

T
i = I,

we have ΔA1 =
∑n

i=1 uiu
T
i ΔA and ΔA2 = (I − AA†)ΔA

∑n
i=1 viv

T
i . Moreover, still

using the thin SVD of A and A†, it follows that

(ATA)−1vi =
vi
σ2
i

, A†ui =
vi
σi

, and A†Δb =

n∑
i=1

viu
T
i

Δb

σi
.(2.4)

Thus (2.3) becomes

g′(A, b).(ΔA,Δb) =

n∑
i=1

LT vi

[
vTi ΔAT (I −AA†)

r

σ2
i

− uT
i ΔA

x

σi
+ uT

i

Δb

σi

]

= LT
n∑

i=1

viyi,

where we set yi = vTi ΔAT (I −AA†) r
σ2
i
− uT

i ΔA x
σi

+ uT
i

Δb
σi

∈ R.

Thus if Y = (y1, y2, . . . , yn)T , we get ‖g′(A, b).(ΔA,Δb)‖2 =
∥∥LTV Y

∥∥
2

and then

‖g′(A, b).(ΔA,Δb)‖2 =
∥∥LTV SS−1Y

∥∥
2
≤

∥∥SV TL
∥∥

2

∥∥S−1Y
∥∥

2
.

418 MARIO ARIOLI, MARC BABOULIN, AND SERGE GRATTON

We denote by wi =
vT
i ΔAT (I−AA†)r

Siiσ2
i

− uT
i ΔAx
Siiσi

+
uT
i Δb

Siiσi
the ith component of S−1Y .

Then we have

|wi| ≤ α
∥∥vTi ΔAT (I −AA†)T

∥∥
2

‖r‖2

αSiiσ2
i

+ α
∥∥uT

i ΔA
∥∥

2

‖x‖2

αSiiσi
+ β|uT

i Δb| 1

βSiiσi

≤
(

‖r‖2
2

α2S2
iiσ

4
i

+
‖x‖2

2

α2S2
iiσ

2
i

+
1

β2S2
iiσ

2
i

) 1
2

× (α2
∥∥(I −AA†)ΔAvi

∥∥2

2
+ α2

∥∥uT
i ΔA

∥∥2

2
+ β2|uT

i Δb|2) 1
2

=
Sii

Sii
(α2

∥∥(I −AA†)ΔAvi
∥∥2

2
+ α2

∥∥uT
i ΔA

∥∥2

2
+ β2|uT

i Δb|2) 1
2 .

Hence

∥∥S−1Y
∥∥2

2
≤

n∑
i=1

α2
∥∥(I −AA†)ΔAvi

∥∥2

2
+ α2

∥∥uT
i ΔA

∥∥2

2
+ β2|uT

i Δb|2

= α2
∥∥(I −AA†)ΔAV

∥∥2

F
+ α2

∥∥UTΔA
∥∥2

F
+ β2

∥∥UTΔb
∥∥2

2

= α2
∥∥(I −AA†)ΔA

∥∥2

F
+ α2

∥∥UTΔA
∥∥2

F
+ β2

∥∥UTΔb
∥∥2

2
.

Since
∥∥UTΔA

∥∥
F

=
∥∥UUTΔA

∥∥
F

=
∥∥AA†ΔA

∥∥
F

and
∥∥UTΔb

∥∥
2

=
∥∥UUTΔb

∥∥
2
≤

‖Δb‖2, we get

∥∥S−1Y
∥∥2

2
≤ α2 ‖ΔA1‖2

F + α2 ‖ΔA2‖2
F + β2 ‖Δb‖2

2 .

From ‖ΔA‖2
F = ‖ΔA1‖2

F + ‖ΔA2‖2
F , we get

∥∥S−1Y
∥∥2

2
≤ ‖(ΔA,Δb)‖2

F and thus

‖g′(A, b).(ΔA,Δb)‖2 ≤
∥∥SV TL

∥∥
2
‖(ΔA,Δb)‖F .

So we have shown that
∥∥SV TL

∥∥
2

is an upper bound for κg,F (A, b).

Part 3. We now prove that this upper bound can be reached, i.e., that
∥∥SV TL

∥∥
2

=

‖g′(A,b).(ΔA,Δb)‖
2

‖(ΔA,Δb)‖F
holds for some (ΔA,Δb) ∈ R

m×n × R
m.

Let us consider the particular choice of (ΔA,Δb) defined by

(ΔA,Δb) = (ΔA2 + ΔA1,Δb) =

(
n∑

i=1

αi

α

r

‖r‖2

vTi +

n∑
i=1

βi

α
ui

xT

‖x‖2

,

n∑
i=1

γi
β
ui

)
,

where αi, βi, γi are real constants to be chosen in order to achieve the upper bound
obtained in Part 2.

A PARTIAL CONDITION NUMBER FOR LLSP 419

Since ΔAT
1 r = 0 and A†ΔA2 = 0, it follows from (2.3) and (2.4) that

g′(A, b).(ΔA,Δb) = LT (ATA)−1
n∑

i=1

αi

α
‖r‖2 v

T
i − LTA†

n∑
i=1

βi

α
ui ‖x‖2

+ LTA†
n∑

i=1

γi
β
ui

= LT
n∑

i=1

αi

ασ2
i

vi ‖r‖2 − LT
n∑

i=1

βi

ασi
vi ‖x‖2 + LT

n∑
i=1

γi
βσi

vi

=

n∑
i=1

LT vi

(
αi

ασ2
i

‖r‖2 −
βi

ασi
‖x‖2 +

γi
βσi

)
.

Thus by denoting ξi = [LT vi
‖r‖2

ασ2
i
,−LT vi

‖x‖2

ασi
, LT vi

βσi
] ∈ R

k×3, Γ = [ξ1, . . . , ξn] ∈ R
k×3n,

and X = (α1, β1, γ1, . . . , αn, βn, γn)T ∈ R
3n×1 we get

g′(A, b).(ΔA,Δb) = ΓX.(2.5)

Since ∀i, j trace((r
‖r‖2

vTi)T (r
‖r‖2

vTi)) = trace((ui
xT

‖x‖2
)T (ui

xT

‖x‖2
)) = δij , where δij is

the Kronecker symbol and trace((r
‖r‖2

vTi)T (ui
xT

‖x‖2
)) = 0, then { r

‖r‖2
vTi }i=1,...,n and

{ui
xT

‖x‖2
}i=1,...,n form an orthonormal set of matrices for the Frobenius norm and we

get ‖ΔA‖F =
∑n

i=1(α
2
i + β2

i). It follows that

‖(ΔA,Δb)‖2
F =

n∑
i=1

α2
i +

n∑
i=1

β2
i +

n∑
i=1

γ2
i = ‖X‖2

2 ,

and (2.5) yields

‖g′(A, b).(ΔA,Δb)‖2

‖(ΔA,Δb)‖F
=

‖ΓX‖2

‖X‖2

.

We know that ‖Γ‖2 = maxX
‖ΓX‖2

‖X‖2
is reached for some X = (α1, β1, γ1, . . . , αn, βn,

γn)T . Then for the (ΔA,Δb) corresponding to this X, we have
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖F
=

‖Γ‖2.
Furthermore we have

ΓΓT = LT v1

(
‖r‖2

2

α2σ4
1

+
‖x‖2

2

α2σ2
1

+
1

β2σ2
1

)
vT1 L + · · · + LT vn

(
‖r‖2

2

α2σ4
n

+
‖x‖2

2

α2σ2
n

+
1

β2σ2
n

)
vTnL

= LT v1S
2
11v

T
1 L + · · · + LT vnS

2
nnv

T
nL

= (LTV S)(SV TL).

Hence

‖Γ‖2 =
√
‖ΓΓT ‖2 =

∥∥SV TL
∥∥

2

420 MARIO ARIOLI, MARC BABOULIN, AND SERGE GRATTON

and α1, β1, γ1, . . . , αn, βn, γn are such that
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖F
=

∥∥SV TL
∥∥

2
.

Thus
∥∥SV TL

∥∥
2
≤ κg,F (A, b), which concludes the proof.

Remark 1. Let lj be the jth column of L, j = 1, . . . , k. From

SV TL =

⎛⎜⎝ S11v1
T

...
Snnvn

T

⎞⎟⎠ (l1, . . . , lk) =

⎛⎜⎝ S11v1
T l1 · · · S11v1

T lk
...

...
Snnvn

T l1 · · · Snnvn
T lk

⎞⎟⎠ ,

it follows that
∥∥SV TL

∥∥
2

is large when there exist at least one large Sii and an lj
such that vi

T lj 	= 0. In particular, the condition number of LTx(A, b) is large when A
has small singular values and L has components in the corresponding right singular
vectors or when ‖r‖2 is large.

Remark 2. In the general case where L is an n × k matrix, the computation
of κg,F (A, b) via the exact formula given in Theorem 1 requires the computation of
the singular values and the right singular vectors of A, which might be expensive in
practice since it involves 2mn2 operations if we use an R-SVD algorithm and if m
 n
(see [7, p. 254]). If the LLSP is solved using a direct method, the R factor of the
QR decomposition of A (or equivalently, in exact arithmetic, the Cholesky factor of
ATA) might be available. Since the right singular vectors of A are also those of R,
the condition number can be computed in about 12n3 flops (using the Golub–Reinsch
SVD [7, p. 254]).

Using R is even more interesting when L ∈ R
n, since from∥∥LTA†∥∥

2
=

∥∥R−TL
∥∥

2
and

∥∥LT (ATA)−1
∥∥

2
=

∥∥R−1(R−TL)
∥∥

2
,(2.6)

it follows that the computation of κg,F (A, b) can be done by solving two successive
n× n triangular systems which involve about 2n2 flops.

2.1. Special cases and GSVD. In this section, we analyze some special cases
of practical relevance. Moreover, we relate the formula given in Theorem 1 for

κg,F (A, b)

to the generalized singular value decomposition (GSVD) (see [1, p. 157], [7, p. 466],
and [15, 19]). Using the GSVD of A and LT , there exist UA ∈ R

m×m, UL ∈ R
k×k

orthogonal matrices and Z ∈ R
n×n invertible such that

UT
AA =

(
DA

0

)
Z and UT

LLT =
(
DL 0

)
Z

with

DA = diag(α1, . . . , αn), DL = diag(β1, . . . , βk),

α2
i + β2

i = 1, i = 1, . . . , k, αi = 1, i = k + 1, . . . , n.

The diagonal matrix S can be decomposed in the product of two diagonal matrices

S = Σ−1D

with

Dii =

√
σi

−2 ‖r‖2
2 + ‖x‖2

2

α2
+

1

β2
.

A PARTIAL CONDITION NUMBER FOR LLSP 421

Then, taking into account the relations∥∥SV TL
∥∥

2
=

∥∥LTV S
∥∥

2
=

∥∥LTV Σ−1UTUD
∥∥

2
=

∥∥LTA†UD
∥∥

2
,

LTA† = UL

(
DL 0

)
ZZ−1

(
D−1

A 0
)
UT
A ,

we can represent κg,F (A, b) as

κg,F (A, b) =
∥∥∥TH̃D

∥∥∥
2
,

where T ∈ R
k×k is a diagonal matrix with Tii = βi/αi, i = 1, . . . , k, and H̃ ∈ R

k×n is

H̃ =
(
I 0

)
UT
AU.

Note that
∥∥LTA†∥∥

2
= ‖T‖2.

We also point out that the diagonal entries of T are the nonzero generalized
eigenvalues of

λATAz = LLT z.

There are two interesting special cases where the expression of κg,F (A, b) is simpler.
First, when r = 0, i.e., the LLSP problem is consistent, we have

D =

√
‖x‖2

2

α2
+

1

β2
I

and

κg,F (A, b) =
∥∥∥TH̃∥∥∥

2

√
‖x‖2

2

α2
+

1

β2
.

Second, if we allow only perturbations on b and if we use the expression (2.2) of the
derivative of g(A, b), we get

κg,F (A, b) =

∥∥LTA†∥∥
2

β
=

‖T‖2

β

(see Remark 4 in section 3).
Other relevant cases where the expression for κg,F (A, b) has a special interest are

L = I and L is a column vector.
In the special case where L = I, the formula given by Theorem 1 becomes

κg,F (A, b) =
∥∥SV TL

∥∥
2

= ‖S‖2 = max
i

Sii = σn
−1

√
σn

−2 ‖r‖2
2 + ‖x‖2

2

α2
+

1

β2
.

Since
∥∥A†∥∥

2
= σn

−1, we obtain that

κg,F (A, b) =
∥∥A†∥∥

2

√
‖A†‖2

2 ‖r‖
2
2 + ‖x‖2

2

α2
+

1

β2
.

422 MARIO ARIOLI, MARC BABOULIN, AND SERGE GRATTON

This corresponds to the result known from [8] and also to a generalization of the
formula of the condition number in the Frobenius norm given in [6, p. 92] (where only
A was perturbed).

Finally, let us study the particular case where L is a column vector, i.e., when g
is a scalar derived function.

Corollary 1. In the particular case when L is a vector (L ∈ R
n), the absolute

condition number of g(A, b) = LTx(A, b) is given by

κg,F (A, b) =

(∥∥LT (ATA)−1
∥∥2

2

‖r‖2
2

α2
+
∥∥LTA†∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)) 1
2

.

Proof. By replacing (ATA)−1 = V Σ−2V T and A† = V Σ−1UT in the expression

of K = (
∥∥LT (ATA)−1

∥∥2

2
‖r‖2

2 +
∥∥LTA†∥∥2

2
(‖x‖2

2 + 1))
1
2 we get

K2 =
∥∥LTV Σ−2V T

∥∥2

2

‖r‖2
2

α2
+
∥∥LTV Σ−1UT

∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)

=
∥∥LTV Σ−2

∥∥2

2

‖r‖2
2

α2
+
∥∥LTV Σ−1

∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)

=
∥∥Σ−2V TL

∥∥2

2

‖r‖2
2

α2
+
∥∥Σ−1V TL

∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)
.

By writing z = V TL, where z = (z1, . . . , zn)T ∈ R
n, we obtain

K2 =

n∑
i=1

z2
i

σ4
i

‖r‖2
2

α2
+

n∑
i=1

z2
i

σ2
i

(
‖x‖2

2

α2
+

1

β2

)

=
n∑

i=1

z2
i

σ2
i

(
σ−2
i ‖r‖2

2 + ‖x‖2
2

α2
+

1

β2

)

=

n∑
i=1

S2
iiz

2
i

=
∥∥SV TL

∥∥2

2
,

and Theorem 1 gives the result.

3. Sharp estimate of the partial condition number in Frobenius and
spectral norms. In many cases, obtaining a lower and/or an upper bound of
κg,F (A, b) is satisfactory when these bounds are tight enough and significantly cheaper
to compute than the exact formula. Moreover, many applications use condition num-
bers expressed in the spectral norm. In the following theorem, we give sharp bounds
for the partial condition numbers in the Frobenius and spectral norms.

Theorem 2. The absolute condition numbers of g(A, b) = LTx(A, b) (L ∈ R
n×k)

in the Frobenius and spectral norms can be bounded, respectively, as follows:

f(A, b)√
3

≤ κg,F (A, b) ≤ f(A, b),

A PARTIAL CONDITION NUMBER FOR LLSP 423

f(A, b)√
3

≤ κg,2(A, b) ≤
√

2f(A, b),

where

f(A, b) =

(∥∥LT (ATA)−1
∥∥2

2

‖r‖2
2

α2
+
∥∥LTA†∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)) 1
2

.

Proof. Part 1. We start by establishing the lower bounds. Let w1 and w′
1

(resp., a1 and a′1) be the right (resp., the left) singular vectors corresponding to the
largest singular values of LT (ATA)−1 and LTA†, respectively. We use a particular
perturbation (ΔA,Δb) expressed as

(ΔA,Δb) =

(
r

α ‖r‖2

wT
1 + εw′

1

xT

α ‖x‖2

,−ε
w′

1

β

)
,

where ε = ±1.
By replacing this value of (ΔA,Δb) in (2.2) we get

g′(A, b).(ΔA,Δb) =
‖r‖2

α
LT (ATA)−1w1 +

ε

α ‖x‖2

LT (ATA)−1xw′
1
T r

− LTA†r
wT

1 x

α ‖r‖2

− ε ‖x‖2

α
LTA†w′

1 −
ε

β
LTA†w′

1.

Since r ∈ Im(A)⊥ we have A†r = 0. Moreover we have w′
1 ∈ Ker(LTA†)⊥ and

thus w′
1 ∈ Im(A†TL), which can be written w′

1 = A†TLδ for some δ ∈ R
k. Then

w′
1
T r = δTLTA†r = 0. It follows that

g′(A, b).(ΔA,Δb) =
‖r‖2

α
LT (ATA)−1w1 −

ε ‖x‖2

α
LTA†w′

1 −
ε

β
LTA†w′

1.

From LT (ATA)−1w1 =
∥∥LT (ATA)−1

∥∥
2
a1 and LTA†w′

1 =
∥∥LTA†∥∥

2
a′1, we obtain

g′(A, b).(ΔA,Δb) =
∥∥LT (ATA)−1

∥∥
2

‖r‖2

α
a1 − ε

(
‖x‖2

α
+

1

β

)∥∥LTA†∥∥
2
a′1.

Since a1 and a′1 are unit vectors, ‖g′(A, b).(ΔA,Δb)‖2 can be developed as

‖g′(A, b).(ΔA,Δb)‖2
2 =

∥∥LT (ATA)−1
∥∥2

2

‖r‖2
2

α2
+
∥∥LTA†∥∥2

2

(
‖x‖2

α
+

1

β

)2

− 2ε
∥∥LT (ATA)−1

∥∥
2

‖r‖2

α

(
‖x‖2

α
+

1

β

)∥∥LTA†∥∥
2
cos(a1, a

′
1).

By choosing ε = −sign(cos(a1, a
′
1)) the third term of the above expression becomes

positive. Furthermore we have (
‖x‖2

α + 1
β)2 ≥ ‖x‖2

2

α2 + 1
β2 . Then we obtain

‖g′(A, b).(ΔA,Δb)‖2 ≥
(∥∥LT (ATA)−1

∥∥2

2

‖r‖2
2

α2
+
∥∥LTA†∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)) 1
2

,

424 MARIO ARIOLI, MARC BABOULIN, AND SERGE GRATTON

i.e.,

‖g′(A, b).(ΔA,Δb)‖2 ≥ f(A, b).

On the other hand, we have

‖ΔA‖2
F =

∥∥∥∥ r

α ‖r‖2

wT
1

∥∥∥∥2

F

+

∥∥∥∥w′
1

xT

α ‖x‖2

∥∥∥∥2

F

+ 2 ε trace

((
r

α ‖r‖2

wT
1

)T (
w′

1

xT

α ‖x‖2

))
and ∥∥∥∥w′

1

β

∥∥∥∥2

2

=
1

β2

with∥∥∥∥ r

α ‖r‖2

wT
1

∥∥∥∥2

F

=

∥∥∥∥w′
1

xT

α ‖x‖2

∥∥∥∥2

F

=
1

α2
, trace

((
r

α ‖r‖2

wT
1

)T (
w′

1

xT

α ‖x‖2

))
= 0.

Then ‖(ΔA,Δb)‖F =
√

3 and thus we have
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖F
≥ f(A,b)√

3
for a par-

ticular value of (ΔA,Δb). Furthermore, from ‖(ΔA,Δb)‖2 ≤ ‖(ΔA,Δb)‖F we get
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖2
≥ f(A,b)√

3
(for the same particular value of (ΔA,Δb)). Then we

obtain κg,F (A, b) ≥ f(A,b)√
3

and κg,2(A, b) ≥ f(A,b)√
3

.

Part 2. Let us now establish the upper bound for κg,F (A, b) and κg,2(A, b).
If ΔA1 = AA†ΔA and ΔA2 = (I − AA†)ΔA, then it comes from (2.3) that

∀(ΔA,Δb) ∈ R
m×n × R

m

‖g′(A, b).(ΔA,Δb)‖2 ≤
∥∥LT (ATA)−1

∥∥
2
‖ΔA2‖2 ‖r‖2

+
∥∥LTA†∥∥

2
‖ΔA1‖2 ‖x‖2 +

∥∥LTA†∥∥
2
‖Δb‖2

= Y X,

where

Y =

(∥∥LT (ATA)−1
∥∥

2
‖r‖2

α
,

∥∥LTA†∥∥
2
‖x‖2

α
,

∥∥LTA†∥∥
2

β

)
and

X = (α ‖ΔA2‖2 , α ‖ΔA1‖2 , β ‖Δb‖2)
T .

Hence, from the Cauchy–Schwarz inequality we get

‖g′(A, b).(ΔA,Δb)‖2 ≤ ‖Y ‖2 ‖X‖2 ,(3.1)

with

‖X‖2
2 = α2 ‖ΔA1‖2

2 + α2 ‖ΔA2‖2
2 + β2 ‖Δb‖2

2 ≤ α2 ‖ΔA1‖2
F + α2 ‖ΔA2‖2

F + β2 ‖Δb‖2
2

and

‖Y ‖2 = f(A, b).

A PARTIAL CONDITION NUMBER FOR LLSP 425

Then, since ‖ΔA‖2
F = ‖ΔA1‖2

F + ‖ΔA2‖2
F , we have ‖X‖2 ≤ ‖(ΔA,Δb)‖F and (3.1)

yields

‖g′(A, b).(ΔA,Δb)‖2 ≤ ‖(ΔA,Δb)‖F ‖Y ‖2 ,

which implies that

κg,F (A, b) ≤ f(A, b).

An upper bound of κg,2(A, b) can be computed in a similar manner: we get from (2.2)
that

‖g′(A, b).(ΔA,Δb)‖2 ≤ (
∥∥LT (ATA)−1

∥∥
2
‖r‖2 +

∥∥LTA†∥∥
2
‖x‖2) ‖ΔA‖2

+
∥∥LTA†∥∥

2
‖Δb‖2

= Y ′X ′,

where

Y ′ =

(∥∥LT (ATA)−1
∥∥

2
‖r‖2 +

∥∥LTA†∥∥
2
‖x‖2

α
,

∥∥LTA†∥∥
2

β

)
and

X ′ = (α ‖ΔA‖2 , β ‖Δb‖2)
T .

Since ‖X ′‖2 = ‖(ΔA,Δb)‖2 we have κg,2(A, b) ≤ ‖Y ′‖2. Then using the inequality(∥∥LT (ATA)−1
∥∥

2
‖r‖2 +

∥∥LTA†∥∥
2
‖x‖2

)2 ≤ 2
(∥∥LT (ATA)−1

∥∥2

2
‖r‖2

2 +
∥∥LTA†∥∥2

2
‖x‖2

2

)
we get ‖Y ′‖2 ≤

√
2 ‖Y ‖2 and finally obtain κg,2(A, b) ≤

√
2f(A, b), which concludes

the proof.
Theorem 2 shows that f(A, b) can be considered as a very sharp estimate of the

partial condition number expressed either in Frobenius or spectral norm. Indeed, it
lies within a factor

√
3 of κg,F (A, b) or κg,2(A, b).

Another observation is that we have

1√
6
≤ κg,F (A, b)

κg,2(A, b)
≤

√
3.

Thus even if the Frobenius and spectral norms of a given matrix can be very differ-
ent (for X ∈ R

m×n, we have ‖X‖2 ≤ ‖X‖F ≤
√
n ‖X‖2), the condition numbers

expressed in both norms are of the same order. The result is that a good estimate of
κg,F (A, b) is also a good estimate of κg,2(A, b).

Moreover (2.6) shows that if the R factor of A is available, f(A, b) can be com-
puted by solving two n × n triangular systems with k right-hand sides and thus the
computational cost is 2kn2.

Remark 3. We can check in the following example that κg,F (A, b) is not equal to
f(A, b). Let us consider

A =

⎛⎝ 2 0
0 1
0 0

⎞⎠ , L =

(
3 0
0 1

)
, and b =

⎛⎝ 2/
√

2

1/
√

2
1

⎞⎠ .

426 MARIO ARIOLI, MARC BABOULIN, AND SERGE GRATTON

We have

x = (1/
√

2, 1/
√

2)T and ‖x‖2 = ‖r‖2 = 1,

and we get

κg,F (A, b) =

√
45

4
< f(A, b) =

√
13

2
.

Remark 4. Using the definition of the condition number and of the product norms,
we can obtain tight estimates for the partial condition number for perturbations of
A only (resp., b only) by taking α > 0 and β = +∞ (resp., β > 0 and α = +∞)
in Theorem 2. In particular, when we perturb only b we have, with the notation of
section 2.1,

f(A, b) =

∥∥LTA†∥∥
2

β
=

‖T‖2

β
= κg,F (A, b).

Moreover, when r = 0 we have

f(A, b) =
∥∥LTA†∥∥

2

(
‖x‖2

2

α2
+

1

β2

) 1
2

= ‖T‖2

(
‖x‖2

2

α2
+

1

β2

) 1
2

.

Remark 5. In the special case where L = I, we have

f(A, b) =

(∥∥(ATA)−1
∥∥2

2

‖r‖2
2

α2
+
∥∥A†∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)) 1
2

.

Since
∥∥(ATA)−1

∥∥
2

=
∥∥A†∥∥2

2
we obtain that

f(A, b) =
∥∥A†∥∥

2

√
‖A†‖2

2 ‖r‖
2
2 + ‖x‖2

2

α2
+

1

β2
.

In that case κg,F (A, b) is exactly equal to f(A, b) due to [8].
Regarding the condition number in the spectral norm, since we have

‖(ΔA,Δb)‖2 ≤ ‖(ΔA,Δb)‖F we get κg,2(A, b) ≥ f(A, b). This lower bound is sim-
ilar to that obtained in [6] (where only A is perturbed). As mentioned in [6], an

upper bound of κg,2(A) is κu
g,2(A) =

∥∥A†∥∥2

2
‖r‖2 +

∥∥A†∥∥
2
‖x‖2. If we take α = 1 and

β = +∞, we notice that f(A, b) ≤ κu
g,2(A) ≤

√
2f(A, b), showing thus that our upper

bound and κu
g,2(A) are essentially the same.

Remark 6. Generalization to other product norms:
Other product norms may have been used for the data space R

m×n × R
m.

If we consider a norm ν on R
2 such that c1ν(x, y) ≤

√
x2 + y2 ≤ c2ν(x, y), then we

can define a product norm ‖(A, b)‖F,ν = ν(α ‖ΔA‖F , β ‖Δb‖2). For instance, in [9],
ν corresponds to ‖.‖∞. Note that the product norm ‖(., .)‖F used throughout this
paper corresponds to ν = ‖.‖2 and that with the above notation we have ‖(A, b)‖F,2 =
‖(A, b)‖F . Then the following inequality holds:

c1‖(ΔA,Δb)‖F,ν ≤ ‖(ΔA,Δb)‖F ≤ c2‖(ΔA,Δb)‖F,ν .

A PARTIAL CONDITION NUMBER FOR LLSP 427

If we denote κg,F,ν(A, b) = max(ΔA,Δb)
‖g′(A,b).(ΔA,Δb)‖

2

‖(ΔA,Δb)‖F,ν
, we obtain

κg,F,ν(A, b)

c2
≤ κg,F (A, b) ≤ κg,F,ν(A, b)

c1
.

Using the bounds for κg,F given in Theorem 2 we can obtain tight bounds for the
partial condition number expressed using the product norm based on ν and when the
perturbations on matrices are measured with the Frobenius norm:

c1√
3
f(A, b) ≤ κg,F,ν(A, b) ≤ c2f(A, b).

Similarly, if the perturbations on matrices are measured with the spectral norm, we
get

c1√
3
f(A, b) ≤ κg,F,ν(A, b) ≤ c2

√
2f(A, b).

The bounds obtained for three possible product norms (ν = ‖.‖∞, ν = ‖.‖2, and
ν = ‖.‖1) are given in Table 3.1 when using the Frobenius norm for matrices and in
Table 3.2 when using the spectral norm for matrices.

Table 3.1

Bounds for partial condition number (Frobenius norm on matrices).

Product norm ν, c1, c2 Lower bound Upper bound

(factor of f(A, b)) (factor of f(A, b))

max{α ‖ΔA‖F , β ‖Δb‖2} ‖.‖∞, 1√
2
, 1 1√

6
1√

α2 ‖ΔA‖2
F + β2 ‖Δb‖2

2 ‖.‖2, 1, 1 1√
3

1

α ‖ΔA‖F + β ‖Δb‖2 ‖.‖1, 1,
√

2 1√
3

√
2

Table 3.2

Bounds for partial condition number (spectral norm on matrices).

Product norm ν, c1, c2 Lower bound Upper bound

(factor of f(A, b)) (factor of f(A, b))

max{α ‖ΔA‖2 , β ‖Δb‖2} ‖.‖∞, 1√
2
, 1 1√

6

√
2√

α2 ‖ΔA‖2
2 + β2 ‖Δb‖2

2 ‖.‖2, 1, 1 1√
3

√
2

α ‖ΔA‖2 + β ‖Δb‖2 ‖.‖1, 1,
√

2 1√
3

2

4. Statistical estimation of the partial condition number. In this section
we compute a statistical estimate of the partial condition number. We have seen
in section 3 that using the Frobenius or the spectral norm for the matrices gives
condition numbers that are of the same order of magnitude. For the sake of simplicity,
we compute here a statistical estimate of κg,F (A, b).

Let (z1, z2, . . . , zq) be an orthonormal basis for a subspace of dimension q (q ≤ k)
that has been randomly and uniformly selected from the space of all q-dimensional
subspaces of R

k (this can be done by choosing q random vectors and then orthogo-
nalizing). Let us denote gi(A, b) = (Lzi)

Tx(A, b).

428 MARIO ARIOLI, MARC BABOULIN, AND SERGE GRATTON

Since Lzi ∈ R
n, the absolute condition number of gi can be computed via the

exact formula given in Corollary 1, i.e.,

κgi,F (A, b) =

(∥∥(Lzi)
T (ATA)−1

∥∥2

2

‖r‖2
2

α2
+
∥∥(Lzi)

TA†∥∥2

2

(
‖x‖2

2

α2
+

1

β2

)) 1
2

.(4.1)

We define the random variable φ(q) by

φ(q) =

(
k

q

q∑
i=1

κgi,F (A, b)2

) 1
2

.

Let the operator E(.) denote the expected value. The following proposition shows that
the root mean square of φ(q), defined by R(φ(q)) =

√
E(φ(q)2), can be considered as

an estimate for the condition number of g(A, b) = LTx(A, b).
Proposition 1. The absolute condition number can be bounded as follows:

R(φ(q))√
k

≤ κg,F (A, b) ≤ R(φ(q)).(4.2)

Proof. Let vec be the operator that stacks the columns of a matrix into a long
vector and let M be the k × m(n + 1) matrix such that vec(g′(A, b).(ΔA,Δb)) =

M
(vec(αΔA)

vec(βΔb)

)
. Note that M depends on A, b, L and not on the zi.

Then we have

κg,F (A, b) = max
(ΔA,Δb)

‖g′(A, b).(ΔA,Δb)‖2

‖(ΔA,Δb)‖F
= max

(ΔA,Δb)

‖vec(g′(A, b).(ΔA,Δb))‖2∥∥∥∥(vec(αΔA)
vec(βΔb)

)∥∥∥∥
2

= max
z∈Rm(n+1),z �=0

‖M z‖2

‖z‖2

= ‖M‖2 =
∥∥MT

∥∥
2
.

Let Z = [z1, z2, . . . , zq] be the k × q random matrix with orthonormal columns zi.

From [10] it follows that k
q

∥∥MTZ
∥∥2

F
is an unbiased estimator of the Frobenius norm

of the m(n + 1) × k matrix MT , i.e., we have E(kq
∥∥MTZ

∥∥2

F
) =

∥∥MT
∥∥2

F
.

From ∥∥MTZ
∥∥2

F
=

∥∥ZTM
∥∥2

F

=

∥∥∥∥∥∥∥
⎛⎜⎝ zT1 M

...
zTq M

⎞⎟⎠
∥∥∥∥∥∥∥

2

F

we get, since zTi M is a row vector,

∥∥MTZ
∥∥2

F
=

q∑
i=1

∥∥zTi M∥∥2

2
.

We notice that for every vector u ∈ R
k, if we consider the function gu(A, b) =

uT g(A, b), then we have
∥∥uTM

∥∥
F

= ‖g′u(A, b)‖ = κgu,F (A, b) and therefore∥∥zTi M∥∥
F

= κgi,F (A, b).

A PARTIAL CONDITION NUMBER FOR LLSP 429

Eventually we obtain

∥∥MT
∥∥2

F
= E

(
k

q

q∑
i=1

κgi,F (A, b)2

)
= E(φ(q)2).

Moreover, considering that MT ∈ R
m(n+1)×k and using the well-known inequality∥∥MT

∥∥
F√

k
≤

∥∥MT
∥∥

2
≤

∥∥MT
∥∥
F
,

we get the result (4.2). Then we will consider φ(q)
‖(A,b)‖F

‖LT x̃‖2
as an estimator of

κ
(rel)
g,F (A, b).

The root mean square of φ(q) is an upper bound of κg(A, b), and estimates

κg,F (A, b) within a factor
√
k. Proposition 1 involves the computation of the con-

dition number of each gi(A, b), i = 1, . . . , q. From Remark 2, it follows that the
computational cost of each κgi,F (A, b) is 2n2 (if the R factor of the QR decomposi-
tion of A is available). Hence, for a given sample of vectors zi, i = 1, . . . , q, computing
φ(q) requires about 2qn2 flops.

However, Proposition 1 is mostly of theoretical interest, since it relies on the
computation of the root mean square of a random variable, without providing a
practical method to obtain it. In the next proposition, the use of the small sample
estimate theory developed by Gudmundsson, Kenney, and Laub [10] gives a first
answer to this question by showing that the evaluation of φ(q) using only one sample
of q vectors z1, z2, . . . , zq in the unit sphere may provide an acceptable estimate.

Proposition 2. Using conjecture [10, p. 781], we have the following result: For
any α > 10,

Pr

(
φ(q)

α
√
k
≤ κg,F (A, b) ≤ αφ(q)

)
≥ 1 − α−q.

This probability approaches 1 very fast as q increases. For α = 11 and q = 3 the
probability for φ(q) to estimate κg,F (A, b) within a factor 11

√
k is 99.9%.

Proof. We define as in the proof of Proposition 1 the matrix M as the matrix
related to the vec operation representing the linear operator g′(A, b). From [10, eq.
(4), p. 781 and eq. (9), p. 783] we get

Pr

(∥∥MT
∥∥
F

α
≤ φ(q) ≤ α

∥∥MT
∥∥
F

)
≥ 1 − α−q.(4.3)

We have seen in the proof of Proposition 1 that κg,F (A, b) =
∥∥MT

∥∥
2
. Then we have

κg,F (A, b) ≤
∥∥MT

∥∥
F
≤ κg,F (A, b)

√
k.

It follows that, for the random variable φ(q), we have

Pr

(
κg,F (A, b)

α
≤ φ(q) ≤ ακg,F (A, b)

√
k

)
≥ Pr

(∥∥MT
∥∥
F

α
≤ φ(q) ≤ α

∥∥MT
∥∥
F

)
.

Then we obtain the result from

Pr

(
κg,F (A, b)

α
≤ φ(q) ≤ ακg,F (A, b)

√
k

)
= Pr

(
φ(q)

α
√
k
≤ κg,F (A, b) ≤ αφ(q)

)
.

430 MARIO ARIOLI, MARC BABOULIN, AND SERGE GRATTON

We see from this proposition that it may not be necessary to estimate the root
mean square of φ(q) using sophisticated algorithms. Indeed only one sample of φ(q)
obtained for q = 3 provides an estimate of κg,F (A, b) within a factor α

√
k.

Remark 7. If k = 1, then Z = 1 and the problem is reduced to computing
κg1(A, b). In this case, φ(1) is exactly the partial condition number of LTx(A, b).

Remark 8. Concerning the computation of the statistical estimate in the presence
of roundoff errors, the numerical reliability of the statistical estimate relies on an
accurate computation of the κgi,F (A, b) for a given zi. Let A be a 17×13 Vandermonde
matrix, b a random vector, and L ∈ R

n the right singular vector vn.
Using the Mathematica software that computes in exact arithmetic, we obtained

κ
(rel)
g,F (A, b) ≈ 5 · 108. If the triangular factor R form ATA = RTR is obtained by the

QR decomposition of A, we get κ
(rel)
g,F (A, b) ≈ 5 · 108. If R is computed via a classical

Cholesky factorization, we get κg,F (A, b)(rel) ≈ 1010.
Corollary 1 and Remark 2 show that the computation of κg,F (A, b)(rel) involves

linear systems of the type ATAx = d, which differs from the usual normal equa-
tion for least squares in their right-hand side. Our observation that for this kind of
ill-conditioned systems, a QR factorization is more accurate than a Cholesky factor-
ization is in agreement with [5].

5. Numerical experiments. All experiments were performed in MATLAB 6.5
using a machine precision of 2.22 · 10−16.

5.1. Examples. For the examples of section 1, we compute the partial condition
number using the formula given in Theorem 1.

In the first example we have

A =

⎛⎜⎜⎝
1 1 ε2

ε 0 ε2

0 ε ε2

ε2 ε2 2

⎞⎟⎟⎠ ,

and we assume that only A is perturbed. If we consider the values for L that are(1 0
0 1
0 0

)
and L = (0, 0, 1)T , then we obtain partial condition numbers κ

(rel)
g,F (A) that are,

respectively, 1024 and 1.22, as expected since there is 50% relative error on x1 and x2

and there is no error on x3.
In the second example where A is the 10 × 4 Vandermonde matrix defined by

Aij = 1
(10+i)j−1 and only b is perturbed, the partial condition numbers κ

(rel)
g,F (b) with

respect to each component x1, x2, x3, x4 are, respectively, 4.5·102, 2·104, 3·105, 1.4·106,
which is consistent with the error variation given in section 1 for each component.

5.2. Average behavior of the statistical estimate. We compare here the
statistical estimate described in the previous section with the partial condition number
obtained via the exact formula given in Theorem 1. We suppose that only A is

perturbed and then the partial condition number can be expressed as κ
(rel)
g,F (A). We

use the method described in [16] in order to construct test problems [A, x, r, b] =
P (m,n, nr, l) with

A = Y

(
D
0

)
ZT ∈ R

m×n, Y = I − 2yyT , Z = I − 2zzT ,

where y ∈ R
m and z ∈ R

n are random unit vectors and where D = n−l diag(nl, (n−
1)l, . . . , 1).

A PARTIAL CONDITION NUMBER FOR LLSP 431

x = (1, 22, . . . , n2)T is given and r = Y
(

0
c

)
∈ R

m is computed with c ∈ R
m−n

random vector of norm nr. The right-hand side is b = Y
(
DZx
c

)
. By construction, the

condition number of A and D is nl.
In our experiments, we consider the matrices

A =

(
A1 E′

E A2

)
and L =

(
I
0

)
,

where A1 ∈ R
m1×n1 , A2 ∈ R

m2×n2 , L ∈ R
n×n1 , m1 + m2 = m, n1 + n2 = n, and E

and E′ contain the same element ep which defines the coupling between A1 and A2.
The matrices A1 and A2 are randomly generated using, respectively, P (m1, n1, nr1 , l1)
and P (m2, n2, nr2 , l2).

For each sample matrix, we compute in MATLAB

1. the partial condition number κ
(rel)
g,F (A) using the exact formula given in The-

orem 1 and based on the singular value decomposition of A;
2. the statistical estimate φ(3) using three random orthogonal vectors and com-

puting each κgi,F (A, b), i = 1, 3, with the R factor of the QR decomposition
of A.

These data are then compared by computing the ratio

γ =
φ(3)

κ
(rel)
g,F (A)

.

Table 5.1 contains the mean γ and the standard deviation s of γ obtained on 1000
random matrices with m1 = 12, n1 = 10,m2 = 17, n2 = 13 by varying the condition
numbers n1

l1 and n2
l2 of, respectively, A1 and A2 and the coupling coefficient ep.

The residual norms are set to nr1 = nr2 = 1. In all cases, γ is close to 1 and s is

about 0.3. The statistical estimate φ(3) lies within a factor 1.22 of κ
(rel)
g,F (A), which

is very accurate in condition number estimation. We notice that in two cases φ(3) is
lower than 1. This is possible because Proposition 1 shows that E(φ(3)2) is an upper
bound of κg,F (A)2 but not necessarily φ(3)2.

Table 5.1

Ratio between statistical and exact condition numbers of LT x.

Condition ep = 10−5 ep = 1 ep = 105

l1 l2 γ s γ s γ s

1 1 1.22 2.28 · 10−1 1.15 2.99 · 10−1 1.07 3.60 · 10−1

1 8 1.02 3.19 · 10−1 1.22 3.05 · 10−1 1.21 3.35 · 10−1

8 1 9 · 10−1 3 · 10−1 1.13 3 · 10−1 1.06 3.45 · 10−1

8 8 9.23 · 10−1 2.89 · 10−1 1.22 2.95 · 10−1 1.18 3.33 · 10−1

6. Estimates versus exact formula. We assume that the R factor of the QR
decomposition of A is known. We gather in Table 6.1 the results obtained in this
paper in terms of accuracy and flop counts for the estimation of the partial condition
number for the LLSP. Table 6.2 gives the estimates and flop counts in the particular
situation where

m = 1500, n = 1000, k = 50,

A1 =

(
2 0
0 1

)
, L1 =

(
3 0
0 1

)
,

432 MARIO ARIOLI, MARC BABOULIN, AND SERGE GRATTON

Table 6.1

Comparison between exact formula and estimates for κg,F (A, b).

κg,F (A, b) Flops Accuracy

Exact formula 12n3 Exact

n � m

Sharp estimate f(A, b) 2kn2 f(A,b)√
3

≤ κg,F (A, b) ≤ f(A, b)

k � n

Stat. estimate φ(q) 2qn2 φ(q)

α
√
k
≤ κg,F (A, b) ≤ αφ(q)

q � k Pr ≥ 1 − α−q for α > 10

Table 6.2

Flops and accuracy: exact formula versus estimates.

κ
(rel)
g,F (A, b) f(A, b)

‖(A,b)‖F
‖LT x̃‖2

φ(q)
‖(A,b)‖F
‖LT x̃‖2

2.09 · 102 2.18 · 102 11.44 · 102

12 Gflops 100 Mflops 6 Mflops

A =

⎛⎝ A1 0
0 In−2

0 0

⎞⎠ and b =
1√
2
(2, 1, . . . , 1)T , L =

⎛⎝ L1 0
0 Ik−2

0 0

⎞⎠ .

We see here that the statistical estimates may provide information on the condition
number using a very small amount of floating point operations compared with the
other two methods.

7. Conclusion. We have shown the relevance of the partial condition number
for test cases from parameter estimation. This partial condition number evaluates
the sensitivity of LTx, where x is the solution of an LLSP when A and/or b are
perturbed. It can be computed via a closed formula, a sharp estimate, or a statistical
estimate. The choice will depend on the size of the LLSP and on the needed accuracy.
The closed formula requires O(n3) flops and is affordable for small problems only.
The sharp estimate and the statistical estimate will be preferred for larger problems
especially if k � n since their computational cost is in O(n2).

REFERENCES

[1] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[2] Y. Cao and L. Petzold, A subspace error estimate for linear systems, SIAM J. Matrix Anal.

Appl., 24 (2003), pp. 787–801.
[3] S. Chandrasekaran and I. C. F. Ipsen, On the sensitivity of solution components in linear

systems of equations, Numer. Linear Algebra Appl., 2 (1995), pp. 271–286.
[4] L. Eldén, Perturbation theory for the least squares problem with linear equality constraints,

SIAM J. Numer. Anal., 17 (1980), pp. 338–350.
[5] V. Frayssé, S. Gratton, and V. Toumazou, Structured backward error and condition number

for linear systems of the type A∗Ax = b, BIT, 40 (2000), pp. 74–83.
[6] A. J. Geurts, A contribution to the theory of condition, Numer. Math., 39 (1982), pp. 85–96.
[7] G. Golub and C. van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University

Press, Baltimore, MD, 1996.
[8] S. Gratton, On the condition number of linear least squares problems in a weighted Frobenius

norm, BIT, 36 (1996), pp. 523–530.

A PARTIAL CONDITION NUMBER FOR LLSP 433

[9] J. F. Grcar, Adjoint Formulas for Condition Numbers Applied to Linear and Indefinite Least
Squares, Technical report LBNL-55221, Lawrence Berkeley National Laboratory, 2005.

[10] T. Gudmundsson, C. S. Kenney, and A. J. Laub, Small-sample statistical estimates for
matrix norms, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 776–792.

[11] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,
2002.

[12] E. D. Kaplan, Understanding GPS: Principles and Applications, Artech House, Boston, MA,
1996.

[13] C. S. Kenney and A. J. Laub, Small-sample statistical condition estimates for general matrix
functions, SIAM J. Sci. Comput., 15 (1994), pp. 36–61.

[14] C. S. Kenney, A. J. Laub, and M. S. Reese, Statistical condition estimation for linear least
squares, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 906–923.

[15] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM
J. Numer. Anal., 18 (1981), pp. 398–405.

[16] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse
least squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71.

[17] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley,
New York, 1971.

[18] G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, New York, 1991.
[19] C. F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal., 13

(1976), pp. 76–83.
[20] Y. Wei, H. Diao, and S. Qiao, Condition Number for Weighted Linear Least Squares Problem

and Its Condition Number, Technical report CAS 04-02-SQ, Department of Computing and
Software, McMaster University, Hamilton, ON, Canada, 2004.

[21] Y. Wei, W. Xu, S. Qiao, and H. Diao, Componentwise Condition Numbers for Generalized
Matrix Inversion and Linear Least Squares, Technical report CAS 03-12-SQ, Department
of Computing and Software, McMaster University, Hamilton, ON, Canada, 2003.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 434–454

DYNAMICAL LOW-RANK APPROXIMATION∗

OTHMAR KOCH† AND CHRISTIAN LUBICH†

Abstract. For the low-rank approximation of time-dependent data matrices and of solutions to
matrix differential equations, an increment-based computational approach is proposed and analyzed.
In this method, the derivative is projected onto the tangent space of the manifold of rank-r matrices at
the current approximation. With an appropriate decomposition of rank-r matrices and their tangent
matrices, this yields nonlinear differential equations that are well suited for numerical integration.
The error analysis compares the result with the pointwise best approximation in the Frobenius
norm. It is shown that the approach gives locally quasi-optimal low-rank approximations. Numerical
experiments illustrate the theoretical results.

Key words. low-rank approximation, time-varying matrices, continuous updating, smooth
decomposition, matrix differential equations

AMS subject classifications. 65F30, 15A23

DOI. 10.1137/050639703

1. Introduction. Low-rank approximation of unbearably large system matrices
is a basic model reduction technique in many application areas, such as image com-
pression, linear dynamical systems, regularization methods for ill-posed problems, and
latent semantic indexing in information retrieval. In the present paper, we consider
the task of computing low-rank approximations to matrices A(t) ∈ R

m×n depending
smoothly on a real parameter, henceforth referred to as time t. At any time t, a best
approximation to A(t) of rank r is a matrix X(t) in the manifold Mr = Mm×n

r of
rank-r matrices that satisfies

X(t) ∈ Mr such that ‖X(t) −A(t)‖ = min!(1.1)

This is formulated for a matrix norm, which we choose as the Frobenius norm in the
following. The problem is solved by a singular value decomposition (SVD) of A(t),
truncating all singular values after the r largest ones. When the matrix is so large
that a complete SVD is not feasible, a standard approach to obtaining an approximate
solution is based on the Lanczos bidiagonalization process with A(t) [15].

Here, we consider instead the low-rank approximation Y (t) ∈ Mr determined
from the condition that for every t the derivative Ẏ (t), which is in the tangent space
TY (t)Mr, be chosen as

Ẏ (t) ∈ TY (t)Mr such that ‖Ẏ (t) − Ȧ(t)‖ = min!(1.2)

This is complemented with an initial condition, ideally Y (t0) = X(t0). For given
Y (t), the derivative Ẏ (t) is obtained by a linear projection, though onto a solution-
dependent vector space. Problem (1.2) yields an initial value problem of nonlinear
ordinary differential equations on Mr, which becomes numerically efficiently accessi-
ble after choosing a suitable factorization of rank-r matrices.

∗Received by the editors September 7, 2005; accepted for publication (in revised form) by H. Park
September 29, 2006; published electronically April 3, 2007. This work was supported by the Deutsche
Forschungsgemeinschaft, Sonderforschungsbereich 382.

http://www.siam.org/journals/simax/29-2/63970.html
†Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D–72076 Tübingen,

Germany (othmar@othmar-koch.org, lubich@na.uni-tuebingen.de).

434

DYNAMICAL LOW-RANK APPROXIMATION 435

There are several independent reasons that make the approach to low-rank ap-
proximation via (1.2) attractive:

(a) Problem (1.2) and its solution algorithm depend on the increments Ȧ(t) in-
stead of the complete data matrix A(t). This appears to be an essential
benefit in processes where Ȧ(t) is much sparser than A(t), e.g., in series of
moving images or in time-varying term-document matrices in information
retrieval (updates are usually small compared to the whole encyclopedia).

(b) Solving the differential equations corresponding to (1.2) requires only multi-
plications of Ȧ(t) with matrices having few (r) columns, but no decomposi-
tions of matrices of the size of A, except for the low-rank approximation to
the initial data A(t0).

(c) The differential equations for Y (t) yield a smooth low-rank approximation.
This is not assured when computing a pointwise best approximation, which
is not unique in general.

(d) Since the problem (1.2) of determining Ẏ (t) for given Y (t) is linear, the ap-
proach extends more easily than (1.1) to structured low-rank approximation,
where Mr is replaced by some submanifold.

(e) In contrast to (1.1), the approach (1.2) extends to the situation where A(t) is
not a given matrix but the unknown solution of a master equation, a matrix
differential equation Ȧ = F (A). In this case, Ȧ(t) in (1.2) is simply replaced
by the approximation F (Y (t)), so that the defect in the differential equation
is minimized:

Ẏ (t) ∈ TY (t)Mr such that ‖Ẏ (t) − F (Y ((t))‖ = min!(1.3)

Some comments and references to these aspects are in order: (a) and (b) are related to
updating problems for low-rank approximations [3, 17], and item (c) to smooth decom-
positions of matrices, in particular to smooth SVD and the corresponding differential
equations [1, 4, 7, 13, 16]. Item (d) refers to structured low-rank approximation as
considered in [5, 6] for time-independent matrices. Item (e) and its generalization to
low-rank approximation of tensors have a surprisingly long history in quantum me-
chanics: in 1930, Dirac [8] proposed to approximate the solution of the time-dependent
Schrödinger equation, the multivariate wave function ψ(x1, . . . , xd, t), by a rank-1 ap-
proximation, namely an (antisymmetrized) tensor product φ1(x1, t) . . . φd(xd, t), and
derived differential equations for the functions φk from a variational principle anal-
ogous to (1.3), which is now known as the Dirac–Frenkel time-dependent variational
principle in the chemical physics literature; see the historical references [8, 9] and, e.g.,
[2, 12]. Since the 1990s, the numerical approach of approximating the wave function by
linear combinations of tensor products obeying differential equations derived from the
Dirac–Frenkel principle (the multiconfiguration time-dependent Hartree or MCTDH
method) has been used with great success for computations in quantum molecular
dynamics [2]. It was, in fact, our work on variational approximations in quantum
dynamics that led us to consider the dynamical low-rank matrix approximation (1.2),
which does not appear to have been used or studied previously.

In the present paper we formulate the differential equations determining the so-
lution of (1.2) and study the approximation properties of this approach, comparing
the deviation from the best approximation, Y (t)−X(t), with the best-approximation
error X(t) −A(t).

In section 2, we describe decompositions of rank-r matrices and their tangent
matrices, and we derive differential equations for the factors that define the rank-r

436 OTHMAR KOCH AND CHRISTIAN LUBICH

approximation Y (t). These differential equations are used for the numerical solution
of the problem. In section 3 we illustrate the approach and the behavior of the
dynamical low-rank approximation (1.2) by numerical experiments.

The analysis of the approximation properties of (1.2) turns out to be more de-
manding than the formal similarity of (1.1) and (1.2) would suggest. In section 4 we
give a preparatory result on orthogonal projections onto tangent spaces of Mr. The
approximation properties of (1.2) are then studied in section 5 under the assumption
that A(t) is a perturbation to a matrix of rank ≤ r. We first give near-optimality
results when the effective rank of A(t) is equal to r (Theorems 5.1 and 5.2), and
then extend the result to the case where r in (1.2) is larger than the effective rank
(Theorem 5.3). A further approximation result concerns systems without gaps in the
distribution of the singular values (Theorem 5.5). Before turning to these approxi-
mation results, however, it should be noted that Y (t) cannot always be expected to
remain close to X(t). This is already seen from the example of finding a rank-1 approx-
imation to diag(e−t, et), where starting from t0 < 0 yields X(t) = Y (t) = diag(e−t, 0)
for t < 0, but Y (t) = diag(e−t, 0) and X(t) = diag(0, et) for t > 0. The best ap-
proximation X(t) here has a discontinuity at t = 0, caused by a crossing of singular
values of which one is inside and the other outside the approximation. Our results
show, however, that Y (t) yields a near-optimal approximation on intervals where a
good smooth approximation exists.

In section 6 we consider the following extensions of the basic approach:
• Regularization: the inverses of ill-conditioned matrices in the differential

equations are replaced by regularized inverses.
• Stabilization: the differential equations are stabilized in order to drive the

dynamical approximation toward the best approximation.
• Structured low-rank approximation: as an example we consider the problem

of approximation by rank-r orthogonal projections.
• Matrix differential equations: we extend the method and the approximation

results to the low-rank approximation (1.3) to solutions of matrix differential
equations Ȧ = F (A).

The present paper deals with theoretical aspects of the dynamical low-rank ap-
proximation. Our very promising first experiences in using this technique for appli-
cations ranging from the compression of time-varying term-document matrices and
of series of images to the computation of blow-up in reaction-diffusion equations are
reported in [14].

Notation. Throughout the paper, ‖ · ‖ is the Frobenius norm,

‖A‖ =

⎛⎝∑
i,j

a2
ij

⎞⎠1/2

,

and 〈·, ·〉 denotes the corresponding inner product, 〈A,B〉 = tr (ATB) =
∑

i,j aijbij .
We make frequent use of the inequality ‖AB‖ ≤ ‖A‖2 · ‖B‖ and occasionally of
‖A‖2 ≤ ‖A‖, where ‖ · ‖2 is the spectral norm.

2. Differential equations for low-rank approximation.

2.1. Decompositions of rank-r matrices and of their tangent matrices.
Every real rank-r matrix of dimension m× n can be written in the form

Y = USV T ,(2.1)

DYNAMICAL LOW-RANK APPROXIMATION 437

where U ∈ R
m×r and V ∈ R

n×r have orthonormal columns, i.e.,

UTU = Ir, V TV = Ir(2.2)

(with the identity matrix Ir of dimension r), and S ∈ R
r×r is nonsingular. The SVD

yields S diagonal, but here we will not assume a special form of S. The representation
(2.1) is not unique: replacing U by Ũ = UP and V by Ṽ = V Q with orthogonal

matrices P,Q ∈ R
r×r, and correspondingly S by S̃ = PTSQ, yields the same matrix

Y = USV T = Ũ S̃Ṽ T .

As a substitute for the nonuniqueness in the decomposition (2.1), we will use a
unique decomposition in the tangent space. Let Vm,r denote the Stiefel manifold of
real m× r matrices with orthonormal columns. The tangent space at U ∈ Vm,r is

TUVm,r = {δU ∈ R
m×r : δUTU + UT δU = 0} = {δU ∈ R

m×r : UT δU ∈ so(r)},

where so(r) denotes the space of skew-symmetric real r × r matrices. Consider the
extended tangent map of (S,U, V) �→ Y = USV T ,

R
r×r × TUVm,r × TV Vn,r → TY Mr × so(r) × so(r),

(δS, δU, δV) �→ (δUSV T + UδSV T + USδV T , UT δU, V T δV).

This linear map is an isomorphism, since it is readily seen to have zero null-space,
and since the dimensions of the vector spaces on both sides agree.

Hence, every tangent matrix δY ∈ TY Mr is of the form

δY = δUSV T + UδSV T + USδV T ,(2.3)

where δS ∈ R
r×r, and δU ∈ TUVm,r and δV ∈ TV Vn,r. Moreover, δS, δU, δV are

uniquely determined by δY if we impose the orthogonality constraints

UT δU = 0, V T δV = 0.(2.4)

With the identity matrices Im, In of dimensions m and n, respectively, we define by

PU = UUT , PV = V V T , P⊥
U = Im − PU , P⊥

V = In − PV(2.5)

the orthogonal projections onto the spaces spanned by the columns of U and V , and
onto their orthogonal complements, respectively. Now, (2.3) and (2.4) yield

δS = UT δY V,

δU = P⊥
U δY V S−1,(2.6)

δV = P⊥
V δY TUS−T .

Formulas (2.3) and (2.6) establish an isomorphism between the subspace

{(δS, δU, δV) ∈ R
r×r × R

m×r × R
n×r : UT δU = 0, V T δV = 0}

and the tangent space TY Mr.

438 OTHMAR KOCH AND CHRISTIAN LUBICH

2.2. The differential equations for the factors. The minimization condition
(1.2) on the tangent space is equivalent to an orthogonal projection: find Ẏ ∈ TY Mr

(we omit the argument t) satisfying

〈Ẏ − Ȧ, δY 〉 = 0 for all δY ∈ TY Mr.(2.7)

From the viewpoint of numerical analysis, this is a Galerkin condition on the tangent
space TY Mr. With this formulation we derive differential equations for the factors in
the representation (2.1).

Proposition 2.1. For Y = USV T ∈ Mr with nonsingular S ∈ R
r×r and with

U ∈ R
m×r and V ∈ R

n×r having orthonormal columns, condition (1.2) or (2.7) is
equivalent to Ẏ = U̇SV T + UṠV T + USV̇ T , where

Ṡ = UT ȦV,

U̇ = P⊥
U ȦV S−1,(2.8)

V̇ = P⊥
V ȦTUS−T ,

with the orthogonal projections P⊥
U = Im − UUT and P⊥

V = In − V V T .

Proof. For u ∈ R
m, v ∈ R

n, and B ∈ R
m×n, we use the identity

〈uvT , B〉 = uTBv.

In view of (2.4) we require UT U̇ = V T V̇ = 0 along the solution trajectory in order to
define a unique representation of Ẏ . We first substitute δY = uiv

T
j , for i, j = 1, . . . , r,

into (2.7), where ui, vj denote the columns of U, V , respectively. This is of the
form (2.3) with δU = δV = 0 and one nonzero element in δS. In this way we find
Ṡ = UT ȦV. Similarly, choosing δY =

∑r
j=1 δu sijv

T
j , i = 1, . . . , r, where δu ∈ R

m

is arbitrary with UT δu = 0, we obtain the stated differential equation for U , and
likewise for δY =

∑r
j=1 ujsjiδv

T with V T δv = 0 the differential equation for V .

Note that with Λ = UT ȦV , the differential equations can be rewritten as

Ṡ = Λ,

U̇S = ȦV − UΛ,(2.9)

V̇ ST = ȦTU − V ΛT .

The matrices U and V retain orthonormal columns when the initial values have this
property: since UT U̇ = 0, we have d

dtU
TU = U̇TU + UT U̇ = 0, and similarly for V .

The differential equations (2.8) are related to differential equations for other
smooth matrix decompositions, in particular the smooth SVD; see [7, 16]. Unlike
the differential equations for singular values given there, no singularities appear in
(2.8) at points where singular values of Y (t) coalesce. Equations (2.8) are in close
relationship with the MCTDH equations [2], specialized to matrices instead of multi-
variate functions and stripped of the Schrödinger equation context.

In the numerical integration of (2.8), the step size control should be based on
the local error in the low-rank approximation Y = USV T , not on the local error in
its factors (this makes a marked difference when S has small singular values). The
orthogonality of the columns of U and V can be preserved in the numerical integration
by the methods described, e.g., in [10, Chapter IV].

DYNAMICAL LOW-RANK APPROXIMATION 439

0

50

100
0 20 40 60 80 100

−6

−4

−2

0

2

Fig. 3.1. Size of the matrix elements for t = 0, 0.2, . . . , 1, first example, ε = 1e− 3.

3. Numerical experiments. In this section we illustrate the behavior of the
dynamical low-rank approximation method by three numerical examples. In all ex-
periments, we have chosen the step sizes in the numerical integration of the differential
equations (2.8) small enough that the error of the numerical integration is negligible
as compared with the error of the low-rank approximation.

First example. We consider a model problem which was constructed in the fol-
lowing way: first, a 10× 10 matrix of random numbers between 0 and 0.5 was added
to the unit matrix of the same size, giving a matrix with singular values of magni-
tude ≈ 1. Subsequently, this matrix was added as the leading 10 × 10 block to a
100 × 100 matrix with random entries between 0 and 1 multiplied by a perturbation
parameter ε, yielding a matrix A1. Another matrix A2 built in the same way, multi-
plied by exp(t), was added for t ∈ [0, 1]. Finally, to eliminate the possibility that this
particular structure of the matrix might have an influence on our results, we applied
a time-dependent transformation by orthogonal matrices (which does not alter the
singular values, but the left and right singular vectors), which were created by solving
initial value problems Q̇i = TiQi (i = 1, 2) with skew-symmetric Ti and initial values
equal to identity. To illustrate the structure of the resulting matrices,

A(t) = Q1(t)(A1 + etA2)Q2(t)
T ,

we show, in Figure 3.1, the size of the matrix entries for values t = 0, 0.2, 0.4, 0.6, 0.8, 1,
with the perturbation parameter ε = 1e − 3. At t = 0 the large entries are located
in a corner according to the construction of the test example, and afterwards the
orthogonal transformations spread these large matrix elements such that the size of
matrix entries is approximately the same all over.

Figure 3.2 shows the time evolution of the errors ‖Y −X‖, ‖Y −A‖ and the best-
approximation error ‖X − A‖ over the interval [0, 1] for ε = 1e − 3. When we vary
the order of magnitude of the perturbation ε, we observe that the size of the error
of the approximation Y defined by (1.2) as compared with the best approximation
X from (1.1) is proportional to the error of the best approximation. In Table 3.1,
the results are given for ε = 1e − 1, . . . , 1e − 5 at time t = 1, where the maximum
errors on the interval [0, 1] occur. When the parameter ε is decreased by an order
of magnitude, ‖X − A‖ decreases proportionally, and ‖Y − X‖ and ‖Y − A‖ show
the same behavior. We show the errors in the Frobenius norm, and additionally the
norm of S−1. We observe that for an approximation of rank r = 10, ‖S−1‖ does not
increase significantly when ε decreases.

440 OTHMAR KOCH AND CHRISTIAN LUBICH

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
norm(X−A)
norm(Y−X)
norm(Y−A)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
norm(X−A)
norm(Y−X)
norm(Y−A)

Fig. 3.2. Errors as a function of t, for r = 10 (left) and r = 20 (right).

Table 3.1

First example, r = 10.

ε ‖X −A‖ ‖Y −X‖ ‖Y −A‖ ‖S−1‖
1e−1 7.3762e+00 1.1808e+01 1.3478e+01 7.9878e−01
1e−2 9.3381e−01 5.1817e+00 5.2203e+00 1.4487e+00
1e−3 1.8293e−01 1.1450e−01 2.1549e−01 2.6232e+00
1e−4 1.8310e−02 1.1368e−02 2.1550e−02 2.6232e+00
1e−5 1.8312e−03 1.7596e−03 2.5395e−03 2.6230e+00

Table 3.2

First example, r = 20.

ε ‖X −A‖ ‖Y −X‖ ‖Y −A‖ ‖S−1‖
1e−1 6.0335e+00 1.2500e+01 1.3094e+01 1.5749e+00
1e−2 6.1246e−01 9.7993e−01 1.0885e+00 1.3569e+01
1e−3 6.1280e−02 9.1726e−02 1.0354e−01 1.3474e+02
1e−4 6.1282e−03 9.0416e−03 1.0298e−02 1.2940e+03

We repeat the same experiments with r = 20, which is larger than the effective
rank 10 of the matrices that are to be approximated; see Table 3.2. We observe
that ‖S−1‖ grows rapidly with ε in this case. However, the approximation quality is
not negatively affected. Rather, the approximation error is smaller than in the case
r = 10, especially for larger ε, since more singular values are taken into account. The
approximation of the dominant singular values and vectors does not suffer from the
bad overall conditioning introduced by the small, insignificant contributions. For small
ε, a similar error behavior as in the case r = 10 is observed. We have not included
the values for still smaller ε, because there the numerical integrator is forced to take
very small step sizes. In this way the large norm of S−1 does have an influence on the
numerical solution. This unfavorable effect can be avoided by using the regularization
of section 6.

Second example. This example demonstrates a scenario which may cause a failure
of the dynamical low-rank approximation because of a discontinuous best approxima-
tion. If the approximation rank r is chosen too small, then singular values which are
initially small may in the course of time become larger than the singular values that
are actually approximated by the algorithm. Thus, a rather large error compared to
the (then discontinuous) best approximation may result when r is too small and the
parameter t varies in an unfavorably large interval without a restart of the algorithm
by recomputing a best approximation. Figure 3.3 shows such a situation for an exam-

DYNAMICAL LOW-RANK APPROXIMATION 441

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

Fig. 3.3. Second example, singular values for r = 5 and r = 20.

0 2 4 6 8 10
0

5

10

15

Fig. 3.4. Second example, singular values for r = 5, algorithm restarted at 20 points.

ple constructed by the same principles as for the example discussed above, yet with a
time-dependence of the form cos(t) for t ∈ [0, 10] and with ε = 1e−1. In both figures,
we compare the r largest singular values of A(t) (computed by SVD in every point
considered) with the singular values of the rank-r approximation matrix Y (t). In all
the figures, the largest singular values computed for the exact matrix are given by a
solid line, while those of the dynamical low-rank approximation (at equidistant out-
put points) are represented by dots. If we choose r = 5, then the algorithm does not
approximate the r largest singular values for all t. Rather, for t ≈ 3, one of the sin-
gular values not included in the approximation becomes largest; see Figure 3.3(left).
However, if we choose r = 20, then all the dominant singular values and vectors are
included in the approximation; see Figure 3.3(right). The correct behavior is captured
with r = 5 if the algorithm is restarted 20 times in the interval (Figure 3.4).

Third example. This example is again constructed similarly to the first exam-
ple, A(t) = Q1(t)e

tDQ2(t)
T ∈ R

100×100, where D is a diagonal matrix with entries
2−i/10, i = 1, . . . , 100, in descending order. In contrast to the first example, however,
there is no distinguishable gap in the set of singular values of A(t). Nonetheless,
the dynamical low-rank approximation yields satisfactory results. In Figure 3.5, the
errors at t = 1 are given for a sequence of approximations of increasing rank r, where
r = 3(3)99. We observe that ‖Y −X‖ tends to zero at the same rate as ‖X −A‖.

442 OTHMAR KOCH AND CHRISTIAN LUBICH

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

norm(X−A)
norm(Y−X)
norm(Y−A)

Fig. 3.5. Third example, errors at t = 1 as a function of the rank r of the approximation.

4. Tangent space projection and curvature bounds. In the following two
sections we give an analysis that explains the error behavior observed in the numerical
experiments. We begin with some preparation.

Condition (2.7) can be written as the differential equation on Mr,

Ẏ = P (Y)Ȧ,(4.1)

where P (Y) is the orthogonal projection onto the tangent space TY Mr. Basic prop-
erties of this projection are formulated in the following two lemmas.

Lemma 4.1. The orthogonal projection onto the tangent space TY Mr at Y =
USV T ∈ Mr is given by

P (Y) = I − P⊥(Y) with P⊥(Y)B = P⊥
U BP⊥

V(4.2)

for B ∈ R
m×n.

Proof. Proposition 2.1 yields Ẏ = Ȧ − P⊥
U ȦP⊥

V for Ẏ of (2.7) or equivalently of
(4.1). Since this holds for every matrix Ȧ, the result follows.

Lemma 4.2. Let the rank-r matrix X ∈ Mr be such that its smallest nonzero
singular value satisfies σr(X) ≥ ρ > 0, and let Y ∈ Mr with ‖Y −X‖ ≤ 1

8ρ. Then,
the following bounds hold: for all B ∈ R

m×n,

‖
(
P (Y) − P (X)

)
B‖ ≤ 8ρ−1 ‖Y −X‖ · ‖B‖2,(4.3)

‖P⊥(Y)(Y −X)‖ ≤ 4ρ−1 ‖Y −X‖2.(4.4)

Proof. (a) For X = U0S0V
T
0 ∈ Mr we have the bound ‖S−1

0 ‖2 ≤ ρ−1. Since we
have, by [11, p. 448],

|σr(Y) − σr(X)| ≤ ‖Y −X‖2 ≤ ‖Y −X‖,

we obtain for ‖Y −X‖ ≤ 1
8ρ that

σr(Y) ≥ σr(X) − |σr(Y) − σr(X)| ≥ 7
8ρ,

and hence Y = U1S1V
T
1 with ‖S−1

1 ‖2 ≤ 8
7ρ

−1.
(b) We decompose the matrices on the straight line connecting X and Y as

X + τ(Y −X) = M(τ) + N(τ) with M(τ) ∈ Mr, N(τ) ⊥ TXMr.

A smooth such decomposition exists at least for small τ , but the arguments below
show that it exists in fact for 0 ≤ τ ≤ 1. We denote

Δ = P (X)(Y −X) ∈ TXMr, with ‖Δ‖ ≤ δ := ‖Y −X‖.

DYNAMICAL LOW-RANK APPROXIMATION 443

We then have P (X)(M(τ) −X) = τΔ, which yields

P (X)Ṁ(τ) = Δ.

Since (4.2) gives P (X)Ṁ = Ṁ − P⊥
U0
ṀP⊥

V0
, we obtain PU0Ṁ = PU0Δ and ṀPV0 =

ΔPV0 , which implies

UT
0 Ṁ(τ) = UT

0 Δ, Ṁ(τ)V0 = ΔV0.(4.5)

(c) Using Proposition 2.1 with M(τ) ∈ Mr in the role of A(τ) and Y (τ), we get

M(τ) = U(τ)S(τ)V (τ)T ,

where S,U, V satisfy the differential equations

Ṡ = UT ṀV = UTΔV + (U − U0)
TP⊥

U0
ṀP⊥

V0
(V − V0),

U̇ = P⊥
U ṀV S−1 = P⊥

U ΔV0S
−1 + P⊥

U Ṁ(V − V0)S
−1,(4.6)

V̇ = P⊥
V ṀTUS−T = P⊥

V ΔTU0S
−T + P⊥

V ṀT (U − U0)S
−T .

In the second equalities we have used Ṁ = Δ+P⊥
U0
ṀP⊥

V0
and (4.5), and the fact that

P⊥
U0
U0 = 0 and P⊥

V0
V0 = 0. In addition, we have Ṁ = UṠV T + (U̇S)V T +U(V̇ ST)T ,

and hence

Ṁ = Δ + P⊥
U0

(
(U − U0)Ṡ(V − V0)

T + (U̇S)(V − V0)
T + (U − U0)(V̇ ST)T

)
P⊥
V0
.

(4.7)

We will show that these differential equations have a solution up to τ = 1. As long
as ‖U − U0‖ ≤ 1

4 and ‖V − V0‖ ≤ 1
4 , they give the bounds

‖Ṡ‖ ≤ δ + 1
16‖Ṁ‖, ‖U̇S‖ ≤ δ + 1

4‖Ṁ‖, ‖V̇ ST ‖ ≤ δ + 1
4‖Ṁ‖,

which inserted into the equation for Ṁ yield

‖Ṁ‖ ≤ 2δ and ‖Ṡ‖ ≤ 9
8δ, ‖U̇S‖ ≤ 3

2δ, ‖V̇ ST ‖ ≤ 3
2δ.(4.8)

The bound for Ṡ yields ‖S(τ) − S0‖ ≤ 9
8δ for τ ≤ 1. By the assumption δ ≤ 1

8ρ and
the argument in part (a), we thus obtain ‖S(τ)−1‖2 ≤ 4

3ρ
−1 for τ ≤ 1. From the

bound for U̇S we then have

‖U̇‖ ≤ ‖U̇S‖ · ‖S−1‖2 ≤ 3
2δ ·

4
3ρ

−1 = 2ρ−1δ ≤ 1
4 .(4.9)

The same bound holds for V̇ . These bounds show that the differential equation has
a solution on the whole interval 0 ≤ τ ≤ 1 with

‖S1 − S0‖ ≤ 9
8 δ, ‖U1 − U0‖ ≤ 2ρ−1δ, ‖V1 − V0‖ ≤ 2ρ−1δ.(4.10)

(d) The above bounds give immediately

‖P⊥
U1

− P⊥
U0
‖ ≤ 4ρ−1δ, ‖P⊥

V1
− P⊥

V0
‖ ≤ 4ρ−1δ.(4.11)

Formula (4.2) shows (
P (Y) − P (X)

)
B = P⊥

U0
BP⊥

V0
− P⊥

U1
BP⊥

V1
,

444 OTHMAR KOCH AND CHRISTIAN LUBICH

which together with (4.11) yields the bound (4.3).
(e) With P⊥

U U = 0 and P⊥
V V = 0 we obtain

P⊥(Y)(Y −X) = P⊥
U1

(U1S1V
T
1 − U0S0V

T
0)P⊥

V1
= −P⊥

U1
U0S0V

T
0 P⊥

V1

= −P⊥
U1

(U1 − U0)S0(V1 − V0)
TP⊥

V1
.(4.12)

We write

(U1 − U0)S0 =

∫ 1

0

U̇(τ)S0 dτ =

∫ 1

0

U̇(τ)S(τ) dτ −
∫ 1

0

U̇(τ)(S(τ) − S0) dτ,

and hence (4.8) and (4.9) yield

‖(U1 − U0)S0‖ ≤ 2δ.

Using this bound and (4.10) in (4.12) finally gives the bound for P⊥(Y)(Y −X).

5. Approximation properties. We give four results that illustrate different
aspects of the dynamical low-rank approximation problem.

5.1. Local quasi optimality. If the low-rank approximation problem (1.1) has
a continuously differentiable best approximation X(t) ∈ Mr, then the error of (1.2)
can be bounded in terms of the best-approximation error ‖X(t) − A(t)‖. The result
involves a bound on Ȧ(t):

‖Ȧ(t)‖2 ≤ μ for 0 ≤ t ≤ t.(5.1)

(For convenience we choose the initial time t0 = 0.)
Theorem 5.1. Suppose that a continuously differentiable best approximation

X(t) ∈ Mr to A(t) exists for 0 ≤ t ≤ t. Let the rth singular value of X(t) have
the lower bound σr(X(t)) ≥ ρ > 0, and assume that the best-approximation error is
bounded by ‖X(t)−A(t)‖ ≤ 1

16ρ for 0 ≤ t ≤ t. Then, the approximation error of (1.2)
with initial value Y (0) = X(0) is bounded in the Frobenius norm by

‖Y (t) −X(t)‖ ≤ 2β eβt
∫ t

0

‖X(s) −A(s)‖ ds with β = 8μρ−1

for t ≤ t and as long as the right-hand side is bounded by 1
8ρ.

Proof. For the best approximation it must hold that X − A is orthogonal to the
tangent space TXMr, or equivalently,

P (X)(X −A) = 0.

We differentiate this relation with respect to t and denote (P ′(X)·B)Ẋ = d
dtP (X(t))B

to obtain

P (X)(Ẋ − Ȧ) +
(
P ′(X) · (X −A)

)
Ẋ = 0.

Since Ẋ ∈ TXMr, we have P (X)Ẋ = Ẋ, and the equation becomes(
I − P ′(X) · (X −A)

)
Ẋ = P (X)Ȧ.(5.2)

Lemma 4.2 and the condition d := ‖X −A‖ ≤ 1
16ρ yield

‖P ′(X) · (X −A)‖ ≤ 8ρ−1d ≤ 1
2 ,

DYNAMICAL LOW-RANK APPROXIMATION 445

and hence (5.2) can be solved for Ẋ to yield

Ẋ = P (X)Ȧ + D with ‖D‖ ≤ 16ρ−1dμ = 2βd.

We subtract this equation from (4.1), that is, Ẏ = P (Y)Ȧ, and integrate from 0 to t.
As long as e := ‖Y −X‖ ≤ 1

8ρ, Lemma 4.2 yields

‖
(
P (Y) − P (X)

)
Ȧ‖ ≤ 8ρ−1eμ = βe,

and hence we obtain

e(t) ≤ β

∫ t

0

e(s) ds + 2β

∫ t

0

d(s) ds.

The result now follows with the Gronwall inequality.

5.2. A farther-reaching error bound. Smaller errors over longer time inter-
vals are obtained if not only X − A but also its derivative is small. We assume that
A(t) is of the form

A(t) = X(t) + E(t), 0 ≤ t ≤ t,(5.3)

where X(t) ∈ Mr (now this need not necessarily be the best approximation) with

‖Ẋ(t)‖2 ≤ μ,(5.4)

and the derivative of the remainder term is bounded by

‖Ė(t)‖ ≤ ε(5.5)

with a small ε > 0. We assume ε ≤ 1
8μ.

Theorem 5.2. In addition to the above assumptions, suppose that the rth singular
value of X(t) satisfies σr(X(t)) ≥ ρ > 0. Then, the approximation error of (1.2) with
initial value Y (0) = X(0) is bounded in the Frobenius norm by

‖Y (t) −X(t)‖ ≤ 2tε for t ≤ min

(
t,

ρ

4
√

2με

)
.

Proof. We note Ẋ = P (X)Ẋ, rewrite (4.1) as Ẏ = P (Y)Ẋ+P (Y)Ė, and subtract
the two equations. We observe(

P (Y) − P (X)
)
Ẋ = −

(
P⊥(Y) − P⊥(X)

)
Ẋ = −P⊥(Y)Ẋ = −P⊥(Y)2Ẋ.

We take the inner product with Y −X to obtain

〈Y −X,
(
P (Y) − P (X)

)
Ẋ〉 = −〈Y −X,P⊥(Y)Ẋ〉 = −〈P⊥(Y)(Y −X), P⊥(Y)Ẋ〉

= 〈P⊥(Y)(Y −X),
(
P (Y) − P (X)

)
Ẋ〉.

With Lemma 4.2 and (5.4), (5.5) this yields

〈Y −X, Ẏ − Ẋ〉 = 〈P⊥(Y)(Y −X),
(
P (Y) − P (X)

)
Ẋ〉 + 〈Y −X,P (Y)Ė〉

≤ 32μρ−2‖Y −X‖3 + ‖Y −X‖ · ε,

446 OTHMAR KOCH AND CHRISTIAN LUBICH

and, on the other hand, we have

〈Y −X, Ẏ − Ẋ〉 =
1

2

d

dt
‖Y −X‖2 = ‖Y −X‖ d

dt
‖Y −X‖.

Taken together, we obtain for e(t) = ‖Y (t) −X(t)‖ the differential inequality

ė ≤ γe2 + ε, e(0) = 0,

with γ = 32μρ−2. Hence, e(t) is majorized by the solution of

ẏ = γy2 + ε, y(0) = 0,

which equals y(t) =
√

ε/γ tan(t
√
γε) and is bounded by 2tε for t

√
γε ≤ 1. Lemma 4.2

remains applicable as long as 2tε ≤ 1
8ρ, which is satisfied on the given interval under

the assumption ε ≤ 1
8μ.

5.3. The case of overapproximation. The time interval in Theorem 5.2 be-
comes tiny when ρ ≤ ε. In that case, the effective rank (ε-pseudorank) of A(t) is
q < r, but the approximation is done by a rank-r matrix Y (t). It is not clear a priori
that Y (t) preserves an effective rank q over longer times. Even if it does, the matrix
S(t) in (2.1) is ill-conditioned, and since its inverse appears in the differential equa-
tions (2.8), one might expect a severe adverse effect on the approximation properties.
Remarkably, this does not happen, as is shown by the following result.

Theorem 5.3. Let (5.3)–(5.5) hold for X(t) ∈ Mq with q < r. Suppose that the
qth singular value of X(t) satisfies σq(X(t)) ≥ ρ > 0. Let the initial value Y (0) ∈ Mr

be Y (0) = X(0) + E0 with ImE0 ⊥ ImX(0) and ImET
0 ⊥ ImX(0)T , and with

‖E0‖ ≤ ε0 ≤ 1
16ρμ

−1ε. Suppose that the differential equation (2.8) has a solution on
the interval 0 ≤ t ≤ t∗. Then, the approximation error of (1.2) is bounded in the
Frobenius norm by

‖Y (t) −X(t)‖ ≤ ε0 + 6tε for t ≤ min

(
t, t∗,

ρ

16μ

)
.

The existence of the solution of the differential equation (2.8) is not ensured over
the whole interval, since S(t) might become singular. The orthogonality condition on
E0 is satisfied if the best rank-r approximation is taken as initial value. However, this
orthogonality condition is not essential. A similar, but less clear-cut estimate holds
whenever Y (0) ∈ Mr is sufficiently close to X(0) ∈ Mq.

The proof of Theorem 5.3 is based on combining the previous proof with the
following two-scale lemma.

Lemma 5.4. Let Y ∈ Mr be written in the form

Y = U

(
S1 0
0 S2

)
V T = U1S1V

T
1 + U2S2V

T
2 ,(5.6)

where U = (U1, U2) and V = (V1, V2) have orthonormal columns. Assume that
the smallest singular value of S1 ∈ R

q×q and the largest singular value of S2 ∈
R

(r−q)×(r−q) satisfy

σmin(S1) ≥ ρ, σmax(S2) ≤ δ with ρ ≥ 2δ.(5.7)

DYNAMICAL LOW-RANK APPROXIMATION 447

Then, the solution of the orthogonal projection (2.7) is given as

Ẏ =

2∑
i=1

(
U̇iSiV

T
i + UiṠiV

T
i + UiSiV̇

T
i

)
,(5.8)

where

Ṡ1 = UT
1 ȦV1, Ṡ2 = UT

2 ȦV2,

U̇1S1 = P⊥
U1
ȦV1 + EU ,(5.9)

V̇1S
T
1 = P⊥

V1
ȦTU1 + EV ,

with ‖EU‖ ≤ 2δρ−1‖Ȧ‖ and ‖EV ‖ ≤ 2δρ−1‖Ȧ‖.
The point of the lemma is that for δ ρ the equations for Ṡ1, U̇1, V̇1 are, up to

the small perturbations EU and EV , the same as those for solving the corresponding
rank-q problem for Yq = U1S1V

T
1 ∈ Mq; see Proposition 2.1. Under conditions (5.3)–

(5.5) with X ∈ Mq, the equation for Ṡ2 has a small right-hand side as long as Y
is close to A or X, and hence S2 remains small. The term U2S2V

T
2 then gives only

a small contribution to Y , no matter what the derivatives of U2 and V2 are. The
equations for U̇2 and V̇2, which have not been stated explicitly, contain in fact S−1

2 ,
which may have an arbitrarily large norm.

Proof of Lemma 5.4. We begin by showing that Ṡi, U̇i, V̇i in (5.8) are uniquely
determined if, instead of (2.4), we impose the constraints (cf. [7])

UT U̇ = H, V T V̇ = K,

with r × r matrices of the block form

H =

(
0 H12

H21 0

)
, K =

(
0 K12

K21 0

)
,

which are skew-symmetric: H12 = −HT
21 and K12 = −KT

21. As in the proof of
Proposition 2.1 we then obtain, instead of (2.8), the equation

UT ȦV = HS + Ṡ + SKT ,(5.10)

which yields Ṡ as the block diagonal of Λ := UT ȦV :

Ṡ1 = UT
1 ȦV1, Ṡ2 = UT

2 ȦV2.

We multiply (5.10) with S−1 from the right and take the symmetric part. Then H
drops out, and we obtain

SKTS−1 + S−TKST =

(
0 B12S

−1
2

S−T
2 B21 0

)
,

where B21 = BT
12 = ΛT

12 + ST
2 Λ21S

−1
1 is bounded by

‖B21‖ ≤ (1 + δρ−1) ‖Ȧ‖ ≤ 3
2‖Ȧ‖.

We multiply the (2,1) block of the above equation with ST
2 from the left and with

S−T
1 from the right to obtain

K21 − (ST
2 S2)K21(S

T
1 S1)

−1 = B21S
−T
1 .

448 OTHMAR KOCH AND CHRISTIAN LUBICH

By condition (5.7), this equation can be uniquely solved for K21 by fixed-point itera-
tion, and

‖K21‖ ≤ 4
3ρ

−1‖B21‖ ≤ 2ρ−1‖Ȧ‖.

As in (2.8), we derive

U̇S = ȦV − UṠ − USKT .

For the first component of U̇ = (U̇1, U̇2) this becomes

U̇1S1 = ȦV1 − U1Ṡ1 + EU = P⊥
U1
ȦV1 + EU

with EU = U2S2K21, which is bounded by ‖EU‖ ≤ δ · 2ρ−1‖Ȧ‖. The equation and
estimate for V̇1 are obtained in the same way.

In the proof of Theorem 5.3 we will actually use a variant of the above result,
which is proved in the same way: if condition (5.7) is replaced by

σmin(S1) ≥ ρ, ‖S2‖ ≤ δ,(5.11)

then Lemma 5.4 holds with the modified bounds

‖EU‖ ≤ 2δρ−1‖Ȧ‖2, ‖EV ‖ ≤ 2δρ−1‖Ȧ‖2.(5.12)

Proof of Theorem 5.3. We write Y in the form (5.6) as

Y = Y1 + Y2 ≡ U1S1V
T
1 + U2S2V

T
2 .

We will estimate e1 = ‖Y1 −X‖ and e2 = ‖Y2‖.
(a) By Lemma 5.4 and (5.3), Y1 satisfies the differential equation

Ẏ1 = Pq(Y1)Ẋ + Pq(Y1)Ė + EUV
T
1 + U1E

T
V ,

where Pq(Y1) denotes the orthogonal projection onto TY1Mq. Comparing this equa-

tion with Ẋ = Pq(X)Ẋ as in the proof of Theorem 5.2, we obtain

e1(t) ≤ 2tη,(5.13)

provided that, up to time t,

d := ‖Pq(Y1)Ė + EUV
T
1 + U1E

T
V ‖ ≤ η.

By (5.5) and (5.12) together with (5.4) we have

d(t) ≤ ε + 5ρ−1μ e2(t).(5.14)

(The factor 5 instead of 4 takes into account that ‖Ȧ‖ ≤ μ+ ε may be slightly larger
than μ of (5.4), and ρ in (5.11) may differ slightly from ρ in the formulation of the
theorem. The bound holds as long as e1 is sufficiently small.)

(b) We have

e2(t) = ‖S2(t)‖ ≤ ε0 +

∫ t

0

‖Ṡ2(s)‖ ds.

DYNAMICAL LOW-RANK APPROXIMATION 449

Now,

‖Ṡ2‖ = ‖UT
2 ȦV2‖ = ‖PU2ȦPV2‖ ≤ ‖P⊥

U1
ȦP⊥

V1
‖

= ‖P⊥
q (Y1)Ȧ‖ ≤ ‖P⊥

q (Y1)Ẋ‖ + ε = ‖
(
P⊥
q (Y1) − P⊥

q (X)
)
Ẋ‖ + ε

= ‖
(
Pq(Y1) − Pq(X)

)
Ẋ‖ + ε ≤ 8ρ−1μ e1 + ε,

where we have used Lemma 4.2 and (5.4) in the last inequality. Hence,

e2(t) ≤ ε0 + 8ρ−1μ

∫ t

0

e1(s) ds + tε.(5.15)

(c) With the bound (5.13) this inequality yields

e2(t) ≤ ε0 + 8ρ−1μ t2η + tε.

In view of (5.14), we thus need to choose η and the maximum value of t such that

η ≥ ε + 5ρ−1με0 + 5(ρ−1μt)ε + 40(ρ−1μt)2η.

For ρ−1με0 ≤ 1
16ε and ρ−1μt ≤ 1

16 this is satisfied for η = 2ε. This yields

e1(t) ≤ 4tε, e2(t) ≤ ε0 + 2tε,

which implies the result.

5.4. Systems without gaps between the singular values. The results of
the preceding subsections give satisfactory error bounds when there is a gap in the
distribution of the singular values so that essential and inessential singular values are
widely separated. We now consider a situation where such a gap need not exist, as in
the third numerical example. We make the assumptions of Theorem 5.2 and further
that X(t) ∈ Mr with σr(X(t)) ≥ ρ > 0 has a decomposition

X(t) = U0(t)S0(t)V0(t)
T for 0 ≤ t ≤ t,(5.16)

with nonsingular S0(t) ∈ R
r×r, and with U0(t) ∈ R

m×r and V0(t) ∈ R
n×r having

orthogonal columns, such that the following bounds hold for 0 ≤ t ≤ t :∥∥∥ d

dt
S−1

0 (t)
∥∥∥

2
≤ c1ρ

−1, ‖U̇0(t)‖2 ≤ c2, ‖V̇0(t)‖2 ≤ c2.(5.17)

Under these conditions we can show an O(ε) error over times O(1) even with ρ ∼ ε.
Theorem 5.5. Under the conditions of Theorem 5.2 and with (5.16)–(5.17), the

approximation error of (1.2) with initial value Y (0) = X(0) is bounded by

‖Y (t) −X(t)‖ ≤ 2tε for t ≤ min

(
t,

1

16c
1/2
2

(ρ
ε

)1/2

,
1

8c
1/3
1

(ρ
ε

)2/3

,
1

16

ρ

ε

)
.

Proof. From the proof of Theorem 5.2 we have the equation

〈Y −X, Ẏ − Ẋ〉 = −〈P⊥(Y)(Y −X), P⊥(Y)Ẋ〉 + 〈Y −X,P (Y)Ė〉.(5.18)

For e = ‖Y −X‖ ≤ 1
8ρ, the proof of Lemma 4.2 shows that Y can be decomposed as

Y = U1S1V
T
1 with

‖(U1 − U0)S0‖ ≤ 2e, ‖S0(V1 − V0)
T ‖ ≤ 2e.

450 OTHMAR KOCH AND CHRISTIAN LUBICH

By Lemma 4.1 we can write

P⊥(Y)Ẋ = P⊥
U1

(
U̇0S0V

T
0 + U0Ṡ0V

T
0 + U0S0V̇

T
0

)
P⊥
V1

= P⊥
U1

(
−U̇0S0(V1 − V0)

T + (U1 − U0)S0 · S−1
0 Ṡ0S

−1
0 · S0(V1 − V0)

T

− (U1 − U0)S0V̇
T
0

)
P⊥
V1
.

With (4.4), (5.17), and the above estimate, (5.18) gives the differential inequality, as
long as e ≤ 1

8ρ:

ė ≤ 4ρ−1e
(
2c2e + 4c1ρ

−1e2 + 2c2e) + ε.(5.19)

The error is bounded by 2tε as long as the first term on the right-hand side is bounded
by ε, which is thus satisfied for 16c2ρ

−1(2tε)2 ≤ 1
2ε and 16c1ρ

−2(2tε)3 ≤ 1
2ε. This

holds under the stated bounds for t.

6. Extensions of the basic approach.

6.1. Regularization. Though Theorem 5.3 shows that overapproximation has
no disastrous effect on the approximation properties, it is in fact harmful to the nu-
merical solution of the differential equations (2.8). Near-singularity of S enforces very
small step sizes in numerical integrators, and rounding errors may become important.
The situation is alleviated by replacing S−1 by a regularized inverse, e.g., obtained
from computing an SVD of S ∈ R

r×r and replacing the ith singular value σi by√
σ2
i + ε2. The approximation result of Theorem 5.3 remains valid (with modified

constants), since transformation to the block form (5.8) yields only an O(ε) pertur-
bation in (5.9).

6.2. Stabilization. In order to drive the solution toward the best approxima-
tion, we replace (2.7) by

〈Ẏ − Ȧ, δY 〉 + α〈Y −A, δY 〉 = 0 for all δY ∈ TY Mr(6.1)

with a positive parameter α. This amounts to replacing Ȧ by Ȧ−α(Y −A) in the dif-
ferential equations (2.8) determining Y = USV T . (This approach requires knowledge
of both Ȧ and A and can therefore not be extended to the low-rank approximation of
matrix differential equations as in section 6.4 below.)

The effect of the parameter α is easily seen in the framework of the proof of
Theorem 5.1. With the notation used there, we have the differential equations

Ẏ = P (Y)(Ȧ− α(Y −A)),

Ẋ = P (X)(Ȧ− α(X −A)) + D.

Subtracting the equations yields

Ẏ − Ẋ =
(
P (Y) − P (X)

)
Ȧ−D

− α(Y −X) + αP⊥(Y)(Y −X) − α
(
P (Y) − P (X)

)
(X −A).

Taking the inner product with Y − X and using Lemma 4.2 yields the following
differential inequality for e = ‖Y −X‖: with d = ‖X −A‖ and β = 8μρ−1,

ė ≤ βe + 2βd− αe(1 − 1
2βe− βd).(6.2)

The last term is stabilizing, provided that d and e are small enough.

DYNAMICAL LOW-RANK APPROXIMATION 451

6.3. An example of structured low-rank approximation: Approxima-
tion on Grassmann manifolds. We now approximate A(t) ∈ R

n×n not just by
arbitrary rank-r matrices, but by orthogonal projections onto r-dimensional sub-
spaces. We thus replace the manifold Mn×n

r in (1.2) by the submanifold (known
as a Grassmann manifold)

G = Gn,r = {Y ∈ Mn×n
r : Y 2 = Y, Y T = Y }.

A projection Y ∈ G can be written, in a nonunique way, as

Y = UUT with U ∈ Vn,r;

that is, U ∈ R
n×r has orthonormal columns. U is unique up to right-multiplication

with an r × r orthogonal matrix. Tangent matrices in TY G are of the form

δY = δUUT + UδUT with δU ∈ TUVn,r.(6.3)

This representation is unique if we impose the condition UT δU = 0, which yields
δUT = UT δY . The Galerkin condition (2.7) for the manifold G determines Ẏ ∈ TY G
such that

〈Ẏ − Ȧ, δY 〉 = 0 for all δY ∈ TY G.

Substituting (6.3) and using the rules 〈A,B〉 = 〈AT , BT 〉 and 〈A,BCT 〉 = 〈AC,B〉,
this condition becomes, with the condition UT U̇ = 0,

〈U̇ − 1
2 (Ȧ + ȦT)U, δU〉 = 0 for all δU ∈ R

n×r with UT δU = 0.

This gives the differential equation

U̇ = P⊥
U

1
2 (Ȧ + ȦT)U.(6.4)

With the appropriate version of Lemma 4.2 for the orthogonal projection P (Y) onto
the submanifold G, the approximation estimates corresponding to Theorems 5.1 and
5.2 follow without further ado.

6.4. Minimum defect approximation of matrix differential equations.
For the low-rank approximation to a solution of the matrix differential equation

Ȧ = F (A),(6.5)

condition (1.2) is replaced, at every time t, by

Ẏ ∈ TY Mr such that ‖Ẏ − F (Y)‖ = min!(6.6)

Equivalently, condition (2.7) is replaced by the Galerkin condition

〈Ẏ − F (Y), δY 〉 = 0 for all δY ∈ TY Mr,(6.7)

and correspondingly, the expression Ȧ is replaced by F (Y) for Y = USV T in the
differential equations (2.8) for S,U, V .

Theorems 5.1–5.3 extend to the low-rank approximation of matrix differential
equations (6.5). We assume that F has a moderate bound along the approximations,

‖F (X(t))‖ ≤ μ, ‖F (Y (t))‖ ≤ μ for 0 ≤ t ≤ t,(6.8)

452 OTHMAR KOCH AND CHRISTIAN LUBICH

and satisfies a one-sided Lipschitz condition: there is a real λ (positive or negative or
zero) such that

〈F (Y) − F (X), Y −X〉 ≤ λ ‖Y −X‖2(6.9)

for all matrices X,Y ∈ Mr. We further assume that for the best approximation X(t),

‖F (X(t)) − F (A(t))‖ ≤ L ‖X(t) −A(t)‖ for 0 ≤ t ≤ t,(6.10)

which is in particular satisfied if F is Lipschitz continuous with Lipschitz constant L.
We then have the following extension of the quasi-optimality result of Theorem 5.1.

Theorem 6.1. Suppose that a continuously differentiable best approximation
X(t) ∈ Mr to a solution A(t) of (6.5) exists for 0 ≤ t ≤ t, and assume the bounds
(6.8)–(6.10). Let the rth singular value of X(t) have the lower bound σr(X(t)) ≥ ρ >
0, and assume that the best-approximation error is bounded by ‖X(t) − A(t)‖ ≤ 1

16ρ
for 0 ≤ t ≤ t. Then, the approximation error of (1.2) with initial value Y (0) = X(0)
is bounded in the Frobenius norm by

‖Y (t) −X(t)‖ ≤ (2β + L) e(2β+λ)t

∫ t

0

‖X(s) −A(s)‖ ds with β = 8μρ−1

for t ≤ t and as long as the right-hand side is bounded by 1
8ρ.

Proof. Equation (6.7) rewritten as in (4.1) reads

Ẏ = P (Y)F (Y).(6.11)

As in the proof of Theorem 5.1, we have the equation

Ẋ = P (X)F (A) + D with ‖D‖ ≤ 2βd

for d = ‖X −A‖. We subtract the two equations, write

P (Y)F (Y) − P (X)F (A) −D = (P (Y) − P (X))F (X) + P (X)(F (X) − F (A))

+ (F (Y) − F (X)) − P⊥(Y)(F (Y) − F (X)) −D,

and take the inner product with Y −X. With Lemma 4.2 we obtain

〈Ẏ − Ẋ, Y −X〉 ≤ β ‖Y −X‖2 + Ld ‖Y −X‖
+λ ‖Y −X‖2 + β ‖Y −X‖2 + 2βd ‖Y −X‖.

For e = ‖Y −X‖ this gives the differential inequality

ė ≤ (2β + λ)e + (2β + L)d, e(0) = 0,(6.12)

which yields the result.
We refer to [12, Theorem 4.1] for a related quasi-optimality result in a situation

of a linear differential equation with an unbounded operator.
In the differential equation analogue of Theorem 5.2 with the splitting (5.3), we

start from the equations Ẏ − Ẋ = P (Y)F (Y)−P (X)Ẋ and Ẋ = F (A)− Ė, yielding

Ẏ − Ẋ = (P (Y) − P (X))Ẋ − P⊥(Y)(F (Y) − F (X))

+ (F (Y) − F (X)) + P (Y)(F (X) − F (A)) + P (Y)Ė,

DYNAMICAL LOW-RANK APPROXIMATION 453

where we now take the inner product with Y −X. If it is additionally assumed that
F has Lipschitz constant L, then this leads to the differential inequality

ė ≤ 4ρ−1(β + L)e2 + λe + Ld + ε, e(0) = 0.(6.13)

With γ̂ = 4ρ−1(β +L) and ε̂ = ε+Lmax0≤t≤t d(t), and with ϕ(x) = (ex − 1)/x, this
yields the error bound

‖Y (t) −X(t)‖ ≤ 2t ϕ(λt) ε̂ for tϕ(λt) ≤ 1
2 (γ̂ε̂)−1/2(6.14)

and as long as t ≤ t and 2tϕ(λt)ε̂ ≤ 1
8ρ.

Theorems 5.3 and 5.5 are extended similarly.

6.5. The special case of linear matrix differential equations. Systems

Ȧ = LA + AR(6.15)

with possibly time-dependent matrices L(t) and R(t) have the solution A(t) ∈ Mr

for initial data A0 = Y0 ∈ Mr. This is seen immediately from Lemma 4.1 and (6.11),
which yield Ẏ = LY + Y R and hence A(t) = Y (t) ∈ Mr. From the differential
equations (2.8), we thus obtain a decomposition of the solution A = USV T with U
and V having orthonormal columns and with the factors satisfying the differential
equations

Ṡ = UTLUS + SV TRV,

U̇ = P⊥
U LU,(6.16)

V̇ = P⊥
V RTV.

A different situation arises for linear problems of the type

Ȧ = LA + AR + B •A,(6.17)

where • denotes the Hadamard (or entrywise) product of matrices. The differen-
tial equations (2.8), with Ȧ replaced by the right-hand side of (6.17) evaluated at
Y = USV T instead of A, determine a low-rank approximation, but the entrywise
multiplication with B(t) in general requires the explicit computation of the entries

of Y . The situation simplifies if B is itself a low-rank matrix B =
∑k

j=1 βjcjd
T
j .

Writing Y =
∑r

i=1 σiûiv̂
T
i (obtained from an SVD of the matrix S of Y = USV T),

we can use B • Y in the differential equations for S,U, V in the decomposed form

B • Y =

k∑
j=1

r∑
i=1

βjσi(cj • ûi)(dj • v̂i)T ;

cf. [2] for an analogous observation for the potential in the Schrödinger equation.
The dynamical low-rank approximation Y (t) to A(t) of (6.17) can thus be computed
inexpensively if B(t) is of low rank or otherwise approximated by a matrix of low
rank, and in the present paper we have seen how this can be computed.

7. Conclusions and outlook. The dynamical low-rank approximation (1.2),
or equivalently (2.7) or (4.1), becomes an attractive computational approach via the
differential equations (2.8) that determine the factors in the representation (2.1) of the
approximation. The method yields a near-optimal smooth low-rank approximation, as

454 OTHMAR KOCH AND CHRISTIAN LUBICH

is shown in Theorems 5.1, 5.2, 5.3, and 5.5 and observed in numerical experiments. A
direct but very noteworthy extension is the minimum-defect low-rank approximation
(1.3) to solutions of matrix differential equations. Our first numerical experience
in compressing time-varying term-document matrices and series of images, and in
approximating time-dependent PDEs whose solutions are essentially of low rank (e.g.,
smooth with the exception of a few pulses or spikes, as in blow-up problems in reaction-
diffusion equations), is very promising, as reported in [14]. It will be interesting to see
the dynamical low-rank approximation used for large-scale problems in applications,
well beyond the already important area of quantum dynamics, where basic ideas for
this approach originated 75 years ago as a physical model reduction technique.

REFERENCES

[1] M. Baumann and U. Helmke, Singular value decomposition of time-varying matrices, Future
Generation Computer Systems, 19 (2003), pp. 353–361.

[2] M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, The multiconfiguration time-
dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating
wavepackets, Phys. Rep., 324 (2000), pp. 1–105.

[3] M. W. Berry, S. T. Dumais, and G. W. O’Brien, Using linear algebra for intelligent infor-
mation retrieval, SIAM Rev., 37 (1995), pp. 573–595.

[4] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols, Numerical computation
of an analytic singular value decomposition of a matrix valued function, Numer. Math.,
60 (1991), pp. 1–39.

[5] M. T. Chu, R. E. Funderlic, and R. J. Plemmons, Structured low rank approximation,
Linear Algebra Appl., 366 (2003), pp. 157–172.

[6] M. Chu, N. Del Buono, L. Lopez, and T. Politi, On the low-rank approximation of data
on the unit sphere, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 46–60.

[7] L. Dieci and T. Eirola, On smooth decompositions of matrices, SIAM J. Matrix Anal. Appl.,
20 (1999), pp. 800–819.

[8] P. A. M. Dirac, Note on exchange phenomena in the Thomas atom, Proc. Cambridge
Phil. Soc., 26 (1930), pp. 376–385.

[9] J. Frenkel, Wave Mechanics, Advanced General Theory, Clarendon Press, Oxford, 1934.
[10] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, Structure-

Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Springer, Berlin, 2006.
[11] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, London, 1985.
[12] C. Lubich, On variational approximations in quantum molecular dynamics, Math. Comp., 74

(2005), pp. 765–779.
[13] V. Mehrmann and W. Rath, Numerical methods for the computation of analytic singular

value decompositions, Electron. Trans. Numer. Anal., 1 (1993), pp. 72–88.
[14] A. Nonnenmacher and C. Lubich, Dynamical Low-Rank Approximation: Applications and

Numerical Experiments, technical report, Mathematics Institut, University of Tübingen,
2006; available online at http://na.uni-tuebingen.de/preprints.shtml.

[15] H. D. Simon and H. Zha, Low-rank matrix approximation using the Lanczos bidiagonalization
process with applications, SIAM J. Sci. Comput., 21 (2000), pp. 2257–2274.

[16] K. Wright, Differential equations for the analytic singular value decomposition of a matrix,
Numer. Math., 63 (1992), pp. 283–295.

[17] H. Zha and H. D. Simon, On updating problems in latent semantic indexing, SIAM J. Sci.
Comput., 21 (1999), pp. 782–791.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 455–472

HERMITE INDICES AND JORDAN STRUCTURE OF A
PERTURBED LINEAR SYSTEM∗

I. BARAGAÑA† , V. FERNÁNDEZ† , AND I. ZABALLA‡

Abstract. The aim of this work is to characterize the Hermite indices and the Jordan structure
of a pair of matrices (A,B) under small perturbations. The proofs of the sufficiency give us a
constructive method to obtain a pair as close as we want to (A,B) and with prescribed structure.

Key words. similarity, Hermite indices, invariant factors, Segre characteristic

AMS subject classifications. 93B05, 93B10

DOI. 10.1137/060650726

1. Introduction. Consider the following system of differential equations with
control:

ẋ(t) = Ax(t) + Bu(t),(1.1)

where A ∈ F
n×n and B ∈ F

n×m, with F the field of real or complex numbers. We will
identify the system with the matrix pair (A,B).

A change of bases in the state space, y = Px, yields the new system ẏ(t) =
PAP−1y(t) + PBu(t). Pairs (A,B) and (PAP−1, PB) are said to be similar. For
controllable systems there may be many complete systems of invariants (see [15, 19]),
all of them consisting of two sequences of numbers: a sequence of real or complex
numbers and a, possibly nonordered, sequence of positive integers whose sum is n,
the order of the system (i.e., a partition of n). The elements of these partitions
are indices of nice bases [1] taken from the controllability matrix of the system and
appear as the size of prominent blocks in the corresponding canonical form of (A,B).
Following [11] these invariants can be called invariants of structure of the system.
For noncontrollable systems there are, in addition, other invariants of structure: the
partial multiplicities of the eigenvalues of (A,B), i.e., the sizes of the blocks in the
Jordan canonical form of the noncontrollable part of the system.

The aim of this paper is to study the change of some invariants of structure of
(A,B) under small additive perturbations. This can be seen as a continuation of the
results in [3, 6, 12, 16]. In [3, 12] the authors solved the problem posed in [5] on
the possible partial multiplicities of the eigenvalues of all square matrices that are
close enough to a given square matrix over C. Also they proved that the obtained
conditions are necessary and sufficient for the existence of matrices, as close as one
may desire to a given matrix. In [2] the problem of characterizing the closure of
similarity orbits of a square matrix was solved. One can easily see that these two
problems are closely related. In fact, all matrices in the same similarity orbit have the

∗Received by the editors January 24, 2006; accepted for publication (in revised form) by H. J.
Woerdeman November 29, 2006; published electronically April 3, 2007. This work was partially
supported by the MEC, Proyecto de Investigación MTM2004-06389-C02-01, and by UPV/EHU,
Proyecto de Investigación 9/UPV00100.310-14578/2002.

http://www.siam.org/journals/simax/29-2/65072.html
†Departamento de Ciencias de la Computación e IA, Universidad del Páıs Vasco, Apdo 649, 20080

Donostia-San Sebastián, Spain (itziar@bargana@ehu.es; victoria.fernandez@ehu.es).
‡Departamento de Matemática Aplicada y EIO, Universidad del Páıs Vasco, Apdo 644, 48080

Bilbao, Spain (ion.zaballa@ehu.es).

455

456 I. BARAGAÑA, V. FERNÁNDEZ, AND I. ZABALLA

same eigenvalues and partial multiplicities, and every matrix in the closure of that
orbit is the limit of matrices in the given orbit. Thus the eigenvalues of such a matrix
must be the same as the eigenvalues of the matrices in the orbit (continuity of the
eigenvalues w.r.t. the matrix), and it is “close enough” to some matrix in the orbit.
So, the difference between the two problems is that in the first one the eigenvalues
of the near matrices may change, but the conditions on the partial multiplicities
in both problems are the same. The point is that in the problem of the closure,
since the eigenvalues do not change, the conditions on the partial multiplicities can
be translated into divisibility conditions among the invariant factors (see Lemma
4.1). In [6] the result of [3, 12] was generalized to square matrices over R, and a
similar question was addressed for the feedback invariants of matrix pairs, i.e., to say,
for the controllability indices and Jordan structure of the noncontrollable part (see
Lemma 3.1). This result was generalized in [16] to singular pencils of matrices. The
controllability indices are one of the many possible invariants of structure of a matrix
pair for similarity. Another system of invariants of structure is the one formed by the
Hermite indices. These indices appear in several places in the literature. They were
first mentioned, with no specific name, in [9, p. 426] and associated to the degrees
of the diagonal elements of the denominator of a matrix fraction description of the
system. Such a denominator turns to be a polynomial matrix in Hermite form [9,
p. 476]. These indices were used in [8] to study the strict system equivalence. And,
above all, in [7] the Hermite indices were shown to play a central role in the study of
the topological properties of the orbit space of controllable systems under similarity.
Actually, in [7] the possible Hermite indices that can be attained by small additive
perturbation of a given complex controllable system were characterized. Also, it was
shown that such a characterization is not enough, in the real case, to guarantee the
existence of a controllable matrix pair as close to a given system as one may want with
those Hermite indices. In this paper we provide a new characterization that works
for both the real and complex case. In addition, we also consider the other type of
invariants of structure for the similarity of matrix pairs: the partial multiplicities of
the noncontrollable part of the system.

2. Notation and preliminary results. As already stated, F will denote either
the field of real or complex numbers. F[s] is the ring of polynomials in the indeter-
minate s with coefficients in F. We will use F

n×m and F[s]n×m to denote the set of
n×m matrices over F and F[s], respectively. Gln(F) denotes the linear group of order
n over F.

We will use Greek letters to denote polynomials. If α ∈ F[s] we will write d(α) for
the degree of α and Λ(α) for the set of roots in C of the polynomial α. If α ∈ R[s] we
will denote by r(α) the sum of the multiplicities of the real roots of the polynomial
α. If α, β ∈ F[s] we will use α|β to mean divides.

As usual, we will say that (A,B) is controllable if rank C(A,B) = n, where

C(A,B) :=
[
B AB · · · An−1B

]
∈ F

n×nm

is the controllability matrix of (A,B).
We will use the Hermite indices as introduced in [19]. Given a matrix pair (A,B) ∈

F
n×n × F

n×m, the matrix

H(A,B) := [b1 Ab1 · · · An−1b1 · · · bm Abm · · · An−1bm],

where bi ∈ F
n×1 is the ith column of B, will be called the Hermite controllability

matrix of (A,B).

PERTURBATION OF THE HERMITE INDICES 457

If rankH(A,B) = r and we select from left to right the first r linearly independent
columns in H(A,B) and we write them as

b1, . . . , A
h1−1b1, . . . , bm, . . . , Ahm−1bm,

then h1, . . . , hm are the Hermite indices of the pair (we agree that hi = 0 if the column
bi has not been selected).

Two matrix pairs (A,B), (A,B) ∈ F
n×n × F

n×m are similar, (A,B)
s∼ (A,B), if

there exists P ∈ Gln(F) such that A = PAP−1 and B = PB.
In the following lemma we give a canonical form for similarity associated to the

Hermite indices (see [19, 8, 14]).
Lemma 2.1. Let (A,B) ∈ F

n×n × F
n×m be a controllable pair, and let h1, . . . , hm

be its Hermite indices. Then there exists P ∈ GLn(F) such that

(PAP−1, PB) =

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

A11 A12 · · · A1m

0 A22 · · · A2m

...
...

. . .
...

0 0 · · · Amm

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
B11 B12 · · · B1m

0 B22 · · · B2m

...
...

. . .
...

0 0 · · · Bmm

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ ,

where, for i = 1, . . . ,m and j = i, . . . ,m,
(i)

Aii =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 xii0

1 0 · · · 0 xii1

0 1 · · · 0 xii2

...
...

. . .
...

...
0 0 · · · 1 xiihi−1

⎤⎥⎥⎥⎥⎥⎦ ∈ F
hi×hi ,

Aij =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 xji0

0 0 · · · 0 xji1

0 0 · · · 0 xji2

...
...

. . .
...

...
0 0 · · · 0 xjihi−1

⎤⎥⎥⎥⎥⎥⎦ ∈ F
hi×hj , i < j,

(ii)

Bii = [1 0 · · · 0]T ∈ F
hi×1 if hi > 0,

Bij = 0 ∈ F
hi×1 if hj > 0, i < j,

Bij = [xji0 xji1 · · · xjihi−1]
T ∈ F

hi×1 if hj = 0, i ≤ j,

and we agree that if a block has 0 rows or 0 columns, then it is absent.
If the pair (A,B) is not controllable, then the Hermite indices are also invariant

under similarity. Furthermore, if we call invariant factors of (A,B) those of the poly-
nomial matrix [sI −A B], then these polynomials are also invariant under similarity.
Notice that the invariant factors of (A,B) are equal to 1 if and only if the pair (A,B)
is controllable [17].

458 I. BARAGAÑA, V. FERNÁNDEZ, AND I. ZABALLA

Throughout this paper, for a given polynomial α = sh−ah−1s
h−1−· · ·−a1s−a0,

we will say that ⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 a0

1 0 · · · 0 a1

0 1 · · · 0 a2

...
...

. . .
...

...
0 0 · · · 1 ah−1

⎤⎥⎥⎥⎥⎥⎦
is the companion matrix of α. Thus, in Lemma 2.1, block Aii is the companion matrix
of θi = shi − xiihi−1s

hi−1 · · · − xii1s − xii0, i = 1, . . . ,m. These polynomials will be
called the diagonal Hermite polynomials of (A,B). Actually, as pointed out in [9,
p. 476], they are the polynomials appearing on the diagonal of the Hermite normal
form of the denominator of any right coprime factorization of the matrix transfer
function (sIn −A)−1B.

For noncontrollable pairs we will use the well-known Kalman decomposition (see,
for example [9, p. 361]).

Lemma 2.2 (Zaballa [20]). Let (A,B) ∈ F
n×n × F

n×m. Let([
A1 A2

0 A3

]
,

[
B1

0

])
and

([
A1 A2

0 A3

]
,

[
B1

0

])
be two different Kalman decompositions of (A,B). Then

(A1, B1)
s∼ (A1, B1) and A3

s∼ A3.

Then, given any Kalman decomposition of a pair (A,B), the controllable part
(A1, B1) and the square block A3 are determined up to similarity by (A,B). Therefore,
the diagonal Hermite polynomials of (A1, B1) are invariant under similarity and, in
this paper, will be called diagonal Hermite polynomials of (A,B). On the other hand,
the invariant factors different from 1 of (A,B) and those of A3 coincide (see [18]).
This means, among other things, that if r = rank C(A,B) and αn | · · · | α1 are the
invariant factors of (A,B), then αn−r+1 = · · · = αn = 1.

Let (A,B) ∈ F
n×n × F

n×m; a complex number λ is said to be an eigenvalue of
(A,B) if λ is an eigenvalue of A3 in a Kalman decomposition of (A,B). We will denote
by Λ(A,B) the set of the eigenvalues of (A,B). Similarly we define the characteristic
polynomial of (A,B), the Segre characteristic, and the algebraic multiplicity of λ ∈
Λ(A,B). This algebraic multiplicity will be denoted by m(A,B)(λ). That is to say, if
αn| · · · |α1 are the invariant factors of (A,B) and

αj =

p∏
i=1

(s− λi)
sij , 1 ≤ j ≤ n,

then (si1, . . . , sin) is the Segre characteristic corresponding to λi and m(A,B)(λi) =∑n
j=1 sij . We agree that if λ �∈ Λ(A,B), then m(A,B)(λ) = 0 and (0, 0, . . .) is the

partition corresponding to the Segre characteristic of λ.
Let (A, [B1 B2]) ∈ F

n×n × F
n×(m1+m2). Let θ1, . . . , θm1 , θm1+1, . . . , θm1+m2 be

the diagonal Hermite polynomials of (A, [B1 B2]), and let ϑ be the characteristic
polynomial of (A, [B1 B2]). It is easy to prove that θ1, . . . , θm1

are the diagonal
Hermite polynomials and θ = ϑ

∏m2

i=1 θm1+i is the characteristic polynomial of (A,B1).

PERTURBATION OF THE HERMITE INDICES 459

Given A = (aij) ∈ F
n×m we are going to consider the following matrix norm:

‖ A ‖=
∑
i,j

|aij |.

The set F
n×m is a metric space with the distance associated to this norm. For a given

n and a polynomial θ = cns
n + cn−1s

n−1 + · · · + c1s + c0 ∈ F[s], we will denote

‖ θ ‖=
n∑

i=0

|ci|

which is a norm on the vector space of polynomials of degree less than or equal to n.
If z ∈ C and r is a positive real number, the open ball of C centered in α and

radius r is denoted by B(z, r).
Let (A,B) ∈ F

n×n × F
n×m, let Λ(A,B) = {λ1, . . . , λu}, and let η be a positive

real number. We define the η-neighborhood of the spectrum of (A,B) as the set

Vη(A,B) := ∪̇u
i=1B(λi, η)

whenever the balls B(λi, η), i = 1, . . . , u, are pairwise disjoint.
From now on η will always mean a positive real number small enough for the

expresion η-neighborhood of the spectrum of (A,B), or of A, to make sense.
Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two partitions of nonnegative integers

with its components arranged in nonincreasing order. Following [13], we will say that
a is majorized by b, a ≺ b, if

k∑
j=1

aj ≤
k∑

j=1

bj , k = 1, . . . , n− 1, and

n∑
j=1

aj =

n∑
j=1

bj .

Moreover, a + b is the partition whose ith component is ai + bi.
We finish this section with two relevant results of [7] with the terminology of [6].
Lemma 2.3 (see [7, proof of Thm. 4.2]). Let (A,B) ∈ F

n×n×F
n×m be a pair with

h1, . . . , hm as Hermite indices. There exists ε > 0 such that if ‖ [A B] − [A′ B′] ‖< ε
and h′

1, . . . , h
′
m are the Hermite indices of (A′, B′), then

i∑
j=1

hj ≤
i∑

j=1

h′
j , i = 1, . . . ,m.(2.1)

Moreover, if (A,B) is completely controllable, then so is (A′, B′) and

m∑
j=1

hj =

m∑
j=1

h′
j .(2.2)

Lemma 2.4 (see [7, Thm. 4.2]). Let (A,B) ∈ C
n×n×C

n×m be a controllable pair
with h1, . . . , hm as Hermite indices, and let h′

1, . . . , h
′
m be nonnegative integers. For

all ε > 0 there exists a controllable matrix pair (A′, B′) ∈ C
n×n × C

n×m such that
(i) ‖ [A B] − [A′ B′] ‖< ε,
(ii) h′

1, . . . , h
′
m are the Hermite indices of (A′, B′),

if and only if conditions (2.1) and (2.2) hold.

460 I. BARAGAÑA, V. FERNÁNDEZ, AND I. ZABALLA

In the present work we generalize the above results for F = R or C and for
noncontrollable systems. In section 3 we establish conditions that must necessarily
satisfy the Hermite indices and the Jordan part of all systems that are close enough
to a given system. Then Lemma 2.3 will follow as a particular case. In section 4 we
generalize Lemma 2.4 by giving necessary and sufficient conditions for the existence
of matrix pairs as close to a given pair as desired and having prescribed its Hermite
indices and invariant factors.

3. Necessary conditions. First of all we give Theorem 4.3 of [6] in a different
form.

Lemma 3.1. Let (A,B) ∈ F
n×n × F

n×m and η > 0. Let λ ∈ Λ(A,B), and let s
be the partition corresponding to λ in the Segre characteristic of (A,B). There exists
ε > 0 such that if ‖ [A B] − [A′ B′] ‖< ε, then

(i) Λ(A′, B′) ⊂ Vη(A,B) and
(ii) if μ1, . . . , μt are the eigenvalues of (A′, B′) in B(λ, η) and s′i is the partition

corresponding to μi in the Segre characteristic of (A′, B′), i = 1, . . . , t, then
there exists a nonnegative integer q ≥ 0 such that

s ≺
t∑

j=1

s′i + (q, 0, . . .).

Remark 3.2. Condition (ii) implies∑
μ∈B(λ,η)∩Λ(A′,B′)

m(A′,B′)(μ) ≤ m(A,B)(λ).

Moreover, if (A,B) ∈ R
n×n × R

n×m and λ ∈ C \ R, then μ1, . . . , μt are the
eigenvalues of (A′, B′) in B(λ, η), and s′i is the partition corresponding to μi in the
Segre characteristic of (A′, B′), i = 1, . . . , t.

Theorem 3.3. Let (A,B) ∈ F
n×n × F

n×m, η > 0, and let θ1, . . . , θm be the
diagonal Hermite polynomials of (A,B). Let Λ(A,B) = {λ1, . . . , λp}, and let si be
the partition corresponding to λi, i = 1, . . . , p, in the Segre characteristic of (A,B).
There exists ε > 0 such that if ‖ [A B] − [A′ B′] ‖< ε, then

(i) Λ(A′, B′) ⊂ Vη(A,B),
(ii) if μi1, . . . , μiti are the eigenvalues of (A′, B′) in B(λi, η), i = 1, . . . , p, and s′ij

is the partition corresponding to μij , i = 1, . . . , p, j = 1, . . . , ti, in the Segre
characteristic of (A′, B′), then there exist nonnegative integers qi ≥ 0, i =
1, . . . , p, such that

si ≺
ti∑

j=1

s′ij + (qi, 0, . . .), i = 1, . . . , p,

(iii) if h′
1, . . . , h

′
m are the Hermite indices of (A′, B′), then there exist monic poly-

nomials β1, . . . , βm ∈ F[s] such that d(βi) = h′
i, i = 1, . . . ,m, and

βj · · ·βm | θj · · · θmω, j = 2, . . . ,m,

β1 · · ·βm = θ1 · · · θmω,

where ω :=
∏p

i=1(s− λi)
qi .

PERTURBATION OF THE HERMITE INDICES 461

Proof. Let B = [b1 · · · bm]. For j = 1, . . . ,m, put Bj := [b1 · · · bj] and
(A,B0) := A.

Let θm+1 be the characteristic polynomial of (A,B). Then Λ(A,Bj) = Λ(θj+1 . . .
θmθm+1) for j = 0, . . . ,m.

Suppose that Λ(A) = {λ1, . . . , λp, λp+1, . . . , λp+q}, q ≥ 0.

For j = 0, . . . ,m, i = 1, . . . , p + q, let mj
i := m(A,Bj)(λi). Notice that mj

i = 0 if
λi �∈ Λ(A,Bj). Therefore

θj+1 · · · θmθm+1 =

p+q∏
i=1

(s− λi)
mj

i , j = 0, . . . ,m.(3.1)

By Lemma 3.1, for j = 0, . . . ,m there exists εj > 0 such that if (A′, B′
j) satisfies

‖ [A,Bj] − [A′, B′
j] ‖< εj , then

Λ(A′, B′
j) ⊂ Vη(A,Bj),(3.2) ∑

μ∈B(λi,η)∩Λ(A′,B′
j
)

m(A′,B′
j
)(μ) ≤ mj

i , i = 1, . . . , p + q.(3.3)

Moreover, if μi1, . . . , μiti are the eigenvalues of (A′, B′
m) in B(λi, η), i = 1, . . . , p,

and s′ij is the partition corresponding to μij , i = 1, . . . , p, j = 1, . . . , ti, in the Segre
characteristic of (A′, B′

m), then there exist nonnegative integers qi ≥ 0, i = 1, . . . , p,
such that

si ≺
ti∑

j=1

s′ij + (qi, 0, . . .), i = 1, . . . , p.

Let ε = min0≤j≤m(εj), and let (A′, B′) be such that ‖ [A′ B′]− [A B] ‖< ε. Then
(A′, B′) satisfies conditions (i) and (ii) of theorem.

Let B′ = [b′1 · · · b′m], and for j = 1, . . . ,m, put B′
j := [b′1 · · · b′j] and (A′, B′

0) :=
A′.

Then, for j = 0, . . . ,m, ‖ [A Bj]− [A′ B′
j] ‖< ε ≤ εj and therefore (3.2) and (3.3)

hold.
Let h′

1, . . . , h
′
m be the Hermite indices, let θ′1, . . . , θ

′
m be the diagonal Hermite

polynomials and let θ′m+1 be the characteristic polynomial of (A′, B′). Then h′
j =

d(θ′j), j = 1, . . . ,m, and

Λ(A′, B′
j) = Λ(θ′j+1 · · · θ′mθ′m+1), j = 0, . . . ,m.(3.4)

Let

nj
i :=

∑
μ∈B(λi,η)∩Λ(A′,B′

j
)

m(A′,B′
j
)(μ), i = 1, . . . , p + q; j = 0, . . . ,m.

For j = 1, . . . ,m + 1, we define

δj :=

p+q∏
i=1

(s− λi)
nj−1
i .

Notice that δj ∈ F[s]. In fact, if F = R and λi ∈ Λ(A,Bj−1) \ R, then λk = λi ∈
Λ(A,Bj−1), and by Remark 3.2, nj−1

i = nj−1
k . Moreover,

d(δj) = d(θ′j · · · θ′m+1),

462 I. BARAGAÑA, V. FERNÁNDEZ, AND I. ZABALLA

and from (3.1) and (3.3) we have that

δj | θj · · · θmθm+1, j = 1, . . . ,m + 1.

Recall that nm
i = 0 for i = p + 1, . . . , p + q and

qi = m(A,B)(λi) −
∑

μ∈B(λi,η)∩Λ(A′,B′)

m(A′,B′)(μ) = mm
i − nm

i , i = 1, . . . , p.

This implies that ω =
∏p

i=1(s− λi)
qi = θm+1

δm+1
.

From (3.4) we have that nj
i ≤ nj−1

i , i = 1, . . . , p + q; j = 1, . . . ,m. Therefore
δj+1 | δj , j = 1, . . . ,m. Let

βj :=
δj

δj+1
, j = 1, . . . ,m.

Then βj ∈ F[s], j = 1, . . . ,m, and

βj · · ·βm =
δj

δm+1
| θj · · · θm

θm+1

δm+1
= θj · · · θmω, j = 1, . . . ,m.

We have to prove only that d(βj) = h′
j , j = 1, . . . ,m, and β1 · · ·βm = θ1 · · · θmω. In

fact,

m∑
i=j

h′
i = d(θ′j · · · θ′m) = d(δj)−d(θ′m+1) = d(δj)−d(δm+1) =

m∑
i=j

d(βi), j = 1, . . . ,m.

As a consequence d(βj) = h′
j , j = 1, . . . ,m.

Finally,

d(β1 · · ·βm) =

m∑
i=1

h′
i = n−d(θ′m+1) =

m∑
i=1

hi+d(θm+1)−d(δm+1) = d(θ1θ2 · · · θm)+d(ω).

Since β1 · · ·βm | θ1 · · · θmω we conclude that

β1 · · ·βm = θ1 · · · θmω

as desired.
For the controllable case we have the following corollary.
Corollary 3.4. Let (A,B) ∈ F

n×n×F
n×m be a controllable pair with θ1, . . . , θm

as diagonal Hermite polynomials. There exists ε > 0 such that if ‖ [A B]−[A′ B′] ‖< ε
and h′

1, . . . , h
′
m are the Hermite indices of (A′, B′), then there exist monic polynomials

β1, . . . , βm such that d(βi) = h′
i, i = 1, . . . ,m, and

βj · · ·βm | θj · · · θm, j = 2, . . . ,m,

β1 · · ·βm = θ1 · · · θm.

Remark 3.5. It is easily seen that, if F = C, the condition of the previous corollary
is equivalent to those of Lemma 2.3.

PERTURBATION OF THE HERMITE INDICES 463

4. Sufficient conditions. This section is devoted to proving the near-converse
of Theorem 3.3. The proof is constructive and it gives us a general method to obtain
a pair as close to a given pair as desired and with prescribed structure.

Before going into formal proofs let us describe the perturbation process for the
controllable case. Given a pair (A,B) with diagonal Hermite polynomials θ1, . . . , θm
and given m nonnegative integers h′

1, . . . , h
′
m, we have to prove that the condition of

the Corollary 3.4 is sufficient for the existence of a controllable pair (A′, B′) as close as
we want to (A,B) and with Hermite indices h′

1, . . . , h
′
m. Observe that this condition

implies (2.1) and (2.2).
Without loss of generality, we can assume that (A,B) is in the canonical form

shown in Lemma 2.1:

(A,B) =

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

A11 A12 · · · A1m

0 A22 · · · A2m

...
...

. . .
...

0 0 · · · Amm

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
B11 B12 · · · B1m

0 B22 · · · B2m

...
...

. . .
...

0 0 · · · Bmm

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ .

The proof is inductive, and the first step is to decrease the index hm by increasing
hm−1 in order to obtain a pair (A1, B1) with h1, . . . , hm−2, hm−1 + hm − h′

m, h′
m as

Hermite indices. This will be done by putting the coefficients of the polynomial βm

multiplied by an appropriate scalar in the last column of the (m,m− 1) block:

(A1, B1) =

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
A11 · · · A1,m−1 A1m

0 · · · A2,m−1 A2m

...
. . .

...
...

0 · · · Am−1,m−1 Am−1,m

0 · · · C Amm

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
B11 · · · B1m

0 · · · B2m

...
. . .

...
0 · · · Bm−1,m

0 . . . Bmm

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ .

This pair is similar to⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
A11 · · · A1,m−1 A1m

0 · · · A2,m−1 A2m

...
. . .

...
...

0 · · · Am−1,m−1 Am−1,m

0 · · · 0 Amm

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
B11 · · · B1,m−1 B1m

0 · · · B2,m−1 B2m

...
. . .

...
...

0 · · · Bm−1,m−1 Bm−1,m

0 . . . 0 Bmm

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ ,

where Am−1,m−1 ∈ F
(hm−1+hm−h′

m)×(hm−1+hm−h′
m) and Am,m ∈ F

hm×hm .
Now, if we are perturbing in C, as h′

m−1 ≤ hm−1 + hm − h′
m, we can con-

tinue with the induction process and obtain a pair (A2, B2) with Hermite indices
h1, . . . , hm−3, hm−2 + hm−1 + hm − h′

m − h′
m−1, h

′
m−1, h

′
m and so on.

But, if we are perturbing in R and θ1, . . . , θm−2, θ̄m−1, θ̄m are the diagonal Her-
mite polynomials of (A1, B1), in order to continue with the induction process we need
to guarantee the existence of a polynomial β̄m−1 ∈ R[s] such that d(β̄m−1) = h′

m−1

and β̄m−1 | θ̄m−1. As divisibility conditions are involved, we will have to take into
account the sum of the multiplicities of the roots of θ̄m−1 in R, r(θ̄m−1).

On the one hand, notice that θ̄m = βm, and as βm−1βm | θm−1θm, we have that

there exists a polynomial ν such that θm−1θm
βm

= βm−1ν.

On the other hand, θ̄m−1 = θm−1θm−βmψ
βm

, where ψ is a polynomial such that

d(ψ) < d(θm−1). Then, θ̄m−1 = βm−1ν − ψ.

464 I. BARAGAÑA, V. FERNÁNDEZ, AND I. ZABALLA

Now, if r(θ̄m−1) = r(βm−1ν), we can guarantee the existence of β̄m−1 such that
β̄m−1 | θ̄m−1 and d(β̄m−1) = d(βm−1). If ψ �= 0, i.e., if the block Am−1,m �= 0, the
mentioned equality cannot be assured.

Therefore, we first perturb in the block Am−1,m−1 for the spectrum of this block
and that of Am,m to be disjoint and to put a zero in the block (m−1,m) by similarity.

In the noncontrollable case our first goal is to modify the Hermite indices but
prescribing the spectrum of (A′, B′). This will be done in Theorem 4.11. In this
case we start by modifying the last Hermite index to obtain a pair (Ā, B̄) with the
prescribed invariant factors, Hermite indices h1, . . . , hm−1, hm + d(ω), and diagonal
Hermite polynomials θ1, . . . , θm−1, θ̄m. As in the controllable case, when F = R we
can continue with the process if r(θ̄m) = r(θmω).

In the following example we will explain the steps for the controllable case.
Example 1. Let

(A,B) =

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

This pair has h1 = 2, h2 = 1, h3 = 2 as Hermite indices and θ1 = s2, θ2 = s,
θ3 = s2 as diagonal Hermite polynomials.

Our goal is to obtain a pair (A′, B′) as close to (A,B) as desired and with Hermite
indices h′

1 = 3, h′
2 = 1, h′

3 = 1. If we chose β3 = s, β2 = s, and β1 = s3, we can verify
that the conditions of Corollary 3.4 are satisfied:

β3 | θ3, β2β3 | θ2θ3 and β1β2β3 = θ1θ2θ3.

As we have said, we first modify the last Hermite index to obtain a pair with
h′

3 = 1 putting in the last column of the block A32 the coefficients of β3 multiplied by
a convenient ε1: ⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
1 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 ε1 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

This pair has Hermite indices 2, 2, 1 and diagonal Hermite polynomials θ1 = s2, θ2 =
s2 + ε1, θ3 = s, and it is similar to

(A,B) =

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 0 0 −ε1 0
0 0 1 0 1

ε1

0 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

To continue with the process we consider the polynomial β2 = s−√
ε1i of degree

h′
2 that divides θ2, and we put in the last column of the block A22 its coefficients

PERTURBATION OF THE HERMITE INDICES 465

multiplied by a convenient ε2 > 0:

(A
′
, B

′
) =

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 −√

ε1iε2 0 −ε1 0
0 ε2 1 0 1

ε1

0 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

This pair has Hermite indices h′
1 = 3, h′

2 = 1, h′
3 = 1, but notice that it is not

a real pair. In this case θ2 has no real roots, and therefore, there is no β2 ∈ R[s] of
degree 1 such that β2|θ2. That is because r(θ2) �= r(θ2θ3β3

).
Then, in the real case we first perturb matrix A for the spectrum of blocks A22

and A33 to be disjoint, and by similarity transformations we can put a zero in the
block A23: ⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
1 0 0 0 0
0 0 ε0 0 −1
0 0 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

This pair is similar to

(A,B) =

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 0 ε0 0 0
0 0 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 − 1

ε20

0 0 1
0 0 0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

Now we proceed as before. First we obtain h′
3 by perturbing in the block A32:⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
1 0 0 0 0
0 0 ε0 0 0
0 0 0 0 0
0 0 ε1 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 − 1

ε20

0 0 1
0 0 0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

This pair has 2, 2, 1 as Hermite indices and θ1 = s2, θ2 = s2 − ε0s, and θ3 = s as
diagonal Hermite polynomials, and it is similar to

(A,B) =

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 0 0 0 − ε0

ε1
0 0 1 ε0 − 1

ε20
+ 1

ε1

0 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

Now r(θ2) = r(θ2θ3β3
). Then, we can choose β2 = s ∈ R[s] of degree h′

2 to put its

coefficients multiplied by a convenient ε2 > 0 in the last column of the block A21:

(A
′
, B

′
) =

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 0 0 0 − ε0

ε1
0 ε2 1 ε0 − 1

ε20
+ 1

ε1

0 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

466 I. BARAGAÑA, V. FERNÁNDEZ, AND I. ZABALLA

To finish we must undo the two similarity transformations that we have done
throughout the process to obtain

(A′, B′) =

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
1 0 0 0 0

0
ε2(ε

2
0+ε1)
ε0

ε20+ε1
ε0

− ε1
ε30

−1 − ε1
ε20

0 0 0 0 0
0 ε1ε2 ε1 1 − ε1

ε20
− ε1

ε0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠ .

This pair is a real pair and has the prescribed Hermite indices.
Now, if we choose ε2 = ε0 and ε1 = ε40 it is easy to verify that

‖ [A B] − [A′ B′] ‖= ε50 + 2ε40 + 2ε30 + 3ε20 + 2ε0.

By choosing ε0 small enough, (A′, B′) can be as close as we want to (A,B).
Lemma 4.1 (see [2]). Let A ∈ F

n×n be a matrix with αn | . . . | α1 as invariant
factors. Let α′

1, . . . , α
′
n ∈ F[s] be monic polynomials such that α′

n | . . . | α′
1. For all

ε > 0 there exists a matrix A′ ∈ F
n×n such that

(i) ‖ A′ −A ‖< ε,
(ii) α′

1, . . . , α
′
n are the invariant factors of A′,

if and only if the following conditions hold:

α1 · · ·αk | α′
1 · · ·α′

k, k = 1, . . . , n− 1,

α1 · · ·αn = α′
1 · · ·α′

n.

The aim of the next lemma, whose proof is straightforward, is to show that the
pair (A,B) can be replaced by any pair in its similarity class.

Lemma 4.2. Let (A,B), (A,B) ∈ F
n×n × F

n×m be two pairs such that (A,B)
s∼

(A,B), and let Cs be a similarity class in F
n×n×F

n×m. Then, the following conditions
are equivalent:

(1) For all ε > 0 there exists a matrix pair (A′, B′) ∈ Cs such that

‖ [A B] − [A′ B′] ‖< ε.

(2) For all ε′ > 0 there exists a matrix pair (A
′
, B

′
) ∈ Cs such that

‖ [A B] − [A
′
B

′
] ‖< ε′.

Remark 4.3. A similar lemma can be made if we prescribe some of the invariants
for similarity instead of the whole similarity class.

Lemma 4.4. Let

(A, b) =

([
A1 0
0 J

]
,

[
b1
0

])
∈ F

n×n × F
n×1,

where (A1, b1) ∈ F
h×h × F

h×1 is a pair with θ as diagonal Hermite polynomial, d(θ) =
h, and J is the companion matrix of polynomial α.

Let α′, ω ∈ F[s] be monic polynomials such that α = α′ω.
Then for all ε > 0 there exists a matrix pair (A′, b′) ∈ F

n×n × F
n×1 such that

(i) ‖ [A′ b′] − [A b] ‖< ε,
(ii) the diagonal Hermite polynomial of (A′, b′) is θ′ = θω,

PERTURBATION OF THE HERMITE INDICES 467

(iii) the only nontrivial invariant factor of (A′, b′) is α′ (if α′ = 1 then (A′, b′) is
controllable).

Proof. Let ε > 0. If α′ = α, we put (A′, b′) := (A, b).
If α′ = sd − ad−1s

d−1 − · · · − a1s− a0 with d < n− h = d(α), we define

c := ε1
[
a0 a1 · · · ad−1 −1 0 · · · 0

]T ∈ F
(n−h)×1,

0 < ε1 < ε/
∑d−1

i=0 |ai| + 1.
Case 1. If h = 0, (i.e., (A1, b1) is absent), then we put

(A′, b′) := (J, c) ∈ F
n×n × F

n×1.

Case 2. If h > 0, then we put C :=
[

0 c
]
∈ F

(n−h)×h and

(A′, b′) :=

([
A1 0
C J

]
,

[
b1
0

])
∈ F

n×n × F
n×1.

It is easily seen that the only nontrivial invariant factor of (A′, b′) is α′.
The characteristic polynomial of A′ is θα. If the diagonal Hermite polynomial of

(A′, b′) is θ′, then θα = θ′α′, and so θ′ = θω.
The following lemma can be easily proved (see [4, p. 225] or [10, p. 422]).
Lemma 4.5. Let

(A,B) =

([
A1 X
0 J

]
,

[
B1

0

])
∈ F

n×n × F
n×m.

If Λ(A1) ∩ Λ(J) = ∅, then

(A,B)
s∼
([

A1 0
0 J

]
,

[
B1

0

])
.

Lemma 4.6. Let θ ∈ R[s] be a monic polynomial, and let S = {λ1, . . . , λp} ⊂ C.
For all ε > 0 there exists a monic polynomial ϑ ∈ R[s] such that

‖ ϑ− θ ‖< ε, d(ϑ) = d(θ), Λ(ϑ) ∩ S = ∅, r(ϑ) = r(θ),

where r(θ) is the sum of the multiplicities of the real roots of θ.
Proof. If θ =

∏n
i=1(s − μi), let ϑ :=

∏n
i=1(s − μi − r), r ∈ R. For any r ∈ R

we have that ϑ is a monic polynomial, ϑ ∈ R[s], d(ϑ) = n, and r(ϑ) = r(θ). By the
continuity of the coefficients of a polynomial w.r.t. its roots it is easily seen that it is
possible to choose r such that conditions ‖ ϑ− θ ‖< ε and Λ(ϑ) ∩ S = ∅ hold.

Lemma 4.7. Let (A, b) ∈ R
n×n × R

n×1 be a matrix pair with θ as the diagonal
Hermite polynomial and αn | · · · | α1 as the invariant factors. Let α′

1, . . . , α
′
n, ω ∈ R[s]

be monic polynomials such that α′
n | · · · | α′

1. If

α1 · · ·αk | α′
1 · · ·α′

kω, k = 1, . . . , n− 1,

α1 · · ·αn = α′
1 · · ·α′

nω,

then for all ε > 0 there exists a matrix pair (A′, b′) ∈ R
n×n × R

n×1 and a polynomial
ϑ satisfying r(ϑ) = r(θ) and d(ϑ) = d(θ) such that

(i) ‖ [A′ b′] − [A b] ‖< ε,
(ii) the diagonal Hermite polynomial of (A′, b′) is ϑω,
(iii) the invariant factors of (A′, b′) are α′

1, . . . , α
′
n.

468 I. BARAGAÑA, V. FERNÁNDEZ, AND I. ZABALLA

Proof. Let h := d(θ). Then αi = α′
i = 1, i = n− h + 1, . . . , n.

By Lemma 4.2 we can assume that the pair (A, b) is in Kalman form

(A, b) =

([
A11 X
0 J

]
,

[
B11

0

])
,

where (A11, B11) ∈ R
h×h × R

h×1 with θ as diagonal Hermite polynomial, d(θ) = h,
A11 is the companion matrix of the polynomial θ, and αn−h | · · · | α1 are the invariant
factors of J. Remember that if h = 0, then (A11, B11) and X vanish.

Let α′′
k := α′

k, k = 2, . . . , n− h, and α′′
1 := α′

1ω, then

α1 · · ·αk | α′′
1 · · ·α′′

k , k = 1, . . . , n− h,

α1 · · ·αn−h = α′′
1 · · ·α′′

n−h.

Let ε > 0. By Lemma 4.1 there exists a matrix J ∈ R
(n−h)×(n−h) such that

‖ J − J ‖< ε
3 and α′′

1 , . . . , α
′′
n−h are the invariant factors of J. Then

J
s∼
[

J1 0
0 J2

]
,(4.1)

where J1 is the companion matrix of α′′
1 = α′

1ω.
On the other hand, by Lemma 4.6, there exists a monic polynomial ϑ ∈ R[s] such

that ‖ ϑ− θ ‖< ε
3 , r(ϑ) = r(θ), d(ϑ) = d(θ), and Λ(ϑ) ∩ Λ(J) = ∅.

Let A11 be the companion matrix of ϑ. Then ‖ A11 −A11 ‖< ε
3 . Put

A :=

[
A11 X
0 J

]
.

Then by (4.1) and Lemma 4.5,

(A, b)
s∼

⎛⎝⎡⎣ A11 0 0
0 J1 0
0 0 J2

⎤⎦ ,

⎡⎣ B11

0
0

⎤⎦⎞⎠ .

By Lemmas 4.2 and 4.4 there exists a matrix pair (A′, b′) ∈ R
n×n × R

n×1 such
that ‖ [A′ b′] − [A b] ‖< ε

3 , the diagonal Hermite polynomial of (A′, b′) is ϑω, and
α′

1, . . . , α
′
n are the invariant factors of (A′, b′).

Corollary 4.8. Let (A,B) ∈ R
n×n × R

n×m be a matrix pair with θ1, . . . , θm
as the diagonal Hermite polynomials and αn | · · · | α1 as the invariant factors. Let
α′

1, . . . , α
′
n, ω ∈ R[s] be monic polynomials such that α′

n | · · · | α′
1. If

α1 · · ·αk | α′
1 · · ·α′

kω, k = 1, . . . , n− 1,

α1 · · ·αn = α′
1 · · ·α′

nω,

then for all ε > 0 there exists a matrix pair (A′, B′) ∈ R
n×n × R

n×m and a polynomial
ϑm satisfying r(ϑm) = r(θm) and d(ϑm) = d(θm) such that

(i) ‖ [A′ B′] − [A B] ‖< ε,
(ii) the diagonal Hermite polynomials of (A′, B′) are θ1, . . . , θm−1, ϑmω,
(iii) the invariant factors of (A′, B′) are α′

1, . . . , α
′
n.

In the next theorem we solve the controllable case.

PERTURBATION OF THE HERMITE INDICES 469

Theorem 4.9. Let (A,B) ∈ R
n×n × R

n×m be a controllable pair, and let
θ1, . . . , θm be the diagonal Hermite polynomials of (A,B). Let h′

1, . . . , h
′
m be non-

negative integers.
For all ε > 0 there exists a matrix pair (A′, B′) ∈ R

n×n × R
n×m such that

(i) ‖ [A B] − [A′ B′] ‖< ε,
(ii) (A′, B′) has h′

1, . . . , h
′
m as Hermite indices, if and only if there exist monic

polynomials β1, . . . , βm ∈ R[s] such that d(βi) = h′
i, i = 1, . . . ,m, and

βi · · ·βm | θi · · · θm, i = 2, . . . ,m,

β1 · · ·βm = θ1 · · · θm.

Proof. The necessity is a consequence of Corollary 3.4.
We will prove the sufficiency by induction on m. If m = 1 the theorem is trivially

true with (A′, B′) := (A,B).
Suppose that the theorem is true up to m− 1.
By Lemma 2.3 there exists ε0 > 0 such that if ‖ [A′ B′] − [A B] ‖< ε0, then

(A′, B′) is controllable.
If B = [b1 . . . bm−1 bm] and Bm−1 = [b1 . . . bm−1] then the matrix pair (A,Bm−1)

has θ1, . . . , θm−1 as diagonal Hermite polynomials and α1 = θm, α2 = · · · = αn = 1
as invariant factors.

Given ε > 0, let ε1 = min{ ε
2 , ε0}, α′

n = · · · = α′
2 := 1, α′

1 := βm, and ω := θm
βm

.
Then we have that

α1 · · ·αk = α′
1 · · ·α′

kω, k = 1, . . . , n

By Corollary 4.8 there exists a matrix pair (A,Bm−1) ∈ F
n×n × F

n×(m−1) and
a polynomial ϑm−1 satisfying r(ϑm−1) = r(θm−1) and d(ϑm−1) = d(θm−1) such that
‖ [A Bm−1]−[A Bm−1] ‖< ε1, α

′
1, . . . , α

′
n are the invariant factors of (A,Bm−1) and its

diagonal Hermite polynomials are θ1, . . . , θm−2, ϑm−1ω. Notice that the characteristic
polynomial of (A,Bm−1) is βm.

Put θ̄i := θi, i = 1, . . . ,m− 2, θ̄m−1 =: ϑm−1ω, and θ̄m =: βm, and let (A,B) =:
(A, [Bm−1 bm]). Then (A,B) is controllable, and θ̄1, . . . , θ̄m are its diagonal Hermite
polynomials.

By Lemma 2.1, we can write

(A,B) ∼
([

A1 X
0 A′

mm

]
,

[
B1 Y
0 B′

mm

])
,

where (A1, B1) ∈ R
(n−h′

m)×(n−h′
m) × R

(n−h′
m)×(m−1) is a controllable pair with diag-

onal Hermite polynomials θ̄1, . . . , θ̄m−2, θ̄m−1 and (A′
mm, B′

mm) ∈ R
h′
m×h′

m × R
h′
m×1

is a controllable pair with βm as diagonal Hermite polynomial.
Bearing in mind that

βi · · ·βm−1 | θi · · · θm−1ω, i = 2, . . . ,m− 1,

β1 · · ·βm−1 = θ1 · · · θm−1ω

and that d(θ̄m−1) = d(θm−1ω) and r(θ̄m−1) = r(θm−1ω), it is easily seen that there
exist β′

i ∈ R[s], i = 1, . . . ,m− 1, such that d(β′
i) = h′

i, i = 1, . . . ,m− 1, and

β′
i · · ·β′

m−1 | θ̄i · · · θ̄m−1, i = 2, . . . ,m,

β′
1 · · ·β′

m−1 = θ̄1 · · · θ̄m−1.

470 I. BARAGAÑA, V. FERNÁNDEZ, AND I. ZABALLA

By the induction hypothesis, in any neighborhood of (A1, B1) there exists a con-
trollable matrix pair (A′

1, B
′
1) ∈ R

(n−h′
m)×(n−h′

m) × R
(n−h′

m)×(m−1) with Hermite in-
dices h′

1, . . . , h
′
m−1. Then([

A′
1 X

0 A′
mm

]
,

[
B′

1 Y
0 B′

mm

])
has h′

1, . . . , h
′
m as Hermite indices. By Lemma 4.2, there exists a matrix pair (A′, B′) ∈

R
n×n×R

n×m such that ‖ [A′ B′]− [A B] ‖< ε
2 with Hermite indices h′

1, . . . , h
′
m.

Remark 4.10. In the complex case, the divisibility condition of the previous the-
orem is equivalent to conditions (2.1) and (2.2). Thus, for F = C the above theorem
and Lemma 2.4 coincide.

Theorem 4.11. Let (A,B) ∈ R
n×n × R

n×m be a pair with θ1, . . . , θm as the diag-
onal Hermite polynomials and αn | · · · | α1 as the invariant factors. Let α′

1, . . . , α
′
n, ω ∈

R[s] be monic polynomials such that α′
n | · · · | α′

1, and let h′
1, . . . , h

′
m be nonnegative

integers.
For all ε there exists a matrix pair (A′, B′) ∈ R

n×n × R
n×n such that

(i) ‖ [A′ B′] − [A B] ‖< ε,
(ii) h′

1, . . . , h
′
m are the Hermite indices of (A′, B′),

(iii) α′
1, . . . , α

′
n are the invariant factors of (A′, B′),

if and only if the following conditions hold:
(a)

α1 · · ·αk | α′
1 · · ·α′

kω, k = 1, . . . , n− 1,
α1 · · ·αn = α′

1 · · ·α′
nω;

(b) there exist monic polynomials β1, . . . , βm ∈ R[s] such that d(βj) = h′
j , j =

1, . . . ,m, and

βk · · ·βm | θk · · · θmω, k = 2, . . . ,m,
β1 · · ·βm = θ1 · · · θmω.

Proof. Conditions (a) and (b) are necessary by Theorem 3.3.
To prove the sufficiency let n1 :=

∑m
i=1 d(θi) and n2 :=

∑n
i=1 d(αi). Then

αi = α′
i = 1, i = n2 + 1, . . . , n.(4.2)

By Lemmas 4.2 and 2.1 we can assume that

(A,B) =

([
A1 A3

0 A2

]
,

[
B1 Y
0 B2

])
,

where

(A1, B1) ∈ R
(n1−d(θm))×(n1−d(θm)) × R

(n1−d(θm))×(m−1)

has θ1, . . . , θm−1 as diagonal Hermite polynomials and

(A2, B2) ∈ R
(n2+d(θm))×(n2+d(θm)) × R

(n2+d(θm))×1

has θm as the diagonal Hermite polynomial and α1, . . . , αn2+d(θm) as invariant factors.
From (a) and (4.2), we have that

α1 · · ·αk | α′
1 · · ·α′

kω, k = 1, . . . , n2 + d(θm),
α1 · · ·αn2+d(θm) = α′

1 · · ·α′
n2+d(θm)ω.

Let ε > 0. By Corollary 4.8, there exists a matrix pair

(A′
2, B

′
2) ∈ R

(n2+d(θm))×(n2+d(θm)) × R
(n2+d(θm))×1

PERTURBATION OF THE HERMITE INDICES 471

such that ‖ [A′
2 B

′
2]−[A2 B2] ‖< ε

2 , the invariant factors of (A′
2, B

′
2) are α′

1, . . . , α
′
n2+d(θm),

and the diagonal Hermite polinomial of (A′
2, B

′
2) is θ′m = ϑmω, where r(ϑm) = r(θm)

and d(ϑm) = d(θm).

Let (A,B) :=
([

A1 A3

0 A′
2

]
,
[
B1 Y
0 B′

2

])
. This matrix pair has α′

1, . . . , α
′
n as invariant

factors and θ1, . . . , θm−1, θ
′
m as diagonal Hermite polynomials.

Bearing in mind the Kalman decomposition we have

(A,B)
s∼
([

A1 A3

0 A2

]
,

[
B1

0

])
,

where (A1, B1) ∈ R
(n1+d(ω))×(n1+d(ω)) × R

(n1+d(ω))×m is a controllable pair with
θ1, . . . , θm−1, θ

′
m as the diagonal Hermite polynomials and A2 ∈ R

(n2−d(ω))×(n2−d(ω))

has the same nontrivial invariant factors as (A,B).
Since d(θ′m) = d(θmω) and r(θ′m) = r(θmω) and bearing in mind (b), it is easily

seen that there exist monic polynomials β′
i ∈ R[s], 1 ≤ i ≤ m, d(β′

i) = d(βi), 1 ≤ i ≤
m, such that

β′
j · · ·β′

m | θj · · · θm−1θ
′
m, j = 1, . . . ,m,

β′
1 · · ·β′

m = θ1 · · · θm−1θ
′
m.

Now the theorem follows by applying Theorem 4.9 to (A1, B1).
Remark 4.12. By using the results of [12] and [6], condition (a) of Theorem 4.11

can be written in terms of the Segre characteristic of the eigenvalues of (A,B) as in
Theorem 3.3.

REFERENCES

[1] A. C. Antoulas, New results on the algebraic theory of linear systems: The solution of the
cover problems, Linear Algebra Appl., 50 (1983), pp. 1–43.

[2] J. Barŕıa and D. A. Herrero, Closure of similarity orbits of nilpotent operators. I. Finite
rank operators, J. Operator Theory, 1 (1979), pp. 177–186.

[3] H. den Boer and G. Ph. A. Thijsse, Semi-stability of sums of partial multiplicities under
additive perturbation, Integral Equations Operator Theory, 3 (1980), pp. 23–42.

[4] R. Gantmacher, Matrix Theory, Vol. I, Chelsea, New York, 1977.
[5] I. Gohberg and M. A. Kaashoek, Unsolved problems in matrix and operator theory. I. Partial

multiplicities and additive perturbations, Integral Equations Operator Theory, 1 (1978),
pp. 278–283.

[6] J. M. Gracia, I. De Hoyos, and I. Zaballa, Perturbation of linear control systems, Linear
Algebra Appl., 121 (1989), pp. 353–383.

[7] U. Helmke, Topology of the moduli space for reachable linear dynamical systems: The complex
case, Math. Systems Theory, 19 (1986), pp. 155–187.

[8] D. Hinrichsen and Prätzel-Wolters, Generalized Hermite matrices and complete invariants
of strict system equivalence, SIAM J. Control Optim., 21 (1983), pp. 289–305.

[9] T. Kailath, Linear Systems, Prentice–Hall, Englewood Cliffs, NJ, 1980.
[10] P. Lancaster and M. Tismenestsky, The Theory of Matrices with Applications, Academic

Press, London, 1985.
[11] C. C. Mac Duffee, The Theory of Matrices, Chelsea, New York, 1946.
[12] A. S. Markus and E. E. Parilis, The change of the Jordan structure of a matrix under small

perturbations, Linear Algebra Appl., 54 (1983), pp. 139–152.
[13] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications,

Academic Press, New York, 1979.
[14] D. Q. Mayne, A canonical model for identification of multivariable systems, IEEE Trans.

Automat. Control, AC-17 (1972), pp. 728–729.
[15] V. M. Popov, Invariant description of linear, time-invariant controllable systems, SIAM J.

Control Optim., 10 (1978), pp. 252–264.

472 I. BARAGAÑA, V. FERNÁNDEZ, AND I. ZABALLA

[16] A. Pokrzywa, On perturbations and the equivalence orbit of a matrix pencil, Linear Algebra
Appl., 82 (1986), pp. 99–121.

[17] H. H. Rosenbrock, State-Space and Multivariable Theory, Thomas Nelson and Sons, London,
1970.

[18] I. Zaballa, Interlacing inequalities and control theory, Linear Algebra Appl., 101 (1988),
pp. 9–31.

[19] I. Zaballa, Controllability and Hermite indices of matrix pairs, Internat. J. Control, 68 (1997),
pp. 61–86.

[20] I. Zaballa, Asignación de invariantes mediante feedback, lecture notes, Universidad
Politécnica de Cataluña, Barcelona, 1991.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 473–495

SEMICIRCLE LAW FOR HADAMARD PRODUCTS∗

Z. D. BAI† AND L. X. ZHANG‡

Abstract. In this paper, assuming p/n → 0 as n → ∞, we will prove the weak and strong
convergence to the semicircle law of the empirical spectral distribution of the Hadamard prod-
uct of a normalized sample covariance matrix and a sparsing matrix, which is of the form Ap =

1√
np

(Xm,nX∗
m,n−σ2nIm)◦Dm, where the matrices Xm,n and Dm are independent and the entries

of Xm,n (m × n) are independent, the matrix Dm (m × m) is Hermitian with independent entries
above and on the diagonal, p is the sum of the second moments of the row (and column) entries of
Dm, and “◦” denotes the Hadamard product of matrices.

Key words. dilute matrix, Hadamard product, large dimensional random matrix, Marcěnko–
Pastur law, random matrix theory, sample covariance matrix, semicircle law, sparse matrix, spectral
distribution, Wigner matrix

AMS subject classifications. 15A52, 60F05, 62H99

DOI. 10.1137/050640424

1. Introduction. The study of large random matrices started in the 1950s in
the field of theoretical nuclear physics and from then on has attracted considerable
interest of both theoretical physicists and statisticians. Initially, in theoretical nuclear
physics, random matrices are constructed to model the interactions between a huge
body of interacting atomic nuclei. Then the energy levels of these particles can be
interpreted by the eigenvalues of the random matrices. The study of the eigenvalue
behavior of large random matrices has been called the spectral theory of large random
matrices.

Suppose Am is an m×m random matrix whose eigenvalues are denoted by {λ(m)
j :

1 ≤ j ≤ m}. Then by putting suitable assumptions on Am, such as Am being
Hermitian, these eigenvalues are real numbers, and it is possible to define the following
empirical distribution:

FAm(x) =
1

m
#{j : λ

(m)
j ≤ x},

which is called the empirical spectral distribution (ESD) of Am. Here #{...} denotes
the number of elements contained in the set {...}. The spectral theory of large random
matrices involves the limiting distribution of these ESDs. The first rigorous theoretical
result in this field is considered to be the work of Wigner [25], in which it is proved
that if Am is a Gaussian matrix, namely, Am is symmetric and its diagonal entries
and those above the diagonal are independent normal variables with mean 0, and the
variance of the diagonal elements is 2σ2 while that of the off-diagonal elements is σ2,

then the expected ESD, i.e., EF
1√
m

Am of 1√
m
Am, converges to the semicircle law with

∗Received by the editors September 16, 2005; accepted for publication (in revised form) by R.
Bhatia September 21, 2006; published electronically April 10, 2007.

http://www.siam.org/journals/simax/29-2/64042.html
†KLASMOE, School of Mathematics and Statistics, Northeast Normal University, Changchun,

China 130024 (stabaizd@nenu.edu.cn). The work of this author was supported by NSFC grant
10571020 and NUS grant R-155-000-056-112.

‡Department of Statistics and Applied Probability, National University of Singapore, Singapore
117546 (scip1379@nus.edu.sg).

473

474 Z. D. BAI AND L. X. ZHANG

scale parameter σ Fsc(x), which is given by

d

dx
Fsc(x) =

{
1

2πσ2

√
4σ2 − x2 if |x| ≤ 2σ,

0 otherwise.

This theorem was later extended to the general Wigner matrix Am = [aij], which
is a Hermitian matrix with independent complex entries above and on the diagonal
satisfying the following:

(1) The means of all entries are 0 and the variance of the off-diagonal entries is
σ2 (the variance of the diagonal elements is allowed to be different from that
of the off-diagonal entries).

(2) For any η > 0,

1

m2

m∑
i,j=1

E|a2
ij |I[|aij | > η

√
m] → 0.

Another class of important random matrices are the sample covariance ones, which
are defined as

Sn =
1

n

n∑
i=1

xix
∗
i ,

where xi = (x1i, . . . , xmi)
′ and {xij} are i.i.d. with mean zero and variance σ2, and

(.)∗ denotes the complex conjugate of vectors or matrices. It is known that the ESD
of Sn a.s. tends to the Marcěnko–Pastur law (see Marcěnko and Pastur [17]) with
density

d

dx
Fy(x) =

{
1

2πσ2xy

√
(b− x)(x− a) if a < x < b,

0 otherwise,

where y = limm/n and a = σ2(1 −√
y)2, b = σ2(1 +

√
y)2, with an additional point

mass of 1 − 1/y at 0 when y > 1. Their law was later extended under the following
condition:

1

mn

∑
ij

E|x2
ij |I[|xij | > η

√
n] → 0.

Some properties of the extreme eigenvalues of Wigner matrices and sample covariance
matrices can be found in Bai and Yin [5, 6] and Bai and Silverstein [2, 3]. For more
references, the reader is referred to Bai [1].

These two types of matrices are asymptotically connected. Indeed, when E|x11|4 <
∞ and m is fixed, the normalized sample covariance matrix

√
n(Sn −σ2Im) will tend

to a Gaussian matrix. Therefore, it is conceivable that the ESD of
√
n/m(Sn−σ2Im)

would tend to the semicircle law if m → ∞ and m/n → 0. This was confirmed in Bai
and Yin [4].

In nuclear physics, since the particles move in a very high velocity in a small
range, many exciting states in very short time cannot be observed. Generally, if a
real physical system is not of full connectivity, the random matrix describing the
interactions between the particles in the system will have a large proportion of zero
elements. In this case, a sparse random matrix provides a more natural and relevant
description of the system. Indeed, in neural network theory, the number of neurons in

SEMICIRCLE LAW FOR HADAMARD PRODUCTS 475

one person’s brain is probably of several orders of magnitude larger than that of the
dendrites connected with one individual neuron (see Grenander and Silverstein [12]).
Sparse random matrices are adopted in modelling these partially connected systems
in neural network theory. A sparse or dilute matrix is a random matrix in which
some entries will be replaced by 0 if not observed. Sometimes a large portion of the
entries of the interesting random matrix can be 0’s. Due to its special application
background, the sparse matrix has received special attention in quantum mechanics,
atomic physics, neural networks, and many other areas. Some recent works on large
sparse matrices and their applications to various areas can be found in, among others,
[7, 9] for linear algebra, [8, 12] for neural networks, [10, 11, 13, 15, 16, 21, 23, 24] for
algorithms and computing, [18] for finance modeling, [19, 26] for electrical engineering,
[20] for bio-interactions, and [22] for theoretical physics.

A sparse matrix can be expressed by a Hadamard product. If Bm = [bij] and
Dm = [dij] are two m × m matrices, then the Hadamard product Ap = (Aij) with
Aij = bijdij is denoted by

Ap = Bm ◦Dm.

The matrix Ap is sparse if the elements dij of Dm take values 0 and 1 with
∑m

i=1 P (dij
= 1) = p = o(m). The index p usually stands for the level of sparseness; i.e., after
performing the Hadamard product, the resulting matrix will have p nonzero elements
per row on the average.

It is commonly assumed that the matrix Dm is symmetric and its entries {dij :
i ≤ j} are independent Bernoulli trials with P (dij = 1) = pij and independent of the
entries of the matrix Bm. In Kohrunzhy and Rodgers [14, 15], it is assumed that

pij =
α

mβ
,

with 0 ≤ β ≤ 1, 0 < α
mβ < 1, and the entries of Bm are centralized elements of a

sample covariance matrix. More precisely, suppose Xm,n = [xij : i = 1, 2, . . . ,m, j =
1, 2, . . . , n] is an m × n matrix with independent entries of mean 0 and variance σ2.
Let the sample covariance matrix of Xm,n be defined as Sn = 1

nXm,nX
∗
m,n. Then,

define Bm =
√
n/p(Sn − σ2Im) and Ap = Bm ◦Dm.

In the present paper, we shall consider a kind of Hadamard product of a normal-
ized sample covariance matrix with a sparsing matrix (whose entries are not necessar-
ily Bernoulli trials) and show the weak and strong convergence to the semicircle law
of the ESD of this kind of Hadamard product. To this end, we make the following
assumptions. In what follows, the entries of Dm and Xm,n are allowed to depend on
n. For brevity, the dependence on n is suppressed.

Assumptions on Dm.

(D1) Dm = [dij] is m×m Hermitian with {dij : i ≤ j}
independent complex random variables.

(D2) max
j

∣∣∣∣∣
m∑
i=1

pij − p

∣∣∣∣∣ = o(p),where pij = E|d2
ij |.

(D3.1) For some δ ∈ [0, 1/2], there exists a constant C1 > 0 such

that max
j

∑
i

E|dij | ≤ C1m
δp1−δ.

(D3.2) For each k > 2 there is a constant Ck such that

E|dij |k ≤ Ckpij .(1.1)

476 Z. D. BAI AND L. X. ZHANG

We remark here that condition (D3.2) implies that pij are uniformly bounded. In
fact, pij = E|dij |2 ≤ (E|dij |4)1/2 ≤ C4. Combining this fact with condition (D2), we
indeed have p ≤ Km, for some constant K > 0. In view of this relation between p
and m, we notice that if condition (D3.1) holds for some δ0 ∈ [0, 1/2], then it must
hold for every δ ≥ δ0, δ ∈ [0, 1/2]. Therefore, we clarify here and in what follows
that when we say condition (D3.1) holds for some δ∗ ∈ [0, 1/2] we are referring to
δ∗ as the smallest value in [0, 1/2] for which condition (D3.1) holds. In this sense,
for any 0 ≤ δ1 ≤ δ2 ≤ 1/2, we say we have a stronger sparseness in the case when
condition (D3.1) holds for δ1 than in the case when condition (D3.1) holds for δ2.
Also note that in the case of the weakest sparseness, i.e., δ = 1/2, condition (D3.1) is
a direct consequence of Hölder’s inequality and condition (D2); that is, no additional
assumption is imposed on the first moments of the sparsing factors in this case.

Assumptions on Xm,n.

(X1) Xm,n = [xij] is m× n consisting of independent random

variables with Exij = 0, E|xij |2 = σ2.

(X2.1) For any η > 0,

1

mn

∑
ij

E|x2
ij |I[|xij | > η 4

√
np] → 0.

(X2.2) For any η > 0,
∞∑
u=1

1

mn

∑
ij

E|x2
ij |I[|xij | > η 4

√
np] < ∞,

where u may take [p], m, or n.

(X3) For any η > 0,

1

m

m∑
i=1

P

(∣∣∣∣∣
n∑

k=1

(|xik|2 − σ2)dii

∣∣∣∣∣ > η
√
np

)
→ 0.(1.2)

We shall prove the following theorem.
Theorem 1.1. (i) Conditions (1.1) and (1.2) hold.
(ii) The entries of Dm are independent of those of Xm,n.
(iii) p/n → 0 and p → ∞.
(iv) Condition (D3.1) holds for δ = 1/2 and m/n → 0, or condition (D3.1) holds

for some δ ∈ (0, 1/2) and m ≤ Kn for some constant K, or condition (D3.1) holds
for δ = 0 and there is no restriction between m and n.

Then, the ESD FAp converges weakly to the semicircle law with scale parameter
σ2 as [p] → ∞, where Ap = 1√

np (Xm,nX
∗
m,n − σ2nIm) ◦Dm. The convergence is in

the sense of in probability (i.p.) if condition (X2.1) is assumed, and the convergence
is in the sense of a.s. for [p] → ∞ or m → ∞ if condition (X2.2) is assumed for
u = [p] or u = m, respectively.

Remark 1.1. Theorem 1.1 covers all well-known results on sparse matrices, since
the Bernoulli trials satisfy conditions (D3.1) (with δ = 0) and (D3.2) obviously. The
new contribution of Theorem 1.1 is to allow the sparsing factors dij to be very non-
homogenous. Consider the following example. Let Dm = [dij] be symmetric. Let
m = kL with L fixed, and let for all (�− 1)k < i, j ≤ �k with � ≤ L,

P (dij = 1) = p/k = 1 − P (dij = 0),

SEMICIRCLE LAW FOR HADAMARD PRODUCTS 477

and for all other indices i, j, dij ≡ 0. Then conditions (D1), (D2), (D3.1), and (D3.2)
are true whenever p ≤ k.

Remark 1.2. In the case of the strongest sparseness, condition (D3.1) seems not
to allow the dij ’s to take large values. In fact, it is not the case. For example, consider
that

dij = c−1
n |zij |I(|zij | > cn),

where zij are i.i.d. N(0, 1) subject to the condition dij = dji and cn is a positive
constant uniquely solving the equation Ez2

ijI(|zij | > cn) = c2np/m. Then obviously
dij can take very large values, and Dm is symmetric with

m∑
i=1

pij = c−2
n

m∑
i=1

Ez2
ijI(|zij | > cn) = p;

i.e., conditions (D1) and (D2) are satisfied.
Now we show that condition (D3.1) holds for δ = 0 if p/m → 0. In fact, we can

see that if p/m → 0, then cn → ∞ and consequently

Ez2
ijI(|zij | > cn)
 2cnϕ(cn),

which implies that

p

m

 2

cn
ϕ(cn),

where the notation “
” is used to represent the relation that the two quantities on its
two sides have a ratio which tends to 1 as n → ∞, while ϕ(·) is the density function
of standard normal variables.

Therefore, we get

m∑
i=1

E|dij | = mc−1
n E|zij |I(|zij | > cn)
 2mc−1

n φ(cn)
 p,

and

E|dij |k = c−k
n E|zij |kI(|zij | > cn)

 2c−k
n ck−1

n φ(cn) = 2c−1
n φ(cn)

 p/m = E|dij |2,

which implies that condition (D3.1) holds for δ = 0, and that condition (D3.2) holds.
Remark 1.3. However, if condition (D3.1) is assumed for δ = 0, then sometimes it

may happen that the dij ’s are not allowed to take small values with large probabilities.
For example,

dij =
√
p/m with probability 1.

Then obviously (D3.1) holds for and only for δ = 1/2, i.e., the weakest sparseness.
For this case, condition (D3.1) holds automatically when condition (D3.2) is assumed.
Condition (D3.2), assuming that higher moments of the dij ’s are not larger than a
multiple of their second moments, is not seriously restrictive because the dij ’s are
usually small random variables.

478 Z. D. BAI AND L. X. ZHANG

Nonetheless, if condition (D3.1) is assumed for δ = 1/2, the condition does allow
the first moments of dij ’s to be much larger than their second moments, e.g., dij =

c
√
p/m|zij |, where zij are i.i.d. random variables subject to the restriction dij = dji

and c makes Ed2
ij = p/m. As a price, however, we need to require m to have a smaller

order than that of n, that is, m/n → 0. The requirement is necessary in some sense.
In section 3, we will present a counterexample showing that the semicircle law fails
to hold if this requirement is not satisfied.

Remark 1.4. Note that p may not be an integer, and it may increase very slowly
as n increases. Thus, the limit for p → ∞ may not be true for almost sure convergence.
So, we consider the limit when the integer part of p tends to infinity. However, if we
consider the convergence in probability, Theorem 1.1 is true for p → ∞.

Remark 1.5. Conditions (D2) and (D3.2) imply that p ≤ Km; that is, the order
of p cannot be larger than that of m. In the theorem, it is assumed that p/n → 0; that
is, p also has a lower order than n. This is essential. However, the relation between m
and n can be arbitrary if condition (D3.1) holds for δ = 0. It is important to remind
the readers that the statement “the relation between m and n can be arbitrary” only
says that there are examples with m/n → ∞ as well as examples with m/n → 0, for
which the results in Theorem 1.1 are applicable equally well once condition (D3.1) is
satisfied with δ = 0. For example, if the dij ’s (subject to the condition dij = dji) are
the Bernoulli trials defined by P (dij = 1) = p/m = 1 − P (dij = 0) for any i, j, then
E|dij | = E|dij |2 = E|dij |k for any k > 2. This implies conditions (D1), (D2), (D3.1)
(with δ = 0), and (D3.2) always hold. But no matter m/n → 0, m/n ≤ K < ∞, or
m/n → ∞, Theorem 1.1 always holds, provided that p/n → 0.

Remark 1.6. From the proof given in the next sections, one can see that the
almost sure convergence is true for m → ∞ in all places except the part of the
truncation on the entries of Xm,n which was guaranteed by condition (X2.2). Thus, if
condition (X2.2) holds for u = m, then the almost sure convergence is true in the sense
of m → ∞. Sometimes, it may be of interest to consider the almost sure convergence
in the sense of n → ∞. Examining the proof given in the next sections, one can find
that to guarantee the almost sure convergence for n → ∞, the removal of the diagonal
elements of the matrix requires m/ log n → ∞; the truncation on the entries of Xm,n

requires condition (X2.2) to be true for u = n. As for Proposition 3.1, as remarked
in section 3, one may modify the conclusion of (II) on page 11 as

E|Mk − EMk|2μ = O(m−μ)

for any fixed integer μ. Thus, if m ≥ nε for some positive constant ε, then the almost
sure convergence of the ESD of the matrix after the truncation and centralization is
true for n → ∞. We therefore see that the conclusion of Theorem 1.1 can be strength-
ened to the almost sure convergence as n → ∞ under the additional assumptions that,
for some small positive constant ε, m ≥ nε and condition (X2.2) holds for u = n.

Remark 1.7. In Theorem 1.1, if p = m and dij ≡ 1 for all i and j and the entries
of Xm,n are i.i.d., then the model considered in Theorem 1.1 reduces to that of Bai
and Yin [4], where it is assumed that the fourth moment of xij is finite. It can be
easily verified that the conditions of Theorem 1.1 are satisfied under Bai and Yin’s
assumption. Thus, Theorem 1.1 contains Bai and Yin’s result as a special case.

Remark 1.8. If there is a positive and increasing function ϕ(x) defined on R
+

such that

Qn ≡ 1

mn

∑
ij

E|x2
ij |ϕ(|xij |)I[|xij | > η 4

√
np] → 0,(1.3)

SEMICIRCLE LAW FOR HADAMARD PRODUCTS 479

then condition (X2.1) holds. Letting ϕ(x) = x4(2ν−1) with 1
2 ≤ ν < 1, (1.3) reduces

to condition (2.4) of Kohrunzhy and Rodgers [14], if we change their notation to
pij = P (dij = 1) = p/m with p = n2ν−1 and m/n → c ∈ (0,∞). It can be verified
easily that all other assumptions of Theorem 1.1 are satisfied under their conditions;
condition (X3) is automatically true since P (dii �= 0) = 0 was assumed in their paper.
Thus Theorem 1.1 covers Kohrunzhy and Rodgers [14] as a special case for all ν’s in
the interval [1/2, 1).

Furthermore, it can be seen that if Qn → 0 with a suitable rate such that

∞∑
u=1

Qn/ϕ(η 4
√
np) < ∞,(1.4)

then condition (X2.2) is satisfied. Indeed, ϕ(x) = x4(2ν−1), with (1 +
√

5)/4 < ν < 1,
makes (1.4) hold. Then for these ν’s Theorem 1.1 states the almost sure conver-
gence holds and hence is stronger than the conclusion of i.p. convergence proven by
Kohrunzhy and Rodgers [14].

Remark 1.9. The most important contribution of Theorem 1.1 to the random
matrix theory is to allow nonhomogeneous and nonzero-one sparseness and for the
case of the strongest sparseness to allow an arbitrary relation between m and n.
The conditions on the entries of Xm,n are to require some homogeneity on the Xm,n

matrix. We conjecture that the homogeneity on the Xm,n matrix can be relaxed if
we require the entries of the Dm matrix to have certain homogeneity. This problem
is under investigation.

The organization of this paper is as follows. In section 2, we apply the truncation
and centralization technique to the matrix Ap so that the proof of Theorem 1.1 can
proceed under more convenient conditions and hence can be simplified. Then in
section 3, for the matrix resulting from the truncation and centralization treatment,
we prove the convergence of the moments of their ESDs, and from the result we infer
the validity of Theorem 1.1.

2. Truncation and centralization. In this section, we apply the truncation
and centralization techniques to Ap. However, we first need to present some prelimi-
nary results useful in subsequent proofs. These results consist of several inequalities
concerning the difference between two ESDs.

Lemma 2.1 (difference inequality). If n × n matrices A and B are Hermitian,
then

L3(FA, FB) ≤ 1

n
tr(A−B)2,

where L(·, ·) denotes the Lévy distance, which is defined for any two distribution func-
tions F and G as

L(F,G) = inf{ε > 0 : F (x− ε) − ε < G(x) < F (x + ε) + ε ∀x ∈ R}.

Lemma 2.2 (rank inequality). Suppose A and B are n× n Hermitian matrices.
Then

‖FA − FB‖ ≤ 1

n
rank(A−B),

where ‖ · ‖ denotes the modulus defined for any function f(·) as ‖f‖ = supx∈R|f(x)|.

480 Z. D. BAI AND L. X. ZHANG

Lemma 2.3 (Bernstein’s inequality). Suppose {Xn} is an independent sequence of
random variables of mean 0 and bounded by M . Denote Sn =

∑n
i=1 Xi and ηn = ES2

n.
Then

P (|Sn| > ε) ≤ 2 exp

{
− ε2

2(Mε + ηn)

}
.

The proofs for the first two lemmas can be found in Bai [1]. With the aid of
these lemmas, we can now develop the following results on applying the truncation
and centralization techniques.

2.1. Removal of the diagonal elements of Ap. For any ε > 0, denote by Âp

the matrix obtained from Ap by replacing its diagonal elements whose absolute values

are greater than ε by 0 and denote by Ãp the matrix obtained from Ap by replacing
all its diagonal elements by 0.

Proposition 2.4. Under the assumptions of Theorem 1.1,

‖F Âp − FAp‖ → 0, a.s.

and

L3(F Âp , F Ãp) ≤ ε2.

Proof. The second conclusion of the proposition is a trivial consequence of Lemma
2.1. As for the first conclusion, by the rank inequality,

‖F Âp − FAp‖ ≤ 1

m

m∑
i=1

I

[∣∣∣∣∣ 1
√
np

n∑
k=1

(|xik|2 − σ2)dii

∣∣∣∣∣ > ε

]
.

By condition (X3) in (1.2), we have

m∑
i=1

P

(∣∣∣∣∣ 1
√
np

n∑
k=1

(|xik|2 − σ2)dii

∣∣∣∣∣ > ε

)
= o(m).

By Bernstein’s inequality, it follows that for any constant η > 0,

P (‖F Âp − FAp‖ ≥ η) ≤ P

(
m∑
i=1

I

[∣∣∣∣∣ 1
√
np

n∑
k=1

(|xik|2 − σ2)dii

∣∣∣∣∣ > ε

]
≥ ηm

)
≤ 2e−bm,

for some constant b > 0. By the Borel–Cantelli lemma, we conclude that

‖F Âp − FAp‖ → 0, a.s.

Combining the two conclusions in Proposition 2.4, we have shown that

L(FAp , F Ãp) → 0, a.s.

Hence, in what follows, we can assume that the diagonal elements are 0; i.e., assume
dii = 0 for all i = 1, . . . ,m.

SEMICIRCLE LAW FOR HADAMARD PRODUCTS 481

2.2. Truncation and centralization of the entries of Xm,n. Note that
condition (X2.1) in (1.2) guarantees the existence of ηn ↓ 0 such that

1

mnη2
n

∑
ij

E|xij |2I(|xij | > ηn 4
√
np) → 0.

Similarly, if condition (X2.2) holds, there exists ηn ↓ 0 such that

∞∑
u=1

1

mnη2
n

∑
ij

E|xij |2I[|xij | > ηn 4
√
np] < ∞,

for u takes [p], m, or n. In the subsequent truncation procedure, we shall not dis-
tinguish under whichever condition the sequence {ηn} is defined. The reader should
remember that whatever condition is used, the {ηn} is defined by that condition.

Define x̃ij = xijI[|xij | ≤ ηn 4
√
np] − ExijI[|xij | ≤ ηn 4

√
np] and x̂ij = xij − x̃ij .

Also, define B̃m with B̃ij = 1√
np

∑n
k=1 x̃ik

¯̃xjk (i �= j), and denote its Hadamard

product with Dm by Ãp. Then we have the following proposition.
Proposition 2.5. Under condition (X2.1) in (1.2) and the other assumptions of

Theorem 1.1,

L(F Ãp , FAp) → 0, i.p.

If condition (X2.1) is strengthened to (X2.2), then

L(F Ãp , FAp) → 0, a.s. as u → ∞,

where u = [p], m, or n in accordance with the choice of u in condition (X2.2).
Proof. By the difference inequality,

L3(F Ãp , FAp) ≤ 1

m
tr[(Bm − B̃m) ◦Dm]2

=
1

mnp

∑
i �=j

∣∣∣ n∑
k=1

(xikx̄jk − x̃ik
¯̃xjk)dij

∣∣∣2.
We have

E

⎛⎝ 1

mnp

∑
i �=j

∣∣∣ n∑
k=1

(xikx̄jk − x̃ik
¯̃xjk)dij

∣∣∣2
⎞⎠

=
1

mnp

∑
i �=j

n∑
k=1

E|xikx̄jk − x̃ik
¯̃xjk|2E|d2

ij |

≤ 8σ2

mnp

m∑
j=1

n∑
k=1

E|x̂jk|2
m∑
i=1

pij

≤ 16σ2

mn

m∑
j=1

n∑
k=1

E|xjk|2I[|xjk| > ηn 4
√
np],

where in the last step we have used condition (D2), which can be easily shown to
remain true after the removal of the diagonal elements of Dm. Thus we can see that if

482 Z. D. BAI AND L. X. ZHANG

condition (X2.1) in (1.2) is assumed, then the right-hand side of the above inequality
converges to 0 and hence the first conclusion follows.

However, if condition (X2.2) holds, then we have

∞∑
u=1

16σ2

mn

∑
ij

E|xij |2I(|xij | > ηn 4
√
np) < ∞,

and it follows that

L3(F Ãp , FAp) → 0, a.s.

as u → ∞, where u takes [p], m, or n in accordance with the choice of u in (X2.2).
The proof of this proposition is complete.

From the above two propositions, we are allowed to make the following additional
assumptions:

(i) dii = 0.

(ii) Exij = 0, |xij | ≤ ηn 4
√
np.(2.1)

Note that, we shall no longer have E|xij |2 = σ2 after the truncation and cen-
tralization on the Xm,n entries. Write E|xij |2 = σ2

ij . We shall have the following
proposition.

Proposition 2.6. Under the assumptions of Theorem 1.1,
(a) maxj |

∑
i E|dij |2 − p| = o(p),

(b) for any i, j, σ2
ij ≤ σ2, and 1

mn

∑
ij σ

2
ij → σ2.

Proof. It is trivial to check the truth of (a) and the first part in (b). While the
second part of (b) follows from condition (X2.1) and the following fact:

0 ≤ σ2 − 1

mn

∑
ij

σ2
ij

≤ 2

mn

∑
ij

E|xij |2I(|xij | > ηn 4
√
np) → 0.

3. Proof of the theorem by the moment approach. In the last section,
we have shown that to prove Theorem 1.1, it suffices to do it under the additional
conditions (i), (ii) in (2.1) and (a), (b) in Proposition 2.6. In the present section, we
shall prove the following proposition.

Proposition 3.1. Suppose that the assumptions of Theorem 1.1 and the addi-
tional conditions (i), (ii) in (2.1) and (a), (b) in Proposition 2.6 hold. Then with
probability one as m → ∞, the empirical spectral distribution FAp(x) of Ap converges
weakly to the semicircle law with scale parameter σ2.

Proof. To prove the proposition, we employ the moment method. That is, based
on the moment convergence theorem, by denoting Mk and mk the kth moment of FAp

and the semicircle law Fsc,σ2(x) with scale parameter σ2, we prove that Mk → mk

a.s. and that the sequence {mk} satisfies the Carleman condition
∑∞

k=1 m
−1/2k
2k = ∞.

It is easy to calculate that

mk =

{
σ4s(2s)!
s!(s+1)! if k = 2s,

0 if k = 2s + 1.

SEMICIRCLE LAW FOR HADAMARD PRODUCTS 483

By noting that m2k ≤ σ4k22k, it is easy to see that the Carleman condition holds.
Thus, to complete the proof of the proposition, by using the Borel–Cantelli lemma,
we only need to prove

(I) : E(Mk) = mk + o(1),

and

(II) : E|Mk − EMk|4 = O

(
1

m2

)
.

Now, we begin to proceed in the proof of (I) and (II) under conditions of Propo-
sition 3.1. Write i = (i1, . . . , ik), j = (j1, . . . , jk), and by defining ik+1 ≡ i1,

I = {(i, j) : 1 ≤ iv ≤ m, 1 ≤ jv ≤ n,

with iv �= iv+1 for each 1 ≤ v ≤ k}.(3.1)

Then, by definition we have

Mk =
1

mnk/2pk/2

∑
(i,j)∈I

d(i,j)X(i,j),

where

d(i,j) = di1i2 · · · diki1 ,

X(i,j) = xi1j1xi2j1xi2j2xi3j2 · · ·xikjk−1
xikjkxi1jk .

For each pair (i, j) = ((i1, . . . , ik), (j1, . . . , jk)) ∈ I, construct a graph G(i, j) by
plotting the iv’s and jv’s on two parallel straight lines, respectively, and then drawing
k down edges (iv, jv) from iv to jv, k up edges (jv, iv+1) from jv to iv+1, and another
k horizontal edges (iv, iv+1) from iv to iv+1. A down edge (iv, jv) corresponds to
the variable xivjv , an up edge (jv, iv+1) corresponds to the variable xiv+1jv , and a
horizontal edge (iv, iv+1) corresponds to the variable diviv+1 . A graph corresponds
to the product of the variables corresponding to the edges making up this graph.
We shall call the subgraph of horizontal edges and their vertices of G(i, j) the roof
of G(i, j) and denote it as G(i, j), and call the subgraph of vertical edges and their
vertices of G(i, j) the base of G(i, j) and denote it as G(i, j). By noting that the roof
of G(i, j) depends on i only, we may simplify the notation of roofs as G(i).

Two graphs G(i1, j1) and G(i2, j2) are said to be isomorphic if one can be converted
to the other by a permutation on (1, . . . ,m) and a permutation on (1, . . . , n). All
graphs are classified into isomorphic classes. An isomorphic class is denoted by G.
Similarly, two roofs G(i1) and G(i2) are said to be isomorphic if one can be converted
to the other by a permutation on (1, . . . ,m). An isomorphic roof class is denoted by
G. For a given i, two graphs G(i, j1) and G(i, j2) are said to be isomorphic given i
if one can be converted to the other by a permutation on (1, . . . , n). An isomorphic
class given i is denoted by G(i).

Then, we may rewrite

Mk =
1

mnk/2pk/2

∑
i,j

dG(i)XG(i,j)

=
1

mnk/2pk/2

∑
G

∑
G(i,j)∈G

dG(i)XG(i,j).(3.2)

484 Z. D. BAI AND L. X. ZHANG

Proof of (I) on page 11. By the notation introduced above,

E(Mk) =
1

mnk/2pk/2

∑
G

∑
G(i,j)∈G

EdG(i)EXG(i,j).(3.3)

Note that when G(i, j) contains a single vertical edge, EXG(i,j) = 0. Thus we may
assume in the following that each graph appearing in the summation of EMk does
not contain single vertical edges. Also note that, from the definition of the set I, each
graph also does not contain any loops of horizontal edges.

Let us denote by l, r, s the numbers of noncoincident vertical edges, noncoincident
iv vertices, and noncoincident jv vertices, respectively. It is obvious that these num-
bers must be the same for isomorphic graphs. Further, notice that for each isomorphic
class G, there is a unique graph G(i, j) satisfying

i1 = 1, iv+1 ≤ max{i1, . . . , iv} + 1,

j1 = 1, jv+1 ≤ max{j1, . . . , jv} + 1,

which will be called the canonical (or representative) graph of G. We can further
define a number q as follows. Suppose that G is an isomorphic class having the index
r, the number of noncoincident i-vertices in its canonical graph G(i, j). Then since
G(i), the roof of G(i, j), is a connected graph, we can select a tree which contains all
the r vertices of G(i) and exactly r− 1 edges. Excluding the r− 1 edges in G1(i), we
have k−(r−1) edges left in G(i). Then the remaining k−(r−1) edges together with all
of the vertices of G(i) form another subgraph of G(i), which will be denoted by G2(i).
The remainder subgraph G2(i) may not be connected. Suppose that G2(i) consists of
q connected blocks with the understanding that each isolated vertex is considered as
a connected block. Then by permutations of the i-vertices and j-vertices, we may use
the same number q for all the other graphs in this isomorphic class. Therefore, we
may denote by G(l, r, s, q) the collection of isomorphic classes with the indices l, r, s,
and q. We then have the following two propositions for estimating the terms involved
in EMk.

Proposition 3.2. Under the conditions of Proposition 3.1, for any G ∈ G(l, r, s, q),
there is a constant K such that∑

G(i)∈G

E|dG(i)| ≤ Km1+δ(q−1)pr−1−δ(q−1)(3.4)

and ∑
G(i)∈G
Ifixed

E|dG(i)| ≤ Kmδ(q−1)pr−1−δ(q−1),(3.5)

where I is an arbitrarily selected noncoincident i-vertex of G(i); K does not depend
on I.

Proof. It is straightforward to see that (3.4) is a consequence of (3.5). We thus
need only prove (3.5). Since G(i) is connected, there must exist q − 1 edges in G1(i)
which make the q blocks of G2(i) connected. From the definition of G1(i), these q− 1
edges are single in G(i) and, together with their vertices, cannot form any cycles. We
shall call them bridge edges. Suppose the (q − 1) bridge edges are

(ib1 , ib1+1), (ib2 , ib2+1), . . . , (ibq−1 , ibq−1+1);

SEMICIRCLE LAW FOR HADAMARD PRODUCTS 485

the other r − q edges in G1(i) are

(ia1
, ia1+1), (ia2

, ia2+1), . . . , (iar−q
, iar−q+1);

the k − r + 1 edges in G2(i) are

(ic1 , ic1+1), (ic2 , ic2+1), . . . , (ick−r+1
, ick−r+1+1).

(Note that q may be equal to 1 so that there are no bridge edges at all, but it is easy
to see that the proof that follows is still valid.) Then by Hölder’s inequality, we have∑

G(i)∈G
Ifixed

E|dG(i)|

= E
∑

G(i)∈G
Ifixed

q−1∏
u=1

|dibu ibu+1
|
r−q∏
v=1

|diav iav+1
|
k−r+1∏
w=1

|dicw icw+1
|

≤

⎛⎜⎝E
∑

G(i)∈G
Ifixed

q−1∏
u=1

|dibu ibu+1
|
r−q∏
v=1

|diav iav+1
|2

⎞⎟⎠
1/2

⎛⎜⎝E
∑

G(i)∈G
Ifixed

q−1∏
u=1

|dibu ibu+1
|
k−r+1∏
w=1

|dicw icw+1 |2

⎞⎟⎠
1/2

≤ Kmδ(q−1)pr−1−δ(q−1).

To get this inequality, we used the following two results namely, by conditions (D2),
(D3.1), and (D3.2),

E
∑

G(i)∈G
Ifixed

q−1∏
u=1

|dibu ibu+1
|
r−q∏
v=1

|diav iav+1
|2

=
∑

G(i)∈G
Ifixed

q−1∏
u=1

E|dibu ibu+1
|
r−q∏
v=1

E|diav iav+1
|2

≤ K(mδp1−δ)q−1pr−q

= Kmδ(q−1)pr−1−δ(q−1),

and further by the fact that the pij ’s are uniformly bounded,

E
∑

G(i)∈G
Ifixed

q−1∏
u=1

|dibu ibu+1
|
k−r+1∏
w=1

|dicw icw+1 |2

=
∑

G(i)∈G
Ifixed

q−1∏
u=1

E|dibu ibu+1
|E

k−r+1∏
w=1

|dicw icw+1 |2

≤ Kmδ(q−1)pr−1−δ(q−1).

486 Z. D. BAI AND L. X. ZHANG

This completes the proof of the proposition.
Note that since each graph does not contain a single vertical edge, we have l ≤ k.

Since each graph does not contain any loops of horizontal edges, we further have
l ≥ 2s. And as a basic property of connected graph, we have r + s ≤ l + 1. To
estimate the integer q, we need the following proposition.

Proposition 3.3. Let l, s, q be defined as above. Then

l − 2s ≥ q − 1.(3.6)

Proof. Since G(i) contains no loops, it follows that each j-vertex is connected with
at least two noncoincident vertical edges and hence that l − 2s ≥ 0, which implies
(3.6) for the case of q = 1. Now assume q > 1. Then we have q − 1 bridge edges. If
(iv, iv+1) is a bridge edge, then we call the vertex jv its supporting vertex, while the
edges (iv, jv), (jv, iv+1) are its supporting edges.

Denote the s noncoincident j-vertices by J1, J2, . . . , Js. For each 1 ≤ a ≤ s,
denote by la the number of noncoincident vertical edges connected with Ja. Then
obviously l = l1 + l2 + · · · + ls. Note that each noncoincident j-vertex is composed
of at least two j-vertices coincident with each other. For each 1 ≤ a ≤ s, denote
by ta the number of bridge edges supported by Ja. Here, of course, ta is the total
number of bridge edges whose supporting j-vertex is from those coincident j-vertices
constituting Ja. Then q− 1 = t1 + t2 + · · ·+ ts. To prove l− 2s ≥ q− 1, it is sufficient
to prove for each 1 ≤ a ≤ s, la ≥ ta + 2.

If ta = 0, then la ≥ ta +2 follows simply from the previously stated fact that each
j-vertex is connected with at least two noncoincident vertical edges. Now assume
ta ≥ 1. In view of the property that bridge edges together with their vertices do not
form any cycles and may be disconnected among themselves, we shall consider two
cases, when the ta bridge edges (together with their vertices) form exactly one tree and
when they form more than one tree disjoint with each other. For the first case, since
each supporting edge connected with Ja must take one vertex of the tree, there are
exactly ta+1 noncoincident supporting edges connected with Ja. The same reasoning
shows that for the second case, there are at least ta+2 noncoincident supporting edges
connected with Ja, and hence la ≥ ta + 2.

To complete the proof of the proposition, we need only proceed with the proof of
the first case. In this case, the tree formed by the ta bridge edges possesses (ta + 1)
vertices. Arbitrarily select two vertices of the tree. Then these two vertices are joined
by one path composed of only bridge edges from the tree. We assert that there cannot
be any edge of G(i) which does not belong to the tree, taking the two vertices as its
two endpoints. To see this, by the way of contradiction, we suppose that one such
edge exists. Then this edge and the prescribed path form a cycle, and consequently
we see that this edge must not belong to G1(i) and that the cycle belongs to the graph
consisting of G2(i) and all bridge edges. Denote this later mentioned graph by G3(i).
It follows that removing any edge of the path from G3(i) does not cause the graph to
be disconnected, and so any edge arbitrarily selected from the bridge edges forming
the path is not cutting in G3(i). However, by the definition of bridge edges, G3(i) is a
connected graph and each of the (q − 1) bridge edges should be cutting in the graph.
Thus we reach a contradiction and conclude that our assertion is true.

Now arbitrarily select one vertex of degree one in the tree. Then the supporting
edge connecting this vertex and Ja must be single among supporting edges and must
be coincident with one nonsupporting vertical edge. Note that this nonsupporting
vertical edge may be a down edge and also may be an up edge. We first consider the

SEMICIRCLE LAW FOR HADAMARD PRODUCTS 487

case when this vertical edge is a down edge, say (iv, jv). Then iv is coincident with
the vertex we selected which has degree one in the tree, and jv is one of the coincident
j-vertices constituting Ja. Note that since (iv, jv) is nonsupporting, (iv, iv+1) is not a
bridge edge. Recall that by (3.1), iv �= iv+1. By the preceding argument, iv+1 cannot
be coincident with any of the other ta vertices of the tree either. This implies that the
up vertical edge (jv, iv+1) cannot be coincident with any of the (ta +1) noncoincident
supporting edges connected with Ja. Therefore it follows that la ≥ ta + 2. For the
other case when the vertical edge is an up edge, say (jv, iv+1), a similar argument can
be used to conclude that the anterior down edge (iv, jv) cannot be coincident with
any of the (ta+1) noncoincident supporting edges connected with Ja (see Figure 3.1).
The proof of the proposition is now complete.

Non−Bridge

s

Bridge Edges

Supporting
Edges

Non−supporting
edge

Fig. 3.1. The definition of bridge edges.

From Proposition 3.2, it follows for each G ∈ G(l, r, s, q),

1

mnk/2pk/2

∣∣∣∣∣∣
∑

G(i,j)∈G
EdG(i)EXG(i,j)

∣∣∣∣∣∣
≤ 1

mnk/2pk/2

∑
G(i)∈G

|EdG(i)|
∑

G(i,j)∈G(i)

|EXG(i,j)|

≤ 1

mnk/2pk/2
Km1+δ(q−1)pr−1−δ(q−1)ns(ηn 4

√
np)2k−2l

= Kη2(k−l)
n mδ(q−1)ns−l/2pr−l/2−1−δ(q−1)

= Kη2(k−l)
n (m/n)δ(q−1)(p/n)

l
2−s−δ(q−1)pr+s−l−1.(3.7)

Based on this relation, we separate the terms involved in EMk into three parts; i.e.,
let S1 be the sum of terms with l < k, S2 be the sum of terms with l = k, but either
r + s < l + 1 or l > 2s, and S3 be the sum of terms with l = k, r + s = l + 1, l = 2s,
and hence from Proposition 3.3, q = 1. Noting the relations between the numbers l,
r, s analyzed previously, we have

EMk = S1 + S2 + S3.

We first prove S1 → 0 and S2 → 0. Note that under the assumptions of Theorem
1.1, (m/n)δ(q−1) is bounded. From Proposition 3.3, l/2 − s ≥ δ(q − 1) always holds.

488 Z. D. BAI AND L. X. ZHANG

Thus we get

|S1| = o((m/n)δ(q−1)(p/n)
l
2−s−δ(q−1)pr+s−l−1) = o(1).

If δ(q − 1) = 0, then

|S2| = O((p/n)
k
2−spr+s−k−1) = o(1),

since either k > 2s or r + s < k + 1. If δ ∈ (0, 1/2) and q > 1, then

|S2| = O((p/n)
k
2−s−δ(q−1)) = o(1),

since k/2 − s > δ(q − 1). If δ = 1/2 and q > 1, then since m/n → 0,

|S2| = O((m/n)
1
2 (q−1)) = o(1).

Note that when k is odd, no terms involved in the summation of EMk belong to
S3 and hence we must have

EMk → 0.

In the following we only need to evaluate S3 for when the case k is even, by definition
of S3, k = 2s.

We first note that r+s = k+1 implies that there cannot be cycles of noncoincident
vertical edges in the base of the graph. Also note that l = k implies that each
noncoincident vertical edge must consist of exactly two vertical edges. It follows that
each down edge must coincide with one and only one up edge because the coincidence
of a down edge (an up edge) with another down edge (up edge) would imply that
the noncoincident edges of the base contain a cycle. Therefore, if we denote the
noncoincident vertical edges by {(u1, v1), . . . , (uk, vk)}, then

EXG(i,j) =

k∏
j=1

σ2
ujvj

,

and hence for each isomorphic class G ∈ G(2s, s + 1, s, 1) (all isomorphic classes in-
volved in S3 constitute G(2s, s + 1, s, 1)), we have

∑
G(i,j)∈G

EdG(i)EXG(i,j) =
∑

G(i,j)∈G
EdG(i)

k∏
j=1

σ2
ujvj

.

Now we show that

1

m(np)s

∑
G(i,j)∈G

EdG(i)

k∏
j=1

σ2
ujvj

=
1

m(np)s

∑
G(i,j)∈G

EdG(i)σ
2k + o(1).(3.8)

SEMICIRCLE LAW FOR HADAMARD PRODUCTS 489

i	 = iν+1 = v1 i	+1 = iν = v2

j	 = jν

� �

�

��
�

�
�

�
�

�
����

�
�

�
�

�
���

�
�

�
�

�
�

����
�

�
�

�
�

��	

Fig. 3.2. (v1, v2) coincides with (v2, v1).

By (b) of Proposition 2.6 and (3.5) of Proposition 3.2 for the case q = 1, we have

0 ≤ 1

m(np)s

∑
G(i,j)∈G

|EdG(i)|

⎡⎣σ2k −
k∏

j=1

σ2
ujvj

⎤⎦
≤ 1

m(np)s

∑
G(i,j)∈G

|EdG(i)|
k∑

	=1

⎡⎣σ2(k−)(σ2 − σ2
u�v�

)

	−1∏
j=1

σ2
ujvj

⎤⎦
≤ 1

m(np)s

∑
G(i,j)∈G

|EdG(i)|
k∑

	=1

[σ2(k−1)(σ2 − σ2
u�v�

)]

≤ σ2(k−1)

mnps

∑
G(i)∈G

|EdG(i)|
k∑

	=1

∑
v�

(σ2 − σ2
u�v�

)

≤
k∑

	=1

Kσ2(k−1)

mn

∑
v�

∑
u�

(σ2 − σ2
u�v�

) → 0,

from which (3.8) follows.
For a graph corresponding to a term in S3, we claim that each horizontal edge

(v1, v2) must coincide with a horizontal edge (v2, v1). In fact, suppose that (i	, i	+1)
is the first appearance of (v1, v2); i.e., i	 = v1, i	+1 = v2 and v2 is not in {i1, . . . , i	}.
We claim that j	 is not in {j1, . . . , j	−1}. Otherwise, assuming j	 is coincident with
ja with a < �, then because of (3.1) and the definition of i	+1, ia, ia+1, and i	+1

are three noncoincident i-vertices so that (ia, ja), (ja, ia+1), and (j	, i	+1) are three
noncoincident vertical edges. It follows that there are at least three noncoincident
vertical edges connected with the noncoincident j-vertex which contains ja, j	. This
obviously violates the assumption k = 2s. As a consequence of the assertion, both
of the two vertical edges (i	, j) and (j	, i	+1) are single up to the vertex i	+1. In
the future development of the graph, there must be one down edge (iν , jν) coincident
with the single upedge (j	, i	+1); that is, iν = i	+1 = v2 and jν = j	. Then the next
up edge (jν , iν+1) must coincide with (i	, j) since, otherwise, the vertex jν = j	 will
be connected with at least three noncoincident vertical edges. Thus iν+1 = i	 = v1,
and so the horizontal edge (i	, i	+1) = (v1, v2) coincides with the horizontal edge

490 Z. D. BAI AND L. X. ZHANG

(iν , iν+1) = (v2, v1) (see Figure 3.2). In view of the total number of noncoincident
i-vertices contained in G(i) is r = s+1, we conclude that the noncoincident horizontal
edges of G(i) form a tree of s edges, each edge consisting of exactly two horizontal
edges of converse directions.

It follows that

EdG(i) =

s∏
	=1

pa�,b� ,

where (a	, b), 1 ≤ � ≤ s, denote the edges of the tree of noncoincident horizontal
edges. By (3.8) and condition (D2), we have

1

m(np)s

∑
G(i,j)∈G

EdG(i)EXG(i,j)

=
σ2k

mps

∑
G(i)∈G

s∏
	=1

pa�,b� + o(1)

= σ2k + o(1).

Therefore, to evaluate EMk, what remains is to count the number of isomorphic
classes in G(2s, s + 1, s, 1). Note that for the graphs defined earlier, one only needs
to arrange the vertical edges, since the positions of the horizontal edges will then
be automatically determined by the positions of the i-vertices. When one draws the
graph edge by edge, starting from i1, an edge is called an innovation if it is the first
appearance of a noncoincident edge and called a Type 3 edge otherwise. As we have
shown in the previous paragraph, for a graph corresponding to a term in S3, a down
innovation must be followed by an up innovation, and a down edge of Type 3 must
be followed by an up edge of Type 3. Thus, we only need to arrange the s down
innovations and the s down edges of Type 3. Define a	 = 1 if the �th down edge is
an innovation and = −1 otherwise. Before any Type 3 edge, there must be a single
innovation. That is, for every � ≤ k, we should have

a1 + · · · + a	 ≥ 0.

Thus, the number of isomorphic classes in G(2s, s+1, s, 1) is the number of sequences
of s ones and s minus ones subject to the nonnegative partial sum requirement. By
the reflection theorem, it is easy to show the number of such sequences is(

2s

s

)
−

(
2s

s− 1

)
=

(2s)!

s!(s + 1)!
.

Conclusion (I) on page 11 is proved.

Proof of (II) on page 11. Since Mk is real, we consider

E(Mk − EMk)
4

=
1

m4n2kp2k

∑
i�,j�

1≤�≤4

E

(
4∏

	=1

[dG(i�)
XG(i�,j�) − EdG(i�)

EXG(i�,j�)]

)
,

where G(i	, j) is the graph defined by (i	, j) in the way given in the proof of (I) on
page 11.

SEMICIRCLE LAW FOR HADAMARD PRODUCTS 491

If G(i	, j) has no edges coincident with edges of the other three, then the corre-
sponding term in the summation is 0 by independence. Furthermore, the term is also
0 if

⋃4
	=1 G(i	, j) contains a single vertical edge. Hence we need to consider only the

following two cases:
(1) The four graphs are connected together through edges.

(2)
⋃4

	=1 G(i	, j) consists of two separated pieces, each of which is composed of
two graphs connected together.
Split E|Mk −EMk|4 = SI + SII according to the two cases. Denote the collection of
graphs in case (1) by C1 and similar to the notation C2.

In case (1), the graph G =
⋃4

	=1 G(i	, j) has a connected roof. Let r, s, and
l be, respectively, the numbers of noncoincident i-vertices, noncoincident j-vertices,
and noncoincident vertical edges contained in G. Similarly, we can define the number
q. Then, similar to the estimation of EMk, under the assumptions of Proposition 3.1,
we have

|SI | ≤
16

m4n2kp2k

∑
G∈C1

E

(
4∏

	=1

|dG(i�)
||XG(i�,j�)|

)

≤ K

m4n2kp2k

∑
r,s,l,q

m1+δ(q−1)pr−1−δ(q−1)(ηn 4
√
np)(8k−2l)ns

≤ Km−3
∑
r,s,l,q

η8k−2l
n (m/n)δ(q−1)(p/n)

l
2−s−δ(q−1)pr+s−l−1

= O(m−3),

where we have used Proposition 3.2 and the facts l ≤ 4k, r+s ≤ l+1, and l−2s ≥ q−1.
To estimate SII , one only needs to note that for each piece of the roof subgraph,

there is one factor m obtained and so totally there is one more factor m obtained.
Thus under the assumptions of Proposition 3.1, one gets that

SII = O(m−2).

Combining the above gives (II) on page 11. Consequently, we have completed the
proof of Proposition 3.1 and Theorem 1.1.

Remark 3.1. Using the same approach as we prove (II) on page 11, one can easily
show that

E|Mk − EMk|2μ = O(m−μ),(3.9)

for any fixed integer μ. This result will be useful when the almost sure convergence
is considered for n → ∞.

At the end, we present two examples. The first example is to show, when condition
(D3.1) is assumed for δ = 1/2, to ensure the convergence of the semicircle law of FAp ,
it is necessary to require m/n → 0.

Example 3.1. Let Dm = [dij] consist of dii = 0 and dij =
√

p/m for i �= j. Let
Xm,n = [xij] consist of i.i.d. standard normal random variables. Now assume m/n →
c > 0 and p/n → 0. Then conditions (D2), (D3.1), and (D3.2) hold. Specifically, 1/2
is the smallest parameter in [0, 1/2] such that condition (D3.1) is satisfied by Ap.

Consider the kth moment of FAp . Using the definitions we gave in proving Propo-
sition 3.1, for any isomorphic class G whose canonical graph possesses r noncoinci-
dent i-vertices and s noncoincident j-vertices and does not contain loops of horizontal

492 Z. D. BAI AND L. X. ZHANG

edges, we have

SG =
1

mnk/2pk/2

∑
G(i,j)∈G

EdG(i)EXG(i,j)

= KGm
−1n−k/2p−k/2(p/m)k/2mrns + o(1)

= KGm
r+s−k−1(n/m)s−k/2 + o(1),

where KG = EXG(i,j). It is easy to see that

SG →
{

0 if r + s < k + 1,

KGc
k/2−s if r + s = k + 1.

Note that when r+s = k+1, since r+s ≤ l+1, where l is the number of noncoincident
vertical edges contained in the canonical graph of G, it follows that l ≥ k. If l > k,
then there must exist a single vertical edge and hence KG = 0. Otherwise, l = k; then
every noncoincident vertical edge is composed of exactly two vertical edges of opposite
directions and hence KG = 1. Therefore, noticing the restriction that, since there are
no loops of horizontal edges, every noncoincident j-vertex must be connected with at
least two noncoincident vertical edges, we get

EMk → mk =

[k2]∑
s=1

ck/2−sμs,

where μs is the number of isomorphic classes whose canonical graphs satisfy the
following condition:

(1) Each canonical graph contains exactly s noncoincident j-vertices and (k+1−s)
noncoincident i-vertices.

(2) Each canonical graph contains exactly k noncoincident vertical edges, each of
which consists of two edges, of opposite directions.

(3) Each canonical graph possesses the property that, supposing one person starts
a walk along its edges, then whenever a down edge leads to a new noncoincident j-
vertex the next up edge must lead to a new i-vertex.

To estimate the limit mk, let us observe further that(m
n

)k/2

× EMk

= m−1n−k
res∑

i1,... ,ik

∑
j1,... ,jk

E(xi1j1xi2j1xi2j2xi3,j2 · · ·xikjkxi1jk),(3.10)

≤ Em−1tr

(
1

n
Xm,nX

∗
m,n

)k

,(3.11)

where the summation
∑res

i1,... ,ik
is taken over all possible values of i1, . . . , ik satisfying

the restriction that i1 �= i2, i2 �= i3, . . . , ik �= i1. Thus it follows, by Theorem 2.5 of
Bai [1], that ck/2mk is bounded by the kth moment of the Marcěnko–Pastur law with
ratio index c and scale index 1. Thus {mk}∞k=1 satisfies the Carleman condition.1

1Note that there is a one-to-one correspondence between G and its base and that the base of G
must be a canonical graph defined in deriving the Marcěnko–Pastur law. Thus, we indeed have

μs ≤ 1

k + 1 − s

(k
s

)(k − 1

s− 1

)
.

SEMICIRCLE LAW FOR HADAMARD PRODUCTS 493

Using (3.10), one can easily show that

E(Mk − EMk)
2μ = O(m−2μ).

Therefore, with probability one, FAp converges to a nonrandom limiting distribution,
say F . It is easy to verify that when k = 3, we have s = 1 and r = 3 so that
i1 �= i2 �= i3 and j1 = j2 = j3; i.e., there is exactly one contributing isomorphic class
G. Thus,

m3 =
√
c.

Since the third moment of F is not 0, F is not the semicircle law. That is, we
have shown with probability one that FAp converges weakly but the limiting spectral
distribution is not the semicircle law.

The next example is to show for the case when condition (D3.1) is assumed for
δ ∈ (0, 1/2) that the condition m/n is bounded and also necessary for the convergence
to the semicircle law.

Example 3.2. Let Dm = [dij] be defined as in Example 3.1. We assume the

same conditions m/n → c > 0 and p/n → 0. Now we define D̃h = Dm ⊗ Ih and
B̃h = 1√

np (Xmh,nX
∗
mh,n − σ2nImh), where “⊗” denotes the Kronecker product of

matrices, h = [mη] with η > 0, and Xmh,n is mh × n consisting of i.i.d. standard
normal random variables.

Let Ãp = B̃h ◦ D̃h. Then Ãp = diag[A1,m, . . . , Ah,m], where

Ai,m = Bii ◦Dm, i = 1, . . . , h,

and Bii is the ith m×m major submatrix of B̃h.
Note that A1,m, . . . , Ah,m are independent with the same distribution as Ap de-

fined in Example 3.1. Denote by M̃k, Mi,k, and Mk, respectively, the kth moment of

Ãp, the kth moment of Ai,m, and the kth moment of Ap. Then it follows that EMi,k =

EMk and E(Mi,k−EMi,k)
2μ = E(Mk−EMk)

2μ. Since F Ãp = 1
h

∑h
i=1 F

Ai,m so that

M̃k = 1
h

∑h
i=1 Mi,k, we get EM̃k = EMk and E(M̃k − EM̃k)

2μ ≤ E(Mk − EMk)
2μ.

By the results we proved in Example 3.1, it follows with probability one that F Ãp

converges weakly but the limiting spectral distribution is not the semicircle law.
Let us now check the validity of the assumptions of Theorem 1.1 for Ãp. Condi-

tions (D1), (D2), and (D3.2) hold for Ãp automatically by definition. We now show
that for any δ ∈ (0, 1/2) by choosing η > 0 such that 2δ(1 + η) = 1, condition (D3.1)
is satisfied by Ãp for the given δ. To see this, note that the dimension of Ãp is mh,
and so we have∑

i

Edij ≤
√
mp ≤

√
m

(mh)δ
(mh)δp1−δ ≤ C1(mh)δp1−δ.

By requiring p = O(logm), we can further see for any δ0 < δ that(∑
i

Edij

)
/
(
(mh)δ0p1−δ0

)
≥ 1

2
m

1
2 (1−δ0/δ)pδ0−

1
2 → ∞,

which confirms that δ is the smallest parameter in (0, 1/2) such that condition (D3.1)
is satisfied by Ãp. Noticing that mh/n → ∞, we see that Ãp satisfies all assumptions

494 Z. D. BAI AND L. X. ZHANG

of Theorem 1.1 except only the condition that in case of δ ∈ (0, 1/2) the ratio between
the vector dimension and the sample size should be bounded. We achieved our target.

REFERENCES

[1] Z. D. Bai, Methodologies in spectral analysis of large dimensional random matrices, A review,
Statist. Sinica, 9 (1999), pp. 611–677.

[2] Z. D. Bai and J. W. Silverstein, No eigenvalues outside the support of the limiting spectral
distribution of large dimensional sample covariance matrices, Ann. Probab., 26 (1998),
pp. 316–345.

[3] Z. D. Bai and J. W. Silverstein, Exact separation of eigenvalues of large-dimensional sample
covariance matrices, Ann. Probab., 27 (1999), pp. 1536–1555.

[4] Z. D. Bai and Y. Q. Yin, Convergence to the semicircle law, Ann. Probab., 16 (1988), pp. 863–
875.

[5] Z. D. Bai and Y. Q. Yin, Necessary and sufficient conditions for almost sure convergence of
the largest eigenvalue of a Wigner matrix, Ann. Probab., 16 (1988), pp. 1729–1741.

[6] Z. D. Bai and Y. Q. Yin, Limit of the smallest eigenvalue of a large dimensional sample
covariance matrix, Ann. Probab., 21 (1993), pp. 1275–1294.

[7] R. P. Barry and R. K. Pace, Monte Carlo estimates of the log determinant of large sparse ma-
trices, in Linear Algebra and Statistics, Istanbul, 1997, Linear Algebra Appl. 289, North–
Holland, New York, 1999, pp. 41–54.

[8] M. P. Bekakos and A. A. Bartzi, Sparse matrix and network minimization schemes, in
Computational Methods and Neural Networks, Dynamic, Atlanta, GA, 1999, pp. 61–94.

[9] D. Boley and T. Goehring, LQ-Schur projection on large sparse matrix equations, in Precon-
ditioning Techniques for Large Sparse Matrix Problems in Industrial Applications, Min-
neapolis, MN, 1999, Numer. Linear Algebra Appl. 7, John Wiley and Sons, Chichester,
UK, 2000, pp. 491–503.

[10] E. F. F. Botta and F. W. Wubs, Matrix renumbering ILU: An effective algebraic multilevel
ILU preconditioner for sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 1007–
1026.

[11] G. M. Del Corso and F. Romani, Heuristic spectral techniques for the reduction of bandwidth
and work-bound of sparse matrices, in memory of W. Gross., Numer. Algorithms, 28 (2001),
pp. 117–136.

[12] U. Grenander and J. W. Silverstein, Spectral analysis of networks with random topologies,
SIAM J. Appl. Math., 32 (1977), pp. 499–519.

[13] A. Gupta, Improved symbolic and numerical factorization algorithms for unsymmetric sparse
matrices, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 529–552.

[14] A. Khorunzhy and G. J. Rodgers, Eigenvalue distribution of large dilute random matrices,
J. Math. Phys., 38 (1997), pp. 3300–3320.

[15] A. Khorunzhy and G. J. Rodgers, On the Wigner law in dilute random matrices, Rep. Math.
Phys., 42 (1998), pp. 297–319.

[16] Y. Lin, Graph extensions and some optimization problems in sparse matrix computations, Adv.
Math. (China), 30 (2001), pp. 9–21.

[17] V. A. Marcěnko and L. A. Pastur, Distribution for some sets of random matrices, Math.
USSR-Sb., 1 (1967), pp. 457–483.

[18] R. Marti, M. Laguna, F. Glover, and V. Campos, Reducing the bandwidth of a sparse matrix
with tabu search, Financial modelling, European J. Oper. Res., 135 (2001), pp. 450–459.

[19] B. J. McKenzie and T. Bell, Compression of sparse matrices by blocked Rice coding, IEEE
Trans. Inform. Theory, 47 (2001), pp. 1223–1230.

[20] J.-M. Naulin, A contribution of sparse matrices tools to matrix population model analysis, in
Deterministic and Stochastic Modeling of Biointeraction, West Lafayette, IN, 2000, Math.
Biosci., 177/178 (2002), pp. 25–38.

[21] N. Neuss, A new sparse-matrix storage method for adaptively solving large systems of reaction-
diffusion-transport equations, Computing, 68 (2002), pp. 19–36.

[22] D. A. Stariolo, E. M. F. Curado, and F. A. Tamarit, Distributions of eigenvalues of
ensembles of asymmetrically diluted Hopfield matrices, J. Phys. A., 29 (1996), pp. 4733–
4739.

[23] P. S. Vassilevski, Sparse matrix element topology with application to AMG(e) and precon-
ditioning, in Preconditioned Robust Iterative Solution Methods, PRISM ’01 (Nijmegen),
Numer. Linear Algebra Appl. 9, John Wiley and Sons, Chichester, UK, 2002, pp. 429–444.

[24] K. Wang and J. Zhang, MSP: A class of parallel multistep successive sparse approximate

SEMICIRCLE LAW FOR HADAMARD PRODUCTS 495

inverse preconditioning strategies, SIAM J. Sci. Comput., 24 (2003), pp. 1141–1156.
[25] E. P. Wigner, On the distributions of the roots of certain symmetric matrices, Ann. of Math.

(2), 67 (1958), pp. 325–327.
[26] M. Y. Xia, C. H. Chan, S. Q. Li, B. Zhang, and L. Tsang, An efficient algorithm for elec-

tromagnetic scattering from rough surfaces using a single integral equation and multilevel
sparse-matrix canonical-grid method, IEEE Trans. Antennas and Propagation, 51 (2003),
pp. 1142–1149.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 496–529

LOW RANK PERTURBATION OF KRONECKER STRUCTURES
WITHOUT FULL RANK∗

FERNANDO DE TERÁN† AND FROILÁN M. DOPICO†

Abstract. Let P (λ) = A0 + λA1 be a singular m × n matrix pencil without full rank whose
Kronecker canonical form (KCF) is given. Let ρ be a positive integer such that ρ ≤ min{m,n} −
rank(P) and ρ ≤ rank(P). We study the change of the KCF of P (λ) due to perturbation pencils
Q(λ) with rank(Q) = ρ. We focus on the generic behavior of the KCF of (P + Q)(λ), i.e., the
behavior appearing for perturbations Q(λ) in a dense open subset of the pencils with rank ρ. The
most remarkable generic properties of the KCF of the perturbed pencil (P + Q)(λ) are (i) if λ0

is an eigenvalue of P (λ), finite or infinite, then λ0 is an eigenvalue of (P + Q)(λ); (ii) if λ0 is an
eigenvalue of P (λ), then the number of Jordan blocks associated with λ0 in the KCF of (P + Q)(λ)
is equal to or greater than the number of Jordan blocks associated with λ0 in the KCF of P (λ);
(iii) if λ0 is an eigenvalue of P (λ), then the dimensions of the Jordan blocks associated with λ0 in
(P + Q)(λ) are equal to or greater than the dimensions of the Jordan blocks associated with λ0 in
P (λ); (iv) the row (column) minimal indices of (P + Q)(λ) are equal to or greater than the largest
row (column) minimal indices of P (λ). Moreover, if the sum of the row (column) minimal indices
of the perturbations Q(λ) is known, apart from their rank, then the whole set of the row (column)
minimal indices of (P +Q)(λ) is generically obtained, and in the case ρ < min{m,n} − rank(P) the
whole KCF of (P + Q)(λ) is generically determined.

Key words. Kronecker canonical form, low rank perturbations, matrix spectral perturbation
theory, mosaic Toeplitz matrices

AMS subject classifications. 15A21, 15A22, 15A18, 65F15

DOI. 10.1137/060659922

1. Introduction. Matrix spectral canonical forms are very important both in
theory and in applications like the behavior of dynamical systems near bifurcations.
Spectral canonical forms are mathematical structures that are very fragile under per-
turbations. For instance, it is well known that, although the Jordan canonical form of
a matrix A has blocks of dimension larger than one, all the blocks in the Jordan form
of the perturbed matrix A + E have dimension one and correspond to eigenvalues
different from those of A, for almost all perturbations E. The same can be said on
the behavior of the Weierstrass canonical form of a regular matrix pencil A0 + λA1,
and on the Kronecker canonical form (KCF) of singular matrix pencils. In this latter
case, in fact, the perturbed pencil has full rank for almost all perturbations. How-
ever, there are perturbations that allow us to guarantee that some part of the spectral
canonical form of the original pencil is also a part of the spectral canonical form of the
perturbed pencil. One example of perturbations of this kind is low rank perturbations,
i.e., perturbations with a fixed rank that is small in some way specified by a property
of the unperturbed matrix or pencil.

Low rank perturbations of spectral canonical forms have received attention since
the 1980s. At least two kinds of contributions can be considered in this area. Given an

∗Received by the editors May 15, 2006; accepted for publication (in revised form) by I. C. F. Ipsen
October 19, 2006; published electronically April 10, 2007. This research was partially supported by
the Ministerio de Educación y Ciencia of Spain through grants BFM-2003-00223 and MTM2006-
06671, and by the PRICIT Program of the Comunidad de Madrid through the SIMUMAT Project
(Ref. S-0505/ESP/0158).

http://www.siam.org/journals/simax/29-2/65992.html
†Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911

Leganés, Spain (fteran@math.uc3m.es, dopico@math.uc3m.es).

496

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 497

m×n pencil (or matrix) P (λ) and perturbations Q(λ) with fixed rank, the first class
of works tries to classify all the spectral canonical forms of (P + Q)(λ) compatible
with the canonical form of P (λ) and the rank of the perturbations Q(λ). As far as
we know, this has only been done for rank one perturbations; see [1] and [18] in this
context. A second class of papers in this area characterizes generic properties of the
spectral canonical form of (P + Q)(λ), i.e., properties that hold for perturbations in
a dense open subset of the matrices or pencils with a fixed rank; for this problem,
see the references [4, 10, 13, 16, 17]. Generic properties have been considered only
for the Jordan canonical form of matrices and for the Weierstrass canonical form of
regular matrix pencils, and the study of explicit necessary and sufficient conditions for
the generic behaviors to hold has been performed only in [4, 13]. The purpose of this
paper is to determine generic properties of the KCF of singular matrix pencils without
full rank under certain low rank perturbations, and to provide sufficient conditions
for these properties to hold.

Throughout this work the term generic will frequently be used. This word appears
in many mathematical works, but it is not a well-defined technical term, and its precise
meaning is not always the same in the literature. In this paper, we use generic in
the following sense: a property is said to be generic in a set C if it holds in a dense
open subset of C. In our context, C will be the set of allowable perturbations, and we
identify the set of m × n complex matrix pencils, A0 + λA1, with C

2mn, where the
usual topology is considered. Therefore every subset C of pencils can be seen as a
subset of C

2mn. In this setting, we have that a set G ⊂ C is dense in C if and only if
every element in C is the limit of a sequence of elements in G, and we will say that G
is open in C if G is the intersection of C with an open subset of C

2mn; i.e., we consider
in C the subspace topology induced by the usual topology of C

2mn. To finish these
comments on the term generic, let us remark that it will not be used in the statement
of most theorems, where precise assumptions will be included. Discussions on the
genericity of these assumptions will be separately addressed.

We will consider as unperturbed pencil a singular m × n matrix pencil P (λ)
without full rank, i.e., rank(P) < min{m,n}. Given an integer number ρ such that

0 < ρ ≤ min{m,n} − rank(P),(1)

and ρ ≤ rank(P), the set of perturbations is restricted to pencils Q(λ) with rank(Q) =
ρ. Notice that (1) and ρ ≤ rank(P) are both low rank conditions imposed on the
perturbations. Here, the rank has to be understood as the rank of matrix polynomials,
which is also known as the normal rank of a pencil.

For the set of perturbations defined in the previous paragraph the first problem
we deal with is to get information on the generic regular part of the perturbed pencil
(P +Q)(λ). This is addressed in section 4, where it is proved that, generically, if λ0 is
an eigenvalue of P (λ), finite or infinite, then λ0 is also an eigenvalue of (P+Q)(λ) with
partial multiplicities greater than or equal to the corresponding partial multiplicities
of λ0 relative to P (λ). These results are consequences of Theorem 4.4, which is our
first major contribution. The second problem we deal with is to get information on
the generic minimal indices of (P + Q)(λ). For the sake of brevity, let us summarize
the results only for the column or right minimal indices. Similar results hold for
the row minimal indices. It is known that the number of column minimal indices
of P (λ) is n − rank(P). The initial result we present is that, generically, P + Q
has n − rank(P) − ρ column minimal indices. This implies, in particular, that if
ρ = n− rank(P), then P + Q has no column minimal indices; i.e., it has full column

498 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

rank. These results follow from Theorem 3.1 and its direct consequence, Corollary
3.2. The case ρ < n− rank(P) is much more difficult, and it is addressed in Theorem
5.8, where all the column minimal indices of P + Q are generically determined if,
apart from the rank, the sum of the column minimal indices of the perturbations
Q(λ) is known. As a corollary, Theorem 5.10 presents generic partial information
on the column minimal indices of P + Q when ρ = rank(Q) is the only property
known on the perturbations. Loosely speaking, one can say that the generic column
minimal indices of P + Q are equal to or greater than the n − rank(P) − ρ largest
column minimal indices of P . Theorems 5.8 and 5.10 constitute our second major
contribution. All the results previously described remain valid in the limit case

ρ = min{m,n} − rank(P).

If the strict inequality is assumed in (1), i.e., rank(P) + rank(Q) < min{m,n}, it is
possible to fully determine the generic KCF of (P + Q)(λ) in terms of the sums of
the column and row minimal indices and of the regular part of the KCF of Q(λ).
In the case that rank(Q) is the only information available on the perturbations, the
generic KCF of (P + Q)(λ) can only be partially determined. These results appear
in Theorems 6.2 and 6.3, which are our last major contribution. It should be stressed
that all the generic results on the KCF of (P +Q)(λ) that we present are very easy to
describe, although to prove that they occur under certain generic sufficient conditions
is a hard task that requires techniques very different from those used in [4, 13].

The class of low rank perturbations considered in this work includes very interest-
ing problems. To cite one of them: the study of the generic variation of the minimal
indices of a square pencil (m = n) under low rank perturbations requires necessarily
the assumptions rank(P) < n (because otherwise P (λ) has no minimal indices) and
rank(P) + rank(Q) < n (because otherwise generically rank(P + Q) = n and P + Q
has no minimal indices). However, this class of perturbations does not cover all the
relevant situations. There are still open problems in the area of generic low rank
perturbations of spectral canonical forms. Some of them will be discussed in section
7, where we will explain why the results obtained in this paper are, apart from being
relevant by themselves, an essential step towards the solution of new open problems.

The perturbations considered in this work are not of small norm. The change of
KCF of matrix pencils under small normwise perturbations was studied in [14], where
the set of Kronecker structures nearby to a given one was characterized in terms of
some majorization conditions on the sequences of column and row minimal indices
and on the regular structure. Further results of this kind were obtained in [2] and [5].

Low rank perturbations of spectral properties have appeared in several applied
problems. For instance, in the area of structural modifications of dynamical systems,
it is of particular relevance to study how a system must be modified in order to fix
certain eigenvalues in the new system. This is known generically as the “pole-zero
assignment” problem [15]. In [7], low rank perturbations of the damping matrices of
vibrating systems are considered in order to obtain defective systems.

The paper is organized as follows. In section 2 the notation and some prelim-
inary results are introduced. In section 3 the meaning and genericity of the low
rank assumptions used in different sections of this work are discussed, and, as a con-
sequence, the generic number of row and column minimal indices of the perturbed
pencil is determined. In section 4 generic properties of the regular structure of the
perturbed pencil (P +Q)(λ) are established. Section 5 deals with the minimal indices
of (P + Q)(λ). Section 6 describes the whole generic KCF of (P + Q)(λ), assuming

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 499

that the strict inequality ρ < min{m,n} − rank(P) holds. Finally, in section 7 the
conclusions and some open profblems are presented.

2. Notation, definitions, and preliminary results. Several basic definitions
and results are presented in this section. Some of them are well known and are stated
just to establish the notation used throughout the paper. In addition, some other
definitions and elementary results are presented.

2.1. Kronecker canonical form and rank of a pencil. We begin by intro-
ducing the concepts of singular pencil, rank or normal rank of a pencil, and eigenvalue
of a pencil.

Definition 2.1 (see [8, Chapter XII]). Let A0, A1 ∈ C
m×n be two complex m×n

matrices. The matrix pencil

P (λ) = A0 + λA1(2)

is called singular if one of the following conditions hold: m �= n, or m = n and
det(P (λ)) is the zero polynomial in the variable λ. Otherwise the pencil is called
regular.

Definition 2.2. The rank of the pencil P (λ) is the dimension of its largest minor
that is not equal to the zero polynomial in λ. For the sake of simplicity, we will simply
denote the rank of P (λ) by rank(P), omitting the variable λ.

The rank of a pencil is also called its normal rank [2, 5]. However, we prefer the
classical name rank, because this concept corresponds to the usual rank of matrices
whose entries are rational functions of λ.

Definition 2.3. A complex number μ is a finite eigenvalue of the pencil P (λ) if
the rank of the constant matrix P (μ) is less than rank(P). The pencil P (λ) = A0+λA1

has an infinite eigenvalue if zero is an eigenvalue of the dual pencil A1 + λA0.
For every pencil P (λ) there exist two nonsingular matrices R ∈ C

m×m and S ∈
C

n×n such that RP (λ)S = KP (λ) is the KCF of P (λ) (see [8, Chapter XII]). The
KCF is a block diagonal matrix and is unique up to permutations of the diagonal
blocks. To be more precise,

KP (λ) = diag(Lε1 , . . . , Lεp , L
T
η1
, . . . , LT

ηq
,JP),(3)

where Lεi is the εi × (εi + 1) matrix pencil

Lεi =

⎡⎢⎢⎢⎣
λ 1

λ 1
. . .

. . .

λ 1

⎤⎥⎥⎥⎦ ,

the superscript T means transposition, and JP is a square pencil that constitutes the
regular structure of the KCF of P (λ). The matrix pencil JP contains the spectral
information on the eigenvalues of P (λ). This means that JP is a direct sum of Jordan
blocks

Jk(λi) =

⎡⎢⎢⎢⎢⎣
λ− λi 1

λ− λi
. . .

. . . 1
λ− λi

⎤⎥⎥⎥⎥⎦
k×k

,

500 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

associated with certain finite eigenvalues λi ∈ C of P (λ), and, eventually, of Jordan
blocks associated with the infinite eigenvalue

Jk(∞) =

⎡⎢⎢⎢⎢⎣
1 λ

1
. . .

. . . λ
1

⎤⎥⎥⎥⎥⎦
k×k

.

The numbers ε1, . . . , εp are called the column (or right) minimal indices of P (λ),
and η1, . . . , ηq are called the row (or left) minimal indices of P (λ) [8, Chapter XII].
Notice that the row minimal indices of P (λ) are the column minimal indices of P (λ)T

and vice versa. We will assume that they are indexed in nondecreasing order, i.e.,

0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp and 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq.

Analogously the matrix pencils Lεi (LT
ηj

) are called the column or right (row or left)
singular blocks of the KCF of P (λ). These blocks reveal the singular structure of
P (λ).

Observe that, if the KCF of P (λ) is given by (3), then

rank(P) = n− p = m− q;(4)

i.e., the rank of a pencil is related to the number of column and row singular blocks
in its KCF. Notice also that if JP is a j × j pencil, then

rank(P) = j + ε1 + · · · + εp + η1 + · · · + ηq.(5)

2.2. The vector space of n-tuples of rational functions. Minimal bases.
The entries of an m × n pencil P (λ) = A0 + λA1 are polynomials of degree one
over C. Moreover, it is well known that the column (row) minimal indices of P (λ)
are related to the degrees of certain polynomial solutions of (A0 + λA1)x(λ) = 0
((A0 + λA1)

T y(λ) = 0) [8, Chapter XII], where x(λ) (y(λ)) is an n-tuple (m-tuple)
whose entries are polynomials. The vector x(λ) will be called a vector polynomial.
Previous comments make clear that vector polynomials can naturally arise in dealing
with singular pencils. The set of polynomials with complex coefficients is a ring but
not a field. This means that to extend many elementary ideas of linear algebra to
vector polynomials one has to consider the field of all rational functions with complex
coefficients. For instance, let v1 = [1 + λ, 1 + λ]T and v2 = [1 + λ2, 1 + λ2]T be
two vector polynomials. The determinant of the matrix [v1|v2] is obviously zero,
but a rational function has to be necessarily used as a coefficient to express v2 as a

linear combination of v1: v2 = 1+λ2

1+λ v1. The field of rational functions with complex
coefficients will be denoted by C(λ), and the vector space over C(λ) of the n-tuples of
rational functions will be denoted by C

n(λ).
The following definitions are taken from [6] (see also [11]). The degree, deg(x),

of a vector polynomial x(λ) is the greatest degree of its components. Every vector
subspace V of C

n(λ) always has a basis consisting of vector polynomials. It can be
obtained from a general basis simply by multiplying each vector by the denominators
of its entries. The order of such a polynomial basis is defined as the sum of the degrees
of its vectors. A minimal basis of V is a polynomial basis of V that has least order
among all polynomial bases of V.

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 501

Let us introduce some additional concepts that we will use very often. Given
an m × n matrix pencil P (λ) = A0 + λA1, the right (left) null space of P (λ) is the
subspace of C

n(λ) (Cm(λ)), N (P) = {x(λ) ∈ C
n(λ) : P (λ)x(λ) = 0} (N (PT) =

{y(λ) ∈ C
m(λ) : PT (λ)y(λ) = 0}). A right (left) null space vector of P (λ) is a

vector polynomial contained in N (P) (N (PT)). A right ordered minimal basis of P (λ)
(ROMB) is a minimal basis, {x1(λ), . . . , xp(λ)}, of N (P) with deg(x1)≤ deg(x2)≤
· · · ≤ deg(xp). A left ordered minimal basis of P (λ) (LOMB) is a minimal basis,
{y1(λ), . . . , yq(λ)}, of N (PT) with deg(y1)≤ deg(y2)≤ · · · ≤ deg(yq).

Lemma 2.4 shows that the degrees of the vectors in an ROMB (LOMB) of P (λ)
are equal to the column (row) minimal indices of P (λ).

Lemma 2.4. Let ε1 ≤ · · · ≤ εp and η1 ≤ · · · ≤ ηq be, respectively, the column and
row minimal indices of the pencil P (λ). Let {x1(λ), . . . , xp(λ)} and { y1(λ), . . . , yq(λ)}
be, respectively, an ROMB and an LOMB of P (λ). Then deg(xi) = εi, for i = 1, . . . , p,
and deg(yj)= ηj, for j = 1, . . . , q.

Proof. We prove the result for the column minimal indices. For the row minimal
indices simply use PT (λ) and invoke the result for column minimal indices. Let us
recall [8, Chapter XII, p. 38] the relationship between the column minimal indices
of P (λ) and the polynomial solutions of P (λ)x(λ) = 0. Among all the polynomial
solutions of this system of equations we choose a nonzero solution z1(λ) of least degree.
This degree is ε1. Among all the polynomial solutions that are linearly independent
of z1(λ) we take a solution z2(λ) of least degree. This degree is ε2. We continue
this process until we get a fundamental series of solutions {z1(λ), . . . , zp(λ)}, i.e.,
p = dimN (P) linearly independent polynomial solutions of P (λ)x(λ) = 0 of degrees
ε1 ≤ · · · ≤ εp. A fundamental series of solutions is not uniquely determined, but the
degrees of its vectors are, and, as we prove in the next paragraph, every fundamental
series of solutions is an ROMB and vice versa.

Let us assume that there exists some index j such that deg(xj) < εj . Let j0 be
the least of these indices, i.e., deg(xj0) < εj0 and deg(xk) ≥ εk for k = 1, . . . , j0 − 1.
Obviously j0 > 1. Therefore, εj0−1 ≤ deg(xj0−1) ≤ deg(xj0) < εj0 . The definition of
the minimal indices implies that the linearly independent vectors {x1(λ), . . . , xj0(λ)}
are linear combinations of {z1(λ), . . . , zj0−1(λ)}. This is impossible. Then deg(xj) ≥
εj for all j = 1, . . . , p, and, in fact, deg(xj) = εj for all j, because {x1(λ), . . . , xp(λ)}
is an ROMB.

We will also use the following related lemma.

Lemma 2.5. Let P (λ) be a pencil with KCF given by (3), and {x1(λ), . . . , xp(λ)}
be an ROMB of P (λ). Then every right null space vector of P (λ) of degree at most εi
is a linear combination of {x1(λ), . . . , xj(λ)} with polynomial coefficients, where j is
the largest index such that deg(xj) ≤ εi. In particular, every right null space vector
of P (λ) is a linear combination of {x1(λ), . . . , xp(λ)} with polynomial coefficients. A
similar result holds for left null space vectors and an LOMB.

Proof. The fact that every right null space vector is a linear combination of
the mentioned vectors is a straightforward consequence of the definition of minimal
indices. The fact that the coefficients are polynomials follows from [6, Main Theorem,
p. 495].

We will need to ascertain the linear independence of some sets of vector polyno-
mials of C

n(λ). In some situations, this problem can be solved through a standard
linear independence problem in C

n. This is shown by Lemma 2.6.

Lemma 2.6. Let {v1(λ), . . . , vr(λ)} be a set of vector polynomials of C
n(λ). Let

502 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

us express these vectors as

vi(λ) = vi0 + λ vi1 + · · · + λdi vidi for 1 ≤ i ≤ r,

where vij ∈ C
n for all i, j, and di = deg(vi(λ)).

1. If {v10, . . . , vr0} is a linearly independent set in C
n, then {v1(λ), . . . , vr(λ)}

is a linearly independent set in C
n(λ).

2. If {v1d1 , . . . , vrdr} is a linearly independent set in C
n, then {v1(λ), . . . , vr(λ)}

is a linearly independent set in C
n(λ).

Proof. To prove the first item, the linear combination

α1(λ) v1(λ) + · · · + αr(λ)vr(λ) = 0(6)

is considered, where αi(λ), 1 ≤ i ≤ r, can be chosen to be polynomials, because if
they were rational functions, one could multiply by their denominators. Let us express
these polynomials as

αi(λ) = αi0 + λαi1 + · · · + λti αiti for 1 ≤ i ≤ r,

where αij ∈ C for all i, j. Therefore, the coefficient vector of the term of degree zero
in (6) is

r∑
i=1

αi0vi0 = 0.

If {v10, . . . , vr0} is a linearly independent set in C
n, then α10 = α20 = · · · = αr0 = 0.

Thus, the coefficient vector of the term of degree one in (6) is
∑r

i=1 αi1vi0 = 0; this
implies α11 = α21 = · · · = αr1 = 0. A simple inductive argument completes the proof
of the first item. To prove the second item one simply begins with the coefficient of
the term with greatest degree, and performs downward the inductive step.

We finish this section with another technical result on the linear independence of
vector polynomials.

Lemma 2.7. Let {z1(λ), . . . , zk(λ)}, k < n, be a linearly independent set of vector
polynomials in C

n(λ) and {z′1(λ), . . . , z′l(λ)} be another set of vector polynomials in
C

n(λ) such that k + l ≤ n and rank[z1(λ)| . . . |zk(λ)|z′1(λ)| . . . |z′l(λ)] = k. Let us
denote by {u1, . . . , un} the canonical basis of C

n; i.e., the entries of these vectors
are (ui)j = δij. Then there exist l vectors of the canonical basis, uj1 , . . . , ujl , such
that {z1(λ), . . . , zk(λ), z′1(λ) + α1uj1 , . . . , z

′
l(λ) + αlujl} is a linearly independent set

in C
n(λ) for all nonzero complex numbers α1, . . . , αl.
Proof. There exists at least one uj1 such that {z1(λ), . . . , zk(λ), uj1} is linearly

independent because, otherwise, all the vectors in {u1, . . . , un} would be linear combi-
nations of {z1(λ), . . . , zk(λ)}. This is impossible because {u1, . . . , un} is also a basis of
C

n(λ) and k < n. This argument can be successively applied to prove that there exist
uj1 , . . . , ujl vectors of the canonical basis such that {z1(λ), . . . , zk(λ), uj1 , . . . , ujl}
is linearly independent. Thus {z1(λ), . . . , zk(λ), α1uj1 , . . . , αlujl} is linearly inde-
pendent for all nonzero complex numbers α1, . . . , αl. Notice that the assumption
rank[z1(λ)| . . . |zk(λ)|z′1(λ)| . . . |z′l(λ)] = k implies that the vectors z′i(λ) are linear com-
binations of {z1(λ), . . . , zk(λ)} with coefficients in C(λ). Therefore, elementary col-
umn operations can be used to transform the matrix [z1(λ)| . . . |zk(λ)|α1uj1 | . . . |αlujl]
into [z1(λ)| . . . |zk(λ)|z′1(λ) + α1uj1 | . . . |z′l(λ) + αlujl]. This does not change the rank
of the matrix, which proves the result.

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 503

2.3. Expansion of a pencil as sum of rank-one pencils. The expansion
presented in Lemma 2.8 will play a key role in this paper.

Lemma 2.8. Let Q(λ) be an m × n matrix pencil with rank ρ, and let ε̃ be the
sum of its column (or right) minimal indices. Then Q(λ) can be expressed in the form

Q(λ) = v1(λ)w1(λ)T + · · · + vρ(λ)wρ(λ)T ,(7)

where
(i) {v1(λ), . . . , vρ(λ)} is a linearly independent set of vector polynomials in

C
m(λ) with degrees at most one;

(ii) {w1(λ), . . . , wρ(λ)} is a linearly independent set of vector polynomials in
C

n(λ) with degrees at most one;
(iii) each summand vi(λ)wi(λ)T , 1 ≤ i ≤ ρ, is an m× n matrix pencil with rank

equal to one, i.e., vi(λ) and wi(λ) have both degree zero, or if one has degree one, the
other has degree zero;

(iv) there are ε̃ vectors among w1(λ), . . . , wρ(λ) with degree exactly one, and the
remaining vectors wi(λ) are of degree zero.

A decomposition (7) satisfying these conditions will be called a right decomposition
of Q(λ). Any other decomposition of Q(λ) as a sum of ρ rank-one matrix pencils
contains at least ε̃ vectors among w1(λ), . . . , wρ(λ) with degree exactly one.

Proof. The result is a direct consequence of the KCF. Let the KCF of Q be

KQ(λ) = diag(Lε̃1 , . . . , Lε̃h , L
T
η̃1
, . . . , LT

η̃l
,JQ),

where JQ is the regular structure of Q(λ) and there exist two nonsingular matrices, X
and Y , such that Q(λ) = XKQ(λ)Y . Now, notice that a block Lε̃i can be expanded
as a sum of ε̃i rank-one pencils,⎡⎢⎢⎢⎣

λ 1
λ 1

. . .
. . .

λ 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ [
λ 1 . . . 0

]
+ · · · +

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦ [
0 . . . λ 1

]
,

where the row (column) vectors have degree equal to one (zero). An expansion for a
block LT

η̃j
is obtained by transposition, but now the column (row) vectors have degree

equal to one (zero). For the Jordan blocks in JQ, corresponding to finite or infinite
eigenvalues, similar expansions with row vectors of degree zero are possible. All these
expansions can be combined with Q(λ) = XKQ(λ)Y to prove straightforwardly the
four items of the lemma.

Let us prove now the fact that any other decomposition of Q(λ) as a sum of
ρ rank-one matrix pencils contains at least ε̃ vectors among w1(λ), . . . , wρ(λ) with
degree exactly one. Notice that the set of solutions of Q(λ)x(λ) = 0 is equal to the set
of solutions of [w1(λ), . . . , wρ(λ)]Tx(λ) = 0, and therefore the column minimal indices
of the pencils Q(λ) and D0 + λD1 ≡ [w1(λ), . . . , wρ(λ)]T are equal. If there were less
than ε̃ vectors among w1(λ), . . . , wρ(λ) with degree exactly one, then rank (D1) < ε̃.
This implies that the matrix coefficient of λ in the KCF of [w1(λ), . . . , wρ(λ)]T has
also rank smaller than ε̃. This is in contradiction with ε̃ being the sum of its column
minimal indices.

Remark 1. A result similar to that in Lemma 2.8 can be obtained by considering
the sum of the row (or left) minimal indices, η̃ , of Q(λ) and choosing the column

504 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

vectors of the expansions of the Jordan blocks in JQ to be of degree zero. In this
case, we will consider a left decomposition of Q(λ):

Q(λ) = v̂1(λ)ŵ1(λ)T + · · · + v̂ρ(λ)ŵρ(λ)T ,(8)

where the vectors {v̂1(λ), . . . , v̂ρ(λ)} and {ŵ1(λ), . . . , ŵρ(λ)} have the properties ap-
pearing in items (i), (ii), and (iii) of Lemma 2.8, but (iv) is replaced by “there are η̃
vectors among {v̂i(λ), . . . , v̂ρ(λ)} with degree exactly one, and the remaining vectors
are of degree zero.” Notice that left and right decompositions are not unique. Besides,
a left decomposition of Q(λ) may not be simultaneously a right decomposition.

Example 1. Let us show right and left decompositions of a pencil with ε̃ = 1, η̃ =
0, and ρ = 2:⎡⎣ λ 1 0

0 0 0
0 0 λ

⎤⎦ =

⎡⎣ 1
0
0

⎤⎦ [
λ 1 0

]
+

⎡⎣ 0
0
λ

⎤⎦ [
0 0 1

]
,

⎡⎣ λ 1 0
0 0 0
0 0 λ

⎤⎦ =

⎡⎣ 1
0
0

⎤⎦ [
λ 1 0

]
+

⎡⎣ 0
0
1

⎤⎦ [
0 0 λ

]
.

2.4. Jordan blocks, invariant polynomials, elementary divisors, and
dual pencils. Given an arbitrary m × n complex matrix pencil P (λ) with rank
r, there exist two matrix polynomials U(λ) and V (λ) with dimensions m × m and
n× n, respectively, and nonzero constant determinants, such that

U(λ)P (λ)V (λ) = diag(h1(P), . . . , hr(P), 0, . . . , 0),(9)

where hi(P) are nonzero monic polynomials in λ satisfying hi(P)|hi+1(P); i.e., hi(P)
divides hi+1(P) for i = 1, . . . , r− 1 [8, Chapter VI]. These polynomials are called the
invariant polynomials (or factors) of P (λ), and the diagonal matrix in the right-hand
side of (9) is called the Smith canonical form of P (λ). This form is unique and, in
fact, exists for general matrix polynomials and not only for pencils. If each

hi(P) = (λ− λ1)
νi1 · · · · · (λ− λd)

νid for i = 1, . . . , r(10)

is decomposed in powers of different irreducible factors, then those factors among
(λ−λ1)

ν11 , . . . , (λ−λd)
ν1d , . . . , (λ−λ1)

νr1 , . . . , (λ−λd)
νrd with νij > 0 are called the

elementary divisors of P (λ). There exists a close relationship between the elementary
divisors and the dimensions of the Jordan blocks associated with the finite eigenvalues
in the regular structure of the KCF of the pencil P (λ). This is revealed by the following
result. It is a simple consequence of the theory developed in [8, Chapter VI].

Lemma 2.9. Let P (λ) be an m× n complex matrix pencil. For each elementary
divisor (λ−λj)

νij of P (λ) there exists a Jordan block of dimension νij associated with
a finite eigenvalue λj in the regular structure of the KCF of P (λ). Conversely, each
Jordan block of dimension νij associated with a finite eigenvalue λj in the KCF form
of P (λ) gives an elementary divisor (λ− λj)

νij .
The reader should notice that Lemma 2.9 gives no information for the infinite

eigenvalue of the pencil P (λ). This information can be obtained from the zero eigen-
value of the dual pencil through Lemma 2.10, whose trivial proof is omitted.

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 505

Lemma 2.10. Let A and B be two complex m× n matrices. The pencils A+ λB
and B+λA have the same column and row minimal indices. Besides, the number and
dimensions of the Jordan blocks corresponding to the infinite eigenvalue in the KCF
of A+λB are equal to the number and dimensions of the Jordan blocks corresponding
to the zero eigenvalue in the KCF of B + λA, and vice versa.

Given an eigenvalue λj of the pencil P (λ), the exponents 0 ≤ ν1j ≤ ν2j ≤ · · · ≤ νrj
in (10) are called the partial multiplicities of λj relative to P , and if a number μ is
not an eigenvalue of P (λ), then all its partial multiplicities relative to P are defined
as zero [9, p. 331]. Anyway, for any number λ0 its partial multiplicities relative
to P coincide with the dimensions of the Jordan blocks associated with λ0 in the
regular structure of the KCF of P (λ), whenever Jordan blocks of zero dimension
are admitted as nonexisting blocks. This also holds for the infinite eigenvalue. The
partial multiplicities of an eigenvalue λ0, finite or infinite, of P (λ) with g associated
Jordan blocks in the KCF are usually arranged in an infinite sequence called Segre
characteristic of λ0 relative to P (λ). This sequence is

SP (λ0) = (ng(λ0), ng−1(λ0), . . . , n1(λ0), 0, . . .),

where ng(λ0) ≥ ng−1(λ0) ≥ · · · ≥ n1(λ0) are the dimensions of the Jordan blocks
associated with λ0 in the KCF of P (λ). Notice that in the case when λ0 is not an
eigenvalue of P (λ), all the terms in SP (λ0) are equal to zero.

The concepts of partial multiplicities and Segre characteristics are also valid for
general matrix polynomials. The eigenvalues of a matrix polynomial can be defined as
the roots of its invariant polynomials. Given two matrix polynomials P (λ) and Q(λ),
we write

SP (λ0) ≥ SQ(λ0) if (SP (λ0))i ≥ (SQ(λ0))i for all i > 0;

i.e., the inequality holds for each entry in the Segre characteristics.

The Smith canonical form (9) allows us to express every matrix polynomial P (λ)
of rank r as

P (λ) = h1(P) a1(λ)zT1 (λ) + · · · + hr(P) ar(λ)zTr (λ),(11)

where h1(P), . . . , hr(P) are its invariant polynomials and ai(λ) and zi(λ) are vector
polynomials. Besides, according to (9), the vectors ai(λ) and zi(λ) are, respectively,
the columns of U−1(λ) and V −T (λ). This implies that neither ai(λ) nor zi(λ) can
be written as the product of a scalar polynomial of degree greater than zero times a
vector polynomial, because the matrices U−1(λ) and V −T (λ) are matrix polynomials
with constant nonzero determinants. Notice that in the case when P (λ) is a pencil the
expansion (11) is not an expansion of the type (7), in general, because the summands
hi(P) ai(λ)zTi (λ) have, in general, degree larger than one.

The KCF of the direct sum, P (λ) ⊕ Q(λ), of two pencils P (λ) and Q(λ) is the
direct sum of the KCFs of P (λ) and Q(λ), up to some permutations of the diagonal
blocks. Therefore, the Segre characteristic of λ0 relative to P (λ) ⊕ Q(λ) is obtained
simply by putting together the Segre characteristics of λ0 relative to P (λ) and to
Q(λ), and then reordering the resulting sequence. The same holds in the case when
P (λ)and Q(λ) are general matrix polynomials. This follows from [8, Chapter VI,
Theorem 5].

506 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

3. Low rank assumptions: Meaning and genericity. Throughout this work
we will deal with three m×n complex pencils: the fixed unperturbed pencil P (λ), the
perturbation pencil Q(λ), and the perturbed pencil (P +Q)(λ). The pencil P (λ) does
not have full rank, and its KCF will always be assumed to be known; it will be denoted
by (3). We will frequently omit the variable λ when there is no risk of confusion.

As announced in the Introduction, the set of perturbations we considered is the
set of pencils

C = {Q(λ) : rank(Q) = ρ} ,(12)

where ρ > 0 is an integer such that

rank(P) + ρ ≤ min{m,n}(13)

and ρ ≤ rank(P). These are the two low rank conditions imposed on the set of
perturbations. Notice also that ρ > 0, and (13) implies that rank(P) < min{m,n},
i.e., that P (λ) does not have full rank.

A key result in this work is that the property

rank(P + Q) = rank(P) + rank(Q)(14)

is generic in the set C. This is rigorously proved in Theorem 3.1 below. By combining
this result with the identity (4), one can say that, for perturbations in the set C, the
perturbed pencils (P +Q)(λ) have generically n−rank(P)−ρ column minimal indices
and m− rank(P) − ρ row minimal indices. See Corollary 3.2 below on this point.

Notice that, taking into account that P +Q is an m×n pencil, the condition (14)
implies rank(P) + rank(Q) ≤ min{m,n}, i.e., the assumption (13), and that P (λ)
does not have full rank for Q(λ) �= 0, i.e., for nontrivial perturbations. These facts
and the genericity of (14) in C lead us to impose rank(P +Q) = rank(P)+rank(Q) in
most of the lemmas and theorems we prove, without explicitly mentioning the initial
low rank condition (13).

Section 5 is devoted to studying the generic column minimal indices of (P+Q)(λ).
In section 5

rank(P + Q) = rank(P) + rank(Q) < n(15)

is assumed as a hypothesis in most of the results. Notice that (15) is implied by (14)
only if min{m,n} = m < n; otherwise (15) is an additional assumption. The reason
for assuming (15) in section 5 is that, according to (4), the number of column minimal
indices of P +Q is n− rank(P +Q), which is zero if rank(P +Q) = n. Therefore the
study of the generic column minimal indices of P +Q makes sense only if (15) holds.
In the case of the row minimal indices, m instead of n has to be used in (15).

Finally, let us comment on the additional low rank assumption,

ρ = rank(Q) ≤ rank(P).

This assumption is very natural for considering Q(λ) as a low rank perturbation of
P (λ), and it is essential to guarantee that other hypotheses used in the study of the
minimal indices of P +Q are really generic. This will be discussed in subsection 5.5.

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 507

3.1. Genericity of the assumption rank(P + Q) = rank(P) + rank(Q).
Number of minimal indices of P +Q. The purpose of this section is to present a
rigorous proof of the genericity of the most pervasive and crucial assumption in this
work. This assumption determines the generic number of row and column minimal
indices of the perturbed pencil (P + Q)(λ).

Theorem 3.1. Let P (λ) be an m× n complex matrix pencil and ρ be a positive
integer such that rank(P) + ρ ≤ min{m,n}. Then the set of m × n complex matrix
pencils

G = {Q(λ) m× n pencil : rank(Q) = ρ and rank(P + Q) = rank(P) + rank(Q)}

is dense and open in the set of m× n complex matrix pencils with rank ρ.
Proof. First, let us prove that G is dense in the set of pencils with rank ρ. Notice

that rank(P + E) ≤ rank(P) + rank(E) for every pencil E(λ). Therefore, we have to
prove that for every pencil E(λ) with rank ρ and rank(P + E) < rank(P) + rank(E)
there exists a sequence {Q(t)(λ)}∞t=1 ⊂ G whose limit is E(λ). Let r ≡ rank(P).
According to (7), we can write

P (λ) = v1(λ)w1(λ)T + · · · + vr(λ)wr(λ)T ,

E(λ) = a1(λ)b1(λ)T + · · · + aρ(λ)bρ(λ)T ,

and

(P + E)(λ) = [v1| . . . |vr|a1| . . . |aρ] [w1| . . . |wr|b1| . . . |bρ]T ,

where we have omitted some λ’s for simplicity. Elementary arguments show that
rank(P + E) < rank(P) + rank(E) = r + ρ if and only if rank [v1| . . . |vr|a1| . . . |aρ] <
r + ρ or rank [w1| . . . |wr|b1| . . . |bρ] < r + ρ. Suppose that rank [v1| . . . |vr|a1| . . . |aρ] <
r + ρ. This implies, due to the fact that the set {v1, . . . , vr} is linearly independent,
that

(i) rank [v1| . . . |vr|a1| . . . |aρ] = r + ρ̂ with 0 ≤ ρ̂ < ρ; and
(ii) the vectors a1, . . . , aρ can be reordered as ai1 , . . . , aiρ̂ , ak1

, . . . , akρ−ρ̂
, where

{v1, . . . , vr, ai1 , . . . , aiρ̂} is a linearly independent set.
Now, Lemma 2.7 is used to show that there exist ρ− ρ̂ vectors, uj1 , . . . , ujρ−ρ̂

, of
the canonical bases of C

m such that, for every t = 1, 2, . . . ,

rank

[
v1| . . . |vr|ai1 | . . . |aiρ̂ |ak1 +

1

t
uj1 | . . . |akρ−ρ̂

+
1

t
ujρ−ρ̂

]
= r + ρ.

Let {a(t)
1 , . . . , a

(t)
ρ } be the set of vectors that is obtained from {a1, . . . , aρ} by replacing

ak1 , . . . , akρ−ρ̂
by ak1 + 1

tuj1 , . . . , akρ−ρ̂
+ 1

tujρ−ρ̂
. If rank [w1| . . . |wr|b1| . . . |bρ] < r+ρ,

we proceed in a similar way to produce a set of vectors {b(t)1 , . . . , b
(t)
ρ }. Finally, let us

define the sequence of pencils

Q(t)(λ) = a
(t)
1 (λ)(b

(t)
1 (λ))T + · · · + a(t)

ρ (λ)(b(t)ρ (λ))T , t = 1, 2,

It is trivial to check that (i) limt→∞ Q(t)(λ) = E(λ); (ii) rank(Q(t)) = ρ for all t; and
(iii) rank(P + Q(t)) = rank(P) + rank(Q(t)) for all t. This proves that G is dense.

Now, we will prove that G is open in the set of matrix pencils with rank ρ. To this
purpose, let us proceed as follows: as explained in the Introduction, the set of m× n
complex matrix pencils is identified with C

2mn, and the set of matrix pencils with

508 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

rank ρ is a subset C of C
2mn. Thus G ⊂ C ⊂ C

2mn. We consider in C the subspace
topology induced by the usual topology of C

2mn, as we explained in the Introduction.
Therefore, for proving that G is open in C, it is sufficient to prove that every Q(λ) ∈ G
is included in an open subset XQ of C

2mn such that

rank(P + E) ≥ rank(P + Q) = rank(P) + rank(Q) for all E ∈ XQ.

The reason is that in this case the following hold:
1. XQ ∩ C is open in C; and
2. the fact that rank(P) + rank(Q) ≤ rank(P +E) ≤ rank(P) + rank(E) for all

E ∈ XQ implies that rank(P + E) = rank(P) + rank(E) for all E ∈ XQ ∩ C. This
means that XQ ∩ C ⊂ G and that Q is an interior point of G.

Let us see how XQ ⊂ C
2mn is constructed. Given Q ∈ G, the equation rank(P +

Q) = rank(P)+ρ ≡ r+ρ implies that the pencil (P+Q)(λ) has a (r+ρ)×(r+ρ) minor
that is a polynomial in λ with at least one nonzero coefficient. Let det(P +Q)(α, β) be
this minor, where the sets α ⊆ {1, . . . ,m} and β ⊆ {1, . . . , n} denote, respectively, the
rows and columns that define the minor. By identifying every pencil E(λ) = E0+λE1

with an element of C
2mn, the coefficients of det(P + E)(α, β) define a continuous

function f(E), f : C
2mn −→ C

r+ρ+1, because these coefficients are polynomials in
the entries of the complex matrices E0 and E1. Taking into account that f(Q) �= 0,
there exists an open ball, B, in C

r+ρ+1 whose center is f(Q) and such that 0 /∈ B.
Then we can take XQ = f−1(B), because it is open, f(E) �= 0 for all E ∈ XQ, and,
therefore, rank(P + E) ≥ r + ρ for all E ∈ XQ.

As a consequence of Theorem 3.1 and (4) the generic number of row and column
minimal indices of P + Q is determined.

Corollary 3.2. Let P (λ) be an m × n complex matrix pencil with p column
minimal indices and q row minimal indices, and ρ be a positive integer such that
rank(P) + ρ ≤ min{m,n}. Then the set of perturbations Q(λ) with rank(Q) = ρ and
such that P + Q has p− ρ column minimal indices and q − ρ row minimal indices is
dense and open in the set of m× n complex matrix pencils with rank ρ.

4. The regular structure of the perturbed pencil. In this section we get
information on the regular structure of the KCF of the perturbed pencil (P + Q)(λ)
in terms of the regular structures of P (λ) and Q(λ), i.e., JP and JQ. With only the
hypothesis rank(P + Q) = rank(P) + rank(Q), we prove that for every eigenvalue of
P or Q, the regular structure of P +Q has as least as many blocks as JP ⊕JQ, with
dimensions larger than or equal to the dimensions of the blocks in JP ⊕JQ. Besides,
other blocks may be present. This is presented in Theorem 4.4, and it is our first
major contribution. In section 6, we will see that the generic regular structure of
P + Q is precisely JP ⊕ JQ if rank(P + Q) = rank(P) + rank(Q) < min{m,n}.

In this section, the auxiliary lemma, Lemma 4.1, will be used. It appears without
proof in [12]. The proof is elementary.

Lemma 4.1 (see [12, p. 799]). If D = diag(z1, . . . , zk) and G is an arbitrary k×k
matrix, then

det (D + G) = detG +
∑

zν1
. . . zνj

· det Ğ(ν1, . . . , νj) ,

where the sum runs over all j ∈ {1, . . . , k} and all ν1, . . . , νj such that 1 ≤ ν1 < · · · <
νj ≤ k , and Ğ(ν1, . . . , νj) denotes the matrix obtained from G by deleting the rows

and columns with indices ν1, . . . , νj, with det Ğ(1, . . . , k) ≡ 1.
Lemma 4.2 extends [18, Theorem 1] under more stringent assumptions.

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 509

Lemma 4.2. Let L(λ) be an m× n matrix polynomial with rank equal to r, and
e1 ≤ · · · ≤ er be the partial multiplicities of λ0 relative to L(λ). Let M(λ) be a
rank-one matrix polynomial, and e be the partial multiplicity of λ0 relative to M(λ).
Let us assume that rank(L + M) = rank(L) + rank(M), and that ei < e ≤ ei+1 , for
some i ∈ {0, 1, . . . , r} , where we define e0 ≡ −1 and er+1 ≡ ∞ . Then, the partial
multiplicities f1 ≤ · · · ≤ fr+1 of λ0 relative to (L + M)(λ) satisfy

f1 = e1 , . . . , fi = ei, e ≤ fi+1, ei+1 ≤ fi+2 , . . . , er ≤ fr+1.

Remark 2. Notice that in Lemma 4.2 it is possible that e1 = · · · = er = 0 or that
e = 0; i.e., λ0 may not be an eigenvalue of L(λ) or of M(λ).

Proof of Lemma 4.2. Theorem 1 in [18] implies that

e1 ≤ f2 , e2 ≤ f3 , . . . , er ≤ fr+1.

So, we only need to prove that f1 = e1 , . . . , fi = ei , e ≤ fi+1. Let U(λ) and
V (λ) be the matrix polynomials, with nonzero constant determinants, that transform
L into its Smith normal form, i.e., U(λ)L(λ)V (λ) = diag((λ − λ0)

e1p1(λ), . . . , (λ −
λ0)

erpr(λ), 0, . . . , 0) , with the polynomials p1(λ), . . . , pr(λ) such that pj(λ0) �= 0 , for
j = 1, . . . , r. Invariant polynomials and partial multiplicities remain unchanged under
multiplication by U(λ) and V (λ); therefore we can focus on the partial multiplicities
of the matrix polynomial:

U(λ)(L + M)(λ)V (λ) = diag((λ− λ0)
e1p1(λ), . . . , (λ− λ0)

erpr(λ), 0, . . . , 0)(16)

+ (λ− λ0)
ex(λ)y(λ)T ,

where the second term of the right-hand side is U(λ)M(λ)V (λ) (see (11)).
In the case e0 < e ≤ e1, i.e., i = 0, the exponent of the factor (λ − λ0) of the

greatest common divisor of all 1× 1 minors in (16) is greater than or equal to e; thus
e ≤ f1 by the definition of invariant polynomials [8, Chapter VI, section 3], and the
result is proven. Let us assume from now on that i ≥ 1. In the rest of the proof, we
will prove that if ck, k = 1, . . . , r + 1, denotes the exponent of the factor (λ− λ0) of
the greatest common divisor of all k × k minors in (16), then

c1 = e1, c2 = e1 + e2 , . . . , ci = e1 + · · · + ei, ci+1 ≥ e1 + · · · + ei + e.(17)

This and the definition of invariant polynomials imply f1 = e1 , . . . , fi = ei , e ≤ fi+1.
The lowest power of (λ − λ0) in a 1 × 1 minor of (16) is easily seen to be e1, so

c1 = e1. For k ≥ 2, let us notice that all the nonzero k×k minors of (16) must contain
at least k− 1 of the (1, 1), . . . , (r, r) diagonal entries. Then, a nonzero k× k minor of
(16) must be of one of these two types:

(i)

det
(
diag((λ− λ0)

ei1pi1(λ), . . . , 0, . . . , (λ− λ0)
eik−1pik−1

(λ))

+ (λ− λ0)
e[x(λ)y(λ)T]k

)
,

(ii)

det
(
diag((λ− λ0)

ei1pi1(λ), . . . , (λ− λ0)
eik pik(λ)) + (λ− λ0)

e[x(λ)y(λ)T]k
)
,(18)

where [x(λ)y(λ)T]k is some k× k submatrix of x(λ)y(λ)T . If we apply Lemma 4.1 to
these minors, we see that

510 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

(i) every minor of type (i) may be written as

(λ− λ0)
e1+···+ek−1+e q(λ),(19)

where q(λ) is a polynomial;
(ii) every minor of type (ii) may be written as

(λ− λ0)
e1+···+ek−1+min{e,ek} t(λ),(20)

where t(λ) is a polynomial.
In the case k = i+ 1, these results directly imply that ci+1 ≥ e1 + · · ·+ ei + e. In

the case k ≤ i, (19) and (20) imply ck ≥ e1 + · · ·+ ek. Moreover, the equality follows
by taking i1 = 1, i2 = 2, . . . , ik = k, in (18) and applying Lemma 4.1.

Next we prove a corollary of Lemma 4.2.
Corollary 4.3. Let L(λ) and M(λ) be two m × n matrix polynomials such

that rank(M) = 1 and rank(L + M) = rank(L) + rank(M). Let h(M) be the unique
invariant polynomial of M(λ). Then

SL+M(λ0) ≥ SL⊕h(M)(λ0) = SL⊕M(λ0) for any complex number λ0.

Proof. Let us use the notation in Lemma 4.2 for the partial multiplicities of
λ0. The partial multiplicities of λ0 relative to L ⊕ h(M) are e1 ≤ · · · ≤ ei < e ≤
ei+1 ≤ · · · ≤ er, by Theorem 5 in [8, Chapter VI, p. 142]. These are also the partial
multiplicities of λ0 relative to L⊕M, by the same argument. Lemma 4.2 implies the
inequality SL+M(λ0) ≥ SL⊕h(M)(λ0).

Now we prove the main theorem in this section.
Theorem 4.4. Let P (λ) and Q(λ) be two m×n complex matrix pencils such that

rank(P +Q) = rank(P)+rank(Q). Then, for every complex number λ0, including the
infinite, SP+Q(λ0) ≥ SP⊕Q(λ0). This means, in particular, that if λ0 is an eigenvalue
of P (λ) or if λ0 is an eigenvalue of Q(λ), then λ0 is an eigenvalue of (P + Q)(λ).

Proof. We consider only finite numbers λ0. The result for the infinite eigenvalue
follows from considering the zero eigenvalue in the dual pencils of P (λ) and Q(λ).
According to (11), Q(λ) can be expressed as

Q(λ) = h1(Q) b1(λ)cT1 (λ) + · · · + hρ(Q) bρ(λ)cTρ (λ),

where ρ ≡ rank(Q) and where h1(Q), . . . , hρ(Q) are the invariant polynomials of Q(λ).
The property rank(P + Q) = rank(P) + rank(Q) implies that

rank(P + h1(Q) b1c
T
1 + · · · + hk(Q) bkc

T
k)(21)

= rank(P + h1(Q) b1c
T
1 + · · · + hk−1(Q) bk−1c

T
k−1) + rank(hk(Q) bkc

T
k),

for k = 1, . . . , ρ. We have omitted the variable λ for the sake of simplicity. Therefore,
Corollary 4.3 can be applied ρ times to prove

SP+Q(λ0) ≥ S(P+h1(Q)b1cT1 +···+hρ−1(Q)bρ−1cTρ−1)⊕hρ(Q)(λ0) ≥ · · ·
≥ SP⊕h1(Q)⊕···⊕hρ(Q)(λ0),

where we have used (A + B) ⊕ C = (A ⊕ C) + (B ⊕ 0). Finally, Theorem 5 in [8,
Chapter VI, p. 142] implies SP⊕h1(Q)⊕···⊕hρ(Q)(λ0) = SP⊕Q(λ0).

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 511

5. The minimal indices of the perturbed pencil. The purpose of this sec-
tion is to determine the minimal indices of the perturbed pencil (P +Q)(λ) in terms of
data of P (λ) and Q(λ). For the sake of brevity, we will develop the results only for the
column minimal indices. A set of counterpart results for the row minimal indices can
be obtained just by considering the column minimal indices of the transpose pencil
(P + Q)T (λ).

The main result in this section is Theorem 5.8, where the whole set of column
minimal indices of P +Q is found for most perturbations Q having a given rank and a
given sum of its column minimal indices. The genericity of the hypotheses of Theorem
5.8 is discussed in subsection 5.5. Theorem 5.10 presents some generic information
on the column minimal indices of P + Q when only the rank of the perturbation is
available.

According to Lemma 2.4, determining the column minimal indices of P + Q is
equivalent to finding the degrees of an ROMB of P + Q. This ROMB will not be
explicitly constructed, but the degrees of its vectors will be precisely determined.
Lemma 5.1 is the key result for this task. It allows us to delimit the search for this
basis.

Lemma 5.1. Let P (λ) and Q(λ) be two complex matrix pencils such that rank(P+
Q) = rank(P) + rank(Q). Then x(λ) is a right null space vector of P + Q if and
only if x(λ) is, simultaneously, a right null space vector of P (λ) and Q(λ), i.e.,
N (P + Q) = N (P) ∩N (Q).

Proof. Let col(P) be the column space of P (λ) in C
m(λ). Then,

dim(col(P+Q)) ≤ dim(col [P Q]) = dim(col(P))+dim(col(Q))−dim(col(P)∩col(Q)).

The assumption rank(P +Q) = rank(P)+rank(Q) implies that col(P)∩col(Q) = {0}.
If x(λ) is a right null space vector of P +Q, then P (λ)x(λ) = −Q(λ)x(λ). Notice that
the vector z(λ) ≡ P (λ)x(λ) = −Q(λ)x(λ) is a vector in col(P) ∩ col(Q), and thus
z(λ) = 0 and P (λ)x(λ) = Q(λ)x(λ) = 0. The converse is trivial.

We have already remarked in section 3 that if rank(P+Q) = rank(P)+rank(Q) =
n, then the pencil (P + Q)(λ) does not have column minimal indices. Therefore, in
the rest of this section, it will be assumed rank(P + Q) = rank(P) + rank(Q) < n.
This implies that rank(Q) < p, where p is the number of column minimal indices of
P .

5.1. Connection polynomials and associated mosaic Toeplitz matrices.
From Lemma 5.1, it is possible to obtain a more specific characterization of the right
null space vectors of P + Q.

Lemma 5.2. Let P (λ) and Q(λ) be two complex m × n matrix pencils such
that rank(P + Q) = rank(P) + rank(Q) < n, ε̃ be the sum of the column minimal
indices of Q(λ), and {x1(λ), . . . , xp(λ)} be an ROMB of P (λ). Let us consider a right
decomposition of Q(λ) given by (7), where the first ε̃ vectors in {w1(λ), . . . , wρ(λ)}
are assumed to be of degree one without loss of generality. Then, every right null
space vector of (P + Q)(λ) is a linear combination of the vectors {x1(λ), . . . , xp(λ)}
with polynomial coefficients. Moreover,

x(λ) = α1(λ)x1(λ) + · · · + αp(λ)xp(λ)(22)

512 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

is a right null space vector of (P+Q)(λ) if and only if the polynomials α1(λ), . . . , αp(λ)
satisfy the system of linear equations in C

p(λ),

a11(λ)α1(λ) + · · · + a1p(λ)αp(λ) = 0
...

...
...

aρ1(λ)α1(λ) + · · · + aρp(λ)αp(λ) = 0,

(23)

where

aij(λ) = wi(λ)Txj(λ), i = 1, . . . , ρ, j = 1, . . . , p.(24)

Proof. A vector polynomial, x(λ), is a right null space vector of P +Q if and only
if it is a right null space vector of P and Q, by Lemma 5.1. P (λ)x(λ) = 0 is equivalent
to the fact that x(λ) is a linear combination of {x1(λ), . . . , xp(λ)} with polynomial
coefficients, by Lemma 2.5. Q(λ)x(λ) = 0 is equivalent, taking into account (7), to
w1(λ)Tx(λ) = · · · = wρ(λ)Tx(λ) = 0, and this is the system of equations (23).

The system of equations (23) is of capital importance in this work, because the
set of its solutions allows us to obtain the right null space of P +Q through (22), and
we are looking for the degrees of an ROMB of N (P +Q). Thus, the coefficients aij(λ)
of the system (23) play an essential role. They are polynomials in λ and link the
pencils P and Q. They are used so often that we introduce the following definition.

Definition 5.3. A set of polynomials {aij(λ) : i = 1, . . . , ρ , j = 1, . . . , p} like
those appearing in (24) will be called a complete set of right connection polynomials
of P (λ) and Q(λ).

Since neither an ROMB of P nor a right decomposition (7) of Q is unique, a
complete set of right connection polynomials of P and Q is not necessarily unique.

Remark 3. A left decomposition (8) of Q(λ) and an LOMB {y1(λ), . . . , yq(λ)}
of P (λ) can be considered to define a complete set of left connection polynomials of
P (λ) and Q(λ). These are the polynomials

bij(λ) = v̂i(λ)T yj(λ), i = 1, . . . , ρ , j = 1, . . . , q.

These polynomials are needed to obtain the row minimal indices of (P + Q)(λ).
Let us denote by ε1 ≤ · · · ≤ εp the column minimal indices of the unperturbed

pencil P (λ), and by ε̃ the sum of the column minimal indices of the perturbation
pencil Q(λ), as in section 2. Then the degrees of the right connection polynomials of
P and Q are bounded as follows:

deg(aij(λ)) ≤
{

εj + 1, i = 1, . . . , ε̃,
εj , i = ε̃ + 1, . . . , ρ.

(25)

For most perturbations Q(λ) these inequalities are, in fact, equalities, but this will not
be assumed in the subsequent developments. Nevertheless, the generic behavior for
the minimal indices of the perturbed pencil P +Q holds under certain conditions that
limit the number of right connection polynomials with degrees strictly less than the
right-hand side of (25). These generic conditions involve some of the mosaic Toeplitz
matrices appearing in the following definition.

Definition 5.4. Let ε1 ≤ · · · ≤ εp be the column minimal indices of the pencil
P (λ), ε̃ be the sum of the column minimal indices of the pencil Q(λ), and {aij(λ) :
i = 1, . . . , ρ , j = 1, . . . , p} be a complete set of right connection polynomials of P and

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 513

Q. Let us express these polynomials as follows:1

aij(λ) = a0
ij + λa1

ij + · · · + λεija
εij
ij , where εij =

{
εj + 1, i = 1, . . . , ε̃,
εj , i = ε̃ + 1, . . . , ρ.

Let k and d be nonnegative integer numbers such that 1 ≤ k ≤ p and d ≥ εk − 1.
The kth mosaic Toeplitz matrix of degree d associated with the connection polynomials
aij(λ) is denoted by Ak(d) and is a matrix partitioned into ρ rows and k columns of
blocks whose (s, t)-block, s = 1, . . . , ρ , t = 1, . . . , k, is the Toeplitz matrix

(Ak(d))st =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
st
...

. . .

aεstst

. . .

. . . a0
st

. . .
...

aεstst

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

d− εt + 1

,

with d− εt + 1 columns and therefore a number of rows equal to

εst + 1 + d− εt =

{
d + 2, s = 1, . . . , ε̃,
d + 1, s = ε̃ + 1, . . . , ρ.

Remark 4. Notice that in the case d = εk − 1 the kth column of blocks of Ak(d)
is formed by matrices having a “number of columns equal to zero,” i.e., by empty
matrices. This also happens for those columns whose index j satisfies d = εj − 1. We
understand in this case that Ak(d) has less than k columns of blocks. This convention
will simplify the notation and the statements of our results.

The importance of the family of mosaic Toeplitz matrices Ak(d) is made clear
by the next lemma, Lemma 5.5. This result extends and complements Lemma 5.2,
characterizing right null space vectors of P + Q of a given degree through systems of
constant linear equations, i.e., systems of equations in C

n and not in C
n(λ) as (23).

Degrees are the fundamental quantities in this section, because our goal is to get the
degrees of the vectors of an ROMB of P + Q, i.e., the column minimal indices of
P +Q. According to Lemma 5.2 all the right null space vectors, x(λ), of P +Q are of
the form (22), and they have deg(x) = max1≤i≤p {εi + deg(αi) : αi(λ) �= 0} [6, Main
Theorem, p. 495]. This implies that if j is the largest index such that αj(λ) �= 0,
then deg(x) ≥ εj . To look for smaller degrees, one has to consider necessarily linear
combinations x(λ) = α1(λ)x1(λ)+ · · ·+αk(λ)xk(λ), with k < j. See also Lemma 2.5.

Lemma 5.5. Let P (λ) and Q(λ) be two complex m× n matrix pencils such that
rank(P + Q) = rank(P) + rank(Q) < n, {x1(λ), . . . , xp(λ)} be an ROMB of P , and
ε1 ≤ · · · ≤ εp be the column minimal indices of P , i.e., deg(xi) = εi. Then the
following hold:

1. Every right null space vector, x(λ), of (P +Q)(λ) of degree d can be expressed
in the form x(λ) = α1(λ)x1(λ) + · · · + αk(λ)xk(λ) for the largest number k such that
1 ≤ k ≤ p and d ≥ εk, and a unique set of polynomials {α1(λ), . . . , αk(λ)}.

1The reader should notice that the superscript notation akij does not mean aij to the kth power.

514 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

2. Moreover,

x(λ) = α1(λ)x1(λ) + · · · + αk(λ)xk(λ)(26)

is a right null space vector of (P+Q)(λ) of degree d ≥ εk if and only if the polynomials
α1(λ), . . . , αk(λ) satisfy the following two conditions:

(i) The polynomials αi(λ) can be expressed as

αi(λ) = αi0 + λαi1 + · · · + λd−εi αi,d−εi(27)

for all i = 1, . . . , k, with αj,d−εj �= 0 for at least one index j.
(ii) If Ak(d) is the kth mosaic Toeplitz matrix of degree d associated with a com-

plete set of right connection polynomials of P and Q defined with {x1(λ), . . . , xp(λ)},
the coefficients αil satisfy the system of constant linear equations

Ak(d)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α10

...
α1,d−ε1

...

...
αk0

...
αk,d−εk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.(28)

Notice that, if all the solutions of the system (28) are such that α1,d−ε1 = · · · =
αk,d−εk = 0, then all nonzero right null space vectors of P + Q of the form (26) are
of degree less than d.

Proof. The proof of the first item is a direct consequence of Lemma 5.2 and the
fact that in (22) deg(x) = max1≤i≤p {εi + deg(αi) : αi(λ) �= 0} according to [6, Main
Theorem, p. 495]. Once the index k is chosen, the uniqueness of {α1(λ), . . . , αk(λ)}
follows from the linear independence of {x1(λ), . . . , xk(λ)}.

The second item follows from (22) and (23) by setting αk+1(λ) = · · · = αp(λ) = 0.
Notice that (27) simply states that there are no indices i, 1 ≤ i ≤ k, such that
deg(αi) > d − εi, because this would imply deg(x) > d. The condition αj,d−εj �= 0
for at least one index j guarantees that deg(x) = d. On the other hand, the linear
system (28) is the system obtained from (23) by expanding products and sums of
polynomials and equating the coefficients to zero. With these remarks in mind, the
proof is trivial.

5.2. Properties of mosaic Toeplitz matrices. Lemma 5.6 gathers the prop-
erties of mosaic Toeplitz matrices that we will use to deduce the generic minimal
indices of the pencil P + Q.

Lemma 5.6. Let T = {Ak(d) : 1 ≤ k ≤ p , d ≥ εk − 1} be the set of mosaic
Toeplitz matrices defined in Definition 5.4. Then the following hold:

1. The number of rows of Ak(d) is equal to ρ(d + 1) + ε̃.

2. The number of columns of Ak(d) is equal to k(d + 1) −
∑k

j=1 εj.
3. Ak(d) has more columns than rows if and only if

k > ρ and d >

∑k
i=1 εi + ε̃

k − ρ
− 1.

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 515

4. If the columns of Ak(d) are linearly independent, i.e., Ak(d) has full column
rank, then every matrix Ak′(d′) in T with k′ ≤ k and d′ ≤ d has full column rank.

5. If the rows of Ak(d) are linearly independent, i.e., Ak(d) has full row rank,
then every matrix Ak′(d′) in T with k′ ≥ k and d′ ≥ d has full row rank.

6. If the rows of Ak(d) are linearly independent, then

rank

⎡⎢⎣ a11(λ) a12(λ) . . . a1j(λ)
...

...
...

aρ1(λ) aρ2(λ) . . . aρj(λ)

⎤⎥⎦ = ρ for j ≥ k.(29)

Proof. The first three items are direct consequences of the number of rows and
columns of the blocks appearing in Definition 5.4.

Item 4. Notice that Ak−1(d) is obtained from Ak(d) just by erasing the last
column of blocks. As a consequence, the columns of Ak−1(d) are a subset of the
columns of Ak(d). Then, Ak−1(d) has full column rank if Ak(d) has full column rank,
and, by induction, Ak′(d) has full column rank whenever k′ ≤ k.

If d−1 ≥ εk−1, then Ak(d−1) is an element of T , and it is obtained from Ak(d)
by erasing the last column of each block of Ak(d) to get a certain matrix A′

k(d) and,
after that, erasing the last row of each block of A′

k(d) to get Ak(d − 1). However,
notice that A′

k(d) is of full column rank, and that the last rows of the blocks of A′
k(d)

are zero rows; then Ak(d− 1) also has full column rank.
If d− 1 < εk − 1, then Ak(d− 1) is not in T . Let k′ < k be the largest index such

that d− 1 ≥ εk′ − 1. Then Ak′(d− 1) is an element of T , and Ak′(d) has full column
rank. The argument in the paragraph above is applied to prove that Ak′(d − 1) has
full column rank.

Finally, the results above can be combined inductively to prove item 4.
Item 5. Let k′ ≥ k. Then the submatrix of Ak′(d) that lies in the first k(d +

1) −
∑k

j=1 εj columns is precisely Ak(d). Therefore, if Ak(d) has full row rank, then
Ak′(d) also has full row rank. To complete the proof, let us prove that Ak(d + t) has
full row rank for any integer t > 0 whenever Ak(d) has full row rank. It is enough to
prove this statement for t = 1 and then to apply an inductive argument. Notice that
the submatrix of Ak(d) that contains the last row of each of the row blocks of Ak(d)
has linearly independent rows. This means that for the matrix

B ≡

⎡⎢⎣ aε1111 . . . aε1k1k
...

...
a
ερ1

ρ1 . . . a
ερk
ρk

⎤⎥⎦ ,

rank(B) = ρ. Observe that the matrix B is also the ρ × k submatrix of Ak(d + 1)
that lies in the last rows and columns of the blocks of Ak(d+ 1). If the last rows and
columns of the blocks of Ak(d+ 1) are moved down and back by permutations to the
last positions, the rank does not change, and the matrix we get has the structure[

Ak(d) ∗
0 B

]
.

The rank of this matrix is clearly rank(Ak(d)) + ρ = ρ(d + 2) + ε̃, i.e., the number of
rows of Ak(d + 1). Therefore Ak(d + 1) has full row rank.

Item 6. It is enough to prove this property for j = k. If the rows of Ak(d) are
linearly independent, then the submatrix of Ak(d) that contains the first row of each

516 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

of the row blocks of Ak(d) has linearly independent rows. This means that

rank

⎡⎢⎣ a0
11 . . . a0

1k
...

...
a0
ρ1 . . . a0

ρk

⎤⎥⎦ = ρ.

The result follows by applying Lemma 2.6.1 to the rows of the matrix (29) for
j = k.

According to [8, Chapter XII, p. 38] (see also the proof of Lemma 2.4 in this
paper), the smallest column minimal index of P + Q is the least degree among the
degrees of nonzero right null space vectors of P+Q. Taking into account Lemma 5.5.2,
this smallest minimal index corresponds to the smallest d for which a linear system
of the family (28) (1 ≤ k ≤ p) has nonzero solutions with αj,d−εj �= 0 for at least one
index j. Our intuition here is that solutions of this kind do not exist, generically, if
Ak(d) has a number of rows larger than or equal to the number of columns, and they
do exist, generically, in the opposite case. This intuition is based on the idea that if
the coefficients of the connection polynomials are random for random perturbations
pencils Q, then the columns of Ak(d) should be linearly independent if Ak(d) has
more rows than columns or the same number of rows and columns. Based on this
intuition, one can tentatively think that the most likely value of the smallest minimal
index of P + Q for random perturbations Q is the smallest d such that some of the
Ak(d) has more columns than rows. Of course, these naive arguments have to be
supported with rigorous assumptions, but they, together with Lemma 5.6.3, make it
natural to consider the following sequence of integer numbers:

dk =

⌊∑k
i=1 εi + ε̃

k − ρ

⌋
for k = ρ + 1, . . . , p,

where �x� denotes the floor function of x, i.e., the largest integer that is less than or
equal to x. Notice that Ak(dk) exists only if dk ≥ εk − 1; in this case Lemma 5.6.3
guarantees that Ak(dk) has more columns than rows. However, it is not difficult to
devise examples for which dk < εk − 1 for some k. The natural candidate for the
smallest column minimal index of P + Q is minρ+1≤k≤p dk. To prove that this is
the case under certain generic assumptions, and also to find the rest of the column
minimal indices, it is necessary to study the properties of the sequence {dk}.

Lemma 5.7. Let 0 ≤ ε1 ≤ · · · ≤ εp be p integer numbers, and ρ and ε̃ be integer
numbers such that 0 < ρ < p and 0 ≤ ε̃ ≤ ρ. Let us consider the sequence of integer
numbers

dk =

⌊∑k
i=1 εi + ε̃

k − ρ

⌋
for k = ρ + 1, . . . , p.(30)

Then we have the following:
1. dρ+1 ≥ ερ+1 ≥ · · · ≥ ε1.
2. If dk < dk−1, then dk ≥ εk ≥ · · · ≥ ε1.
3. If dk < dk+1, then dk < dk+1 ≤ dk+2 ≤ · · · ≤ dp.
4. If dk < dk+1, then di < εi for all i ≥ (k + 1).
5. Let

dmin ≡ min
ρ+1≤k≤p

dk.

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 517

Then all the indices j such that dj = dmin are consecutive; i.e., if dj = dmin holds for
more than one index, then there exist two indices j1 < j2 such that

dj = dmin if j1 ≤ j ≤ j2 and dj > dmin if j < j1 or j2 < j.

In addition, dj1 ≥ εj1 .
6. Let s be the largest index such that ds = dmin and ds ≥ εs. Then

εk > dk ≥ ds for all k > s.

7. Let s be the index defined in the previous item, and As(dmin) and As(dmin−1)
be mosaic Toeplitz matrices introduced in Definition 5.4. Then

(i) As(dmin) has more columns than rows and has s columns of blocks;
(ii) As(dmin − 1) has a number of rows larger than or equal to the number of

columns, or it is the empty matrix;
(iii) for any k > s, Ak(dmin) is not defined or Ak(dmin) = As(dmin).
Before proving this lemma, we would like to point out that the index s appearing

in item 6 will play an essential role in determining the generic column minimal indices
of P + Q.

Proof of Lemma 5.7. The first item is trivial.
Item 2. Let us consider the integer divisions

k∑
i=1

εi + ε̃ = (k − ρ)dk + rk, where 0 ≤ rk < k − ρ,(31)

k−1∑
i=1

εi + ε̃ = (k − 1 − ρ)dk−1 + rk−1, where 0 ≤ rk−1 < k − 1 − ρ.(32)

Let us subtract (32) from (31) to get

εk = (k− ρ− 1)(dk − dk−1)+ dk + rk − rk−1 ≤ (k− ρ− 1)(dk − dk−1)+ dk + k− ρ− 1.

Thus, εk ≤ (k − ρ − 1)(dk − dk−1 + 1) + dk ≤ dk. The last step is a consequence of
(dk − dk−1 + 1) ≤ 0 and (k − 1) > ρ.

Item 3. Let us consider the integer division

k+1∑
i=1

εi + ε̃ = (k + 1 − ρ)dk+1 + rk+1, where 0 ≤ rk+1 < k + 1 − ρ.(33)

Let us subtract (31) from (33) to get

εk+1 = (k − ρ)(dk+1 − dk) + dk+1 + rk+1 − rk ≥ (k − ρ) + dk+1 + rk+1 − rk > dk+1,

where we have used that rk+1 − rk > −(k − ρ). Therefore, we have proved that

dk < dk+1 implies εk+1 > dk+1.(34)

Let us consider now an index l such that l ≥ (k + 2), and the integer division

l∑
i=1

εi + ε̃ = (l − ρ)dl + rl, where 0 ≤ rl < l − ρ.(35)

518 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

Let us subtract (33) from (35) to get

εl + εl−1 + · · · + εk+2 = (dl − dk+1)(l − ρ) + dk+1(l − (k + 1)) + rl − rk+1,

and then,

(εl − dk+1) + (εl−1 − dk+1) + · · · + (εk+2 − dk+1) = (dl − dk+1)(l − ρ) + rl − rk+1.

The inequality (34) implies (dl − dk+1)(l − ρ) + rl − rk+1 > 0, and therefore (dl −
dk+1 + 1)(l − ρ) > 0. Thus, we have proven that

dk < dk+1 implies dl ≥ dk+1 for all l ≥ (k + 2).(36)

This result allows us to prove the more general result appearing in item 3. Let us
proceed by contradiction. Assume that dk+1 ≤ dk+2 ≤ · · · ≤ dp is false. This means
that there exists an index l ≥ (k + 2) such that dk+1 ≤ dk+2 ≤ · · · ≤ dl−1 > dl. Let
j be the smallest integer such that (k + 1) ≤ j ≤ (l − 1) and dj = dj+1 = · · · = dl−1.
Notice that this integer is at least k + 1, because dk < dl−1 by (36). Then dj−1 < dj ,
and (36) can be applied with k = j − 1 to see that dj ≤ dl; on the other hand,
dj = dl−1 > dl. This is absurd.

Item 4. Let us prove the result by induction. In (34), we have already proven
the base case of the induction: dk+1 < εk+1. Let us assume that di < εi for some
i ≥ (k + 1). On the other hand, di ≤ di+1 due to the result in item 3. If di < di+1,
one can apply (34) with k = i to see that di+1 < εi+1. Otherwise, di = di+1 and
di+1 < εi ≤ εi+1.

Item 5. The fact that the indices are consecutive is a direct consequence of item
3. The fact that dj1 ≥ εj1 is a consequence of items 1 and 2.

Item 6. If there is only one index s such that ds = dmin, the result is a simple
consequence of items 4 and 5. Otherwise, let j1 and j2 be the two indices appearing
in item 5. If s = j2 ≤ p, the result follows again from item 4. If s < j2, then, by
definition, ds = ds+1 < εs+1 ≤ · · · ≤ εj2 . Therefore, dk < εk for s + 1 ≤ k ≤ j2. Also,
by definition, dj2 < dj2+1, and item 4 implies dk < εk for k ≥ (j2 + 1).

Item 7. The assertions on the number of rows and columns of As(dmin) and
As(dmin − 1) follow from Lemma 5.6.3. Let us remember that the jth column of
blocks of As(dmin) has dmin − εj + 1 columns; therefore, dmin ≥ εs guarantees that all
the blocks of As(dmin) have at least one column. Notice that dmin ≥ εs also implies
that dmin−1 ≥ εs−1; thus As(dmin−1) is defined, but some (or all) of its blocks may
be empty. Finally, for j > s we know that εj > dmin, i.e., εj − 1 ≥ dmin. This means
that Ak(dmin), with k > s, is not defined unless εj − 1 = dmin for s + 1 ≤ j ≤ k, but
in this case the jth blocks (Ak(dmin))ij are empty matrices.

5.3. Generic column minimal indices of P + Q. Now we are in position
to find out which are the generic column minimal indices of the perturbed pencil
(P + Q)(λ), assuming that, apart from the rank, the sum of the column minimal
indices of the perturbation is known. This is done in Theorem 5.8, our second major
contribution.

Theorem 5.8. Let P (λ) and Q(λ) be two m × n complex matrix pencils such
that rank(P + Q) = rank(P) + rank(Q) < n and ρ ≡ rank(Q). Let ε1 ≤ · · · ≤ εp be
the column minimal indices of P , ε̃ be the sum of the column minimal indices of Q,
{dρ+1, . . . , dp} be the sequence of numbers defined in (30), dmin be the minimum of
this sequence, and s be the largest index such that ds = dmin and ds ≥ εs. Finally,
let As(dmin − 1) and As(dmin) be the sth mosaic Toeplitz matrices of degrees dmin − 1

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 519

and dmin, respectively, associated with a complete set of right connection polynomials
of P and Q. If

As(dmin − 1) has full column rank or is the empty matrix, and(37)

As(dmin) has full row rank,(38)

then (P + Q)(λ) has the following p− ρ column minimal indices:

dmin = · · · = dmin︸ ︷︷ ︸
s− ρ− γs

< (dmin + 1) = · · · = (dmin + 1)︸ ︷︷ ︸
γs

≤ εs+1 ≤ · · · ≤ εp,(39)

where γs is the remainder in the integer division of
∑s

i=1 εi + ε̃ by s− ρ.
Proof. In the first place, let us notice that the ordering appearing in (39) is

a consequence of Lemma 5.7.6. Also notice that the number of column minimal
indices of P + Q is p − ρ; this is a simple consequence of (4) and rank(P + Q) =
rank(P)+ rank(Q). For the rest of the proof, it is convenient to bear in mind Lemma
2.4 applied to P + Q, and the way ROMBs of P + Q are constructed (see the first
paragraph in the proof of Lemma 2.4).

Let us begin by proving that there are no column minimal indices of P + Q
smaller than dmin. Lemma 5.5.1 and Lemma 5.7.6 guarantee that every right null
space vector of P + Q with degree d < dmin is a linear combination of the type
x(λ) = α1(λ)x1(λ) + · · · + αk(λ)xk(λ) for some k ≤ s. In this situation, the matrix
Ak(d) appearing in (28) has full column rank in the case As(dmin −1) has full column
rank, by Lemma 5.6.4. The system (28) has only the zero solution and x(λ) = 0.
In the case As(dmin − 1) is the empty matrix dmin = εk whenever 1 ≤ k ≤ s, and
there are no nonzero linear combinations of {x1(λ), . . . , xp(λ)} of degree smaller than
ε1 = dmin, because otherwise the smallest column minimal index of P would be less
than ε1.

Our next step is to prove that dmin is a column minimal index of P + Q. The
system (28) with coefficient matrix As(dmin) necessarily has nonzero solutions because
As(dmin) has more columns than rows by Lemma 5.7.7. Besides, there are no nonzero
solutions with α1,dmin−ε1 = · · · = αs,dmin−εs = 0, because otherwise the solutions of
(28) correspond to right null space vectors of P +Q of degree less than dmin, and we
already know that they do not exist. This proves that dmin is the smallest column
minimal index of P + Q.

To see that there are precisely s− ρ− γs column minimal indices of P +Q equal
to dmin, we need to find s − ρ − γs linearly independent right null space vectors of
P +Q of degree dmin, and to prove that there are no more. Again, Lemma 5.5.1 and
Lemma 5.7.6 guarantee that every right null space vector of P + Q with degree dmin

is a linear combination of the type

x(λ) = α1(λ)x1(λ) + · · · + αs(λ)xs(λ).(40)

Notice that the set of solutions of (28) with As(dmin) as coefficient matrix can be
described in terms of a number of free parameters equal to the difference between the
number of columns and the number of rows of As(dmin), i.e.,

s(dmin + 1) −
s∑

i=1

εi − ρ(dmin + 1) − ε̃ = s− ρ− γs,

where Lemma 5.6.1 and Lemma 5.6.2 have been used. This means that the system of
linear equations (28) with As(dmin) has s−ρ−γs linearly independent solutions, and,

520 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

by Lemma 5.5, that they correspond to s − ρ − γs right null space vectors of P + Q
of the form (40) of degree dmin. Let us denote these vectors by

{z1(λ), z2(λ), . . . , zβs(λ)}, with βs ≡ s− ρ− γs.(41)

It is clear that any other solution of (28) corresponds to right null space vectors of
degree dmin that are linear combinations of (41) with constant coefficients; however,
we still need to prove that the vectors {z1(λ), z2(λ), . . . , zβs(λ)} can be chosen to be
linearly independent in C

n(λ). To see this, notice that the βs free parameters of (28)
with As(dmin) may be taken among the α1,dmin−ε1 , . . . , αs,dmin−εs variables, because
the columns of As(dmin) that do not correspond to these variables are linearly inde-
pendent, as we have already seen in the paragraph proving that dmin is the smallest
minimal index of P + Q. By setting the lth of these βs variables equal to 1 and the
rest equal to 0, and repeating this process for l = 1, . . . , βs, a set S of βs linearly
independent solutions of (28) may be obtained. Let us denote by

al = [αl
1,dmin−ε1 , . . . , α

l
s,dmin−εs]

T , l = 1, . . . , βs,(42)

a vector containing the shown entries of the lth solution of (28) in S. The vectors
{a1, . . . , aβs} are obviously linearly independent. If (27) and (40) are recalled, the
coefficients of the highest degree terms of the vectors (41) corresponding to the βs

solutions of (28) in S are

zl,dmin = αl
1,dmin−ε1x1,ε1 + · · · + αl

s,dmin−εsxs,εs , for l = 1, . . . , βs,(43)

where xi,εi is the highest degree coefficient of xi(λ). The vectors {x1,ε1 , . . . , xs,εs} are
linearly independent in C

n, because x1(λ), . . . , xs(λ) are part of an ROMB and [6,
Main Theorem, Item 2, p. 495] can be applied. Therefore, {z1,dmin

, . . . , zβs,dmin} is a
linearly independent set, because [z1,dmin , . . . , zβs,dmin] = [x1,ε1 , . . . , xs,εs][a1, . . . , aβs

]
and the two matrices in the right-hand side have full column rank. Finally, Lemma
2.6.2 implies that {z1(λ), z2(λ), . . . , zβs(λ)} are linearly independent, and that there
are precisely βs ≡ s− ρ− γs column minimal indices of P + Q equal to dmin.

In this paragraph, we prove that there are γs column minimal indices of P + Q
equal to dmin + 1. At present, we have found a set C1 = {z1(λ), z2(λ), . . . , zβs(λ)}
of s− ρ− γs linearly independent right null space vectors of P + Q of the form (40)
and degree dmin. However, the fact that As(dmin) has full row rank, Lemma 5.6.6
with j = s, and Lemma 5.2 imply that a maximal linearly independent set of right
null space vectors of P + Q of the form (40) has s − ρ vectors. We will prove that
the remaining γs vectors can be chosen to be of degree dmin + 1. Let us consider the
system (28) with coefficient matrix As(dmin + 1). The matrix As(dmin + 1) has full
row rank because As(dmin) has full row rank, and Lemma 5.6.5 can be applied. This
means that rank(As(dmin+1)) = rank(As(dmin))+ρ. Remember that As(dmin+1) can
be obtained from As(dmin) by adding one row and one column in the last positions
of each block. Therefore, among the s columns of As(dmin + 1) that are in the
last positions of the column blocks, s − ρ are linear combinations of the remaining
columns of As(dmin + 1). Thus, the corresponding variables in the system (28) with
As(dmin + 1) can be taken as some of the free parameters to solve this system.2 This

2The reader should notice that the difference between the number of columns and rows of
As(dmin + 1) is 2(s− ρ)− γs. Therefore, the system (28) with matrix As(dmin + 1) has 2(s− ρ)− γs
linearly independent solutions, while there are only s−ρ linearly independent right null space vectors
of the form (40). This means that linearly independent solutions of (28) do not always correspond
to linearly independent right null space vectors (26).

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 521

implies that s−ρ free parameters to solve (28) with As(dmin +1) may be taken among
the α1,(dmin+1)−ε1 , . . . , αs,(dmin+1)−εs variables. If we proceed with these parameters
as in the previous paragraph (arguments around (41)–(43)), we can find a set C2 of
(s−ρ) linearly independent right null space vectors of P+Q of degree exactly dmin+1,
and of the form (40). Therefore, we can join the set C1 of s− ρ− γs vectors of degree
dmin with some γs vectors of C2, to get a maximal linearly independent set of right
null space vectors of P + Q of the form (40). This proves that there exist γs column
minimal indices of P + Q equal to dmin + 1.

Our last task in proving Theorem 5.8 is to show that the remaining column
minimal indices of P + Q are εs+1 ≤ · · · ≤ εp. The right null space vectors of P + Q
that we have already found, corresponding to minimal indices equal to dmin and to
dmin + 1, constitute a maximal linearly independent set of right null space vectors of
P + Q of the form (40). This fact implies that any right null space vector x(λ) of
P + Q corresponding to the next smallest minimal index has to be necessarily of the
form (22) with at least one of the coefficients αs+1(λ), . . . , αp(λ) different from zero.
Otherwise, it would depend linearly on the right null space vectors corresponding to
the minimal indices dmin and dmin +1. Thus, according to [6, Main Theorem, p. 495],
deg(x) = max1≤i≤p {εi + deg(αi) : αi(λ) �= 0} ≥ εs+1 ≥ dmin + 1, where the last
inequality is a consequence of Lemma 5.7.6. Then, the least candidate to the next
minimal index is εs+1. To show that, in fact, εs+1 is the next column minimal index,
we will prove that there is a right null space vector of P + Q of the form

x(λ) = α1(λ)x1(λ) + · · · + αs+1(λ)xs+1(λ),(44)

with αs+1(λ) �= 0 and deg(x) = εs+1, i.e., with αs+1(λ) a nonzero constant. This is
equivalent to proving that the linear system (28) with coefficient matrix As+1(εs+1)
has solutions with the last entry different from zero. Notice that As+1(εs+1) has
full row rank because As(dmin) has full row rank, εs+1 > dmin by Lemma 5.7.6, and
Lemma 5.6.5 can be applied. Besides, the matrices in the last columns of blocks of
As+1(εs+1) have only one column. Therefore, if the last column of As+1(εs+1) is
removed, then As(εs+1) is obtained. However,

number of rows of As+1(εs+1) = number of rows of As(εs+1),(45)

and As(εs+1) has also full row rank by the same argument; then

rank(As+1(εs+1)) = rank(As(εs+1)).(46)

This implies that the last column of As+1(εs+1) is a linear combination of its remaining
columns. As a consequence the last variable in the linear system (28) with coefficient
matrix As+1(εs+1) may be considered as free parameter, and therefore it may be
different from zero. This proves that the εs+1 is the next minimal index.

Notice that assumption (38) and Lemma 5.6.6 imply that a maximal linearly
independent set of right null space vectors of P + Q of the form (44) has s + 1 − ρ
vectors. Therefore, a maximal linearly independent set of this type has already been
found in the previous paragraphs. With this remark in mind, the proof that εs+2

is the next smallest column minimal index follows step-by-step the proof presented
in the previous paragraph for εs+1 with the corresponding changes of indices. The
same holds for proving that εs+3, . . . , εp are the remaining column minimal indices of
P + Q.

522 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

5.4. Application of Theorem 5.8 to an example. Let us show with an
example how to apply Theorem 5.8. Let P (λ) be the 5 × 5 matrix pencil

P (λ) = diag(L0, L1, L1, L
T
0 , L

T
0 , L

T
0) =

⎡⎢⎢⎢⎢⎣
0 λ 1 0 0
0 0 0 λ 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

with ε1 = 0, ε2 = ε3 = 1. An ROMB of P is given by

x1 =

⎡⎢⎢⎢⎢⎣
1
0
0
0
0

⎤⎥⎥⎥⎥⎦ , x2 =

⎡⎢⎢⎢⎢⎣
0
1
−λ
0
0

⎤⎥⎥⎥⎥⎦ , x3 =

⎡⎢⎢⎢⎢⎣
0
0
0
1
−λ

⎤⎥⎥⎥⎥⎦ .

Consider an arbitrary perturbation Q of P with ρ = 2 and ε̃ = 1. This means that a
right decomposition of Q (see (7)) is of the form

Q(λ) = v1w
T
1 + v2w

T
2 ,

where

w1 =

⎡⎢⎢⎢⎢⎣
b1 + λc1
b2 + λc2
b3 + λc3
b4 + λc4
b5 + λc5

⎤⎥⎥⎥⎥⎦ , w2 =

⎡⎢⎢⎢⎢⎣
d1

d2

d3

d4

d5

⎤⎥⎥⎥⎥⎦ ,

and bi, ci, di ∈ C for i = 1, . . . , 5. In addition, deg(v1) = 0 and deg(v2) ≤ 1. Notice
that in this example p − ρ = 3 − 2 = 1, and so the sequence {dρ+1, . . . , dp} has only
the element d3. This means that in the conditions of Theorem 5.8 the pencil P + Q
has only one column minimal index, which is precisely

dmin = d3 =

⌊
0 + 1 + 1 + 1

3 − 2

⌋
= 3.

The matrices As(dmin−1) and As(dmin) are in this case A3(2) and A3(3), respectively.
The right connection polynomials associated with the previous data are given by

a11(λ) = w1(λ)Tx1 = b1 + λc1, a21(λ) = wT
2 x1 = d1,

a12(λ) = w1(λ)Tx2 = b2 + λ(c2 − b3) − λ2c3, a22(λ) = wT
2 x2 = d2 − λd3,

a13(λ) = w1(λ)Tx3 = b4 + λ(c4 − b5) − λ2c5, a23(λ) = wT
2 x3 = d4 − λd5,

and then the mosaic Toeplitz matrix A3(3) is the 9 × 10 matrix

A3(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 0 0 b2 0 0 b4 0 0
c1 b1 0 0 c2 − b3 b2 0 c4 − b5 b4 0
0 c1 b1 0 −c3 c2 − b3 b2 −c5 c4 − b5 b4
0 0 c1 b1 0 −c3 c2 − b3 0 −c5 c4 − b5
0 0 0 c1 0 0 −c3 0 0 −c5
d1 0 0 0 d2 0 0 d4 0 0
0 d1 0 0 −d3 d2 0 −d5 d4 0
0 0 d1 0 0 −d3 d2 0 −d5 d4

0 0 0 d1 0 0 −d3 0 0 −d5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 523

It can be numerically checked using MATLAB that this matrix has full row rank for
random values of bi, ci, and di. The 7 × 7 matrix A3(2) is constructed in a similar
way, and it can be numerically checked that A3(2) has full column rank.

5.5. On the genericity of the assumptions of Theorem 5.8. The relevance
of Theorem 5.8 depends on the genericity of its hypotheses, i.e., whether they are
satisfied in a dense open subset of the considered set of perturbations. The meaning
and genericity of the condition rank(P+Q) = rank(P)+rank(Q) < n was discussed in
depth in section 3. The other two essential hypotheses in Theorem 5.8 are (37)–(38).
We have checked numerically with MATLAB on a sample of more than 50000 mosaic
Toeplitz matrices (Definition 5.4), constructed on random polynomials, that these
matrices have full rank. We have run experiments with matrices with more rows than
columns, and vice versa. Then to see that (37)–(38) are indeed generic assumptions
that hold for almost all perturbations, it remains only to justify that the connection
polynomials of P and Q are random for random perturbations Q. In this process the
natural assumption

rank(Q) ≤ rank(P),(47)

noted in section 3, plays a relevant role. Let us remember Definition 5.3. We can
assume in the following argument, without loss of generality, that P is given in KCF.
Taking into account that the right null space vector of a column singular block Lε can
be chosen to be [1,−λ, λ2, . . . , (−λ)ε]T , the vectors {x1(λ), . . . , xp(λ)} of the ROMB
of P can be chosen with the following property: if (xj(λ))k �= 0 for some j, then
(xj′(λ))k = 0 for j′ �= j; i.e., the nonzero entries of every vector correspond to zero
entries of the remaining vectors. With this in mind, it seems at a first glance that the
coefficients of the connection polynomials (24) are random, because Q being a random
perturbation, the vectors {w1(λ), . . . , wρ(λ)} should be also random. But, according
to (7), the vectors wi(λ) are of degree at most one. This means that, putting together
the zero and first order coefficients of each wi(λ), we get a set W with ρ+ ε̃ vectors of
C

n. Notice that rank(P +Q) = rank(P) + rank(Q) ≤ min{m,n} and (47) imply that
ρ + ε̃ ≤ n, and then the vectors in W are linearly independent for almost all Q, and
the coefficients of the connection polynomials are really random. But, if ρ + ε̃ > n,
then the set W is linearly dependent, and some linear dependence may appear among
the coefficients of the connection polynomials.3

5.6. When the only information available on the perturbation is its
rank. Theorem 5.8 determines the generic whole set of column minimal indices of
the perturbed pencil (P + Q)(λ). This set depends on ε̃, i.e., the sum of the column
minimal indices of the perturbation Q(λ). The reason for this dependence can be
traced back to the expansion (7), because the properties of (7) depend on ε̃. This fact
is related to a deeper mathematical result: the set of singular matrix pencils of rank
ρ has exactly ρ + 1 maximal irreducible components, each of them corresponding to
a value of ε̃, for ε̃ = 0, . . . , ρ [3]. However, one may want to get some partial informa-
tion if only the rank of the perturbation Q(λ) is known. This partial information is
presented in Theorem 5.10. To prove this theorem the following lemma is needed.

Lemma 5.9. Let 0 ≤ ε1 ≤ · · · ≤ εp be p integer numbers, and ρ and ε̃ be integer
numbers such that 0 < ρ < p and 0 ≤ ε̃ ≤ ρ. Let us consider for each value of ε̃ the

3Notice that the argument of this paragraph holds if the assumption (47) is replaced by ρ+ ε̃ ≤ n,
which is fulfilled by a wider set of perturbations. However, this condition is not natural and requires
knowing ε̃ apart from the rank of the perturbation.

524 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

sequence of integer numbers

dk(ε̃) =

⌊∑k
i=1 εi + ε̃

k − ρ

⌋
for k = ρ + 1, . . . , p.(48)

Let dmin(ε̃) ≡ minρ+1≤k≤p dk(ε̃), and let s(ε̃) be the largest index such that ds(ε̃)(ε̃) =
dmin(ε̃) and ds(ε̃)(ε̃) ≥ εs(ε̃). Then

dmin(ρ) ≥ dmin(ρ− 1) ≥ · · · ≥ dmin(0) and s(ρ) ≥ s(ρ− 1) ≥ · · · ≥ s(0).

Proof. Let us prove that dmin(ε̃′) ≥ dmin(ε̃) and s(ε̃′) ≥ s(ε̃), whenever ε̃′ >
ε̃. Notice that dk(ε̃

′) ≥ dk(ε̃) for k = ρ + 1, . . . , p. Therefore dmin(ε̃′) ≥ dmin(ε̃).
According to Lemma 5.7.6, εs(ε̃′)+1 > ds(ε̃′)(ε̃

′) ≥ ds(ε̃)(ε̃) ≥ εs(ε̃). This means that
s(ε̃′) + 1 > s(ε̃).

By combining Theorem 5.8 and Lemma 5.9, we can state the generic theorem,
Theorem 5.10. We name Theorem 5.10 as generic, because the precise assumptions
needed in the theorem are (37)–(38), and they depend on the sum of the column
minimal indices of the perturbation Q, information that is not available. The only
requirement for proving Theorem 5.10 is to notice that if ρ is the rank of Q and ε̃ is
the sum of the column minimal indices of Q, then 0 ≤ ε̃ ≤ ρ.

Theorem 5.10. Let P (λ) and Q(λ) be two m × n complex matrix pencils such
that rank(P + Q) = rank(P) + rank(Q) < n and rank(Q) ≤ rank(P). Let us define
ρ ≡ rank(Q). Let ε1 ≤ · · · ≤ εp be the column minimal indices of P , and

d′k =

⌊∑k
i=1 εi + ρ

k − ρ

⌋
for k = ρ + 1, . . . , p.(49)

Let d′min be the minimum of the sequence {d′k}, and s′ be the largest index such that
d′s′ = d′min and d′s′ ≥ εs′ . Then, for generic pencils Q(λ) with rank ρ, (P +Q)(λ) has
exactly p− ρ column minimal indices and

1. the p− s′ largest column minimal indices of (P +Q)(λ) are εs′+1 ≤ · · · ≤ εp;
2. the s′ − ρ smallest column minimal indices of (P + Q)(λ), ε̂1 ≤ · · · ≤ ε̂s′−ρ,

satisfy ερ+j ≤ ε̂j for j = 1, . . . , s′ − ρ and ε̂1 ≤ d′min.

6. The Kronecker canonical form of perturbed pencils without full
rank. The results presented so far remain valid whenever rank(P + Q) = rank(P) +
rank(Q) ≤ min{m,n}. This assumption includes the limit case rank(P + Q) =
rank(P) + rank(Q) = min{m,n}, i.e., the case of perturbed pencils (P + Q)(λ)
with full rank. In this full rank case P + Q does not have row minimal indices if
rank(P+Q) = m, and P+Q does not have column minimal indices if rank(P+Q) = n,
according to (4). If rank(P + Q) = m < n, the generic column minimal indices of
P + Q are described by Theorem 5.8, and if rank(P + Q) = n < m, the generic row
minimal indices of P +Q are described by Theorem 5.8 applied on (P +Q)T . Theorem
4.4 also holds in the full rank case and gives partial information on the regular part
of P + Q.

The purpose of this section is to show that complete information on the generic
KCF of P + Q can be obtained for perturbed pencils without full rank, i.e.,

rank(P + Q) = rank(P) + rank(Q) < min{m,n}.

We will gather the information obtained in Theorems 4.4 and 5.8, together with the
counterpart version of Theorem 5.8 for row minimal indices, to fully describe the

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 525

generic KCF of (P + Q)(λ), in terms of the sums of the row and column minimal
indices and of the regular structure of the perturbation Q(λ). This KCF will be
presented in Theorem 6.2. In addition, Theorem 6.3 presents some generic partial
information on the KCF of P +Q when rank(Q) is the only information available on
the perturbation.

Lemma 6.1 will allow us to avoid certain redundancy in the hypotheses.
Lemma 6.1. Let P (λ) and Q(λ) be two m×n matrix pencils such that rank(P)+

rank(Q) < min{m,n}. Let As(dmin) be the mosaic Toeplitz matrix associated with
a complete set of right connection polynomials of P and Q appearing in Theorem
5.8, and Bt(hmin) be the corresponding matrix associated with a complete set of left
connection polynomials, i.e., the matrix in Theorem 5.8 if it is applied to PT and QT .
If As(dmin) and Bt(hmin) have full row rank, then rank(P +Q) = rank(P)+ rank(Q).

Proof. From elementary linear algebra we know rank(P+Q) ≤ rank(P)+rank(Q).
Let us consider right decompositions of P and Q of the kind appearing in (7):

P (λ) = v′1(λ)w′
1(λ)T + · · · + v′r(λ)w′

r(λ)T ,

Q(λ) = v1(λ)w1(λ)T + · · · + vρ(λ)wρ(λ)T ,

where r ≡ rank(P) and ρ ≡ rank(Q). Therefore

P + Q = [v′1, . . . , v
′
r, v1, . . . , vρ] [w

′
1, . . . , w

′
r, w1, . . . , wρ]

T ,

where the dependence on λ has been omitted. This means that P +Q is the product
of an m × (r + ρ) matrix times an (r + ρ) × n matrix, with (r + ρ) < min{m,n}.
Therefore rank(P + Q) = rank(P) + rank(Q) if and only if

rank[v′1, . . . , v
′
r, v1, . . . , vρ] = r + ρ and rank[w′

1, . . . , w
′
r, w1, . . . , wρ] = r + ρ.

Let us prove that if As(dmin) has full row rank, then rank[w′
1, . . . , w

′
r, w1, . . . , wρ] =

r + ρ. If rank[w′
1, . . . , w

′
r, w1, . . . , wρ] < r + ρ, there exists an index i such that wi(λ)

is a linear combination of {w′
1(λ), . . . , w′

r(λ), w1(λ), . . . , wi−1(λ)} in C
n(λ), i.e.,

wi(λ) = β′
1(λ)w′

1(λ) + · · · + β′
r(λ)w′

r(λ) + β1(λ)w1(λ) + · · · + βi−1(λ)wi−1(λ),

for some rational functions β′
1(λ), . . . , βi−1(λ). Let us recall (24) and P (λ)xj(λ) = 0,

i.e., w′
k(λ)Txj(λ) = 0 for all k. Then the right connection polynomials of P and Q

satisfy

aij(λ) = β1(λ)a1j(λ) + · · · + βi−1(λ)ai−1,j(λ) for j = 1, . . . , p,

and the matrix [akl(λ)]1≤l≤p
1≤k≤ρ does not have full row rank. But the fact that As(dmin)

has full row rank implies that rank[akl(λ)]1≤l≤p
1≤k≤ρ = ρ, by Lemma 5.6.6.

An analogous argument shows that if Bt(hmin) has full row rank, then
rank[v′1, . . . , v

′
r, v1, . . . , vρ] = r + ρ.

We do not explicitly impose rank(P + Q) = rank(P) + rank(Q) in Theorem 6.2
because of Lemma 6.1.

Theorem 6.2. Let P (λ) and Q(λ) be two m × n complex matrix pencils such
that rank(P) + rank(Q) < min{m,n} and ρ ≡ rank(Q). Let ε1 ≤ · · · ≤ εp and
η1 ≤ · · · ≤ ηq be, respectively, the column and row minimal indices of P , and JP be
the regular structure of the KCF of P . Let ε̃ and η̃ be, respectively, the sum of the

526 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

column minimal indices and the sum of the row minimal indices of Q, and JQ be the
regular structure of the KCF of Q. Let us consider the sequences

dk =

⌊∑k
i=1 εi + ε̃

k − ρ

⌋
for k = ρ + 1, . . . , p and

hl =

⌊∑l
i=1 ηi + η̃

l − ρ

⌋
for l = ρ + 1, . . . , q.

Let dmin = minρ+1≤k≤p{dk}, and s be the largest index such that ds = dmin and
ds ≥ εs. Let hmin = minρ+1≤l≤q{hl}, and t be the largest index such that ht = hmin

and ht ≥ ηt. Finally, let As(dmin − 1) and As(dmin) (Bt(hmin − 1) and Bt(hmin)) be
the sth (tth) mosaic Toeplitz matrices of degrees dmin−1 and dmin (hmin−1 and hmin),
respectively, associated with a complete set of right (left) connection polynomials of P
and Q. If

As(dmin − 1) and Bt(hmin − 1) have full column rank or are empty matrices, and

As(dmin) and Bt(hmin) have full row rank,

then
1. (P + Q)(λ) has exactly p− ρ column minimal indices that are

dmin = · · · = dmin︸ ︷︷ ︸
s− ρ− γs

< (dmin + 1) = · · · = (dmin + 1)︸ ︷︷ ︸
γs

≤ εs+1 ≤ · · · ≤ εp,(50)

where γs is the remainder in the integer division of
∑s

i=1 εi + ε̃ by s− ρ;
2. (P + Q)(λ) has exactly q − ρ row minimal indices that are

hmin = · · · = hmin︸ ︷︷ ︸
t− ρ− μt

< (hmin + 1) = · · · = (hmin + 1)︸ ︷︷ ︸
μt

≤ ηt+1 ≤ · · · ≤ ηq,(51)

where μt is the remainder in the integer division of
∑t

i=1 ηi + η̃ by t− ρ; and
3. JP ⊕ JQ is the regular structure of the KCF of (P + Q)(λ).

This fully determines the KCF of (P + Q)(λ).
Remark 5. We noted in subsection 5.5 that the additional assumption rank(Q) ≤

rank(P) is sufficient for considering that the KCF of (P + Q)(λ) found in Theorem
6.2 is generic.

Proof of Theorem 6.2. Theorem 5.8 applied to P and Q proves (50) and applied
to PT and QT proves (51). Theorem 4.4 proves that for every complex number λ0,
including the infinite, SP+Q(λ0) ≥ SP⊕Q(λ0). To prove that, in fact, SP+Q(λ0) =
SP⊕Q(λ0), we will simply show that the direct sum of JP ⊕JQ plus the column and
row singular blocks corresponding to (50) and to (51) is an m× n pencil. Let us call
this direct sum Z(λ).

Let the matrix JP be r1 × r1, and JQ be r2 × r2. Notice that, in this situation,
the following identities hold:

ε + η + q + r1 = m, ε + p + η + r1 = n, ε̃ + η̃ + r2 = ρ,

where ε (η) is the sum of the column (row) minimal indices of P . Thus, the number
of rows of Z(λ) is

[dmin(s− ρ− γs) + (dmin + 1)γs + εs+1 + · · · + εp]

+ [(hmin + 1)(t− ρ− μt) + (hmin + 2)μt + (ηt+1 + 1) + · · · + (ηq + 1)] + r1 + r2

= [ε + ε̃] + [η + q + η̃ − ρ] + r1 + r2 = m + ε̃ + η̃ + r2 − ρ = m.

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 527

An analogous computation shows that the number of columns of Z(λ) is n, and,
therefore, that Z(λ) is the KCF of (P + Q)(λ).

Example 2. Let us apply Theorem 6.2 to the pencil P (λ) of the example in
subsection 5.4. In that subsection, we considered a perturbation Q(λ) with ρ = 2 and
ε̃ = 1. Now, let us assume also that η̃ = 0 and that Q has a simple eigenvalue μ = 1.
The generic column minimal index of P +Q predicted by Theorem 6.2 was computed
in subsection 5.4 and is 3. Let us compute the generic row minimal indices of P +Q.
In this example η1 = η2 = η3 = 0. Thus, the number of row minimal indices of P +Q
is q − ρ = 3 − 2 = 1. Therefore, hmin = h3 = 0 is the generic row minimal index of
P + Q. The generic KCF of P + Q is⎡⎢⎢⎢⎢⎣

λ 1 0 0 0
0 λ 1 0 0
0 0 λ 1 0
0 0 0 0 0
0 0 0 0 λ− 1

⎤⎥⎥⎥⎥⎦ .

In the case that the only information available on the perturbation Q(λ) is its
rank, Theorem 4.4 can be combined with Theorem 5.10, and the corresponding coun-
terpart version for row minimal indices, to produce Theorem 6.3, that gives partial
information of the KCF of (P + Q)(λ).

Theorem 6.3. Let P (λ) and Q(λ) be two m×n complex matrix pencils such that
rank(P)+ rank(Q) < min{m,n} and rank(Q) ≤ rank(P). Let us define ρ ≡ rank(Q).
Let ε1 ≤ · · · ≤ εp and η1 ≤ · · · ≤ ηq be, respectively, the column and row minimal
indices of P , and JP be the regular structure of the KCF of P . Let us consider the
sequences

d′k =

⌊∑k
i=1 εi + ρ

k − ρ

⌋
for k = ρ + 1, . . . , p and

h′
l =

⌊∑l
i=1 ηi + ρ

l − ρ

⌋
for l = ρ + 1, . . . , q.

Let d′min (h′
min) be the minimum of the sequence {d′k} ({h′

l}), and s′ (t′) be the largest
index such that d′s′ = d′min (h′

t′ = h′
min) and d′s′ ≥ εs′ (h′

t′ ≥ ηt′). Then, for generic
pencils Q(λ) with rank ρ, (P + Q)(λ) has exactly p − ρ column minimal indices and
q − ρ row minimal indices and the following hold:

1. The p−s′ largest column minimal indices of (P +Q)(λ) are εs′+1 ≤ · · · ≤ εp.
2. The s′ − ρ smallest column minimal indices of (P +Q)(λ), ε̂1 ≤ · · · ≤ ε̂s′−ρ,

satisfy ερ+j ≤ ε̂j for j = 1, . . . , s′ − ρ and ε̂1 ≤ d′min.
3. The q − t′ largest row minimal indices of (P + Q)(λ) are ηt′+1 ≤ · · · ≤ ηq.
4. The t′ − ρ smallest row minimal indices of (P + Q)(λ), η̂1 ≤ · · · ≤ η̂t′−ρ,

satisfy ηρ+j ≤ η̂j for j = 1, . . . , t′ − ρ and η̂1 ≤ h′
min.

5. The regular part of the KCF of (P + Q)(λ) contains JP .

7. Conclusions and open problems. The results presented in this paper are,
as far as we know, the first contribution in the area of generic low rank perturbations
of singular matrix pencils, but they do not solve all the problems of this kind.

A first interesting problem is to consider unperturbed pencils P (λ) with full rank,
i.e., rank(P) = min{m,n}. The full rank square case, m = n, corresponds to unper-
turbed regular pencils. In this case the KCF of P (λ) does not have singular blocks,

528 FERNANDO DE TERÁN AND FROILÁN M. DOPICO

and it is called the Weierstrass canonical form. This problem has been solved in [4].
The full rank rectangular case, m �= n, is an open problem. In this case the KCF of
P (λ) has only one type of singular blocks: n −m column or right singular blocks if
m < n, and m − n row or left singular blocks if m > n. Generically the same holds
for the perturbed pencil (P + Q)(λ), but the dimensions of the singular blocks may
change. A first important task in this setting is to define the precise meaning of low
rank perturbation.

A second open problem is to consider unperturbed pencils P (λ) without full rank,
but perturbations whose rank does not satisfy (1). For instance, if P (λ) is a 100× 200
pencil with rank(P) = 98 and the rank of the perturbations is ρ ≡ rank(Q) = 3, then
the perturbations Q(λ) are, intuitively, low rank perturbations of P (λ). The solution
of this kind of problem is naturally connected with the results presented in this work
and with the first open problem we have discussed in the previous paragraph. In
our specific example, the right decomposition of Q in (7) allows us to write Q(λ) =
Q1(λ)+Q2(λ), where rank(Q1) = 2 and rank(Q2) = 1. Thus, we can split the original
perturbation problem, P+Q = P+Q1+Q2, into two perturbation problems of smaller
rank, P +Q1 and (P +Q1)+Q2. The first one is of the type considered in this work,
and in the second one the unperturbed pencil P + Q1 has generically full rank.

A final open problem has to do with the fact that in some situations the informa-
tion given by the results presented in this paper for the limit case, i.e., rank(P +Q) =
rank(P) + rank(Q) = min{m,n}, of square pencils is irrelevant. Notice that in the
rectangular case—let us assume m < n without loss of generality—our results say
that P +Q does not have row minimal indices, and Theorems 5.8 and 5.10 determine
the generic column minimal indices. Additionally, Theorem 4.4 gives information on
the regular part of P + Q. However, in the square case, although our results are
still true, they may produce irrelevant information. Let us illustrate this with two
examples. The first example is⎡⎣ λ 1 0

0 λ 1
0 0 0

⎤⎦
︸ ︷︷ ︸

P

+

⎡⎣ 0 0 0
0 0 1
0 0 λ

⎤⎦
︸ ︷︷ ︸

Q

=

⎡⎣ λ 1 0
0 λ 2
0 0 λ

⎤⎦
︸ ︷︷ ︸

P+Q

.(52)

Notice that P has rank(P) = 2, minimal indices ε1 = 2 and η1 = 0, and no eigenvalues
because its rank is 2 for all the values of λ. The same holds for the dual pencil. Thus,
P has no regular part. The pencil Q has rank(Q) = 1, minimal indices ε1 = ε2 = 0
and η1 = 0, η2 = 1, and no eigenvalues. However, P + Q has rank(P + Q) = 3;
i.e., it is a regular pencil and does not have minimal indices, neither row nor column
minimal indices. This is predicted by our theory; see Corollary 3.2. In addition,
P +Q has μ = 0 as a triple eigenvalue with only one associated Jordan block. Notice
that the information given by Theorem 4.4 is true—SP+Q(0) = (3, 0, . . .), while
SP⊕Q(0) = (0, 0, . . .)—but irrelevant, because there is not any relationship between
the (nonexistent) regular parts of P and Q and the regular part of P + Q. This first
example illustrates a type of perturbation that destroys all the singular information
of the unperturbed pencil and creates a regular part in P + Q that does not exist at
all in P . Therefore the regular part of P + Q is created from singular parts of P and
Q. Notice that this example is not particular, because once P is fixed and the rank of
the perturbations is fixed to be one, it is generic that rank(P +Q) = 3 (see Theorem
3.1), and P +Q has no minimal indices but only a regular part. The second example
is the following:

LOW RANK PERTURBATION OF KRONECKER STRUCTURES 529[
λ− 1 0

0 0

]
︸ ︷︷ ︸

P

+

[
λ 1 + 2λ
2λ 2 + 4λ

]
︸ ︷︷ ︸

Q

=

[
2λ− 1 1 + 2λ

2λ 2 + 4λ

]
︸ ︷︷ ︸

P+Q

.(53)

In this example, the pencil P has rank(P) = 1, minimal indices ε1 = 0 and η1 = 0,
and one simple eigenvalue equal to 1. The pencil Q has rank(Q) = 1, minimal indices
ε1 = 1 and η1 = 0, and no regular part. The pencil P +Q is regular with determinant
det(P + Q) = 2(1 + 2λ)(λ − 1); this means that P + Q has two simple eigenvalues
equal to −1/2 and 1. Notice that in this case, μ = 1 is an eigenvalue of P and also
of P + Q. This is guaranteed by Theorem 4.4, and it is not a coincidence. But the
new eigenvalue appearing in P +Q, i.e., −1/2, is not related to the regular structure
of P . In both examples, (52) and (53), it seems difficult to say something generic
on the regular part of P + Q beyond Theorem 4.4, except that the new eigenvalues
appearing in P + Q will be generically different from those of P . However, to find
precise conditions for this behavior to hold needs delicate algebraic work and still
remains as an open problem.

Acknowledgments. The authors thank the editor of this paper, Prof. Ilse Ipsen,
and two anonymous referees for many helpful suggestions which have resulted in a
great improvement of the presentation.

REFERENCES

[1] D. L. Boley, The algebraic structure of pencils and block Toeplitz matrices, Linear Algebra
Appl., 279 (1998), pp. 255–279.

[2] I. de Hoyos, Points of continuity of the Kronecker canonical form, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 278–300.

[3] F. de Terán and F. M. Dopico, A note on generic Kronecker orbits of matrix pencils with
fixed rank, SIAM J. Matrix Anal. Appl., submitted, 2006.

[4] F. de Terán, F. M. Dopico, and J. Moro, Low rank perturbation of Weierstrass structure,
SIAM J. Matrix Anal. Appl., submitted, 2005.

[5] A. Edelman, E. Elmroth, and B. Kågström, A geometric approach to perturbation theory of
matrices and matrix pencils. Part II. A stratification-enhanced staircase algorithm, SIAM
J. Matrix Anal. Appl., 20 (1999), pp. 667–699.

[6] G. D. Forney, Jr., Minimal bases of rational vector spaces, with applications to multivariable
linear systems, SIAM J. Control, 13 (1975), pp. 493–520.

[7] M. I. Friswell, U. Prells, and S. D. Garvey, Low-rank damping modifications and defective
systems, J. Sound Vibration, 279 (2005), pp. 757–774.

[8] F. Gantmacher, The Theory of Matrices, AMS Chelsea, Providence, RI, 1998.
[9] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York,

1982.
[10] L. Hörmander and A. Melin, A remark on perturbations of compact operators, Math. Scand.,

75 (1994), pp. 255–262.
[11] N. Karcanias, Minimal bases of matrix pencils: Algebraic Toeplitz structure and geometric

properties, Linear Algebra Appl., 205/206 (1994), pp. 831–868.
[12] H. Langer and B. Najman, Remarks on the perturbation of analytic matrix functions. III,

Integral Equations Operator Theory, 15 (1992), pp. 796–806.
[13] J. Moro and F. M. Dopico, Low rank perturbation of Jordan structure, SIAM J. Matrix Anal.

Appl., 25 (2003), pp. 495–506.
[14] A. Pokrzywa, On perturbations and the equivalence orbit of a matrix pencil, Linear Algebra

Appl., 82 (1986), pp. 99–121.
[15] U. Prells, J. E. Mottershead, and M. I. Friswell, On pole-zero placement by unit-rank

modification, Mechanical Systems and Signal Processing, 17 (2003), pp. 611–633.
[16] S. V. Savchenko, On a generic change in the spectral properties under perturbation by an

operator of rank one, Mat. Zametki, 74 (2003), pp. 590–602.
[17] S. V. Savchenko, On the change in the spectral properties of a matrix under a perturbation

of a sufficiently low rank, Funktsional. Anal. i Prilozhen., 38 (2004), pp. 85–88.
[18] R. C. Thompson, Invariant factors under rank one perturbations, Canad. J. Math., 32 (1980),

pp. 240–245.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 530–553

STABILITY AND FAST ALGORITHMS OF INCOMPLETE LU
FACTORIZATION WITH ZERO-FILL FOR NINE-DIAGONAL

MATRICES∗

ZHENYUE ZHANG† , MIN FANG† , AND JING WANG†

Abstract. Stability and fast algorithms of zero-fill incomplete LU factorization for nonsymmet-
ric nine-diagonal matrices are considered. Based on a convergence analysis of the diagonal sequences
in the LU factors of a monotone nine-diagonal matrix, we give necessary and sufficient conditions
for stably computing the ILU factorization in terms of an extreme solution to a system of nonlinear
equations. Furthermore, the extreme solution is used to construct a fast ILU factorization with much
less cost in flops and storage. Basically we use the standard ILU recursions up to a certain point
and then replace the remaining terms of the recursive sequences by their limit values that can be
determined by the extreme solution. Two strategies, preconditioning the nonlinear system to suit for
Newton iterations and estimating the solution to get a good initial for the iterations, are discussed
for computing the extreme solution efficiently. We also generalize the stability analysis and propose
fast algorithms for nine-diagonal matrices with periodically monotone diagonals or other nonconstant
diagonals. Numerical examples show the efficiency of the proposed fast algorithms.

Key words. incomplete LU factorization, fast algorithm, stability analysis, nine-diagonal matrix

AMS subject classifications. 15A23, 15A06, 65F50

DOI. 10.1137/040608702

1. Introduction. Solving a large sparse system of linear equations continues to
be a major research task in widespread applications. In general, preconditioning is
thought of as a necessary technique for solving a linear system in large scale iteratively.
One line of research in preconditioning is based upon incomplete LU factorization
(ILU) [2, 12, 16, 17, 21].

The stability of factorization plays an important role in the performance of ILU
preconditioning. For symmetric M-matrices or positive definite matrices, ILU fac-
torizations exit and are stable; see [15, 16, 24] for discussions. However, standard
ILU factorizations often fail for highly indefinite and nonsymmetric sparse matrices
because of the instability [5, 9]. It is known that a small pivot can lead to an unsta-
ble ILU process or inaccurate factorization, and the ILU recursions may even break
down. In [6], instabilities involved in the incomplete factorizations were discussed
in detail. In general, a preprocessing on the coefficient matrix is required before or
during factorization to guarantee a stable factorization for the resulting matrix. Such
preprocessing strategies include nonsymmetrical permutation and scaling [19, 7, 3],
or diagonal compensation [2, 18].

Stability of ILU is generally matrix-dependent. For simple two-dimensional par-
tial differential equations (PDE), five-point difference operators are commonly in-
volved and lead to five-diagonal matrices. In [9], stability analysis of ILU with zero
fill-in was given for five-diagonal matrices with constant diagonals that are discretized

∗Received by the editors May 20, 2004; accepted for publication (in revised form) by D. B. Szyld
September 25, 2006; published electronically April 20, 2007. This work was supported in part by
the Special Funds for Major State Basic Research Projects (project G19990328), NSFC (project
60372033), and foundation by the National Key Laboratory of Computational Physics, Institute of
Applied Physics and Computational Mathematics.

http://www.siam.org/journals/simax/29-2/60870.html
†Department of Mathematics, Zhejiang University, Yuquan Campus, Hangzhou, 310027, People’s

Republic of China (zyzhang@zju.edu.cn, svdfang@hotmail.com, wroaring@sohu.com).

530

FAST INCOMPLETE LU FACTORIZATION 531

from a simple two-dimensional non-self-adjoint elliptic problem. The stability was
characterized by a positive root of a quadratic equation. This analysis was extended
to cover the zero fill-in relaxed ILU denoted by RILU(ω) in [10] and the 1-level of
fill-in RILU(1, ω) in [11] for constant five-diagonal matrices. For some PDE such as
Fokker–Planck equations [14], cross-derivative terms play an important role. In that
case, a nine-point difference operator is more stable and has better convergence than
a five-point difference method [20]. Some discussions for preconditioning nine-point
approximation to a convection-diffusion equation were given in [4].

This paper deals with a class of nonsymmetric nine-diagonal matrices that are
generally obtained by nine-point difference approximations for two-dimensional PDE.
We focus our attention on both the stability and related fast algorithms for (approx-
imate) ILU factorization of a nine-diagonal matrix. For a matrix with infinite size,
the stability of ILU of a principal submatrix clearly depends on its matrix size. By
uniform stability, we mean that the ILU of the principal submatrix is still stable when
its matrix size increases infinitely. This makes sense since the number of grids of the
considered domain may be increased to achieve a higher accuracy, though the ma-
trix size is always finite in practice. Interestingly, the uniform stability is associated
with the convergence of nonlinear recursive scheme of the zero-fill ILU factorization.
Indeed, a convergence analysis of the nonlinear recursions touches on two important
issues: conditions for uniformly stable ILU and fast algorithms for (approximate) ILU
factorizations. These two issues are closely related to each other. In fact, if the limit
values can be predetermined, and the iterations have achieved to their limits within
an acceptable accuracy, then the recursive process can be terminated duly and the re-
maining terms of the recursive sequences can be simply replaced by their limit values.
This idea leads to a fast ILU factorization with much less cost in flops and storage.

We will start our discussion on the uniform stability of ILU of diagonally monotone
matrices (nine-diagonal matrices with monotone diagonal sequences in each diagonal).
We will give a detailed analysis of the equivalence between uniform stability and recur-
sive convergence of ILU. The convergence analysis of ILU recursions for a diagonally
monotone matrix leads to a nonlinear system of equations with multiple variables. We
will show that the uniform stability of ILU is equivalent to the existence of positive
solutions to the nonlinear equations. Furthermore, an extreme solution determines
the limit values of the ILU recursion sequences. For numerical computation, we will
give some discussions related to Newton iterations for solving the nonlinear equations:
estimation of the extreme solution and preconditioning the nonlinear equations. An
important property is that the different sequences converge at equivalent convergence
rates. This gives an easy way to check the convergence of ILU recursions.

The discussion for uniformly stable ILU will be generalized to nine-diagonal ma-
trices with periodically monotone matrices, which also yields a fast ILU factorization
in block form. For a matrix which has nonconstant diagonals, an approximate ILU
factorization can also be constructed by applying the fast algorithm to a diagonally
monotone or periodic matrix which is an approximation to this matrix. Our stability
analysis is also true for the zero-fill relaxed ILU (RILU) [2] since the added terms
in RILU do not affect the convergence analysis. It can be generalized to RILU with
level of fill-in. For simplicity, we focus our discussion on the RILU factorization. The
question of selecting the relaxation parameter of RILU is important in applications,
but that is beyond the scope of this paper.

The rest of this paper is organized as follows. In section 2, we give a detailed
analysis to show the equivalence of uniform stability of RILU factorization and con-

532 ZHENYUE ZHANG, MIN FANG, AND JING WANG

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Fig. 1. The structure of a nine-diagonal matrix of order N = 30 with m = 7.

vergence of RILU recursions for diagonally monotone matrices. Some computational
issues related to solving the resulting nonlinear system are discussed in section 3.
We expand the discussions to more general nine-diagonal matrices such as diagonally
periodic matrices in section 4. In section 5, we give fast algorithms for computing the
RILU factorization. Some numerical results are reported in section 6.

2. The uniform stability of RILU for diagonally monotone matrices.
When a nine-point difference method is applied to a linear non-self-adjoint PDE, the
resulting coefficient matrix is a nine-diagonal matrix with the main diagonal and the
first, (m − 1)th, mth, and (m + 1)th upper and lower diagonal lines, where m ≥ 2
depends on the grid size. Figure 1 illustrates the structure of a nine-diagonal matrix.
For simplicity, we write the entries aij of a nine-diagonal matrix A = (aij) as

ai,i = ai, ai,i+1 = −bi, ai+1,i = −b̄i,
ai,i+m−1 = −ci, ai,i+m = −di, ai,i+m+1 = −ei,
ai+m−1,i = −c̄i, ai+m,i = −d̄i, ai+m+1,i = −ēi,

and denote the nine-diagonal matrix by

A = {−ēi,−d̄i,−c̄i,−b̄i, ai,−bi,−ci,−di,−ei}.

For an elliptic PDE, we may assume that ai > 0 and the rest are nonnegative.
An incomplete LU factorization of A may be written in the form A = LD−1U−R

with residual matrix R, where D is a diagonal matrix, L is lower triangular and U
upper triangular, and the diagonal vectors of L, U , and D are equal to each other. In
the case of zero fill-in, L and U have the same sparse structures as the lower and upper
parts of A, respectively. For a nine-diagonal matrix A, the RILU factorization with
zero level of fill-in produces a lower five-diagonal matrix L and an upper five-diagonal
U with

L = {−ēi,−λ̄i,−γ̄i,−β̄i, αi, 0, 0, 0, 0},

U = {0, 0, 0, 0, αi,−βi,−γi,−λi,−ei},

D = diag(α1, α2, . . . , αN),

FAST INCOMPLETE LU FACTORIZATION 533

where N is the size of A. The residual matrix R = LD−1U − A is a five-diagonal
matrix with zero entries outside of the five diagonals: the main diagonal and the
second and (m − 2)th upper and lower diagonals. It is easy to verify that the RILU
factorization can be executed by the following nonlinear recursions:

(2.1)

βi = bi +
γ̄i−m+1λi−m+1

αi−m+1
+

ei−mλ̄i−m

αi−m
, β̄i = b̄i +

γi−m+1λ̄i−m+1

αi−m+1
+

ēi−mλi−m

αi−m
,

γi = ci + λi−1
β̄i−1

αi−1
, γ̄i = c̄i + λ̄i−1

βi−1

αi−1
,(2.2)

λi = di + ei−1
β̄i−1

αi−1
, λ̄i = d̄i + ēi−1

βi−1

αi−1
,(2.3)

αi = ai −
(
βi−1 + ωγi−1

)
β̄i−1

αi−1
−

(
γi−m+1 + ω(ei−m+1 + βi−m+1)

)
γ̄i−m+1

αi−m+1

− λi−mλ̄i−m

αi−m
−

(
ei−m−1 + ωγi−m−1

)
ēi−m−1

αi−m−1
.(2.4)

Here we assume α1 = a1 and

βi = β̄i = λi = λ̄i = γi = γ̄i = 0

if i ≤ 0. Note that if A has a finite size N , the terms eN−m, ēN−m, eN−m+1, ēN−m+1,
γi, γ̄i (i ≥ N −m+2), λi, λ̄i (i ≥ N −m+1) are not involved in the RILU recursions
because they are not in the matrix. So we set γi = γ̄i = 0 for i ≥ N − m + 2 and
λi = λ̄i = 0 for i ≥ N −m + 1 in (2.4); see Algorithm RILU for details.

The RILU recursions result in the seven sequences {αi}, {βi}, {β̄i}, {λi}, {λ̄i},
{γi}, and {γ̄i}. For convenience, we call {ai}, {bi}, {ci}, {di}, {ei}, {b̄i}, {c̄i}, {d̄i},
and {ēi} the input sequences and {αi}, {βi}, {β̄i}, {λi}, {λ̄i}, {γi}, and {γ̄i} the
output sequences. That ILU of A is uniformly stable implies that {αi} has a positive
lower bound. By the recursive formulae (2.2)–(2.4), we have the following obvious
observations.

Lemma 2.1. Assume that {αi} is positive. If all the nine-input sequences are
nonnegative, then

αi ≤ ai, βi ≥ bi, β̄i ≥ b̄i, γi ≥ ci, γ̄i ≥ c̄i, λi ≥ di, λ̄i ≥ d̄i.(2.5)

If we further assume that {ai} is bounded above and the other input sequences have
positive bounds below, then the output sequences are bounded above.

Proof. Since αi > 0 for all i and all the inputs are nonnegative, by the recursions
(2.2)–(2.3), it is obviously true that the outputs except for {αi} are nonnegative at
least. So the first assertion is true by (2.2)–(2.4). The second assertion follows from
(2.4). In fact, by the assumed properties of the input sequences and (2.5), {αi} is
bounded above while the other output sequences have positive lower bounds. Notice
that all the sequences are nonnegative. We have by (2.4) that

0 < αi ≤ ai −
βi−1β̄i−1

αi−1
, ai −

γi−m+1γ̄i−m+1

αi−m+1
, ai −

λi−mλ̄i−m

αi−m
.

Hence βiβ̄i ≤ ai+1ai, γiγ̄i ≤ am+i−1ai, and λiλ̄i ≤ am+iai since αi ≤ ai. It follows
immediately that {βi}, {β̄i}, {γi}, {γ̄i}, {λi}, and {λ̄i} are bounded above since

534 ZHENYUE ZHANG, MIN FANG, AND JING WANG

Algorithm RILU (relaxed incomplete LU factorization).

1. Initialization.
α1 = a1,
γ1 = c1, λ1 = d1, β1 = b1, t1 = b1/a1, γ̄1 = c̄1, λ̄1 = d̄1, β̄1 = b̄1, t̄1 = b̄1/a1,
eN−m = 0, ēN−m = 0.

2. For i = 2, . . . , N − 1
if i < m
βi = bi, β̄i = b̄i,
αi = ai − (βi−1 + ωγi−1)t̄i−1,

else if i = m
u1 = γ1

α1
, ū1 = γ̄1

α1
,

βi = bi + λ1ū1, β̄i = b̄i + λ̄1u1,
αi = ai − (βi−1 + ωγi−1)t̄i−1 − (γ1 + ω(e1 + β1))ū1,

else if i = m + 1

u2 = γ2

α2
, v1 = λ1

α1
, ū2 = γ̄2

α2
, v̄1 = λ̄1

α1
,

βi = bi + λ2ū2 + e1v̄1, β̄i = b̄i + λ̄2u2 + ē1v1,
αi = ai − λ1v̄1 − (βi−1 + ωγi−1)t̄i−1 − (γ2 + ω(e2 + β2))ū2,

else

ui−m+1 = γi−m+1

αi−m+1
, vi−m = λi−m

αi−m
, ūi−m+1 = γ̄i−m+1

αi−m+1
, v̄i−m = λ̄i−m

αi−m
,

βi = bi + λi−m+1ūi−m+1 + ei−mv̄i−m, β̄i = b̄i + λ̄i−m+1ui−m+1 + ēi−mvi−m,
αi = ai − (βi−1 + ωγi−1)t̄i−1 − λi−mv̄i−m

−(γi−m+1 + ω(ei−m+1 + βi−m+1))ūi−m+1 − (ei−m−1 + ωγi−m−1)
ēi−m−1

αi−m−1
,

end if
if i ≤ N −m
γi = ci + λi−1t̄i−1, λi = di + ei−1t̄i−1, γ̄i = c̄i + λ̄i−1ti−1, λ̄i = d̄i + ēi−1ti−1,

else if i = N −m + 1
γi = ci + λi−1t̄i−1, λi = 0, γ̄i = c̄i + λ̄i−1ti−1, λ̄i = 0,

else
γi = 0, λi = 0, γ̄i = 0, λ̄i = 0,

end if
ti = βi/αi, t̄i = β̄i/αi.

3. αN = aN − λN−mλ̄N−m/αN−m − βN−1t̄N−1

−
(
γN−m+1 + ωβN−m+1

)
γ̄N−m+1/αN−m+1

−
(
eN−m−1 + ωγN−m−1

)
ēN−m−1/αN−m−1.

they have positive lower bounds. Finally, {αi} has a positive bound because αi >
βiβ̄i/ai+1.

We say A is diagonally positive if the input sequences are positive. We also say
A is monotone if {ai} is decreasing and the other input sequences are increasing.
Furthermore, A is said to be convergent if its diagonal sequences are convergent. For
a diagonally positive and monotone A, if {αi} is positive, we can conclude that the
outputs are monotone; i.e., {αi} is decreasing and the other output sequences are
increasing. This assertion can be easily verified due to the initial monotonicity

α2 ≤ α1, β2 ≥ β1, γ2 ≥ γ1, λ2 ≥ λ1, β̄2 ≥ β̄1, γ̄2 ≥ γ̄1, λ̄2 ≥ λ̄1,

and the monotone recursions (2.2)–(2.4) of the respective terms. Thus, Lemma 2.1
ensures the convergence of the output sequences. Notice that, by the first assertion of
Lemma 2.1, the input sequences are also bounded and hence convergent. Therefore

FAST INCOMPLETE LU FACTORIZATION 535

the following theorem is true.
Theorem 2.2. Assume that A is a diagonally positive and monotone nine-

diagonal matrix. If the RILU factorization of A is uniformly stable, then A is con-
vergent in the following sense: {αi} is positive and decreasingly convergent, and {βi},
{β̄i}, {λi}, {λ̄i}, {γi}, and {γ̄i} are nonnegative and increasingly convergent.

As a necessary condition for uniformly stable RILU, all the input sequences are
assumed to be convergent. We denote the limit values by a, b, c, d, ā, b̄, c̄, and d̄,
respectively. The limits of the output sequences are denoted by α∗, β∗, γ∗, λ∗, β̄∗,
γ̄∗, and λ̄∗. By (2.2)–(2.4), we obviously have

β∗ = b +
λ∗γ̄∗ + eλ̄∗

α∗ , β̄∗ = b̄ +
λ̄∗γ∗ + ēλ∗

α∗ ,(2.6)

γ∗ = c +
λ∗β̄∗

α∗ , γ̄∗ = c̄ +
λ̄∗β∗

α∗ ,(2.7)

λ∗ = d +
eβ̄∗

α∗ , λ̄∗ = d̄ +
ēβ∗

α∗ ,(2.8)

and

α∗ = a− 1

α∗

(
β∗β̄∗ + γ∗γ̄∗ + λ∗λ̄∗ + eē + ω

(
(ē + β̄∗)γ∗ + (e + β∗)γ̄∗)).(2.9)

We will modify the equalities (2.6)–(2.9) equivalently and yield a compact form
by introducing t∗ = β∗/α∗ and t̄∗ = β̄∗/α∗, the limit values of sequences {ti} and {t̄i}
with ti = βi/αi and t̄i = β̄i/αi. To this end, we substitute (2.7) and (2.8) into (2.6)
and (2.9). By simple calculations, it is easy to verify that (α∗, t∗, t̄∗) is a positive
solution to the following nonlinear system with variables α, t, and t̄:

(b− tα)α + λγ̄ + eλ̄ = 0,(2.10)

(b̄− t̄α)α + λ̄γ + ēλ = 0,(2.11)

(α− a)α + ββ̄ + γγ̄ + λλ̄ + eē + ω
(
(ē + β̄)γ + (e + β)γ̄

)
= 0,(2.12)

where λ = λ(t̄), γ = γ(t̄), λ̄ = λ̄(t), γ̄ = γ̄(t), β = β(α, t), and β̄ = β̄(α, t̄) are simply
defined by

λ = d + et̄, γ = c + λt̄, λ̄ = d̄ + ēt, γ̄ = c̄ + λ̄t, β = tα, β̄ = t̄α.(2.13)

Conversely, if the nonlinear system has a positive solution, the RILU of A is also
uniformly stable.

Theorem 2.3. Assume that A is diagonally positive, monotone, and convergent.
Then the RILU factorization of A is uniformly stable if and only if the nonlinear
equations (2.10)–(2.12) have at least a positive solution (α, t, t̄).

Proof. The necessity has been proven. To show the sufficiency, assume that the
nonlinear equations (2.10)–(2.12) have a positive solution (α, t, t̄). It follows from
(2.13) that β, β̄, λ, λ̄, γ, and γ̄ are positive. Thus the first terms in each of the three
equalities (2.10)–(2.12) must be negative. Hence

β > b, β̄ > b̄, α < a.(2.14)

We use the inequalities above to prove the monotonicity of the outputs⎧⎪⎪⎨⎪⎪⎩
αi−1 ≥ αi > α,
0 ≤ βi−1 ≤ βi < β, 0 ≤ β̄i−1 ≤ β̄i < β̄,
0 ≤ γi−1 ≤ γi < γ, 0 ≤ γ̄i−1 ≤ γ̄i < γ̄,
0 ≤ λi−1 ≤ λi < λ, 0 ≤ λ̄i−1 ≤ λ̄i < λ̄

(2.15)

536 ZHENYUE ZHANG, MIN FANG, AND JING WANG

by induction. From (2.2)–(2.4), (2.9), and (2.14), we see that

β2 = β1 = b < β, β̄2 = β̄1 = b̄ < β̄, α1 ≥ α2 = a− β1β̄1

a
> a− ββ̄

α
> α

and

λ1 ≤ λ2 = d + e
β̄1

α1
< d + e

β̄

α
= λ, λ̄1 ≤ λ̄2 = d̄ + e

β1

α1
< d̄ + e

β

α
= λ̄,

γ1 ≤ γ2 = c + λ1
β1

α1
< c + λ

β

α
= γ, γ̄1 ≤ γ̄2 = c̄ + λ̄1

β1

α1
< c̄ + λ̄

β

α
= γ̄.

Hence (2.15) is true for i = 2.
Assume (2.15) holds for all i ≤ k. Then

λk = d + e
β̄k−1

αk−1
≤ d + e

β̄k

αk
= λk+1 and λk+1 = d + e

β̄k

αk
< d + e

β̄

α
= λ.

Similarly we have

λ̄k ≤ λ̄k+1 < λ̄, βk ≤ βk+1 < β, β̄k ≤ β̄k+1 < β̄,

γk ≤ γk+1 < γ, γ̄k ≤ γ̄k+1 < γ̄, αk < αk+1.

It follows from (2.4) that

αk+1 > a− 1

α

(
β̄β + γ̄γ + λ̄λ + ēe− ω(ēγ + eγ̄ + γ̄β + γβ̄)

)
= α.

Thus (2.15) also holds for i = k + 1. We conclude that αi > α > 0 holds for all i; i.e.,
the RILU factorization is uniformly stable.

The nonlinear system (2.10)–(2.12) may have multiple positive solutions. How-
ever, the solution (α∗, t∗, t̄∗) has the following extreme properties: for any positive
solution (α, t, t̄) of (2.10)–(2.12),

α∗ ≥ α, t∗ ≤ t, t̄∗ ≤ t̄.(2.16)

From the proof in the sufficiency part above, αi ≥ α for all i implies α∗ ≥ α. The
last two inequalities follow from t∗α∗ = β∗ = tα and t̄∗α∗ = β̄∗ = t̄α. Obviously,
(α∗, t∗, t̄∗) is unique. We call it an extreme solution of (2.10)–(2.12).

Clearly, {αi}, {ti}, and {t̄i} determine the convergence behaviors of the other
output sequences. The following theorem shows that all the output sequences converge
at equivalent rates. This is an important property for constructing a fast RILU
factorization which will be discussed in the next section.

Theorem 2.4. If A is diagonally positive, monotone, and convergent, and the
RILU factorization of A is uniformly stable, then all the diagonal sequences of the
RILU factorization converge at equivalent convergence rates. More precisely, we have

(a)
γ̄∗λ∗ + eλ̄∗

(α∗)2α1
≤ t∗ − ti

αi − α∗ ≤ 1

β̄∗ ,
γ∗λ̄∗ + ēλ∗

(α∗)2α1
≤ t̄∗ − t̄i

αi − α∗ ≤ 1

β∗ ,

(b)
γ̄∗λ∗ + eλ̄∗

α∗α1
≤ β∗ − βi

αi − α∗ ≤ α∗

β̄∗ ,
γ∗λ̄∗ + ēλ∗

α∗α1
≤ β̄∗ − β̄i

αi − α∗ ≤ α∗

β∗ ,

(c) λ∗ − λi+1 = e(t̄∗ − t̄i), λ̄∗ − λ̄i+1 = ē(t∗ − ti),

(d)
λ∗(γ̄∗λ∗ + eλ̄∗)

(α∗)2α1
≤ γ∗ − γi+2

αi − α∗ ≤ et̄∗ + λ∗

β∗ ,
λ̄∗(γ∗λ̄∗ + ēλ∗)

(α∗)2α1
≤ γ̄∗ − γ̄i+2

αi − α∗ ≤ ēt∗ + λ̄∗

β̄∗ .

FAST INCOMPLETE LU FACTORIZATION 537

Proof. The monotonicity of the sequences will be repeatedly used without com-
ment. Substituting all terms in (2.4) except for the second one by their limit values,
we have

αi ≥ a∗−β̄∗ti−1−
ωγ∗β̄∗

α∗ −
(
γ∗ + ω(e + β∗)

)
γ̄∗

α∗ −λ∗λ̄∗

α∗ −
(
e + ωγ∗)ē

α∗ = α∗+β̄∗(t∗−ti−1).

The equality on the right follows from (2.9). So t∗ − ti ≤ t∗ − ti−1 ≤ αi−α∗

β̄∗ . Again,

by αi ≥ α∗, we get

β∗ − βi = α∗t∗ − αiti ≤ α∗(t∗ − ti) ≤
α∗

β̄∗ (αi − α∗).

On the other hand, by (2.2) and (2.6),

β∗ − βi ≥ (γ̄∗λ∗ + eλ̄∗)

(
1

α∗ − 1

αi

)
=

γ̄∗λ∗ + eλ̄∗

α∗αi
(αi − α∗) ≥ γ̄∗λ∗ + eλ̄∗

α∗α1
(αi − α∗)

and

t∗ − ti =
β∗

α∗ − βi

αi
≥ β∗ − βi

α∗ ≥ γ̄∗λ∗ + eλ̄∗

(α∗)2α1
(αi − α∗) .

Thus, the bounds of t∗−ti
αi−α∗

i
and β∗−βi

αi−α∗
i

in (a) and (b) hold. Similarly, we can prove (a)

and (b) for t̄∗−t̄i
αi−α∗

i
and β̄∗−β̄i

αi−α∗
i
. The equalities in (c) follow directly from the definition.

Finally, the recursions (2.2) and (2.8) give

γ∗−γi+2 = λ∗t̄∗−λi+1t̄i+1 = (λ∗−λi+1)t̄
∗+λi+1(t̄

∗−t̄i+1) = et̄∗(t̄∗−t̄i)+λi+1(t̄
∗−t̄i+1).

By the inequalities t̄∗ − t̄i+1 ≤ t̄∗ − t̄i, d ≤ λi+1 ≤ λ∗, we have

λ∗(t̄∗ − t̄i+1) = (et̄∗ + d) (t̄∗ − t̄i+1) ≤ γ∗ − γi+2 ≤ (et̄∗ + λ∗) (t̄∗ − t̄i).

Therefore (d) follows immediately from the bounds given in (a).
It is convenient to check the convergence of the RILU recursions using the uniform

properties shown in Theorem 2.4, meaning that we only have to check the convergence
of {αi}, provided that the limit α∗ can be predetermined.

3. Computing the extreme solution. It is difficult to formulate solutions of
the nonlinear system (2.10)–(2.12). The common method is to use Newton iterations,
and that is what we are going to do. However, to improve efficiency, the system
of equations (2.10)–(2.12) will be preconditioned such that the resulting nonlinear
system also has the extreme solution and can be computed by the Newton method
applied on the new system. We also give an estimation of the extreme solution to find
an initial guess for the Newton iterations.

3.1. Estimation of the extreme solution. The following lower bounds of λ∗,
λ̄∗, γ∗, and γ̄∗ come directly from (2.13):

λ∗ ≥ d, γ∗ ≥ c, λ̄∗ ≥ d̄, γ̄∗ ≥ c̄.

By (2.6) we have lower bounds

β∗ ≥ b + (c̄d + ed̄)/α∗, β̄∗ ≥ b̄ + (cd̄ + ēd)/α∗(3.1)

538 ZHENYUE ZHANG, MIN FANG, AND JING WANG

of β∗ and β̄∗. For convenience, we will use the simple lower bounds b and b̄ for β∗

and β̄∗. Substituting these bounds into (2.12) and by simple calculations, we obtain

(α∗)2 − aα∗ + (bb̄ + cc̄ + dd̄ + eē) + ω
(
(ē + b̄)c + (e + b)c̄

)
≤ 0,

an inequality quadratic in α∗. It implies the necessary condition

a2 ≥ 4
(
bb̄ + cc̄ + dd̄ + eē + ω(ēc + c̄b + ec̄ + cb̄)

)
for uniformly stable RILU, and α∗ is bounded by the two roots,

a−
√

Δ

2
≤ α∗ ≤ a +

√
Δ

2
,(3.2)

where Δ = a2 − 4(bb̄+ cc̄+ dd̄+ eē+ω(ēc+ c̄b+ ec̄+ cb̄)). Thus, (3.1) and (3.2) yield
the lower bounds

t∗ ≥ 2b

a +
√

Δ
+

4(c̄d + ed̄)

(a +
√

Δ)2
, t̄∗ ≥ 2b̄

a +
√

Δ
+

4(cd̄ + ēd)

(a +
√

Δ)2
(3.3)

for t∗ = β∗/α∗ and t̄∗ = β̄∗/α∗. We summarize these results in the following theorem.
Theorem 3.1. If A is diagonally positive, monotone, and convergent, and the

RILU factorization of A is uniformly stable, then the extreme solution (α∗, t∗, t̄∗) of
(2.10)–(2.12) is bounded as in (3.2) and (3.3).

3.2. Preconditioning (2.10)–(2.12) for the extreme solution. We will pre-
condition (2.10)–(2.12) and establish an equivalent system of two nonlinear equations
that involve t and t̄ only. It is obvious that (2.10) and (2.11) are equivalent to

α = 1
2t

(
b +

√
b2 + 4t(λγ̄ + eλ̄)

)
≡ φ(t, t̄),

α = 1
2t̄

(
b̄ +

√
b̄2 + 4t̄(λ̄γ + ēλ)

)
≡ φ̄(t, t̄),

(3.4)

respectively. This leads to the first equation φ(t, t̄) = φ̄(t, t̄).
There are many approaches to derive equivalent representations of α in terms of

t and t̄ to get the second equation. For example, eliminating the square term of α in
(2.10) and (2.12) yields

α =
t
(
γγ̄ + λλ̄ + eē + ω(ēγ + eγ̄)

)
+ (1 + tt̄)(λγ̄ + eλ̄)

t
(
a− ω(γ̄t + γt̄)

)
− b(1 + tt̄)

≡ η(t, t̄).

Likewise, from (2.11) and (2.12) we obtain

α =
t̄
(
γγ̄ + λλ̄ + eē + ω(ēγ + eγ̄)

)
+ (1 + tt̄)(λ̄γ + ēλ)

t̄
(
a− ω(γ̄t + γt̄)

)
− b̄(1 + tt̄)

≡ η̄(t, t̄).

One can prove that (2.10)–(2.12) have positive solutions if and only if

η(t, t̄) = φ(t, t̄) = φ̄(t, t̄)(3.5)

FAST INCOMPLETE LU FACTORIZATION 539

have positive solutions and that (t∗, t̄∗) with t∗ = β∗

α∗ and t̄∗ = β̄∗

α∗ is the smallest
positive solution of (3.5).

However, we do not want to let η(t, t̄) = φ(t, t̄) be the second equation for deter-
mining the extreme solution (t∗, t̄∗) because η(t, t̄) has relative large partial derivatives
nearby (t∗, t̄∗). Newton-like iterative methods converge slowly if partial derivatives
are large in a neighborhood of a solution. Fortunately, a flatter function is available
and can be derived as follows.

Substitute β = tα and β̄ = t̄α into (2.12), and denoting

ζ = γγ̄ + λλ̄ + eē,+ω(ēγ + eγ̄),

we obtain

(1 + tt̄)α2 + (ω(γ̄t + γt̄) − a)α + ζ = 0.(3.6)

Then we have α = ψ+(t, t̄), where

ψ+(t, t̄) =
a− ω(γ̄t + γt̄) +

√
(a− ω(γ̄t + γt̄))2 − 4(1 + tt̄)ζ

2(1 + tt̄)
(3.7)

is the largest root of the quadratic equation (3.6). We will use φ(t, t̄) = ψ+(t, t̄) as
the second equation to determine the extreme solution (t∗, t̄∗), together with φ(t, t̄) =
φ̄(t, t̄). Theorem 3.3 below shows the equivalence between the system of these two
equations and the system (2.10)–(2.12). We remark that the smallest root ψ−(t, t̄) of
the quadratic equation (3.6) cannot be chosen to compute (t∗, t̄∗), due to its increasing
property shown in the following lemma. This lemma is also used in the proof of
Theorem 3.3.

Lemma 3.2. Let ψ−(t, t̄) be the smallest root of the equation (3.6). Then for
t > 0 and t̄ > 0,

∂ψ−(t, t̄)

∂t
> 0,

∂ψ−(t, t̄)

∂t̄
> 0.

Proof. Let

h(t, t̄) = ω(γ̄t + γt̄) − a, g(t, t̄) = γγ̄ + λλ̄ + eē + ω(ēγ + eγ̄).

We have

(1 + tt̄)ψ2
−(t, t̄) + h(t, t̄)ψ−(t, t̄) + g(t, t̄) ≡ 0.

Taking the partial derivative with respect to t yields

(2(1 + tt̄)ψ− + h)
∂ψ−
∂t

+ F (t, t̄) = 0,

where F (t, t̄) = t̄ψ2
− + ∂h

∂t ψ− + ∂g
∂t > 0 for positive t and t̄, since ∂h

∂t > 0 and ∂g
∂t > 0.

On the other hand,

ψ− <
ψ− + ψ+

2
= − h

2(1 + tt̄)
.

Hence 2(1 + tt̄)ψ− + h < 0. Therefore, ∂ψ−
∂t = − F

2(1+tt̄)ψ−+h > 0. Similarly, one can

prove that the partial derivative of ψ− with respective to t̄ is also positive.

540 ZHENYUE ZHANG, MIN FANG, AND JING WANG

Theorem 3.3. There exists a positive solution to (2.10)–(2.12) if and only if the
nonlinear system

ψ+(t, t̄) = φ(t, t̄) = φ̄(t, t̄)(3.8)

has a positive solution. Furthermore, the limit (t∗, t̄∗) of {(ti, t̄i)} is the smallest
solution of (3.8).

Proof. The proof for sufficiency is simple. If (3.8) has a positive solution (t, t̄),
then the value α = ψ+(t, t̄) = φ(t, t̄) = φ̄(t, t̄) is positive and hence (α, t, t̄) satisfies
(2.10)–(2.12) by (3.4) and (3.7).

Conversely, if (2.10)–(2.12) has positive solutions, then for the extreme solution
(α∗, t∗, t̄∗), α∗ = φ(t∗, t̄∗) = φ̄(t∗, t̄∗). So (t∗, t̄∗) solves (3.8) if we can prove α∗ =
ψ+(t∗, t̄∗). To this end, we consider the RILU of the diagonally constant matrix

A = {−ē,−d̄,−c̄,−b̄, a,−b,−c,−d,−e}.

By Theorem 2.3, the RILU factorization is uniformly stable and hence, by Theorem
2.2, the output sequences are positive and monotone convergent: {αi} is decreasing
and the others are increasing. Therefore,

αi ≥ αi+1 ≥ a−tit̄iαi−
γ̄i+1γi+1 + λ̄i+1λi+1 + ēe

αi
−ω

(ēγi+1 + eγ̄i+1

αi
+γ̄i+1ti+γi+1t̄i

)
.

Notice that λi+1 = λ(t̄i) and λ̄i+1 = λ̄(ti) as defined in (2.13). We also have γi+1 ≥
γ(t̄i) and γ̄i+1 ≥ γ̄(ti). Substituting them into the inequality for αi above yields the
quadratic inequality

(1 + tit̄i)α
2
i +

(
ω
(
γ̄(ti)ti + γ(t̄i)t̄i

)
− a

)
αi

+ γ(t̄i)γ̄(ti) + λ(t̄i)λ̄(ti) + eē + ω
(
ēγ(t̄i) + eγ̄(ti)

)
≥ 0

for αi. Thus, αi ≤ ψ−(ti, t̄i) or αi ≥ ψ+(ti, t̄i), where ψ−(ti, t̄i) and ψ+(ti, t̄i) are the
two roots of the quadratic function. Notice that (αi, ti, t̄i) → (α∗, t∗, t̄∗). So α∗ is a
root of the quadratic equation (3.6) with t = t∗ and t̄ = t̄∗, and the limit ψ−(t∗, t̄∗)
of {ψ−(ti, t̄i)} is the smallest root. We conclude that αi ≥ ψ+(ti, t̄i) for all i because
{αi} is monotonic decreasing and {ψ−(ti, t̄i)} is increasing by Lemma 3.2. Therefore
α∗ = ψ+(t∗, t̄∗), completing the proof.

Notice that the equation φ = ψ− may give unwanted solutions, and ψ+ has a
much smaller derivative than η in a neighborhood of the smallest solution (t∗, t̄∗).
We illustrate these phenomena by two symmetric examples with different values of
b = b̄, c = c̄, d = d̄, e = ē. Obviously, t = t̄ and φ = φ̄, and we simply write φ(t, t̄)
as φ(t) and do the same for other functions. In Figure 2, we plot the four curves of
φ, η, ψ+, and ψ− of two examples. Obviously, the nonlinear equation φ = ψ− does
not take t∗ as a solution. Meanwhile, η = ψ− may have no solutions, as shown in the
diagraph on the left, or an unwanted solution, in the diagraph on the right. Compared
with η, ψ+ has a much smaller derivative than η nearby the smallest solution. As
we mentioned, this property makes the Newton method converge quickly if we use
φ = ψ+ rather than φ = η.

We also illustrate the equivalence between the convergence of the Newton itera-
tions and the uniform stability of the RILU factorization. The matrix used in each
testing is

A = {−ē,−d̄,−c̄,−b̄, a,−b,−c,−d,−e}

FAST INCOMPLETE LU FACTORIZATION 541

0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

18

20

t

 φ
 η
 ψ

+

 ψ
−

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

14

16

t

 φ
 η
 ψ

+

 ψ
−

Fig. 2. Plots of the curves φ(t), η(t), ψ+(t), and ψ−(t) for symmetric A. The equation φ = ψ−
gives an unwanted solution. ψ+ is flatter than η nearby the smallest solution t∗ of φ = ψ+.

with fixed b = 2, b̄ = 3, c = 3, c̄ = 2, d = 2, d̄ = 3, e = 2, ē = 1 and one of eight
values of a from 13.25 to 13.4. Half of the eight values yield uniformly stable ILU,
and the other half yield unstable ILU. In each testing, we also compute the extreme
solution of (2.10)–(2.12) by Newton iterations, using the lower bounds

t0 =
2b

a +
√

Δ
+

4(c̄d + ed̄)

(a +
√

Δ)2
, t̄0 =

2b̄

a +
√

Δ
+

4(cd̄ + ēd)

(a +
√

Δ)2
(3.9)

given by Theorem 3.1 as the initial guess. The convergence of the Newton method
conforms to the uniform stability of ILU completely. See Table 1 for the computed
results, where “div.,” “conv.,” “unstab.,” and “u.stab.” stand for “divergent,” “con-
vergent,” “unstable,” and “uniformly stable,” respectively.

Table 1

Consistency between the convergence of Newton iterations and the uniform stability of ILU.

a 13.25 13.30 13.34 13.35 13.36 13.37 13.38 13.40
Newton div. div. div. div. conv. conv. conv. conv.

ILU unstab. unstab. unstab. unstab. u.stab. u.stab. u.stab. u.stab.

4. Generalization for diagonally variable matrices. For the general case
when A is diagonally variable, it is quite difficult to give a detailed analysis for the
uniform stability of RILU factorization. In this section, we will generalize the stability
analysis in two cases: (1) nine-diagonal matrices dominated by diagonally constant
matrices and (2) periodically monotone matrices.

Definition 4.1. Let

A = {−ēi,−d̄i,−c̄i,−b̄i, ai,−bi,−ci,−di,−ei},
A∗ = {−ē∗i ,−d̄∗i ,−c̄∗i ,−b̄∗i , a

∗
i ,−b∗i ,−c∗i ,−d∗i ,−e∗i }

be two nine-diagonal matrices. We say that A is dominated by A∗ if ai ≥ a∗i and

ei ≤ e∗i , di ≤ d∗i , ci ≤ c∗i , bi ≤ b∗i ,

ēi ≤ ē∗i , d̄i ≤ d̄∗i , c̄i ≤ c̄∗i , b̄i ≤ b̄∗i .

542 ZHENYUE ZHANG, MIN FANG, AND JING WANG

There are many ways to construct a diagonally constant or monotone matrix that
dominates A. For example, defining

a∗ = inf
k
ak, b∗ = sup

k
bk, c∗ = sup

k
ck, d∗ = sup

k
dk, e∗ = sup

k
ek(4.1)

yields a diagonally constant matrix A∗, while setting

a∗i = min
k≤i

ak, b∗i = max
k≤i

bk, c∗i = max
k≤i

ck, d∗i = max
k≤i

dk, e∗i = max
k≤i

ek(4.2)

produces a diagonally monotone matrix A∗. Clearly, the two matrices defined by (4.1)
or (4.2) dominate A.

Let A∗ = L∗(D∗)−1U∗ −R∗ be the RILU factorization of a dominant matrix A∗

of A, where

L∗ = {−ē∗i ,−λ̄∗
i ,−γ̄∗

i ,−β̄∗
i , α

∗
i , 0, 0, 0, 0}, U∗ = {0, 0, 0, 0, α∗

i ,−β∗
i ,−γ∗

i ,−λ∗
i ,−e∗i },

and D∗ = diag(. . . , α∗
i , . . .).

Theorem 4.2. If A is dominated by A∗ and the RILU factorization of A∗ is uni-
formly stable, then the RILU factorization of A is also uniformly stable. Furthermore,
L, D, and U are dominated by L∗, D∗, and U∗, respectively; i.e.,

α∗
i ≤ αi,(4.3)

β∗
i ≥ βi, γ∗

i ≥ γi, λ∗
i ≥ λi, β̄∗

i ≥ β̄i, γ̄∗
i ≥ γ̄i, λ̄∗

i ≥ λ̄i.(4.4)

Proof. We prove the theorem by induction. Obviously (4.3) and (4.4) hold for
i = 1 since α1 = a1 ≥ a∗1 = α∗

1 and β1 = b1 ≤ b∗1 = β∗
1 .

Assume that (4.3) and (4.4) hold for i ≤ k − 1. Since A is dominated by A∗, it
follows from (2.3) that

λk = dk + ek
βk−1

αk−1
≤ d∗k + e∗k

β∗
k−1

α∗
k−1

= λ∗
k.

Similarly, by (2.2)–(2.3), one can prove the other inequalities in (4.4) for i = k. Then
(4.3) with i = k follows from (2.4) and (4.4) immediately, completing the proof.

For a diagonally positive, monotone, and convergent nine-diagonal matrix A, we
denote by

A∗ = {−ē,−d̄,−c̄,−b̄, a,−b,−c,−d,−e}

the diagonally constant matrix consisting of the limit values of the input sequences.
Obviously, A is dominated by A∗. Using Theorem 2.3, the following equivalence
between A and A∗ can be proven easily.

Theorem 4.3. Assume that A is diagonally positive, monotone, and conver-
gent. Then the RILU factorization of A is uniformly stable if and only if the RILU
factorization of its limit matrix A∗ is uniformly stable.

4.1. Block-convergence for periodically monotone matrices. In general,
matrices obtained from two-dimensional PDE by a nine-point difference scheme are
not diagonally constant or monotone. Because of the block-tridiagonal form of the
resulting matrices, the off-diagonals are periodically zero with period m. These pe-
riodic zeros can be simply replaced by constants to construct a dominate matrix A∗

FAST INCOMPLETE LU FACTORIZATION 543

as in (4.1) or (4.2), if A is diagonally monotone except for the periodic zeros. How-
ever, the conditions of uniformly stable RILU of A in terms of the parameters in
A∗ may be unnecessarily strict. In this subsection, we consider a more general case
for nine-diagonal matrices with periodically monotone properties without involving a
dominant matrix of A.

For a sequence {xi}, let

x(k) = (xkm+1, xkm+2, . . . , xkm+m)

be the kth periodic section of {xi} with period m, where m is the same as before.
Obviously, {x(k)} is increasing (convergent) if and only if for any (fixed) i, 1 ≤ i ≤ m,
the subsequence {xkm+i}∞k=1 is increasing (convergent).

Definition 4.4. We say A = {−ēi,−d̄i,−c̄i,−b̄i, ai,−bi,−ci,−di,−ei} is m-
periodically monotone if {a(k)} is monotonically decreasing and {b(k)} and the others
are monotonically increasing.

Theorem 4.5. Assume A = {−ēi,−d̄i,−c̄i,−b̄i, ai,−bi,−ci,−di,−ei} is m-
periodically monotone with positive {ai} and nonnegative {bi}, {ci}, {di}, {ei}, {b̄i},
{c̄i}, {d̄i}, and {ēi}. If the RILU factorization of A is uniformly stable, then the diag-
onal sequences {α(k)}, {β(k)}, {β̄(k)}, {λ(k)}, {λ̄(k)}, {γ(k)}, {γ̄(k)} are monotonically
convergent.

Proof. We first prove that {α(k)} is decreasing and {β(k)} and the others are
increasing; i.e.,

αi+km ≥ αi+(k+1)m,
βi+km ≤ βi+(k+1)m, λi+km ≤ λi+(k+1)m, γi+km ≤ γi+(k+1)m,
β̄i+km ≤ β̄i+(k+1)m, λ̄i+km ≤ λ̄i+(k+1)m, γ̄i+km ≤ γ̄i+(k+1)m

(4.5)

for i = 1, . . . ,m and k ≥ 0.
Consider the initial case when k = 0. Since αi > 0 for all i, all the output

sequences are nonnegative (see Lemma 2.1). It follows immediately that (4.5) holds
for i = 1. Note that for i ≤ m − 1, βm+i ≥ bm+i = bi = βi and β̄m+i ≥ β̄i. Assume
that (4.5) is true for i < j with fixed j ≤ m. Then for i = j,

γm+i = cm+i + λm+i−1
β̄m+i−1

αm+i−1
≥ ci + λi−1

β̄i−1

αi−1
= γi,

and also γ̄m+i ≥ γ̄i, λm+i ≥ λi, and λ̄m+i ≥ λ̄i. If i = j < m, by (2.4) we have

αm+i = am+i −
(
βm+i−1 + ωγm+i−1

)
β̄m+i−1

αm+i−1

−
(
γi+1 + ω(ei+1 + βi+1)

)
γ̄i+1

αi+1
− ωēi−1γi−1

αi−1

≤ am+i −
(
βm+i−1 + ωγm+i−1

)
β̄m+i−1

αm+i−1

≤ ai −
(
βi−1 + ωγi−1

)
β̄i−1

αi−1
= αi.

If i = j = m, we also have

αm+i ≤ am+i −
(
βm+i−1 + ωγm+i−1

)
β̄m+i−1

αm+i−1
−

(
γi+1 + ω(ei+1 + βi+1)

)
γ̄i+1

αi+1
= αi.

544 ZHENYUE ZHANG, MIN FANG, AND JING WANG

So (4.5) holds for i ≤ m when k = 0.
Because of the periodicity assumption of A, (4.5) holds for all k ≥ 0 and i ≤ m.

For example, if (4.5) is true for k = j − 1, then for k = j,

βkm+i = bkm+i +
γ̄(k−1)m+i+1λ(k−1)m+i+1

α(k−1)m+i+1
+

e(k−1)m+iλ̄(k−1)m+i

α(k−1)m+i

≤ b(k+1)m+i +
γ̄km+i+1λkm+i+1

αkm+i+1
+

ekm+iλ̄km+i

αkm+i
= β(k+1)m+i.

The m-block convergence of the output sequences follows from the boundedness
of {αi}. In fact,

0 < αi+1 ≤ ai+1 −
βiβ̄i

αi
≤ ai+1 −

bb̄

αi
≤ a1 −

bb̄

αi
,

giving αi >
bb̄
a1

. Similar to Lemma 2.1, using the m-block monotonicity in (4.5), we

conclude that {βi}, {β̄i}, {λi}, {λ̄i}, {γi}, and {γ̄i} are bounded above. Therefore,
all these sequences are m-block convergent, and {α(k)} converges to a positive vec-
tor.

Let α∗ = (α∗
1, . . . , α

∗
m) be the limit vector of the vector sequence {α(k)}, and we

similarly define β∗, γ∗, λ∗, β̄∗, γ̄∗, and λ̄∗. Also let A∗ be the diagonally periodic
matrix consisting of these limit vectors. Similar to Theorem 4.3, one can prove that
the RILU of a diagonally m-monotone matrix A is uniformly stable if and only if the
RILU of A∗ is uniformly stable.

These limit vectors can be obtained by solving nonlinear equations that are con-
structed as follows. Let t∗i = β∗

i /α
∗
i and t̄∗i = β̄∗

i /α
∗
i . For i = 1, . . . ,m, we have

α∗
i t

∗
i = bi +

γ̄∗
i+1λ

∗
i+1

α∗
i+1

+
eiλ̄

∗
i

α∗
i

, α∗
i t̄

∗
i = b̄i +

γ∗
i+1λ̄

∗
i+1

α∗
i+1

+
ēiλ

∗
i

α∗
i

,(4.6)

γ∗
i = ci + λ∗

i−1t̄
∗
i−1, γ̄∗

i = c̄i + λ̄∗
i−1t

∗
i−1,(4.7)

λ∗
i = di + ei−1t̄

∗
i−1, λ̄∗

i = d̄i + ēi−1t
∗
i−1,(4.8)

α∗
i = ai − α∗

i−1t
∗
i−1t̄

∗
i−1 −

(γ∗
i+1+ωei+1)γ̄

∗
i+1

α∗
i+1

− λ̄∗
i λ

∗
i

α∗
i

− (ei−1+ωγ∗
i−1)ēi−1

α∗
i−1

− ω(t̄∗i−1γ
∗
i−1 + t∗i+1γ̄

∗
i+1),

(4.9)

where e0 = em, em+1 = e1, ē0 = ēm, and ēm+1 = ē1. In the same vein, α∗
0 = α∗

m and
α∗
m+1 = α∗

1. It is similar for other limit values. Let

λi(t) = di+ei−1t, λ̄i(t) = d̄i+ēi−1t, γi(t, s) = ci+λi−1(s)t, γ̄i(t, s) = c̄i+λ̄i−1(s)t

with the periodicity constraints: αi = αj , ti = tj , and t̄i = t̄j , if |i − j| = m. Then
λ∗
i = λi(t̄

∗
i−1), λ̄

∗
i = λ̄i(t

∗
i−1), γ

∗
i = γi(t̄

∗
i−1, t̄

∗
i−2), and γ̄∗

i = γ̄i(t
∗
i−1, t

∗
i−2). Substituting

these equalities into (4.6) and (4.9) yields

f(α, t, t̄) = 0, f̄(α, t, t̄) = 0, g(α, t, t̄) = 0,(4.10)

in the variables α = (α1, . . . , αm)T , t = (t1, . . . , tm)T , and t̄ = (t̄1, . . . , t̄m)T , where f ,
f̄ , and g are m-dimensional vector functions with components

fi(α, t, t̄) = bi − αiti +
γ̄i+1(ti, ti−1)λi+1(t̄i)

αi+1
+

eiλ̄i(ti−1)

αi
,

FAST INCOMPLETE LU FACTORIZATION 545

f̄i(α, t, t̄) = b̄i − αit̄i +
γi+1(t̄i, t̄i−1)λ̄i+1(ti)

αi+1
+

ēiλi(t̄i−1)

αi
,

gi(α, t, t̄) = αi − ai + αi−1ti−1t̄i−1 +

(
γi+1(t̄i, t̄i−1) + ωei+1

)
γ̄i+1(ti, ti−1)

αi+1

+
λ̄i(ti−1)λi(t̄i−1)

αi
+

(
ei−1 + ωγi−1(t̄i−2, t̄i−3)

)
ēi−1

αi−1

+ω
(
t̄i−1γi−1(t̄i−2, t̄i−3) + ti+1γ̄i+1(ti, ti−1)

)
.

As shown in the last section, the limit vectors α∗ = (α∗
1, . . . , α

∗
m), t∗ = (t∗1, . . . , t

∗
m),

and t̄∗ = (t̄∗1, . . . , t̄
∗
m) are the extreme solutions to the nonlinear system (4.10).

Newton-like iterations can solve (4.10) if we first run the RILU for several steps
to get a good initial guess for the extreme solutions.

5. Fast algorithms of approximate RILU. In this section, we give two fast
algorithms for computing RILU factorization, one for diagonally monotone matrices
and the other for diagonally m-monotone matrices. Basically, we first run the stan-
dard RILU recursions until the output diagonal sequences are convergent or block-
convergent within a given accuracy, and then replace the remaining terms in the
recursions by their limit values, except for the last few components of {αi}.

5.1. Fast RILU for diagonally monotone matrices. For a given diagonally
monotone nine-diagonal matrix A of order N , we set the parameters in the definitions
(3.4) and (3.7) of φ(t, t̄), φ̄(t, t̄), and ψ+(t, t̄) by the last components of the input
sequences. For example, set a = aN , b = bN−1, c = cN−m+1, d = dN−m, and
e = eN−m−1. We solve the nonlinear equations (3.8) for the smallest solution (t∗, t̄∗)
by Newton iterations, starting at the initial guess shown in (3.9). (One can also run
several steps of RILU recursions first and take the last (ti, t̄i) as an initial guess for
the Newton iteration.) The stopping criterion is∥∥∥∥(t(k+1) − t(k)

t̄(k+1) − t̄(k)

)∥∥∥∥ < τ(5.1)

with accuracy parameter τ . As soon as t∗ and t̄∗ are computed, we set α∗ = ψ+(t∗, t̄∗),
β∗ = α∗t∗, β̄∗ = α∗t̄∗, and γ∗, γ̄, λ∗, λ̄∗ as defined in (2.7)–(2.8). We use

|αk − α∗| < εα∗(5.2)

as the stopping criterion of the RILU recursions with accuracy parameter ε. Because
the matrix size is always finite in applications, the terms γi, γ̄i (i ≥ N−m+2) and λi,
λ̄i (i ≥ N −m + 1), including βN , β̄N , and eN−m, are not in the matrix. Therefore,
for max(k + 1, N −m + 3) ≤ i ≤ N , the last several terms αi are evaluated by

αi = ai − βi−1β̄i−1

αi−1
−

(
γi−m+1+ω(ei−m+1+βi−m+1)

)
γ̄i−m+1

αi−m+1

− λi−mλ̄i−m

αi−m
−

(
ei−m−1+ωγi−m−1

)
ēi−m−1

αi−m−1
, i ≤ N − 2,

(5.3)

αi = ai − βi−1β̄i−1

αi−1
−

(
γi−m+1+ωβi−m+1

)
γ̄i−m+1

αi−m+1

−λi−mλ̄i−m

αi−m
−

(
ei−m−1+ωγi−m−1

)
ēi−m−1

αi−m−1
, i = N − 1, N.

(5.4)

Note that if k ≤ N − 2m + 2, all the terms on the right of (5.3) and (5.4) can be
replaced by their limit values.

546 ZHENYUE ZHANG, MIN FANG, AND JING WANG

Now we are ready to present the fast algorithm FRILU for computing RILU
factorization of a diagonally monotone matrix.

Algorithm FRILU-I (fast RILU for diagonally monotone matrices).
Step 0. Initialization.

(0) Set a = aN , b = bN−1, c = cN−m+1, d = dN−m, e = eN−m−1,
b̄ = b̄N−1, c̄ = c̄N−m+1, d̄ = d̄N−m, ē = ēN−m−1.

(1) Determine the thresholds τ for Newton iteration and ε for RILU.
Step 1. Compute the limits of the output sequences of RILU.

(2) Solve (3.8) for the smallest positive (t∗, t̄∗) by Newton method with the
stopping criterion (5.1).

(3) If the computed (t∗, t̄∗) is not positive (no stable RILU), terminate.
Otherwise set α∗ = ψ(t∗, t̄∗), β∗ = α∗t∗, β̄∗ = α∗t̄∗, and γ∗, γ̄, λ∗, λ̄∗

as in (2.7)–(2.8).
Step 2. Partial RILU recursions.

(4) Run the algorithm RILU until αk satisfies |αk − α∗| < εα∗ or k = N .
Step 3. Set the remaining outputs.

(5) Set βi = β∗, γi = γ∗, λi = λ∗, β̄i = β̄∗, γ̄i = γ̄∗, λ̄i = λ̄∗ for i > k.
(6) Set αi = α∗ for k < i ≤ N −m + 2, and compute αi by (5.3)–(5.4) for

i > max(k,N −m + 2).

5.2. Fast RILU for m-periodically monotone matrices. We use the stop-
ping criteria

‖α(k) − α(k−1)‖ < ε‖α(k)‖

for the RILU recursions when A is m-periodically monotone. The index k here should
not be larger than (N − 2m+ 2)/m since the αi’s are not periodic for i > N −m+ 2.
As soon as this criterion is satisfied, we set the remaining entries of the factor matrices
in RILU by the periodical terms

βjm+i = βkm+i, β̄jm+i = β̄km+i, j > k, jm + i ≤ n− 1,

γjm+i = γkm+i, γ̄jm+i = γ̄km+i, j > k, jm + i ≤ n−m + 1,

λjm+i = λkm+i, λ̄jm+i = λ̄km+i, j > k, jm + i ≤ n−m.

The substitution of the αi’s is restricted to the range jm + i ≤ N − m + 2; i.e.,
αjm+i = αkm+i for jm + i ≤ N − m + 2. The others are computed as in (5.3)–
(5.4). If mk > N − 2m − 2, we complete the standard RILU recursions without the
substitution.

Algorithm FRILU-II (fast RILU for m-periodically monotone matrices).
Step 1. Partial RILU factorization.

(1) Run the algorithm RILU until ‖α(k) − α(k−1)‖ < ε‖α(k)‖.
(2) If k > [(N−2m+2)/m], complete the RILU factorization and terminate.

Step 2. Periodically substituting.
βjm+i = βkm+i, β̄jm+i = β̄km+i, j > k, jm + i ≤ n− 1,
λjm+i = λkm+i, λ̄jm+i = λ̄km+i, j > k, jm + i ≤ n−m,
γjm+i = γkm+i, γ̄jm+i = γ̄km+i, j > k, jm + i ≤ n−m + 1,
αjm+i = αkm+i, j > k, jm + i ≤ N −m + 2.

Step 3. Compute αi by (5.3)−(5.4) for N −m + 3 ≤ i ≤ N .

FAST INCOMPLETE LU FACTORIZATION 547

6. Numerical results. In this section, we give three numerical examples to
illustrate the effectiveness of our fast algorithms for constructing RILU factorization.
The examples are a constructed nine-diagonal matrix with diagonal constants, a real
data coming from a bioengineering problem, and a nine-diagonal matrix from finite-
difference PDE that is not diagonally monotone or periodically monotone. We check
the uniform stability by the Newton iterations for the nonlinear system (3.8) with the
initial guesses given in (3.9). The convergence criterion is (5.1)∥∥∥∥(t(k+1) − t(k)

t̄(k+1) − t̄(k)

)∥∥∥∥ < τ,

where (t(k), t̄(k))T is the kth approximation computed by the Newton method. We
use the stopping criteria

|αk − α∗| < εα∗, ‖α(k) − α(k−1)‖ < ε‖α(k)‖

with the accuracy parameter ε for FRILU-I and FRILU-II, respectively.
Example 1. The test matrix is a diagonally constant matrix

A = {−ē, −d̄, −c̄, −b̄, a, −b, −c, −d, −e}

with

a = 13.9, b = 1, c = 2, d = 1, e = 1, ē = 2, d̄ = 2, c̄ = 3, b̄ = 2,

m = 100 and N = 100, 000. The RILU factorization of A is stable, sufficiently
guaranteed by the uniform stability that can be checked by the Newton iterations.
Starting with the initial guess shown in (3.9), the Newton method converges quickly
for this matrix. For example, if ω = 0.5, we obtain t∗ = 0.2268, t̄∗ = 0.1317, and α∗ =
11.687249 approximately in the relative accuracy τ < 10−7 within 4 Newton iterations.
The convergence slightly depends on the relaxation parameter ω. In Table 2, we
list the numbers of Newton iterations for different values of ω and the convergence
accuracy τ .

Table 2

Numbers of Newton iterations for Example 1.

ω log(τ) = -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15
0 3 4 4 4 4 5 5 5 5 5 5 5

0.2 3 4 4 4 4 5 5 5 5 5 5 5
0.4 3 4 4 4 5 5 5 5 5 5 5 6
0.6 4 4 4 5 5 5 5 5 5 6 6 6
0.8 4 4 5 5 5 5 5 6 6 6 6 6
1.0 4 5 5 5 6 6 6 6 6 6 6 7

The recursive sequences of RILU converge fast for this example. In the right-hand
panel of Figure 3, we plot the approximate errors of the first 2000 terms of the output
sequence {αi}, {βi}, {γi}, {λi} of RILU with ω = 0 to their limit values. The other
output sequences have similar properties. It illustrates the consistent convergence
behaviors in Theorem 2.4. In general, the convergence monotonically depends on the
value of the relaxation ω. See the left-hand panel of Figure 3 for the required iteration
number k of RILU(ω) with the relative accuracy ε = 10−12 for variant ω.

This fast convergence implies that one can obtain the factorization at low com-
putational cost. In Table 3, we list the number k of the partial recursive steps of

548 ZHENYUE ZHANG, MIN FANG, AND JING WANG

0 0.2 0.4 0.6 0.8 1
1000

1500

2000

2500

3000

3500

4000

4500

ω

k

0 1000 2000 3000 4000 5000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

i

A
p

p
ro

xi
m

a
tio

n
 e

rr
o

rs

α
i

β
i

γ
i

λ
i

Fig. 3. Left: convergence of RILU(ω) recursions. The required iteration number k (ε = 10−12)
monotonically depends on ω. Right: consistent convergence of outputs. The approximation errors
of the first 5000 terms of {αi}, {βi}, {γi}, {λi} to their limit values are plotted (ω = 0).

MILU (RILU with ω = 1), flops, and CPU times (including the cost of the Newton
iterations), and the total errors of FRILU-I for different values of ε, where the total
error is defined by

Error = ‖(α, β, γ, λ, β̄, γ̄, λ̄) − (αI , βI , γI , λI , β̄I , γ̄I , λ̄I)‖,

where α and αI are the sequences computed by the RILU and FRILU-I, respectively.
Similar notations are used here for other outputs. The computational results show
that the total error is proportional to the accuracy parameter ε. Notice that the
storage cost is proportional to k. Compared with the costs of classical RILU listed in
the right two columns of Table 3, FRILU is quite efficient for this example. It needs
only about 1% of the cost of ILU in storage and flops, and 2% of CPU time. FRILU-I
has similar convergence behavior for other values of ω. Notice that the cost of FRILU
is constant, while the CPU time of the standard RILU increases when N is enlarged.

Table 3

Computational costs of FRILU-I and MILU.

FRILU-I MILU
ε k Flops CPU (s) Error Flops CPU (s)

10−3 901 41948 0.80 9.6 × 10−2 43997013 10.98
10−4 1300 59903 0.80 9.0 × 10−3

10−5 1699 77858 0.83 8.4 × 10−4

10−6 2097 95768 0.84 8.0 × 10−5

10−7 2493 113588 0.86 7.8 × 10−6

10−8 2809 127808 0.88 1.2 × 10−6

10−9 3206 145673 0.89 1.1 × 10−7

10−10 3604 163583 0.95 1.1 × 10−8

Example 2. The test matrix comes from a bioengineering problem.1 It is a nine-
point matrix of order N = 9604 and m = 98 with constant entries in the diagonal lines
except for the periodic zeros bkm = b̄km = 0 (1 ≤ k ≤ m − 1), ckm+1 = c̄km+1 = 0
(0 ≤ k ≤ m− 1), and ekm = ēkm = 0 (1 ≤ k ≤ m− 2). So A is a diagonally periodic

1This matrix, code name fv1, can be found at http://www.cise.ufl.edu/research/sparse/HBformat/
Norris/.

FAST INCOMPLETE LU FACTORIZATION 549

matrix. Note that although A is almost diagonally constant, all the output sequences
are m-periodically monotone.

FRILU-II is also very efficient for this diagonally periodic matrix, due to the
fast block-convergence of the output sequences. For example, within k = 14 block-
iterations, {αi} reaches the relative accuracy ε = 10−10 when ω = 0.5: ‖α(k) −
α(k−1)‖ < ε‖α(k)‖, and the costs of FRILU-II in flops, CPU time, and storage are
about 15% of those of RILU. In Table 4 we list the numbers k of the block-iteration
steps required to achieve the given relative accuracy ε for different values of the
relaxation parameter ω. The number k increases slightly as ω increases. Note that
the number of componentwise recursive steps of FRILU-II is about km.

Table 4

m-block iteration numbers of FRILU-II for Example 2.

ω ε = 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

0.0 3 4 5 6 8 9 10 11 12
0.2 3 5 6 7 8 9 10 12 13
0.4 4 5 6 7 9 10 11 12 14
0.6 4 5 6 8 9 11 12 13 15
0.8 4 5 7 8 10 11 13 14 16
1.0 4 6 7 9 11 12 14 16 17
1.2 4 6 8 10 11 13 15 17 19
1.4 4 6 8 10 12 15 17 19 21

Now we consider the efficiency of the incomplete LU factorization obtained by
FRILU-II applied on the preconditioned GMRES algorithm for solving the linear
system Ax = f . We randomly select a right-hand-side vector f with components
uniformly distributed in the interval [−1, 1]. The computational cost of FRILU-II
can be ignored in this experiment. Its CPU time is only 0.06 seconds. The precon-
ditioned GMRES algorithm starting at x0 = 0 converges and achieves the accuracy
‖Ax− f‖ < ε with ε = 10−10 after 9 iterations and 0.25 seconds. We remark that the
iteration number of GMRES with the preconditioner RILU(ω) is almost unchanged
when the relaxation parameter ω varies in the interval [0, 1]. If the standard RILU is
used in the preconditioned GMRES, the cost of the standard RILU is dominative in the
entry computation. The CPU time of the standard RILU is 0.41 seconds. About half
of the time is reduced by using FRILU-II, compared with the standard RILU precon-
ditioning. We report that for this example the factorization ILUT(p, τ) [21, 22] costs
much more than FILU-II or standard RILU, where τ is a dropping threshold of small
components and p the largest number of nonzero elements in each row of the factors
L or U . Table 5 summarizes the results for p = 3, 5 and τ = 0.01, 0.02, 0.03, 0.04, 0.05.

The column “ILUT sparsity” stands for the ratio nnz(L)+nnz(U)−n
nnz(A) of the total number

of nonzero elements in both factors L and U and that in A. As τ increases, ILUT(p, τ)
time decreases quickly. Meanwhile the preconditioning loses its efficiency gradually.
Note that GMRES converges with 33 iterations without preconditioning.

Example 3. This example shows the effectiveness of our fast algorithms for a
more general matrix. Consider the convection-diffusion equation

−Δu + σ(xux + yuy) − ρu = f in Ω = (0, 1) × (0, 10)

with homogeneous Dirichlet boundary condition. Here σ and ρ are two positive con-
stants. We discretize the PDE by a nine-point difference scheme with mesh size

550 ZHENYUE ZHANG, MIN FANG, AND JING WANG

Table 5

ILUT(p, τ) + GMRES with ε = 10−10 for fv1.

p = 3
τ ILUT GMRES CPU time

sparsity steps ILUT GMRES Total
0.01 0.78 16 70.4 0.5 70.9
0.02 0.78 16 69.6 0.5 70.1
0.03 0.67 21 42.2 0.7 42.9
0.04 0.45 32 13.5 1.1 14.5
0.05 0.45 32 12.9 0.9 13.8

p = 5
τ ILUT GMRES CPU time

sparsity steps ILUT GMRES Total
0.01 1.22 9 71.6 0.3 71.9
0.02 1.00 10 72.6 0.3 72.9
0.03 0.78 20 42.5 0.5 43.0
0.04 0.56 32 13.8 0.8 14.7
0.05 0.56 32 13.6 0.9 14.5

2200 2250 2300 2350 2400 2450
0

10

20

30

40

50

60

70

80

90

100

110

ρ

σ

Fig. 4. Stable region of the RILU factorization of A(ρ, σ) in Example 3.

h = 1/(m + 1). Let �x	 denote the smallest integer not less than x. The resulting
nine-diagonal matrix A = A(ρ, σ) of order N = 10m2 has entries

ai = 20 − 6ρh2, di = 4 − 3σh2

⌈
i

m

⌉
, d̄i = 4 + 3σh2

⌈
i

m
+ 1

⌉
,

bi = 4 − 3σh2mod(i,m), b̄i = 4 + 3σh2(mod(i,m) + 1),

ci = 1, c̄i = 1, ei = 1, ēi = 1,

except for the periodic zeros bkm = b̄km = 0 (1 ≤ k ≤ m − 1), ckm+1 = c̄km+1 = 0
(0 ≤ k ≤ m−1), and ekm = ēkm = 0 (1 ≤ k ≤ m−2). We set m = 100. The stability
of the RILU factorization of A(ρ, σ) depends on the parameters ρ and σ. In Figure 4,
we show a part of the stable region (marked by dots) in the (ρ, σ)-plane in which the
matrix A(ρ, σ) has stable RILU factorization with ω = 0.5. All the (ρ, σ) parameters
used in this example are chosen in the stable region, and some of them are close to
the boundary.

FAST INCOMPLETE LU FACTORIZATION 551

The matrix A in this example is not diagonally periodically monotone. Ignoring
the zeros appearing in the diagonals periodically, {di} is piecewise monotone decreas-
ing, while {d̄i} is piecewise increasing for positive σ, though both {bi} and {b̄i} are
periodically constant. However, if ρ is not large enough, the components change very
slightly and the convergence of the output sequences is close to being periodical. We
can apply algorithm FRILU-II on A directly to compute an approximate RILU fac-
torization. In Table 6 we show the pairs (k, εα) for different parameters (ρ, σ) chosen
in the convergence region, where k is the iteration number such that {α(k)} achieves
the given accuracy, and εα = ‖α−αII‖2/‖α‖2 is the relative error of αII = α(k) com-
puted by FRILU-II with ω = 0.5 and accuracy ε = 10−4. {βII

i } has the same relative
error as {αII

i } in magnitude, while the accuracy of {λII
i } and {γII

i } are lower than the
accuracy of {αII

i } in general. We remark that the block approximation also depends
on the parameters. If (ρ, σ) tends to the boundary of the convergence region, then the
approximate error ‖α−αII‖2 increases, and the approximate block-convergence may
no longer be maintained, though those parameters ρ and σ are chosen in the stable
region. The loss of block-convergence within the given accuracy is indicated by “−”
in Table 6.

Table 6

Block-convergence (k, εα) for Example 3 with ε = 10−4, ω = 0.5.

ρ σ=10 20 30 40 50

1500 (13, 7.4e-4) (12, 3.0e-3) (12, 6.5e-3) (12, 1.1e-2) (11, 1.6e-2)
1700 (14, 8.4e-4) (13, 3.4e-3) (13, 7.5e-3) (13, 1.3e-2) (12, 1.8e-2)
1900 (16, 1.0e-3) (15, 4.1e-3) (14, 8.9e-3) (14, 1.5e-2) −
2100 (19, 1.3e-3) (18, 5.4e-3) (17, 1.1e-2) − −
2200 (23, 1.7e-3) (21, 6.7e-3) (19, 1.4e-2) − −
2300 (33, 2.7e-3) (28, 9.8e-3) − − −
2320 (41, 3.2e-3) − − − −
2330 (57, 3.3e-3) − − − −

However, we can obtain an approximate RILU factorization with a higher accu-
racy by applying FRILU-II on a true diagonally periodic matrix Ac. Such a matrix
Ac can be obtained from A by replacing {di} and {d̄i} by the constant d1 = 4− 3σh2

and d̄1 = 4 + 6σh2, respectively. Let {αc
i} and the other outputs with subscript c be

the computed sequences by FRILU-II for Ac. Since there are input errors di− d1 and
d̄i− d̄1 in {dci} and {d̄i

c}, {λc
i} and {γc

i } have relatively large errors to {λi} and {γi}.
However {αc

i}, {βc
i }, and {β̄c

i } still have acceptable accuracy if σ is not large. In that
case, we can improve λc

i and γc
i by adding back the input errors to the outputs λc

i

and γc
i with the refinement

λR
i = λc

i + (di − d1), λ̄R
i = λ̄c

i + (d̄i − d̄1),

γR
i = γc

i + (di−1 − d1)
β̄c
i−1

αc
i−1

, γ̄R
i = γ̄c

i + (d̄i−1 − d̄1)
βc
i−1

αc
i−1

.

This refinement gives acceptable accuracy of the approximate RILU factorization.
Table 7 shows the accuracy of the computed {λi} and {γi} by applying the algorithm
FRILU-II to A or the approximation Ac, and the refinement discussed above, marked
by I, II, and III in the second column of Table 7, respectively. Note that for some
values of ρ and σ, FRILU-II fails if it is applied on A directly.

552 ZHENYUE ZHANG, MIN FANG, AND JING WANG

Table 7

Relative accuracy of {λi} and {γi} computed by (I) FRILU-II for A, (II) FRILU-II for Ac,
and (III) the refinement method (τ = 10−4, ω = 0.5).

{λi} {γi}
ρ σ=10 20 30 40 50 σ=10 20 30 40 50

1500 I 3.3e-2 6.9e-2 1.1e-1 1.5e-1 2.0e-1 2.0e-2 4.4e-2 7.1e-2 9.9e-2 1.3e-1
1700 3.2e-2 6.8e-2 1.1e-1 1.5e-1 1.9e-1 2.0e-2 4.5e-2 7.1e-2 1.0e-1 1.3e-1
1900 3.1e-2 6.5e-2 1.0e-1 1.4e-1 − 2.0e-2 4.4e-2 7.2e-2 1.0e-1 −
2100 2.9e-2 6.2e-2 9.8e-2 − − 2.0e-2 4.4e-2 7.2e-2 − −
2200 2.7e-2 5.9e-2 9.5e-2 − − 1.9e-2 4.4e-2 7.3e-2 − −
2300 2.2e-2 5.1e-2 − − − 1.7e-2 4.3e-2 − − −
2320 1.8e-2 − − − − 1.5e-2 − − − −
2330 1.2e-2 − − − − 1.1e-2 − − − −
1500 II 4.0e-2 8.2e-2 1.3e-1 1.8e-1 2.3e-1 2.5e-2 5.3e-2 8.4e-2 1.2e-1 1.5e-1
1700 4.0e-2 8.2e-2 1.3e-1 1.8e-1 2.3e-1 2.5e-2 5.4e-2 8.6e-2 1.2e-1 1.6e-1
1900 4.0e-2 8.2e-2 1.3e-1 1.8e-1 2.3e-1 2.6e-2 5.5e-2 8.8e-2 1.2e-1 1.6e-1
2100 4.0e-2 8.2e-2 1.3e-1 1.8e-1 2.3e-1 2.6e-2 5.8e-2 9.3e-2 1.3e-1 1.7e-1
2200 4.0e-2 8.2e-2 1.3e-1 1.8e-1 2.3e-1 2.7e-2 6.0e-2 9.7e-2 1.4e-1 1.8e-1
2300 4.0e-2 8.3e-2 1.3e-1 1.8e-1 2.3e-1 3.0e-2 6.7e-2 1.1e-1 1.5e-1 1.9e-1
2320 4.0e-2 8.4e-2 6.6e-1 1.9e-1 2.5e-1 3.4e-2 7.6e-2 4.5e+0 3.6e-1 7.7e-1
2330 2.6e-1 1.3e-1 1.4e-1 2.5e-1 5.7e-1 2.1e+0 7.9e-1 4.8e-1 1.2e+0 3.7e+0
1500 III 1.1e-4 4.6e-4 1.1e-3 1.9e-3 2.9e-3 8.0e-4 3.2e-3 6.8e-3 1.1e-2 1.6e-2
1700 1.2e-4 5.4e-4 1.2e-3 2.2e-3 3.4e-3 9.3e-4 3.8e-3 8.0e-3 1.3e-2 1.9e-2
1900 1.6e-4 6.8e-4 1.5e-3 2.7e-3 4.0e-3 1.2e-3 4.6e-3 9.7e-3 1.6e-2 2.2e-2
2100 2.3e-4 9.4e-4 2.1e-3 3.5e-3 5.1e-3 1.6e-3 6.3e-3 1.3e-2 2.0e-2 2.7e-2
2200 3.0e-4 1.2e-3 2.6e-3 4.2e-3 6.0e-3 2.2e-3 8.2e-3 1.6e-2 2.4e-2 3.2e-2
2300 6.1e-4 2.1e-3 4.0e-3 5.9e-3 8.0e-3 4.3e-3 1.4e-2 2.5e-2 3.4e-2 4.3e-2
2320 1.1e-3 3.5e-3 6.5e-1 4.5e-2 1.0e-1 8.1e-3 2.3e-2 3.8e+0 2.7e-1 5.7e-1
2330 2.5e-1 1.0e-1 6.2e-2 1.8e-1 5.3e-1 2.0e+0 7.3e-1 4.1e-1 9.9e-1 2.7e+0

Acknowledgments. We want to thank the anonymous referees for their care-
ful reading of this paper. Their insightful suggestions and comments have greatly
improved the presentation of this paper.

REFERENCES

[1] O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problem, Aca-
demic Press, Orlando, FL, 1984.

[2] O. Axelsson and G. Lindskog, On the eigenvalue distribution of a class of preconditioning
methods, Numer. Math., 48 (1986), pp. 479–498.

[3] M. Benzi, J. C. Haws, and M. Tůma, Preconditioning highly indefinite and nonsymmetric
matrices, SIAM J. Sci. Comput., 22 (2000), pp. 1333–1353.

[4] M. Bhuruth, M. K. Jain, and A. Gopaul, Preconditioned iterative methods for the nine-point
approximation to the convection-diffusion equation, J. Comput. Appl. Math., 138 (2002),
pp. 73–92.

[5] A. M. Bruaset, A. Tveito, and R. Winther, On the stability of relaxed incomplete LU
factorizations, Math. Comp., 54 (1990), pp. 701–719.

[6] E. Chow and Y. Saad, Experimental study of ILU preconditioners for indefinite matrices, J.
Comput. Appl. Math., 86 (1997), pp. 387–414.

[7] I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to
the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889–901.

[8] T. Dupont, R. P. Kendall, and H. H. Rachford, An approximate factorization procedure for
solving self-adjoint elliptic difference equations, SIAM J. Numer. Anal., 5 (1968), pp. 559–
573.

[9] H. C. Elman, A stability analysis of incomplete LU factorizations, Math. Comp., 47 (1986),
pp. 191–217.

[10] H. C. Elman, Relaxed and stabilized incomplete factorizations for nonself-adjoint linear sys-
tems, BIT, 29 (1989), pp. 890–915.

FAST INCOMPLETE LU FACTORIZATION 553

[11] G.-D. Gu, Some conditions for existence and stability of relaxed incomplete LU factorizations,
Appl. Numer. Math., 38 (2001), pp. 105–121.

[12] I. Gustafsson, A class of first order factorization methods, BIT, 18 (1978), pp. 142–156.
[13] S. Karaa and J. Zhang, A note on convergence of line iterative methods for a nine-point

matrix, Appl. Math. Lett., 15 (2002), pp. 495–503.
[14] C. F. Karney, Fokker-Planck and quasilinear codes, Comput. Phys. Rep., 4 (1986), pp. 183–

244.
[15] T. Manteuffel, An incomplete factorization technique for positive definite linear systems,

Math. Comp., 34 (1980), pp. 473–497.
[16] J. A. Meijerink, and H. A. van der Vorst, An interactive solution method for linear systems

of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148–
162.

[17] J. A. Meijerink and H. A. van der Vorst, Guidelines for the usage of incomplete decompo-
sitions in solving sets of linear equations as they occur in practical problems, J. Comput.
Phys., 44 (1981), pp. 134–155.

[18] N. Munksgaard, Solving sparse symmetric sets of linear equations by preconditioned conjugate
gradients, ACM Trans. Math. Software, 6 (1980), pp. 206–219.

[19] M. Olschowka and A. Neumaier, A new pivoting strategy for Gaussian elimination, Linear
Algebra Appl., 240 (1996), pp. 131–151.

[20] Y. Peysson and M. Shoucri, An approximate factorization procedure for solving nine-point
elliptic difference equations. Application for a fast 2-D relativistic Fokker-Planck solver,
Comput. Phys. Comm., 109 (1998), pp. 55–80.

[21] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 1996.
[22] Y. Saad, ILUT: A dual threshold incomplete LU preconditioner, Numer. Linear Algebra Appl.,

1 (1994), pp. 387–402.
[23] V. Simoncini and D. B. Szyld, Flexible inner-outer Krylov subspace methods, SIAM J. Numer.

Anal., 40 (2002), pp. 2219–2239.
[24] R. S. Varga, E. B. Saff, and V. Mehrman, Incomplete factorizations of matrices and con-

nections with H-matrices, SIAM J. Numer. Anal., 17 (1980), pp. 787–793.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 554–565

SIGN PATTERNS THAT ALLOW A POSITIVE OR NONNEGATIVE
LEFT INVERSE∗

IN-JAE KIM† , D. D. OLESKY‡ , B. L. SHADER§ , AND P. VAN DEN DRIESSCHE¶

Abstract. An m by n sign pattern S is an m by n matrix with entries in {+,−, 0}. Such a sign
pattern allows a positive (resp., nonnegative) left inverse, provided that there exist an m by n matrix
A with the sign pattern S and an n by m matrix B with only positive (resp., nonnegative) entries
satisfying BA = In, where In is the n by n identity matrix. For m > n ≥ 2, a characterization of m
by n sign patterns with no rows of zeros that allow a positive left inverse is given. This leads to a
characterization of all m by n sign patterns with m ≥ n ≥ 2 that allow a positive left inverse, giving
a generalization of the known result for the square case, which involves a related bipartite digraph.
For m ≥ n, m by n sign patterns with all entries in {+, 0} and m by 2 sign patterns with m ≥ 2
that allow a nonnegative left inverse are characterized, and some necessary or sufficient conditions
for a general m by n sign pattern to allow a nonnegative left inverse are presented.

Key words. bipartite digraph, nonnegative left inverse, positive left inverse, positive left null-
vector, sign pattern, strong Hall

AMS subject classifications. 15A09, 15A48, 05C20, 05C50

DOI. 10.1137/060660916

1. Introduction. An m by n sign pattern S = [sij] is an m by n matrix with
entries in {+,−, 0}. If a sign pattern S has all entries in {+, 0}, then S is a nonnegative
sign pattern. A subpattern of S is an m by n sign pattern U = [uij] such that uij = 0
whenever sij = 0. If U is a subpattern of S, then S is a superpattern of U . The sign
pattern class Q(S) of an m by n sign pattern S is the set of m by n matrices A = [aij]
such that sgn(aij) = sij for all i, j. If A ∈ Q(S), then A is a realization of S.

Let A = [aij] be an m by n matrix. If each entry of A is positive (resp., nonneg-
ative), then A is positive (resp., nonnegative), written A > 0 (resp., A ≥ 0). A left
inverse of an m by n matrix A is an n by m matrix B such that BA = In, where In
denotes the n by n identity matrix. If B > 0, then B is a positive left inverse (abbre-
viated as PLI) of A. If B ≥ 0, then B is a nonnegative left inverse (abbreviated as
NLI) of A. In general, neither a PLI nor an NLI of A is unique. It is easily verified
that A has a left inverse if and only if rankA = n; thus, if A has a left inverse, then
necessarily m ≥ n. An m by n sign pattern S allows a positive (resp., nonnegative)
left inverse, provided there exist A ∈ Q(S) and a matrix B > 0 (resp., B ≥ 0) such
that BA = In. Note that if P1 and P2 are permutation matrices, then S allows a PLI
(resp., an NLI) if and only if P1SP2 allows a PLI (resp., an NLI).

∗Received by the editors May 25, 2006; accepted for publication (in revised form) by R. Bhatia
October 5, 2006; published electronically April 20, 2007.

http://www.siam.org/journals/simax/29-2/66091.html
†Department of Mathematics and Statistics, Minnesota State University, Mankato, MN 56001

(in-jae.kim@mnsu.edu). The research of this author was done while he was a postdoctoral fellow at
the University of Victoria.

‡Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria, BC, Canada
V8W 3P6 (dolesky@cs.uvic.ca). The research of this author was supported in part by an NSERC
Discovery Grant.

§Department of Mathematics, University of Wyoming, Laramie, WY 82071 (bshader@uwyo.edu).
¶Department of Mathematics and Statistics, University of Victoria, P.O. Box 3045, Victoria, BC,

Canada V8W 3P4 (pvdd@math.uvic.ca). The research of this author was supported in part by an
NSERC Discovery Grant.

554

SIGN PATTERNS THAT ALLOW A PLI OR AN NLI 555

A motivation for studying PLIs and NLIs comes from determining the qualitative
behavior of solutions of ATx = b with A an m by n matrix; see, for example, [2,
Chapter 1] and [5] for applications in economics. Specifically, A has a PLI (resp., an
NLI) if and only if for each n by 1 nonzero vector b ≥ 0 there exists an m by 1 vector
x > 0 (resp., x ≥ 0) satisfying ATx = b or equivalently xTA = bT ; see Proposition
4.1 for a proof.

Square sign patterns with entries in {+,−} that allow a positive (left) inverse
are characterized in [6], and this characterization is extended to arbitrary square sign
patterns in [4]. These results are summarized in [2, section 9.2]. In section 2, we
characterize nonsquare sign patterns that allow a PLI, and combine the square and
nonsquare characterizations. In section 3, we discuss sign patterns that allow an NLI.
More specifically, we characterize nonnegative sign patterns and m by 2 sign patterns
with m ≥ 2 that allow an NLI, and present some necessary or sufficient conditions for
general m by n sign patterns with m ≥ n to allow an NLI. We conclude with some
remarks in section 4.

2. Positive left inverses. We begin this section with a necessary and sufficient
condition for a column sign pattern to allow a PLI or an NLI.

Proposition 2.1. Let S = (s1, s2, . . . , sm)T be an m by 1 sign pattern. Then
the following are equivalent:

(i) S has a + entry.
(ii) S allows a PLI.
(iii) S allows an NLI.
Proof. Suppose there is an index i ∈ {1, 2, . . . ,m} with si = +. For j ∈

{1, . . . ,m}, set

aj =

⎧⎪⎪⎨⎪⎪⎩
1 if j �= i and sj = +,
−1 if j �= i and sj = −,
0 if j �= i and sj = 0,
1 +

∑
k �=i |ak| if j = i.

Then A = (a1, . . . , am)T ∈ Q(S), and (1, 1, . . . , 1)A = 1 +
∑

k �=i (|ak| + ak) = c > 0.

This implies that 1
c (1, 1, . . . , 1) is a PLI of A. Thus, S allows a PLI.

It is clear that (ii) implies (iii). Next, suppose that the sign pattern S allows an
NLI. Then there exist A = (a1, . . . , am)T ∈ Q(S) and B = (b1, . . . , bm) ≥ 0 such that
BA = 1, i.e.,

∑m
j=1 bjaj = 1 > 0. This implies that there exists an i with biai > 0.

Since bi ≥ 0, it follows that bi > 0; hence ai > 0 and thus si = +.
We now consider m ≥ n ≥ 2. The following two lemmas give necessary conditions

for a sign pattern to allow a PLI.
Lemma 2.2. Let S be an m by n sign pattern with n ≥ 2. If S allows a PLI,

then each column of S has a + and a − entry.
Proof. Suppose that there exist A ∈ Q(S) and an n by m positive matrix B such

that BA = In. Let i ∈ {1, 2, . . . , n}. Since the (i, i)-entry of BA is 1 and each entry
of B is positive, it follows that some entry in column i of A is positive. Hence, column
i of S has a + entry.

Since n ≥ 2, there exists j ∈ {1, . . . , n} with j �= i. The (j, i)-entry of BA is 0,
so since B > 0 and at least one entry of column i of A is positive, it follows that
at least one entry of column i of A must be negative. Thus, column i of S has a −
entry.

An m by n sign pattern S with n ≥ 2 is strong Hall, provided that for every
nonempty proper subset γ of {1, 2, . . . , n} the submatrix of S consisting of the columns

556 KIM, OLESKY, SHADER, AND VAN DEN DRIESSCHE

indexed by γ has nonzero entries in at least |γ| + 1 rows (see [3]). Note that if S is
strong Hall, then necessarily m ≥ n. Also, for m ≥ n, S is not strong Hall if and only
if there exist permutation matrices P1 and P2 such that

P1SP2 =

[
S11 S12

O S22

]
,(2.1)

where S11 is a k by � sign pattern for some integers k, � with n > � ≥ 1 and k ≤ �.
Lemma 2.3. Let S be an m by n sign pattern with n ≥ 2. If S allows a PLI,

then S is strong Hall.
Proof. To prove the contrapositive, assume that S is not strong Hall. If m < n,

then it is clear that S does not allow a PLI. Otherwise, without loss of generality,
we may assume that S has the form (2.1). If k < �, then the first � columns of each
realization of S are linearly dependent, and hence S does not allow a PLI.

Otherwise, k = � < n. Suppose that there exists a matrix A =
[
A11 A12

O A22

]
∈ Q(S)

with a left inverse B =
[
B11 B12

B21 B22

]
, where B11 is an � by � matrix. Clearly, the � by �

matrix A11 is invertible, and by BA = In, it follows that [B21 B22]
[
A11

O

]
= O. Thus,

B21A11 = O, and since A11 is invertible, the (n − �) by � matrix B21 = O. Since
n− � ≥ 1 and � ≥ 1, every left inverse of a matrix in Q(S) has a zero entry, and hence
S does not allow a PLI.

Note that if S is a square sign pattern of order n ≥ 2, then S is strong Hall if and
only if S is fully indecomposable (see [3]), and S allows a PLI if and only if S allows a
positive inverse. The next theorem, first proved in [4], provides a characterization of
square sign patterns that allow a positive inverse. In order to recall this characteriza-
tion, we use the following definition as in [1] and [2]. Let S = [sij] be an m by n sign
pattern. The bipartite digraph D(S) of S is the digraph with row vertices u1, . . . , um,
column vertices v1, . . . , vn, an arc ui → vj if sij = +, and an arc vj → ui if sij = −.
Note that there exists at most one arc between ui and vj .

Theorem 2.4 (see [2, Theorem 9.2.1]). An n by n square sign pattern S with
n ≥ 2 allows a positive (left) inverse if and only if S is strong Hall and the bipartite
digraph D(S) of S is strongly connected.

Let S be an m by n sign pattern and let D(S) be its bipartite digraph. A strong
component of D(S) is a maximal strongly connected subdigraph of D(S). If α is a
strong component of D(S), then |α| denotes the number of vertices in α.

Remark 2.5. Let α be a strong component of D(S). Since D(S) is a bipartite
digraph with no cycles of length 2, it follows that if |α| ≥ 2, then α has at least two
row vertices and at least two column vertices.

Let α1, α2, . . . , αt be the strong components of D(S). The condensed digraph
CD(S) of S has vertices α1, α2, . . . , αt and an arc αi → αj if and only if i �= j and
D(S) has at least one arc from a vertex in αi to a vertex in αj . A strong component
αi of D(S) is a source if there is no arc coming into αi in CD(S) and there is at least
one arc coming out of αi in CD(S); αi is a sink if there is no arc coming out of αi

in CD(S) and there is at least one arc coming into αi in CD(S); and αi is isolated if
there are no arcs coming into or out of αi in CD(S).

Lemma 2.6. Let S be an m by n sign pattern which has a + and a − entry in
each column and no rows of zeros. Then the following hold for D(S):

(i) Each sink and source strong component of D(S) has at least one row vertex.
(ii) Each isolated strong component has at least two row vertices.
Proof. (i) Let α be a sink or source strong component. If |α| = 1, then since each

column of S has a + and a − entry, it follows that no sink or source strong component

SIGN PATTERNS THAT ALLOW A PLI OR AN NLI 557

consists of exactly one column vertex. Hence, α is a row vertex. If |α| ≥ 2, then
Remark 2.5 implies that α has at least one row vertex.

(ii) By the assumptions on the rows and columns of S, there is no isolated strong
component with exactly one vertex. Hence, by Remark 2.5, each isolated strong
component has at least two row vertices.

Let A be an m by n matrix with m ≥ n. If there exists an m by 1 vector y > 0
satisfying yTA = 0, then yT is a positive left nullvector of A. The following theorem
gives a characterization of nonsquare sign patterns with no rows of zeros that allow
a PLI. Note that conditions for such a sign pattern to allow a PLI are weaker than
those for square sign patterns (Theorem 2.4), although the bipartite digraph is used
in our proof for a nonsquare sign pattern.

Theorem 2.7. For m > n ≥ 2, let S be an m by n sign pattern with no rows of
zeros. Then the following are equivalent:

(i) There exists a matrix A ∈ Q(S) with a PLI and a positive left nullvector.
(ii) S allows a PLI.
(iii) Each column of S has a + and a − entry, and S is strong Hall.
Proof. Clearly, (i) implies (ii). By Lemmas 2.2 and 2.3, (ii) implies (iii).
To prove that (iii) implies (i), assume that S is strong Hall and that S has a +

and a − entry in each column. We claim that it suffices to show that there exists
an m by (m − n) sign pattern C so that the m by m sign pattern [S | C] allows a
positive (left) inverse. To prove this claim, suppose there exists an m by m matrix
[A | C] ∈ Q([S | C]) with a positive (left) inverse

[
B1

B2

]
where B1 is an n by m positive

matrix and B2 is an (m− n) by m positive matrix. Then B1A = In and hence B1 is
a PLI of A, implying that S allows a PLI. In addition, since B2A = O and B2 has at
least one positive row, A has a positive left nullvector. Therefore, by Theorem 2.4, it
suffices to find an m by (m − n) sign pattern C such that the m by m sign pattern
[S | C] is strong Hall and its bipartite digraph D([S | C]) is strongly connected.

Consider the bipartite digraph D(S) of S. Let α1, α2, . . . , αt be its strong com-
ponents, where α1, . . . , αk are sinks, αk+1, . . . , αk+� are sources, αk+�+1, . . . , αk+�+r

are isolated, and αk+�+r+1, . . . , αt are neither sinks, sources, nor isolated strong com-
ponents. By Lemma 2.6 (i), each sink and source strong component has a row vertex.
Let ri be a fixed row vertex of αi for each i ∈ {1, . . . , k+ �}. Also, by Lemma 2.6 (ii),
each isolated strong component has at least two row vertices. Let r+

i , r
−
i be distinct

fixed row vertices of αi for each i ∈ {k + � + 1, . . . , k + � + r}. Let Cn+1 be the m by
1 column sign pattern with nonzero jth coordinate:⎧⎨⎩

+ if uj ∈ {r1, . . . , rk} ∪ {r−k+�+1, . . . , r
−
k+�+r},

− if uj ∈ {rk+1, . . . , rk+�} ∪ {r+
k+�+1, . . . , r

+
k+�+r},

+ otherwise.
(2.2)

Then D([S | Cn+1]) is obtained from D(S) by appending a new column vertex cn+1,
and arcs rj → cn+1 if rj is in a sink component; cn+1 → rj if rj is in a source com-
ponent; r−j → cn+1 and cn+1 → r+

j if r−j and r+
j are in the same isolated component;

as well as some additional arcs coming into vertex cn+1.
To prove that D([S | Cn+1]) is strongly connected, we show that for each vertex

w of D(S) there exists in D([S | Cn+1]) a walk from cn+1 to w and a walk from w
to cn+1. Note that if w is not in an isolated strong component of D(S), then there
is a walk from w to a vertex in a sink strong component αi of D(S) (i ∈ {1, . . . , k}).
Since αi is strongly connected, this walk from w can be extended to the fixed row
vertex ri of αi. By (2.2), there is an arc ri → cn+1 in D([S | Cn+1]). Hence, there is

558 KIM, OLESKY, SHADER, AND VAN DEN DRIESSCHE

a walk from w to cn+1. Similarly, there is a walk from cn+1 to w.
Next, suppose that w is a vertex in an isolated strong component αi in D(S)

(i ∈ {k+ �+ 1, . . . , k+ �+ r}). Since αi is strongly connected, there is a walk from w
to the fixed row vertex r−i of αi. By (2.2), there are arcs r−i → cn+1 and cn+1 → r+

i

in D([S | Cn+1]). Since αi is strongly connected, there is a walk from r+
i to w. Thus,

there exist a walk from w to cn+1 and a walk from cn+1 to w.
Finally, define Cn+2, . . . , Cm to be m by 1 column sign patterns, each having

no zeros, at least one +, and at least one − entry. Then it is easily verified that
D([S | Cn+1 | . . . | Cm]) is strongly connected. Since S is strong Hall and [Cn+1 | . . . | Cm]
has no zeros, it is clear that [S | Cn+1 | . . . | Cm] is strong Hall, completing the
proof.

Example 2.8. Consider the 6 by 4 sign pattern

S =

⎡⎢⎢⎢⎢⎢⎢⎣
+ − 0 0
− + 0 0
+ − 0 0
0 0 + −
0 0 − +
0 0 0 −

⎤⎥⎥⎥⎥⎥⎥⎦
with

Each column of S has a + and a − entry, and S is strong Hall. Thus, by Theorem 2.7,
S allows a PLI. However, D(S) is not strongly connected, illustrating a distinction
between the nonsquare and square cases (see Theorem 2.4). In fact, D(S) has one
sink strong component α1 that consists of vertex u6, one source strong component
α2 with vertices u4, u5, v3, v4, and one isolated strong component α3 with vertices
u1, u2, u3, v1, v2. Taking r1 = u6, r2 = u5, r+

3 = u1, and r−3 = u2 in the proof of
Theorem 2.7, it follows that

C5 =

⎡⎢⎢⎢⎢⎢⎢⎣
−
+
+
+
−
+

⎤⎥⎥⎥⎥⎥⎥⎦ .

The last column C6 can be taken to be any 6 by 1 column having a + and a − entry, and
no zeros. Let C = [C5 | C6]. In order to determine a matrix [A | C] ∈ Q([S | C]) with a
positive (left) inverse

[
B1

B2

]
, the algorithm described in the proof of [2, Theorem 9.2.1]

can be used. Then B1 is a PLI of A, and the rows of B2 are positive left nullvectors
of A.

The next lemma is used to prove Theorem 2.10, in which square and nonsquare
cases are combined.

SIGN PATTERNS THAT ALLOW A PLI OR AN NLI 559

Lemma 2.9. Let S be an m by n sign pattern with n ≥ 2 and let T be the sign
pattern obtained from S by deleting the rows of zeros in S. Then

(i) S is strong Hall if and only if T is strong Hall, and
(ii) S allows a positive (nonnegative) left inverse if and only if T allows a positive

(nonnegative) left inverse.

Proof. Without loss of generality, assume that S = [TO]. The proof of (i) follows
immediately from the definition of strong Hall.

To prove (ii), suppose first that S allows a PLI. Let A1 ∈ Q(T) and A =
[
A1

O

]
∈

Q(S) have B = [B1 B2] as a PLI. Then B1A1 = In and hence T allows a PLI. Next,
suppose that T allows a PLI. Let A1 ∈ Q(T) have B1 as a PLI. With J denoting the
all 1’s matrix, it is easily verified that B = [B1 J] is a PLI for A =

[
A1

O

]
∈ Q(S).

Hence, S allows a PLI. The nonnegative case can be shown by a similar argument to
that above.

Theorem 2.10. Let m ≥ n ≥ 2. The m by n sign pattern S allows a PLI if and
only if

(i) each column of S has a + and a − entry;
(ii) S is strong Hall; and
(iii) the bipartite digraph D(S1) of S1 is strongly connected whenever S is permu-

tationally equivalent to
[S1

O

]
and S1 is an n by n sign pattern.

Proof. For the necessity, suppose that S allows a PLI. Then (i) and (ii) follow
from Lemmas 2.2 and 2.3, and (iii) follows from Theorem 2.4 and Lemma 2.9 (ii).

For the sufficiency, first assume m = n. Then S is permutationally equivalent
to S1, and by Theorem 2.4 the result follows from (ii) and (iii). Next, suppose that
m > n. If S has no rows of zeros, then, by Theorem 2.7, the result follows from (i)
and (ii). Otherwise, without loss of generality, assume that S = [TO], where T has no
rows of zeros. By Lemma 2.9 (i), it follows from (ii) that T is strong Hall. Thus, if
T is an n by n sign pattern, then (iii) and Theorem 2.4 imply that T allows a PLI.
By Lemma 2.9 (ii), this implies that S allows a PLI. Otherwise, since it follows from
(i) that each column of T has a + and a − entry, Theorem 2.7 implies that T allows
a PLI. Therefore, by Lemma 2.9 (ii), S allows a PLI.

Remark 2.11. For m ≥ n ≥ 2, let S be an m by n sign pattern. Then the
following hold:

(i) If S satisfies (i), (ii), and (iii) in Theorem 2.10, then so does every superpat-
tern of S. Hence, if S allows a PLI, then every superpattern of S allows a
PLI.

(ii) Suppose that S =
[S1

O

]
, where S1 is a square sign pattern, satisfies (iii) in

Theorem 2.10. Then, in contrast with Theorem 2.7 (i), there is no matrix
A =

[
A1

O

]
∈ Q(S) with a PLI that also has a positive left nullvector, since

the equation [yT zT]
[
A1

O

]
= 0 and the fact that A1 is nonsingular together

imply that y = 0.

The following theorem gives sufficient conditions for an m by n sign pattern with
m > n ≥ 1 to have a realization with a PLI and a positive left nullvector.

Theorem 2.12. Let S be an m by n sign pattern with m > n and let T be the t
by n sign pattern obtained from S by deleting the rows of zeros in S.

(i) If n = 1 and T has a + and a − entry, then there exists a matrix in Q(S)
with a PLI and a positive left nullvector.

(ii) If t > n ≥ 2 and T allows a PLI, then there exists a matrix in Q(S) with a
PLI and a positive left nullvector.

Proof. (i) By Proposition 2.1, a + entry implies the existence of A ∈ Q(S) with a

560 KIM, OLESKY, SHADER, AND VAN DEN DRIESSCHE

PLI. Since A has a positive and a negative entry, it can be easily verified that A has
a positive left nullvector.

(ii) When m = t, the result follows by Theorem 2.7. If m > t > n, then Theorem
2.7 implies that there exists a matrix A ∈ Q(T) with a PLI B and a positive left
nullvector yT . Note that the positive matrix [B | J] is a PLI and the vector [yT 1 · · · 1]
is a positive left nullvector of the matrix [AO] ∈ Q(S). Hence, the result follows.

3. Nonnegative left inverses. In this section we determine structures of non-
square sign patterns that allow an NLI, as well as structures of NLIs.

For m ≥ n, let S be an m by n sign pattern with a realization of rank n. Then,
by induction, it can be shown that S is permutationally equivalent to⎡⎢⎢⎢⎣

S11 S12 · · · S1k

O S22 · · · S2k

...
. . .

...
O · · · O Skk

⎤⎥⎥⎥⎦ ,(3.1)

where k ≥ 1, Sii is a square fully indecomposable sign pattern for each i ∈ {1, . . . , k−
1}, and Skk is strong Hall. Note that S is strong Hall if and only if k = 1. If S is an
n by n fully indecomposable sign pattern, then S allows a nonnegative (left) inverse
if and only if S allows a positive (left) inverse; see [2, Theorems 9.2.1 and 9.2.3]. In
addition, [2, Theorem 9.2.6] provides a complete characterization of n by n partly
decomposable sign patterns that allow a nonnegative (left) inverse.

Remark 3.1. Suppose m > n. Let S ′ be the square submatrix of S obtained
by deleting the columns and rows associated with Skk. Suppose that S allows an
NLI. Then the square sign pattern S ′ also allows an NLI. Hence, for k = 2, S ′ is fully
indecomposable and must satisfy one of the equivalent conditions in [2, Theorem 9.2.1]
(see also Theorem 2.4), and for k ≥ 3, S ′ is partly decomposable and must satisfy the
conditions in [2, Theorem 9.2.6]. Furthermore, by an argument similar to that in the
proof of Lemma 2.3, it is easily verified that an NLI B of a matrix in Q(S) has the
block form B = [Bij] with 1 ≤ i, j ≤ k and the (i, j)-block Bij = O whenever i > j.
Thus, it follows that the strong Hall sign pattern Skk also allows an NLI.

We now investigate various necessary and/or sufficient conditions for a strong Hall
nonsquare sign pattern to allow an NLI. We first consider strong Hall sign patterns
with a + and a − entry in each column.

Proposition 3.2. For m > n ≥ 2, let S be an m by n strong Hall sign pattern
with a + and a − entry in each column, and let T be the t by n sign pattern obtained
from S by deleting the rows of zeros in S. If t > n, then S allows an NLI. If t = n,
then S allows an NLI if and only if D(T) is strongly connected.

Proof. The result follows directly from Theorem 2.10 and the fact that if S allows
a PLI, then S allows an NLI.

Let In denote the n by n sign pattern with In as a realization, i.e., In ∈ Q(In).
Clearly, In allows an NLI. Thus, in order to allow an NLI, an m by n sign pattern
with m ≥ n need not have a − entry in each column as is required to allow a PLI
(see Lemma 2.2), but clearly must have a + entry in each column. We first consider
the case that S has a nonnegative column having only + or 0 entries. For ease of
notation, we sometimes use (M)ij to denote the (i, j)-entry of a matrix M .

Proposition 3.3. For m ≥ n ≥ 2, let S be an m by n sign pattern with at least
one nonnegative column. If S allows an NLI, then each nonnegative column has at
most m− n + 1 positive entries.

SIGN PATTERNS THAT ALLOW A PLI OR AN NLI 561

Proof. Let B be an NLI of A ∈ Q(S), and let t be the number of positive entries in
any nonnegative column of A. Without loss of generality, assume that the first column
of A is a nonnegative column with its first t entries positive. Since (BA)h1 = 0 for each
h ∈ {2, . . . , n}, it follows that B has the block form B = [Bij] with 1 ≤ i, j ≤ 2, where
the (2, 1)-block B21 is the (n − 1) by t zero matrix. Hence, the equality rankB = n
implies that the rank of the (n−1) by (m−t) matrix B22 is n−1. Thus, n−1 ≤ m−t
and the result follows.

If all columns are nonnegative, then the following result gives a necessary and
sufficient condition for such a sign pattern to allow an NLI.

Theorem 3.4. For m ≥ n ≥ 1, let S be an m by n nonnegative sign pattern.
Then S allows an NLI if and only if S is permutationally equivalent to[

In
T

]
,

where T is an (m− n) by n nonnegative sign pattern.
Proof. The case n = 1 follows directly from Proposition 2.1. Suppose that n ≥ 2.
For the sufficiency, assume without loss of generality that

S =

[
In
T

]
.

Let T ∈ Q(T) and A =
[
In
T

]
∈ Q(S). Since [In | O]A = In, it follows that S allows

an NLI.
For the necessity, suppose that S = [sij] allows an NLI; i.e., there exist A =

[aij] ∈ Q(S) and an n by m nonnegative matrix B = [bij] such that BA = In. Let
i ∈ {1, . . . , n}. Since (BA)ii = 1, there exists ji ∈ {1, . . . ,m} such that bijiajii > 0.
This implies that sjii = +. Also, for each k ∈ {1, . . . , n} \ {i}, (BA)ik = 0 implies
that bijiajik = 0. Thus, row ji of S is equal to row i of In. As this holds for each
i ∈ {1, . . . , n}, the result follows.

Remark 3.5. Let S =
[In

J
]

be the m by n nonnegative sign pattern with m ≥
n ≥ 2, where J is the sign pattern with all entries positive. Then, by Theorem 3.4, S
allows an NLI. However, in contrast with Remark 2.11 (i), Theorem 3.4 implies that
no nonnegative superpattern of S (except S itself) allows an NLI.

Next, we consider sign patterns that have at least one nonnegative column and at
least one column with a + and a − entry. We use ei to denote the ith column vector
of an identity matrix.

Theorem 3.6. For m ≥ n ≥ 2, let S be an m by n sign pattern that has p ≥ 1
nonnegative columns and n− p ≥ 1 columns with a + and a − entry. Suppose that S
allows an NLI. Then S is permutationally equivalent to a matrix of the form⎡⎣ Ip S12

S21 S22

O S32

⎤⎦ ,(3.2)

where S21 is an r by p nonnegative sign pattern with no rows of zeros, O is an s by
p zero matrix with s ≥ 1, and each of the last n − p columns of S has a + and a −
entry. Furthermore, if S is strong Hall, then S21 is not vacuous and has no column
of zeros.

Proof. Without loss of generality, we may assume that the first p columns of S
are nonnegative, and that each of the last n− p columns of S has a + and a − entry.

562 KIM, OLESKY, SHADER, AND VAN DEN DRIESSCHE

Since S allows an NLI, so does the m by p nonnegative sign pattern consisting of
the first p columns of S. Therefore, by Theorem 3.4, we may permute the rows of S
to obtain a matrix of the form (3.2), where S21 is a nonnegative matrix with no row
of zeros, O is an s by p zero matrix with s ≥ 0, and each of the last n − p columns
has a + and a − entry.

Let A be a matrix in Q(S) that has an NLI, say B. Since BA = In, each of the
vectors eT1 , . . . , e

T
n is a nontrivial, nonnegative linear combination of the rows of A.

Since the first p columns of A are nonnegative and n > p, this requires that s ≥ 1,
and we conclude that S has the desired form.

If S21 is vacuous or has a column of zeros, then S has an (m − 1) by 1 zero
submatrix. Hence S is not strong Hall, and the result follows by taking the contra-
positive.

Proposition 3.7. For m ≥ n ≥ 2, let S be an m by n sign pattern that has
p ≥ 1 nonnegative columns and n− p ≥ 1 columns with a + and a − entry. Suppose
that S allows an NLI and has the form (3.2). Let

A =

⎡⎣ A11 A12

A21 A22

O A32

⎤⎦ ∈ Q(S)

have an NLI B =
[
B11 B12 B13

B21 B22 B23

]
, where each of A21, A22, B12, and B22 may be vacuous

if S is not strong Hall. Then the following hold:

(i) B11 is a diagonal matrix, and B21 and B22 are zero matrices.
(ii) The sign pattern S32 allows an NLI.
(iii) If row q of S21 has at least two positive entries, then column q of B12 is a

zero column.
(iv) Each column of B12 has at most one positive entry. Furthermore, the sign

pattern of B12 is a subpattern of ST
21.

Proof. Assume that S21 is not vacuous.

Since BA = In, it follows that B21A11 + B22A21 = O. Moreover, since B21,
B22, A11, and A21 are nonnegative, and no row of A11 or A21 is all zeros, B21 = O
and B22 = O. Also, BA = In implies that B11A11 + B12A21 = Ip. Since B11, B12,
A11, and A21 are nonnegative, both B11A11 and B12A21 are diagonal matrices. Since
A11 ∈ Q(Ip), A11 is an invertible diagonal matrix, and hence B11 is a diagonal matrix.
Thus, (i) is proven.

Since B21 and B22 are zero matrices, and BA = In, B23 is an NLI of A32, and
(ii) is proven.

Since B12A21 is a diagonal matrix and B12 is nonnegative, the ith row of B12A21

is a nonnegative linear combination of the rows of A21 (weighted by the entries of the
ith row of B12). As the ith row of B12A21 is a nonnegative multiple of eTi , and A21 is
a nonnegative matrix with no row of zeros, it follows that if the (i, j)-entry of B12 is
nonzero, then the jth row of A21 is a multiple of eTi . In particular, this implies that
each column of B12 has at most one nonzero entry. If the jth row of A21 has at least
two positive entries, then column j of B12 is a column of zeros, proving (iii). If the
(i, j)-entry of B12 is nonzero, then the (j, i)-entry of A21 is nonzero, completing the
proof of (iv).

If S21 is vacuous, then A21, A22, B12, and B22 are vacuous, in which case the
proofs of (i) for B11, B21 and (ii) are similar, but statements (i) for B22, (iii), and (iv)
are vacuous.

SIGN PATTERNS THAT ALLOW A PLI OR AN NLI 563

For m ≥ 2, Proposition 3.2, Theorem 3.4, and the following theorem completely
characterize the m by 2 sign patterns that allow an NLI.

Theorem 3.8. For m ≥ 2, let S be an m by 2 sign pattern such that the first
column is nonnegative and the second column has a + and a − entry. Then S allows
an NLI if and only if the first column of S has a + entry and [0 +] is a row of S.

Proof. Suppose that S allows an NLI. Then the first column of S also allows
an NLI. Hence, Theorem 3.4 implies that the first column of S has a + entry. By
Theorem 3.6, we may assume without loss of generality that S is of the form (3.2).
Since S32 is a column sign pattern, Propositions 3.7 (ii) and 2.1 imply that S32 has a
+ entry. Hence, [0 +] is a row of S.

For the converse, suppose that the first column of S has a + entry and [0 +] is
a row of S. Suppose that [+ −] is also a row of S. Then without loss of generality,
A ∈ S has the form ⎡⎣ a −b

u v
0 c

⎤⎦ ,

where a, b, c > 0, and u and v are (m− 2) by 1 vectors. It is easy to verify that[
1/a O b/ac
0 O 1/c

]
is an NLI of A.

Next suppose that [+ −] is not a row of S. Then without loss of generality, A ∈ S
has the form ⎡⎢⎢⎣

a b
u v
0 −c
0 d

⎤⎥⎥⎦ ,

where a, c, d > 0, b ≥ 0, and u and v are (m− 3) by 1 vectors. It is easy to verify that[
1/a O b/ac 0
0 O 1/c 2/d

]
is an NLI of A.

Hence, S allows an NLI.
Note that the proof of Theorem 3.8 actually shows that if S is an m by 2 matrix

whose first column is nonnegative, second column has a + and a − entry, and [0 +]
is one of its rows, then each matrix with sign pattern S has an NLI.

Example 3.9. The strong Hall sign pattern

S =

⎡⎣ + −
+ −
0 +

⎤⎦
does not allow a PLI (by Lemma 2.2), but does allow an NLI (by Theorem 3.8) since

[
1 0 1/2
0 0 1/2

]⎡⎣ 1 −1
1 −1
0 2

⎤⎦ = I2.

564 KIM, OLESKY, SHADER, AND VAN DEN DRIESSCHE

In general (as noted in the introduction) an NLI is not unique. For instance,[
1/2 1/2 1/2
0 0 1/2

]
is another NLI of the above matrix.

In the next theorem, it is shown that if a sign pattern S of the form (3.2) has
a (3, 2)-block S32 that allows an NLI or PLI, then some conditions on the negative
entries in S12 insure that S allows an NLI.

Theorem 3.10. For m ≥ n ≥ 2, let S be an m by n sign pattern of the form
(3.2) with p ≥ 1, n− p ≥ 1, and S21, S22 arbitrary. Then the following hold:

(i) If S32 allows an NLI and S12 has only 0 or − entries, then S allows an NLI.
(ii) If S32 allows a PLI and each row of S12 has a − entry, then S allows an NLI.

Proof. (i) Let

A =

⎡⎣ Ip A12

A21 A22

O A32

⎤⎦ ∈ Q(S),(3.3)

where −A12 ≥ 0 and A32 has B23 as an NLI. Let

B =

[
Ip O B13

O O B23

]
(3.4)

with B13 = −A12B23, which is a nonnegative matrix. Then B ≥ 0, BA = In, and
hence the result follows.

(ii) Let A ∈ Q(S) be of the form (3.3) and let B be of the form (3.4). If B23 is a
PLI of A32 and B13 = −A12B23, then B13 > 0, provided that the negative entries of
A12 are sufficiently large in magnitude, and BA = In as required.

4. Concluding remarks. In section 3, we have characterized nonnegative sign
patterns, strong Hall sign patterns with each column having a + and a − entry, and m
by 2 sign patterns that allow an NLI. For other cases, we have given some necessary
or sufficient conditions for S to allow an NLI. A characterization for the blocks of
the last column of a sign pattern S of the form (3.1) with k ≥ 2 that allows an NLI
remains open. We conclude by showing (in Theorem 4.2) that some conditions on the
submatrix Skk of a sign pattern S of the form (3.1) with k ≥ 2 insure that S allows
an NLI for arbitrary S1k, . . . ,Sk−1,k.

Let S allow a PLI and A ∈ Q(S). The following proposition, which is used
to prove Theorem 4.2, describes a relation between a PLI of A and the qualitative
behavior of solutions of xTA = bT . The latter equation is given in the introduction
as motivation for studying PLIs and NLIs.

Proposition 4.1. For m ≥ n, let A be an m by n matrix. Then A has a PLI if
and only if for each n by 1 nonzero vector b ≥ 0 there exists an m by 1 vector x > 0
satisfying xTA = bT .

Proof. Suppose that an n by m matrix B > 0 is a PLI of A. For an n by 1
nonzero vector b ≥ 0, it is clear that (bTB)A = bT and bTB > 0. Hence, the result
follows.

Next, suppose that for each n by 1 nonzero vector b ≥ 0 there exists an m by 1
vector x > 0 satisfying xTA = bT . Take b to be the ith column ei of In and let xi > 0

SIGN PATTERNS THAT ALLOW A PLI OR AN NLI 565

be a solution of xTA = eTi . Then the matrix

B =

⎡⎢⎣ xT
1
...
xT
n

⎤⎥⎦
is a PLI of A.

Theorem 4.2. For m > s ≥ 1, n > t ≥ 1, and m > n, let S11 be an s by t
sign pattern that allows an NLI and let S22 be an (m− s) by (n− t) sign pattern that
allows a PLI. Suppose that if n− t = 1, then S22 has a − entry, and if n− t ≥ 2, then
S22 is not permutationally equivalent to the sign pattern [TO] in which T is a square
sign pattern. Then, for an arbitrary s by (n − t) sign pattern S12, the sign pattern
S =

[S11 S12

O S22

]
allows an NLI.

Proof. Let A11 be a matrix in Q(S11) with B11 as an NLI. By Theorem 2.12,
there exists A22 ∈ Q(S22) that has a PLI B22 and a positive left nullvector yT . Let
A12 ∈ Q(S12). Then A12 can be written as A12 = V1 − V2, where V1, V2 ≥ 0 and
the entrywise (Hadamard) product V1 ◦ V2 = O. Let vTi ≥ 0 for 1 ≤ i ≤ s denote
row i of V1. If vi �= 0, then by Proposition 4.1 there exists an (m − s) by 1 vector
xi > 0 such that xT

i A22 = vTi . If vi = 0, then xT
i A22 = vTi = 0 when xT

i = yT . Thus,
K1 = [x1, . . . , xs]

T > 0 and K1A22 = V1. Similarly, there exists K2 > 0 such that
K2A22 = V2.

Let A12(ε) = εV1 − V2 = (εK1 − K2)A22 for a sufficiently small ε > 0 such
that K2 − εK1 > 0. Note that V1 ◦ V2 = O implies that A12(ε) ∈ Q(S12). Let
B12 = B11(K2 − εK1). Since K2 − εK1 > 0 and B11 ≥ 0 with no rows of zeros, it

follows that B12 > 0. It can be easily verified that
[
B11 B12

O B22

][
A11 A12(ε)
O A22

]
= In. Hence,

the result follows.
Remark 4.3. Take S11 and S22 in Theorem 4.2 to be S ′ in Remark 3.1 and Skk

in the form (3.1) with k ≥ 2, respectively. Then the conditions on Skk in Theorem
4.2 insure that the sign pattern S of the form (3.1) with k ≥ 2 allows an NLI for
arbitrary S1k, . . . ,Sk−1,k.

Acknowledgment. The authors thank the referee for comments that improved
the readability of the paper.

REFERENCES

[1] A. Berman and B. D. Saunders, Matrices with zero line sums and maximal rank, Linear
Algebra Appl., 40 (1981), pp. 229–235.

[2] R. A. Brualdi and B. L. Shader, Matrices of Sign-Solvable Linear Systems, Cambridge Uni-
versity Press, Cambridge, UK, 1995.

[3] R. A. Brualdi and B. L. Shader, Strong Hall matrices, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 359–365.

[4] M. Fiedler and R. Grone, Characterizations of sign patterns of inverse positive matrices,
Linear Algebra Appl., 40 (1981), pp. 237–245.

[5] T. Fujimoto and R. R. Ranade, Two characterizations of inverse-positive matrices: The
Hawkins-Simon Condition and the Le Chatelier-Braun Principle, Electron. J. Linear Alge-
bra, 11 (2004), pp. 59–65.

[6] C. R. Johnson, F. T. Leighton, and H. A. Robinson, Sign patterns of inverse positive ma-
trices, Linear Algebra Appl., 24 (1979), pp. 75–83.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 566–585

FAST QR EIGENVALUE ALGORITHMS FOR HESSENBERG
MATRICES WHICH ARE RANK-ONE PERTURBATIONS OF

UNITARY MATRICES∗

D. A. BINI† , Y. EIDELMAN‡ , L. GEMIGNANI† , AND I. GOHBERG‡

Abstract. Let Hn ⊂ C
n×n be the class of n × n Hessenberg matrices A which are rank-one

modifications of a unitary matrix, that is, A = H + uwH , where H is unitary and u,w ∈ C
n. The

class Hn includes three well-known subclasses: unitary Hessenberg matrices, companion (Frobenius)
matrices, and fellow matrices. The paper presents some novel fast adaptations of the shifted QR
algorithm for computing the eigenvalues of a matrix A ∈ Hn where each step can be performed
with O(n) flops and O(n) memory space. Numerical experiments confirm the effectiveness and the
robustness of these methods.

Key words. Hessenberg matrices, rank-one perturbations, unitary matrices, companion matri-
ces, quasiseparable matrices, QR iteration, eigenvalue computation, complexity

AMS subject classifications. 65F15, 65H17

DOI. 10.1137/050627563

1. Introduction. The subject of this paper is the efficient computation of the
eigenvalues of certain upper Hessenberg matrices A ∈ C

n×n of the form

A = H + uwH ,(1.1)

where H ∈ C
n×n is unitary and u,w ∈ C

n. Let Hn denote this class of matrices. If
A ∈ Hn is invertible, then from the Sherman–Morrison formula one has

A−1 = HH − σHHuwHHH , σ = (1 + wHHHu)−1 ∈ C,

which can be combined with (1.1) to give

A−A−H = uwH + σ̄HwuHH.(1.2)

The shifted QR algorithm with shifts αk ∈ C, k = 0, 1, . . . ,

A0 = A,

Ak − αkIn = QkRk,

Ak+1 := RkQk + αkIn,

(1.3)

is a well-known standard method for computing the eigenvalues of a dense matrix A
[13, 17, 25]. For simplicity, we refer to (1.3) as the QR iteration. A careful exploitation
of (1.2) says that each matrix Ak, k = 0, 1, . . . , generated by the QR iteration (1.3)
applied to A0 = A ∈ Hn can be represented by O(n) parameters. Therefore, our main
goal is to find fast and numerically robust adaptations of the customary QR iteration
(1.3) for an input matrix A0 ∈ Hn which require O(n) floating point operations (flops)
per iteration and O(n) memory space.

∗Received by the editors March 25, 2005; accepted for publication (in revised form) by P. Van
Dooren November 15, 2006; published electronically April 20, 2007.

http://www.siam.org/journals/simax/29-2/62756.html
†Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

(bini@dm.unipi.it, gemignan@dm.unipi.it). The work of these authors was partially supported by
MIUR grant 2002014121 and by GNCS-INDAM.

‡School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-
Aviv University, Ramat-Aviv 69978, Israel (eideyu@post.tau.ac.il, gohberg@post.tau.ac.il).

566

FAST QR ITERATION FOR SOME MODIFIED EIGENPROBLEMS 567

1.1. The class Hn. The class Hn includes three well-known subclasses: unitary
Hessenberg matrices, companion (Frobenius) matrices, and fellow matrices.

The interest on eigenvalues computation for unitary Hessenberg matrices is mo-
tivated by several applications such as signal processing [16] and least squares ap-
proximation by trigonometric polynomials [3, 18]. A fast QR iteration for unitary
Hessenberg matrices was first presented in [14]. The algorithm relies upon the Schur
representation of a unitary Hessenberg matrix as product of (modified) Givens ro-
tations [12]. Suitable variants of the algorithm of [14] are developed in [15, 24, 23],
while the potential stability problems encountered by these algorithms are analyzed
in [19].

The companion (Frobenius) matrix associated with the n-degree polynomial
f(z) =

∑n
i=0 fiz

i, fn �= 0, is defined by F = C + feTn , where C = (ci,j) is the
generator of the circulant matrix algebra such that ci,j = 1 for i − j = 1 mod n,
ci,j = 0, otherwise en stands for the nth column of the n × n identity matrix In
and fT = [−f0/fn − 1,−f1/fn, . . . ,−fn−1/fn]. Matrix methods based on the QR
iteration applied to a companion matrix are customary for polynomial root-finding:
in fact, the MATLAB1 command roots relies on this approach.

Matrices of the more general form F = H +ueTn , where H is unitary Hessenberg,
are referred to as fellow matrices in [6]. The root-finding problem for a polynomial
expressed as a linear combination of Szegö polynomials is reduced to the solution of
an eigenvalue problem for a fellow matrix (see [1] and also [2]).

From the Schur parameterization it immediately follows that any unitary Hes-
senberg matrix H has low rank submatrices in its off-diagonal blocks. The property
extends to companion and fellow matrices and is a manifestation of their quasisepara-
ble structure, i.e., of the fact that all the submatrices of H which do not contain the
diagonal have small rank. The class of (block) quasiseparable matrices was introduced
and studied in the papers [8, 9, 10, 11], in the monograph [7], and in [21]. We refer
the reader to section 2 for a formal definition of quasiseparable matrices.

By using (1.2), it is also found that the quasiseparable structure of an invertible
matrix A ∈ Hn is inherited by each matrix Ak generated by the QR iteration (1.3)
applied to A0 = A. A fast QR iteration for nonsingular companion matrices based on
the formula (1.2) has been recently designed in [5]. The algorithm is computationally
appealing but numerically unstable due to the appearance of the inverse matrix in
the formula (1.2).

1.2. Summary of the results. In this paper we present a unified approach to
the computation of eigenvalues of unitary Hessenberg, companion, and fellow matrices
by using fast, stable adaptations of the structured QR iteration. The new algorithms
do not suffer the instabilities and/or the computational problems of previous works
on fast QR algorithms for fellow matrices [6] and companion matrices [5]; for unitary
Hessenberg matrices the new algorithms do not have shift restrictions as for previous
methods [15, 24, 23].

The key idea of our approach is to find a compact representation of the matrices
Ak, k = 0, 1, . . . , generated by the QR iteration (1.3) which does not involve quantities
expressed in terms of the entries of A−1

k . To do this we elaborate on the relation (1.1).
By using Ak+1 = QH

k AkQk, one obtains that

Ak+1 = Hk+1 + uk+1w
H
k+1, k ≥ 0,(1.4)

1MATLAB is a registered trademark of The Mathworks, Inc.

568 D. A. BINI, Y. EIDELMAN, L. GEMIGNANI, AND I. GOHBERG

where Hk+1 is unitary and, moreover, Hk+1 = QH
k HkQk, uk+1 = QH

k uk, and wk+1 =
QH

k wk subjected to the initializations H0 = H, u0 = u, and w0 = w. Since Ak+1

is Hessenberg, from (1.4) we deduce that Hk+1 has a quasiseparable structure in its
strictly lower triangular part. By exploiting this property, we derive a quasiseparable
representation for the whole matrix Hk+1. Combining this representation with the
formula (1.4) yields the desired compact description of the matrix Ak+1 in terms of
number of parameters which is linear in n.

The computation of the quasiseparable representation of the matrix Hk+1 in float-
ing point arithmetic leads to some additional difficulties and sometimes in numerical
tests performed with very large matrices (n ≥ 1000) it turned out to be prone to
numerical instabilities. In particular, if fl(Hk+1) = H̃k+1 + Δ̃k+1, where H̃k+1 is
numerically unitary, then the computation can amplify the previously accumulated
error Δ̃k+1. A renormalization technique is used in our algorithm to overcome this
drawback. The new iterate at step k + 1 is defined as a small perturbation of Ak+1

which is both upper Hessenberg and a rank-one perturbation of a numerically unitary
matrix Uk+1. In this way, the quasiseparable structure of Uk+1 and, a fortiori of the
new iterate, can be computed without any amplification of previously accumulated
errors. The overall computational cost of the resulting algorithm is O(n) flops per
iteration and O(n) storage locations. Numerical experiments show that the algorithm
is stable.

1.3. Paper organization. The paper is organized as follows. In section 2 we
recall some basic properties and algorithms for quasiseparable matrices. In section 3
we first characterize the structure of a unitary matrix H such that H + uwH ∈ Hn

for vectors u and w, then we apply this result to determine a numerically suited
quasiseparable representation for the matrices Ak generated by the QR iteration (1.3)
applied to an input matrix A = A0 ∈ Hn. In section 4, we develop fast algorithms
to carry out one QR iteration in a fast and robust way using linear time and linear
memory space. In section 5 we discuss practical implementations of our QR iteration
algorithm and present the results of numerical experiments. Finally, the conclusion
and a discussion are the subjects of section 6.

2. Quasiseparable structures: Definitions and fast algorithms. For any
n × n matrix B = (bi,j) ∈ C

n×n we adopt the MATLAB notation triu(B, p) = (ti,j)
to denote the upper triangular portion of B such that ti,j = bi,j for j − i ≥ p, and
ti,j = 0 elsewhere. Analogously, the n × n matrix T = tril(B, p) is formed by the
lower triangular portion of B such that ti,j = bi,j for j− i ≤ p, and ti,j = 0 elsewhere.

A matrix A ∈ C
n×n is called order (nL, nU)-quasiseparable [8] if

nL = max
1≤k≤n−1

rankA[k + 1: n, 1: k], nU = max
1≤k≤n−1

rankA[1 : k, k + 1: n],

where B[i : j, k : l] is the submatrix of B with entries having row and column indices
in the ranges i through j and k through l, respectively. In the case nU = nL = r
one refers to A as an order-r-quasiseparable matrix. A computationally important
property of n × n quasiseparable matrices is that they can be represented by only
O((nL + nU)n) parameters via generators. Given the set of m×m matrices {Bj}n−1

j=2

and two positive integers i, j such that 1 < i + 1 ≤ j ≤ n, we define the matrix B×
i,j

as follows: B×
i,j = Bi+1 · · ·Bj−1 for n ≥ j > i + 1 and B×

j,j+1 = Im for 1 ≤ j ≤ n− 1.

Analogously, if j + 1 ≤ i ≤ n, then ×Bi,j = Bi−1 · · ·Bj+1 for n ≥ i > j + 1 and
×Bi,i−1 = Im for 2 ≤ i ≤ n. Then an order (nL, nU)-quasiseparable matrix A =

FAST QR ITERATION FOR SOME MODIFIED EIGENPROBLEMS 569

(ai,j) ∈ C
n×n can be represented as follows (see [7] and [8]):

ai,j =

{
pT
i
×Bi,jqj , 1 ≤ j < i ≤ n,

gT
i C

×
i,jhj , 1 ≤ i < j ≤ n.

(2.1)

The diagonal entries ai,i, 1 ≤ i ≤ n are arbitrary and do not satisfy any structural
constraint. Here pi ∈ C

nL , 2 ≤ i ≤ n, qi ∈ C
nL , 1 ≤ i ≤ n − 1, and Bi ∈ C

nL×nL ,
2 ≤ i ≤ n − 1; these elements are said to be lower generators of the matrix A.
Similarly, the elements gi ∈ C

nU , 1 ≤ i ≤ n − 1, hi ∈ C
nU , 2 ≤ i ≤ n, and

Ci ∈ C
nU×nU , 2 ≤ i ≤ n− 1 are said to be upper generators of the matrix A.

The quasiseparable structure provides a generalization of the band structure. If
Ci = C, Bi = B, and BnL = 0, CnU = 0, then the matrix A defined by (2.1) is a
band matrix with upper and lower bandwidth nU and nL, respectively. In particular,
if nL = 1 and Bi = 0, then ×Bi,j = δi−1,j is the Kronecker delta and A reduces
to an upper Hessenberg matrix. Roughly speaking, the quasiseparable structure is
maintained under arithmetic operations, inversion, and LU and QR factorization.
More precisely, the matrices generated by these operations are still quasiseparable with
generally a different order of quasiseparability. Fast O(n) algorithms for performing
these operations, based upon generator manipulations, have already been devised in
[8, 11, 10].

For our purposes a special mention is due to the algorithm for computing a QR
factorization of a (block) quasiseparable matrix A = QR presented in [11] (derived
there via applying the more general Dewilde-van der Veen method [7] to finite qua-
siseparable matrices). The algorithm first reduces the matrix A into block upper
Hessenberg form S = V HA and then transforms S into a triangular matrix R = UHS
where U and V are unitary. It is worth observing that in certain cases where A has a
very special quasiseparable structure in its lower triangular part, the triangularization
process above can be modified in such a way that Q = V U can be constructed in the
usual manner as a product of Givens rotations. This latter representation of Q is
equivalent to the representation via generators obtained by multiplying the quasisep-
arable matrices U and V using the multiplication algorithm in [8]. Nevertheless, the
approach based on Givens rotations is much more familiar in the numerical analysis
community and will be pursued in this paper whenever possible.

3. The quasiseparable structure of QR iterates. In this section we show
the quasiseparable structure of the matrices Ak, k = 0, 1, . . . , generated by the QR
iteration (1.3) applied to the input Hessenberg matrix A = A0 ∈ Hn, A = H +uwH ,
where H ∈ C

n×n is unitary and u,w ∈ C
n. The main result follows from a basic

property of the matrix H which is both unitary and a rank-one perturbation of a
Hessenberg matrix. More precisely, in the next subsection we prove that any matrix
B ∈ C

n×n which satisfies these two properties must be an order-2-quasiseparable
matrix.

3.1. The quasiseparable structure of certain unitary matrices. Let P ∈
C

n×n be a unitary matrix such that the matrix B = P −vzH is a Hessenberg matrix
for two suitable vectors v,z ∈ C

n. Under these assumptions we establish a condensed
quasiseparable representation for the matrix P .

At first we consider in detail the case already studied in the literature of a unitary
Hessenberg matrix. A unitary upper Hessenberg matrix P with real nonnegative
subdiagonal entries can be represented as a product of (modified) Givens rotations

570 D. A. BINI, Y. EIDELMAN, L. GEMIGNANI, AND I. GOHBERG

[14], i.e.,

P = G1(a1)G2(a2) · · ·Gn(an),

Gj(aj) = Ij−1 ⊕ G(aj) ⊕ In−j−1, G(aj) =

[
−aj bj
bj āj

]
, 1 ≤ j ≤ n− 1,

Gn(an) = In−1 ⊕ (−an), bj ≥ 0, |aj |2 + b2j = 1, |an| = 1.

(3.1)

The decomposition is usually referred to as the Schur parameterization of P . The aj ’s
are the Schur parameters of P and the bj ’s are the complementary parameters. From
(3.1) we obtain the representation of P = (pi,j) via generators [12]

pi,j =

{
bi−1δi−1,j1, 1 ≤ j < i ≤ n,
−āi−1b

×
i−1,jaj , 1 ≤ i ≤ j ≤ n,

where δi,j denotes the Kronecker delta. It is worth noting that, different from the rep-
resentation (2.1), here the quasiseparable structure includes also the diagonal entries.
Given a unitary upper Hessenberg matrix U ∈ C

n×n we can always determine a uni-
tary diagonal matrix D = diag[eiθ1 , . . . , eiθn] such that P = DHUD has nonnegative
subdiagonal entries. In this way it is found that U = (ui,j) admits the representation

ui,j =

{
ψ̄i−1δi−1,j1, 1 ≤ j < i ≤ n,
−φ̄i−1ψ

×
i−1,jφj , 1 ≤ i ≤ j ≤ n,

(3.2)

for complex numbers φj and ψj such that |φj |2 + |ψj |2 = 1.
Remark 3.1. The computation of a Schur-like parameterization of a unitary

Hessenberg matrix U can be accomplished in a robust way by factoring U in the QR
form. If U = QR, where Q is unitary and R is upper triangular with nonnegative
diagonal entries, then necessarily one has R = In and Q = U . Moreover, we can
transform U to upper triangular form by using n − 1 (modified) Givens rotations to
annihilate the n− 1 subdiagonal entries.

Relation (3.2) says that any unitary Hessenberg matrix is (1, 1) quasiseparable.
The following results generalize this property to the case where the unitary matrix
has a more general (quasiseparable) structure in its lower triangular part.

Theorem 3.2. Let P = (pi,j) ∈ C
n×n be a unitary matrix such that tril(P,−2) =

tril(vzH ,−2) for two suitable n-vectors v = [v1, . . . , vn]
T

and z = [z1, . . . , zn]
T

. Then
P admits the factorization P = V SU , where V is unitary lower Hessenberg and S and
U are unitary upper Hessenberg matrices. Moreover, V and S have Schur parameter-
izations of the form V H = G3(ã3) · · ·Gn−1(ãn−1) and SH = Gn−1(ân−1) · · ·G2(â2),
respectively.

Proof. The reduction of the matrix P into an upper Hessenberg form can be split
in two stages. In the first stage the matrix P is transformed into a matrix P̃ of lower
bandwidth 2, i.e., p̃i,j = 0 whenever i > j + 2. The task is accomplished as follows.
Choose the first rotation Gn−1(ãn−1) = In−2 ⊕ G(ãn−1) to yield

G(ãn−1)

[
vn−1

vn

]
=

[
v̂n−1

0

]
.

Similarly, choose the successive rotations Gj(ãj) = Ij−1⊕G(ãj)⊕In−j+1, 3 ≤ j ≤ n−2
to yield

G(ãj)

[
vj

v̂j+1

]
=

[
v̂j
0

]
, j = n− 2, . . . , 3.

FAST QR ITERATION FOR SOME MODIFIED EIGENPROBLEMS 571

In the second stage the matrix P̃ = G3(ã3) · · ·Gn−1(ãn−1)P = V HP is reduced to an
upper Hessenberg form by premultiplication by the matrices G2(â2), . . . , Gn−1(ân−1)
suitably chosen to annihilate the entries along the second subdiagonal. At the end of
the process we find that the matrix U = Gn−1(ân−1) · · ·G2(â2)P̃ = SH P̃ is unitary
Hessenberg.

Remark 3.3. The reduction process described in the proof can easily be com-
pleted to produce a QR factorization of the quasiseparable matrix P . Indeed, the
unitary lower Hessenberg matrix V in the previous theorem is similar to the matrix
V determined at the first stage of the algorithm in [11] applied for computing a QR
factorization of the quasiseparable matrix P . At the second stage the cited algorithm
reduces P̃ into a triangular form by annihilating its subdiagonal entries column-by-
column. Differently, in the scheme above the annihilation of the subdiagonal entries
of P̃ is performed one subdiagonal at the time.

The factorization P = V SU stated in the previous theorem leads to a charac-
terization of the entries in the strictly upper triangular part of the matrix P . More
specifically, let U = U (0), P = P (0), and recall that U can be represented in the
form (3.2) for suitable elements φj and ψj of modulus less than or equal to 1. The
reduction process described in the proof of Theorem 3.2 proceeds as follows:

P = P (0) G(ãn−1)→ P (1) G(ãn−2)→ · · · G(ã3)→ P (n−3),

P (n−3) = P̃
G(â2)→ · · · G(ân−1)→ P (2n−5) = U (0),

(3.3)

where at the jth step P (j−1) is premultiplied by the corresponding Givens rotation to

obtain P (j). Let us define U (s) = P (2n−5−s) = (u
(s)
i,j) for 0 ≤ s ≤ 2n− 5. The desired

characterization of the entries of P is thus found by carrying out the scheme (3.3) in
the reverse order, i.e.,

U = U (0) G(ân−1)
H

→ U (1) G(ân−2)
H

→ · · · G(â2)
H

→ U (n−2),

U (n−2) = P̃
G(ã3)

H

→ · · · G(ãn−1)
H

→ U (2n−5) = P,

(3.4)

where at the jth step U (j−1) is premultiplied by the corresponding Givens rotation
to obtain U (j). Based on the scheme (3.4), we determine the structure of the matrix
P̃ = SU and then the structure of the matrix P = V Ũ .

The next result shows that the upper triangular part of the matrix P̃ = SU
obtained in the middle of the process (3.4) is order-2-quasiseparable. Note that here
the structure includes the diagonal entries. A simple proof of the rank property is
based on the following argument. For any fixed integer k, 1 ≤ k ≤ n − 1, we easily
find that

U (j)[1 : k, k : n] = U [1 : k, k : n], 0 ≤ j ≤ n− 1 − k,

and, hence, rank(U (j)[1 : k, k : n]) = 1. At the (n − k)th step of (3.4) the matrix
U (n−k) is determined as U (n−k) = G(âk)

HU (n−k−1). This produces a modification
in the last row of U (n−k)[1 : k, k : n] so that rank(U (n−k)[1 : k, k : n]) ≤ 2. The
successive transformations only perform linear combinations among the rows of the
considered submatrix and, therefore, do not modify this value of the rank. By using
appropriate parameterizations for the matrices involved, the proof can be turned into
an algorithm to compute recursively the generators of the quasiseparable structure
of P̃ .

572 D. A. BINI, Y. EIDELMAN, L. GEMIGNANI, AND I. GOHBERG

Lemma 3.4. Under the assumption of Theorem 3.2, let S have a Schur parame-
terization of the form

SH = Gn−1(ân−1) · · ·G2(â2),

and, moreover, let the matrix U be parameterized in the form (3.2). Then there exist
vectors qj ∈ C

2, tj ∈ C
2, 1 ≤ j ≤ n, and lower triangular matrices Bj ∈ C

2×2,
1 ≤ j ≤ n− 1, such that

(P̃)i,j = qT
i B

×
i−1,jtj , 1 ≤ i ≤ j ≤ n.(3.5)

The matrices Bj and the vectors qj and tj are determined according to the following
equations:

B1 = I2, Bj =

[
ψj−1 0

¯̂aj φ̄j−1 b̂j

]
, 2 ≤ j ≤ n− 1;(3.6)

qT
1 = [−1, 0] , qT

2 = [0, 1] , qT
j =

[
−b̂j−1φ̄j−2, âj−1

]
, 3 ≤ j ≤ n;(3.7)

t1 =

[
φ1

0

]
, tj =

[
ψj−1φj

u
(n−j)
j,j

]
, 2 ≤ j ≤ n;(3.8)

where

u
(n−j)
j,j = −¯̂aju

(0)
j,j − b̂j ¯̂aj+1ψ̄j , 2 ≤ j ≤ n− 1.

Proof. The proof is by induction. The premultiplication of U (n−k−1) by G(âk)
H

only changes the rows k and k + 1 of U (n−k−1). Observe that

U (n−k−1)[k + 2 : n, 1 : n] = P̃ [k + 2 : n, 1 : n], U (n−k−1)[1 : k, 1 : n] = U [1 : k, 1 : n].

Let us suppose that

u
(n−k−1)
k+1,k = −¯̂ak+1ψ̄k, u

(n−k−1)
k+1,j = [0, 1]B×

k,jtj , k + 1 ≤ j ≤ n,

where Bj and tj , k + 1 ≤ j ≤ n are defined as in (3.6) and (3.8). Since the matrices
Bj are lower triangular, it is easily verified that the entries located on the kth row in
the strictly upper triangular part of U can be specified by

u
(n−k−1)
k,j =

[
−φ̄k−1, 0

]
B×

k,jtj , k + 1 ≤ j ≤ n.

The thesis follows by observing that

G(âk)
H

[
−φ̄k−1 0

0 1

]
=

[
[0, 1]Bk

qT
k+1

]
.

The description of the upper triangular part of P̃ = U (n−2) via generators yields a
quasiseparable representation of the upper triangular part of P = U (2n−5) generated
at the end of the process (3.4). In fact, each of the remaining steps U (j) → U (j+1) in
(3.4), n − 2 ≤ j ≤ 2n − 6 amounts to performing a linear combination between two
consecutive rows of U (j) starting from the third row without modifying the general
rank structure of the matrix. Taking a look at the Givens transformations performed,
we arrive at the following theorem.

FAST QR ITERATION FOR SOME MODIFIED EIGENPROBLEMS 573

Theorem 3.5. Under the assumption of Theorem 3.2, let V and S have a Schur
parameterization of the form

V H = G3(ã3) · · ·Gn−1(ãn−1), SH = Gn−1(ân−1) · · ·G2(â2),

respectively; moreover, let the matrix U be parameterized in the form (3.2). Then
there exist vectors q̃j ∈ C

2, 1 ≤ j ≤ n − 1, vectors tj ∈ C
2, 2 ≤ j ≤ n, and lower

triangular matrices Bj ∈ C
2×2, 2 ≤ j ≤ n− 1, such that

(P)i,j = q̃T
i B

×
i,jtj , 1 ≤ i < j ≤ n.(3.9)

The matrices Bj and the vectors tj are defined as in (3.6) and (3.8), respectively.
The vectors q̃j are generated by the coupled recurrences

q̃T
j = −¯̃aj q̂

T
j Bj + b̃jq

T
j+1,

q̂T
j+1 = b̃j q̂

T
j Bj + ãjq

T
j+1, j = 3 . . . n− 1,

where the vectors qj are given by (3.7), q̃T
1 = qT

1 B1, q̃T
2 = qT

2 B2, and q̂T
3 = qT

3 .

Proof. The proof is by induction. The matrices U (j+n−5) and U (j+n−4) =
G(ãj)U

(j+n−5), 3 ≤ j ≤ n− 1 only differ in the rows j and j + 1. Let us assume that

u
(j+n−5)
j,k = q̂T

j B
×
j−1,ktk, j ≤ k ≤ n,

where Bk and tk, j ≤ k ≤ n are defined as in Lemma 3.4 and q̂T
j is generated after

j − 3 iterations of the two-step procedure above. Since we have

u
(j+n−5)
j+1,k = qT

j+1B
×
j,ktk, j + 1 ≤ k ≤ n,

we find

G(ãj)
H

[
q̂T
j Bj

qT
j+1

]
=

[
q̃T
j

q̂T
j+1

]
,

and, therefore,

u
(j+n−4)
j,k = q̃T

j B
×
j,ktk, j < k ≤ n,

and

u
(j+n−4)
j+1,k = q̂T

j+1B
×
j,ktk, j + 1 ≤ k ≤ n.

3.2. The main result. We are now ready to prove the main result of this

section concerning the quasiseparable structure of the matrices Ak = (a
(k)
i,j), k =

0, 1, . . . , generated by the QR iteration (1.3) applied to the input Hessenberg matrix
A = A0 ∈ Hn, A = H + uwH , where H ∈ C

n×n is unitary and u,w ∈ C
n. Since

A = A0 is upper Hessenberg each iterate Ak has the same Hessenberg shape as A0. For

notational convenience we also denote β
(k)
j = a

(k)
j+1,j , 1 ≤ j ≤ n − 1, the subdiagonal

entries of Ak. Since Ak+1 = QH
k AkQk for any k ≥ 0, from (1.1) we obtain

Ak+1 = Hk+1 + uk+1w
H
k+1,

Hk+1 = QH
k HkQk,

uk+1 = QH
k uk, wk+1 = QH

k wk,

(3.10)

subjected to the initializations H = H0 ∈ C
n×n, u0 = u =

[
u

(0)
1 , . . . , u

(0)
n

]T
, and

w0 = w =
[
w

(0)
1 , . . . , w

(0)
n

]T
.

574 D. A. BINI, Y. EIDELMAN, L. GEMIGNANI, AND I. GOHBERG

Based on the relations (3.10), we derive a quasiseparable representation for the
matrices Ak, k ≥ 0. Because of the Hessenberg form of Ak from (3.10), we obtain
that each matrix Hk meets the assumption of Theorem 3.2. Therefore, by substituting
the representation provided by Theorem 3.5 into the equations (3.10) we obtain the
following theorem.

Theorem 3.6. For each upper Hessenberg matrix Ak = (a
(k)
i,j) generated by (1.3)

applied to the input matrix A0 = H0 +u0w
H
0 ∈ Hn, there exist vectors q

(k)
j ∈ C

2, 1 ≤
j ≤ n − 1, vectors t

(k)
j ∈ C

2, 2 ≤ j ≤ n, and lower triangular matrices B
(k)
j ∈ C

2×2,
2 ≤ j ≤ n− 1, such that

a
(k)
i,j = q

(k)
i

T
B

(k)
i,j

×
t
(k)
j + u

(k)
i w̄

(k)
j , 1 ≤ i < j ≤ n.(3.11)

Remark 3.7. Quasiseparable representations where the parameters are allowed
to vary greatly in magnitude can be prone to numerical instabilities [22]. This raises
the important question of finding a well-conditioned parameterization among all the
possible sets of generators of a given quasiseparable matrix. It is instructive to discuss
the robustness of (3.9)–(3.11) compared with a different parameterization for the
matrix Ak used in [5] and derived from (1.2). It is immediately found that ‖ tj ‖2 ≤√

2, ‖ Bj ‖F ≤
√

2 and ‖ B×
i,j ‖F= O(

√
j − i). Moreover, for the vectors qj defined

in (3.7) we have ‖ qj ‖2 ≤ 1 and ‖
[
B×

0,j

T
q1, . . . , B

×
j−1,j

T
qj

]T ‖F= O(j). Since
the Frobenius norm is invariant under multiplication by a unitary matrix, it follows
that the vectors q̃j and q̂j generated by the coupled recurrences in Theorem 3.5 are
such that ‖ q̃j ‖2 = O(j) and ‖ q̂j ‖2 = O(j). Therefore we may conclude that the
parameters used in the representation (3.9) of the strictly upper triangular part of P
can be bounded from above in magnitude by O(n) and, hence, the parameterization
(3.11) is numerically robust. In contrast to this there are cases where the formula
(1.2) would generate large cancellation errors and would not be robust. To see this,
let us suppose that A = A0 is ill conditioned; more precisely, assume that A has a
fixed norm but A−1 has an arbitrarily large norm. Since Ak is unitarily similar to A,
we have ‖ Ak ‖2 = ‖ A ‖2. The algorithm in [5] employs the formula (1.2) to obtain
a representation of the strictly upper triangular part of Ak as the sum of the strictly
upper triangular parts of three rank-one matrices. The first matrix is ukw

H
k which is

uniformly bounded. The other two rank-one matrices can have entries with arbitrarily
large moduli which must combine together so that the cumulative contribution has
bounded norm.

4. The structured QR iteration. In this section we describe a fast adaptation
of the QR iteration (1.3) for an input matrix A = A0 ∈ Hn. By exploiting the
quasiseparable structure (3.11) of each iterate Ak, we obtain linear time and linear
memory space per iteration. Given a condensed representation of the form (3.11) for
the matrix Ak our algorithm computes a similar representation for the matrix Ak+1

defined as in (1.3). The resulting process is referred to as the structured QR iteration.
The computation proceeds as follows:

1. Compute Qk and Rk such that Ak−αkIn = QkRk provides a QR factorization
of the left-hand side matrix.

2. Determine the vectors uk+1 := QH
k uk, wk+1 := QH

k wk and the unitary
matrix Hk+1 := QH

k HkQk = RkQk + αkIn − uk+1w
H
k+1.

3. Set Ak+1 := Hk+1 + uk+1w
H
k+1.

In view of (3.10), we see that the computed matrix Ak+1 coincides with the one
obtained after having performed one step of the shifted QR process (1.3) starting from

FAST QR ITERATION FOR SOME MODIFIED EIGENPROBLEMS 575

Ak. From Theorem 3.6 it follows that both Ak and Ak+1 can be represented in the
condensed form (3.11) by means of O(n) parameters. In what follows, we will show
that the same holds for all the data structures involved in the computational process
above. In this way matrix operations can be reduced to manipulating O(n) rather
than O(n2) elements with a dramatic reduction of the operation count.

Let us first specify the parameterization used for the matrices Ak and Hk. Ac-
cording to the notations introduced in the previous section, the input data at iteration

k + 1 are given by: the vector β(k) =
[
β

(k)
1 , . . . , β

(k)
n−1

]T ∈ C
n−1 of the subdiagonal

entries of Ak; the vector a(k) =
[
a
(k)
1,1, . . . , a

(k)
n,n

]T ∈ C
n of the diagonal entries of Ak;

the vector h(k) =
[
h

(k)
1,1, . . . , h

(k)
n,n

]T ∈ C
n of the diagonal entries of Hk; the vectors

q
(k)
j ∈ C

2, 1 ≤ j ≤ n−1; the vectors t
(k)
j ∈ C

2, 2 ≤ j ≤ n; the lower triangular matri-

ces B
(k)
j =

⎡⎣ψ̂(k)
j 0

φ̂
(k)
j ρ̂

(k)
j

⎤⎦ ∈ C
2×2, 2 ≤ j ≤ n− 1; the vector uk =

[
u

(k)
1 , . . . , u

(k)
n

]T ∈ C
n;

the vector wk =
[
w

(k)
1 , . . . , w

(k)
n

]T ∈ C
n, and the shift αk. The entries of the unitary

matrix Hk = (h
(k)
i,j) are expressed in terms of these parameters as

h
(k)
i,j = −u

(k)
i w̄

(k)
j for i− j ≥ 2,

h
(k)
j+1,j = β

(k)
j − u

(k)
j+1w̄

(k)
j ,

h
(k)
j,j = (h(k))j ,

h
(k)
i,j = q

(k)
i

T
B

(k)
i,j

×
t
(k)
j for j − i ≥ 1.

(4.1)

Analogously, the nonzero entries of the upper Hessenberg matrix Ak are defined by

a
(k)
j+1,j = β

(k)
j ,

a
(k)
j,j = (a(k))j ,

a
(k)
i,j = q

(k)
i

T
B

(k)
i,j

×
t
(k)
j + u

(k)
i w̄

(k)
j for j − i ≥ 1.

(4.2)

If H0 is unitary Hessenberg, then at the very beginning for k = 0 we may set

q
(0)
j =

[
− φ̄

(0)
j−1ψ

(0)
j , 0

]
, t

(0)
j =

[
φ

(0)
j , 0

]T
, and B

(0)
j =

[
ψ

(0)
j 0
0 0

]
, where the φ

(0)
j ’s and

the ψ
(0)
j ’s define the (modified) Schur parameterization for H0. Otherwise, if H0 is not

in Hessenberg form, the entries of q
(0)
j , t

(0)
j , and B

(0)
j are to be determined according

to Theorem 3.5 and Remark 3.1 by performing a preliminary QR factorization of H0.
In the next subsection the structure of the matrix Ak is used in order to prove that

the unitary factor Qk and the upper triangular factor Rk can be determined in linear
time. The design of an efficient method for computing the parameterization of Hk+1

given a structural representation for Ak, Qk, and Rk is the subject in subsections 4.2
and 4.3. Finally, in subsection 4.4 we give the details about the deflation strategy.

4.1. The QR step. In this section we describe the QR step applied to Ak and
obtain the structure of Rk and Qk. For the sake of notational simplicity we omit the
superscript (k) for the matrix and the vector entries and denote by α the shift param-
eter αk. Since Ak − αIn is upper Hessenberg, the reduction to upper triangular form
can be achieved by means of a sequence of Givens rotations G1(â1), . . . , Gn−1(ân−1)
suitably chosen to annihilate the subdiagonal entries. The triangularization process

576 D. A. BINI, Y. EIDELMAN, L. GEMIGNANI, AND I. GOHBERG

proceeds as follows:

A− αIn = A(0) G(â1)→ A(1) G(â2)→ . . .
G(ân−1)→ A(n−1) = R,

where at the jth step A(j−1) is premultiplied by the corresponding Givens rotation
Gj(âj) to obtain A(j). The vectors qi and the scalars ui are modified twice according
to the scheme qi → q̂i → q̃i, ui → ûi → ũi, where qi, ui are used to represent
the initial matrix A in (4.2), q̂i, ûi are intermediate quantities and q̃i, ũi are the
parameters of the quasiseparable representation of the final matrix R.

At the first step G1(â1) is chosen so that the entry in position (2, 1) of G1(â1)A
(0) =

A(1) = (a
(1)
i,j) is made zero. Observe that only the entries in the first two rows of A(1)

differ from the entries of A(0). These entries satisfy

a
(1)
1,j = q̃1

TB×
2,jtj + ũ1w̄j , a

(1)
2,j = q̂2

TB×
2,jtj + û2w̄j , j > 2,

where

G(â1)

[
q1

TB2

q2
T

]
=

[
q̃1

T

q̂2
T

]
, G(â1)

[
u1

u2

]
=

[
ũ1

û2

]
.(4.3)

The remaining entries in the 2 × 2 leading principal submatrix of A(1) are given by[
d1 g1

0 d2

]
= G(â1)A

(0)[1 : 2, 1 : 2].

The values of q̃1
T , ũ1, d1, and g1 are not modified by the subsequent Givens rotations,

while the values of q̂2
T , û2, and d2 only change at the second step where the matrix

A(1) is premultiplied by G2(â2). At the jth step, Gj(âj) is chosen so that the entry
in position (j + 1, j) of A(j) = Gj(âj)A

(j−1) is made zero. Let A(j−1)[j : j + 1, j : n]
be given by[

dj q̂j
T tj+1 q̂j

TBj+1tj+2 · · · q̂j
TB×

j,ntn
βj dj+1 qj+1

T tj+1 · · · qj+1
TB×

j+1,ntn

]
+

[
ûj

uj+1

]
wH [j : n].

We set

G(âj)

[
dj
βj

]
=

[
ϑ
0

]
, dj ← ϑ,

G(âj)

[
q̂Tj tj+1

dj+1

]
=

[
gj
γ

]
, dj+1 ← γ,

and

G(âj)

[
q̂j

TBj+1

qj+1
T

]
=

[
q̃j

T

q̂j+1
T

]
, G(âj)

[
ûj

uj+1

]
=

[
ũj

ûj+1

]
.

Hence, after j steps the matrix A(j)[j : j + 1, j : n] = G(âj)A
(j−1)[j : j + 1, j : n] is

given by[
dj g1 q̃j

T tj+2 · · · q̃j
TB×

j+1,ntn
0 dj+1 q̂j+1

T tj+1 · · · q̂j+1
TB×

j+1,ntn

]
+

[
ũj

ûj+1

]
wH [j : n].

FAST QR ITERATION FOR SOME MODIFIED EIGENPROBLEMS 577

At the end of the entire process the upper triangular matrix R = Rk = (ri,j) turns
out to be represented as follows:

ri,i = di,

ri,i+1 = gi,

ri,j = q̃T
i B

×
i+1,jtj + ũiw̄j for j − i ≥ 2.

(4.4)

The parameterization involves approximately 9n parameters and it is computed at
the cost of about 40n flops. From (3.1) it follows that the unitary matrix Q =
Qk = (Gn−1(ân−1) · · ·G1(â1))

H is upper Hessenberg with Schur parameters {¯̂aj},
ân = −1, and complementary parameters {¯̂bj}. The computation of the new iterate
Ak+1 essentially reduces to evaluating the entries of the product S = RQ. Since both
factors are quasiseparable matrices, it is found that S inherits the quasiseparable
structure. In principle, the generators of S and, a fortiori of Ak+1 = S + αIn, can be
computed by means of the multiplication algorithm of [8] or by the simpler method
presented in the next subsection which makes direct use of the Schur parameterization
of Q. However, such an approach has the following noticeable drawback: We know
that the strictly upper triangular part of Ak+1 admits a quasiseparable representation
of order 3 but the parameterization computed by multiplying the structures of R and
Q has order 4. To circumvent this difficulty, we devise a compression strategy based on
the computation of an additional QR factorization of the unitary matrix H = Hk+1.
From the order-4 representation of Ak+1 we obtain a parameterization of order (2, 3)
for the entries of H. Then we show that the computation of a QR factorization of H
generates a new parameterization of this matrix of order (2, 2). This finally leads to
the desired parameterization of minimal length for Ak+1.

4.2. Computing nonminimal quasiseparable representations of Ak+1

and Hk+1. Nonminimal quasiseparable representations for the entries of Ak+1 and
Hk+1 are easily obtained from the generators of the quasiseparable matrix S = RQ.
By using the Schur parameterization of Q = (Gn−1(ân−1) · · ·G1(â1))

H we can split
the computation of the matrix product into n− 1 simpler steps:

R = R(0) G(â1)
H

→ R(1) G(â2)
H

→ · · · G(ân−1)
H

→ R(n−1) = S,

where at the jth step R(j−1) is postmultiplied by Gj(âj)
H to obtain R(j). The scalars

w̄j used to represent the matrix R in (4.4) are changed twice according to the scheme
w̄j → ŵj → w̃j , where w̃j are elements of the quasiseparable structure of the final
matrix S. The superdiagonal entries gi are modified in a similar way, gi → ĝi → g̃i,
and, then, incorporated in the quasiseparable structure of S by setting

g̃i = q̂i
T

[
0
1

]
=

[
q̃T
i , g̃i

] [0
1

]
.

At the first step we have[
d̃1 ĝ1

β1 d̃2

]
=

[
d1 g1

0 d2

]
G(â1)

H , d1 ← d̃1, d2 ← d̃2, [w̃1, ŵ2] = [w̄1, w̄2]G(â1)
H .

At the successive step G(â2)
H acts on the second and third rows of R(1). We can

rewrite

R(1)[1 : 2, 2 : 3] =

[
g̃1 + ũ1w̃2 q̃T

1 t3 + ũiw̄3

d2 g2

]

578 D. A. BINI, Y. EIDELMAN, L. GEMIGNANI, AND I. GOHBERG

as

R(1)[1 : 2, 2 : 3] =

⎡⎣ q̂T
1

[
0
1

]
+ ũ1w̃2 q̂T

1

[
t3
0

]
+ ũiw̄3

d2 g2

⎤⎦ , q̂T
1 =

[
q̃T

1 , g̃1

]
.

Hence, we obtain

R(1)[1 : 3, 2 : 3]G(â2)
H =

⎡⎣ q̂T
1 z̃2 + ũ1w̃2 q̂T

1 ẑ2 + ũiŵ3

d̃2 ĝ2

β2 d̃3

⎤⎦ ,

where

[z̃2, ẑ2] =

[
0 t3
1 0

]
G(â2)

H , d2 ← d̃2, d3 ← d̃3, , [w̃2, ŵ3] = [ŵ2, w̄3]G(â2)
H .

Since

q̂T
1 ẑ2 = q̂T

1

[
B3

0T ẑ2

] [
0
1

]
= q̂T

1 F2

[
0
1

]
, F2 ∈ C

3×3,

and q̃T
1 B3t4 = q̂T

1 F2

[
t4
0

]
, then the process can be continued. At the jth step we find

R(j−1)[1 : j + 1, j : j + 1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̂T
1 F

×
1,j

[
0
1

]
+ ũ1ŵj q̂T

1 F
×
1,j

[
tj+1

0

]
+ ũ1wj+1

...
...

q̂T
j−1

[
0
1

]
+ ũ1ŵj q̂T

j−1

[
tj+1

0

]
+ ũ1wj+1

dj gj
0 dj+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which gives the following representation of R(j)[1 : j+1, j : j+1] = R(j−1)[1 : j+1, j :
j + 1]G(âj)

H

R(j)[1 : j + 1, j : j + 1] =

⎡⎢⎢⎢⎢⎢⎣
q̂T

1 F
×
1,j z̃j + ũ1w̃j q̂T

1 F
×
1,j ẑj + ũ1ŵj+1

...
...

q̂T
j−1z̃j + ũ1w̃j q̂T

j−1ẑj + ũ1ŵj+1

d̃j ĝj
βj d̃j+1

⎤⎥⎥⎥⎥⎥⎦ ,

where dj ← d̃j , dj+1 ← d̃j+1, and

[z̃j , ẑj] =

[
0 tj+1

1 0

]
G(âj)

H , [w̃j , ŵj+1] = [ŵj , w̄j+1]G(âj)
H .

After n− 1 steps the matrix S = R(n−1) = (si,j) is given by

si,j = q̂i
TF×

i,j z̃j + ũiw̃j for j − i ≥ 1,

si,i = di,
si+1,i = βi,
si,j = 0 for i− j ≥ 2.

FAST QR ITERATION FOR SOME MODIFIED EIGENPROBLEMS 579

The generators of this representation are computed at the cost of 20n flops. The
quasiseparable representation of S = RQ provides a parameterization of H = (hi,j) =

S + αIn − ũw̃H of order (2, 3). On the other hand, H satisfies the hypotheses of
Theorem 3.2, that is, H = Hk+1 is unitary and hi,j = −ũiw̃j for i ≥ j + 2; therefore,
its strictly upper triangular part must be 2-quasiseparable. In the next subsection we
describe a method to compress the given parameterization of H which relies upon the
properties of the QR factorization of the matrix.

4.3. Compressing the quasiseparable representation of Hk+1. According
to Theorem 3.2 the quasiseparable structure of H = Hk+1 can be recovered from the
coefficients of the Givens rotation matrices employed in the process of computing a
QR factorization of the matrix. More specifically, H can be first reduced to upper
Hessenberg form by applying a sequence of 2n−5 Givens rotations suitably chosen to
annihilate the entries in the left-bottom corner. The transformed matrix is still unitary
and, therefore, its QR factorization gives the Schur and complementary parameters of
its structured representation (3.2) (compare with Remark 3.1). The parameters can
finally be combined with the coefficients of the previously determined Givens rotations
to define the structure of the upper triangular part of H.

At first the matrix H = P (0) is transformed into a matrix P̃ of lower bandwidth 2
by applying a sequence of Givens rotations Gn−1(ãn−1), . . . , G3(ã3) according to the
scheme given by the first relation in (3.3). The matrix G(ãj) is determined to satisfy

G(ãj)

[
ũj

ûj+1

]
=

[
ûj

0

]
, (ûn = ũn).

The transformation P (j−1) → P (j) = Gn−j(ãn−j)P
(j−1) only modifies the entries in

the rows n − j and n − j + 1. The updating of the quasiseparable structure in the
strictly upper triangular part of P (j−1) is performed by means of the same techniques
used in the previous subsection for the matrix R(j−1). At the end of the process the
entries in the upper triangular part of P̃ = (p̃i,j) satisfy

p̃i,j = p̃i
TE×

i−1,j ẑj for j − i ≥ 0,

for suitable vectors p̃i, ẑi ∈ C
4, 1 ≤ i ≤ n, and matrices Ei ∈ C

4×4, 1 ≤ i ≤ n − 1.
The computation of these generators requires approximately 20n flops.

At the second stage the matrix P̃ is reduced to a Hessenberg form P̂ by means
of a sequence of n − 2 Givens rotations G2(â2), . . . , Gn−1(ân−1) suitably chosen to
annihilate the second lower subdiagonal. The reduction is carried out according to
scheme provided by the second relation in (3.3) at the overall cost of about 35n flops.
The modifications of the quasiseparable structure in the strictly upper triangular
part of P̃ are described in the proof of Theorem 3.5. At the end of the process
the entries in the strictly upper triangular part of the unitary Hessenberg matrix
P̂ = (p̂i,j) = Gn−1(ân−1) · · ·G2(â2)P̃ can be represented as follows:

p̂i,j = p̂i
TE×

i,j ẑj for j − i ≥ 1.

Finally, the matrix P̂ can be converted into the identity matrix of order n by
applying n modified rotations of the form

Gj(a
′
j) = Ij−1 ⊕

[
−a′j b′j
b̄′j ā′j

]
⊕ In−j−1, 1 ≤ j ≤ n− 1, |a′j |2 + |b′j |2 = 1,

Gn(a′n) = In−1 ⊕ (−a′n), |a′n| = 1,

580 D. A. BINI, Y. EIDELMAN, L. GEMIGNANI, AND I. GOHBERG

chosen in such a way that Gn(a′n)Gn−1(a
′
n−1) · · ·G1(a

′
1)P̂ is an upper triangular ma-

trix with nonnegative diagonal entries. The coefficients a′j and b′j , 1 ≤ j ≤ n are

computed at the cost of 20n flops and define the parameters φj = ā′j and ψj = b′j
used in Theorem 3.5 to describe the structure in the strictly upper triangular part of
the matrix P . Here we have

PH = HH = Gn−1(a
′
n−1) · · ·G1(a

′
1)Gn−1(ân−1) · · ·G2(â2)G3(ã1) · · ·Gn−1(ãn−1).

The matrix H = Hk+1 can thus be reconstructed in the desired form using the
procedure given in Theorem 3.5 at the cost of approximately 20n flops.

4.4. Deflation in the QR algorithm. When an eigenvalue has been approx-
imated by the QR iteration with sufficiently high precision, a deflation technique is
generally employed before proceeding with the computation of the remaining eigenval-
ues. Sometimes it also happens during the computation that one of the subdiagonal
entries other than the bottom one becomes practically zero so that the eigenvalue
problem can be broken into two smaller subproblems. For the sake of clarity, suppose
that after k iterations of the QR algorithm the matrix Ak has the form

Ak =

[
A

(1)
k

© A
(2)
k

]
,

where A
(1)
k ∈ C

(n−s)×(n−s) and A
(2)
k ∈ C

s×s. Now A
(1)
k and A

(2)
k can be reduced into

upper triangular form separately. The process is called deflation and continuing in
this fashion, by operating on smaller and smaller matrices, we may approximate all
the eigenvalues of A.

Let us suppose that at the subsequent iterations j ≥ k the QR algorithm only

operates on the submatrix A
(1)
j . The matrix Hk can be partitioned accordingly with

Ak as follows:

Hk =

[
H

(1)
k

−u
(2)
k w

(1)H

k H
(2)
k

]
,

where u
(2)
k is formed from the last s components of the vector uk and w

(1)
k is defined

by the first n−s elements of wk. A unitary upper Hessenberg matrix Us ∈ C
s×s such

that Usu
(2)
k =

[
ũn−s+1,0

T
]T

can be determined at the cost of O(n) flops. Then we
have

(In−s ⊕ Us)Hk(In−s ⊕ Us)
H =

[
H

(1)
k

−un−s+1e1w
(1)H

k

]
,

where e1 is the first column of Is. In this way the computation of the quasiseparable

structure in the strictly upper triangular part of A
(1)
j , j ≥ k, can be reduced to finding

a QR factorization of the (n− s + 1) × (n− s) matrix⎡⎣ H
(1)
j

−un−s+1w
(1)H

j

⎤⎦
instead of the whole matrix Hj .

FAST QR ITERATION FOR SOME MODIFIED EIGENPROBLEMS 581

5. Experimental issues. In this section we first discuss the behavior of the
structured QR iteration when performed in finite precision arithmetic. Then we de-
sign a practical implementation of the algorithm and present the results of extensive
numerical experiments.

5.1. The practical algorithm. The proposed fast variant of the QR algorithm
for input matrices A ∈ Hn relies upon two basic properties: A is upper Hessen-
berg and, moreover, A is a rank-one modification of a unitary matrix. Theoretically
each matrix Ak generated by the QR iteration applied to A = A0 inherits these
two properties. In practice, due to roundoff errors, the matrix Hk = Ak − ukw

H
k

may deviate from orthogonality. This phenomenon is also observed in the cus-
tomary shifted QR iteration. The error analysis in [20] says that the upper Hes-
senberg matrix fl(Ak) generated after k iterations of the classical method satisfies
fl(Ak) = Q̃H(H0 + u0w

H
0 + εΔk)Q̃, where ε is the machine precision, Q̃ and H0 are

unitary, and ‖ Δk ‖2= O(kn
√
n ‖ A0 ‖2). This means that fl(Ak) = H̃k+Δ̃k+ũkw̃

H
k ,

where H̃k is unitary. In the structured QR iteration an important source of error am-
plification is the computation of the quasiseparable structure in the strictly upper
triangular part of fl(H̃k + Δ̃k) = fl(fl(Ak)− ũkw̃

H
k) by means of the algorithm out-

lined in Theorem 3.5. In light of Remark 3.7, by performing a forward error analysis
of the coupled recurrences for the vectors q̃j it is found that the norm of the absolute

perturbation Δ̃k in the input data can be amplified in the output by a factor n2.
The combined effect of these two mechanisms, i.e., the departure from orthogonality
of fl(Hk) and the amplification of its absolute perturbation in the process of recon-
structing the quasiseparable structure of the upper triangular part, can produce a
possible deterioration in the accuracy of the computed eigenvalues. Extensive numer-
ical tests with large random matrices (n ≥ 1000) confirmed this claim. Sometimes the
very last computed eigenvalues were significantly less accurate than the corresponding
approximations returned by the customary QR iteration.

To avoid the possible amplification of errors in the computation of the structural
representation of Hk we proceed as follows. Assume that Hk is a small perturbation
of a unitary matrix. Its QR factorization is Hk = UkSk, where Uk is unitary and
Sk = In + Δ is upper triangular. Hence, from Ak = Hk +ukw

H
k we obtain AkS

−1
k =

Uk+ukw
H
k S−1

k . The matrix AkS
−1
k is a small perturbation of Ak which is both upper

Hessenberg and a rank-one modification of the numerically unitary matrix Uk. Thus
we replace the matrix Ak by the matrix AkS

−1
k . The latter belongs to the class Hn

and is a correction of the matrix Ak.
Moreover, the quasiseparable structure of Uk and, a fortiori of Ak, can be com-

puted as described in Theorem 3.5 without any amplification of previously accumu-
lated errors. Therefore, in our implementation we compute the new iterate Ak as
Ak := Uk + ukw̃

H
k , where w̃H

k is formed by the first n − 2 elements of the corrected
vector wH

k S−1
k and the last 2 elements of wH

k . Since uk and wk are already known, we

may determine the quantities w̃
(k)
i , 1 ≤ i ≤ n−2, by a direct inspection of the entries

γ
(k)
i , 1 ≤ i ≤ n− 2, in the second subdiagonal of Uk without explicitly computing the

matrix Sk. We set w̃
(k)
i = w

(k)
i (1 + δ

(k)
i) and then find (1 + δ

(k)
i) = −γ

(k)
i /(u

(k)
i+2w

(k)
i).

Specific rules can also be defined in the case where some coefficient is zero. The
resulting process is summarized below.

1. Compute Qk and Rk such that Ak−αkIn = QkRk provides a QR factorization
of the left-hand side matrix.

2. Determine the matrix Ak+1 := RkQk +αkIn and the vectors uk+1 := QH
k uk,

wk+1 := QH
k wk.

582 D. A. BINI, Y. EIDELMAN, L. GEMIGNANI, AND I. GOHBERG

3. Compute Hk+1 = Ak+1 − uk+1w
H
k+1.

4. Find the unitary matrix Uk+1 such that Hk+1 = Uk+1Sk+1 is a QR fac-
torization of Hk+1 and Sk+1 is upper triangular with real positive diagonal
entries.

5. Compute the vector w̃k+1 and set Ak+1 := Uk+1 + uk+1w̃
H
k+1.

This algorithm has been implemented in MATLAB and then applied to the com-
putation of the eigenvalues of companion matrices of both small and large size. The
program is available as a MATLAB function at www.dm.unipi.it/̃ gemignan/ric.html/
compqr.m. The results of extensive numerical experiments confirm the robustness and
efficiency of the proposed approach.

Our implementation requires 180 n+O(1) flops per iteration. The main program
incorporates the following shifting strategy suggested in [25, p. 549]. At the beginning

the shift parameter σ is equal to zero. If As = (a
(s)
i,j) ∈ C

n×n satisfies |a(s−1)
n,n −a

(s)
n,n| ≤

0.3|a(s−1)
n,n |, then we apply nonzero shifts by setting σk = a

(k)
n,n, k = s, s + 1, We

say that a
(k)
n,n provides a numerical approximation of an eigenvalue λ of A0 whenever

|β(k)
n | ≤ eps (|a(k)

n,n| + |a(k)
n−1,n−1|), where eps is the machine precision, i.e., eps �

2.2 · 10−16. If this condition is fulfilled, then we set λ = a
(k)
n,n and deflate the matrix.

After nonzero shifting has begun, we check for the convergence of the last diagonal
entries of the currently computed iterate Ak. If convergence fails to occur after 15

iterations, then at the 16th iteration we set σk = 1.5 (|a(k)
n,n| + |β(k)

n |) and continue

with nonzero shifting. If a
(k)
n,n does not converge in the next 15 iterations, then the

program reports failure. In our experiments such failure has never been encountered.

5.2. Numerical experiments. We tested companion matrices C associated
with the following polynomials:

1. the scaled “Wilkinson polynomial”: p(z) =
∏n

k=1(z − k/n);
2. the polynomial p(z) = zn − 1 with zeros equispaced on the unit circle;
3. the monic polynomial with zeros equally spaced on the curve z = x+i sin(πx),

−1 ≤ x ≤ 1, namely p(z) =
∏n/2−1

k=−n/2(z −
2(k+0.5)

n−1 − i sin(2(k+0.5)
n−1));

4. the polynomial p(z) =
∑n−1

j=0 ajz
j+zn with aj = rand+i rand, j = 0, . . . , n−

1, where rand is a pseudorandom number uniformly distributed in [0, 1];

5. the polynomial p(z) =
∑n−1

j=0 ajz
j + zn, where aj = a1,j × 10e1,j + i a2,j ×

10e2,j , ai,j = rand + i rand, ei,j = 10 × (rand − 0.5) + i 10 × (rand − 0.5),
i = 1, 2, j = 0, . . . , n− 1.

An estimate of the maximum error expected in the computation of the eigenvalues
of C by using the QR iteration without balancing is K ·eps ·max(condeig(C))· ‖ C ‖,
where K actually depends on the size of C and on the number of QR steps. Our
test program returns the value est err = eps · max(condeig(C))· ‖ C ‖2, where the
MATLAB function condeig is used to approximate the eigenvalue condition numbers.

Tables 5.1, 5.2, and 5.3 show the results of our numerical experiments for the
above polynomials from 1. to 3. by reporting the degree n, the value of est err and
the maximum absolute error of the computed roots. Table 5.3 also reports the average
number it of QR iterations per eigenvalue. The total number of iterations performed
to compute all the eigenvalues is less than 6n. Our implementation is not optimized
for time efficiency. However, for the sake of illustration we have compared the running
times of our program to a customary implementation of the standard QR eigenvalue
algorithm for Hessenberg matrices written in MATLAB. The timings for the tests of
Table 5.3 are reported in Figure 5.1. These results say that our implementation is

FAST QR ITERATION FOR SOME MODIFIED EIGENPROBLEMS 583

Table 5.1

Scaled Wilkinson polynomial
n est err err
4 0.8e-13 6.4e-15
8 5.4e-10 2.0e-11
16 7.2e-02 5.4e-05

Table 5.2

p(z) = zn − 1
n est err err it

128 2.2e-16 5.2e-15 5.86
256 2.2e-16 9.1e-15 5.91
512 2.2e-16 1.7e-14 5.60

Table 5.3

p(z) =
∏n/2−1

k=−n/2(z −
2(k+0.5)

n−1 − i sin(2(k+0.5)
n−1))

n est err err
8 2.2e-14 8.4e-15
16 4.8e-11 2.8e-12
32 7.9e-04 9.9e-07

0 1 2 3 4 5 6 7 8 9 10
10

–3

10
–?2

10
–?1

10
0

10
1

10
2

10
3

10
4

10
5

tim
e

log
2
(n)–?1

fast QR
QR

Fig. 5.1. Timings for the tests of Table 5.3.

0 1 2 3 4 5 6 7 8 9 10
10

–16

10
–?14

10
–?12

10
–?10

10
–?8

10
–?6

10
–?4

10
–?2

10
0

 m

err
est_err

Fig. 5.2. Random polynomials of form 4. of degree n(m) = 22+m.

faster than the standard method for n between 300 and 400 and becomes definitely
faster for larger n.

Figures 5.2 and 5.3 cover our tests with random polynomials of the form 4.–5. of
high degree. Each figure shows the error and the value of est err for polynomials of

584 D. A. BINI, Y. EIDELMAN, L. GEMIGNANI, AND I. GOHBERG

1 2 3 4 5 6 7 8 9
10

–16

10
–?14

10
–?12

10
–?10

10
–?8

10
–?6

10
–?4

10
–?2

10
0

 m

err
est_err

Fig. 5.3. Random polynomials of form 5. of degree n(m) = 22+m.

degree n(m) = 22+m for m = 1, 2, For each size we carried out 100 numerical ex-
periments and reported the average values of error and est err. The error measures
the distance between the set of the computed eigenvalues and the set of eigenvalues
returned by the function eig with the same input data. Let λ(A) denote the set of
eigenvalues computed by the MATLAB function eig. Let λ̃(A) denote the set of eigen-
values computed by our algorithm, and define the distance between the sets λ(A) and
λ̃(A) by dist(λ(A), λ̃(A)) = max{maxλ̃∈λ̃(A) ‖ λ̃ − λ(A) ‖,maxλ∈λ(A) ‖ λ − λ̃(A) ‖},
where ‖ λ − λ̃(A) ‖= minλ̃∈λ̃(A) |λ − λ̃|. We refer to this distance as the error in
the eigenvalues computed by our algorithm. Therefore, we tacitly assume that the
MATLAB function eig computes the eigenvalues exactly.

6. Conclusion. In this paper we have presented a novel QR eigenvalue algo-
rithm for a class of Hessenberg matrices which are rank-one perturbations of unitary
matrices. The method is appealing because of its low memory requirements and low
computational cost. In fact, the exploitation of the quasiseparable structure of the
associated eigenvalue problems leads to a O(n2) complexity algorithm requiring only
O(n) memory space. The results of extensive numerical experiments confirm the
robustness and effectiveness of the proposed approach. The accuracy of computed
results is generally in accordance with the estimates on the conditioning of the input
matrix.

Acknowledgment. The authors wish to thank the referees for their knowledge-
able and helpful suggestions.

REFERENCES

[1] G. S. Ammar, D. Calvetti, W. B. Gragg, and L. Reichel, Polynomial zerofinders based on
Szegő polynomials, J. Comput. Appl. Math., 127 (2001), pp. 1–161.

[2] G. S. Ammar, D. Calvetti, and L. Reichel, Continuation methods for the computation of
zeros of Szegő polynomials, Linear Algebra Appl., 249 (1996), pp. 125–155.

[3] G. S. Ammar, W. B. Gragg, and L. Reichel, Downdating of Szegő polynomials and data-
fitting applications, Linear Algebra Appl., 172 (1992), pp. 315–336.

[4] D. Bindel, J. Demmel, W. Kahan, and O. Marques, On computing Givens rotations reliably
and efficiently, ACM Trans. Math. Software, 28 (2002), pp. 206–238.

[5] D. A. Bini, F. Daddi, and L. Gemignani, On the shifted QR iteration applied to companion
matrices, Electron. Trans. Numer. Anal., 18 (2004), pp. 137–152.

FAST QR ITERATION FOR SOME MODIFIED EIGENPROBLEMS 585

[6] D. Calvetti, S. Kim, and L. Reichel, The restarted QR-algorithm for eigenvalue computation
of structured matrices, J. Comput. Appl. Math., 149 (2002), pp. 415–422.

[7] P. Dewilde and A.-J. van der Veen, Time-Varying Systems and Computations, Kluwer
Academic Publishers, Boston, 1998.

[8] Y. Eidelman and I. Gohberg, On a new class of structured matrices, Integral Equations
Operator Theory, 34 (1999), pp. 293–324.

[9] Y. Eidelman and I. Gohberg, Linear complexity inversion algorithms for a class of structure
matrices, Integral Equations Operator Theory, 35 (1999), pp. 28–52.

[10] Y. Eidelman and I. Gohberg, Fast inversion algorithms for a class block structured matrices,
Contemp. Math., 281 (2001), pp. 17–38.

[11] Y. Eidelman and I. Gohberg, A modification of the Dewilde-van der Veen method for inver-
sion of finite structured matrices, Linear Algebra Appl., 343+344 2002), pp. 419–450.

[12] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix
factorizations, Math. Comp., 28 (1974), pp. 505–535.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., John Hopkins University
Press, 1996.

[14] W. B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math.,
16 (1986), pp. 1–8.

[15] W. B. Gragg, Stabilization of the UHQR-algorithm, in Advances in Computational Mathe-
matics (Guangzhou, 1997), Lecture Notes in Pure and Appl. Math. 202, Dekker, New York,
1999, pp. 139–154.

[16] M. S. Moonen, G. H. Golub, and B. L. R. De Moor, eds., Direct and inverse unitary
eigenvalue problems in signal processing: an overview, NATO Advanced Science Institutes
Series E: Applied Sciences 232, Kluwer Academic Publishers, Dordrecht, 1993.

[17] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics in Applied Mathematics 20,
SIAM, 1998.

[18] L. Reichel, G. S. Ammar, and W. B. Gragg, Discrete least squares approximation by trigono-
metric polynomials, Math. Comp., 57 (1991), pp. 273–289.

[19] M. Stewart, Stability properties of several variants of the unitary Hessenberg QR algorithm,
in Structured Matrices in Mathematics, Computer Science, and Engineering, II (Boulder,
CO, 1999), Contemp. Math. 281, Amer. Math. Soc., Providence, RI, 2001, pp. 57–72.

[20] F. Tisseur, Backward Stability of the QR Algorithm, TR 239, UMR 5585, Universite de Saint
Etienne, Lyon Saint-Etienne, France, 1996.

[21] E. E. Tyrtyshnikov, Mosaic ranks for weakly semiseparable matrices, in Large-Scale Scien-
tific Computations of Engineering and Environmental Problems, II (Sozopol, 1999), Notes
Numer. Fluid Mech. 73, Vieweg, Braunschweig, 2000, pp. 36–41.

[22] R. Vandebril, M. Van Barel, and N. Mastronardi, A note on the representation and
definition of semiseparable matrices, Numer. Linear Algebra Appl., 12 (2005), pp. 839–
858.

[23] T.-L. Wang and W. B. Gragg, Convergence of the shifted QR algorithm for unitary Hessen-
berg matrices, Math. Comp., 71 (2003), pp. 1473–1496.

[24] T.-L. Wang and W. B. Gragg, Convergence of the unitary QR algorithm with a unimodular
Wilkinson shift, Math. Comp., 72 (2003), pp. 375–385.

[25] J. H. Wilkinson, The Algebraic Eigenvalue Problem, in Monographs on Numerical Analysis,
The Clarendon Press, Oxford University Press, New York, 1988.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 586–595

CONVEXITY AND LIPSCHITZ BEHAVIOR OF SMALL
PSEUDOSPECTRA∗

J. V. BURKE† , A. S. LEWIS‡ , AND M. L. OVERTON§

Abstract. The ε-pseudospectrum of a matrix A is the subset of the complex plane consisting
of all eigenvalues of complex matrices within a distance ε of A, measured by the operator 2-norm.
Given a nonderogatory matrix A0, for small ε > 0, we show that the ε-pseudospectrum of any matrix
A near A0 consists of compact convex neighborhoods of the eigenvalues of A0. Furthermore, the
dependence of each of these neighborhoods on A is Lipschitz.

Key words. pseudospectrum, eigenvalue optimization, nonsmooth analysis, Lipschitz multi-
function, robust optimization

AMS subject classifications. Primary, 15A18, 65K05; Secondary, 90C30, 93D09

DOI. 10.1137/050645841

1. Introduction. Given a matrix A in the space of n × n complex matrices
Mn, the spectrum Λ(A) is an informative analytic tool, but must be interpreted with
care. In particular, when A has a multiple eigenvalue, small perturbations cause the
spectrum to behave in a non-Lipschitz fashion.

Pseudospectra are robust analogs of the spectrum, enjoying many useful modelling
properties. A comprehensive reference is [9]. We denote the operator 2-norm on Mn

by ‖ · ‖. For real ε > 0, the ε-pseudospectrum of A is the subset of the complex plane
consisting of all eigenvalues of all complex matrices within a distance ε of A, measured
by the operator 2-norm:

(1.1) Λε(A) =
⋃

‖X−A‖≤ε

Λ(X).

This subset of the complex plane C is semialgebraic (meaning that it can be
described as a finite union of sets each defined via finitely many polynomial inequalities
[2]) and consists of at most n connected components; each component is compact and
contains an eigenvalue of A. Visual plots of pseudospectra are richly informative and
are conveniently computable via the EigTool package [5]. Note that, by contrast to
our definition, [9] defines pseudospectra via the strict inequality ‖X −A‖ < ε.

Our aim in this work is to show how shifting attention from the spectrum to pseu-
dospectra has a regularizing effect on variational behavior. Specifically, for matrices
A that are in a certain sense typical, even in the presence of multiple eigenvalues, if

∗Received by the editors November 22, 2005, accepted for publication (in revised form) by
A. J. Wathen October 17, 2006; published electronically May 1, 2007.

http://www.siam.org/journals/simax/29-2/64584.html
†Department of Mathematics, University of Washington, Seattle, WA 98195 (burke@

math.washington.edu). This author’s research was supported in part by National Science Foun-
dation grant DMS-0505712.

‡School of Operations Research and Information Engineering, Cornell University, Ithaca, NY
14853 (aslewis@orie.cornell.edu, http://people.orie.cornell.edu∼aslewis). This author’s research was
supported in part by National Science Foundation grant DMS-0504032.

§Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
(overton@cs.nyu.edu). This author’s research was supported in part by National Science Foundation
grant DMS-0412049.

586

SMALL PSEUDOSPECTRA 587

the parameter ε is small, the ε-pseudospectrum consists of compact convex neighbor-
hoods of the eigenvalues and varies in a Lipschitz fashion with respect to the Hausdorff
distance.

2. Examples. We begin with two examples to illustrate the potential difficul-
ties. We first observe how the pseudospectrum can vary in a non-Lipschitz fashion
even around a two-by-two matrix with simple eigenvalues. Second, we note that the
component of the ε-pseudospectrum containing a derogatory eigenvalue may fail to
be convex, no matter how small the parameter ε > 0.

To help our calculations, we use a well-known description of the pseudospectrum,
more convenient than the definition (1.1). Denoting the smallest singular value by
σmin : Mn → R, the pseudospectrum is related to the reciprocal of the norm of the
resolvent,

σmin(A− zI) = ‖(A− zI)−1‖−1,

via the useful characterization

Λε(A) = {z ∈ C : σmin(A− zI) ≤ ε}.

For our first example, we consider the behavior of the pseudospectrum Λφ−1(·),
where φ is the golden ratio (1 +

√
5)/2, for matrices close to

Â =

[
1 1
0 −1

]
.

An elementary calculation shows, for real r and θ, the formula

(2.1) 2σ2
min(Â− reiθI) = 3 + 2r2 −

√
5 + 4r2(3 + 2 cos 2θ).

This leads to a description of the pseudospectrum of Â:

Λφ−1(Â) = {reiθ : r2 ≤ 2(2 − φ + cos 2θ)}.

The boundary of this set is a lemniscate centered at zero (see Figure 2.1); its interior
consists of two disjoint open sets, each containing one of the eigenvalues ±1. In
particular, notice that the pseudospectrum is contained in its tangent cone at zero:

(2.2) Λφ−1(Â) ⊂ {reiθ : cos 2θ ≥ φ− 2}.

Now consider the point ri on the imaginary axis as r ↓ 0. The inclusion (2.2)

implies a lower bound on the distance from this point to the pseudospectrum Λφ−1(Â)
of the form

(2.3) d(ri,Λφ−1(Â)) ≥ αr,

for some constant α > 0. On the other hand, formula (2.1) implies

(2.4) σmin(Â− reiθI) = φ− 1 + O(r2),

so for some constant β > 0 we know that

ri ∈ Λφ−1+βr2(Â).

588 J. V. BURKE, A. S. LEWIS, AND M. L. OVERTON

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 2.1. Pseudospectrum of Â.

Using the definition of the pseudospectrum (1.1), we can rewrite the right-hand side
as ⋃

‖A−Â‖≤βr2

Λφ−1(A),

so there exists a matrix Ar satisfying

(2.5) ‖Ar − Â‖ ≤ βr2 and ri ∈ Λφ−1(Ar).

The Hausdorff distance between two nonempty sets K,L ⊂ C is the quantity

H(K,L) = max
{

sup
z∈K

d(z, L), sup
z∈L

d(z,K)
}
,

where d(z, L) is the distance from z to L. Now, in conjunction with inequality (2.3),
the relationships (2.5) imply that the Hausdorff distance between the pseudospectra

Λφ−1(Â) and Λφ−1(Ar) is at least αr, and yet the distance between the matrices Â

and Ar is at most βr2. Thus the variation of the mapping Λφ−1 around Â is not
Lipschitz.

The pathology in this example is caused by the existence of a critical point of
the function z
→ σmin(Â − zI) at a point on the boundary of the pseudospectrum
(in this case z = 0): this can be seen directly from formula (2.4), or by observing

that the left and right singular vectors of the matrix Â corresponding to the smallest
singular value φ − 1 are orthogonal (see [3, Cor. 7.2]). A direct calculation is also

illuminating. Since σmin(Â) = φ− 1, replacing by zero the diagonal entry φ− 1 in the

singular value decomposition of Â makes a perturbation of size φ− 1 and results in a
singular matrix. But a straightforward calculation shows that this singular matrix is
similar to a two-by-two Jordan block, so further perturbations of size δ result in the
zero eigenvalue splitting into two distinct eigenvalues of size proportional to

√
δ. It

SMALL PSEUDOSPECTRA 589

is this splitting that causes the pseudospectrum to behave in a non-Lipschitz fashion.
In the development that follows, we avoid this possibility by focusing on the case of
small ε.

We discuss various aspects of the growth of pseudospectra as the parameter ε
grows in a forthcoming work [4]. In particular, we can quantitatively estimate the
component of the pseudospectrum Λε(A) containing the eigenvalue λ: classical eigen-
value perturbation theory shows that the component approximates a disk of radius
(αε)1/m as ε ↓ 0, where m is the multiplicity of λ as a root of the minimal polynomial
for A, and α is its associated condition number [4].

Despite approximating disks, small pseudospectral components may be nonconvex
in general, as shown by our second example, suggested by [8]. Consider the matrix

Ã =

[
0 1
0 1

]
.

An easy calculation shows

f(r, θ) = σ2
min(Ã− reiθI) = 1 − r cos θ + r2 −

√
(1 − r cos θ)2 + r2

=
r2

2
(1 − r cos θ) + O(r4) as r ↓ 0.

Hence the component of the pseudospectrum Λε(Ã) containing zero, which we denote
Λ0
ε(Ã), is a slightly distorted disk centered at zero and with radius approximately√
2ε, for small ε > 0.

When θ = π/2, another calculation shows

∂f

∂r
= 2r

(
1 − 1√

1 + r2

)
> 0 for all r > 0.

Hence for θ near π/2, the equation f(r, θ) = ε2 implicitly defines r as a smooth
function g(θ), and for r near g(π/2) =

√
2ε + O(ε2), the pseudospectrum is

{reiθ : r ≤ g(θ)}.

One more calculation shows

g′(π/2) =

√
1 + g2(π/2) − 1

2
√

1 + g2(π/2) − 1
= ε2 + O(ε3).

To summarize, the pseudospectral boundary for the matrix Ã crosses the positive
imaginary axis at a unique point zε = (

√
2ε + O(ε2))i. The boundary nearby is a

smooth curve crossing the imaginary axis nonorthogonally and bounding the pseu-
dospectral component below it. Clearly, exactly the same properties hold for the
matrix −Ã, and the two boundaries are mirror images in the imaginary axis. Finally,
consider the matrix

A =

[
Ã 0

0 −Ã

]
.

Since the singular values of block-diagonal matrices are just the singular values of the
blocks, we have Λε(A) = Λε(Ã)∪Λε(−Ã), so we know Λ0

ε(A) = Λ0
ε(Ã)∪Λ0

ε(−Ã). By
considering a neighborhood of the point zε, this latter set cannot be convex.

In this example the difficulty is caused by the fact that the zero eigenvalue is
derogatory. In what follows, we show good behavior of pseudospectra around non-
derogatory eigenvalues, providing the parameter ε is sufficiently small.

590 J. V. BURKE, A. S. LEWIS, AND M. L. OVERTON

3. Background results. We recall some results from [3]. A real-valued function
on a real vector space is real-analytic at zero if in some neighborhood of zero it can be
written as the sum of an absolutely convergent power series in the coordinates relative
to some basis, and we make an analogous definition at other points. In particular,
such functions are C∞ near the point in question.

The smallest singular value of the matrix Z is simple when the smallest eigenvalue
of the Hermitian matrix Z∗Z is simple. Since the eigenvalues of matrices depend
continuously on the matrix, the set of matrices Z with simple smallest singular values
is open.

We consider the function h : Mn × C → R defined by

h(A, z) = (σmin(A− zI))2.

For any A ∈ Mn, we also define a function hA : C → R by hA(z) = h(A, z). Treat-
ing C as a Euclidean space with inner product 〈w, z〉 = Re (w∗z), we can interpret
gradients ∇hA(z) as elements of C.

Theorem 3.1 (analytic singular value). If the smallest singular value of the
matrix Z is simple, then the function σ2

min is real-analytic at Z.
An eigenvalue of A is nonderogatory if it has geometric multiplicity one. Among

multiple eigenvalues, the nonderogatory ones are the most typical (from the perspec-
tive of the dimensions of the corresponding manifolds in Mn [1]). The matrix A is
nonderogatory if all its eigenvalues are nonderogatory.

The following result is very well known.
Proposition 3.2 (nonderogatory eigenvalues). A matrix A has a nonderogatory

eigenvalue λ if and only if zero is a simple singular value of A− λI.
The next result, an immediate consequence of [3, Thm. 7.4 and Cor. 7.8], shows

that the resolvent norm is well-behaved near any nonderogatory eigenvalue of A. For
a symmetric matrix X, we write X � 0 to mean X is positive-definite.

Theorem 3.3 (growth near an eigenvalue). Suppose λ is a nonderogatory eigen-
value of the matrix A. Then, for all z �= λ near λ, the function hA is real-analytic
with ∇hA(z) �= 0 and ∇2hA(z) � 0.

Related results appear in [6].

4. Convexity. In [3] we observe, as a consequence of Theorem 3.3 (growth near
an eigenvalue), that if λ is a nonderogatory eigenvalue of a matrix A, then for small
ε > 0 the part of the pseudospectrum Λε(A) near λ is strictly convex. (We call a
closed set S ⊂ C strictly convex if the open line segment (u, v) lies in intS for any
distinct points u, v ∈ S.) The first step in our development is to generalize this result
to allow the matrix A to vary. We denote the closed unit disk in C by D and the
closed unit ball in Mn by B.

We begin with a rather technical statement of our basic tool.
Theorem 4.1 (small pseudospectra). Consider a nonderogatory eigenvalue λ of

a matrix A0 ∈ Mn. For any sufficiently small number μ > 0, there exists a number
ε̄ ∈ (0, μ) (depending on μ) such that all numbers ε ∈ (0, ε̄) have the following two
properties.

1. For all matrices A ∈ Mn in a neighborhood of A0 (depending on μ and ε),
the set

(4.1) Λ̂ε(A) =
{
z ∈ Λε(A) : |z − λ| < μ

}
is the component of the pseudospectrum Λε(A) containing λ and contains no eigen-
values of A0 except λ.

SMALL PSEUDOSPECTRA 591

2. There exists a number η̄ ∈ (0, μ) (depending on μ and ε) such that, given any
number η ∈ (0, η̄), all matrices A in a neighborhood of A0 (depending on μ, ε, and η)
satisfy, in addition to the above property,
(i) Λ̂ε(A) is compact, strictly convex, and contains λ + ηD,

and, for all points z ∈ λ + μD,
(ii) the smallest singular value of A− zI is simple, and
(iii) if |z − λ| ≥ η, then ∇hA(z) �= 0 and ∇2hA(z) � 0.

Proof. Without loss of generality, λ = 0. By Theorem 3.3 (growth near an
eigenvalue), there exists a number μ > 0 such that

(4.2) 0 < |z| ≤ μ ⇒ ∇hA0
(z) �= 0 and ∇2hA0

(z) � 0.

Hence the function hA0
is strictly convex on the disk μD, with a strict local minimum

value of zero at zero. In particular, we deduce

(4.3) Λ(A0) ∩ μD = {0}.

Consider the open set

Ω =
{

(A, z) ∈ Mn × C : the smallest singular value of A− zI is simple
}
.

Theorem 3.1 (analytic singular value) implies that the function h is real-analytic
throughout Ω, so the function (A, z)
→ ∇2hA(z) is continuous on Ω. Clearly (A0, 0) ∈
Ω. Hence, by reducing μ if necessary, we can suppose there exists a number δ1 > 0
such that {

(A, z) ∈ Mn × μD : ‖A−A0‖ < δ1

}
⊂ Ω.

Choose any number μ1 ∈ (0, μ). Then we claim

(4.4) Λε(A0) ⊂ μ1D ∪ μDc

for all small ε > 0 (where Dc denotes the complement of D). If this were not the case,
there would exist sequences of parameters εr ↓ 0 and points zr ∈ Λεr (A0) satisfying
μ1 < |zr| ≤ μ. By compactness, we can suppose zr approaches a nonzero point z ∈
μD. However, since σmin(A0 − zrI) ≤ εr for all r, we then deduce σmin(A0 − zI) ≤ 0,
so z ∈ Λ(A0), contradicting (4.3).

Fix any ε > 0 small enough to ensure inclusion (4.4), and choose any number
μ2 ∈ (μ1, μ). We claim there exists a number δ2 ∈ (0, δ1) such that

(4.5) ‖A−A0‖ < δ2 ⇒ Λ̂ε(A) ⊂ μ2D.

Indeed, if this fails, there are sequences of matrices Ar → A0 and points zr ∈ Λ̂ε(Ar)
satisfying μ2 < |zr| < μ. By compactness, we can suppose zr approaches a point
z ∈ μD satisfying |z| ≥ μ2 > μ1. However, since σmin(Ar − zrI) ≤ ε for all r, we
deduce σmin(A0−zI) ≤ ε, and hence z ∈ Λε(A0). But this contradicts inclusion (4.4).

The inclusion Λ̂ε(A) ⊂ μ2D implies that the set Λ̂ε(A) is compact, being the
intersection of the two compact sets Λε(A) and μ2D.

For our next step, observe that, by continuity, we know there exists a number
η ∈ (0, μ) such that σmin(A0 − zI) < ε for all points z ∈ ηD. We now claim there
exists a number δ3 ∈ (0, δ2) such that

(4.6) ‖A−A0‖ < δ3 ⇒ ηD ⊂ int Λ̂ε(A).

592 J. V. BURKE, A. S. LEWIS, AND M. L. OVERTON

Suppose this property fails, so there are sequences of matrices Ar → A0 and points
zr ∈ ηD satisfying zr �∈ int Λ̂ε(Ar), and hence σmin(Ar−zrI) ≥ ε. By compactness, we
can suppose zr approaches a point z ∈ ηD, giving the contradiction σmin(A0−zI) ≥ ε.

We next claim there exists a number δ ∈ (0, δ3) such that, whenever ‖A−A0‖ ≤ δ
and η ≤ |z| ≤ μ, we have

(4.7) ∇hA(z) �= 0 and ∇2hA(z) � 0.

If this fails, there are sequences of matrices Ar → A0 and points zr satisfying η ≤
|zr| ≤ μ and

min
{
|∇hAr (zr)|, λmin(∇2hAr (zr))

}
≤ 0

for all r. By compactness, we can suppose zr approaches a point ẑ satisfying η ≤
|ẑ| ≤ μ. By the continuity with respect to (A, z) ∈ Ω of the functions ∇hA(z) and
∇2hA(z), we deduce

min
{
|∇hA0(ẑ)|, λmin(∇2hA0(ẑ))

}
≤ 0,

contradicting statement (4.2).

We next prove that the set Λ̂ε(A) is strictly convex. To this end, consider any
matrix A satisfying ‖A−A0‖ < δ and any two distinct points u, v ∈ Λ̂ε(A). We want
to show the open line segment (u, v) lies in int Λ̂ε(A). By property (4.6), we know
that

(4.8) ηD ⊂ int Λ̂ε(A).

We consider various cases.

(i) |u|, |v| ≤ η. The result then follows by inclusion (4.8).
(ii) (u, v) ∩ ηD = ∅. In this case, we know hA(u) ≤ ε2 and hA(v) ≤ ε2, and

the function hA is strictly convex on the line segment [u, v], by property (4.7), so the
result follows.

(iii) |u| ≤ η and |v| > η. Then consider the unique number γ ∈ [0, 1] such that
the point w = γu + (1 − γ)v satisfies |w| = η. Then [u,w] ⊂ int Λ̂ε(A) by inclusion
(4.8), while (w, v) ⊂ int Λ̂ε(A) by case (ii).

(iv) |u| > η and |v| ≤ η. By swapping u and v, we obtain case (iii).
(v) |u|, |v| > η and (u, v)∩ ηD �= ∅. Consider the two (possibly equal) solutions

γ1 ≥ γ2 in [0, 1] to the quadratic equation |γu + (1 − γ)v|2 = η2. For each j = 1, 2,
set wj = γju + (1 − γj)v. Then [w1, w2] ⊂ int Λ̂ε(A) by inclusion (4.8), while both

intervals (u,w1) and (w2, v) lie in int Λ̂ε(A) by case (ii).

This completes the proof of strict convexity.

To see that the set Λ̂ε(A) must be the component of the pseudospectrum Λε(A)
containing λ, note that the function A
→ σmin(A − λI) is continuous on Mn, and
σmin(A0 − λI) = 0, so λ ∈ Λ̂ε(A) for all A near A0. Since the Λ̂ε(A) is a connected
subset of Λε(A), being convex, the result follows.

Corollary 4.2 (strict convexity). Consider a nonderogatory eigenvalue λ of
a matrix A0 ∈ Mn. Given any sufficiently small ε > 0, the component of the pseu-
dospectrum Λε(A) containing λ is strictly convex for all matrices A sufficiently close
to A0.

SMALL PSEUDOSPECTRA 593

5. Sensitivity. We are now ready to study the dependence of a fixed component
of the pseudospectrum Λε(A) on the matrix A.

Lemma 5.1 (gradient continuity). Suppose all the assumptions of Theorem 4.1
(small pseudospectra) hold. For nonzero complex w, consider the function αw : Mn →
R defined by

(5.1) αw(A) = sup{Re (w∗z) : z ∈ Λ̂ε(A)}.

Then the function (A,w)
→ αw(A) is C∞ on the set{
(A,w) ∈ Mn × C : ‖A−A0‖ ≤ δ, w �= 0

}
.

Proof. The supremum (5.1) is attained at a unique point z(A,w) ∈ Λ̂ε(A), since
the set Λ̂ε(A) is compact and strictly convex. We can also write the supremum as a
smooth optimization problem,

αw(A) = sup
{

Re (w∗z) : hA(z) ≤ ε2, |z − λ| < μ
}
.

By continuity, the optimal solution z(A,w) must satisfy hA(z(A,w)) = ε2. The
function hA is real-analytic (so, in particular, C∞), and satisfies the condition

(5.2) ∇hA(z(A,w)) �= 0 and ∇2hA(z(A,w)) � 0.

We now apply a standard sensitivity argument to show that the dependence of
the optimal solution z(A,w) on the parameters (A,w) is also C∞. We argue as
follows. Since ∇hA(z(A,w)) �= 0, there exists a Lagrange multiplier γ(A,w) ∈ R
corresponding to the optimal solution. Thus z = z(A,w) and γ = γ(A,w) solve the
system

w + γ∇hA(z) = 0,

hA(z) = ε2.

But it is easy to check that condition (5.2) implies that the Jacobian for the left-hand
side is surjective at (z(A,w), γ(A,w)). Hence the implicit function theorem implies
that the mapping (A,w)
→ z(A,w) is C∞. The result follows.

We can now prove our main result.
Theorem 5.2 (component Lipschitz behavior). Consider a nonderogatory eigen-

value λ of a matrix A0 ∈ Mn. For any sufficiently small number μ > 0, there exists
a number ε̄ ∈ (0, μ) (depending on μ) such that for all numbers ε ∈ (0, ε̄), and all
matrices A ∈ Mn in a neighborhood of A0 (depending on μ and ε), the set

Λ̂ε(A) =
{
z ∈ Λε(A) : |z − λ| < μ

}
has the following properties:

(i) Λ̂ε(A) is the component of the pseudospectrum Λε(A) containing λ.
(ii) Λ̂ε(A) contains no eigenvalues of A0 except λ.
(iii) Λ̂ε(A) is compact and strictly convex.
(iv) The set-valued mapping Λ̂ε is Lipschitz on a neighborhood of A0 (with respect

to the Hausdorff distance).

594 J. V. BURKE, A. S. LEWIS, AND M. L. OVERTON

Proof. We apply Theorem 4.1 (small pseudospectra) and Corollary 4.2 (strict
convexity). Using Lemma 5.1 (gradient continuity), we can define a number

L = max
{
‖∇αw(A)‖ : A ∈ Γ, |w| = 1

}
,

where the set Γ is the neighborhood of the matrix A0 referred to in Theorem 4.1.
Consider any two matrices A1, A2 ∈ Γ. According to [7, Lemma 2], the Hausdorff
distance between the sets Λ̂ε(A1) and Λ̂ε(A2) is given by

max
|w|=1

∣∣∣αw(A1) − αw(A2)
∣∣∣,

and, by the definition of L, this quantity cannot exceed L‖A1 −A2‖.
In particular, we obtain the following variational property of the entire pseudopec-

trum.

Corollary 5.3 (pseudospectral Lipschitz behavior). If the matrix A0 ∈ Mn is
nonderogatory, then for any small ε > 0, the dependence of the pseudospectrum Λε(A)
on the matrix A ∈ Mn is Lipschitz near A0 (with respect to the Hausdorff distance).

Proof. Denote the distinct eigenvalues of A0 by λ1, λ2, . . . , λm, and denote the
separation of the eigenvalues by ν = minj 	=k |λj − λk|. Now apply the preceding
result successively at each eigenvalue λj to obtain a number μ < ν/3 such that any
small ε > 0 has the following property: for all matrices A near A0 and each index
j = 1, 2, . . . ,m, the component of the pseudospectrum Λε(A) containing λj is

Λj
ε(A) = {z ∈ Λε(A) : |z − λj | < μ},

and the set-valued mapping Λj
ε is Lipschitz around A0.

Now consider any matrices A1, A2 ∈ Mn near A0. For any fixed index j, we have

(5.3) z ∈ Λj
ε(A1) ⇒ d(z,Λε(A2)) = d(z,Λj

ε(A2)).

To see this, notice that d(z,Λj
ε(A2)) < μ because λj ∈ Λj

ε(A2). On the other hand,
for indices k �= j, we know

|z − λj | < μ, |λj − λk| > 3μ, Λk
ε (A2) ⊂ λk + μD,

so d(z,Λk
ε (A2)) > μ. Since

d(z,Λε(A2)) = min
k

d(z,Λk
ε (A2)),

our claim (5.3) now follows.

As a consequence of the implication (5.3), we obtain

sup
z∈Λε(A1)

d(z,Λε(A2)) = max
j

sup
z∈Λj

ε(A1)

d(z,Λε(A2)) = max
j

sup
z∈Λj

ε(A1)

d(z,Λj
ε(A2)),

and similarly,

sup
z∈Λε(A2)

d(z,Λε(A1)) = max
k

sup
z∈Λk

ε (A2)

d(z,Λk
ε (A1)).

SMALL PSEUDOSPECTRA 595

Hence the Hausdorff distance between the pseudospectra Λε(A1) and Λε(A2) is given
by

H
(
Λε(A1),Λε(A2)

)
= max

{
sup

z∈Λε(A1)

d(z,Λε(A2)), sup
z∈Λε(A2)

d(z,Λε(A1))
}

= max
{

max
j

sup
z∈Λj

ε(A1)

d(z,Λj
ε(A2)),max

k
sup

z∈Λk
ε (A2)

d(z,Λk
ε (A1))

}
= max

r
max

{
sup

z∈Λr
ε (A1)

d(z,Λr
ε(A2)), sup

z∈Λr
ε (A2)

d(z,Λr
ε(A1))

}
= max

r
H
(
Λr
ε(A1),Λ

r
ε(A2)

)
.

The result now follows.

Acknowledgments. The authors thank Mark Embree and Nick Trefethen for a
number of insights that improved the overall presentation.

Note added in proof. A generalization of Corollary 5.3 to the derogatory case
appears in a recent preprint, “Variational Analysis of Pseudospectra” by A. S. Lewis
and C. H. J. Pang.

REFERENCES

[1] V. I. Arnold, On matrices depending on parameters, Uspehi Mat. Nauk, 26 (1971), pp. 29–43.
[2] R. Benedetti and J.-J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990.
[3] J. V. Burke, A. S. Lewis, and M. L. Overton, Optimization and pseudospectra, with applica-

tions to robust stability, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 80–104. Corrigendum:
www.cs.nyu.edu/cs/faculty/overton/papers/pseudo corrigendum.html.

[4] J. V. Burke, A. S. Lewis, and M. L. Overton, Spectral conditioning and pseudospectral
growth, Numer. Math., to appear.

[5] M. Embree and L. N. Trefethen, Pseudospectra Gateway, web.comlab.ox.ac.uk/pseudospectra.
[6] M. Karow, Eigenvalue condition numbers and a formula of Burke, Lewis and Overton, Electron.

J. Linear Algebra, 15 (2006), pp. 143–153.
[7] G. Salinetti and R. J.-B. Wets, On the convergence of sequences of convex sets in finite

dimensions, SIAM Rev., 21 (1979), pp. 18–33.
[8] L. N. Trefethen, private communication, 2005.
[9] L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal

Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 596–605

OPTIMAL EMBEDDINGS AND EIGENVALUES IN SUPPORT
THEORY∗

ERIK G. BOMAN† , STEPHEN GUATTERY‡ , AND BRUCE HENDRICKSON†

Abstract. Support theory is a methodology for bounding eigenvalues and generalized eigenval-
ues of matrices and matrix pencils; such bounds have been stated both in algebraic terms and in
combinatorial terms based on embeddings of the underlying graphs of the matrices. In this paper,
we present a theorem that demonstrates the connection between these various bounding techniques
and also suggest a possible approach to generating approximate inverses for preconditioning. The
theorem shows, given matrices A = UDAU∗ and B = V DBV ∗ (where DA and DB are invertible
Hermitian matrices, and U and V are not necessarily square), that it is possible to define a matrix
W such that W ∗D−1

B WDA has the same nonzero eigenvalues counting multiplicity as B+A. In the
special case that U is the orthogonal projector onto the range space of B and DA = I (and hence
that A = UU∗ = U2 = U), then W ∗D−1

B W = B+. This suggests that finding an approximation to
W might lead to an approximate inverse that can be used in preconditioning. We also describe how
this theorem generalizes the idea of graph embeddings in an algebraic sense.

Key words. Laplacian eigenvalues, generalized eigenvalues, support theory

AMS subject classifications. 05C50, 15A09, 15A18, 15A22, 65F10

DOI. 10.1137/050642174

1. Introduction. Support theory is a methodology for bounding eigenvalues
and generalized eigenvalues (and more generally support numbers) of matrices and
matrix pencils; it has applications such as the analysis of the performance of interative
solvers for symmetric positive definite systems. Support theory bounds have been
stated both in algebraic terms and in terms of combinatorial techniques based on
the underlying graphs of the matrices involved. In this paper, we present a theorem
that demonstrates the connection between these various bounding techniques and also
suggest a possible approach to generating approximate inverses for preconditioning.

Given a preconditioned system B−1A, support theory is concerned with generat-
ing bounds on λmax(B

−1A) and λmax(A
−1B), which are used to bound the condition

number of the system. More generally, if A and B are singular, bounds are gener-
ated on the support numbers σ(A,B) and σ(B,A). Bounds are generated in terms
of factorizations A = UUT and B = V V T of the matrices where U and V are not
restricted to be square. Given the factorizations, a matrix W is constructed subject
to the condition U = VW . This is the key formulation of support theory [3].

We present a theorem that shows, given matrices A = UDAU
∗ and B = V DBV

∗

(where DA and DB are invertible Hermitian matrices and the columns of U are in
the range of B), that there exists a matrix Wopt such that W ∗

optD
−1
B WoptDA has the

same nonzero eigenvalues counting multiplicity as B+A. This result was previously

∗Received by the editors October 7, 2005; accepted for publication (in revised form) by I. S.
Dhilion November 27, 2006; published electronically May 1, 2007.

http://www.siam.org/journals/simax/29-2/64217.html
†Discrete Algorithms and Math Department, Sandia National Laboratories, Albuquerque, NM

87185-1111 (egboman@sandia.gov, bahendr@sandia.gov). Sandia is a multiprogram laboratory op-
erated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

‡Department of Computer Science, Bucknell University, Lewisburg, PA 17837 (guattery@
bucknell.edu). Parts of this work were carried out while the author was on a sabbatical appointment
with the Computer Science Research Institute, Sandia National Labs, New Mexico.

596

OPTIMAL EMBEDDINGS AND EIGENVALUES 597

unknown even in the special case where DA = DB = I. In the special case that
U is the orthogonal projector of the range space of B and DA = I (and hence that
A = UU∗ = U2 = U), then W ∗

optD
−1
B Wopt = B+, where B+ is the pseudoinverse of B.

This suggests that finding an approximation to Wopt might lead to an approximate
inverse that can be used in preconditioning.

We describe how this theorem generalizes the idea of embedding in an algebraic
sense and show how it can be used to generalize and simplify the proofs of previous
results. In particular, this allows the ideas to be applied to a broader range of matrices.
We also place the theorem in the context of two branches of support theory research
that focus on matrix eigenvalue bounds and matrix pencil bounds, respectively.

The paper starts with a section on notation (section 2) and some background
on the development of some basic ideas in support theory (section 3). The main
theorem is presented in section 4, along with a version applicable to non-Hermitian
matrices. We use this proof to give a new and more general proof of a result by
Boman and Hendrickson [3]. In section 6 we give new and more general proofs of
results by Guattery [6] linking a generalized notion of embedding with the pseudoin-
verses of Hermitian matrices. The results in this paper subsume the results in that
technical report. Finally, in section 7 we discuss the implications of this work for
preconditioning, particularly in terms of approximate inverses.

2. Notation. We use capital letters to represent matrices. Individual matrix
entries are denoted by the corresponding lower case letter with subscripts showing
the row and column of the entry, e.g., aij is the entry of A in row i and column j.
I represents an identity matrix. When it is useful to indicate the size of an identity
matrix, a single subscript indicates the number of rows and columns: Ik is the k × k
identity matrix. A matrix of all zeros is denoted by 0.

For a matrix A with real entries, |A| denotes the matrix whose entries are the
absolute values of the corresponding entries of A: the entry in row i and column j of
|A| is |aij |.

The notations AT represents the transpose of A; A∗ represents A’s conjugate
transpose; and A+ represents the pseudoinverse of A (i.e., the Moore–Penrose gener-
alized inverse of A).

We denote the range space of the columns of a matrix A by R(A). The orthogonal
projector onto a vector space S is denoted as PS . Thus PR(A) is the orthogonal
projector onto the range space of the columns of A.

Vectors are denoted by lower case letters with an arrow above, e.g., �v. A column
vector of all zeros is denoted as �0; if a specific size is specified, it is given as a subscript:
�0k is a vector of k 0’s.

3. Background. A key application of support theory is the analysis of precondi-
tioned symmetric and Hermitian systems. When solving linear systems Ax = b using
an iterative method, it is frequently useful to have a good preconditioner to accelerate
convergence. This has often involved constructing a preconditioner B ≈ A. In this
sense, B is a good preconditioner if both (i) the eigenvalues of B−1A are clustered
around one, and (ii) the matrix B is easy to solve for (invert). (Note that if A is
singular, one may wish to let B be singular with the same null space. In this case,
B+A is the preconditioned matrix of interest.)

For Hermitian positive definite systems, the eigenvalues are real and positive, and
a lower bound on the rate of convergence is the spectral condition number, κ(C) =
λmax(C)/λmin(C). In our case, either C = B−1A or C = B−1/2AB−1/2 (where B−1/2

is Hermitian), and the condition number can be expressed using support numbers.

598 E. G. BOMAN, S. GUATTERY, AND B. HENDRICKSON

The support number for a matrix pencil (A,B), where A and B are Hermitian, is
defined as

σ(A,B) = min {t ∈ R |x∗(τB −A)x ≥ 0 for all x ∈ C
n and for all τ ≥ t} .

It has been shown that when B is symmetric positive definite, σ(A,B) = λmax(A,B),
the largest generalized eigenvalue [3]. Furthermore,

κ(B−1/2AB−1/2) = σ(A,B)σ(B,A).

Support numbers exist even when A or B is singular, but may not be finite. Support
theory is useful for analyzing preconditioners because support numbers give bounds
on the spectral condition number. See [3] for further information on support theory.

For symmetric positive semidefinite systems, bounds on support numbers are
generated in terms of factorizations A = UUT and B = V V T of the matrices. Based
on the factorizations, a matrix W is constructed subject to the condition U = VW .
This key algebraic formulation of support theory is due to Boman and Hendrickson [3]
and is at the heart of the symmetric product support theorem.

Theorem 3.1 (see Theorem 4.5 from [3]). Suppose U ∈ R
n×k is in the range of

V ∈ R
n×p. Then

σ(UUT , V V T) = min
W

‖W‖2
2 subject to V W = U.

It is further noted in [3] that for Ŵ = V +U , σ(UUT , V V T) = ‖Ŵ‖2
2.

Boman and Hendrickson also proved the following theorem.
Theorem 3.2 (see Theorem 4.7 from [3]). Suppose U ∈ R

n×k is in the range of
V ∈ R

n×p, and D ∈ R
k×k is symmetric. Then for all W such that VW = U ,

σ(UDUT , V V T) ≤ λmax(WDWT) ≤ λmax(D)‖W‖2
2.

The use of the term embedding in this paper is intended to suggest the relationship
to the use of combinatorial embeddings in early work in the area, which typically
involved Laplacian (and related) matrices. Laplacians have a well-known graphical
interpretation in which a Laplacian L can be factored into L = UUT , where U is a
vertex-edge incidence matrix. In such a matrix, each row represents a vertex of the
underlying graph of the Laplacian. Each column represents an edge and has one +1
and one −1 in the rows corresponding to the endpoints of the edge. Note that this
(arbitrarily) directs the edges, though this direction is lost in the product that forms
the Laplacian. (Entries can be scaled appropriately for weighted graphs.)

Graph embedding techniques were used to analyze the quality of support graph
preconditioners, which were formulated in terms of the combinatorial structure of the
Laplacian matrices. Examples include Vaidya’s preconditioners based on spanning
trees [13] (see [2] for a more readily available description of Vaidya’s preconditioner)
and Gremban and Miller’s support tree preconditioners [5]. Bounds on the condition
number of a preconditioned system were calculated in terms of properties of the
embeddings of the underlying graphs of the preconditioner into the Laplacian and
vice versa.

The embeddings used in this analysis were typically path embeddings, in which
each edge in U (e.g., the vertex-edge incidence matrix of the original Laplacian) was
represented as a directed path constructed from the edges in V (e.g., the vertex-edge
incidence matrix of the preconditioner). While these embeddings were not typically

OPTIMAL EMBEDDINGS AND EIGENVALUES 599

expressed in matrix form, it is easy to construct the matrix W corresponding to the
embedding: Each path in the embedding shows up as a column in W . The rows in
W correspond to the edges in V ; if an edge in V is in the path, a +1 or −1 occurs in
that row of W , depending on whether the direction of the edge in V is in the same
or opposite direction of the path, respectively. (Again, entries in W can be scaled to
deal with weighted graphs.) In this representation, U = VW expresses the mapping
defined by the embedding.

Properties of the paths were used to compute bounds. This was typically done in
combinatorial rather than algebraic terms. One method, suggested in Vaidya’s work
(see the section, “An Analogy with Resistive Networks,” on p. 6 of [13]) and developed
by Gremban and Miller (see the discussion starting with the last two paragraphs on
p. 65 and continuing to the start of section 4.5 on the next page of [5]), involved
summing the congestions (defined for each edge in the graph embedded into the
number of paths in the embedding incident to that edge) along each path. The
maximum sum taken over all paths provided an upper bound on λmax(B

−1A).
This method was also applied in a line of research that considered bounding the

smallest nontrivial eigenvalue of a Laplacian or related matrix (the earliest work in
this direction was aimed at bounding the second largest eigenvalues of time-reversible
Markov chains in order to bound the mixing time for random walks [10, 12]). This
typically involved embedding the complete graph into a Laplacian or a generalization
of the Laplacian that allowed weighted edges. Later work involved a further gen-
eralization that included Dirichlet boundary conditions (these conditions resulted in
entries on the diagonal that exceeded the sum of the weights of the incident edges).
For such matrices, a star was embedded instead of a clique.

Analysis using path congestions and related techniques initially did not express
the embedding in matrix form. However, some work along these lines developed
an algebraic representation of embeddings. Kahale [11] looked at computing lower
bounds on the smallest nontrivial eigenvalue of a Laplacian using a method that as-
signed a length to each path, then looked for the edge that had the greatest sum
of the lengths of the incident paths. He computed embedding properties in terms
of |W |, the absolute value of the matrix W representing the embedding, and ex-
pressed the best bound that could be computed for any embedding in terms of
λmax(|W |T |W |). Guattery, Leighton, and Miller [7] formulated the path resistance
method, an extension of the sum-of-congestions method applied to lower bounds of
smallest nontrivial Laplacian eigenvalues. They showed that, given an embedding W ,
the best possible bound computed using the path resistance method was the same as
the best possible bound computed using Kahale’s edge-length method and that the
value λmax(|W ||W |T) = λmax(|W |T |W |) was a term in the expression for this best
bound.

Guattery and Miller [8] made the observation that including directions in em-
beddings typically improved the best possible lower bounds on smallest nontrivial
eigenvalues of generalized Laplacians that could be derived from the embeddings.
Guattery and Miller allowed multiple paths in embedding each edge and they also
kept the signs corresponding to direction in the embedding matrix W , which corre-
sponds to working with W rather than |W |. At this point the notion of embedding has
been generalized to the point that any matrix W such that U = VW can be viewed as
a generalized embedding of U into V , where U and V are vertex-edge incidence matri-
ces. Guattery and Miller also proved that there existed a particular embedding Wcf

(referred to as the current flow embedding such that the smallest nontrivial eigenvalue
could be computed exactly in terms of λmax(WcfW

T
cf) for that embedding. They also

600 E. G. BOMAN, S. GUATTERY, AND B. HENDRICKSON

showed that Wcf was a factor of the inverse for this embedding applied to the case of
a generalized Laplacian with a Dirichlet boundary condition.

Guattery [6] extended these ideas to all Hermitian matrices. In particular, he
considered what he called the generalized current flow embedding Wcf of the orthog-
onal projector onto the range of the columns of B = V DV ∗ (where D is a diagonal
matrix with nonzeros on the diagonal) into V . He showed that the pseudoinverse of
B could be expressed as WcfD

−1W ∗
cf . The formulation is still in terms of a slightly

generalized vertex-edge incidence matrix although, as shown in section 6, the ideas
can be generalized to any factorization V DV ∗.

The results in this paper tie together ideas from the algebraic and combinatorial
(path embedding) views of support theory, and express them in a common notation.

4. The main theorem. Consider the matrix pencil (A,B), where A and B are
n× n complex, Hermitian matrices. Assume that there exist matrices U and V such
that A = UDAU

∗ and B = V DBV
∗, where U is n×m, V is n× k, and DB and DA

are invertible Hermitian matrices with dimensions k×k and m×m, respectively. The
main theorem can be stated as follows.

Theorem 4.1 (main theorem). Given the matrix pencil (A,B) and factoriza-
tions described above, if the columns of U are in the range of B, then there exists
a matrix Wopt such that VWopt = U , and such that every nonzero eigenvalue of
W ∗

optD
−1
B WoptDA is also an eigenvalue of B+A and vice versa, counting multiplicity.

Before proving the main theorem, it is helpful to lay out some supporting lemmas.
Define the (n + k) × (n + k) block matrix M as follows:

(4.1) M =

[
D−1

B V ∗

V 0

]
.

The proof of the main theorem is based on solutions to the following block system:

(4.2)

[
D−1

B V ∗

V 0

] [
Wopt

Z

]
=

[
0
U

]
.

The k×m matrix Wopt is of particular interest. The following lemma gives necessary
and sufficient conditions for the existence of a solution, and hence immediately implies
the existence of Wopt:

Lemma 4.2. The system above has a solution if and only if the columns of U are
in the range of B.

Proof. We can apply Gaussian elimination to M as follows:[
I 0

−V DB I

] [
D−1

B V ∗

V 0

] [
Wopt

Z

]
=

[
I 0

−V DB I

] [
0
U

]
to get the following reduced system:

(4.3)

[
D−1

B V ∗

0 −B

] [
Wopt

Z

]
=

[
0
U

]
.

Proving the result for the reduced matrix is sufficient because it has the same solutions
as the original system.

Assuming that a solution to the reduced system exists, there must be a Z such
that −BZ = U . That is, a solution exists only if the columns of U are in the range
of B.

OPTIMAL EMBEDDINGS AND EIGENVALUES 601

Assuming that the columns of U are in the range of B, then a Z that satisfies
−BZ = U exists. For the block system to have a solution, we must also have a
solution to the equation D−1

B Wopt + V ∗Z = 0. The solution exists if there is a Wopt

such that Wopt = −DBV
∗Z. Since the matrices DB , V ∗ and Z exist by assumption,

a solution does exist and the lemma holds.
It is possible that there is more than one solution. In some arguments below we

require a solution that is orthogonal to the null space of M ; where this is the case, it
is noted explicitly.

Theorem 1.3.20 from [9] is useful in our arguments. We restate (in slightly revised
form) the pertinent result below.

Theorem 4.3. Let Y be an r × s matrix and Z be an s × r matrix with r ≤ s.
Then ZY has the same eigenvalues as Y Z, counting multiplicity, together with an
additional s− r eigenvalues equal to 0.

We can now prove the main theorem.
Proof of main theorem. Given the factorizations assumed in the theorem state-

ment, we can construct the block system in (4.2). As in Lemma 4.2, we can apply
Gaussian elimination to get the reduced system from (4.3). Assume that the columns
of U are in the range of B. By Lemma 4.2, a solution to the reduced system exists.
That immediately yields the equation

−BZ = U.

Multiplying through on both sides by −B+ gives

PR(B+)Z = −B+U.

It is a fact that PR(B+) = PR(B∗) (see p. 10 of [4]). Thus we can rewrite the equation
as follows:

(4.4) PR(B∗)Z = −B+U.

The assumption that the columns of U are in the range of B also implies that
U = PR(B)U . Taking the conjugate transpose gives U∗ = U∗P ∗

R(B) = U∗PR(B),
the last equality following because orthogonal projectors are Hermitian by definition.
Because B is Hermitian, PR(B) = PR(B∗). Thus we have the following equation:

(4.5) U∗ = U∗PR(B∗).

From the original block system we have that

(4.6) D−1
B Wopt = −V ∗Z

and also that, after taking the conjugate transpose,

(4.7) W ∗
optV

∗ = U∗.

Applying (4.6), (4.7), (4.5), and (4.4) in turn, we have

W ∗
optD

−1
B WoptDA = −W ∗

optV
∗ZDA

= −U∗ZDA(4.8)

= −U∗PR(B∗)ZDA

= U∗B+UDA.

602 E. G. BOMAN, S. GUATTERY, AND B. HENDRICKSON

We can apply Theorem 4.3 to show that each nonzero eigenvalue of U∗B+UDA

is an eigenvalue of B+A and vice-versa.
If m > n, we apply Theorem 4.3 to B+A = B+UDAU

∗. Noting that B+UDA is
n×m and U∗ is m× n, we immediately have that B+A has the same nonzero eigen-
values (counting multiplicity) as U∗B+UDA, plus m− n additional zero eigenvalues.

If m ≤ n, we apply Theorem 4.3 to U∗B+UDA. We immediately have that
B+UDAU

∗ = B+A has the same nonzero eigenvalues as U∗B+UDA (counting mul-
tiplicity), plus n−m additional zero eigenvalues if n is strictly greater than m.

This completes the proof.
As a consequence of Theorem 4.1, we have the additional result.
Theorem 4.4. Suppose U ∈ R

n×k is in the range of V ∈ R
n×p. Then there

exists a W such that VW = U and WTW has the same nonzero eigenvalues as
(V V T)+UUT .

Proof. The result follows immediately from Theorem 4.1, with DB = I and
DA = I.

Note that in this case, DB = I in the system from (4.2), so in the solution
orthogonal to the null space of M from (4.1), W is the solution to the equation
VW = U with the minimum two-norm. This is consistent with Theorem 3.1 (see
Theorem 4.5 from [3]).

5. The non-Hermitian case. A related theorem can be proved for invertible,
complex non-Hermitian matrices of the form A = EF ∗, where A is n× n, and E and
F are n×m, with m ≥ n. Consider the following two block systems: one for A:

(5.1)

[
Im F ∗

E 0

] [
W
Z

]
=

[
0
In

]
,

and one for A∗ = FE∗:

(5.2)

[
Im E∗

F 0

] [
X
Y

]
=

[
0
In

]
.

With respect to these systems and the assumption that A is invertible, we have
the following theorem.

Theorem 5.1. X∗W = A−1.
Proof. The system in (5.1) yields the equations

W = −F ∗Z

and

(5.3) EW = In,

which, when combined, yield the equation

−EF ∗Z = In,

which implies that

−Z = A−1.

Likewise the system in (5.2) yields the equations

(5.4) X = −E∗Y,

FX = In,

−FE∗Y = In,

OPTIMAL EMBEDDINGS AND EIGENVALUES 603

and

(5.5) −Y = (A∗)−1.

Hence

X∗W = −Y ∗EW (by (5.4))
= −Y ∗ (by (5.3))
= A−1 (by (5.5)) .

6. Generalized embeddings and pseudoinverses. The main theorem can
also be applied to producing pseudoinverses. Guattery, in a technical report [6],
showed that by applying a generalized version of embedding to the orthogonal projec-
tor onto the range space of any symmetric matrix, it is possible to generate factors of
that matrix’s pseudoinverse. He also showed how to extend this result to all Hermi-
tian matrices by splitting them into a real and an imaginary part and working with
a system twice as big. Theorem 4.1 allows us to prove the results from this technical
report in a simpler way. The new proof covers the Hermitian case directly.

Let B be a Hermitian matrix, with B = V DV ∗, D Hermitian, and invertible. Let[
W
Z

]
be the solution to the system

(6.1)

[
D−1 V ∗

V 0

] [
W
Z

]
=

[
0

PR(B)

]
,

where PR(B) is the orthogonal projector onto the range space of B. The matrix W
here corresponds to what Guattery termed a generalized embedding.

The following two theorems are direct consequences of Theorem 4.1 and its proof.
Theorem 6.1. W ∗D−1W = B+.
Proof. Viewing the system above in terms of the system in Theorem 4.1, we can

make the substitutions U = PR(B), DB = D, and DA = In. Substituting these values
in (4.8) from the proof of Theorem 4.1 gives

W ∗D−1W = P ∗
R(B)B

+PR(B).

Note that PR(B+) = PR(B∗) (see [4]). Recall that PR(B) = PR(B∗) since B is Hermitian
and that P ∗

R(B) = PR(B) because orthogonal projectors are Hermitian by definition.
These equations also imply that PR(B+) = PR(B). Hence we have the following:

P ∗
R(B)B

+PR(B) = PR(B+)B
+PR(B) = B+PR(B) = B+.

The last equality follows from the fact that B+ is Hermitian, so R(B+) is a reducing
subspace. Proposition 0.2.3 from [4] thus gives us that

PR(B+)B
+ = B+PR(B+) = B+.

Since PR(B+) = PR(B) (as noted above), this proves the theorem.
In the proof above, note that the factor embedded, PR(B), is also equal to the

symmetric product of the factor and its conjugate transpose. This is done to ensure
W has the proper dimensions to serve as a factor of the pseudoinverse.

One possibility hidden in the argument is that the rank of B may be less than
the rank of V . In such cases the matrix D projects part of the range of V ∗ into the
null space of V . When this does not happen, however, we can prove an interesting

604 E. G. BOMAN, S. GUATTERY, AND B. HENDRICKSON

property. Let matrices V , D, and B be defined as for Theorem 6.1. Let
[
W
Z

]
be a

solution to (6.1) that is orthogonal to the null space of the block matrix. We have
the following theorem.

Theorem 6.2. If rank(B) = rank(V), −Z = B+.
Proof. Assume that the order of D is k and that V is an n× k matrix.
We can apply Gaussian elimination to the system in (6.1) as follows:[

I 0
−V D I

] [
D−1 V ∗

V 0

] [
W
Z

]
=

[
I 0

−V D I

] [
0

PR(B)

]
to get the following block upper triangular system:[

D−1 V ∗

0 −B

] [
W
Z

]
=

[
0

PR(B)

]
,

The rank of the block matrix (referred to as M below) is greater than or equal to
the sum of the ranks of B and D−1 (see, e.g., [9]). Since D−1 has full rank, this also
implies that the dimension of the null space of M is less than or equal to the size of
the null space of B.

Note that we have −BZ = PR(B).
If B is nonsingular, then the result follows immediately: PR(B) = I and −BZ = I.

By the uniqueness of the inverse, Z = −B−1.
If B has less than full rank, multiplying through on both sides by B+ gives the

equation

−PR(B)Z = B+PR(B) = B+,

where the last equality follows by the argument given in Theorem 6.1. The theorem
therefore holds if the columns of Z are in the range of B.

Since B = V DV ∗, the null space of V ∗ is contained in the null space of B. The
condition in the theorem statement that the ranks of B and V are the same thus
implies that the null spaces of B and V ∗ are the same.

We can construct a basis for the null space of the block matrix M as follows:
Assume the size of the null space of B is j ≥ 1. Construct an orthogonal basis for
the null space of B consisting of vectors �v1 · · · �vj . Consider the j vectors of the form

�wi =
[
�0k

�vi

]
, where �0k is the column vector consisting of k zeros. These vectors are

clearly orthogonal. Because B and V ∗ have the same null spaces, each such vector is
in the null space of M . And because (as noted above) the size of the null space of M
is less than or equal to size of the null space of B, the �wi’s span the null space of M ,
and hence form a basis for it.

By assumption, the solution
[
W
Z

]
is orthogonal to the null space of M . By the

structure of the vectors in the null space of M , this means that Z is orthogonal to
the null space of B. Hence Z is in the range of B, and the theorem holds.

7. Approximate inverse preconditioning. In preconditioning linear systems
Ax = b, one often constructs a preconditioner B ≈ A. In the iterative method, one
has to solve for (invert) B. An alternative is to algebraically construct a matrix
M such that MA ≈ I. Since M approximates the inverse of A, one only needs to
multiply by M in the iterative method, which has certain advantages (e.g., in parallel
computing).

OPTIMAL EMBEDDINGS AND EIGENVALUES 605

Many strategies have been proposed for constructing approximate inverses; see,
e.g., [1]. One practical condition is that M must be sparse. Some try to minimize
‖MA − I‖ (with certain sparsity constraints) directly, while others construct M as
the product of two triangular factors.

An interesting open question is whether our Theorem 6.1 can be used as a starting
point for constructing approximate inverses. This theorem provides a novel factoriza-
tion for the inverse of a symmetric matrix. Are there cases in which we could compute
an inexpensive approximation W̃ to W? Then W̃ ∗D−1W̃ would be an approximation
to the inverse.

The key issues to be settled are whether there exist classes of matrices for which a
good, sparse approximation to W exists. Additionally, there is the question of which
factorization of A (if any) can be used to find good approximate factors, and how the
approximation is constructed based on such a factorization.

It is also interesting to consider a similar strategy applied to nonsymmetric ma-
trices using Theorem 5.1. Can good approximations to the factors X and W of our
nonsymmetric matrix be generated by approximately solving (5.1) or (5.2)?

We remark that approximate inverses of this type are in factored form but the
factors may be rectangular (nonsquare), which would make such an approach distinc-
tively different from existing factored approximate inverses.

REFERENCES

[1] M. Benzi and M. Tuma, A comparative study of sparse approximate inverse preconditioners,
Appl. Numer. Math., 30 (1999), pp. 305–340.

[2] M. Bern, J. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo, Support-graph precon-
ditioners, SIAM J. Matrix Anal. Appl., submitted.

[3] E. G. Boman and B. Hendrickson, Support theory for preconditioning, SIAM J. Matrix Anal.
Appl., 25 (2003), pp. 694–717.

[4] S. L. Campbell and C. D. Meyer, Jr., Generalized Inverses of Linear Transformations,
Corrected reprint of the 1979 original, Dover, New York, 1991.

[5] K. D. Gremban, Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant
Linear Systems, Ph.D. thesis and CMU CS Technical report CMU-CS-96-123, Carnegie
Mellon University, Pittsburgh, PA.

[6] S. Guattery, Graph Embeddings, Symmetric Real Matrices, and Generalized Inverses, Tech-
nical report 98-34, ICASE, NASA Langley, Hampton, VA, 1998.

[7] S. Guattery, F. T. Leighton, and G. L. Miller, The path resistance method for bounding
the smallest nontrivial eigenvalue of a Laplacian, Combin. Probab. Comput., 8 (1999),
pp. 441–460.

[8] S. Guattery and G. L. Miller, Graph embeddings and Laplacian eigenvalues, SIAM J. Matrix
Anal. Appl., 21 (2000), pp. 703–723.

[9] R. A. Horn and C. A. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

[10] M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput., 18 (1989),
pp. 1149–1178.

[11] N. Kahale, A semidefinite bound for mixing rates of Markov chains, in Integer Programming
and Combinatorial Optimization, Lecture Notes in Comput. Sci. 1084, 1996, pp. 190–203.

[12] A. Sinclair and M. Jerrum, Approximate counting, uniform generation and rapidly mixing
Markov chains, Inform. and Comput., 82 (1989), pp. 93–133.

[13] P. M. Vaidya, Solving Linear Equations with Symmetric Diagonally Dominant Matrices by
Constructing Good Preconditioners, IMA Workshop on Graph Theory and Sparse Matrix
Computation, 1991.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 606–625

REGULARIZATION IN REGRESSION WITH BOUNDED NOISE:
A CHEBYSHEV CENTER APPROACH∗

AMIR BECK† AND YONINA C. ELDAR‡

Abstract. We consider the problem of estimating a vector z in the regression model b = Az+w,
where w is an unknown but bounded noise. As in many regularization schemes, we assume that an
upper bound on the norm of z is available. To estimate z we propose a relaxation of the Chebyshev
center, which is the vector that minimizes the worst-case estimation error over all feasible vectors
z. Relying on recent results regarding strong duality of nonconvex quadratic optimization problems
with two quadratic constraints, we prove that in the complex domain our approach leads to the
exact Chebyshev center. In the real domain, this strategy results in a “pretty good” approximation
of the true Chebyshev center. As we show, our estimate can be viewed as a Tikhonov regularization
with a special choice of parameter that can be found efficiently by solving a convex optimization
problem with two variables or a semidefinite program with three variables, regardless of the problem
size. When the norm constraint on z is a Euclidean one, the problem reduces to a single-variable
convex minimization problem. We then demonstrate via numerical examples that our estimator can
outperform other conventional methods, such as least-squares and regularized least-squares, with
respect to the estimation error. Finally, we extend our methodology to other feasible parameter sets,
showing that the total least-squares (TLS) and regularized TLS can be obtained as special cases of
our general approach.

Key words. Chebyshev center, nonconvex quadratic optimization, strong duality, bounded
error estimation

AMS subject classifications. 90C20, 90C22, 90C26, 65F30

DOI. 10.1137/060656784

1. Introduction. Many problems in data fitting and estimation give rise to a
system of linear equations Az ≈ b where the right-hand side b is contaminated by
noise. More specifically, we consider the linear model

(1) b = Az + w,

where A ∈ F
m×n is the model matrix, b ∈ F

m is the observation vector, w ∈ F
m is

the unknown noise (or “error”), and z ∈ F
n is the unknown parameter vector. Here

F denotes either the real number field R or the complex number field C. Given the
observation b, we seek an estimator ẑ of z that is close in some sense to z. This
estimation problem arises in a large variety of areas in science and engineering, e.g.,
communication, economics, signal processing, seismology, and control.

The celebrated least-squares (LS) approach [5, 18] to estimating z in the model
(1) is to seek the vector ẑLS that minimizes the norm of the data error ‖Aẑ − b‖2,
where ‖v‖ stands for the Euclidean norm of the vector v. When A has full column
rank, ẑLS is given by

(2) ẑLS = (A∗A)−1A∗b.

∗Received by the editors April 8, 2006; accepted for publication (in revised form) by J. G. Nagy
December 7, 2006; published electronically May 1, 2007.

http://www.siam.org/journals/simax/29-2/65678.html
†Department of Industrial Engineering and Management, Technion—Israel Institute of Technol-

ogy, Haifa 32000, Israel (becka@ie.technion.ac.il).
‡Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000,

Israel (yonina@ee.technion.ac.il).

606

REGULARIZATION IN REGRESSION WITH BOUNDED NOISE 607

In practical situations the matrix A is often ill-conditioned—for example, when the
system is obtained via discretization of ill-posed problems such as integral equations
of the first kind (see, e.g., [16] and references therein). In these cases the LS solu-
tion might give poor results with respect to the estimation error. A well-established
approach for stabilizing the LS estimate is to incorporate prior information on the
true parameter vector z into the optimization problem (2) by adding a quadratic
constraint:

(3) ẑRLS ∈ argmin
z∈Fn

{‖Az − b‖2 : ‖Lz‖2 ≤ η}.

The matrix L is often chosen as the identity, or as a discrete approximation of some
derivative operator (see [5, 16]). The resulting estimator is referred to as the regu-
larized LS (RLS) estimator [5]. It is well known that ẑRLS is either equal to the LS
solution when ‖LzLS‖2 ≤ η or given by ẑRLS = zλ, where zλ satisfies the generalized
normal equations [5]

(4) (A∗A + λL∗L)zλ = A∗b.

The parameter λ is determined by the secular equation ‖Lzλ‖2 = η. Therefore, the
RLS solution is a Tikhonov estimator [28] with a choice of regularization parameter
λ that takes into account the norm constraint ‖Lz‖2 ≤ η.

It is important to note that both the LS and the RLS strategies are based on
minimizing the data error. However, in an estimation context, typically we would
like to minimize the squared estimation error ‖ẑ − z‖2. When the noise w in (1) is
assumed to be random with zero mean and known covariance matrix, the squared
estimation error will also be a random variable. Using the known statistics of w,
the average squared estimation error, referred to as the mean-squared error (MSE),
can be computed. Several different strategies based on the MSE have been recently
proposed [25, 9, 8, 2, 7]. These methods consider linear estimates of z and assume
knowledge of the statistics of w.

1.1. Bounded error estimation. In some scenarios, the distribution of the
noise might not be known exactly (or at all). There are also cases where the noise is not
inherently random (for example, in problems resulting from quantizing a continuous-
time signal). This leads to the bounded error estimation approach which deals with
unknown but bounded noise (see, e.g., [19] and the survey papers [21, 24]). In this
paper we adopt the bounded error methodology and assume that the noise is norm-
bounded ‖w‖2 ≤ ρ. As in the RLS strategy, in order to obtain a stable solution, we
further restrict z to have weighted bounded norm.

The first stage in the deterministic bounded error approach is to construct all
admissible solutions to the linear system (1); for this reason this approach is also
referred to as set-membership estimation [21]. In our setting, the feasible parameter
set (FPS) is given by the intersection of two ellipsoids1:

(5) FPS = {z ∈ F
n : ‖Lz‖2 ≤ η, ‖Az − b‖2 ≤ ρ}.

The second step is to choose a central representative of the FPS. A popular choice is
the Chebyshev center [29], which is defined as the solution ẑ to the following min-max
problem:

(6) min
ẑ∈Fn

max
z∈FPS

‖z − ẑ‖2.

1Note that here the norm bound ‖w‖2 ≤ ρ translates to ‖Az − b‖2 ≤ ρ.

608 AMIR BECK AND YONINA C. ELDAR

Geometrically, the Chebyshev center is the center of the minimum radius ball enclosing
the FPS; the optimal value of (6) is the squared radius of the minimal ball enclosing
the set. This is illustrated in Figure 1 with the filled area being the intersection of
two ellipsoids. The dotted circle is the minimum inscribing circle of the intersection
of the ellipsoids.

chebyshev
center

minimum enclosing
circle

Fig. 1. The Chebyshev center of the intersection of two ellipsoids.

The Chebyshev center of the FPS gives the best worst-case estimation error over
the set. Thus, it is aimed at optimizing an objective that depends on the estimation
error rather than the data error. In section 5 we demonstrate by simulations that
an estimator based on the Chebyshev center typically performs worse than the LS
and RLS approaches with respect to the data error; however, it appears to perform
significantly better in terms of the estimation error even when only loose bounds on
the norm of the noise (ρ) are known. Thus, this approach can improve the estimation
error without requiring much more knowledge than the RLS strategy.

Finding a Chebyshev center of a convex set is, in general, a hard problem. Two
exceptions are the case where the set is polyhedral and the enclosing ball is the l∞
ball [20], and the case when the set is finite (see, e.g., [30] and references therein).

The Chebyshev center problem (6) we tackle in this paper is seemingly hard. To
better understand the intrinsic difficulty of this min-max problem, note that the inner
maximization problem is a nonconvex quadratic optimization problem. However,
relying on some recent strong duality results derived in the context of quadratic
optimization [1], we will show that despite the nonconvexity of the problem, it can
be solved efficiently when F = C. The same approach can be used when F = R

to develop an approximation of the Chebyshev center. Simulation results show that
this approximation is pretty good in the sense that it yields favorable estimation
performance.

REGULARIZATION IN REGRESSION WITH BOUNDED NOISE 609

1.2. Paper layout and main results. A review of the relevant optimization
concepts and the strong duality results of [1] is given in section 2. These results
are then used in section 3 to reduce the problem of finding the Chebyshev center
of the intersection of two level sets of quadratic functions2 with F = C to a convex
optimization problem in only two variables. This problem can also be recast as a
semidefinite program (SDP) involving linear matrix inequality (LMI) constraints, with
three variables.

In section 4 we present the relaxed Chebyshev center (RCC) estimator, which is
exactly the Chebyshev center of the FPS in the case F = C under strict feasibility
constraints. We show that the RCC, like the RLS solution, is a Tikhonov estimator.
However, in the RCC approach, as opposed to the RLS method, the regularization
parameter is chosen to account for both constraints defining the FPS. Furthermore, it
is designed to minimize an estimation error rather than a data error. We also show
that when considering the FPS with a Euclidean norm constraint on z (i.e., L = I),
the problem reduces to a convex optimization problem with a single variable.

Section 5 presents numerical examples demonstrating the effectiveness of the RCC
strategy. We also compare two methods for evaluating the RCC estimator: an imple-
mentation of the ellipsoid method [3] (described in full detail in Appendix A) and a
standard interior point method applied to the resulting SDP. We show both theoret-
ically and numerically that in our problem the ellipsoid method is more efficient.

Finally, in section 6, we extend our approach to several related problems, and
show that the total LS (TLS) [13, 17] and regularized TLS (RTLS) estimators [12]
can be viewed as special cases of our general methodology.

1.3. Notation. Throughout the paper, the following notation is used: vectors
are denoted by boldface lowercase letters, e.g., y, and matrices by boldface uppercase

letters, e.g., A. The ith component of a vector y is written as yi, and (̂·) is an estimated
vector. The identity matrix is denoted by I. The real and imaginary parts of scalars,
vectors, or matrices are written as �(·) and �(·). For a matrix A, A∗,AT ,A†, and
R(A) are the Hermitian conjugate, transpose, Moore-Penrose generalized inverse [14],
and image space. For a square symmetric matrix, λmin(A) is the minimum eigenvalue
of A. Given two matrices A and B, A � B (A 	 B) means that A − B is positive
definite (semidefinite). The value of the optimal objective function of an optimization
problem

(P) : min /max{f(x) : x ∈ C}

is denoted by val(P). For simplicity, instead of inf/sup we use min/max; however this
does not mean that we assume that the optimum is attained and/or finite.

2. Quadratically constrained quadratic programs: A review. Our goal
is to find the Chebyshev center of the FPS (5). The difficulty is that the inner
maximization in (6)

max
z∈FPS

‖z − ẑ‖2

is not convex. In this section, we summarize prior results concerning the minimization
of a general quadratic form subject to quadratic constraints. We will then show, in
sections 3 and 4, how these results can be applied in order to solve (6).

2This is a more general form than a set that is an intersection of two ellipsoids.

610 AMIR BECK AND YONINA C. ELDAR

Consider the general form quadratically constrained quadratic problem

(QPm) min
z∈Fn

{f0(z) : fi(z) ≤ 0, i = 1, . . . ,m},

where m denotes the number of constraints, and

fi(z) = z∗Aiz + 2�(b∗
i z) + ci

with Ai = A∗
i ∈ F

n×n,bi ∈ F
n, and ci ∈ R for i = 0, . . . ,m. Note that in the case

F = R, the quadratic functions fi(z) can be written as zTAiz + 2bT
i z + ci.

The problem (QPm) is in general not convex since Ai are not necessarily positive
semidefinite. The Lagrangian dual of (QPm) is the maximization problem [4, 26]

(7) max
α

{q(α) : α ≥ 0},

where q(α) is the dual objective function defined by

q(α) = min
z∈Fn

{
f0(z) +

m∑
i=1

αifi(z)

}
.

The function q(α) can also be written in the form

(8) q(α) = max
λ

{
λ : f0(z) +

m∑
i=1

αifi(z) ≥ λ for every z ∈ F
n

}
.

To obtain a more convenient representation of q(α) we exploit the following well-
known lemma.

Lemma 2.1 (see [3, p. 163]). Let g : F
n → R be given by g(z) = z∗Az +

2�(b∗z) + c, where A = A∗ ∈ F
n×n,b ∈ F

n, and c ∈ R. Then the two statements
below are equivalent:

(i) g(z) ≥ 0 for every z ∈ F
n.

(ii)

(
A b
b∗ c

)
	 0.

Applying Lemma 2.1 to (8), we can represent q(α) as

q(α) = max
λ

{
λ :

(
A0 b0

b∗
0 c0 − λ

)
+

m∑
i=1

αi

(
Ai bi

b∗
i ci

)
	 0

}
.

The dual problem (7) then becomes

(Dm) max
αi≥0,λ

{
λ :

(
A0 b0

b∗
0 c0 − λ

)
+

m∑
i=1

αi

(
Ai bi

b∗
i ci

)
	 0

}
.

Note that (Dm), also called Shor’s relaxation, is an SDP [3], i.e., a problem involving
the minimization of a linear function subject to LMIs.

The weak duality theorem [4] states that one always has val(Dm) ≤ val(QPm).
A fundamental question is whether or not there is strong duality, i.e., is val(QPm) =
val(Dm)? When all the functions fi, i = 0, . . . ,m, are convex and strict feasibility
holds, the answer is affirmative (this follows from the well-known strong duality the-
orem for convex programming [26]). However, if even one of the functions is not

REGULARIZATION IN REGRESSION WITH BOUNDED NOISE 611

convex, then strong duality can be violated. Two exceptions are (i) the case of a sin-
gle quadratic constraint (m = 1) (see, e.g., [10, 22]) and (ii) the case of two quadratic
constraints (m = 2) in which the underlying number field is complex (strong duality
is not guaranteed when F = R). The latter result was recently derived in [1] and is
recalled in Theorem 2.1.

Theorem 2.1 (see [1]). Suppose that F = C and that problem (QP2) is strictly
feasible, i.e., there exists z̃ ∈ F

n such that f1(z̃) < 0, f2(z̃) < 0. Further assume that

(9) ∃γ1 ≥ 0, γ2 ≥ 0 : γ1A1 + γ2A2 � 0.

Then the minimum and maximum of problems (QP2) and (D2), respectively, are at-
tained and val(QP2) = val(D2).

3. The two-quadratic Chebyshev center. We now apply the results of the
previous section to the problem of finding the Chebyshev center of the intersection
of two level sets of quadratic functions. Specifically, we show that if the underlying
number field is complex (F = C), then the Chebyshev center can be found by solving
a convex optimization problem with two variables, or an SDP with three variables,
thus rendering the problem tractable. In the case F = R the proposed methodology
results in an approximation of the exact Chebyshev center.

Consider the set Ω given as the intersection of level sets of two quadratic functions:

(10) Ω = {z ∈ F
n : fi(z) ≤ 0, i = 1, 2},

where fi(z) = z∗Aiz + 2�(b∗
i z) + ci with Ai = A∗

i ∈ F
n×n,bi ∈ F

n, and ci ∈ R for
i = 1, 2. We assume that condition (9) holds true. This is the case, for example, when
at least one of the functions is strictly convex, which is equivalent to saying that the
corresponding level set is a nondegenerate ellipsoid.

The Chebyshev center of Ω is the vector ẑ ∈ F
n which is the solution to

(11) min
ẑ∈Fn

max
z∈Ω

‖z − ẑ‖2.

Theorem 3.1 below shows that finding the Chebyshev center of Ω can be recast as a
convex optimization problem with only two variables. In order to prove the theorem,
we will require the following lemma on Schur complements of singular matrices.

Lemma 3.1 (see [6, Appendix A.5]). Let

X =

(
A B
B∗ C

)
,

where A = A∗ ∈ F
k×k,B ∈ F

k×p, and C = C∗ ∈ F
p×p. Then X 	 0 if and only if

A 	 0, C − B∗A†B 	 0, (I − AA†)B = 0.

Remark 3.1. Note that the condition (I − AA†)B = 0 is equivalent to saying
that AY = B for some Y ∈ F

p×k.
Theorem 3.1. Let Ω be the set given in (10) with F = C. Suppose that there

exists z̃ ∈ F
n such that f1(z̃) < 0 and f2(z̃) < 0 and that (9) is satisfied. Then the

solution to (11) is

(12) ẑ = − (α1A1 + α2A2)
−1

(α1b1 + α2b2) ,

612 AMIR BECK AND YONINA C. ELDAR

where (α1, α2) is an optimal solution of the following convex optimization problem in
two variables:

(13)
minα1,α2

{
−c1α1 − c2α2 + (α1b1 + α2b2)

∗(α1A1 + α2A2)
−1(α1b1 + α2b2)

}
s.t. α1A1 + α2A2 	 I, α1 ≥ 0, α2 ≥ 0.

Proof. Problem (11) can be rewritten as

min
ẑ∈Fn

{
‖ẑ‖2 + max

z∈Ω

{
‖z‖2 − 2z∗ẑ

}}
.

By using the strong duality result of Theorem 2.1 (note that all the conditions are
satisfied), we conclude that the value of the inner maximization

max
z∈Ω

{‖z‖2 − 2z∗ẑ}

is equal to the value of the dual minimization problem (see section 2):

minα1,α2,λ λ

s.t.

(
−I ẑ
ẑ∗ λ

)
+ α1

(
A1 b1

b∗
1 c1

)
+ α2

(
A2 b2

b∗
2 c2

)
	 0,

α1 ≥ 0, α2 ≥ 0.

Therefore, we can write (11) as

(14)

minα1,α2,ẑ,λ

{
λ + ‖ẑ‖2

}
s.t.

(
−I + α1A1 + α2A2 ẑ + α1b1 + α2b2

(ẑ + α1b1 + α2b2)
∗ λ + α1c1 + α2c2

)
	 0,

α1 ≥ 0, α2 ≥ 0.

Using Lemma 3.1 and Remark 3.1, problem (14) is equivalent to

(15)

minα1,α2,ẑ,λ

{
λ + ‖ẑ‖2

}
s.t. Bα 	 0,

ẑ + α1b1 + α2b2 ∈ R(Bα),

λ + α1c1 + α2c2 ≥ (ẑ + α1b1 + α2b2)B†
α(ẑ + α1b1 + α2b2),

α1 ≥ 0, α2 ≥ 0,

where we defined

Bα ≡ −I + α1A1 + α2A2.

Noting that at the optimum we will have equality in the third constraint of (15), our
problem reduces to

(16)

minα1,α2,ẑ

{
−α1c1 − α2c2 + (ẑ + α1b1 + α2b2)B†

α(ẑ + α1b1 + α2b2) + ‖ẑ‖2
}

s.t. Bα 	 0,
ẑ + α1b1 + α2b2 ∈ R(Bα),
α1 ≥ 0, α2 ≥ 0.

The constraint ẑ+α1b1 +α2b2 ∈ R(Bα) is satisfied if and only if there exists w ∈ F
n

such that ẑ+α1b1 +α2b2 = Bαw. Using this observation combined with the identity
BαB†

αBα = Bα, (16) becomes

(17)
minα1,α2,w

{
−α1c1 − α2c2 + w∗Bαw + ‖ − α1b1 − α2b2 + Bαw‖2

}
s.t. Bα 	 0,

α1 ≥ 0, α2 ≥ 0.

REGULARIZATION IN REGRESSION WITH BOUNDED NOISE 613

Fixing (α1, α2) and minimizing with respect to w, we obtain that an optimal w
is any vector satisfying

Bα(I + Bα)w = Bα(α1b1 + α2b2).

Choosing w = (I + Bα)−1(α1b1 + α2b2) together with the identity

Bα(I + Bα)−1 = I − (I + Bα)−1

leads to the following form of (11):

(18)
minα1,α2

{
−α1c1 − α2c2 + (α1b1 + α2b2)

∗(α1A1 + α2A2)
−1(α1b1 + α2b2)

}
s.t. α1A1 + α2A2 	 I,

α1 ≥ 0, α2 ≥ 0.

Since the objective in (18) is convex and the constraints are convex conic constraints,
the problem (18) is convex. Finally,

ẑ = −α1b1 − α2b2 + Bαw

= (−I + Bα(I + Bα)−1)(α1b1 + α2b2)

= −(I + Bα)−1(α1b1 + α2b2),

completing the proof.
An immediate consequence of Theorem 3.1 is that at the expense of adding an

additional variable, we can recast the problem of finding the Chebyshev center of Ω
as an SDP with three variables.

Corollary 3.2. Consider the setting of Theorem 3.1. Then the solution to (11)
is given by

(19) ẑ = − (α1A1 + α2A2)
−1

(α1b1 + α2b2),

where (α1, α2) is an optimal solution of the SDP:

(20)

minα1,α2,t {−α1c1 − α2c2 + t}
s.t. α1A1 + α2A2 	 I,(

α1A1 + α2A2 α1b1 + α2b2

(α1b1 + α2b2)
∗ t

)
	 0,

α1 ≥ 0, α2 ≥ 0.

Proof. The proof follows from rewriting (13) as

minα1,α2,t {−α1c1 − α2c2 + t}
s.t. α1A1 + α2A2 	 I,

(α1b1 + α2b2)
∗(α1A1 + α2A2)

−1(α1b1 + α2b2) ≤ t,
α1 ≥ 0, α2 ≥ 0,

and invoking Lemma 3.1.
Since problem (20) is an SDP, it can be solved efficiently via interior point methods

[23]. Alternatively, we may solve the convex optimization problem (13) using the
ellipsoid method [3], which is attractive given the small number of variables (two). In
section 5 we compare these approaches.

The Chebyshev center of Ω can be calculated using Theorem 3.1 only when F = C.
In the real case (F = R), strong duality is not guaranteed, and therefore the vector ẑ

614 AMIR BECK AND YONINA C. ELDAR

defined by (12), with (α1, α2) being the optimal solution of (13) (or of (20)), is not
necessarily the exact Chebyshev center. In fact, the weak duality theorem implies
that the resulting ball will enclose the set but will not necessarily be the smallest one
possible. In Figure 2, four examples of intersections of ellipsoids in the real domain are
given. The vector ẑ was calculated by solving the SDP problem (20) with the software
package SeDuMi [27]. The radius of each ball is the square root of the corresponding
optimal value of problem (20). In the two upper examples it seems that strong duality
holds while in the two lower examples it is evident that the circle defined by Theorem
3.1 (or Corollary 3.2) is not minimal.

An important property of an optimal solution (ᾱ1, ᾱ2) of problem (13) is that
the matrix ᾱ1A1 + ᾱ2A2 − I is not positive definite, i.e., the minimum eigenvalue of
ᾱ1A1 + ᾱ2A2 − I is zero. This is proved in Theorem 3.3 below. This result is valid
both in the complex and real domains. In section 4.2 we use this result in order to
further reduce (13) to a single-variable convex optimization problem when L = I.

Theorem 3.3. Suppose that there exists z̃ ∈ F
n such that f1(z̃) < 0 and

f2(z̃) < 0 and that (9) is satisfied. Let (ᾱ1, ᾱ2) be an optimal solution of (13). Then
λmin (ᾱ1A1 + ᾱ2A2 − I) = 0.

Proof. Denote the objective function in (13) by

h(α) = −c1α1 − c2α2 + (α1b1 + α2b2)
∗(α1A1 + α2A2)

−1(α1b1 + α2b2).

Then the following hold:
(i) h(α) is homogeneous, i.e., h(λα) = λh(α) for every λ �= 0 and feasible α.
(ii) h(ᾱ) > 0.
The first property is obvious by a simple substitution. To prove the second prop-

erty note that by the weak duality theorem, h(ᾱ) is greater than or equal to the
value of the min-max problem (11). Let ẑ be the optimal solution of (11). Then
h(ᾱ) ≥ maxz∈Ω ‖z− ẑ‖2 and maxz∈Ω ‖z− ẑ‖2 must be positive since, by our assump-
tions, Ω has a nonempty interior.

Suppose that ᾱ1A1 + ᾱ2A2 � I. Then there exists 0 < λ < 1 such that λᾱ1A1 +
λᾱ2A2 � I so that (λᾱ1, λᾱ2) is a feasible point of (13). However, from properties (i)
and (ii),

h(λᾱ) = λh(ᾱ) < h(ᾱ),

contradicting the optimality of ᾱ.

4. The RCC estimator.

4.1. The RCC: Definition and form. We now return to the problem of finding
the Chebyshev center of FPS (5), which is the solution of the min-max problem (6).
The set FPS can be represented as an intersection of two ellipsoids:

FPS = {z ∈ F
n : z∗L∗Lz ≤ η, z∗A∗Az − 2�(b∗Az) + ‖b‖2 ≤ ρ}.

We assume that condition (9) is satisfied, which means that

(21) ∃γ1 ≥ 0, γ2 ≥ 0, γ1L
∗L + γ2A

∗A � 0.

By Theorem 3.1, if F = C and there exists z̃ such that ‖Az̃ − b‖2 < ρ, ‖Lz̃‖2 < η,
then the Chebyshev center of FPS has the form

ẑ = α2(α1L
∗L + α2A

∗A)−1A∗b,

REGULARIZATION IN REGRESSION WITH BOUNDED NOISE 615

Fig. 2. Four examples of intersection of ellipsoids (dashed lines). The filled area is the in-
tersection of the ellipsoids. The center of the dotted circle is given by (12) with (α1, α2) being an
optimal solution of (13) and the radius being the square root of the corresponding optimal value.

where (α1, α2) is an optimal solution of the problem

(22)
minα1,α2

{
α1η + α2(ρ− ‖b‖2) + α2

2b
∗A(α1L

∗L + α2A
∗A)−1A∗b

}
s.t. α1L

∗L + α2A
∗A 	 I,

α1, α2 ≥ 0.

We now define ẑ for both the real and complex domains, and for the case when
the conditions stated above are not necessarily satisfied.

Definition 4.1. The relaxed Chebyshev center (RCC) estimator is the vector

ẑRCC = α2(α1L
∗L + α2A

∗A)−1A∗b,

where (α1, α2) is an optimal solution of the convex optimization problem (22).
If the optimal α2 is positive, then the RCC estimator can be written as

(23) ẑRCC = (A∗A + (α1/α2)L
∗L)−1A∗b.

616 AMIR BECK AND YONINA C. ELDAR

Therefore, the RCC estimator is essentially a Tikhonov regularization with a special
choice of λ that also takes into account the bounded noise constraint. This is in
contrast to the choice of the regularization parameter in the RLS estimator that
exploits only the norm constraint ‖Lz‖2 ≤ η.

In section 5 we demonstrate that although the RCC estimator is only an approxi-
mation of the Chebyshev center in the real domain, it can still significantly outperform
the LS and RLS methods with respect to the estimation error. This is the case even
when the bound on the noise is loose; thus, with almost the same information as used
by the RLS approach, we can significantly reduce the estimation error by using our
proposed strategy. The two key ingredients that lead to the improved performance
are treating the estimation error directly and the added constraint on the noise.

4.2. The case L = I. We now show that in the interesting special case L = I,
the task of calculating the RCC estimator reduces to a single-variable convex mini-
mization problem. To this end we rely on Theorem 3.3.

Theorem 4.1. Let L = I and denote δ = λmin(A∗A). Then the RCC estimator
is given by

ẑRCC =

{
(A∗A + λI)−1A∗b, 0 ≤ λ < ∞,
0, λ = ∞,

where λ is determined as follows3:
(i) If δ > 0, then λ = 1/μ− δ, where μ is the solution of the convex minimization

problem

(24) min
0≤μ≤1/δ

{
(1 − δμ)η + μ(ρ− ‖b‖2) + μ2b∗A(μ(A∗A − δI) + I)−1A∗b

}
.

(ii) If δ = 0, then λ = 1/ξ, where ξ is the solution of the convex minimization
problem

(25) min
ξ≥0

{
ξ(ρ− ‖b‖2) + ξ2b∗A(ξA∗A + I)−1A∗b

}
.

Proof. Substituting L = I into (22) we find

(26)
minα1,α2

{
α1η + α2(ρ− ‖b‖2) + α2

2b
∗A(α2A

∗A + α1I)
−1A∗b

}
s.t. α2A

∗A + α1I 	 I,
α1, α2 ≥ 0.

The LMI constraint can be written equivalently as

(27) α2λmin(A∗A) + α1 = α2δ + α1 ≥ 1.

From Theorem 3.3, we conclude that (27) must be satisfied with equality. Therefore,

(28) α1 = 1 − δα2.

Substituting (28) into (26) we obtain that in the case δ > 0, (26) becomes

minα2

{
(1 − δα2)η + α2(ρ− ‖b‖2) + α2

2b
∗A(α2(A

∗A − δI) + I)−1A∗b
}

s.t. 0 ≤ α2 ≤ 1/δ,

3We use the standard terminology a
0

= ∞ whenever a > 0.

REGULARIZATION IN REGRESSION WITH BOUNDED NOISE 617

which is the same as (24) after μ is replaced by α2. The result for the case δ = 0 is
similarly derived.

To solve the single-variable convex problems (24) and (25), we can use any solver
of one-dimensional convex minimization problems—for instance, a simple bisection
algorithm on the derivative of the function. Denoting by q(μ) and q′(μ) the objective
in (24) and its derivative, respectively, we have

q′(μ) = −δη + ρ− ‖b‖2 + 2μb∗A(μ(A∗A − δI) + I)−1A∗b

−μ2b∗A(μ(A∗A − δI) + I)−1(A∗A − δI)(μ(A∗A − δI) + I)−1A∗b.

Since μ(A∗A − δI) + I is a positive definite matrix for every choice of μ ≥ 0, we can
calculate the derivative using a single Cholesky factorization in the following manner.

Calculation of q′(μ).

1. Calculate a Cholesky factorization D∗D = μ(A∗A − δI) + I.

2. Solve the system D∗y = A∗b.

3. Solve the system Dx = y.

4. The derivative is given by q′(μ) = −δη+ρ−‖b‖2+2μb∗Ax−μ2x∗(A∗A−δI)x.

Note that the Cholesky factorization is the most expensive component in the
calculation of q′(μ) (the calculation of A∗A is done in a preprocess). The other
operations—solution of triangular systems and matrix/vector multiplications—are
significantly cheaper. An alternative approach for computing the derivative is us-
ing the singular value decomposition of A. This approach is viable for small-size
problems but is not applicable for medium- and large-scale problems in which the
Cholesky or the sparse Cholesky factorization can be employed. The complete de-
scription of the algorithm for calculating the RCC estimator when L = I and δ > 0
is as follows.

Algorithm RCC-S.
Input: A ∈ F

m×n, the model matrix; b ∈ F
m, the (noisy) right-hand side vector; η,

an upper bound on ‖z‖2; and ρ, an upper bound on the squared-norm of the noise
‖Az − b‖2.
Output: The RCC estimator ẑRCC, which is the solution to problem (22) with L = I.

1. If q′(0) ≥ 0 then h = 0, and go to step 5.
2. If q′(1/δ) ≤ 0 then h = 1/δ, and go to step 5.
3. Set lb = 0, ub = 1/δ.
4. Repeat the following steps until |ub− lb| < η:

(a) Set h = lb+ub
2 .

(b) Calculate d = q′(h).
(c) If d ≥ 0 then ub = h; else lb = h.

5. Set ẑRCC = (A∗A + (1 − δh)/hI)−1A∗b.

A similar algorithm can be defined for the case δ = 0.

5. Numerical examples. We now present some examples comparing the RCC
estimator with the LS and RLS methods, given by (2) and (3), respectively. The
comparison was employed on two sets of problems: randomly chosen problems and
the discretized inverse heat equation from “Regularization tools” [15]. All experiments
were performed in MATLAB.

We note that in the simulations we assume knowledge of a very loose bound ρ on
the noise so that essentially our method exploits almost the same knowledge as the
RLS approach.

618 AMIR BECK AND YONINA C. ELDAR

5.1. Random test problems. We chose a problem with dimensions m =
10, n = 7. Each component of A was randomly generated from a uniform distri-
bution (i.e., A = rand(m,n)). The “true” vector zT is the vector of all ones. In the
constraints, L = I and η = 2‖zT‖2. The observed vector b was generated by

b = AzT + σw,

where σ takes the values 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 and each compo-
nent of w was randomly generated from a standard normal distribution. The upper
bound on the squared norm of the noise was chosen as 10‖w‖2 (i.e., 10 times the true
squared norm).

Table 1 describes the average of the data error ‖Aẑ − b‖2 (here ẑ is ẑLS, ẑRLS,
or ẑRCC) and the squared error residual ‖zT − ẑ‖2 over 100 realizations of w. The
best results in each half row are marked in boldface. The RLS approach (3) was
implemented using the function lsqi from [15] and the RCC estimator was generated
by the RCC-S algorithm of section 4.2.

Table 1

Comparison of the LS, RLS, and RCC estimators with respect to estimation error and data error.

σ Squared estimation error Squared data error
LS RLS RCC LS RLS RCC

0.01 1.9e-3 1.9e-3 1.9e-3 3.0e-4 3.0e-4 3.0e-4
0.1 2.1e-1 2.1e-1 1.8e-1 3.0e-2 3.0e-2 3.1e-2
0.2 6.6e-1 6.6e-1 3.6e-1 1.2e-1 1.2e-1 1.5e-1
0.3 1.8e+0 1.8e+0 2.0e-1 2.6e-1 2.6e-1 1.2e+0
0.4 3.1e+0 2.9e+0 2.5e-1 5.3e-1 5.3e-1 2.7e+0
0.5 4.3e+0 3.9e+0 3.3e-1 7.2e-1 7.3e-1 4.8e+0
0.6 6.5e+0 5.0e+0 4.7e-1 1.1e+0 1.2e+0 7.3e+0
0.7 9.6e+0 5.4e+0 5.5e-1 1.5e+0 1.7e+0 1.0e+1
0.8 1.4e+1 6.6e+0 6.8e-1 2.1e+0 2.4e+0 1.4e+1
0.9 1.5e+1 6.7e+0 9.0e-1 2.4e+0 2.9e+0 1.8e+1
1.0 1.8e+1 6.8e+0 9.9e-1 2.8e+0 3.6e+0 2.2e+1

It is evident that the LS and RLS estimators are significantly and consistently
worse than the RCC method with respect to the estimation error. This is despite the
fact that the bound on the data error was chosen to be very large—much larger than
the true bound. Thus, this approach does not require much prior information. On the
other hand, the LS and RLS estimators result in a smaller data error than the RCC
approach. This is not surprising since, as was already mentioned, the RCC method is
designed to minimize a measure of estimation error while the LS and RLS strategies
are aimed at minimizing the data error, which is less relevant in an estimation context.

Note that the RCC method was implemented in the case F = R. Recall that
in the real domain the RCC estimator is only an approximation of the Chebyshev
center of the FPS. We also implemented a set of random examples over F = C. The
results were essentially the same as those reported in Table 1. Therefore, it seems
that at least from an empirical point of view the RCC strategy is a “good enough”
approximation of the Chebyshev center.

As we already pointed out, both the RCC and RLS strategies are Tikhonov esti-
mators with different regularization parameters. In all the simulations in this section
we observed that the regularization parameter of the RCC method,4 denoted by λRCC,

4α2 was always nonzero in our experiments.

REGULARIZATION IN REGRESSION WITH BOUNDED NOISE 619

is consistently greater than or equal to the parameter λRLS of the RLS approach. Fur-
thermore, the RCC estimator was always feasible so that ‖LẑRCC‖2 ≤ η. The latter
observation explains why λRCC ≥ λRLS. To see this, we define ϕ(λ) ≡ ‖Lzλ‖2, where
zλ is given by (4). It is straightforward to show that the function ϕ is strictly de-
creasing under our assumption (21). Now, if ‖LẑLS‖2 ≤ η, then λRLS = 0, which
immediately implies λRCC ≥ λRLS. Otherwise, when ‖LẑLS‖2 > η, λRLS satisfies
ϕ(λRLS) = η. On the other hand, ϕ(λRCC) = ‖LẑRCC‖2 ≤ η, and by the fact that ϕ
is decreasing, λRCC ≥ λRLS.

5.2. Inverse heat equation. We now treat the problem of estimating the func-
tion f(t) that solves the heat equation∫ 1

0

k(s− t)f(t) = g(s),

with k(t) = t−3/2

2
√
π

exp
(
− 1

4t

)
. By means of a simple collocation and midpoint rule with

n points, the problem reduces to an n×n linear system AzT = bT. This system and
its solution zT are implemented in the function heat(n,1) from [15]. We note that this
example is ill-conditioned. We compare the RCC estimator to the RLS method (the
results for the LS approach are not given because it produces extremely poor results).

The perturbed right-hand side is chosen as

(29) b = bT + 10−4w,

where each component of w is generated from a standard normal distribution. The
matrix L approximates the first-derivative operator implemented in the function
get l(n,1) from [15]. The upper bound η was chosen to be 2‖LzT‖2. In Figure 3 three
possible values of ρ were employed: ρ = ‖w‖2 (exact squared norm), ρ = 2‖w‖2, and
ρ = 10‖w‖2. The results of the RCC estimator in these three cases are very similar
and are much closer to the true vector zT than the RLS solution ẑRLS. Therefore,
it seems that at least in this example, the performance of the RCC method is quite
robust with respect to the choice of ρ. The fourth plot in Figure 3 describes the three
vectors AzT,AẑRLS, and AẑRCC (for ρ = 10‖w‖2). It can be readily seen that the
three vectors are almost identical, implying that the data errors of the RLS and RCC
approaches are both negligible.

5.3. Ellipsoid versus interior-point methods. In the case when L �= I (as in
the inverse heat equation problem), we are required to solve the convex optimization
problem (22) with two variables, or the SDP

(30)

minα1,α2,t

{
α1η + α2(ρ− ‖b‖2) + t

}
s.t. α1L

∗L + α2A
∗A 	 I,(

α1L
∗L + α2AA −α2A

∗b
−α2Ab∗ t

)
	 0, α1 ≥ 0, α2 ≥ 0.

Now, consider an SDP of the general form

min

{
cTx :

m∑
i=1

xiBi 	 E

}
,

where c ∈ R
m and E,Bi, i = 1, . . . ,m, are n × n Hermitian matrices. In order to

solve the general form SDP we can use a primal-dual interior-point method, which

620 AMIR BECK AND YONINA C. ELDAR

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 ρ=||w||2

TRUE VECTOR

RLS

RCC

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 ρ=2||w||2

TRUE VECTOR

RLS

RCC

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ=10||w||2

TRUE VECTOR

RLS

RCC

0 10 20 30 40 50 60 70 80 90 100
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
observed estimators

A (TRUE VECTOR)

A (RLS)

A (RCC)

Fig. 3. Results for the inverse heat problem of the RCC and RLS estimators.

REGULARIZATION IN REGRESSION WITH BOUNDED NOISE 621

requires O(n3.5m1.5+n2.5m2+n0.5m2.5) operations per accuracy digit. For the specific
problem (30) we have m = 3, and the amount of operations is therefore O(n3.5).

Another alternative is to use the ellipsoid method [3] directly on the problem
(22). This algorithm requires O(n3) operations per accuracy digit since it requires
at most two Cholesky factorizations at each iteration. Therefore, it is cheaper than
the SDP approach by a factor of order

√
n. To compare the performance of the two

algorithms, we implemented the ellipsoid method (see the appendix for full details)
and compared it to the interior-point method implemented in SeDuMi [27] on the
inverse heat equation problem with various values of n. The CPU time in seconds of
the ellipsoid and interior-point algorithms averaged over 10 realizations of the noise
w is given in Table 2 below (σ was fixed to be 1e-4). For n = 1000 SeDuMi failed due
to memory difficulties. Table 2 demonstrates the efficiency of the ellipsoid method.

Table 2

CPU time in seconds on a Pentium 4, 1.8Ghz.

n Ellipsoid SeDuMi
10 1.4e-1 5.5e-1
20 1.6e-1 9.3e-1
50 2.9e-1 3.5e+0
100 8.5e-1 1.8e+1
200 6.0e+0 1.0e+2
500 3.8e+1 8.3e+2
1000 2.4e+2 –

6. Extensions to other estimation problems. The RCC estimator was con-
structed to handle the situation in which only the right-hand side of the linear system
Ax ≈ b is contaminated by noise. The same methodology can be applied to deal
with other sources of noise. In this section, we briefly outline the resulting estimators
in two scenarios: (i) both A and b are uncertain, and (ii) A and b are uncertain and
regularization is required. In the first scenario, the proposed estimator has a similar
structure to the well-known TLS method [13, 17], and in the second scenario, the
estimator has a form similar to that of the RTLS solution [12]. Thus, these popular
methods of handling uncertainties in the basic regression model (1) can be shown to
be special cases of our general results.

The derivation of the estimators is very similar to that described in section 3;
therefore, we present the main results without proof.

6.1. Uncertainty in both A and b. Suppose that both A and b are uncertain
and are given by A+Δ,b+w with Δ,w being unknown but bounded perturbations.
This setting is assumed in the robust LS approach [11]. We assume that the bound
constraint is given by5 ‖(Δ,w)‖2

F ≤ ρ. The corresponding FPS is

FPS1 = {z ∈ F
n : ∃Δ ∈ F

m×n,w ∈ F
m : (A + Δ)z = b + w, ‖(Δ,w)‖2

F ≤ ρ}.

To apply our results, we first note that FPS1 can be written as the single quadratic
constraint

(31) FPS1 = {z ∈ F
n : z∗(A∗A − ρI)z − 2z∗A∗b + ‖b‖2 − ρ ≤ 0}.

This follows from writing FPS1 as

FPS1 = {z ∈ F
n : Az − b = Ez̃ for some ‖E‖2

F ≤ ρ}

5For a matrix B, ‖B‖F denotes the Frobenius norm of B.

622 AMIR BECK AND YONINA C. ELDAR

and applying the following simple lemma.

Lemma 6.1. Let x ∈ F
n and y ∈ F

m, and let η be a positive scalar. Then the
following two statements are equivalent:

(i) There exists Δ ∈ F
m×n such that Δx = y and ‖Δ‖F ≤ η.

(ii) The inequality ‖y‖ ≤ η‖x‖ holds.

Under the assumption that ρ < λmin(A∗A), it can be shown, using the same line
of analysis of section 3, that the Chebyshev center of FPS1 is given by

(32) ẑ = (A∗A − ρI)−1A∗b,

which is a deregularization of the LS solution. Since FPS1 consists of a single quadratic
constraint, this result is valid both in the real and in the complex domains. We note
that when ρ > λmin(A∗A), FPS1 is unbounded, and as a result the value of the inner
maximization problem in (6) is always ∞, which implies that the Chebyshev center
in this case is meaningless.

If we choose

ρ = λmin

(
A∗A A∗b
b∗A ‖b‖2

)
,

then the estimator (32) coincides with the TLS estimator [17, Theorem 2.7].

6.2. Uncertainty in both A and b with regularization. Suppose now we
add regularization to the previous scenario; i.e., we consider the feasible set

FPS2 = {z ∈ F
n : ‖Lz‖2 ≤ η,∃Δ ∈ F

m×n,w ∈ F
m : (A+Δ)z = b+w, ‖(Δ,w)‖2

F ≤ ρ},

which can also be written as

FPS2 = {z ∈ F
n : ‖Lz‖2 ≤ η, z∗(A∗A − ρI)z − 2z∗A∗b + ρ− ‖b‖2 ≤ 0}.

In the case F = C, the Chebyshev center of FPS2 is given by

(33) ẑ = α2(α1L
∗L + α2(A

∗A − ρI))−1A∗b,

where (α1, α2) is an optimal solution of the convex optimization problem

minα1,α2
{α1η + α2(ρ− ‖b‖2) + α2

2b
∗A(α1L

∗L + α2(A
∗A − ρI))−1A∗b}

s.t. α1L
∗L + α2A

∗A 	 I,
α1, α2 ≥ 0.

If α2 �= 0 then ẑ of (33) can be written as

ẑ = (A∗A − ρI + α1/α2L
∗L)−1A∗b.

This estimator has the same structure as the RTLS method, which solves the equation

(A∗b − λI + μL∗L)xRTLS = A∗b

for some choice of parameters λ, μ [12].

REGULARIZATION IN REGRESSION WITH BOUNDED NOISE 623

7. Conclusion. In this paper we discussed a Chebyshev center regularization
method that is based on an estimation error criterion. In contrast to previous reg-
ularization strategies that invoke a data error–based criterion, here we focus on the
estimation error and try to minimize it in some sense. Since the estimation error de-
pends on the unknown vector, we choose as our estimate the Chebyshev center of an
FPS, which consists of a constraint both on the data error and on the weighted norm
of the true parameter. Although the resulting problem is nonconvex, by exploiting
recent duality results, we show that in the complex domain it can be formulated as
a solution to a convex optimization problem in two unknowns, and in the real case
the same approach can be used to get a “pretty good” approximation of the true
Chebyshev center. From a numerical standpoint, we provide two solution methods
and compare their performance. The first is based on an SDP and the second on an el-
lipsoid algorithm. The latter turns out to be more efficient as the problem size grows.
Finally, we show that the popular TLS and RTLS methods can also be formulated
within our framework.

Appendix. The ellipsoid method for problem (13).
In this appendix we describe in detail the ellipsoid method as applied to the

convex optimization problem (13).
The two basic ingredients in the ellipsoid method are a separation oracle and a

first-order oracle (see, e.g., [3]). The main linear algebra procedure we use in both
oracles is the Cholesky factorization. We assume that the input to the Cholesky
procedure is a symmetric matrix B, and its output consists of three arguments flag,
D, and x. If flag = 1 then B is positive definite, B = D∗D with D being a lower
triangular matrix, and x is NULL. If flag = 0 then B is not positive definite, x is a
vector satisfying x∗Bx ≤ 0, and D is NULL.

The input to the separation oracle is a vector α ∈ R
2. The output is either a

statement that the vector is feasible (up to some tolerance) or a hyperplane separating
the vector from the feasible set. ε is a tolerance parameter chosen as 10−6 in our
implementation.
Algorithm SEP-ORA.
Input: α = (α1, α2)

T ∈ R
2.

Output: flag equals one if α is feasible (up to some tolerance) and zero otherwise.
d ∈ R

2 is a separating hyperplane.
1. If α1 ≤ −ε then flag=0, d = (−1, 0)T , STOP.
2. If α2 ≤ −ε then flag=0, d = (0,−1)T , STOP.
3. Set M = α1A1 + α2A2 − I + εI.
4. Invoke the Cholesky factorization procedure with input M and obtain an

output {flag, D, x}.
(a) If flag = 1 then STOP.
(b) If flag = 0 then (d1, d2) = (x∗A1x,x

∗A2x), STOP.
The first-order oracle is invoked in the case when the current vector α = (α1, α2)

T

is feasible. Its main computational effort is the Cholesky factorization of the matrix
α1A1 + α2A2, which by feasibility of α, must be positive definite.
Algorithm FO-ORA.
Input: α = (α1, α2)

T ∈ R
2, an η-feasible solution of (13).

Output: f , the gradient of the objective function of (13) at α.
1. Set M = α1A1 + α2A2.
2. Invoke the Cholesky factorization procedure with input M and obtain an

output {flag,D,x}.

624 AMIR BECK AND YONINA C. ELDAR

3. Solve the following linear systems in x1,x2: D∗x1 = b1,D
∗x2 = b2.

4. Solve the following linear systems in v1,v2: Dv1 = x1,Dv2 = x2.
5. Set

f1 = −c1 + 2α1b
∗
1v1 − α2

1v
∗
1A1v1 + 2α2b

∗
1v2 − 2α1α2v

∗
1A1v2 − α2

2v
∗
2A1v2,

f2 = −c2 + 2α2b
∗
2v2 − α2

2v
∗
2A2v2 + 2α1b

∗
1v2 − 2α1α2v

∗
1A2v2 − α2

1v
∗
1A2v1.

We are now ready to describe the implementation of the ellipsoid method on the
convex optimization problem (13).
Algorithm Ellipsoid.
Input: The optimization problem (13).
Output: α ∈ R

2, a solution to problem (13) (up to some tolerance).
1. Set R = 108,B = RI2,α = (0, 0)T , v = π1016.
2. Repeat the following steps until v < ε.

(a) Invoke the separation oracle SEP-ORA with input α and obtain an
output {flag,d}. If flag = 0 then go to step (c).

(b) Invoke the first-order oracle FO-ORA with input α and obtain an output
d.

(c) p = BTd√
dTBBTd

.

(d) α = α− 1
3Bp.

(e) B = 2√
3
B + (2

3 − 2√
3
)BppT .

(f) v = π det(B).

REFERENCES

[1] A. Beck and Y. C. Eldar, Strong duality in nonconvex quadratic optimization with two
quadratic constraints, SIAM J. Optim., 17 (2006), pp. 844–860.

[2] Z. Ben-Haim and Y. C. Eldar, Maximum set estimators with bounded estimation error, IEEE
Trans. Signal Process., 53 (2005), pp. 3172–3182.

[3] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization, MPS SIAM Ser.
Optim. 2, SIAM, Philadelphia, 2001.

[4] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
[5] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[6] S. P. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-

bridge, UK, 2004.
[7] Y. C. Eldar, Minimum variance in biased estimation: Bounds and asymptotically optimal

estimators, IEEE Trans. Signal Process., 52 (2004), pp. 1915–1930.
[8] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, Linear minimax regret estimation of de-

terministic parameters with bounded data uncertainties, IEEE Trans. Signal Process., 52
(2004), pp. 2177–2188.

[9] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, Robust mean-squared error estimation in the
presence of model uncertainties, IEEE Trans. Signal Process., 53 (2005), pp. 168–181.

[10] C. Fortin and H. Wolkowicz, The trust region subproblem and semidefinite programming,
Optim. Methods Softw., 19 (2004), pp. 41–67.

[11] L. El Ghaoui and H. Lebret, Robust solutions to least-squares problems with uncertain data,
SIAM J. Matrix Anal. Appl., 18 (1997), pp. 1035–1064.

[12] G. H. Golub, P. C. Hansen, and D. P. O’Leary, Tikhonov regularization and total least
squares, SIAM J. Matrix Anal. Appl., 21 (1999), pp. 185–194.

[13] G. H. Golub and C. F. Van Loan, An analysis of the total least squares problem, SIAM J.
Numer. Anal., 17 (1980), pp. 883–893.

[14] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[15] P. C. Hansen, Regularization tools, a MATLAB package for analysis of discrete regularization
problems, Numer. Algorithms, 6 (1994), pp. 1–35.

[16] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed problems: Numerical Aspects of Linear
Inversion, SIAM Monogr. Math. Model. Comput. 4, SIAM, Philadelphia, 1997.

REGULARIZATION IN REGRESSION WITH BOUNDED NOISE 625

[17] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Computational Aspects
and Analysis, Frontiers Appl. Math. 9, SIAM, Philadelphia, 1991.

[18] T. Kailath, Lectures on Linear Least-Squares Estimation, Springer-Verlag, Wein, New York,
1976.

[19] M. Milanese and G. Belforte, Estimation theory and uncertainty intervals evaluation in
the presence of unknown but bounded errors: Linear families of models and estimators,
IEEE Trans. Automat. Control, 27 (1982), pp. 408–414.

[20] M. Milanese and R. Tempo, Optimal algorithms theory for robust estimation and prediction,
IEEE Trans. Automat. Control, 30 (1985), pp. 730–738.

[21] M. Milanese and A. Vicino, Optimal estimation theory for dynamic systems with set mem-
bership uncertainty: An overview, Automatica J. IFAC, 27 (1991), pp. 997–1009.

[22] J. J. Moré, Generalizations of the trust region subproblem, Optim. Methods Softw., 2 (1993),
pp. 189–209.

[23] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Algorithms in Convex Program-
ming, Studies in Applied Mathematics 13, SIAM, Philadelphia, 1994.

[24] J. P. Norton, Identification and application of bounded parameter models, Automatica J.
IFAC, 23 (1987), pp. 497–507.

[25] M. S. Pinsker, Optimal filtering of square-integrable signals in Gaussian noise, Prob. Inf.
Transm., 16 (1980), pp. 120–133.

[26] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[27] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,

Optim. Methods Softw., 11/12 (1999), pp. 625–653.
[28] A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization method,

Soviet. Math. Dokl., 5 (1963), pp. 1035–1038.
[29] J. F. Traub, G. Wasikowski, and H. Wozinakowski, Information-based Complexity, Aca-

demic Press, New York, 1988.
[30] S. Xu, R. M. Freund, and J. Sun, Solution methodologies for the smallest enclosing circle

problem, Comput. Optim. Appl., 25 (2003), pp. 283–292.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 626–642

COVARIANCE MATRICES FOR PARAMETER ESTIMATES OF
CONSTRAINED PARAMETER ESTIMATION PROBLEMS∗

HANS GEORG BOCK† , EKATERINA KOSTINA† , AND OLGA KOSTYUKOVA‡

Abstract. In this paper we show how, based on the conjugate gradient method, to compute
the covariance matrix of parameter estimates and confidence intervals for constrained parameter
estimation problems as well as their derivatives.

Key words. PDE constrained parameter estimation and optimal experiment design problems,
covariance matrix of parameter estimates, iterative linear algebra methods

AMS subject classifications. 65K10, 15A09, 65F30

DOI. 10.1137/040617893

1. Introduction. Parameter estimation and optimal design of experiments are
important steps in establishing models that reproduce a given process quantitatively
correctly. The aim of parameter estimation is to reliably identify model parame-
ters from sets of noisy experimental data. The “accuracy” of the parameters, i.e.,
their statistical distribution depending on data noise, can be estimated up to first
order by means of an approximation of a covariance matrix for parameter estimates
and corresponding confidence regions. In practical applications, however, one often
finds that the experiments performed to obtain the required measurements are ex-
pensive, but nevertheless do not guarantee satisfactory parameter accuracy. In order
to maximize the accuracy of the parameter estimates, additional experiments can be
designed with optimal experimental settings or controls (e.g., initial conditions, mea-
surement devices, sampling times, temperature profiles, feed streams, etc.) subject to
constraints. As an objective functional, a suitable function of the covariance matrix
(e.g., trace, determinant, maximal eigenvalue, etc.) can be used. The possible con-
straints in this problem describe costs, feasibility of experiments, domain of models,
etc. Using Newton-type methods for solving constrained optimal design problems
implies the knowledge of the derivatives of the objective function, which is, let us
repeat, a function of the covariance matrix. Hence, methods of computing the covari-
ance matrix and its derivatives are of great importance in parameter estimation and
optimal design of experiments.

While a representation of the covariance matrix is well known for unconstrained
parameter estimation (see, e.g., [2]) we are interested in the covariance matrix for
the constrained case. And this for a good reason! Since the seventies, general non-
linear parameter estimation problems in dynamic processes described by ordinary or
partial differential-algebraic equations (DAEs) have attracted much attention from
researchers. Applying the so-called boundary value problem approach [3], [4], also

∗Received by the editors October 29, 2004; accepted for publication (in revised form) by L. Van-
denberghe November 3, 2006; published electronically May 22, 2007. This work was supported by
the Deutsche Forschungsgemeinschaft (DFG) through SFB 359 and was partially supported by the
state program of the fundamental research of Republic of Belarus “Mathematical Structures 15.”

http://www.siam.org/journals/simax/29-2/61789.html
†IWR, University of Heidelberg, Im Neuenheimer Feld, 368, D-69120, Heidelberg, Germany

(bock@iwr.uni-heidelberg.de, ekaterina.kostina@iwr.uni-heidelberg.de).
‡Institute of Mathematics, National Academy of Sciences of Belarus, Surganov str. 11, 220072,

Minsk, Belarus (kostyukova@im.bas-net.by).

626

CONSTRAINED COVARIANCE MATRICES 627

known nowadays as “all-at-once” methods, to such problems leads to differential
equation constrained nonlinear parameter estimation problems, where the implicit
constraint is treated by infeasible point methods. One of the issues of this paper is to
formulate a suitable representation of the covariance matrix and confidence regions for
constrained parameter estimation. Another question is how to numerically compute
the covariance matrix.

So far numerical methods for parameter estimation and optimal design of exper-
iments in dynamic processes have been based on direct linear algebra methods for
computing the covariance matrix and its derivatives. The direct methods are vari-
ants of Gaussian elimination and involve an explicit matrix factorization for solving
linear systems of equations. They were originally developed for systems of nonlinear
ODEs or DAEs, where direct linear algebra methods are more effective for forward
model problems than iterative methods. The iterative methods work by repeatedly
improving an approximate solution until it is accurate enough.

On the other hand, for very large scale constrained systems with sparse matrices
of special structure, e.g., originating from discretization of partial differential equa-
tions (PDEs), direct linear algebra methods based on Gauss elimination or orthogonal
decompositions are not competitive with iterative linear algebra methods (see, e.g.,
[17]) even for forward models. Hence, in case of parameter estimation in PDE models,
generalizations of iterative linear algebra methods to the computation of the covari-
ance matrix and its derivatives are crucial for practical applications, and this defines
the aim of this paper. One of the intriguing results of this paper is that by solv-
ing nonlinear constrained least squares problems by conjugate gradient methods, we
get as a by-product the covariance matrix and confidence intervals as well as their
derivatives.

The paper is organized as follows. In the next section we introduce constrained
parameter estimation problems and sketch their solution with a generalized Gauss–
Newton method. A representation of the covariance matrix and confidence regions
for constrained parameter estimation problems is described in section 3. An inter-
pretation of the covariance matrix as a solution of a linear system is given in section
4. Further, it is shown there that the columns of the covariance matrix solve spe-
cial constrained quadratic problems. Based on this observation, a conjugate gradient
method for constrained quadratic problems is outlined in section 5, which serves as a
prototype of an iterative solution method. Section 6 describes a numerical procedure
to compute the covariance matrix as a by-product of a conjugate gradient method
used to solve the linearized PDE constrained parameter estimation problems at the
iterations of a generalized Gauss–Newton method.

2. Constrained parameter estimation problems. We consider that the
model is described by a model response, a nonlinear function M(x, t) ∈ R depending
on variables x and time t. The vector x includes unknown parameters and the so-called
state variables, that is, the variables resulting from discretization of dynamic systems.
It is assumed that, at times tj , j = 1, . . . ,m1, measurements ηj , j = 1, . . . ,m1, are
available,

ηj = M(xtrue, tj) + εj ,

which are subject to measurement errors εj . Here xtrue denotes the “true” values
of the parameters and state variables. We assume then the errors are independent
and normally distributed with zero mean and variances σ. Then minimization of the

628 H. G. BOCK, E. KOSTINA, AND O. KOSTYUKOVA

weighted least squares functional

||F1(x)||22 :=
∑
j

(ηj −M(x, tj))
2

σ2
(2.1)

is known since Gauss [6] to deliver a maximum likelihood estimate. Frequently, the
model is given implicitly; then the variables x satisfy equality constraints

F2(x) = 0.

For the case under consideration in this paper, F2 represents a discretized PDE bound-
ary value problem. Summing up, the nonlinear constrained parameter estimation
problem can be formulated as

min
x∈Rn

1

2
||F1(x)||22(2.2)

s.t. F2(x) = 0.

For simplicity we assume that the functions Fi : D ⊂ Rn → R
mi , i = 1, 2, are

twice-continuously differentiable. Further we assume that m2 < n and m1 +m2 ≥ n.
Note that the inequality m2 ≥ n, together with the condition rank ∂F2(x)/∂x = n
∀ x ∈ X := {x ∈ Rn : F2(x) = 0}, implies that the feasible set X consists of isolated
points.

The method of choice for the boundary value problem or all-at-once approach
to solve problem (2.2) is a generalized Gauss–Newton method, because it almost
shows performance of the second order method requiring only provision of the first
order derivatives. According to a generalized Gauss–Newton method, a new iterate
is (basically) generated by

xk+1 = xk + tkΔxk, 0 < tk ≤ 1,(2.3)

where the increment Δxk is the solution of the linearized problem at x = xk:

min
Δx∈Rn

1

2
||F1(x) + J1(x)Δx||22(2.4)

s.t. F2(x) + J2(x)Δx = 0,

and the stepsize tk is determined by an appropriate line search. Here Ji(x) denotes a

Jacobian Ji(x) = ∂Fi(x)
∂x , i = 1, 2.

If the Jacobians J1 and J2 satisfy two regularity assumptions on D,

rank J2(x) = m2,(2.5)

rank J = n, J = J(x) =

(
J1(x)
J2(x)

)
,(2.6)

then the linearized problem (2.4) has a unique solution Δxk and a unique Lagrange
vector λk satisfying the following optimality conditions:

JT
1 (x)J1(x)Δxk + JT

2 (x)λk = −JT
1 (x)F1(x),(2.7)

J2(x)Δxk = −F2(x).

CONSTRAINED COVARIANCE MATRICES 629

Using (2.7) one can easily show that Δxk can be formally written, with the help of a
solution operator J+, as

Δxk = −J+(xk)F (xk), F (x) =

(
F1(x)
F2(x)

)
.

The solution operator J+ is a generalized inverse, that is, it satisfies J+JJ+ = J+

and is explicitly given by

J+(x) =
(

I 0
)(JT

1 (x)J1(x) J2(x)T

J2(x) 0

)−1 (
J1(x)T 0

0 I

)
.(2.8)

Here I denotes an identity matrix. Let us note once again that the conditions (2.5)
and (2.6) guarantee that the matrix(

JT
1 (x)J1(x) J2(x)T

J2(x) 0

)
is nonsingular. By definition, J+ satisfies J+J = I, which will be used later.

3. Approximation of the covariance matrix and computation of confi-
dence regions. It is important for parameter estimation problems to compute not
only parameters but also a statistical assessment of the accuracy of these parameter
estimates. This can be done by means of the covariance matrix. A representation of
the covariance matrix for unconstrained nonlinear parameter estimation problems is
well known; see, e.g., [2]. In the following, this notion is generalized to constrained
parameter estimation problems.

Let J be the Jacobian at the solution x∗ and J+ be the corresponding generalized
inverse computed according to (2.8). Due to the statistical errors of the data as
input of the parameter estimation problem, the estimate as the result of the solution
procedure is a random variable. Indeed, the parameter estimation problem (2.2) can
be rewritten in the form

min
x

1

2
||F1(x, ε)||22(3.1)

s.t. F2(x) = 0,

depending on the measurement errors ε = (εj , j = 1, . . . ,m1). Here

F1j(x, ε) :=
M(x, tj) − ηj

σ
=

M(x, tj) − (M(xtrue, tj) + εj)

σ
, j = 1, . . . ,m1,

with the measurement errors ε ∈ N (0, σ2
I). Consider now solution x(ε) of problem

(3.1) and suppose that x(ε) → x(0) = xtrue when ‖ε‖ → 0. For problem (3.1) the
optimality conditions, together with constraints, read

F(x, λ, ε) = 0, F(x, λ, ε) :=

(
JT

1 (x, ε)F1(x, ε) + JT
2 (x)λ

F2(x)

)
.(3.2)

For the error ε = 0 we have x(0) = xtrue, F2(x
true) = 0, and F1(x

true, 0) = 0, and
hence, by the regularity assumptions it follows from (3.2) that λ(0) = 0. Further, the
Jacobian

∂F(x, λ, ε)

∂(x, λ)

∣∣∣∣
ε=0

=

(
JT

1 (x(0), 0)J1(x(0), 0) J2(x(0))T

J2(x(0)) 0

)

630 H. G. BOCK, E. KOSTINA, AND O. KOSTYUKOVA

is nonsingular, and we may apply the implicit function theorem. According to the
theorem, in the neighborhood of ε0 = 0 there exist unique functions x(ε), λ(ε) satis-
fying (3.2) and the initial conditions x(0) = xtrue and λ(0) = 0, and the derivatives
∂x(0)
∂ε ∈ R

n×m1 and ∂λ(0)
∂ε ∈ R

m2×m1 satisfy the linear system(
JT

1 (x(0), 0)J1(x(0), 0) J2(x(0))T

J2(x(0)) 0

)(
∂x(0)
∂ε

∂λ(0)
∂ε

)
= −

(
JT

1 (x(0), 0)(− 1
σ I)

0

)
.

By Taylor expansion one obtains

x(ε) = x(0) +
∂x(0)

∂ε
ε + O(||ε||2) = xtrue + J+(xtrue)

(
1
σ ε
0

)
+ O(||ε||2).(3.3)

Consequently, up to the first order x(ε) is normally distributed with expected value
E(x(ε)) = xtrue and variances

E
(
(x(ε) − xtrue)(x(ε) − xtrue)T

)
.(3.4)

Thus, due to (3.3), (3.4) we may approximate a variance-covariance matrix by the
following matrix which we will later call, for the sake of brevity, a covariance matrix:

C := E
(
J+(x)

(
1
σ ε
0

)(
1
σ ε
0

)T

J+T (x)

)

= J+(x)E
((

1
σ ε
0

)(
1
σ ε
0

)T
)
J+T (x)

= J+(x)

(
Im1×m1 0

0 0m2×m2

)
J+T (x).

Obviously, the matrix C is a symmetric positive semidefinite matrix with rank C =
m̄ := n−m2.

Now let us show how to compute confidence regions for all variables in constrained
parameter estimation problems. For the unconstrained case the way of computation
of confidence regions is well known, while it is less well known for the constrained case
and was introduced by one of the authors in [4]. Generalizing the unconstrained case,
we define a nonlinear confidence region for the solution x∗ of the nonlinear constrained
parameter estimation problem (2.2) by

GN (α) := {x|F2(x) = 0, ‖F1(x)‖2
2 − ‖F1(x

∗)‖2
2 ≤ γ2(α)},

where γ2(α) := χ2
m̄(1 − α) is the quantile of the χ2 distribution for value α with m̄

degrees of freedom. The nonlinear confidence region GN (α) can be approximated by
a linearized confidence region

GL(α) := {x| F2(x
∗) + J2(x

∗)(x− x∗) = 0,

‖F1(x
∗) + J1(x

∗)(x− x∗)‖2
2 − ‖F1(x

∗)‖2
2 ≤ γ2(α)}.

Note that since x∗ is optimal in (2.2), the latter expression can be rewritten as

GL(α) = {x | J2(x
∗)(x− x∗) = 0, ‖J1(x

∗)(x− x∗)‖2
2 ≤ γ2(α)}.(3.5)

CONSTRAINED COVARIANCE MATRICES 631

Indeed, the optimality conditions for x∗ and the Lagrange vector λ∗ in problem (2.2),
namely

F1(x
∗)TJ1(x

∗) + λ∗TJ2(x
∗) = 0,

yield that for any Δx satisfying J2Δx = 0, the following relations hold:

F1(x
∗)TJ1(x

∗)Δx = −λ∗TJ2(x
∗)Δx = 0.(3.6)

Taking into account relations (3.6) and the equality F2(x
∗) = 0 results in (3.5).

The following lemma gives another, more illustrative, representation of the linear
confidence region.

Lemma 3.1. Let x∗ be a solution of problem (2.2) for some ε satisfying the
regularity assumptions (2.5) and (2.6). Then

GL(α) = ḠL(α) :=

{
x∗ + Δx | Δx = −J+(x∗)

(
η
0

)
, ‖η‖2

2 ≤ γ2(α)

}
.(3.7)

Proof. Consider x ∈ GL(α), and denote Δx := x− x∗. It follows from (3.5) that

‖J1(x
∗)Δx‖2

2 ≤ γ2(α).

If we choose η = −J1(x
∗)Δx, then

Δx = J+(x∗)J(x∗)Δx = J+(x∗)

(
J1(x

∗)Δx
J2(x

∗)Δx

)
= J+(x∗)

(
J1(x

∗)Δx
0

)
= −J+(x∗)

(
η
0

)
.

Hence, x ∈ ḠL(α).
Let us take x ∈ ḠL(α). Then, by definition of J+ the vector Δx satisfies the

linear system

JT
1 (x∗)J1(x

∗)Δx + JT
2 (x∗)λ = −JT

1 (x∗)η,

J2(x
∗)Δx = 0,

with some vector λ. Then

(η + J1(x
∗)Δx)TJ1(x

∗)Δx = ηTJ1(x
∗)Δx + ΔxTJT

1 (x∗)J1(x
∗)Δx

= −λTJ2(x
∗)Δx = 0.

Now let us compute ||η + J1(x
∗)Δx||22 :

0 ≤ ||η + J1(x
∗)Δx||22 = ‖η‖2

2 + 2ηTJ1(x
∗)Δx + ΔxTJT

1 (x∗)J1(x
∗)Δx

= ‖η‖2
2 − ‖J1(x

∗)(x− x∗)‖2
2.

Hence, ‖J1(x
∗)Δx‖2

2 ≤ ‖η‖2
2 ≤ γ2(α). This means that x ∈ GL(α).

The next result shows that the linearized confidence region GL(α) is contained
exactly in a minimal box, which is the cross product of so-called confidence intervals.

Lemma 3.2. Let x∗ be a solution of problem (3.1) for some ε satisfying the
regularity assumptions (2.5) and (2.6). Then

GL(α) ⊂
n

X
i=1

[x∗
i − θi, x

∗
i + θi],

632 H. G. BOCK, E. KOSTINA, AND O. KOSTYUKOVA

where θi = Ciiγ(α). Here C2
ii denotes the diagonal elements of the covariance matrix

C. Further, the following exact bounds hold:

max
x∈GL(α)

|xi − x∗
i | = θi, i = 1, . . . , n.

Proof. For each component of x ∈ GL(α) we evaluate

|Δxi|2 =

∣∣∣∣eTi J+(x∗)

(
η
0

)∣∣∣∣2 ≤
∣∣∣∣∣∣∣∣eTi J+(x∗)

(
I

0

)∣∣∣∣∣∣∣∣2
2

‖η‖2
2 ≤ C2

iiγ
2(α).

Now we want to show that this bound is exact. Let us now compute the maximum
value of |Δxi|2, that is, the maximum value of the cost function in the following
problem:

max
η

∣∣∣∣eTi J+(x∗)

(
I

0

)
η

∣∣∣∣2
s.t. ||η||22 ≤ γ2(α).

Obviously, the solution in this problem is

η∗T = γ(α)eTi J
+(x∗)

(
I

0

)/∥∥∥∥eTi J+(x∗)

(
I

0

)∥∥∥∥
2

,

and the optimal value of the cost function is equal to

γ2(α)

∥∥∥∥eTi J+(x∗)

(
I

0

)∥∥∥∥2

2

= C2
iiγ

2(α).

Lemma 3.2 shows that the diagonal elements of the covariance matrix play an
important role in the statistical assessment of the estimates, namely they are used to
compute confidence intervals.

We finish this section with an example illustrating nonlinear and linearized con-
fidence regions and a confidence box. Consider, for simplicity of visualization, an
unconstrained problem in two variables (Rosenbrock-type example):

min
1

2
||F1(x)||22, F1(x) :=

(
x1/σ1

(x2 + 1
200 (x1 − 50)2)/σ2)

)
, σ1 = 1.(3.8)

By choosing the parameter σ2 we may change the nonlinearity of the problem (3.8):
the smaller σ2, the larger the nonlinearity. The solution of problem (3.8) is x∗ =
(0,−12.5)T .

Figure 3.1 shows that linear confidence regions are quite good approximations of
nonlinear confidence regions.

4. Covariance matrix as a solution of a linear system. In this section
we will show that the covariance matrix C ∈ R

n×n for the constrained parameter
estimation problem

C := J+

[
I 0
0 0

]
(J+)T(4.1)

satisfies a linear system of equations with coefficients which are uniquely determined
by the matrix J (see (2.6)). In this section, for simplicity of notations, we omit the

CONSTRAINED COVARIANCE MATRICES 633

-25

-20

-15

-10

-5

0

-20 -15 -10 -5 0 5 10 15 20

Nonlinear confidence region
Linear confidence region

Confidence box

-25

-20

-15

-10

-5

0

-20 -15 -10 -5 0 5 10 15 20

Nonlinear confidence region
Linear confidence region

Confidence box

Fig. 3.1. Nonlinear and linearized confidence regions and a confidence box for γ(α) = 250 and
for σ2 = 0.5 (right) and σ2 = 0.05 (left).

dependence of C on the linearization point x. Throughout this section we assume
that the matrices J1 and J2 satisfy the regularity assumptions (2.5) and (2.6). Let us
denote

M−1 =

(
JT

1 J1 JT
2

J2 0

)−1

:=

(
X Y
Z T

)
,

X ∈ R
n×n, Y ∈ R

n×m2 , Z = Y T ∈ R
m2×n, T ∈ R

m2×m2 .

Lemma 4.1. The covariance matrix C (4.1) is equal to the matrix X and satisfies
the following linear equation system with respect to variables C ∈ R

n×n and Z ∈
R

m2×n:

JT
1 J1C + JT

2 Z = I,

J2C = 0.
(4.2)

Proof. According to (2.8) and (4.1) we have

C =
(

I 0
)
M−1

(
JT

1 J1 0
0 0

)
M−1

(
I

0

)
=

(
X Y

)(JT
1 J1 0
0 0

)(
X
Z

)
= XJT

1 J1X.(4.3)

Since the blocks X and Z of the matrix M−1 satisfy the linear system

JT
1 J1X + JT

2 Z = I,

J2X = 0,
(4.4)

relation (4.3) yields

C = X(I − JT
2 Z) = X,

which means that C = X.
Note that, according to Lemma 4.1 the covariance matrix C is a generalized

inverse of the matrix JT
1 J1, that is, it satisfies C(JT

1 J1)C = C.

634 H. G. BOCK, E. KOSTINA, AND O. KOSTYUKOVA

Lemma 4.2. The column X(i) of the matrix X solves the following quadratic
problem:

min
κ

fi(κ) =
1

2
κTJT

1 J1κ− eTi κ(4.5)

s.t. J2κ = 0,

the column Z(i) of the matrix Z being the optimal Lagrange vector of the problem
(4.5). Optimal value of the cost function in problem (4.5) is equal to

fi(X
(i)) = −1

2
X

(i)
i .

Here ei denotes the ith unit vector and X
(i)
i denotes the ith component of the vector

X(i).

Proof. Multiplying system (4.4) with ei yields

JT
1 J1X

(i) + JT
2 Z(i) = ei,

J2X
(i) = 0.

(4.6)

Under assumptions (2.5) and (2.6) this system has a unique solution. The system (4.6)
is nothing but the Karush–Kuhn–Tucker system for the problem (4.5), thus defining
the optimal solution X(i) and the optimal Lagrange variables Z(i).

Next, we compute the value of the cost function at X(i):

fi(X
(i)) =

1

2
X(i)TJT

1 J1X
(i) − eTi X

(i)

=
1

2
(X(i)T ei −X(i)TJT

2 Z(i)) − eTi X
(i) = −1

2
X

(i)
i .

The following corollary of Lemma 4.2 shows how to compute the trace of the
covariance matrix in terms of the optimal values of the problems (4.5). The trace
of the covariance matrix can be used as the cost functional for design of optimal
experiments [1].

Corollary 4.3.

tr C =

n∑
i=1

eTi X
(i) = −2

n∑
i=1

fi(X
(i)).(4.7)

Using the representation of the covariance matrix as a solution of the linear sys-
tem, we may derive the derivatives of the covariance matrix C and the matrix Z as
the functions of the matrices J1 and J2,

C = C(J1, J2) = X(J1, J2),

Z = Z(J1, J2).

These derivatives are needed in numerical methods for design of optimal nonlinear
experiments [1]. Let J1(t) = J1 + tΔJ1 and J2(μ) = J2 + μΔJ2, and compute the

CONSTRAINED COVARIANCE MATRICES 635

partial derivatives

∂X(J1(t), J2(μ))

∂t
|t=0,μ=0 =

∂X(J1(t), J2(μ))

∂J1
ΔJ1 |t=0,μ=0 =: L1,

∂X(J1(t), J2(μ))

∂μ
|t=0,μ=0 =

∂X(J1(t), J2(μ))

∂J2
ΔJ2 |t=0,μ=0 =: L2,

∂Z(J1(t), J2(μ))

∂t
|t=0,μ=0 =

∂Z(J1(t), J2(μ))

∂J1
ΔJ1 |t=0,μ=0 =: R1,

∂Z(J1(t), J2(μ))

∂μ
|t=0,μ=0 =

∂Z(J1(t), J2(μ))

∂J2
ΔJ2 |t=0,μ=0 =: R2.

Differentiating the linear system (4.2) with respect to t yields

(ΔJT
1 J1 + JT

1 ΔJ1)X + JT
1 J1L1 + JT

2 R1 = 0,

J2L1 = 0.

Here X = C and J1 = J1(0), J2 = J2(0). Thus, the matrices L1 and R1 can be found
by

L1 = −X(ΔJT
1 J1 + JT

1 ΔJ1)X,(4.8)

R1 = −Z(ΔJT
1 J1 + JT

1 ΔJ1)X.

Analogously,

ΔJT
2 Z + JT

1 J1L2 + JT
2 R2 = 0,

ΔJ2X + J2L2 = 0,

and hence, the matrices L2 and R2 can be computed by

L2 = −XΔJT
2 Z − ZTΔJ2X,(4.9)

R2 = −ZΔJT
2 Z − TΔJ2X,

where T = −J+
2 JT

1 J1Z
T .

In the case of the trace of the covariance matrix, which is one of the possible crite-
ria for the design of the experiments, the computation of the derivatives is significantly
simplified.

Lemma 4.4.

∂tr C(J1(t), J2)

∂t
= −

n∑
i=1

X(i)T (ΔJT
1 J1 + JT

1 ΔJ1)X
(i),(4.10)

∂tr C(J1, J2(μ))

∂μ
= −2

n∑
i=1

X(i)TΔJ2Z
(i),(4.11)

where X(i) and Z(i) denote the ith columns of matrices X and Z, respectively.
Proof. The proof follows from the relations (4.8) and (4.9) and the definition of

the trace of a matrix tr C =
∑n

i=1 e
T
i Cei.

Note that, computing the derivative of the covariance matrix with respect to J2

requires knowledge of the matrix Z.

636 H. G. BOCK, E. KOSTINA, AND O. KOSTYUKOVA

Remark 1. The relations (4.10) and (4.11) can be derived from the duality theory
for convex problems [7]. According to the theory, with the Lagrangian

Li(κ, π, t, μ) =
1

2
κTJ1(t)

TJ1(t)κ− eTi κ + πTJ2(μ)κ

for problem (4.5), one may compute partial derivatives of the optimal value of the
cost function

∂

∂t
fi(X

(i)(J1(t), J2(μ)))

∣∣∣∣
t=0,μ=0

= max
κ∈D∗

i

min
π∈Λ∗

i

∂

∂t
Li(κ, π, t, μ)

∣∣∣∣
t=0,μ=0

,(4.12)

∂

∂μ
fi(X

(i)(J1(t), J2(μ)))

∣∣∣∣
t=0,μ=0

= max
κ∈D∗

i

min
π∈Λ∗

i

∂

∂μ
Li(κ, π, t, μ)

∣∣∣∣
t=0,μ=0

,

where D∗
i ⊂ R

n, Λ∗
i ⊂ R

m2 denote the sets of optimal primal and dual solutions of
problem (4.5) at t = μ = 0. From (4.7) we have that

∂trC(J1(t), J2(μ))

∂t
= −2

n∑
i=1

∂

∂t
fi(X

(i)(J1(t), J2(μ))),

∂trC(J1(t), J2(μ))

∂μ
= −2

n∑
i=1

∂

∂μ
fi(X

(i)(J1(t), J2(μ))),

where X(i)(J1(t), J2(μ)) is an optimal solution in the problem (4.5) defined at J1(t)
and J2(μ), and fi(X

(i)(J1(t), J2(μ))) denotes the optimal value of the cost function.
In our case, by assumptions (2.5), (2.6) each set consists of only one element, namely

D∗
i = {X(i)},Λ∗

i = {−Z(i)}.(4.13)

Hence, (4.12) results in (4.10) and (4.11). Let us note that relations (4.10) and (4.11)
are true only under regularity conditions (2.5) and (2.6), while the more general
conditions (4.12) hold also in case of violation of (2.5) and (2.6).

Remark 2. Let us note that C = X is just an identity and does not suggest a
good computation. The way to compute the matrix C will be described later.

5. Conjugate gradient method for constrained quadratic problems. We
saw that the columns X(i), i = 1, . . . , n, of the covariance matrix (4.1), as well as the
solution of problem (2.4), solve quadratic problems that can be formally written as

min
y∈Rn

f(y) =
1

2
yTJT

1 J1y + bT y(5.1)

s.t. J2y = a

for some vectors a and b. As in previous sections, we assume that the matrices
J2 ∈ R

m2×n, J1 ∈ R
m1×n satisfy regularity conditions (2.5) and (2.6).

Let us apply the classical conjugate gradient method for solving the constrained
problem (5.1). The traditional way is to project the conjugate gradient method onto
the null-space of J2; see, e.g., [5], [9], [13], [14]. Let P ∈ R

n×n denote a projector onto
the null-space of the matrix J2,

P = I − JT
2 J+

2 , J+
2 = (J2J

T
2)−1J2,(5.2)

where J+
2 is a Moore–Penrose pseudoinverse of JT

2 . Let us note that the matrix J2J
T
2

is nonsingular because of (2.5). The algorithm can be formulated as follows.

CONSTRAINED COVARIANCE MATRICES 637

Algorithm 1.

Input. An initial feasible guess y0, which satisfies the constraints J2y0 = a,
the iteration index k = 0, the gradient of the cost function ∇f(y0) = JT

1 J1y0+
b, and the vector

p1 = −P∇f(y0) ∈ R
n.

Step 1. If pk+1 = 0, then stop at a solution yk of problem (5.1). Otherwise
goto Step 2.
Step 2. Compute the stepsize and the vector

αk+1 = −∇fT (yk)pk+1

||J1pk+1||2
, yk+1 = yk + αk+1pk+1(5.3)

and the consequent direction

pk+2 = −P∇f(yk+1) +
||P∇f(yk+1)||2
||P∇f(yk)||2

pk+1.

Put k = k + 1 and goto Step 1.
In exact arithmetic the method converges in at most m̄ = n − m2 steps to the

solution of the problem (5.1).
During the iterations (5.3) we need to compute projections P∇f(yk) for each

k = 0, 1, 2, . . . ,

P∇f(yk) = ∇f(yk) − JT
2 J+

2 ∇f(yk) = ∇f(yk) − JT
2 uk,

where

uk := J+
2 ∇f(yk).(5.4)

We will use the fact that the vector uk is a solution of an unconstrained least squares
problem

min
u∈Rm2

g(u) =
1

2
||JT

2 u− r||2(5.5)

with r = ∇f(yk); see, e.g., [14].
Consequently, in order to compute the vector uk (5.4) we need to solve problem

(5.5). This can be done again with the conjugate gradient method for the uncon-
strained least squares problem, which can be summarized as follows.

Algorithm 2.

Input. An initial guess v0, the iteration index l = 0, and the vector q1 =
−∇g(v0) = −J2(J

T
2 v0 − r).

Step 1. If ql+1 = 0, then stop at a solution vl of problem (5.5). Otherwise
goto Step 2.
Step 2. Compute

αl+1 = −∇gT (vl)ql+1

||JT
2 ql+1||2

, vl+1 = vl + αl+1ql+1,(5.6)

ql+2 = −∇g(vl+1) +
||∇g(vl+1)||2
||∇g(vl)||2

ql+1.

Put l = l + 1 and goto Step 1.

638 H. G. BOCK, E. KOSTINA, AND O. KOSTYUKOVA

Let us note that the conjugate gradient Algorithm 1 for solving the constrained
quadratic problem (5.1), which we present here following [14], is equivalent to the
preconditioned conjugate gradient method with residual update discussed in detail in
[9].

We do not want to solve the problem (5.5) for each ∇f(yk), k = 2, 3, . . . , m̄
in order to construct vectors JT

2 uk, but rather to use the results of some previous
calculations. How are we to do this? Suppose we have solved the problem (5.5) for
some r = ∇f(yk) in m2 iterations. As a result we have m2 vectors

q1, q2, . . . , qm2 ∈ R
m2 ,(5.7)

which are linearly independent and are J2J
T
2 conjugate:

qTi J2J
T
2 qj = 0, i
= j,

qTi J2J
T
2 qi
= 0, i = 1, . . . ,m2.

In what follows we show that

J+
2 =

(
q1, . . . , qm2

)
diag(βi, i = 1, . . . ,m2)

(
q1, . . . , qm2

)T

J2,(5.8)

where the numbers are computed by βi = 1/||JT
2 qi||2
= 0, i = 1, . . . ,m2. Indeed, by

construction,(
q1, . . . , qm2

)T

J2J
T
2

(
q1, . . . , qm2

)
= diag(β−1

i , i = 1, . . . ,m2).

Then, obviously,(
q1, . . . , qm2

)
diag(βi, i = 1, . . . ,m2)

(
q1, . . . , qm2

)T

(5.9)

=
(
q1, . . . , qm2

)[(
q1, . . . , qm2

)T

J2J
T
2

(
q1, . . . , qm2

)]−1(
q1, . . . , qm2

)T

= (J2J
T
2)−1,

since the matrices (q1, . . . , qm2) and J2J
T
2 are nonsingular. The formula (5.8) follows

immediately from (5.9) and the representation of J+
2 . Thus, there is no necessity to

solve the problem (5.5) for each ∇f(yk), k = 2, 3, . . . , m̄, in order to construct the
vectors JT

2 uk. The vectors JT
2 uk may be computed as

JT
2 uk = JT

2 J+
2 ∇f(yk)

=
(
JT

2 q1, . . . , J
T
2 qm2

)
diag(1/||JT

2 qi||2, i = 1, . . . ,m2)
(
JT

2 q1, . . . , J
T
2 qm2

)T

∇f(yk),

using the vectors JT
2 qi and the numbers ||JT

2 qi||2, i = 1, . . . ,m2, that are constructed
during the solution process of only one problem (5.5). This means that to compute
each vector JT

2 uk we need two matrix-vector multiplications.
Remark 3. Assume that the solution process for solving problem (5.5) terminates

after k < m2 iterations, that is, we do not have the complete set of the vectors
(5.7). This means that at the next iteration of Algorithm 1 we have to solve problem
(5.5) again with the new right-hand side r = rnew. We may use already computed
conjugate vectors q1, q2, . . . , qk from the previous iteration of Algorithm 1 and may
start the solution process (5.6) for l = k + 1, . . . with the vector

vk = (q1, q2, . . . , qk)diag(β1, . . . , βk)(q1, q2, . . . , qk)
TJ2r

new.

CONSTRAINED COVARIANCE MATRICES 639

As a result we get the sequence of the conjugate vectors

q1, q2, . . . , qk, qk+1, . . . , qk̄, k̄ ≥ k.(5.10)

At the next iteration of Algorithm 1 we proceed with the same procedure.
Let us summarize the properties of the constructed vectors yk ∈ R

n, uk ∈ R
m2 ,

pk ∈ R
n, k = 1, . . . , m̄.
• The vectors yk and −uk are optimal primal and dual solutions in the problem

minf(y), y ∈ y0 + Span{p1, . . . , pk}.

• Ppk = pk and, hence, J2pk = 0, meaning that the generated iterates remain
in the null-space of the constraints.

• The vectors p1, . . . , pm̄ are linearly independent.
• The vectors p1, . . . , pm̄ form a basis of the null-space of the matrix J2.
• The following relations are true:

pTi PJT
1 J1Ppj = pTi J

T
1 J1pj =

{
= 0, i
= j

= 0, i = j.

(5.11)

Remark 4. Algorithms 1 and 2 are known to terminate in at most m̄ and m2

iterations in exact arithmetic. Roundoff errors destroy the conjugacy among search
directions and finite termination after m̄ and m2 iterations usually will not appear.
Detailed discussion of convergence aspects and influence of roundoff errors for conju-
gate gradient methods can be found in [5], [10], [12], [16], and many other references;
see also surveys [8], [11], [15].

Remark 5. The other possibilities of computing projections without using iterative
linear algebra methods are discussed in [9]. However, comparative analysis in [9] shows
that the method discussed here (which is equivalent to a conjugate gradient method
with residual update from [9]) is one of the most stable and robust against roundoff
errors.

6. Computation of the covariance matrix with the conjugate gradient
method. In this section we show how to use the information received in the course
of the conjugate gradient method applied to (5.1) for computation of the covariance
matrix C (4.1).

Lemma 6.1. Assume that J1 and J2 satisfy (2.5) and (2.6). Assume further
that the problem (5.1) is solved for arbitrary right-hand sides a and b, i.e., the local
linearized problem (2.4) is solved for Δxk, and the sequence of conjugate directions
p1, . . . , pm̄ and the numbers ||J1p1||2, . . . , ||J1pm̄||2 are computed. Then the covariance
matrix (4.1) can be represented in the form

X = C = Qdiag(γi, i = 1, . . . , m̄)QT ,(6.1)

where

Q = (p1, . . . , pm̄) ∈ R
n×m̄, γi = 1/||J1pi||2, i = 1, . . . , m̄.(6.2)

Proof. Under assumptions (2.5) and (2.6) the system (4.2) has a unique solution.
We want to show that the matrix X (6.1) and the matrix Z,

Z = J+
2 (−JT

1 J1C + I),(6.3)

640 H. G. BOCK, E. KOSTINA, AND O. KOSTYUKOVA

satisfy the linear system (4.2). Here again J+
2 is a Moore–Penrose pseudoinverse of

JT
2 .

Indeed,

J2X = J2Qdiag(γi, i = 1, . . . , m̄)QT = 0,

since J2pk = 0 for all k = 1, . . . , m̄, or in other words J2Q = 0. Now we want to
show that the matrices X (6.1) and Z (6.3) satisfy the first equation in (4.2), namely
that JT

1 J1X + JT
2 Z = I. For this purpose we show that the matrix N = 0, where the

matrix N is defined by

N := JT
1 J1X + JT

2 Z − I = JT
1 J1X + JT

2 J+
2 (−JT

1 J1X + I) − I.(6.4)

We represent the matrix N in the form

N = (I − JT
2 J+

2)N + JT
2 J+

2 N(6.5)

and verify that

JT
2 J+

2 N = 0,(6.6)

(I − JT
2 J+

2)N = PN = 0.(6.7)

Indeed,

JT
2 J+

2 N = JT
2 J+

2 JT
1 J1X + JT

2 J+
2 JT

2 J+
2 (−JT

1 J1X + I) − JT
2 J+

2

= JT
2 J+

2 JT
1 J1X + JT

2 J+
2 (−JT

1 J1X + I) − JT
2 J+

2 = 0,

since J+
2 JT

2 = I. Next we show that (6.7) holds. Since the matrix P is a projector to
the null-space of the matrix J2, and the vectors pk, k = 1, . . . , m̄, form the basis of the
null-space of the matrix J2, then PN = 0 if and only if pTkN = 0 for all k = 1, . . . , m̄,
or in other words QTN = 0. Hence, we need to validate QTN = 0:

QTN = QTJT
1 J1Qdiag(γi, i = 1, . . . , m̄)QT −QT

= diag

(
1

γi
, i = 1, . . . , m̄

)
diag(γi, i = 1, . . . , m̄)QT −QT = 0.

The lemma means that the covariance matrix C ∈ R
n×n is uniquely defined

according to formula (6.1) by the matrix Q ∈ R
n×m̄ and the numbers ||J1pi||2, i =

1, m̄. Thus, we can store the matrix Q and the numbers (6.2) instead of the matrix
C.

Remark 6. The proof of Lemma 6.1 implies that to compute the covariance matrix
C by the formula (6.1) we may use any set of vectors p̄1, . . . , p̄m̄, which satisfy the
following conditions:

a) p̄1, . . . , p̄m̄, are linearly independent;
b) J2p̄k = 0, k = 1, . . . , m̄;
c) p̄Ti J

T
1 J1p̄j = 0, i
= j; p̄Ti J

T
1 J1p̄i,
= 0, i, j = 1, . . . , m̄.

Let us now show how to compute the matrix Z. According to (6.3), in order to
compute Z we need to know J+

2 . In the case of the conjugate gradient method being
applied to problem (5.1) we have, in a general case, the complete sequence of the
vectors (5.7) as a result of solving problem (5.5). Using these vectors we can compute
the matrix J+

2 according to (5.8).

CONSTRAINED COVARIANCE MATRICES 641

In order to compute the partial derivatives of the functions of the covariance
matrix that are used in the design of optimal experiments [1] one can use the repre-
sentation (6.1) of the covariance matrix and the formulas (4.8) and (4.9). For example,
the derivatives of the trace of the covariance matrix have the following representation
as a consequence of Lemma 4.4.

Corollary 6.2. The derivatives ∂tr C(J1(t),J2)
∂t and ∂tr C(J1,J2(μ))

∂μ are computed

by (4.10) and (4.11), where X(i) = Qdiag(γi, i = 1, . . . , m̄)Qi·, Qi· denotes the ith row
of the matrix Q ∈ R

m̄×n, Z(i) = J+
2 (−JT

1 J1X
(i) + ei), i = 1, . . . , n.

Remark 7. As we noted before in the case of roundoff errors in Algorithms 1 and 2,
the first m̄ vectors p1, . . . , pm̄ may be computed with numerical errors, and this leads
to numerical errors in (6.1)–(6.3) and (4.8) for computing the covariance matrix C
and its derivatives. Analysis and estimation of such errors, as well as the development
of approximate methods for computation of the matrix C, is a very important topic,
but not the issue of this paper. This issue can be addressed using results from [5],
[10], [12], [16], the formulas (6.1)–(6.3), and Remark 6.

Let us note further that according to Lemma 4.2 the columns X(i), i = 1, . . . , n,
of the covariance matrix C may be computed by applying conjugate gradient methods
directly to problem (4.5). In this case all n problems may be computed in parallel
independently from each other until desired accuracy of the resulting vector X(i).

7. Conclusions. For solving constraint parameter estimation and optimal de-
sign problems, we need the knowledge of the covariance matrix of the parameter
estimates and its derivatives. Hence, development of effective methods for presenta-
tion and computation of the covariance matrix and its derivatives, based on iterative
methods, is crucial for practical applications, which is the aim of this paper. In this
paper, we have given suitable representations for the covariance matrix and confi-
dence intervals as well as its derivatives and have shown that by solving nonlinear
constrained least squares problems by conjugate gradient methods we get, as a by-
product, these matrices and confidence intervals practically for free. The results can
be generalized to other Krylov-type methods. This paper is the first of a series and
its results are of a more theoretical nature. The forthcoming research will be devoted
to numerical aspects including choice of effective preconditioners and effective imple-
mentation of the described methods for parameter estimation and design of optimal
parameters in processes defined by PDEs.

Acknowledgments. We thank the anonymous referees and Lieven Vanden-
berghe whose comments and suggestions helped to improve the presentation of the
results.

REFERENCES

[1] I. Bauer, H. G. Bock, S. Körkel, and J. P. Schlöder, Numerical methods for optimum
experimental design in DAE systems, J. Comput. Appl. Math., 120 (2000), pp. 1–25.

[2] J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science, Wiley,
New York, 1977.

[3] H. G. Bock, Numerical treatment of inverse problems in chemical reaction kinetics, in Mod-
elling of Chemical Reaction Systems, K. H. Ebert, P. Deuflhard, and W. Jäger, eds.,
Springer Ser. Chem. Phys. 18, Springer, Heidelberg, 1981, pp. 102–125.

[4] H. G. Bock, Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlin-
earer Differentialgleichungen, Bonner Math. Schriften 183, Bonn, 1987.

[5] T. F. Coleman and A. Verma, A preconditioned conjugate gradient approach to linear equality
constrained minimization, Comput. Optim. Appl., 20 (2001), pp. 61–72.

642 H. G. BOCK, E. KOSTINA, AND O. KOSTYUKOVA

[6] C. F. Gauss, Theory of the Combination of Observations Least Subject to Errors, Original
with Translation, Classics in Appl. Math. 11, SIAM, Philadelphia, 1995.

[7] E. G. Golstein, Theory of Convex Programming, AMS, Providence, RI, 1972.
[8] G. H. Golub and D. P. O’Leary, Some history of the conjugate gradient and Lanczos algo-

rithms: 1948–1976, SIAM Rev., 31 (1989), pp. 50–102.
[9] N. I. M. Gould, M. E. Hribar, and J. Nocedal, On the solution of equality constrained

quadratic programming problems arising in optimization, SIAM J. Sci. Comput., 23 (2001),
pp. 1376–1395.

[10] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.
[11] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia,

1995.
[12] J. Notay, On convergence rate of the conjugate gradients in presence of rounding errors,

Numer. Math., 65 (1993), pp. 301–317.
[13] B. T. Polyak, The conjugate gradient method in extremal problems, USSR Comput. Math.

Math. Phys., 9 (1969), pp. 94–112.
[14] B. N. Pshenichny and Yu. M. Danilin, Numerical Methods in Extremal Problems, MIR

Publishers, Moscow, 1978.
[15] J. Saad and H. A. van der Vorst, Iterative solution of linear systems in the 20th century,

J. Comput. Appl. Math., 123 (2000), pp. 1–33.
[16] A. van der Sluis and H. A. van der Vorst, The rate of convergence of conjugate gradients,

Numer. Math., 48 (1986), pp. 543–560.
[17] H. A. van der Vorst, Parallel iterative solution methods for linear systems arising from

discretized PDE’s, in Special Course on Parallel Computing in CFD. AGARD-R-807,
AGARD, Neuilly-sur-Seine, France, Workshop Lecture Notes, 1995.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 643–655

COMBINED PERTURBATION BOUNDS: I. EIGENSYSTEMS AND
SINGULAR VALUE DECOMPOSITIONS∗

WEN LI† AND WEIWEI SUN‡

Abstract. In this paper we present some new combined perturbation bounds of eigenvalues and
eigensubspaces for a Hermitian matrix H, particularly in an asymptotic sense, δ212‖ sinΘ(U1, Ũ1)‖2

F +∑r
i=1(λi − λ̃i)

2 ≤ ‖ΔHU1‖2
F + O(‖ΔHU1‖4

F), where λi denotes the eigenvalues of H and U1 the
eigensubspace corresponding to the eigenvalues λi, i = 1, 2, . . . , r. The bound for each factor of
eigensystems is optimal due to the sinΘ theorem and the Hoffman–Wielandt theorem. In addition,
combined perturbation bounds for singular value decompositions and combined perturbation bounds
in some, more general, measures are also obtained.

Key words. eigensystems, singular subspace, singular value, combined perturbation bound

AMS subject classifications. 65F10, 15A45

DOI. 10.1137/060648969

1. Introduction. Let Cm×n denote the set of complex m×n matrices, A∗ stand
for the conjugate transpose of a matrix A, λ(A) be the spectrum of A, and �(A) be
the column space of A. The Frobenius norm and spectral norm of a matrix A are
denoted by ‖A‖F and ‖A‖2, respectively.

Let H and H̃ be two n×n Hermitian matrices with the following eigendecomposi-
tions:

(1.1)

H =
(
U1 U2

)(Λ1 0
0 Λ2

)(
U∗

1

U∗
2

)
,

H̃ =
(

Ũ1 Ũ2

)(
Λ̃1 0

0 Λ̃2

)(
Ũ∗

1

Ũ∗
2

)
,

where U =
(
U1 U2

)
, Ũ = (Ũ1 Ũ2) are unitary, and

Λ1 = diag(λ1, λ2, . . . , λr), Λ2 = diag(λr+1, λr+2, . . . , λn),

Λ̃1 = diag(λ̃1, λ̃2, . . . , λ̃r), Λ̃2 = diag(λ̃r+1, λ̃r+2, . . . , λ̃n).(1.2)

Let

(1.3) δ
(k,l)
ij = min

λ∈λ(Λi),λ̃∈λ(Λ̃j)

|λ− λ̃|
|λ|k|λ̃|l

, i, j = 1, 2,

where k and l are nonnegative real numbers. For simplicity, we always use the notation

δij = δ
(0,0)
ij .

∗Received by the editors January 4, 2006; accepted for publication (in revised form) by R. Mathias
November 17, 2006; published electronically May 22, 2007.

http://www.siam.org/journals/simax/29-2/64896.html
†School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, People’s

Republic of China (liwen@scnu.edu.cn). The work of this author was supported in part by National
Natural Science Foundation of China (grant 10671077) and Guangdong Provincial Natural Science
Foundation (grants 031496 and 06025061), People’s Republic of China.

‡Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, People’s
Republic of China (maweiw@math.cityu.edu.hk). The work of this author was supported in part by
the CityU research grant 7001770.

643

644 WEN LI AND WEIWEI SUN

The perturbation bounds for eigensystems, eigenspaces, and eigenvalues have been
studied by many authors; e.g., see [1, 2, 3, 4, 6, 7, 8, 9, 10, 12]. The perturbation
of the eigenspace �(U1) is measured by the canonical angle between the subspaces

�(U1) and �(Ũ1) (e.g., see [8]), defined by

Θ(U1, Ũ1) = arc cos(U∗
1 Ũ1Ũ

∗
1U1)

1/2.

The classical perturbation bound for the subspace was given as the SinΘ theorem by
Davis and Kahan [3].

Theorem A (sinΘ theorem [3]). Let H and H̃ = H + ΔH be two Hermitian
matrices with the eigendecompositions (1.1)–(1.2). Then

(1.4) δ12‖ sin Θ(U1, Ũ1)‖F ≤ ‖R‖F ,

where R = H̃U1 − U1Λ1 = ΔHU1.
The corresponding perturbation bound for eigenvalues is

(1.5)

r∑
i=1

(λi − λ̃i)
2 ≤ ‖R‖2

F .

When r = n, the bound (1.5) is the well-known Hoffman–Wielandt theorem [6].
The perturbation bounds in (1.4) and (1.5) are given in the absolute measure

‖R‖F . Recently, a relative-type perturbation bound was introduced. A general form
of the relative bound is

(1.6) ‖ sin Θ(U1, Ũ1)‖F ≤ αlk‖H−lΔHH̃−k‖F ,

where αlk is a positive real number. Dopico, Moro, and Molera [4], Chen and Li [2],
Li [8], and Londre and Rhee [9] studied the bound for l = k = 1/2, and Ipsen [7]
studied it for the more general case.

In this paper we focus on perturbation bounds in a combined form of eigenspaces
and eigenvalues. In particular, we shall show the new perturbation bound

(1.7) δ2
12‖ sin Θ(U1, Ũ1)‖2

F + (1 − ‖ sin Θ(U1, Ũ1)‖2
2)

r∑
i=1

(λi − λ̃i)
2 ≤ ‖R‖2

F ,

which, in an asymptotic sense, leads to

(1.8) δ2
12‖ sin Θ(U1, Ũ1)‖2

F +

r∑
i=1

(λi − λ̃i)
2 ≤ ‖R‖2

F + O(‖R‖4
F),

where δ12 > 0. The bounds (1.7) and (1.8) contain both the bound for eigenspaces
and the bound for eigenvalues. In comparison with Davis and Kahan’s theorem, (1.7)
is sharper than the bound in Davis and Kahan’s theorem and it also leads to the
Hoffman–Wielandt theorem. On the other hand, the bound in (1.4) can be calculated

when λi, λ̃i, and ‖R‖F are known. In this case, a more precise bound for eigenspaces
can be obtained from (1.7). In addition, we have obtained some new bounds in a
relative sense and extensions to perturbation bounds for singular values and singular
subspaces.

COMBINED PERTURBATION BOUNDS 645

2. Combined bounds for eigensystems. In this section we study combined
perturbation bounds for eigensystems.

Lemma 2.1 (see [5]). Let T ∈ Cn×n and Λi = diag(λ
(i)
1 , . . . , λ

(i)
n) ∈ Cn×n, i =

1, 2, 3, 4. Then there exists a permutation τ of 〈n〉 such that

(2.1) σ2
n(T)

∑
|λ(1)

i λ
(2)
τ(i) − λ

(3)
i λ

(4)
τ(i)|

2 ≤ ||Λ1TΛ2 − Λ3TΛ4||2F ,

where σn(T) is the smallest singular value of T .
We have our main theorem below.
Theorem 2.2. Let H and H̃ = H + ΔH be two n × n nonsingular Hermitian

matrices with the eigendecompositions (1.1)–(1.2). Then

(2.2) (δ2
12 − δ2

11)‖ sin Θ(U1, Ũ1)‖2
F + rδ2

11 ≤ ||R||2F

and

(2.3) δ2
12‖ sin Θ(U1, Ũ1)‖2

F + (1 − ‖ sin Θ(U1, Ũ1)‖2
2)

r∑
i=1

(λi − λ̃i)
2 ≤ ||R||2F .

Proof. Left- and right-multiplying the equation H̃ − H = ΔH by Ũ∗ and U1,
respectively, leads to

Λ̃Ũ∗U1 − Ũ∗U1Λ1 = Ũ∗ΔHU1,

and in the block form, (
Λ̃1Ũ

∗
1U1 − Ũ∗

1U1Λ1

Λ̃2Ũ
∗
2U1 − Ũ∗

2U1Λ1

)
= Ũ∗ΔHU1.

It follows that

(2.4) ‖Λ̃2Ũ
∗
2U1 − Ũ∗

2U1Λ1‖2
F + ‖Λ̃1Ũ

∗
1U1 − Ũ∗

1U1Λ1‖2
F = ||ΔHU1||2F .

Since ∣∣∣∣(Λ̃2Ũ
∗
2U1 − Ũ∗

2U1Λ1

)
ij

∣∣∣∣2 = (λ̃i+r − λj)
2|(Ũ∗

2U1)ij |2 ≥ δ2
12|(Ũ∗

2U1)ij |2

i = 1, 2, . . . , n− r; j = 1, 2, . . . , r,

and ∣∣∣∣(Λ̃1Ũ
∗
1U1 − Ũ∗

1U1Λ1

)
ij

∣∣∣∣2 = (λ̃i − λj)
2|(Ũ∗

1U1)ij |2 ≥ δ2
11|(Ũ∗

1U1)ij |2,

i, j = 1, 2, . . . , r,

we have

(2.5) δ2
12‖Ũ∗

1U2‖2
F +δ2

11‖Ũ∗
1U1‖2

F ≤ ‖Λ̃2Ũ
∗
2U1− Ũ∗

2U1Λ1‖2
F +‖Λ̃1Ũ

∗
1U1− Ũ∗

1U1Λ1‖2
F .

Equation (2.2) is obtained by (2.4) and (2.5) and by noting the fact that

‖Ũ∗
1U1‖2

F = r − ‖Ũ∗
1U2‖2

F .

646 WEN LI AND WEIWEI SUN

By Lemma 2.1,

(2.6) σ2
n(Ũ∗

1U1)

r∑
i=1

|λ̃i − λi|2 ≤ ‖Λ̃1Ũ
∗
1U1 − Ũ∗

1U1Λ1‖2
F .

By the C-S decomposition theorem (see, e.g., [11]), we have

σ2
n(Ũ∗

1U1) = 1 − ‖ sin Θ(U1, Ũ1)‖2
2,

and therefore,

δ2
12‖ sin Θ(U1, Ũ1)‖2

F + (1 − ‖ sin Θ(U1, Ũ1)‖2
2)

r∑
i=1

|λ̃i − λi| ≤ ||R||2F ,

which proves (2.3).
Obviously the combined bounds in Theorem 2.2 contain perturbation bounds for

both eigenspaces and eigenvalues. If we take U1 =U and Ũ1 = Ũ , then ‖ sin Θ(U1, Ũ1)‖2

= ‖ sin Θ(U1, Ũ1)‖F = 0 and the bound (2.3) reduces to the Hoffman–Wielandt theo-
rem. It is easy to obtain Davis and Kahan’s sinΘ theorem from the bound (2.3) since

‖ sin Θ(U1, Ũ1)‖2 ≤ 1.
Example 2.1. Let

H = UΛU∗, H̃ = (1 + ε)UΛU∗,

where Λ is positive and diagonal and

Λ =

(
Ir 0
0 2In−r

)
, U =

(
U11 0
0 U22

)
.

Then

ΔH = εU

(
Ir 0
0 2In−r

)
U∗, ΔHU1 = ε

(
U11

0

)
.

A simple calculation gives

‖R‖2
F = ‖ΔHU1‖2

F = rε2, δ12 = 1 + 2ε, δ11 = ε.

The bound (1.4) becomes

‖ sin Θ(U1 Ũ1)‖2
F ≤ ‖R‖2

F

δ2
12

=
rε2

(1 + 2ε)2
,

and from our bound (2.2),

‖ sin Θ(U1 Ũ1)‖2
F ≤ ‖R‖2

F − rδ2
11

δ2
12 − δ2

11

= 0 ,

which leads to ‖ sin Θ(U1, Ũ1)‖2
F = 0.

When δ12 > 0,

‖ sin Θ(U1, Ũ1)‖F ≤ O(‖R‖F),

r∑
i=1

(λi − λ̃i)
2 ≤ ‖R‖2

F

COMBINED PERTURBATION BOUNDS 647

and we obtain the asymptotic bound in (1.8). However, the following example shows
the absolute bound

δ2
12‖ sin Θ(U1, Ũ1)‖2

F +

r∑
i=1

(λi − λ̃i)
2 ≤ ‖R‖2

F

does not hold.
Example 2.2. Let

H =

⎛⎝ 2 0 0
0 1 0
0 0 1

⎞⎠ and H̃ = (1 + ε)ŨTHŨ,

where ε > 0 and

Ũ =

⎛⎝ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞⎠ .

The eigenvalues of H and H̃ are 2, 1, 1 and 2(1 + ε), (1 + ε), (1 + ε), respectively. For
r = 1,

U1 =

⎛⎝ 1
0
0

⎞⎠ and Ũ1 =

⎛⎝ cos θ
sin θ

0

⎞⎠ .

A simple calculation gives δ12 = 1 − ε and

δ2
12‖ sin Θ(U1, Ũ1)‖2

F +

r∑
i=1

|λ̃i − λi|2 = (1 − ε)2 sin2 θ + (2ε)2

> (1 − ε)2 sin2 θ + 4ε2 cos2 θ = ||ΔHU1||2F = ‖R‖2
F .

The perturbation bounds for eigenspaces in a relative measure have been studied
by several authors; Dopico, Moro, and Molera [4] presented the relative perturbation
bound

δ
(1
2 ,

1
2)

12 ‖ sin Θ(U1 Ũ1)‖F ≤ ‖H−1/2ΔHH̃−1/2‖F

for nonsingular Hermitian matrices H and H̃. A sharper bound obtained by Chen
and Li [2] is

(2.7)
2δ

(1
2 ,

1
2)

12 δ
(1
2 ,

1
2)

21√(
δ
(1
2 ,

1
2)

12

)2

+
(
δ
(1
2 ,

1
2)

21

)2
‖ sin Θ(U1 Ũ1)‖F ≤ ‖H−1/2ΔHH̃−1/2‖F .

Li [8] and Londre and Rhee [9] studied perturbation bounds in a different relative
measure. The perturbation bound in [8, 9] is given by

(2.8) δ
(1
2 ,

1
2)

12 ‖ sin Θ(U1 Ũ1)‖F ≤ ‖H−1/2ΔHH−1/2‖F√
1 − μ2

,

where

μ2 = ‖H−1/2ΔHH−1/2‖2 .

648 WEN LI AND WEIWEI SUN

A modified bound in the relative measure given in [2] is

(2.9) min
{
δ
(1
2 ,

1
2)

12 , δ
(1
2 ,

1
2)

21

}
‖ sin Θ(U1, Ũ1)‖F ≤

√
2

2

‖H−1/2ΔHH−1/2‖F√
1 − μ2

.

The perturbation bound of eigenvalues in the more general relative measure
‖H−kΔHH̃−l‖F with any nonnegative numbers k and l was studied by Ipsen [7].
The perturbation bound given in [7] is

(2.10)
n∑

i=1

|λ−k
i λ̃1−l

τ(i) − λ1−k
i λ̃−l

τ(i)|
2 ≤ ‖H−kΔHH̃−l‖2

F .

No perturbation bound for eigenspaces has been obtained.
Now we extend our analysis for combined perturbation bounds to these relative

measures, instead of the measure ‖R‖F used in Theorem 2.2. Since

H−kΔHH̃−l = H−kH̃1−l −H1−kH̃−l ,

multiplying on the left by U∗ and the right by Ũ gives

Λ−kU∗Ũ Λ̃1−l − Λ1−kU∗Ũ Λ̃−l = U∗H−kΔHH̃−lŨ ,

which can be rewritten in the block form as(
Λ−k

1 U∗
1 Ũ1Λ̃

1−l
1 − Λ1−k

1 U∗
1 Ũ1Λ̃

−l
1 Λ−k

1 U∗
1 Ũ2Λ̃

1−l
2 − Λ1−k

1 U∗
1 Ũ2Λ̃

−l
2

Λ−k
2 U∗

2 Ũ1Λ̃
1−l
1 − Λ1−k

2 U∗
2 Ũ1Λ̃

−l
1 Λ−k

2 U∗
2 Ũ2∧̃

1−l
2 − Λ1−k

2 U∗
2 Ũ2Λ̃

−l
2

)
= U∗H−kΔHH̃−lŨ .

It follows that

‖Λ−k
1 U∗

1 Ũ1Λ̃
1−l
1 − Λ1−k

1 U∗
1 Ũ1Λ̃

−l
1 ‖2

F + ‖Λ−k
1 U∗

1 Ũ2Λ̃
1−l
2 − Λ1−k

1 U∗
1 Ũ2Λ̃

−l
2 ‖2

F

+‖Λ−k
2 U∗

2 Ũ1Λ̃
1−l
1 − Λ1−k

2 U∗
2 Ũ1Λ̃

−l
1 ‖2

F + ‖Λ−k
2 U∗

2 Ũ2Λ̃
1−l
2 − Λ1−k

2 U∗
2 Ũ2Λ̃

−l
2 ‖2

F

= ‖U∗H−kΔHH̃−lŨ‖2
F .(2.11)

We take the same approach as used for (2.5). Since

|(Λ−k
1 U∗

1 Ũ2Λ̃
1−l
2 − Λ1−k

1 U∗
1 Ũ2Λ̃

−l
2)ij |2 = (λ−k

i λ̃1−l
j − λ1−k

i λ̃−l
j)2|(U∗

1 Ũ2)ij |2

≥
(
δ
(k,l)
12

)2

|(U∗
1 Ũ2)ij |2

and

|(Λ−k
2 U∗

2 Ũ1Λ̃
1−l
1 − Λ1−k

2 U∗
2 Ũ1Λ̃

−l
1)ij |2 = (λ−k

j λ̃1−l
i − λ1−k

j λ̃−l
i)2|(U∗

2 Ũ1)ij |2

≥
(
δ
(k,l)
21

)2

|(U∗
2 Ũ1)ij |2,

we obtain (
δ
(k,l)
12

)2

‖U∗
1 Ũ2‖2

F ≤ ‖Λ−k
1 U∗

1 Ũ2Λ̃
1−l
2 − Λ1−k

1 U∗
1 Ũ2Λ̃

−l
2 ‖2

F ,(
δ
(k,l)
21

)2

‖U∗
2 Ũ1‖2

F ≤ ‖Λ−k
2 U∗

2 Ũ1Λ̃
1−l
1 − Λ1−k

2 U∗
2 Ũ1Λ̃

−l
1 ‖2

F .(2.12)

COMBINED PERTURBATION BOUNDS 649

On the other hand, let

T =

(
U∗

1 Ũ1

U∗
2 Ũ2

)
, D1 =

(
Λ−k

1

Λ−k
2

)
, D3 =

(
Λ1−k

1

Λ1−k
2

)
and

D2 =

(
Λ̃1−l

1

Λ1−l
2

)
, D4 =

(
−Λ̃−l

1

−Λ̃−l
2

)
.

We have

‖Λ−k
1 U∗

1 Ũ1Λ̃
1−l
1 − Λ1−k

1 U∗
1 Ũ1Λ̃

−l
1 ‖2

F + ‖Λ−k
2 U∗

2 Ũ2Λ̃
1−l
2 − Λ1−k

2 U∗
2 Ũ2Λ̃

−l
2 ‖2

F

= ‖D1TD2 −D3TD4‖2
F .(2.13)

By Lemma 2.1, there exists a permutation τ of 〈n〉 such that

(2.14) ‖D1TD2 −D3TD4‖2
F ≥ σ2

n(T)

n∑
i=1

|λ−k
i λ̃1−l

τ(i) − λ1−k
i λ̃−l

τ(i)|
2 .

By the C-S decomposition theorem [11], it is easy to see that

σ2
n(T) ≥ min{σ2

n(U∗
1 Ũ1), σ

2
n(U∗

2 Ũ2)} = 1 − ‖ sin Θ(U1, Ũ1)‖2
2 .

It follows that

(1 − ‖ sin Θ(U1, Ũ1)‖2
2)

r∑
i=1

|λ−k
i λ̃1−l

τ(i) − λ1−k
i λ̃−l

τ(i)|
2(2.15)

≤ ‖Λ−k
1 U∗

1 Ũ1Λ̃
1−l
1 − Λ1−k

1 U∗
1 Ũ1Λ̃

−l
1 ‖2

F + ‖Λ−k
2 U∗

2 Ũ2Λ̃
1−l
2 − Λ1−k

2 U∗
2 Ũ2Λ̃

−l
2 ‖2

F .

Substituting (2.12) and (2.15) into (2.11) leads to a combined bound in the following
theorem.

Theorem 2.3. Let H and H̃ = H + ΔH be two n × n nonsingular Hermitian
matrices with the eigendecompositions (1.1)–(1.2). Then(

(δ
(k,l)
12)2 + (δ

(k,l)
21)2

)
‖ sin Θ(U1, Ũ1)‖2

F

+ (1 − ‖ sin Θ(U1, Ũ1)‖2
2)

n∑
i=1

(λ−k
i λ̃1−l

τ(i) − λ1−k
i λ̃−l

τ(i))
2

≤ ||H−kΔHH̃−l||2F .(2.16)

By an analogous approach, we can obtain(
δ
(k,l)
22

)2

‖U∗
2 Ũ2‖2

F ≤ ‖Λ−k
2 U∗

2 Ũ2Λ̃
1−l
2 − Λ1−k

2 U∗
2 Ũ2Λ̃

−l
2 ‖2

F ,(
δ
(k,l)
11

)2

‖U∗
1 Ũ1‖2

F ≤ ‖Λ−k
1 U∗

1 Ũ1Λ̃
1−l
1 − Λ1−k

1 U∗
1 Ũ1Λ̃

−l
1 ‖2

F .(2.17)

It is easy to see that

‖ sin Θ(U1, Ũ1)‖F = ‖U∗
1 Ũ2‖F = ‖U∗

2 Ũ1‖F .

650 WEN LI AND WEIWEI SUN

By the definition of cos Θ,

‖ cos Θ(U1, Ũ1)‖F = ‖U∗
1 Ũ1‖F , ‖ cos Θ(U2, Ũ2)‖F = ‖U∗

2 Ũ2‖F ,

and again by the C-S decomposition theorem [11], we have

‖ cos Θ(U2, Ũ2)‖2
F = ‖ cos Θ(U1, Ũ1)‖2

F + n− 2r

and

‖ sin Θ(U1, Ũ1)‖2
F = r − ‖ cos Θ(U1, Ũ1)‖2

F .

A new bound is given in the following theorem. The proof can be obtained by following
the proof of Theorem 2.3 and replacing (2.15) by (2.17).

Theorem 2.4. Let H and H̃ = H + ΔH be two n × n nonsingular Hermitian
matrices with the eigendecompositions (1.1)–(1.2). Then(

(δ
(k,l)
12)2 + (δ

(k,l)
21)2 − (δ

(k,l)
11)2 − (δ

(k,l)
22)2

)
‖ sin Θ(U1, Ũ1)‖2

F

+ r(δ
(k,l)
11)2 + (n− r)(δ

(k,l)
22)2

≤ ||H−kΔHH̃−l||2F .(2.18)

Remark 2.1. Let H and H̃ be Hermitian and the eigenvalues of H and H̃ be
enumerated by

λ1 ≤ λ2 ≤ · · · ≤ λn and λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃n,

and assume that

λr < λr+1, λ̃r < λ̃r+1.

When the perturbation is small enough, we always have

n∑
i=1

|λ−k
i λ̃1−l

τ(i) − λ1−k
i λ̃−l

τ(i)|
2 ≤

√
(δ

(k,l)
12)2 + (δ

(k,l)
21)2

for some permutation τ of 〈n〉 and, therefore,(
(δ

(k,l)
12)2 + (δ

(k,l)
21)2

)
‖ sin Θ(U1, Ũ1)‖2

F + ‖ cos Θ(U1, Ũ1)‖2
2

n∑
i=1

|λ−k
i λ̃1−l

τ(i) − λ1−k
i λ̃−l

τ(i)|
2

≥
(
‖ sin Θ(U1, Ũ1)‖2

F + 1 − ‖ sin Θ(U1, Ũ1)‖2
2

) n∑
i=1

|λ−k
i λ̃1−l

τ(i) − λ1−k
i λ̃−l

τ(i)|
2

≥
n∑

i=1

|λ−k
i λ̃1−l

τ(i) − λ1−k
i λ̃−l

τ(i)|
2,

which implies that the bound (2.16) is strictly sharper than the bound in (2.10) for

the eigenvalue perturbation. Since ‖ sin Θ(U1, Ũ1)‖2
F = min{r , n − r}, we have the

following corollary.
Corollary 2.5. Under the same assumption as in Theorem 2.4,

(2.19)

(δ
(k,l)2

12 + δ
(k,l)2

21)‖ sin Θ(U1, Ũ1)‖2
F ≤

{
||H−kΔHH̃−l||2F − (n− 2r)δ

(k,l)2

22 , 2r ≤ n,

||H−kΔHH̃−l||2F − (2r − n)δ
(k,l)2

11 , 2r > n.

COMBINED PERTURBATION BOUNDS 651

In comparison with the perturbation bound in (2.7), our bound (2.19) is sharper.
The following corollary gives two combined perturbation bounds, in terms of the rel-
ative measure ‖H−kΔHH−l‖2

F /(1− μ2)
2l, which are sharper than the corresponding

bounds obtained in [2, 8, 9].
Corollary 2.6. If μ2 =

∥∥H−1/2ΔHH−1/2
∥∥

2
< 1, then(

(δ
(k,l)
12)2 + (δ

(k,l)
21)2 − (δ

(k,l)
11)2 − (δ

(k,l)
22)2

)
‖ sin Θ(U1, Ũ1)‖2

F

+ r(δ
(k,l)
11)2 + (n− r)(δ

(k,l)
22)2

≤
∥∥H−kΔHH−l

∥∥2

2

(1 − μ2)2l
(2.20)

and (
(δ

(k,l)
12)2 + (δ

(k,l)
21)2

)
‖ sin Θ(U1, Ũ1)‖2

F

+ (1 − ‖ sin Θ(U1, Ũ1)‖2
2)

n∑
i=1

|λ−k
i λ̃1−l

τ(i) − λ1−k
i λ̃−l

τ(i)|
2

≤
∥∥H−kΔHH−l

∥∥2

2

(1 − μ2)2l
.(2.21)

Proof. Taking the same approach as in [2], one may deduce that

(2.22) ||H−kΔHH̃−l||F ≤
∥∥H−kΔHH−l

∥∥
2

(1 − μ2)l
,

which together with Theorems 2.2 and 2.3 gives the desired bound.

3. Combined bounds for singular value decompositions. Let A, Ã ∈
Cm×n have the singular value decompositions (SVDs)

(3.1) A = UΣV ∗ =
(
U1 U2

)(Σ1 0
0 Σ2

)(
V ∗

1

V ∗
2

)
and

(3.2) Ã = Ũ Σ̃Ṽ ∗ =
(

Ũ1 Ũ2

)(
Σ̃1 0

0 Σ̃2

)(
Ṽ ∗

1

Ṽ ∗
2

)
,

where U = (Ũ1 Ũ2) and Ũ = (Ũ1 Ũ2) are m×m unitary, V = (Ṽ1 Ṽ2) and Ṽ = (Ṽ1 Ṽ2)
are n× n unitary, and

(3.3) Σ1 = diag(σ1, σ2, . . . , σr), Σ2 = diag(σr+1, σr+2, . . . , σn),

(3.4) Σ̃1 = diag(σ̃1, σ̃2, . . . , σ̃r), Σ̃2 = diag(σ̃r+1, σ̃r+2, . . . , σ̃n).

Let σ(A) = λ(
√
A∗A) be the set of singular values of A and

σext(Σ2) =

{
σ(Σ2) ∪ {0} if m > n,
σ(Σ2) if m = n.

652 WEN LI AND WEIWEI SUN

The perturbation of singular subspaces is usually measured by the angle between the
subspaces �(U1) and �(Ũ1) and the angle between the subspaces �(V1) and �(Ṽ1),
denoted by

‖ sin Θ‖F = ‖U∗
1 Ũ2‖F , ‖ sin Φ‖F = ‖V ∗

1 Ṽ2‖F ,

respectively. Let

ε
(k,l)
ij = min

λ∈σext(Σi),μ̃∈σ(Σ̃j)

|μ− μ̃|
|μ|k|μ̃|l , i, j = 1, 2.

Similarly we use the notation εij = ε
(0,0)
ij .

The perturbation bound of singular subspace was given by Wedin [13] and the
perturbation bound for singular values can be found in the literature. We summarize
the results in the following theorem.

Theorem B. Let A, Ã ∈ Cm×n have the SVDs (3.1)–(3.4). Then

(3.5) ε212(‖ sin Θ‖2
F + ‖ sin Φ‖2

F) ≤ ‖R‖2
F + ‖S‖2

F

and

(3.6) 2

r∑
i=1

(σi − σ̃τ(i))
2 ≤ ‖R‖2

F + ‖S‖2
F ,

where

R = AṼ1 − Ũ1Σ̃1 = −EṼ1, S = A∗Ũ1 − Ṽ1Σ̃1 = −E∗Ũ1.

To obtain a combined perturbation bound for SVDs, we consider the Jordan–
Wielandt matrices

(3.7) H =

(
0 A∗

A 0

)
and H̃ =

(
0 Ã∗

Ã 0

)
.

Let

U =
1√
2

(
V1 V1 V2 V2

U1 −U1 U2 −U2

)
=

(
U1 U2

)
and

Ũ =
1√
2

(
Ṽ1 Ṽ1 Ṽ2 Ṽ2

Ũ1 −Ũ1 Ũ2 −Ũ2

)
=

(
Ũ1 Ũ2

)
,

where

U1 =
1√
2

(
V1 V1

U1 −U1

)
and Ũ1 =

1√
2

(
Ṽ1 Ṽ1

Ũ1 −Ũ1

)
.

Then the eigendecomposition of H and H̃ can be rewritten as

H = U

⎛⎜⎜⎝
Σ1

−Σ1

Σ2

−Σ2

⎞⎟⎟⎠U
∗ and H̃ = Ũ

⎛⎜⎜⎜⎝
Σ̃1

−Σ̃1

Σ̃2

−Σ̃2

⎞⎟⎟⎟⎠ Ũ
∗,

COMBINED PERTURBATION BOUNDS 653

respectively. Applying Theorems 2.2 and 2.3 to the matrices H and H̃, we have the
following combined perturbation bounds for singular values and singular subspaces.

Theorem 3.1. Let A and Ã = A + E be two n × n nonsingular matrices with
the SVDs (3.1)–(3.4). Then there is a permutation τ in 〈n〉 such that

ε212

(
‖ sin Φ(U1, Ũ1)‖2

F + ‖ sin Θ(V1, Ṽ1

)
‖2
F)(3.8)

+
(
2 − ‖ sin Φ(U1, Ũ1)‖2

2 − ‖ sin Θ(V1, Ṽ1)‖2
2

) r∑
i=1

(σi − σ̃τ(i))
2 ≤ ‖R‖2

F + ‖S‖2
F

and

(3.9) (ε212 − ε211)(‖ sin Φ(U1, Ũ1)‖2
F + ‖ sin Θ(V1, Ṽ1)‖2

F) + 2rε211 ≤ ‖R‖2
F + ‖S‖2

F .

In an asymptotic sense, (3.9) becomes

ε212

(
‖ sin Φ(U1, Ũ1)‖2

F + ‖ sin Θ(V1, Ṽ1)‖2
F

)
+ 2

n∑
i=1

|σi − σ̃i|2

≤ (‖R‖2
F + ‖S‖2

F) + O((‖R‖2
F + ‖S‖2

F)2).(3.10)

From the SVDs (3.1) and (3.2), we obtain the left polar decomposition of the

matrices A and Ã, defined by

(3.11) A = QPl and Ã = Q̃P̃l,

and, similarly, the right polar decomposition

(3.12) A = PrQ and Ã = P̃rQ̃,

where Q is called the unitary polar factor of A and Pl and Pr are called the left
and right Hermitian factor, respectively. It is noted that Wedin’s sin θ theorem is
given in an absolute measure ‖R‖2

F + ‖S‖2
F . The perturbation bounds for singular

values and singular subspaces in some relative measures was studied in [4], where

the relative measures ‖P−k
l EP̃−l

r ‖F and ‖P̃−l
l EP−k

r ‖F are used. The extension to
combined bounds is given in the following theorem and the proof is similar to the
proofs for Theorems 2.3 and 2.4.

Theorem 3.2. Let A and Ã = A + E be two n × n nonsingular matrices with
the SVDs (3.1)–(3.4). Then((

ε
(k,l)
21

)2

+
(
ε
(k,l)
12

)2
)(

‖ sin Φ(U1, Ũ1)‖2
F + ‖ sin Θ(V1, Ṽ1)‖2

F

)
+
(
2 − ‖ sin Φ(U1, Ũ1)‖2

2 − ‖ sin Θ(V1, Ṽ1)‖2
2

) n∑
i=1

(σi − σ̃τ(i))
2

≤ ‖P−k
l EP̃−l

r ‖2
F + ‖P̃−l

l EP−k
r ‖2

F(3.13)

and((
ε
(k,l)
21

)2

+
(
ε
(k,l)
12

)2

−
(
ε
(k,l)
11

)2

−
(
ε
(k,l)
22

)2
)(

‖ sin Φ(U1, Ũ1)‖2
F + ‖ sin Θ(V1, Ṽ1)‖2

F

)
+ 2r

(
ε
(k,l)
11

)2

+ 2(n− r)
(
ε
(k,l)
22

)2

≤ ‖P−k
l EP̃−l

r ‖2
F + ‖P̃−l

l EP−k
r ‖2

F ,(3.14)

654 WEN LI AND WEIWEI SUN

where Pl, Pr, P̃l, and P̃r are defined in (3.11) and (3.12).
Remark 3.1. A perturbation bound in Theorem 3.4 of [4] is as follows:(

ε
(1
2 ,

1
2)

21

)2 (
‖ sin Φ(U1, Ũ1)‖2

F + ‖ sin Θ(V1, Ṽ1)‖2
F

)
≤ ‖P− 1

2
l EP̃

− 1
2

r ‖2
F + ‖P̃− 1

2
l EP

− 1
2

r ‖2
F ,

which can also be obtained from Theorem 3.2.
Finally, we consider the bounds for the right singular subspaces as in [9]. Let

δ ≡ ||EA†||2, δF ≡ ||EA†||F .

Let A and Ã have the SVDs (3.1)–(3.4) and let

ςij = min
μ∈σ(Σi),μ̃∈σ(Σ̃j)

|μ̃2 − μ2|
μ̃μ

.

Let H = A∗A and H̃ = Ã∗Ã. Then H and H̃ have the eigendecompositions

H = (V1, V2)

(
Σ2

1 0
0 Σ2

2

)(
V ∗

1

V ∗
2

)
, H̃ =

(
Ṽ1 Ṽ2

)(
Σ̃2

1 0

0 Σ̃2
2

)(
Ṽ1

∗

Ṽ2

∗

)
.

Applying Corollary 2.6 to H and H̃ with l = k = 1/2 by the same argument as in
Theorem 2.1 of [9], we obtain the following estimate:

(3.15) (ς221 + ς212 − ς211 − ς222)|| sin Θ(V1, Ṽ1)||2F + rς211 + (n− r)ς222 ≤ (2δF + δ2
F)2

1 − 3δ

for δ < 1/3. A simpler form of (3.15) is

(3.16) || sin Θ(V1, Ṽ1)||F ≤ 2δF + δ2
F√

(1 − 3δ)(ς221 + ς212)
.

It is easy to see that the bound in (3.16) is always sharper than those in Theorem 2.1
of [9].

Acknowledgment. The authors would like to thank the referee for valuable
comments.

REFERENCES

[1] J. L. Barlow and I. Slapnicar, Optimal perturbation bounds for the Hermitian eigenvalue
problem, Linear Algebra Appl., 309 (2000), pp. 19–43.

[2] X. Chen and W. Li, A note on the perturbation bounds of eigenspaces for Hermitian matrices,
J. Comput. Appl. Math., 196 (2006), pp. 338–346.

[3] C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J.
Numer. Anal., 7 (1970), pp. 1–46.

[4] F. M. Dopico, J. Moro, and J. M. Molera, Weyl-type relative perturbation bounds for
eigensystems of Hermitian matrices, Linear Algebra Appl., 309 (2000), pp. 3–18.

[5] L. Elsner and S. Friedland, Singular values, doubly stochastic matrices, and applications,
Linear Algebra Appl., 220 (1995), pp. 161–169.

[6] A. J. Hoffman and H. W. Wielandt, The variation of spectrum of a normal matrix, Duke
Math. J., 20 (1953), pp. 37–39.

COMBINED PERTURBATION BOUNDS 655

[7] I. C. F. Ipsen, A note on unifying absolute and relative perturbation bounds, Linear Algebra
Appl., 358 (2003), pp. 239–253.

[8] R.-C. Li, Relative perturbation theory. II. Eigenspace and singular subspace variations, SIAM
J. Matrix Anal. Appl., 20 (1999), pp. 471–492.

[9] T. Londre and N. H. Rhee, A note on relative perturbation bounds, SIAM J. Matrix Anal.
Appl., 21 (1999), pp. 357–361.

[10] R. Mathias and K. Veselic, A relative perturbation bound for positive definite matrices,
Linear Algebra Appl., 270 (1998), pp. 315–321.

[11] G. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.
[12] N. Truhar and I. Slapnicar, Relative perturbation bound for invariant subspaces of graded

indefinite Hermitian matrices, Linear Algebra Appl., 301 (1999), pp. 171–185.
[13] P. A. Wedin, Perturbation bounds in connection with the singular value decomposition, BIT,

12 (1972), pp. 99–111.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 656–659

GENERALIZED RANK-CONSTRAINED MATRIX
APPROXIMATIONS∗

SHMUEL FRIEDLAND† AND ANATOLI TOROKHTI‡

Abstract. In this paper we give an explicit solution to the rank-constrained matrix approxima-
tion in Frobenius norm, which is a generalization of the classical approximation of an m× n matrix
A by a matrix of, at most, rank k.

Key words. singular value decomposition (SVD), generalized rank-constrained matrix approx-
imations, generalized inverse

AMS subject classification. 15A18

DOI. 10.1137/06065551

1. Introduction. Let C
m×n be a set of m × n complex valued matrices, and

denote by R(m,n, k) ⊆ C
m×n the variety of all m × n matrices of, at most, rank k.

Fix A = [aij]
m,n
i,j=1 ∈ C

m×n; then A∗ ∈ C
n×m is the conjugate transpose of A and

||A||F :=
√∑m,n

i,j=1 |aij |2 is the Frobenius norm of A. Recall that the singular value

decomposition of A, abbreviated here as SVD, is given by A = UAΣAV
∗
A, where UA ∈

C
m×m, VA ∈ C

n×n are unitary matrices and ΣA := diag(σ1(A), . . . , σmin(m,n)(A)) ∈
C

m×n is a generalized diagonal matrix, with the singular values σ1(A) ≥ σ2(A) ≥
· · · ≥ 0 on the main diagonal. The number of positive singular values of A is r,
which is equal to the rank of A, denoted by rankA. Let UA = [u1, u2, . . . ,um], VA =
[v1, v2, . . . ,vn] be the representations of U, V in terms of their m,n columns. Then
ui and vi are called the left and the right singular vectors of A that correspond to
the singular value σi(A). Let

(1.1) PA,L :=

rankA∑
i=1

uiu
∗
i ∈ C

m×m, PA,R :=

rankA∑
i=1

viv
∗
i ∈ C

n×n

be the orthogonal projections on the range of A and A∗. Denote by

Ak :=

k∑
i=1

σi(A)uiv
∗
i ∈ C

m×n

for k = 1, . . . , rankA. For k > rankA, we define Ak := A (= ArankA). For 1 ≤ k <
rankA, the matrix Ak is uniquely defined if and only if σk(A) > σk+1(A).

The enormous application of the SVD in pure and applied mathematics is derived
from the following approximation property:

(1.2) min
X∈R(m,n,k)

||A−X||F = ||A−Ak||F , k = 1,

∗Received by the editors March 28, 2006; accepted for publication (in revised form) by R. Mathias
November 17, 2006; published electronically May 22, 2007.

http://www.siam.org/journals/simax/29-2/65551.html
†Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago,

Chicago, IL 60607-7045 (friedlan@uic.edu).
‡School of Mathematics and Statistics, University of South Australia, Mawson Lakes SA 5095,

Australia (Anatoli.Torokhti@unisa.edu.au).

656

RANK-CONSTRAINED APPROXIMATIONS 657

The latter is known as the Eckart–Young theorem [2]. We note that the work [2]
implied a number of extensions and cite [4, 5, 7, 8] as some recent references. Another

application of SVD is a formula for the Moore–Penrose inverse A† := VAΣ†
AU

∗
A ∈

C
n×m of A, where

Σ†
A := diag

(
1

σ1(A)
, . . . ,

1

σrankA(A)
, 0, . . . , 0

)
∈ C

n×m.

See, for example, [1].

2. Main result. Below, we provide generalizations of the classical minimal prob-
lem given in (1.2).

Theorem 2.1. Let matrices A ∈ C
m×n, B ∈ C

m×p, and C ∈ C
q×n be given.

Then

(2.1) X = B†(PB,LAPC,R)kC
†

is a solution to the minimal problem

(2.2) min
X∈R(p,q,k)

||A−BXC||F ,

having the minimal ||X||F . This solution is unique if and only if either

k ≥ rankPB,LAPC,R

or

1 ≤ k < rankPB,LAPC,R and σk(PB,LAPC,R) > σk+1(PB,LAPC,R).

Proof of Theorem 2.1. Recall that the Frobenius norm is invariant under the
multiplication from the left and right by the corresponding unitary matrices. Hence
||A−BXC||F = ||Ã−ΣBX̃ΣC ||F , where Ã := U∗

BAVC and X̃ := V ∗
BXUC . Clearly, X

and X̃ have the same rank and same Frobenius norm. Thus, it is enough to consider
the minimal problem min

X̃∈R(p,q,k)
||Ã− ΣBX̃ΣC ||F .

Let s = rankB and t = rankC. Clearly, if B or C is a zero matrix, then X = 0 is
the solution to the minimal problem (2.2). In this case, either PB,L or PC,R are zero
matrices, and the theorem holds trivially in this case.

Let us consider the case 1 ≤ s, 1 ≤ t. Define B1 := diag(σ1(B), . . . , σs(B)) ∈
C

s×s, C1 := diag(σ1(C), . . . , σt(C)) ∈ C
t×t. Partition Ã and X̃ into four block ma-

trices Aij and Xij with i, j = 1, 2 so that Ã = [Aij]
2
i,j=1 and X̃ = [Xij]

2
i,j=1, where

A11, X11 ∈ C
s×t. (For certain values of s and t, we may have to partition Ã or X̃ to

less than four block matrices.) Next, observe that Z := ΣBX̃ΣC = [Zij]
2
i,j=1, where

Z11 = B1X11C1 and all other blocks Zij are zero matrices. Since B1 and C1 are
invertible we deduce that

rankZ = rankZ11 = rankX11 ≤ rank X̃ ≤ k.

The approximation property of (A11)k yields the inequality ||A11 − Z11||F ≥ ||A11 −
(A11)k||F for any Z11 of, at most, rank k. Hence for any Z of the above form,

||Ã− Z||2F = ||A11 − Z11||2F +
∑

2<i+j≤4

||Aij ||2F ≥ ||A11 − (A11)k||2F +
∑

2<i+j≤4

||Aij ||2F .

658 SHMUEL FRIEDLAND AND ANATOLI TOROKHTI

Thus, X̂ = [Xij]
2
i,j=1, where X11 = B−1

1 (A11)kC
−1
1 and Xij = 0 for all (i, j) �=

(1, 1) is a solution to the problem min
X̃∈R(p,q,k)

||Ã− ΣBX̃ΣC ||F with the minimal

Frobenius norm. This solution is unique if and only if the solution Z11 = (A11)k is the
unique solution to the problem minZ11∈R(s,t,k) ||A11 − Z11||F . This happens if either
k ≥ rankA11 or 1 ≤ k < rankA11 and σk(A11) > σk+1(A11). A straightforward

calculation shows that X̂ = Σ†
B(PΣB ,LÃPΣC ,R)kΣ

†
C . Thus, a solution of (2.2) with

the minimal Frobenius norm is given by

X = B†UB(PΣB ,LU
∗
BAVCPΣC ,R)kV

∗
CC

†

= B†UB(U∗
BPB,LAPC,RVC)kV

∗
CC

†

= B†(PB,LAPC,R)kC
†.

This solution is unique if and only if either k ≥ rankPB,LAPC,R, or 1 ≤ k <
rankPB,LAPC,R and σk(PB,LAPC,R) > σk+1(PB,LAPC,R).

3. Examples. First, observe that the classical approximation problem given by
(1.2) is equivalent to the case m = p, n = q,B = Im, C = In. (Here, Im is the m×m
identity matrix.) Clearly, PIm,L = Im, PIn,R = In, I†m = Im, I†n = In. In this case
we obtain the classical solution B†(PB,LAPC,R)kC

† = Ak.

Second, if p = m, q = n, and B, C are nonsingular, then rank (BXC) = rankX.
In this case, PB,L = Im and PC,R = In, and the solution to (2.2) is given by X =
B−1AkC

−1.

Next, a particular case of the problem (2.2) occurs in the study of a random
vector estimation (see, for example, [6, 9]) as follows. Let (Ω,Σ, μ) be a probability
space, where Ω is the set of outcomes, Σ a σ-field of measurable subsets of Ω, and
μ : Σ �→ [0, 1] an associated probability measure on Σ with μ(Ω) = 1. Suppose
that x ∈ L2(Ω,Rm) and y ∈ L2(Ω,Rn) are random vectors such that x = (x1, . . . ,
xm)T and y = (y1, . . . , yn)T with xi, yj ∈ L2(Ω,R) for i = 1, . . . ,m and j = 1,
. . . , n, respectively. Let Exy = [eij,xy] ∈ R

m×n, Eyy = [ejk,yy] ∈ R
n×n be correlation

matrices with entries

eij,xy =

∫
Ω

xi(ω)yj(ω)dμ(ω), ejk,yy =

∫
Ω

yj(ω)yk(ω)dμ(ω),

i = 1, . . . ,m, j, k = 1, . . . , n, ω ∈ Ω.

The problems considered in [6, 9] are reduced to finding a solution to the problem

(2.2) with A = ExyE
1/2†
yy , B = In, and C = E

1/2
yy , where we write E

1/2†
yy = (E

1/2
yy)†.

Let the SVD of E
1/2
yy be given by E

1/2
yy = VnΣV ∗

n and let rankE
1/2
yy = r. Here,

Vn = [v1, . . . ,vn] with vi the ith column of Vn. By Theorem 2.1, the solution
to this particular case of the problem (2.2) having the minimal Frobenius norm

is given by X = (ExyE
1/2†
yy VrV

∗
r)kE

1/2†
yy , where E

1/2†
yy VrV

∗
r = E

1/2†
yy . Therefore,

X = (ExyE
1/2†
yy)kE

1/2†
yy . The conditions for the uniqueness follow directly from The-

orem 2.1.

Finally, a special case of the minimal problem (2.2), where X is a rank one
matrix and C the identity matrix, was considered by M. Elad [3] in the context of
image processing.

RANK-CONSTRAINED APPROXIMATIONS 659

REFERENCES

[1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, John
Wiley & Sons, New York, 1974.

[2] C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psy-
chometrika, 1 (1936), pp. 211–218.

[3] M. Elad, Personal communication, 2005.
[4] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low-rank

approximations, J. ACM, 51 (2004), pp. 1025–1041.
[5] G. H. Golub and C. F. Van Loan, Matrix Computation, 3rd ed., Johns Hopkins University

Press, Baltimore, MD, 1996.
[6] Y. Hua and W. Q. Liu, Generalized Karhunen–Loève transform, IEEE Signal Process. Lett.,

6 (1998), pp. 141–142.
[7] T. G. Kolda, A counterexample to the possibility of an extension of the Eckart–Young low-

rank approximation theorem for the orthogonal rank tensor decomposition, SIAM J. Matrix
Anal. Appl., 24 (2003), pp. 762–767.

[8] W.-S. Lu, S.-C. Pei, and P.-H. Wang, Weighted low-rank approximation of general complex
matrices and its application in the design of 2-D digital filters, IEEE Trans. Circuits
Systems I Fund. Theory Appl., 44 (1997), pp. 650–655.

[9] Y. Yamashita and H. Ogawa, Relative Karhunen–Loève transform, IEEE Trans. Signal Pro-
cess., 44 (1996), pp. 371–378.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 660–671

NORMS OF TOEPLITZ MATRICES WITH FISHER–HARTWIG
SYMBOLS∗

ALBRECHT BÖTTCHER† AND JANI VIRTANEN‡

Abstract. We describe the asymptotics of the spectral norm of finite Toeplitz matrices generated
by functions with Fisher–Hartwig singularities as the matrix dimension goes to infinity. In the case
of positive generating functions, our result provides the asymptotics of the largest eigenvalue, which
is of interest in time series with long range memory.

Key words. Toeplitz matrix, spectral norm, Fisher–Hartwig singularity, time series, long range
memory

AMS subject classifications. Primary, 47B35; Secondary, 15A60, 62M10, 62M20, 65F35

DOI. 10.1137/06066165X

1. Introduction. Let {ak}k∈Z be a sequence of complex numbers and denote
by Tn the n×n Toeplitz matrix (aj−k)

n−1
j,k=0. We are interested in the behavior of the

spectral norm ‖Tn‖ as n → ∞. Notice that if the matrix Tn is positive definite, then
‖Tn‖ is just the maximal eigenvalue of Tn.

If there is a function a ∈ L1(T) such that {ak}k∈Z is the sequence of the Fourier
coefficients of a, that is, ak = 1

2π

∫ π

−π
a(eiθ)e−ikθdθ, we call a the symbol of the

sequence {Tn} and denote Tn by Tn(a). The case where a is in L∞(T) is easy, since
then ‖Tn(a)‖ → ‖a‖∞ as n → ∞. Things are more complicated for symbols a in
L1(T) \ L∞(T). We here focus our attention on so-called Fisher–Hartwig symbols
with a single singularity; that is, we consider functions a of the form

a(t) = |t− t0|−2αϕβ,t0(t)b(t) (t ∈ T),

where t0 ∈ T, α is a complex number subject to the constraint 0 < Reα < 1/2, β is
a complex number satisfying −1/2 < Reβ ≤ 1/2, the function ϕβ,t0 is defined as

ϕβ,t0(t) = exp(iβ arg (−t/t0)) (t ∈ T)

with arg z ∈ (−π, π], and b is a function in L∞(T) that is continuous at t0 and does
not vanish at t0. The hypothesis 0 < Reα < 1/2 ensures that a ∈ L1(T)\L∞(T). We
should mention that if a is any piecewise continuous function on T with a single jump,
say, at t0 ∈ T, and a(t0 ± 0) �= 0, then a can be written in the form a = ϕβ,t0b with
−1/2 < Reβ ≤ 1/2 and a continuous function b. Indeed, since ϕβ,t0(t0−0) = eπiβ and
ϕβ,t0(t0 + 0) = e−πiβ , it suffices to choose Imβ ∈ (−∞,∞) and Reβ ∈ (−1/2, 1/2] so
that

a(t0 + 0)

a(t0 − 0)
= e−2πiβ = e2π Im β e−2πiRe β .

∗Received by the editors June 1, 2006; accepted for publication (in revised form) by H. J. Wo-
erdeman November 29, 2006; published electronically May 22, 2007.

http://www.siam.org/journals/simax/29-2/66165.html
†Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany

(aboettch@mathematik.tu-chemnitz.de).
‡Department of Mathematics, University of Helsinki, Gustaf Hällströmin katu 2b, FI-00014

Helsinki, Finland (jani.virtanen@helsinki.fi). The research of this author was supported by the
Academy of Finland Project 207048.

660

TOEPLITZ MATRICES WITH FISHER–HARTWIG SYMBOLS 661

Our main result says that

‖Tn(a)‖ ∼ Cα,β n
2 Reα |b(t0)| as n → ∞,

where Cα,β is a completely identified constant depending only on α and β and where
xn ∼ yn means that xn/yn → 1. We will also establish results for symbols with more
than one Fisher–Hartwig singularity.

For the exciting story behind Toeplitz matrices with Fisher–Hartwig symbols and
their determinants we refer the reader to the books [4], [5] and the papers [1], [9]. For
general Toeplitz matrices, the asymptotic distribution of the singular values and the
asymptotics of the extreme singular values have been studied by many authors, and we
abstain from giving an ample list of references here. These investigations are mainly
directed to the collective distribution of the singular values (Szegö–Avram–Parter
theorems) or to the behavior of the extreme singular values of Tn(a) for symbols a in
L∞(T). The asymptotics of the smallest singular value are governed by the nature
of the zeros of the symbol a. This implies that the rate of convergence of the largest
singular value (= the norm) of Tn(a) to ‖a‖∞ depends on the zeros of the function
‖a‖∞ − |a(t)|. These results are not applicable to Toeplitz matrices with symbols
in L1(T) \ L∞(T) or to Toeplitz matrices “without symbols.” Such matrices are
considered in [2], [3], [12], [13], [14], [15], for example, but the focus of these papers
is not on the problem we are interested in here.

Under the sole assumption that b is in L∞(T), the method of [2] yields the
estimate ‖Tn(a)‖ ≤ C2 n

2 Reα with some finite constant C2. If α is real, ϕβb is real-
valued, and essinf b > 0, one can also proceed as in [2] to show the existence of a
positive constant C1 such that ‖Tn(a)‖ ≥ C1 n

2 Reα. Such estimates were also derived
in [11] by different arguments. These two-sided bounds are useful in several contexts
(see [11], for example), but they are clearly far away from the precise asymptotics
‖Tn(a)‖ ∼ Cα,β n

2 Reα |b(t0)|.
The approach of the present paper is based on an idea of Widom [16], [17], [18]:

we construct integral operators Kn on L2(0, 1) such that ‖Tn(a)‖ = n2 Reα ‖Kn‖ and
prove that Kn converges to some integral operator K in the operator norm on L2(0, 1),
which implies that ‖Kn‖ → ‖K‖.

For nonnegative symbols, the results of this paper are of interest in the analysis
of time series with long memory. The nth covariance matrix of a time series is a
positive definite Toeplitz matrix Tn(a) = (aj−k)

n
j,k=1, and one wants to know its

largest eigenvalue. If the series has a short memory, then an goes rapidly to zero
as |n| → ∞, and hence {an} is the sequence of the Fourier coefficients of a function
a ∈ L∞(T). However, in the case of a long range memory, the numbers an may be
of the order |n|2α−1 (0 < α < 1/2), which leads to symbols a ∈ L1(T) \ L∞(T). The
symbol a(t) = |t− t0|−2α b(t) is especially popular and will be considered in detail in
section 5. For more on Toeplitz matrices in time series we refer the reader to [6], [7],
[8], [10], [11].

2. A special class of Toeplitz matrices. We begin with a simple observation.

Proposition 2.1. Let γ be a real number. If |a±n| = O(nγ) as n → ∞, then
‖Tn‖ converges to a finite limit for γ < −1, ‖Tn‖ = O(log n) for γ = −1, and
‖Tn‖ = O(nγ+1) for γ > −1. If |a±n| = o(nγ) as n → ∞, then ‖Tn‖ = o(log n) for
γ = −1 and ‖Tn‖ = o(nγ+1) for γ > −1.

Proof. In the case γ < −1, the sequence {ak} is the sequence of the Fourier coef-
ficients of a continuous function a, and hence ‖Tn‖ = ‖Tn(a)‖ → ‖a‖∞. The spectral

662 ALBRECHT BÖTTCHER AND JANI VIRTANEN

norm of a Toeplitz matrix one diagonal of which is occupied by units and the remain-
ing diagonals of which are zero equals 1. This implies that ‖Tn‖ ≤

∑n−1
k=−(n−1) |ak|

and therefore yields the assertions concerning γ = −1 and γ > −1.
Let An = (aj,k)

n−1
j,k=0 be an n× n matrix with complex entries. We denote by Gn

the integral operator on L2(0, 1) with the kernel

gn(x, y) = a[nx],[ny], (x, y) ∈ (0, 1)2,

where [ξ] denotes the integral part of ξ.
Lemma 2.2 (Widom). The spectral norm of An and the operator norm of Gn

are related by the equality ‖An‖ = n‖Gn‖.
Proof. Put Ik = (k/n, (k + 1)/n) and consider the operators

Sn : {xk}n−1
k=0
→

√
n

n−1∑
k=0

xkχIk , Tn : f
→
{√

n

∫
Ik

f(x)dx

}n−1

k=0

.

It is easily seen that ‖Sn‖ = ‖Tn‖ = 1 and that TnSn is the identity operator on Cn.
Since SnAnTn = nGn and thus An = nTnGnSn we obtain that ‖An‖ ≥ n‖Gn‖ and
‖An‖ ≤ n‖Gn‖.

Let C+, C−, γ be complex numbers, let Re γ > −1, let a±n = C±nγ for n ≥ 1,
and let a0 be any complex number. Denote by Kn and K the integral operators on
L2(0, 1) with the kernels

kn(x, y) = n−γ a[nx]−[ny] and k(x, y) =

{
C+ (x− y)γ for x > y,
C−(y − x)γ for x < y,

respectively.
Lemma 2.3. The operators Kn converge to K in the operator norm on L2(0, 1).
Proof. Fix a μ ∈ (0, 1) sufficiently close to 1 such that (1 − μ)|Re γ| < μ and

2μRe γ < 1 + 2 Re γ. Put

k1
n(x, y) =

{
k(x, y) if |x− y| > nμ−1,
0 otherwise,

k2
n(x, y) =

{
k(x, y) if |x− y| < nμ−1,
0 otherwise,

1n(x, y) =

{
kn(x, y) if |x− y| > nμ−1,
0 otherwise,

2n(x, y) =

{
kn(x, y) if |x− y| < nμ−1,
0 otherwise,

and denote by K1
n,K

2
n, L

1
n, L

2
n the integral operators on L2(0, 1) with the kernels

k1
n, k

2
n,

1
n,

2
n, respectively. We have K = K1

n + K2
n and Kn = L1

n + L2
n. Thus,

‖K −Kn‖ ≤ ‖K1
n − L1

n‖ + ‖K2
n‖ + ‖L2

n‖.

We show that each term on the right goes to zero as n → ∞.
To prove that ‖K1−K1

n‖ → 0 it suffices to show that |k1
n(x, y)−
1n(x, y)| converges

uniformly to zero for |x−y| > nμ−1. We may assume that x > y, since the case x < y
can be tackled analogously. Thus, let x − y > nμ−1. As [nx] − [ny] = n(x − y) + εn
with |εn| = |εn(x, y)| ≤ 2, we get

1n(x, y) = C+n−γ([nx] − [ny])γ = C+n−γ(n(x− y) + εn)γ

= C+(x− y)γ
(

1 +
εn

n(x− y)

)γ

.

TOEPLITZ MATRICES WITH FISHER–HARTWIG SYMBOLS 663

Since n(x− y) > nμ, it follows that
1n(x, y) = C+(x− y)γ(1 + O(n−μ)) uniformly in
x and y. Hence

|k1
n(x, y) −
1n(x, y)| = |(x− y)γ |O(n−μ) = (x− y)Re γ O(n−μ)

uniformly in x and y. If Re γ ≥ 0, this goes to zero uniformly in x and y. In the case
where Re γ < 0, we use the inequality x− y > nμ−1 to obtain that

(x− y)Re γ O(n−μ) = O
(
n(1−μ)|Re γ|n−μ

)
uniformly in x and y, which is o(1) because (1 − μ)|Re γ| < μ. We so have proved
that ‖K1 −K1

n‖ → 0 as n → ∞.
The operator K2

n is the compression to L2(0, 1) of the operator of convolution on
L2(R) by the kernel

κ(x) =

⎧⎨⎩
C+xγ for 0 < x < nμ−1,
C−|x|γ for − nμ−1 < x < 0,
0 for |x| > nμ−1.

The norm of a convolution operator on L2(R) is the maximum of the modulus of the
Fourier transform

(Fκ)(ξ) =

∫
R

κ(x)eiξxdx (ξ ∈ R)

of its convolution kernel κ(x). Hence

‖K2
n‖ ≤ max

ξ∈R
|(Fκ)(ξ)| ≤

∫
R

|κ(x)|dx

=

∫ 1

−nμ−1

C−|x|Re γdx +

∫ nμ−1

0

C+xRe γdx = O
(
n(μ−1)(Re γ+1)

)
,

which proves that ‖K2
n‖ → 0 as n → ∞.

Let us consider the norm ‖L2
n‖. The kernel
2n(x, y) is supported in the strip

|x− y| < nμ−1. Let
̃2n(x, y) be kn(x, y) for (x, y) in the staircase-like bordered strip
|[nx] − [ny]| < nμ and zero otherwise. Denote by L̃2

n the corresponding integral
operator. The difference
2n(x, y) −
̃2n(x, y) is supported in about 4(n − nμ) = O(n)
squares of side length 1/n, and in these squares the absolute value of the difference
is about n−γa±[nμ] = O(n−Re γnμRe γ). Consequently, the squared Hilbert–Schmidt

norm ‖L2
n − L̃2

n‖2
2 is at most a constant times nn−2 Re γn2μRe γ(1/n)2, which goes to

zero because 1− 2 Re γ + 2μRe γ − 2 = 2μRe γ − (1 + 2 Re γ) < 0. We are therefore
left with proving that ‖L̃2

n‖ → 0. Let Tn = (bj−k)
n−1
j,k=0, where bk = ak for |k| ≤ nμ

and bk = 0 otherwise. Lemma 2.2 implies that ‖L̃2
n‖ = (1/n)n−Re γ‖Tn‖, and since

‖Tn‖ ≤
nμ∑

k=−nμ

|bk| = O

(
nμ∑

k=−nμ

kRe γ

)
= O

(
nμ(Re γ+1)

)
,

we finally get ‖L̃2
n‖ = O

(
n(μ−1)(Re γ+1)

)
= o(1).

Theorem 2.4. Let Tn = (aj−k)
n−1
j,k=0, where a±n = C±nγ(1 + o(1)) as n → ∞

with complex numbers C+, C−, γ such that Re γ > −1 and at least one of the numbers
C+ and C− is nonzero. Then

‖Tn‖ ∼ ‖K‖nRe γ+1,

664 ALBRECHT BÖTTCHER AND JANI VIRTANEN

where K is the integral operator on L2(0, 1) whose kernel is C+(x−y)γ for x > y and
C−(y − x)γ for x < y.

Proof. Write Tn = Sn + Dn with Sn = (bj−k)
n−1
j,k=0, Dn = (dj−k)

n−1
j,k=0, b±n =

C±nγ , d±n = o(nγ). From Lemma 2.2 we deduce that ‖Sn‖/n equals the norm of the
integral operator nγ Kn, where Kn has the kernel n−γb[nx]−[ny]. Lemma 2.3 implies
that ‖Kn −K‖ → 0 and thus ‖Kn‖ → ‖K‖. Consequently,

‖Sn‖ = ‖K‖nRe γ+1(1 + o(1)).

Proposition 2.1 yields ‖Dn‖ = o(nRe γ+1).
Theorem 2.5. Let B+

1 , . . . , B+
Q , B−

1 , . . . , B−
Q be complex numbers and suppose at

least one of these numbers is nonzero. Let further γ1, . . . , γQ be complex numbers such
that Re γs > −1 for all s. Put ω = e2πi/Q. Let Tn = (aj−k)

n−1
j,k=0, where

a±n =

Q∑
s=1

B±
s ω±snnγs(1 + o(1)) as n → ∞.

Put Re γ := maxs Re γs and let S = {s : Re γs = Re γ}. Then

‖Tn‖ ∼ max
s∈S

‖Ks‖nRe γ+1,

where Ks is the integral operator on L2(0, 1) whose kernel is B+
s (x − y)γs for x > y

and B−
s (y − x)γs for x < y.

Proof. Assume first that n = mQ with a natural number m. We rearrange
the rows of TmQ by first taking the rows 1, Q + 1, 2Q + 1, . . . , then the rows 2, Q +
2, 2Q + 2, . . . , and so on. Then we make the same rearrangement with the columns.
The resulting matrix has the same spectral norm as TmQ and is a block Toeplitz

matrix (Aj−k)
Q−1
j,k=0 whose blocks are the Toeplitz matrices Ak = (ak+(u−v)Q)m−1

u,v=0.

For 0 ≤ |k| ≤ Q−1, let Dk be the Toeplitz matrix Dk = (d
(k)
u−v)

m−1
u,v=0 given by d

(k)
0 = 0

and

d
(k)
±ν =

Q∑
s=1

B±
s ωsk(νQ)γs (ν ≥ 1).

If ν → ∞, then eventually k + νQ ≥ 1, and hence

ak+νQ − d(k)
ν =

Q∑
s=1

B+
s ωsk [(k + νQ)γs(1 + o(1)) − (νQ)γs] .

The modulus of the term in brackets is

(νQ)Re γs

∣∣∣∣(1 +
k

νQ

)γs

(1 + o(1)) − 1

∣∣∣∣
= (νQ)Re γs |(1 + o(1))(1 + o(1)) − 1| = (νQ)Re γs o(1) = o(νRe γs).

An analogous estimate holds for ν → −∞. From Proposition 2.1 we therefore deduce
that Ak = Dk + Ek with ‖Ek‖ = o(mRe γ+1). It follows that

‖TmQ‖ = ‖(Dj−k)
Q−1
j,k=0‖ + o(mRe γ+1).

TOEPLITZ MATRICES WITH FISHER–HARTWIG SYMBOLS 665

Now, for s ∈ {1, . . . , Q}, put Hs = (h
(s)
u−v)

m−1
u,v=0, where h

(s)
0 = 0 and h

(s)
±ν = B±

s (νQ)γs

for ν ≥ 1. Then

Dj−k =

Q∑
s=1

ωs(j−k)Hs.

Let F± be the block Fourier matrices F± = (ω±jkIm×m)Qj,k=1. The j, k block entry of

F+ diag (H1, . . . , HQ)F− equals
∑Q

s=1 ω
jsHsω

−sk = Dj−k. Consequently,

(Dj−k)
Q−1
j,k=0 = (Dj−k)

Q
j,k=1 = F+ diag (H1, . . . , HQ)F−.

Since the matrices (1/
√
Q)F± are unitary, we get

‖(Dj−k)
Q−1
j,k=0‖ =

√
Q ‖diag (H1, . . . , HQ) ‖

√
Q = Q max

s
‖Hs‖.

Theorem 2.4 gives

‖Hs‖ = mRe γs QRe γs+1 ‖Ks‖ (1 + o(1)).

In summary,

‖TmQ‖ = Q max
s

mRe γs+1 QRe γs ‖Ks‖ (1 + o(1)) + o(mRe γ+1)

= (mQ)Re γ+1 max
s∈S

‖Ks‖ + o(mRe γ+1)

∼ (mQ)Re γ+1 max
s∈S

‖Ks‖.

Finally, if n is not divisible by Q, we can obtain Tn from TmQ by adding at most Q−1
rows and columns. The spectral norm of a matrix with a single nonzero row or column
is the
2 norm of this row or column, which in the case at hand does not exceed the
square root of

∑n−1
j=−(n−1) |aj |2 = O(n2Re γ+1); that is, O(nRe γ+1/2) = o(nRe γ+1).

This completes the proof.

3. A single Fisher–Hartwig singularity. We first consider the pure Fisher–
Hartwig singularity at t0 = 1, that is, the function

σ(t) = |t− 1|−2αϕβ,1(t)

with 0 < Reα < 1/2 and −1/2 < Reβ ≤ 1/2. The Fourier coefficients of σ are

σn = (−1)n
Γ(1 − 2α)

Γ(−α + β + 1 − n)Γ(−α− β + 1 + n)
,

with the convention that σn := 0 for n < 0 if α = −β and σn := 0 for n > 0 if α = β
(see [5, Lemma 6.18]). Using the formula

Γ(1 − z) =
πz

sinπz

1

Γ(1 + z)

we see that

σn = (−1)n Γ(1 − 2α)
sinπ(n + α− β)

π(n + α− β)

Γ(n + 1 + α− β)

Γ(n + 1 − α− β)

= Γ(1 − 2α)
sinπ(α− β)

π(n + α− β)

Γ(n + 1 + α− β)

Γ(n + 1 − α− β)

666 ALBRECHT BÖTTCHER AND JANI VIRTANEN

for n ≥ 0 and

σ−n = (−1)n
Γ(1 − 2α)

Γ(−α + β + 1 + n)Γ(−α− β + 1 − n)

= (−1)n Γ(1 − 2α)
sinπ(n + α + β)

π(n + α + β)

Γ(n + 1 + α + β)

Γ(n + 1 − α + β)

= Γ(1 − 2α)
sinπ(α + β)

π(n + α + β)

Γ(n + 1 + α + β)

Γ(n + 1 − α + β)

for n ≥ 0. The asymptotic formula Γ(n + γ)/Γ(n + δ) ∼ nγ−δ (n → ∞) shows that

σn = C+
α,β n

2α−1(1 + o(1)), σ−n = C−
α,β n

2α−1(1 + o(1))

as n → ∞, where

C±
α,β = Γ(1 − 2α)

sinπ(α∓ β)

π
.

We denote by K the integral operator on L2(0, 1) with the kernel

k(x, y) =

{
C+

α,β (x− y)2α−1 for x > y,

C−
α,β (y − x)2α−1 for x < y.

Obviously, ‖K‖ > 0.
Theorem 3.1. Suppose σ(t) = |t − t0|−2αϕβ,t0(t) with t0 ∈ T, 0 < Reα < 1/2,

−1/2 < Reβ ≤ 1/2. Then

‖Tn(σ)‖ ∼ ‖K‖n2 Reα.

Proof. We change notation slightly and denote the function σ defined as σ(t) =
|t − 1|−2αϕβ,1(t) by σ0. The σ of the present theorem results from σ0 by replacing
t0 = 1 with a general t0 ∈ T. The only change in the Fourier coefficients is that
the (−1)n in (σ0)n becomes (−1/t0)

n in σn, and hence Tn(σ) = ΛTn(σ0) Λ−1, where

Λ := diag (1, t−1
0 , . . . , t

−(n−1)
0). Therefore ‖Tn(σ)‖ = ‖Tn(σ0)‖. Taking into account

that (σ0)±n = C±
α,β n

2α−1 (1 + o(1)) and using Theorem 2.4 we arrive at the desired
formula.

Proposition 3.2. If σ is as in Theorem 3.1 and c ∈ L∞(T) is continuous and
zero at t0, then

‖Tn(σc)‖ = o(n2 Reα).

Proof. Without loss of generality assume that t0 = 1. Writing σ = Reσ + i Imσ
and c = Re c + i Im c we get Tn(σc) = Tn(ReσRe c) + . . . (four terms) and thus
‖Tn(σc)‖ ≤ ‖Tn(ReσRe c)‖+ The matrix Tn(ReσRe c) is Hermitian, and hence

‖Tn(ReσRe c)‖ = max
ψ∈Cn\{0}

|(Tn(ReσRe c)ψ,ψ)|
‖ψ‖2

= max
ϕ∈Pn\{0}

1

‖ϕ‖2

∣∣∣∣∫ π

−π

Reσ(x) Re c(x) |ϕ(x)|2 dx
2π

∣∣∣∣
≤ max

ϕ∈Pn\{0}

1

‖ϕ‖2

∫ π

−π

|Reσ(x)| |Re c(x)| |ϕ(x)|2 dx
2π

,

TOEPLITZ MATRICES WITH FISHER–HARTWIG SYMBOLS 667

where Pn is the set of all trigonometric polynomials of the form ϕ(x) = ϕ0 +ϕ1e
ix +

· · · + ϕn−1e
i(n−1)x. Notice that

‖ϕ‖2
∞ = ‖ϕ0 + ϕ1e

ix + · · · + ϕn−1e
i(n−1)x‖2

∞ ≤ (|ϕ0| + |ϕ1| + · · · + |ϕn−1|)2

≤ n (|ϕ0|2 + |ϕ1|2 + · · · + |ϕn−1|2) =
n

2π

∫ π

−π

|ϕ(x)|2dx =
n

2π
‖ϕ‖2.

Clearly,

Reσ(x) =
∣∣∣2 sin

x

2

∣∣∣−2 Reα

cos
(
Imα log

∣∣∣2 sin
x

2

∣∣∣) |ϕβ,1(x)|,

which is O(|x|−2 Reα) as x → 0. We split the integral into
∫
|x|<π/n

,
∫
π/n<|x|<π/

√
n

,

and
∫
π/

√
n<|x|<π

. The integral over |x| < π/n is at most

C1 sup
|x|<π/n

|Re c(x)| ‖ϕ‖2
∞

∫
|x|<π/n

|x|−2 Reαdx

≤ C2 sup
|x|<π/n

|Re c(x)| n

2π
‖ϕ‖2 n2 Reα−1 = o(n2 Reα) ‖ϕ‖2

because Re c(x) → 0 as x → 0; here sup means esssup. The integral over the interval
π/n < |x| < π/

√
n has the upper bound

C3 sup
|x|<π/

√
n

|Re c(x)|
∫
|x|>π/n

|x|−2 Reα|ϕ(x)|2dx

≤ C3 sup
|x|<π/

√
n

|Re c(x)| n
2 Reα

π2 Reα

∫
|x|>π/n

|ϕ(x)|2dx

≤ C3 sup
|x|<π/

√
n

|Re c(x)| n
2 Reα

π2 Reα
‖ϕ‖2 = o(n2Reα) ‖ϕ‖2,

again because Re c(x) → 0 as x → 0. Finally, the integral over |x| > π/
√
n does not

exceed

C4 ‖Re c‖∞
∫
|x|>π/

√
n

|x|−2 Reα|ϕ(x)|2dx

≤ C4 ‖Re c‖∞
nReα

π2 Reα

∫
|x|>π/

√
n

|ϕ(x)|2dx

≤ C4 ‖Re c‖∞
nReα

π2 Reα
‖ϕ‖2 = O(nReα) ‖ϕ‖2 = o(n2 Reα) ‖ϕ‖2.

This proves that ‖Tn(ReσRe c)‖ = o(n2 Reα). Analogously one can show that

‖Tn(Reσ Im c)‖, ‖Tn(ImσRe c)‖, ‖Tn(Imσ Im c)‖

are o(n2 Reα).
Theorem 3.3. Let a = σb, where σ is as in Theorem 3.1 and b is a function in

L∞(T) that is continuous at t0 and does not vanish at t0. Then

‖Tn(a)‖ ∼ ‖K‖ |b(t0)|n2 Reα.

668 ALBRECHT BÖTTCHER AND JANI VIRTANEN

Proof. We have b(t) = b(t0)+c(t) with b(t0) �= 0 and a function c ∈ L∞(T) that is
continuous and zero at t0. It follows that Tn(a) = b(t0)Tn(σ) + Tn(σc). Theorem 3.1
yields

‖b(t0)Tn(σ)‖ = |b(t0)| ‖Tn(σ)‖ = |b(t0)| ‖K‖n2 Reα (1 + o(1)),

and Proposition 3.2 gives ‖Tn(σc)‖ = o(n2 Reα).

4. Several Fisher–Hartwig singularities. Let R ≥ 2 and

a(t) = b(t)

R∏
r=1

|t− tr|−2αrϕβr,tr (t) (t ∈ T),

where t1, . . . , tR are distinct points on T, 0 < Reαr < 1/2, −1/2 < Reβr ≤ 1/2,
b ∈ L∞(T), b is continuous at the points t1, . . . , tR, and b(tr) �= 0 for all r. It is easily
seen that a can be written in the form

a(t) =

R∑
r=1

|t− tr|−2αrϕβr,tr (t) br(t) (t ∈ T)

with functions br ∈ L∞(T) such that br is continuous at tr and satisfies br(tr) �= 0.
Let

Reα := max{Reα1, . . . ,ReαR}, M = {r : Reαr = Reα}.

If there is only one r0 such that Reαr0 = Reα, then Theorem 3.3 implies that

‖Tn(a)‖ ∼ ‖Kr0‖ |br0(tr0)|n2 Reα,

where Kr denotes the integral operator on L2(0, 1) associated with |t−tr|−2αrϕβr,tr (t),
that is, the integral operator whose kernel is C+

αr,βr
(x− y)2αr−1 for x > y and equals

C−
αr,βr

(y−x)2αr−1 for x < y. The case where the maximum is attained at more than
one r is more difficult.

Conjecture 4.1. We have

‖Tn(a)‖ ∼ max
r∈M

‖Kr‖ |b(tr)|n2 Reα.

The following result confirms this conjecture in a sufficiently interesting special
case.

Theorem 4.2. If there is a t0 ∈ T such that, for every r, tr = e2πiϕr t0 with a
rational number ϕr, then Conjecture 4.1 is true.

Proof. As passage from a(t) to a(t/t0) does not change the spectral norm of the
Toeplitz matrix (recall the proof of Theorem 3.1), we may without loss of generality
assume that t0 = 1. Put σα,β,τ (t) = |t − τ |−2αϕβ,τ (t). The Fourier coefficients of a
are

an =

R∑
r=1

(σαr,βr,tr br)n =

R∑
r=1

br(tr) (σαr,βr,tr)n + fn,

where {fn} is the sequence of the Fourier coefficients of a function f ∈ L1(T) for which
‖Tn(f)‖ = o(n2 Reα) (Proposition 3.2). Furthermore, (σαr,βr,tr)n = t−n

r (σαr,βr,1)n
(see once more the proof of Theorem 3.1). Thus,

an =

R∑
r=1

br(tr) t
−n
r (σαr,βr,1)n + fn.

TOEPLITZ MATRICES WITH FISHER–HARTWIG SYMBOLS 669

Let t−1
r = e2πipr/qr with a rational number pr/qr ∈ (0, 1] and denote by Q the least

common multiple of q1, . . . , qR. Put ω = e2πi/Q. Then each t−1
r is of the form ωkr

with some kr ∈ {1, 2, . . . , Q}. It follows that

an =

R∑
r=1

br(tr)ω
krn (σαr,βr,1)n + fn

with different k1, . . . , kR belonging to {1, 2, . . . , Q}. From section 3 we know that

(σα,β,1)±n = C±
α,β n

2α−1(1 + o(1)).

Hence

a±n =

R∑
r=1

br(tr)ω
±krn C±

αr,βr
n2αr−1(1 + o(1)) + fn,

which can be written as

a±n =

Q∑
s=1

B±
s ω±sn nγs(1 + o(1)) + fn

with B±
kr

= br(tr)C
±
αr,βr

, γkr
= 2αr − 1 and B±

s = 0, γs = 0 otherwise. Theorem 2.5

shows that the spectral norm of the Toeplitz matrix T 0
n generated by

a0
±n :=

Q∑
s=1

B±
s ω±sn nγs(1 + o(1))

satisfies

‖T 0
n‖ ∼ max

s∈S
‖K0

s‖n2 Reα with Reα := max
s

Reαs, S = {s : Reαs = Reα},

where K0
s is the operator whose kernel is B+

s (x− y)γs for x > y and B−
s (y − x)γs for

x < y. This is equivalent to saying that

‖T 0
n‖ ∼ max

r∈M
|br(tr)| ‖Kr‖n2 Reα,

where the kernel of Kr is C+
αr,βr

(x − y)2αr−1 for x > y and C−
αr,βr

(y − x)2αr−1 for

x < y. Since ‖Tn(f)‖ = o(n2 Reα), we obtain that ‖Tn‖ ∼ ‖T 0
n‖.

5. A particular singularity. We finally embark on the case where

a(t) = |t− t0|−2αb(t) (t ∈ T)

with a real number α ∈ (0, 1/2) and a function b ∈ L∞(T) that is continuous and
nonzero at t0. Theorem 3.3 gives

‖Tn(a)‖ ∼ Γ(1 − 2α)
sinπα

π
‖Kα‖ |b(t0)|n2α,

where the kernel of Kα is |x− y|2α−1.

670 ALBRECHT BÖTTCHER AND JANI VIRTANEN

Proposition 5.1. We have

1

2α

(
2

4α + 1
+ 2

Γ(2α + 1)Γ(2α + 1)

Γ(4α + 2)

)1/2

≤ ‖Kα‖ ≤ 1

α
.

Proof. We may think of Kα as the compression to L2(0, 1) of the convolution
operator on L2(R) whose convolution kernel κ(x) is |x|2α−1 for |x| < 1 and 0 for
|x| > 1. As in the proof of Lemma 2.3 we therefore see that

‖Kα‖ ≤ max
ξ∈R

|(Fκ)(ξ)| ≤
∫
R

|κ(x)| dx =

∫ 1

−1

|x|2α−1 dx =
1

α
.

Let 1 be the function which is identically 1 on (0, 1). Taking into account that

‖Kα‖2 ≥ ‖Kα1‖2/‖1‖2 = ‖Kα1‖2 and (Kα1)(x) =
1

2α
(x2α + (1 − x)2α),

we obtain that ‖Kα‖2 is greater than or equal to

1

4α2

∫ 1

0

(x2α + (1 − x)2α)2 dx =
1

4α2

(
2

4α + 1
+ 2

Γ(2α + 1)Γ(2α + 1)

Γ(4α + 2)

)
.

This proves the lower bound for ‖Kα‖.
Corollary 5.2. We have ‖Kα‖ ∼ 1/α as α → 0 and ‖Kα‖ ∼ 1 as α → 1/2.

Proof. By Proposition 5.1, α2 ‖Kα‖2 ≤ 1 and

lim inf
α→0

α2 ‖Kα‖2 ≥ 1

4

(
2 + 2

Γ(1)Γ(1)

Γ(2)

)
= 1,

which implies that α ‖Kα‖ → 1 as α → 0. Thinking of Kα −K1/2 as the convolution
operator with the convolution kernel |x|2α−1 − 1 for |x| < 1 and 0 for |x| > 1, we get

‖Kα −K1/2‖ ≤
∫ 1

−1

(|x|2α−1 − 1) dx =
1

α
− 2 = o(1) as α → 1

2
.

Thus, ‖Kα‖ → ‖K1/2‖ as α → 1/2. Since (K1/2f)(x) =
∫ 1

0
f(y) dy, it is easily seen

that ‖K1/2‖ = 1.

Corollary 5.3. We have

Γ(1 − 2α)
sinπα

π
‖Kα‖ ∼ 1 as α → 0,

Γ(1 − 2α)
sinπα

π
‖Kα‖ ∼ 1

2π(1/2 − α)
as α → 1

2
.

Proof. The asymptotics for α → 0 are immediate from Corollary 5.2. For α going
to 1/2, Corollary 5.2 and the formulas

Γ(1 − 2α)
sinπα

π
∼ Γ(1 − 2α)

π
=

1

sin 2πα

1

Γ(2α)
∼ 1

2π(1/2 − α)

yield the asserted asymptotics.

TOEPLITZ MATRICES WITH FISHER–HARTWIG SYMBOLS 671

Acknowledgments. The authors thank Fanny Godet and Bernhard Becker-
mann for drawing their attention to the problem considered in this paper. They are
also greatly indebted to Torsten Ehrhardt for many valuable remarks. Jani Virta-
nen thanks the Department of Mathematics for its hospitality during his visit to TU
Chemnitz in Spring 2006.

REFERENCES

[1] A. Böttcher, The Onsager formula, the Fisher–Hartwig conjecture, and their influence on
research into Toeplitz operators, J. Statist. Phys., 78 (Lars Onsager Festschrift) (1995),
pp. 575–585.

[2] A. Böttcher and S. Grudsky, On the condition numbers of large semi-definite Toeplitz
matrices, Linear Algebra Appl., 279 (1998), pp. 285–301.

[3] A. Böttcher and S. Grudsky, Fejér means and norms of large Toeplitz matrices, Acta Sci.
Math. (Szeged), 69 (2003), pp. 889–900.

[4] A. Böttcher and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices, Uni-
versitext, Springer-Verlag, New York, 1999.

[5] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, 2nd ed., Springer-Verlag,
Berlin, Heidelberg, New York, 2006.

[6] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 2nd ed., Springer-
Verlag, New York, 1991.

[7] R. Dahlhaus, Efficient parameter estimation for self-similar processes, Ann. Statist., 17
(1989), pp. 1749–1766.

[8] P. Doukhan, G. Oppenheim, and M. S. Taqqu, eds., Theory and Applications of Long-Range
Dependence, Birkhäuser Boston, Boston, 2003.

[9] T. Ehrhardt, A status report on the asymptotic behavior of Toeplitz determinants with Fisher–
Hartwig singularities, in Recent Advances in Operator Theory (Groningen, 1998), Oper.
Theory Adv. Appl. 124, Birkhäuser, Basel, 2001, pp. 217–241.

[10] R. Lewis and G. C. Reinsel, Prediction of multivariate time series by autoregressive model
fitting, J. Multivariate Anal., 16 (1985), pp. 393–411.

[11] Y. Lu and C. M. Hurvich, On the complexity of the preconditioned conjugate gradient al-
gorithm for solving Toeplitz systems with a Fisher–Hartwig singularity, SIAM J. Matrix
Anal. Appl., 27 (2005), pp. 638–653.

[12] W. F. Trench, Asymptotic distribution of the spectra of a class of generalized Kac–Murdock–
Szegö matrices, Linear Algebra Appl., 294 (1999), pp. 181–192.

[13] W. F. Trench, Properties of some generalizations of Kac–Murdock–Szegö matrices, in Struc-
tured Matrices in Mathematics, Computer Science and Engineering, II (Boulder, CO, 1999),
Contemp. Math. 281, AMS, Providence, RI, 2001, pp. 233–245.

[14] W. F. Trench, Spectral distribution of generalized Kac–Murdock–Szegö matrices, Linear Al-
gebra Appl., 347 (2002), pp. 251–273.

[15] E. E. Tyrtyshnikov and N. L. Zamarashkin, Toeplitz eigenvalues for Radon measures, Linear
Algebra Appl., 343/344 (2002), pp. 345–354.

[16] H. Widom, On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc., 88
(1958), pp. 491–522.

[17] H. Widom, Extreme eigenvalues of translation kernels, Trans. Amer. Math. Soc., 100 (1961),
pp. 252–262.

[18] H. Widom, Extreme eigenvalues of N-dimensional convolution operators, Trans. Amer. Math.
Soc., 106 (1963), pp. 391–414.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 672–684

CONSTRAINT-STYLE PRECONDITIONERS FOR REGULARIZED
SADDLE POINT PROBLEMS∗

H. S. DOLLAR†

Abstract. The problem of finding good preconditioners for the numerical solution of an im-
portant class of indefinite linear systems is considered. These systems are of a regularized saddle

point structure [A BT

B −C
][xy] = [cd], where A ∈ R

n×n, C ∈ R
m×m are symmetric and B ∈ R

m×n.

In [SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300–1317], Keller, Gould, and Wathen analyze the
idea of using constraint preconditioners that have a specific 2 by 2 block structure for the case of
C being zero. We shall extend this idea by allowing the (2, 2) block to be symmetric and positive
semidefinite. Results concerning the spectrum and form of the eigenvectors are presented, as are
numerical results to validate our conclusions.

Key words. preconditioning, indefinite linear systems, Krylov subspace methods

AMS subject classifications. 65F10, 65F15, 65F50, 90C20

DOI. 10.1137/050626168

1. Introduction. Recently, a large amount of work has been devoted to the
problem of solving large linear systems in saddle point form. Such systems arise in
a wide variety of technical and scientific applications. For example, interior point
methods in both linear and nonlinear optimization require the solution of a sequence
of systems in saddle point form [27]. Another popular field, which is a major source of
saddle point problems, is that of mixed finite element methods in engineering fields;
see [9] and [19, Chapters 7 and 9]. An excellent survey of numerical methods for
algebraic saddle point problems has been written by Benzi, Golub, and Liesen [4].

We wish to find the solution of block 2 × 2 linear systems of the form

(1.1)

[
A BT

B −C

]
︸ ︷︷ ︸

A

[
x
y

]
=

[
c
d

]
︸ ︷︷ ︸

b

,

where A ∈ R
n×n, C ∈ R

m×m are symmetric and B ∈ R
m×n. We shall assume

that m ≤ n and ker(C) ∩ ker(BT) = {0}, thus ensuring that A is nonsingular [4,
Theorem 3.1]. If A and C are positive definite, then the matrix A is a permuted quasi-
definite matrix [26]. Vanderbei has shown that quasi-definite matrices are strongly
factorizable; i.e., a Cholesky-like factorization LDLT exists for any symmetric row
and column permutation of the quasi-definite matrix [26]. The diagonal matrix has
n positive and m negative pivots. However, we shall not confine ourselves to quasi-
definite matrices.

It may be attractive to use iterative methods to solve systems such as (1.1),
particularly for large m and n. In particular, Krylov subspace methods might be used.
It is often advantageous to use a preconditioner, P, with such iterative methods. The
preconditioner should reduce the number of iterations required for convergence but

∗Received by the editors March 7, 2005; accepted for publication (in revised form) by V. Simoncini
December 18, 2006; published electronically May 22, 2007.

http://www.siam.org/journals/simax/29-2/62616.html
†Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton,

Oxon OX11 0QX, UK (S.Dollar@rl.ac.uk).

672

CONSTRAINT-STYLE PRECONDITIONERS 673

not significantly increase the amount of computation required at each iteration [25,
Chapter 13].

In section 2, we shall first review the well-known spectral properties of a technique
commonly known as constraint preconditioning when C = 0 [14, 16]. For the case of
C = 0, a constraint preconditioner exactly reproduces the (constraint) blocks B, BT

and the C = 0 block. It is restrictive to assume that the matrix C in the saddle point
systems is always a zero matrix: a number of situations arise in which C �= 0 [1, 15, 23].
In all these cases, C is positive semidefinite, and hence we shall consider the idea of
extending constraint preconditioners to the case of C being positive semidefinite.
In particular, the preconditioner will exactly reproduce the B, BT and C blocks,
while the A block will be replaced by a symmetric block, which we refer to as G;
this is considered in sections 3 and 4. Such a preconditioner has been considered
before; for example, Perugia and Simoncini consider the case of G being diagonal
and positive definite [18], while G is assumed to be nonsingular in [22] and positive
definite in [3, 8, 24], but we show that these assumptions can be relaxed. In the past
couple of years, the use of implicit factorization preconditioners has been proposed
[7] with the aim of reducing the cost (both in CPU time and memory usage) of
applying a preconditioner of the form suggested in this paper. However, such implicit
factorization preconditioners will frequently generate a matrix G which is symmetric
and singular or indefinite, and thus the analysis of these preconditioners with such a
G is necessary.

2. Constraint preconditioners. Let us initially assume that C = 0. Lukšan
and Vlček [17] and Keller, Gould, and Wathen [14] investigated the spectral properties
of the resulting preconditioned system when we use a preconditioner of the form

(2.1) P =

[
G BT

B 0

]
,

where G is symmetric and approximates but (in general) is not the same as A. In [17],
G is additionally assumed to be positive definite. They were able to prove various
results about the eigenvalues and eigenvectors for the preconditioned systems P−1A,
where A and P are defined in (1.1) and (2.1), respectively. P is called a constraint
preconditioner. The proof of the following theorem can be found in [14].

Theorem 2.1. Let A ∈ R
(n+m)×(n+m) be a symmetric and indefinite matrix of

the form

A =

[
A BT

B 0

]
,

where A ∈ R
n×n is symmetric and B ∈ R

m×n is of full rank. Assume Z is an
n× (n−m) basis for the nullspace of B. Preconditioning A by a matrix of the form

P =

[
G BT

B 0

]
,

where G ∈ R
n×n is symmetric and B ∈ R

m×n is as above, implies that the matrix
P−1A has

• an eigenvalue at 1 with multiplicity 2m,
• n−m eigenvalues λ which are defined by the generalized eigenvalue problem
ZTAZxz = λZTGZxz.

674 H. S. DOLLAR

This accounts for all of the eigenvalues.
If either ZTAZ or ZTGZ is positive definite, then the indefinite preconditioner

P applied to the indefinite saddle point matrix A with C = 0 yields a preconditioned
matrix P−1A which has real eigenvalues [14]. If both ZTAZ and ZTGZ are positive
definite, then we can use a projected preconditioned conjugate gradient method to
find x and y; see [12]. Results about the associated eigenvectors and the Krylov
subspace dimension can also be found in [14].

3. Constraint preconditioners for the case of symmetric and positive
definite C . In this section, we shall assume that the matrix C is symmetric and
positive definite. The term constraint preconditioner was used in [10] and [14] because
the (1, 2) and (2, 1) matrix blocks of the preconditioner are exact representations of
those in A, where these blocks represent constraints. However, we also observe that
the (2, 2) matrix block is an exact representation when C = 0. This motivates the
generalization of the constraint preconditioner to take the form

(3.1) P =

[
G BT

B −C

]
,

where G ∈ R
n×n approximates but is, in general, not the same as A.

We shall use the following assumptions in the theorems of this section.
A1 C ∈ R

m×m is symmetric and positive definite.
A2 A ∈ R

n×n is symmetric.
A3 B ∈ R

m×n (m < n).
A4 G ∈ R

n×n is symmetric.
A5 A ∈ R

(n+m)×(n+m) is as defined in (1.1).
A6 P ∈ R

(n+m)×(n+m) is as defined in (3.1).
In the next section, A1 will be relaxed.

Theorem 3.1. Assume that A1–A6 hold; then the matrix P−1A has
• an eigenvalue at 1 with multiplicity m,
• n eigenvalues which are defined by the generalized eigenvalue problem(

A + BTC−1B
)
x = λ

(
G + BTC−1B

)
x.

This accounts for all of the eigenvalues.
Proof. The eigenvalues of the preconditioned coefficient matrix P−1A may be

derived by considering the generalized eigenvalue problem

(3.2)

[
A BT

B −C

] [
x
y

]
= λ

[
G BT

B −C

] [
x
y

]
.

Expanding this out, we obtain

(3.3) Ax + BT y = λGx + λBT y

and

(3.4) Bx− Cy = λBx− λCy.

Equation (3.4) implies that either λ = 1 or Bx − Cy = 0. If the former holds, then
(3.3) becomes

(3.5) Ax = Gx.

CONSTRAINT-STYLE PRECONDITIONERS 675

Equation (3.5) is trivially satisfied by x = 0, and hence there are m linearly inde-
pendent eigenvectors of the form

[
0T yT

]
associated with the unit eigenvalue. If

there exist any x �= 0 which satisfy (3.5), then there will be i (0 ≤ i ≤ n) linearly
independent eigenvectors of the form

[
xT yT

]
, where the components x arise from

the generalized eigenvalue problem Ax = Gx.
If λ �= 1, then (3.4) implies that

y = C−1Bx.

Substituting this into (3.3) yields the generalized eigenvalue problem

(3.6)
(
A + BTC−1B

)
x = λ

(
G + BTC−1B

)
x.

Thus, the nonunit eigenvalues of P−1A are defined as the nonunit eigenvalues of (3.6).
Noting that if (3.6) has any unit eigenvalues, then the values of x(�= 0) which satisfy
this are exactly those which arise from the generalized eigenvalue problem Ax = Gx,
we complete our proof.

Theorem 3.1 generalizes the results of [8, Theorem 1] by removing the assumption
that G is positive definite. If A + BTC−1B or G + BTC−1B is positive definite,
then the preconditioned system has real eigenvalues. If both A + BTC−1B and G +
BTC−1B are positive definite, then we can apply a projected preconditioned conjugate
gradient method to find x and y [7, 11]. We also observe that if C has a small 2-
norm, ‖A‖2 = O(1) and ‖G‖2 = O(1), then the BTC−1B terms will dominate the
generalized eigenvalue problem (3.6) for Bx �= 0, and hence there will be at least m
further eigenvalues clustered about 1 for ‖C‖2 � 1. This additional clustering of part
of the spectrum of P−1A will often translate into a speeding up of the convergence
of a selected Krylov subspace method [2, section 1.3].

Theorem 3.2. Assume that A1–A6 hold and G + BTC−1B is positive definite;
then the matrix P−1A has n+m eigenvalues as defined in Theorem 3.1 and m+ i+ j
linearly independent eigenvectors. There are

• m eigenvectors of the form
[

0T yT
]

that correspond to the case λ = 1,

• i (0 ≤ i ≤ n) eigenvectors of the form
[
xT yT

]
arising from Ax = Gx for

which the i vectors x are linearly independent and λ = 1,
• j (0 ≤ j ≤ n) eigenvectors of the form

[
xT yT

]
that correspond to the

case λ �= 1.
Proof. The form of the eigenvectors follows directly from the proof of Theorem 3.1.

It remains for us to show that the m + i + j eigenvectors are linearly independent;
that is, we need to show that

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]⎡⎢⎢⎣
a
(1)
1
...

a
(1)
m

⎤⎥⎥⎦ +

[
x

(2)
1 · · · x

(2)
i

y
(2)
1 · · · y

(2)
i

]⎡⎢⎢⎣
a
(2)
1
...

a
(2)
i

⎤⎥⎥⎦

+

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]⎡⎢⎢⎣
a
(3)
1
...

a
(3)
j

⎤⎥⎥⎦ =

⎡⎢⎣ 0
...
0

⎤⎥⎦(3.7)

implies that the vectors a(k) (k = 1, 2, 3) are zero vectors. Multiplying (3.7) by P−1A,
and recalling that in (3.7) the first matrix arises from the case λk = 1 (k = 1, . . . ,m),

676 H. S. DOLLAR

the second matrix from the case λk = 1 (k = 1, . . . , i), and the last matrix from
λk �= 1 (k = 1, . . . , j), gives

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]⎡⎢⎢⎣
a
(1)
1
...

a
(1)
m

⎤⎥⎥⎦ +

[
x

(2)
1 · · · x

(2)
i

y
(2)
1 · · · y

(2)
i

]⎡⎢⎢⎣
a
(2)
1
...

a
(2)
i

⎤⎥⎥⎦

+

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]⎡⎢⎢⎣
λ1a

(3)
1

...

λja
(3)
j

⎤⎥⎥⎦ =

⎡⎢⎣ 0
...
0

⎤⎥⎦ .(3.8)

Subtracting (3.7) from (3.8), we obtain

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]⎡⎢⎢⎣
(λ1 − 1)a

(3)
1

...

(λj − 1)a
(3)
j

⎤⎥⎥⎦ =

⎡⎢⎣ 0
...
0

⎤⎥⎦ .

The assumption that G+BTC−1B is positive definite implies that x
(3)
k (k = 1, . . . , j)

are linearly independent and thus that (λk−1)a
(3)
1 = 0 (k = 1, . . . , j). The eigenvalues

λk (k = 1, . . . , j) are nonunit, which implies that a
(3)
k = 0 (k = 1, . . . , j). We also have

linear independence of x
(2)
k (k = 1, . . . , i), and thus a

(2)
k = 0 (k = 1, . . . , i). Equation

(3.7) simplifies to

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]⎡⎢⎢⎣
a
(1)
1
...

a
(1)
m

⎤⎥⎥⎦ =

⎡⎢⎣ 0
...
0

⎤⎥⎦ .

However, y
(1)
k (k = 1, . . . ,m) are linearly independent, and thus a

(1)
k = 0 (k =

1, . . . ,m).
Krylov subspace theory states that iteration with any method with an optimality

property, e.g., GMRES [21], will terminate when the degree of the minimal polynomial
is attained. This is also true of some other (nonoptimal) practical iteration methods
such as BiCGTAB as long as failure (for example, through irregular convergence [25,
Chapter 8]) does not occur. In particular, the degree of the minimal polynomial is
equal to the dimension of the corresponding Krylov subspace K

(
P−1A, b

)
(for general

b) [20, Proposition 6.1], where

K
(
P−1A, b

)
= span{b,P−1Ab, (P−1A)2b, . . . , (P−1A)n+m−1b}.

Theorem 3.3. Assume that A1–A6 hold and G + BTC−1B is positive definite;
then the dimension of the Krylov subspace K

(
P−1A, b

)
is at most min{n+2, n+m}.

Proof. As in the proof of Theorem 3.1, the generalized eigenvalue problem is

(3.9)

[
A BT

B −C

] [
x
y

]
= λ

[
G BT

B −C

] [
x
y

]
.

Suppose that the preconditioned matrix P−1A takes the form

(3.10) P−1A =

[
Θ1 Θ3

Θ2 Θ4

]
,

CONSTRAINT-STYLE PRECONDITIONERS 677

where Θ1 ∈ R
n×n, Θ2 ∈ R

m×n, Θ3 ∈ R
n×m, and Θ4 ∈ R

m×m. It is straightforward
to show that Θ3 = 0 and Θ4 = I. The precise forms of Θ1 and Θ2 are irrelevant for
the argument that follows.

From the earlier eigenvalue derivation, it is evident that the characteristic poly-
nomial of the preconditioned linear system (3.10) is

(
P−1A− I

)m n∏
i=1

(
P−1A− λiI

)
.

In order to prove the upper bound on the Krylov subspace dimension, we need to show
that the order of the minimal polynomial is less than or equal to min{n + 2, n + m}.
Expanding the polynomial

(
P−1A− I

)∏n
i=1

(
P−1A− λiI

)
of degree n+1, we obtain[

(Θ1 − I)
∏n

i=1 (Θ1 − λiI) 0
Θ2

∏n
i=1 (Θ1 − λiI) 0

]
.

Since Θ1 has a full set of linearly independent eigenvectors, Θ1 is diagonalizable.
Hence,

(Θ1 − I)

n∏
i=1

(Θ1 − λiI) = 0.

We therefore obtain

(3.11)
(
P−1A− I

) n∏
i=1

(
P−1A− λiI

)
=

[
0 0

Θ2

∏n
i=1 (Θ1 − λiI) 0

]
.

If Θ2

∏n
i=1 (Θ1 − λiI) = 0, then the order of the minimal polynomial of P−1A is less

than or equal to min{n + 1, n + m}. If Θ2

∏n
i=1 (Θ1 − λiI) �= 0, then the dimension

of K
(
P−1A, b

)
is at most min{n+2, n+m} since multiplication of (3.11) by another

factor
(
P−1A− I

)
gives the zero matrix.

Theorem 3.3 tells us that with preconditioner

P =

[
G BT

B −C

]
for

A =

[
A BT

B −C

]
the dimension of the Krylov subspace is no greater than min{n + 2, n + m} under
appropriate assumptions. Hence, termination (in exact arithmetic) is guaranteed in
a number of iterations smaller than this.

4. Constraint preconditioners for the case of symmetric and positive
semi-definite C. We shall relax assumption A1 and instead make the following
assumptions in the theorems of this section:

B1 C ∈ R
m×m is symmetric and positive semidefinite, and has rank p, where

0 < p < m.
B2 ker(C) ∩ ker(BT) = {0}.

678 H. S. DOLLAR

B3 C is factored as C = EDET , where E ∈ R
m×p, and D ∈ R

p×p is symmetric
and positive definite.

B4 The matrix F ∈ R
m×(m−p) is such that its columns span the nullspace of C.

B5
[
E F

]
∈ R

m×m is orthogonal.

B6 The columns of N ∈ R
n×(n−m+p) span the nullspace of FTB.

Observe that assumption B2 implies that FTB has full rank m− p : if Cx = 0, then
we can write x = Fy for some vector y ∈ R

m−p. If also BTx = 0, then substituting
into x = Fy we obtain BTFy = 0. Assumption B2 implies that BTFy = 0 if and only
if y = 0, and hence FTB has full rank m− p.

The exact form of the factorization of C in B3 is clearly not relevant and, also,
clearly not unique—a spectral decomposition is a possibility.

Theorem 4.1. Assume that A2–A6 and B1–B6 hold; then the matrix P−1A has
• an eigenvalue at 1 with multiplicity 2m− p,
• n−m+p eigenvalues which are defined by the generalized eigenvalue problem

NT
(
A + BTED−1ETB

)
Nz = λNT

(
G + BTED−1ETB

)
Nz.

This accounts for all of the eigenvalues.
Proof. Any y ∈ R

m can be written as y = Eye + Fyf . Substituting this into the
generalized eigenvalue problem (3.2) and premultiplying by⎡⎣ I 0

0 ET

0 FT

⎤⎦ ,

we obtain

(4.1)

⎡⎣ A BTE BTF
ETB −D 0
FTB 0 0

⎤⎦⎡⎣ x
ye
yf

⎤⎦ = λ

⎡⎣ G BTE BTF
ETB −D 0
FTB 0 0

⎤⎦⎡⎣ x
ye
yf

⎤⎦ .

Noting that the (3, 3) block has dimension (m− p)× (m− p) and is a zero matrix in
both coefficient matrices, we can apply Theorem 2.1 from [14] to obtain that P−1A
has

• an eigenvalue at 1 with multiplicity 2(m− p),
• n−m+ 2p eigenvalues which are defined by the generalized eigenvalue prob-

lem

(4.2) N
T
[

A BTE
ETB −D

]
Nwn = λN

T
[

G BTE
ETB −D

]
Nwn,

where N is an (n + p) × (n−m + 2p) basis for the nullspace of
[
FTB 0

]
∈

R
(m−p)×(n+p), and [

x
ye

]T
= Nwn +

[
BTF

0

]
wb.

Letting N = [N 0
0 I], then (4.2) becomes

(4.3)

[
NTAN NTBTE
ETBN −D

] [
wn1

wn2

]
= λ

[
NTGN NTBTE
ETBN −D

] [
wn1

wn2

]
.

CONSTRAINT-STYLE PRECONDITIONERS 679

This generalized eigenvalue problem is exactly that of the form considered in Theo-
rem 3.1, and so (4.3) has an eigenvalue at 1 with multiplicity p, and the remaining
eigenvalues are defined by the generalized eigenvalue problem

(4.4) NT
(
A + BTED−1ETB

)
Nwn1 = λNT

(
G + BTED−1ETB

)
Nwn1.

Hence, P−1A has an eigenvalue at 1 with multiplicity 2m − p, and the other
eigenvalues are defined by the generalized eigenvalue problem (4.4).

Weaker forms of Theorem 4.1 can be found in [3, section 3.7] and [18, Proposition
5] for the case where G is assumed to be symmetric and positive definite (and diagonal
in [18]). We have relaxed this assumption to G being symmetric and also increased
the lower bound on the number of unit eigenvalues from m to 2m− p.

As for the cases C = 0 and C nonsingular, we are able to obtain conditions which
guarantee that the eigenvalues are real and for which a projected preconditioned con-
jugate gradient method could be applied to find x and y; respectively, these conditions
are

• either NT
(
A + BTED−1ETB

)
N or NT

(
G + BTED−1ETB

)
N is positive

definite,
• both NT

(
A + BTED−1ETB

)
N and NT

(
G + BTED−1ETB

)
N are posi-

tive definite.
Interestingly, the projected preconditioned conjugate gradient method is also derived
by the use of a factorization of C as in assumption B3; transformations are then
used to remove the requirement of needing to factorize C [7]. Additionally, in [7]
the authors show that it can be easy to establish that NT

(
G + BTED−1ETB

)
N is

symmetric and positive definite through the use of implicit factorization constraint
preconditioners: we emphasize that G is often singular or indefinite in these cases.

Similarly to the case p = m, if C has a small 2-norm, ‖A‖ = O(1) and ‖G‖ = O(1),
then the NTBTED−1ETBN terms will dominate the generalized eigenvalue problem
(4.4) for ETBNwn1 �= 0 and hence there will be at least p further eigenvalues clustered
about 1 when ‖C‖2 � 1.

Theorem 4.2. Assume that A2–A6, B1–B6 hold and G+BTED−1ETB is pos-
itive definite; then the matrix P−1A has n+m eigenvalues as defined in Theorem 3.1
and m + i + j linearly independent eigenvectors. There are

• m eigenvectors of the form
[

0T yT
]

that correspond to the case λ = 1,

• i (0 ≤ i ≤ n) eigenvectors of the form
[
xT yT

]
arising from Ax = Gx for

which the i vectors x are linearly independent and λ = 1,
• j (0 ≤ j ≤ n) eigenvectors of the form

[
xT yT

]
that correspond to the

case λ �= 1.
Proof. The proof of the form and linear independence of the m+i+j eigenvectors

is obtained in a similar manner to the proof of Theorem 3.2.
A weaker form of Theorem 4.2 can be found in [3]: this corresponds to the case

of G being symmetric and positive definite.
To show that both the lower and upper bounds on the number of linearly inde-

pendent eigenvectors can be attained, we need only consider variations on Examples
2.5 and 2.6 from [14].

Example 4.1 (minimum bound). Consider the matrices

A =

⎡⎢⎢⎣
1 2 0 1
2 2 1 0
0 1 0 0
1 0 0 −1

⎤⎥⎥⎦ , P =

⎡⎢⎢⎣
1 3 0 1
3 4 1 0
0 1 0 0
1 0 0 −1

⎤⎥⎥⎦

680 H. S. DOLLAR

such that m = 2, n = 2, p = 1, and G is indefinite. The preconditioned matrix
P−1A has an eigenvalue at 1 with multiplicity 4 but only two linearly independent
eigenvectors which arise from the first case of Theorem 4.2. These eigenvectors may

be taken to be
[

0 0 1 0
]T

and
[

0 0 0 1
]T

.
Example 4.2 (maximum bound). Let A ∈ R

4×4 be as defined in Example 4.1,
but assume that G = A. The preconditioned matrix P−1A has an eigenvalue at 1
with multiplicity 4 and clearly a complete set of eigenvectors. These may be taken to
be the columns of the identity matrix.

The linear independence of the m + i + j eigenvectors allows us to obtain an
upper bound on the dimension of the Krylov subspace K

(
P−1A, b

)
.

Theorem 4.3. Assume that A2–A6, B1–B6 hold and G + BTED−1ETB is
positive definite; then the dimension of the Krylov subspace K

(
P−1A, b

)
is at most

min{n−m + p + 2, n + m}.
Proof. As in the proof of Theorem 3.3, the preconditioned matrix P−1A takes

the form

(4.5) P−1A =

[
Θ1 0
Θ2 I

]
,

where Θ1 ∈ R
n×n, and Θ2 ∈ R

m×n. The precise forms of Θ1 and Θ2 are irrelevant
for the argument that follows.

From the earlier eigenvalue derivation, it is evident that the characteristic poly-
nomial of the preconditioned linear system (4.5) is

(
P−1A− I

)2m−p
n−m+p∏

i=1

(
P−1A− λiI

)
.

In order to prove the upper bound on the Krylov subspace dimension, we need to show
that the order of the minimal polynomial is less than or equal to min{n − m + p +
2, n + m}. Expanding the polynomial

(
P−1A− I

)∏n−m+p
i=1

(
P−1A− λiI

)
of degree

n + 1, we obtain [
(Θ1 − I)

∏n−m+p
i=1 (Θ1 − λiI) 0

Θ2

∏n−m+p
i=1 (Θ1 − λiI) 0

]
.

Since G + BTED−1ETB is positive definite, Θ1 has a full set of linearly inde-
pendent eigenvectors and is diagonalizable. Hence, (Θ1 − I)

∏n−m+p
i=1 (Θ1 − λiI) = 0.

We therefore obtain

(4.6)
(
P−1A− I

) n−m+p∏
i=1

(
P−1A− λiI

)
=

[
0 0

Θ2

∏n−m+p
i=1 (Θ1 − λiI) 0

]
.

If Θ2

∏n−m+p
i=1 (Θ1 − λiI) = 0, then the order of the minimal polynomial of P−1A is

less than or equal to min{n−m+ p+ 1, n+m}. If Θ2

∏n−m+p
i=1 (Θ1 − λiI) = 0, then

the dimension of K
(
P−1A, b

)
is at most min{n−m+p+2, n+m} since multiplication

of (4.6) by another factor
(
P−1A− I

)
gives the zero matrix.

Thus, in exact arithmetic, iteration with any method with an optimality condition
will terminate in at most min{n − m + p + 2, n + m} iterations (in practice, exact
arithmetic is not available, and hence this theoretical bound may be exceeded). We
observe that if p = m, then Theorem 4.3 gives the same bound on the Krylov subspace
dimension as that in Theorem 3.3, and if p = 0, then we obtain the results of [14].

CONSTRAINT-STYLE PRECONDITIONERS 681

0 25 50 75 100 125 150
0

0.5

1

1.5

2

2.5

3

j

λ j

C=0
C = [0, 0; 0, I

m/2
]

C=I

Fig. 5.1. Distribution of the eigenvalues of P−1A for the CVXQP1 S problem (m = 50, n =
100) with C = 0, C = [0, 0; 0, Im/2], and C = I. The eigenvalues are sorted such that λ1 ≥ λ2 ≥
· · · ≥ λn+m.

5. Numerical results. The CUTEr test set [13] provides a set of quadratic pro-
gramming problems. We shall use a problem from this set to illustrate how changing
the rank of C affects the multiplicity of the unit eigenvalues and the termination of
GMRES. All tests were performed in MATLAB 7.01.

The CVXQP1 S problem from the CUTEr test set is small with n = 100 and
m = 50. It is a convex quadratic program whose constraints are linear; it is a purely
academic problem which has been constructed specifically for test problems. “Barrier”
penalty terms (in this case 1.1) are added to the diagonal of A to simulate systems
that might arise during an iteration of an interior point method for such problems.
We shall set G = diag(A), C = diag(0, . . . , 0, 1, . . . , 1) and vary the number of zeros
on the diagonal of C so as to change its rank.

In Figure 5.1, we illustrate the change in the eigenvalues of the preconditioned
system P−1A for three different choices of C. The eigenvalues are sorted so that

λ1 ≥ λ2 ≥ · · · ≥ λn+m.

When C = 0, we expect there to be at least 2m unit eigenvalues [14]. We observe
that our example has exactly 2m eigenvalues at 1. From Theorem 3.1, when C = I,
there will be at least m unit eigenvalues. Our example has exactly m unit eigenvalues
(Figure 5.1).

When C has rank m
2 , then the preconditioned system P−1A has at least 3m

2 unit
eigenvalues according to Theorem 4.1. Once again, the number of unit eigenvalues
for our example is exactly the lower bound given by the theorem.

Now suppose that we use (full) GMRES preconditioned by our extended con-
straint preconditioner with G = diag(A) and vary the rank of C by changing the

682 H. S. DOLLAR

10 15 20 25 30 35 40 45

60

65

70

75

80

85

90

95

100

105

rank(C)

ite
ra

tio
ns

Upper bound
GMRES

Fig. 5.2. Comparison of upper bound on the Krylov subspace dimension and the number of
iterations required to reduce the residual by 10−12.

number of 1’s along the diagonal of C (all other entries are zero). Figure 5.2 shows
that with this example and choice of G there is a strong correlation between the upper
bound on the Krylov subspace dimension and the number of iterations required to
reduce the residual by at least a factor of 10−12. This has been chosen as an extreme
example, and the number of iterations is often a lot lower than the upper bound on
the Krylov subspace dimension. A comprehensive comparison (taking into account
both CPU times and the number of iterations) for these preconditioners can be found
in [7]: this study reveals the possible advantages of choosing G to be singular or
indefinite.

6. Conclusions. In this paper, we investigated a class of preconditioners for
regularized saddle point matrix systems that incorporate the (1, 2), (2, 1), and
(2, 2) blocks of the original matrix. We showed that the inclusion of these blocks
in the preconditioner clusters at least 2m− p eigenvalues at 1, regardless of the struc-
ture of G. However, the standard convergence theory for Krylov subspace methods
is not readily applicable because, in general, P−1A does not have a complete set of
linearly independent eigenvectors. Using a minimal polynomial argument, we found
a general (sharp) upper bound on the number of iterations required to solve linear
systems of the form (1.1).

To confirm the analytical results of this paper, we used a subset of problems from
the CUTEr test set. We used the CVXQP1 S problem and varied the rank of C to
confirm the lower bound on the number of unit eigenvalues and the upper bound on
the Krylov subspace dimension.

We have assumed that the submatrices B, BT and −C in (1.1) are exactly repro-
duced in the preconditioner. For truly large-scale problems, this will be unrealistic

CONSTRAINT-STYLE PRECONDITIONERS 683

[5, 6, 18], but the theorems in this paper may still be of some interest in the inexact
setting as a guide for choosing preconditioners. We wish to investigate this possibility
in our future work.

Acknowledgments. The author would like to thank Nick Gould, Wil Schilders,
Andy Wathen, and the referees for their helpful input during the process of the work.

REFERENCES

[1] A. Altman and J. Gondzio, Regularized symmetric indefinite systems in interior point meth-
ods for linear and quadratic optimization, Optim. Methods Softw., 11/12 (1999), pp. 275–
302.

[2] O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems:
Theory and Computation, Classics Appl. Math. 35, SIAM, Philadelphia, 2001. Reprint of
the 1984 original.

[3] O. Axelsson and M. Neytcheva, Preconditioning methods for linear systems arising in con-
strained optimization problems, Numer. Linear Algebra Appl., 10 (2003), pp. 3–31.

[4] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numer., 14 (2005), pp. 1–137.

[5] L. Bergamaschi, J. Gondzio, M. Venturin, and G. Zilli, Inexact constraint preconditioners
for linear systems arising in interior point methods, Comput. Optim. Appl., 36 (2007), pp.
137–147.

[6] G. Biros and O. Ghattas, A Lagrange-Newton-Krylov-Schur method for PDE-constrained
optimization, SIAG/Optimization Views-and-News, 11 (2000), pp. 12–18.

[7] H. S. Dollar, N. I. M. Gould, W. H. A. Schilders, and A. J. Wathen, Implicit-factorization
preconditioning and iterative solvers for regularized saddle-point systems, SIAM J. Matrix
Anal. Appl., 28 (2006), pp. 170–189.

[8] C. Durazzi and V. Ruggiero, Indefinitely preconditioned conjugate gradient method for large
sparse equality and inequality constrained quadratic problems, Numer. Linear Algebra
Appl., 10 (2003), pp. 673–688.

[9] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers:
With Applications in Incompressible Fluid Dynamics, Oxford University Press, Oxford,
UK, 2005.

[10] R. E. Ewing, R. D. Lazarov, P. Lu, and P. S. Vassilevski, Preconditioning indefinite
systems arising from mixed finite element discretization of second-order elliptic problems,
in Preconditioned Conjugate Gradient Methods (Nijmegen, 1989), Lecture Notes in Math.
1457, Springer, Berlin, 1990, pp. 28–43.

[11] N. I. M. Gould, Iterative methods for ill-conditioned linear systems from optimization, in
Nonlinear Optimization and Related Topics, G. DiPillo and F. Giannessi, eds., Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 123–142.

[12] N. I. M. Gould, M. E. Hribar, and J. Nocedal, On the solution of equality constrained
quadratic programming problems arising in optimization, SIAM J. Sci. Comput., 23 (2001),
pp. 1376–1395.

[13] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr and SifDec: a constrained and uncon-
strained testing environment, revisited, ACM Trans. Math. Software, 29 (2003), pp. 373–
394.

[14] C. Keller, N. I. M. Gould, and A. J. Wathen, Constraint preconditioning for indefinite
linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300–1317.

[15] A. Klawonn, An optimal preconditioner for a class of saddle point problems with a penalty
term, SIAM J. Sci. Comput., 19 (1998), pp. 540–552.

[16] L. Lukšan and J. Vlček, Indefinitely preconditioned inexact Newton method for large sparse
equality constrained non-linear programming problems, Numer. Linear Algebra Appl., 5
(1998), pp. 219–247.

[17] L. Lukšan and J. Vlček, Interior-point method for non-linear non-convex optimization, Nu-
mer. Linear Algebra Appl. 11 (2004), pp. 431–453.

[18] I. Perugia and V. Simoncini, Block-diagonal and indefinite symmetric preconditioners for
mixed finite element formulations, Numer. Linear Algebra Appl., 7 (2000), pp. 585–616.

[19] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations,
Springer Ser. Comput. Math. 23, Springer, Berlin, 1994.

[20] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.

684 H. S. DOLLAR

[21] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[22] C. Siefert and E. de Sturler, Preconditioners for generalized saddle-point problems, SIAM
J. Numer. Anal., 44 (2006), pp. 1275–1296.

[23] D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems Part II.
Using general block preconditioners, SIAM J. Numer. Anal., 31 (1994), pp. 1352–1367.

[24] K.-C. Toh, K.-K. Phoon, and S.-H. Chan, Block preconditioners for symmetric indefinite
linear systems, Internat. J. Numer. Methods Engrg., 60 (2004), pp. 1361–1381.

[25] H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monogr.
Appl. Comput. Math. 13, Cambridge University Press, Cambridge, UK, 2003.

[26] R. J. Vanderbei, Symmetric quasidefinite matrices, SIAM J. Optim., 5 (1995), pp. 100–113.
[27] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 685–697

THE A PRIORI TAN Θ THEOREM FOR EIGENVECTORS∗

SERGIO ALBEVERIO† , ALEXANDER K. MOTOVILOV‡ , AND ALEXEI V. SELIN§

Abstract. Let A be a self-adjoint operator on a Hilbert space H. Assume that the spectrum
of A consists of two disjoint components σ0 and σ1 such that the convex hull of the set σ0 does
not intersect the set σ1. Let V be a bounded self-adjoint operator on H off-diagonal with respect
to the orthogonal decomposition H = H0 ⊕ H1, where H0 and H1 are the spectral subspaces of A
associated with the spectral sets σ0 and σ1, respectively. It is known that if ‖V ‖ <

√
2d, where

d = dist(σ0, σ1) > 0, then the perturbation V does not close the gaps between σ0 and σ1. Assuming
that f is an eigenvector of the perturbed operator A+V associated with its eigenvalue in the interval
(min(σ0)−d,max(σ0)+d), we prove that under the condition ‖V ‖ <

√
2d the (acute) angle θ between

f and the orthogonal projection of f onto H0 satisfies the bound tan θ ≤ ‖V ‖
d

, and this bound is
sharp.

Key words. perturbation problem, spectral subspaces, perturbation of eigenvectors, tan θ
theorem

AMS subject classifications. 47A55, 47B25

DOI. 10.1137/06065667X

1. Introduction. Given a self-adjoint operator A on a Hilbert space H, assume
that σ0 is an isolated part of its spectrum, that is,

(1.1) d = dist(σ0, σ1) > 0,

where σ1 = spec(A) \ σ0 is the rest of the spectrum of A. In this case, we say that
there are open gaps between the sets σ0 and σ1. It is well known (see, e.g., [10, section
135]) that a sufficiently small self-adjoint perturbation V of A does not close these
gaps, which allows one to think of the corresponding disjoint spectral components σ′

0

and σ′
1 of the perturbed operator L = A + V as a result of the perturbation of the

spectral sets σ0 and σ1, respectively.

Assuming (1.1), in this note we are concerned with perturbations V that are off-
diagonal with respect to the partition spec(A) = σ0 ∪σ1, i.e., with perturbations that
anticommute with the difference EA(σ0) − EA(σ1) of the spectral projections EA(σ0)
and EA(σ1) associated with the spectral sets σ0 and σ1, respectively. In general, it
is known (see [6, Theorem 1]) that such perturbations do not close the gaps between
the sets σ0 and σ1 (which means that the inequality dist(σ′

0, σ
′
1) > 0 holds) whenever

(1.2) ‖V ‖ <

√
3

2
d.

∗Received by the editors April 7, 2006; accepted for publication (in revised form) by H. J. Wo-
erdeman December 19, 2006; published electronically May 22, 2007. This work was supported by the
Deutsche Forschungsgemeinschaft (DFG), the Heisenberg-Landau Program, and the Russian Foun-
dation for Basic Research.

http://www.siam.org/journals/simax/29-2/65667.html
†Institut für Angewandte Mathematik, Universität Bonn, Wegelerstraße 6, D-53115 Bonn, Ger-

many; SFB 611, Bonn; BiBoS, Bielefeld-Bonn; CERFIM, Locarno; Accademia di Architettura, USI,
Mendrisio, Switzerland (albeverio@uni-bonn.de).

‡Bogoliubov Laboratory of Theoretical Physics, JINR, Joliot-Curie 6, 141980 Dubna, Moscow
Region, Russia (motovilv@theor.jinr.ru).

§Open Technologies Inc., Obrucheva 30 Str. 1, 117997 Moscow, Russia (selin@ot.ru).

685

686 S. ALBEVERIO, A. K. MOTOVILOV, AND A. V. SELIN

Moreover, if no assumptions are made about the location of σ0 and σ1 except the
assumption (1.1), then condition (1.2) is sharp (see [6, Example 1.5]).

However, there are two important particular mutual positions of the spectral sets
σ0 and σ1 that ensure the disjointness of the perturbed spectral sets σ′

0 and σ′
1 under

conditions on ‖V ‖ much weaker than the general one of (1.2). The first of these two
dispositions is the one where the sets σ0 and σ1 are subordinated, say

(1.3) supσ0 < inf σ1.

The second disposition corresponds to the case where one of the sets σ0 and σ1 is
lying in a finite gap of the other set, say σ0 lies in a finite gap of σ1, which means
that

(1.4) conv(σ0) ∩ σ1 = ∅,

where conv(σ) denotes the convex hull of a set σ ⊂ R. (We recall that by a finite gap
of a closed Borel set Σ on R one understands an open finite interval belonging to the
complement R \ Σ of Σ and such that both of its end points belong to Σ.)

It is known that if (1.3) holds, then for any bounded off-diagonal perturbation
V the interval (supσ0, inf σ1) belongs to the resolvent set of the perturbed operator
L = A+V , and hence σ′

0 ⊂ (−∞, supσ0] and σ′
1 ⊂ [inf σ1,+∞) (see [1, 4, 8]; cf. [5]).

In the case of the disposition (1.4), it has been proven in [6] (see also [5]) that the
gaps between σ0 and σ1 remain open if the off-diagonal perturbation V satisfies the
(sharp) condition

‖V ‖ <
√

2d.

Under this condition, the spectrum of L = A+V consists of two disjoint components
σ′

0 and σ′
1 such that

σ′
0 ⊂ (inf σ0 − d, sup σ0 + d) and σ′

1 ⊂ R \ Δ,

where Δ denotes the gap of σ1 that contains σ0. Notice that the norm bound ‖V ‖ <√
2d is also sharp in the sense that, if it is violated, the spectrum of L in the gap Δ

may be empty at all (see [6, Example 1.6]).
Now assume that the perturbed spectral set σ′

0 contains an eigenvalue of the
operator L = A + V and let f , f �= 0, be an eigenvector of L corresponding to this
eigenvalue. Denote by θ the (acute) angle between the vector f and its projection
f0 = EA(σ0)f onto the spectral subspace H0 = Ran EA(σ0) of A associated with the
unperturbed spectral set σ0.

Under the subordination condition (1.3), for any bounded off-diagonal pertur-
bation V the angle θ cannot exceed π/4. Moreover, the following sharp estimate
holds:

(1.5) θ ≤ 1

2
arctan

(
2‖V ‖
d

) (
<

π

4

)
.

This bound is a simple corollary to the celebrated Davis–Kahan tan 2Θ theorem [4]
(see also [2, Theorem 5.1], [3, Theorem 6.1], and [7, Theorem 2.4]).

In the case of the spectral disposition (1.4), an a posteriori bound on the angle θ
under condition ‖V ‖ <

√
2d follows from [6, Theorem 2.4]. This bound reads

(1.6) θ ≤ arctan

(
‖V ‖
δ

)
,

THE A PRIORI TAN Θ THEOREM FOR EIGENVECTORS 687

where δ denotes the distance between the perturbed spectral set σ′
0 and unperturbed

spectral set σ1. Since δ may be arbitrarily small (see Example 2.5 below), the bound
(1.6), in general, gives no a priori uniform estimate for θ except that θ < π/2.

The present note is aimed just at giving an a priori sharp bound on the angle θ
in the case of the disposition (1.4). In particular, we will prove that under condition
‖V ‖ <

√
2d this angle is strictly separated from π/2. Our main result is as follows.

Theorem 1.1. Given a self-adjoint operator A on the Hilbert space H, assume
that

spec(A) = σ0 ∪ σ1, dist(σ0, σ1) = d > 0, and conv(σ0) ∩ σ1 = ∅.

Let V be a bounded self-adjoint operator on H off-diagonal with respect to the decom-
position H = Ran EA(σ0) ⊕ Ran EA(σ1). Assume, in addition, that

(1.7) ‖V ‖ <
√

2d

and that the operator L = A+V possesses an eigenvector f associated with an eigen-
value

z ∈ (inf σ0 − d, sup σ0 + d).

Then the (acute) angle θ between the vector f and its projection EA(σ0)f onto the
subspace Ran EA(σ0) satisfies the bound

(1.8) θ ≤ arctan

(
‖V ‖
d

)
.

Remark 1.2. The bound (1.8) implies that under condition (1.7) the angle θ can
never exceed the value of arctan

√
2, i.e.,

θ < arctan
√

2 ≈ 0.304π.

We also remark that for ‖V ‖ < d the bound (1.8) follows from [9, Theorem 2].
Throughout the paper, by Ξ(D, d, b) we will denote the function of three real

variables D, d, and b defined on the set

Ω =
{
(D, d, b) | D > 0, 0 < d ≤ D/2, 0 ≤ b <

√
dD

}
by

(1.9) Ξ(D, d, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tan2

(
1

2
arctan

2b

d

)
if b2 ≤ d

√
D

√
D −

√
2d

2
,

1 +
2b2

D2
− 2

D2

√
(dD − b2)

(
(D − d)D − b2

)
if d

√
D

√
D −

√
2d

2
< b2 < dD.

Here and further on, by tan2 θ, θ ∈ R, we understand the square of the tangent of θ,
that is, tan2 θ = (tan θ)2.

Theorem 1.1 appears to be a corollary to a more general statement (Theorem 3.2)
that is proven under the condition

(1.10) ‖V ‖ <
√
d|Δ|,

688 S. ALBEVERIO, A. K. MOTOVILOV, AND A. V. SELIN

where Δ again denotes the (finite) gap of the set σ1 that contains σ0 and |Δ| stands
for the length of the interval Δ. It is known that if (1.10) holds, then the off-diagonal
perturbation V does not close the gaps between σ0 and σ1 (see [5, Theorem 1(i)]).
Although condition (1.10) is in general weaker than (1.7), it involves the additional
parameter |Δ|. The claim of Theorem 3.2 is that under this condition the following
inequality holds:

(1.11) tan θ ≤
(
Ξ(|Δ|, d, ‖V ‖)

)1/2
.

In particular, from formula (1.9) defining the function Ξ one can see that if |Δ| > 2d,
then for V small enough, namely for V such that

‖V ‖2 ≤ d
√
|Δ|

√
|Δ| −

√
2d

2
,

the bound on θ is the same as the bound (1.5) prescribed by the tan 2Θ theorem.
The paper is organized as follows. In section 2, we consider a three-dimensional

version of the problem and prove the bound (1.11) in the case of 3× 3 matrices. The
general finite- or infinite-dimensional case is studied in section 3. In the proof of the
central result of this section, the one of Theorem 3.2, we essentially rely on Lemma
2.2 of section 2.

Throughout the paper, we use the standard notation Mᵀ for the transpose of a
matrix M .

2. A three-dimensional case. We start our consideration with the case where
H = C

3 and the operators A and V are 3 × 3 matrices. Assume that

A =

⎛⎝ λ 0 0
0 γ− 0
0 0 γ+

⎞⎠ and V =

⎛⎝ 0 b− b+
b− 0 0
b+ 0 0

⎞⎠ ,

where

λ, γ±, b± ∈ R and γ+ > γ−.

The matrices A and V are symmetric. Moreover, under the assumption that λ �= γ±,
the matrix V is off-diagonal with respect to the partition spec(A) = σ0 ∪ σ1 of the
spectrum of A into the disjoint sets

σ0 = {λ} and σ1 = {γ−, γ+}.

It is convenient for us to write the matrix L = A + V in the following 2 × 2 block
form:

(2.1) L =

(
λ B
B∗ A1

)
,

where B and A1 are 1 × 2 and 2 × 2 matrices given by

(2.2) B = (b− b+), A1 =

(
γ− 0
0 γ+

)
,

respectively. Clearly, ‖V ‖ = ‖B‖ =
√
|b−|2 + |b+|2.

THE A PRIORI TAN Θ THEOREM FOR EIGENVECTORS 689

Throughout this section, by Δ we will denote the spectral gap of the operator A1

between its eigenvalues γ− and γ+, i.e.,

Δ = (γ−, γ+).

Lemma 2.1. Given a matrix L of the form (2.1), (2.2), assume that λ ∈ Δ and

(2.3) ‖B‖ <
√
d|Δ|,

where |Δ| = γ+ − γ− stands for the length of the interval Δ and

d = dist(σ0, σ1) = min{γ+ − λ, λ− γ−}.

Then L has a unique eigenvalue z in the interval Δ, and this eigenvalue is simple.
Moreover,

γ− < zmin ≤ z ≤ zmax < γ+,

where

zmin = λ− ‖B‖ tan

(
1

2
arctan

2‖B‖
γ+ − λ

)
,(2.4)

zmax = λ + ‖B‖ tan

(
1

2
arctan

2‖B‖
λ− γ−

)
.(2.5)

Proof. Lemma 2.1 is an elementary corollary to [5, Theorem 3.2].
Lemma 2.2. Assume that the hypotheses of Lemma 2.1 hold. Let z be the eigen-

value of the matrix L in the interval Δ and f , f �= 0, the corresponding eigenvector,
Lf = zf . Then the (acute) angle θ between the vectors f and f0 = (1, 0, 0)ᵀ satisfies
the following bound:

(2.6) tan2 θ ≤ Ξ(|Δ|, d, ‖B‖),

where the function Ξ is given by (1.9).
Proof. Assume, without loss of generality, that γ+ = −γ− = γ > 0. Otherwise

one can simply make the corresponding shift of the origin of the spectral parameter
axis. Assume, in addition, that B �= 0 and λ ≥ 0. (There is no loss of generality
in the latter assumption, since, for λ < 0, instead of L one may consider the matrix
−L.)

Thus, in the proof we will assume that

Δ = (−γ, γ), 0 ≤ λ < γ, and d = γ − λ.

Under the hypothesis that ‖B‖ <
√
d|Δ| (=

√
2dγ), from [5, Theorem 1(i)] it

follows that if the eigenvalue z of L is in Δ, then the corresponding eigenvector f ,
Lf = zf , may be chosen in the form

f = (1, x−, x+)ᵀ,

with x± ∈ C such that the matrix X = (x− x+)ᵀ satisfies the Riccati equation

(2.7) λX −A1X + XBX = B∗.

690 S. ALBEVERIO, A. K. MOTOVILOV, AND A. V. SELIN

Moreover,

(2.8) z = λ + BX.

Taking into account (2.2), (2.7) and (2.8) imply

(2.9) x− =
b−

γ + z
and x+ =

b+
−γ + z

.

Hence

(2.10) ‖X‖2 =
|b−|2

(γ + z)2
+

|b+|2
(−γ + z)2

.

In addition, from (2.8) and (2.9) one concludes that z is the solution to equation

(2.11) z = λ +
|b−|2
γ + z

+
|b+|2

−γ + z
.

Let t ∈ [0, 1] be such that

(2.12) |b+|2 = t‖B‖2

and, hence,

(2.13) |b−|2 = (1 − t)‖B‖2.

Notice that under the assumptions we use, the points zmin of (2.4) and zmax of (2.5)
can be written in the form

zmin =
γ + λ

2
−
√

(γ − λ)2

4
+ ‖B‖2,(2.14)

zmax = −γ − λ

2
+

√
(γ + λ)2

4
+ ‖B‖2.(2.15)

It is easy to see that, given the value of ‖B‖, for t in (2.12) and (2.13) varying between
0 and 1 the solution z to (2.11) fills the whole interval [zmin, zmax]. Moreover, with
t decreasing from 1 to 0 the value of z is continuously and monotonously increasing
from zmin to zmax.

On the other hand, one can express t through z. With |b±| given by (2.12) and
(2.13), from (2.11) it follows that

(2.16) t =
1

2γ‖B‖2
[(z − λ)(z2 − γ2) − ‖B‖2(z − γ)].

Taking this into account, we rewrite expression (2.10) in the form

(2.17) ‖X‖2 = ϕ(z),

where the function ϕ is given by

(2.18) ϕ(z) =
‖B‖2 + 2(λ− z)z

γ2 − z2
.

THE A PRIORI TAN Θ THEOREM FOR EIGENVECTORS 691

That is, given the value of ‖B‖, the norm of the solution X to the Riccati equation
(2.7) may be considered as a function of the only variable z that runs through the
interval [zmin, zmax].

There is a single point z0 within the interval (−γ, γ) where the derivative of the
function ϕ(z) is zero, namely

(2.19) z0 =

⎧⎪⎨⎪⎩
0 if λ = 0,

2γ2 − ‖B‖2

2λ
−

√(
2γ2 − ‖B‖2

2λ

)2

− γ2 if λ > 0.

It provides the function ϕ(z) with a maximum.
One concludes by inspection that inequality (2.3) (along with the assumptions

λ ≥ 0 and B �= 0) implies

z0 < zmax.

At the same time, z0 ≤ zmin if 0 < ‖B‖ ≤ β and z0 > zmin if β < ‖B‖ <
√

2dγ, where

(2.20) β =
[
(γ − λ)

√
γ(
√
γ −

√
γ − λ)

]1/2
=

[
d
√
|Δ|

√
|Δ| −

√
2d

2

]1/2

.

Therefore,

(2.21) max
z∈[zmin,zmax]

ϕ(z) = ϕ(zmin) if 0 < ‖B‖ ≤ β

and

(2.22) max
z∈[zmin,zmax]

ϕ(z) = ϕ(z0) if β < ‖B‖ <
√

d|Δ|.

By substituting (2.14) and (2.19) into (2.18), one arrives at

ϕ(zmin) =
d2

2‖B‖2

(
1 +

2‖B‖2

d2
−
√

1 +
4‖B‖2

d2

)
= tan2

(
1

2
arctan

2‖B‖
d

)
(2.23)

and

(2.24) ϕ(z0) = 1 +
2‖B‖2

|Δ|2 − 2

|Δ|2
√

(d|Δ| − ‖B‖2)
(
(|Δ| − d)|Δ| − ‖B‖2

)
,

respectively. To get (2.6), it remains only to observe that tan θ = ‖X‖, which by
combining (2.17) and (2.21)–(2.24) means

tan θ ≤
(

max
z∈[zmin,zmax]

ϕ(z)

)1/2

= Ξ(|Δ|, d, ‖B‖)1/2.

The proof is complete.
Remark 2.3. The bound (2.6) is optimal in the sense that given the values of

|Δ| > 0, d ∈ (0, |Δ|/2), and ‖B‖ <
√

d|Δ|, it is possible to choose a matrix L of
the form (2.1), (2.2) such that for the eigenvector f = (1, x−, x+)ᵀ associated with
the (only) eigenvalue z of L within the interval (γ−, γ+) inequality (2.6) turns into
equality.

692 S. ALBEVERIO, A. K. MOTOVILOV, AND A. V. SELIN

To prove this statement, set γ = |Δ|
2 , γ± = ±γ, and λ = γ−d. If ‖B‖ ≤ β, where

β is given by (2.20), then choose b− = 0 and b+ = ‖B‖. Observe that in this case
z = zmin, and hence by (2.21) such a choice of b± just provides ‖X‖2 = x2

− +x2
+ with

its maximal possible value; i.e., the equalities tan2 θ = ϕ(zmin) = Ξ(|Δ|, d, ‖B‖) hold.
If ‖B‖ > β, first compute t by formula (2.16) for z = z0 with z0 given by (2.19). Then
introduce b+ =

√
t‖B‖ and b− =

√
1 − t ‖B‖. In such a case, z = z0 is the eigenvalue

of the matrix L in Δ, and we have the equality tan2 θ = ϕ(z0); that is, again the
equality tan2 θ = Ξ(|Δ|, d, ‖B‖) holds.

Example 2.4. Again assume that γ+ = −γ− = |Δ|
2 > 0. Assume, in addition,

that λ = 0 and b+ = b− = b√
2

for some b ≥ 0. From (2.11), it is easy to see that

in this case z = 0 is the (only) eigenvalue of the matrix L within the interval Δ.
Moreover, for the corresponding eigenvector f = (1, x−, x+)ᵀ, by (2.9) one infers that
x− = − b√

2d
and x+ = b√

2d
, taking into account that γ− = −d and γ+ = d. Since

‖B‖ = b, the equality tan θ =
√
|x−|2 + |x+|2 yields

tan θ =
‖B‖
d

.

Notice that in this example Ξ(|Δ|, d, ‖B‖) = Ξ(2d, d, ‖B‖) = ‖B‖2

d2 , and thus the
equality tan2 θ = Ξ(|Δ|, d, ‖B‖) holds, too.

Example 2.5. Consider a matrix L of the form (2.1) with γ−, γ+, and λ as in
Example 2.4, that is, with γ+ = −γ− = d > 0 and λ = 0. Set b+ = 0 and let b−
satisfy the inequalities 0 ≤ b− <

√
d|Δ|. Obviously, ‖V ‖ = b−, |Δ| = 2d, and thus

we have ‖V ‖ <
√

2d. The eigenvalue z of the matrix L in the interval Δ (which is the
corresponding solution to (2.11)) simply coincides with zmax (cf. formula (2.15)),

z = −d

2
+

√
d2

4
+ ‖V ‖2.

Clearly, z → d as ‖V ‖ →
√

2d. That is, in this case the distance δ = dist(σ′
0, σ1)

between the perturbed spectral set σ′
0 = {z} and unperturbed spectral set σ1 =

{−d, d} can be made arbitrarily small.

3. General case. Recall that by a finite spectral gap of a self-adjoint operator
T one understands an open finite interval on R lying in the resolvent set of T and
being such that both of its end points belong to the spectrum of T .

In what follows, we adopt the following hypothesis.
Hypothesis 3.1. Let the Hilbert space H be decomposed into the orthogonal sum

of two subspaces, i.e.,

(3.1) H = H0 ⊕ H1.

Assume that, with respect to the decomposition (3.1), a self-adjoint operator L on H

reads as a 2 × 2 operator block matrix,

L =

(
A0 B
B∗ A1

)
, Dom(L) = H0 ⊕ Dom(A1),

where A0 is a bounded self-adjoint operator on H0, A1 a possibly unbounded self-
adjoint operator on H1, and B a bounded operator from H1 to H0. Assume, in

THE A PRIORI TAN Θ THEOREM FOR EIGENVECTORS 693

addition, that A1 has a finite spectral gap Δ = (γ−, γ+), γ− < γ+, the spectrum of
A0 lies in Δ, i.e., spec(A0) ⊂ Δ, and

(3.2) ‖B‖ <
√
d|Δ|,

where

d = dist(spec(A0), spec(A1)).

If f is a nonzero element of the Hilbert space H and K is a subspace of H, by the
angle between f and K we understand the acute angle θ between f and its orthogonal
projection fK onto K, that is, θ = arccos(‖fK‖/‖f‖).

Theorem 3.2. Assume Hypothesis 3.1. Assume, in addition, that the operator
L has an eigenvalue lying in the gap Δ. Let f be an eigenvector of L associated with
this eigenvalue. Then the (acute) angle θ between the vector f and the subspace H0

satisfies the bound

(3.3) tan2 θ ≤ Ξ(|Δ|, d, ‖B‖),

where the function Ξ is given by (1.9).
Proof. Assume that the eigenvector f = f0 ⊕ f1, f0 ∈ H0, f1 ∈ Dom(A1), of the

operator L is associated with an eigenvalue z ∈ Δ. Then the following equalities hold:

A0f0 + Bf1 = zf0,(3.4)

B∗f0 + A1f1 = zf1.(3.5)

Taking into account that z is in the resolvent set of A1, from (3.5) it follows that

(3.6) f1 = −(A1 − z)−1B∗f0.

Hence, f0 �= 0 (otherwise, for f0 = 0, one would have f1 = 0 and then f = 0).
Equations (3.4) and (3.6) yield

A0f0 −B(A1 − z)−1B∗f0 = zf0,

which implies

(3.7) 〈A0f0, f0〉 − 〈B(A1 − z)−1B∗f0, f0〉 = z‖f0‖2.

From now on, suppose that

(3.8) ‖f0‖ = 1

and set λ = 〈A0f0, f0〉. Clearly,

(3.9) λ ∈ [inf spec(A0), sup spec(A0)].

By the spectral theorem, we have

(3.10) 〈B(A1 − z)−1B∗f0, f0〉 =

∫
R\(γ−,γ+)

〈dEA1(μ)B∗f0, B
∗f0〉

μ− z
,

where EA1(μ), μ ∈ R, denotes the spectral family of A1. Let

Δ− = (−∞, γ−] and Δ+ = [γ+,∞).

694 S. ALBEVERIO, A. K. MOTOVILOV, AND A. V. SELIN

By the mean value theorem, there are real numbers μ− ≤ γ− and μ+ ≥ γ+ such that

(3.11)

∫
Δ±

〈dEA1(μ)B∗f0, B
∗f0〉

μ− z
=

〈EA1

(
Δ±

)
B∗f0, B

∗f0〉
μ± − z

=
‖EA1

(
Δ±

)
B∗f0‖2

μ± − z
,

respectively. Introduce the nonnegative numbers b± by

(3.12) b± =
√
α±‖EA1

(
Δ±

)
B∗f0‖,

where

(3.13) α± =
|γ± − z|
|μ± − z| ≤ 1.

Obviously,

(3.14)

∫
Δ±

〈dEA1
(μ)B∗f0, B

∗f0〉
μ− z

=
b2±

γ± − z
.

Thus, taking into account (3.9), (3.10), and (3.11), (3.7) turns into

(3.15) λ−
b2−

γ− − z
−

b2+
γ+ − z

= 0.

At the same time, by (3.6) we have

(3.16) ‖f1‖2 =

∫
R\(γ−,γ+)

〈dEA1(μ)B∗f0, B
∗f0〉

(μ− z)2
.

The contributions of the intervals (−∞, γ−] and [γ+,∞) to the integral on the right-
hand side of (3.16) are estimated separately. For the first interval, one derives∫

Δ−

〈dEA1
(μ)B∗f0, B

∗f0〉
(μ− z)2

≤ 1

z − γ−

∫
Δ−

〈dEA1
(μ)B∗f0, B

∗f0〉
z − μ

,

which by (3.14) means

(3.17)

∫
Δ−

〈dEA1(μ)B∗f0, B
∗f0〉

(μ− z)2
≤

b2−
(γ− − z)2

.

In a similar way, one concludes that

(3.18)

∫
Δ+

〈dEA1(μ)B∗f0, B
∗f0〉

(μ− z)2
≤

b2+
(γ+ − z)2

.

Then by combining (3.16), (3.17), and (3.18) one infers that

(3.19) ‖f1‖2 ≤ x2
− + x2

+,

where

(3.20) x± = − b±
γ± − z

.

THE A PRIORI TAN Θ THEOREM FOR EIGENVECTORS 695

From (3.15), (3.20), it follows that the vector y = (1, x−, x+)ᵀ is an eigenvector of the
3 × 3 matrix

L̃ =

⎛⎝ λ b− b+
b− γ− 0
b+ 0 γ+

⎞⎠
associated with the eigenvalue z, that is, L̃y = zy. By (3.9), for δ = dist(λ, {γ−, γ+})
we have

(3.21) d ≤ δ ≤ |Δ|
2

.

In addition, by (3.12) the square of the norm ‖B̃‖ =
√
b2− + b2+ of the 1 × 2 matrix-row

B̃ = (b− b+) reads

‖B̃‖2 = α2
−〈EA1

(
Δ−

)
B∗f0, B

∗f0〉 + α2
+〈EA1

(
Δ+

)
B∗f0, B

∗f0〉,

and hence

‖B̃‖2 ≤ 〈EA1

(
Δ−

)
B∗f0, B

∗f0〉 + 〈EA1

(
Δ+

)
B∗f0, B

∗f0〉
= 〈B∗f0, B

∗f0〉 = ‖B∗f0‖2

≤ ‖B‖2,(3.22)

taking into account first (3.13) and then (3.8). By the hypothesis, inequality (3.2)
holds. Combining (3.21) and (3.22) with (3.2) implies

(3.23) ‖B̃‖2 <
√
δ|Δ|.

By Lemma 2.2, one then concludes that x2
− +x2

+ ≤ Ξ(|Δ|, δ, ‖B̃‖), which by (3.8) and
(3.19) implies that

(3.24) tan2 θ ≤ Ξ(|Δ|, δ, ‖B̃‖).

Given |Δ| > 0, d ∈ (0, |Δ|/2], and ‖B‖ satisfying (3.2), it is easy to see that the

function Ξ(|Δ|, δ, ‖B̃‖) is monotonously increasing with increasing ‖B̃‖, ‖B̃‖ ≤ ‖B‖.
For d < |Δ|/2, it also monotonously increases if δ decreases from |Δ|

2 to d. Therefore,
from (3.24) it follows that tan2 θ ≤ Ξ(|Δ|, d, ‖B‖), completing the proof.

Remark 3.3. The bound (3.3) is optimal. This follows from Remark 2.3.
Remark 3.4. Notice that under condition ‖B‖ <

√
d(|Δ| − d) from [9, Theorem

5.3] the operator angle Θ between the unperturbed and perturbed spectral subspaces
Ran EA(σ0) and RanEL(σ′

0) satisfies the following (sharp) estimate:

(3.25) Θ ≤ 1

2
arctanκ(‖B‖),

where the function κ(b) is defined for 0 ≤ b <
√
d(|Δ| − d) by

κ(b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2b

d
if b ≤

√
d

2

(
|Δ|
2

− d

)
,

b
|Δ|
2

+

√
d(|Δ| − d)

[(|Δ|
2

− d
)2

+ b2
]

d(|Δ| − d) − b2
if b >

√
d

2

(
|Δ|
2

− d

)
.

696 S. ALBEVERIO, A. K. MOTOVILOV, AND A. V. SELIN

Surely, the bound (3.25) implies the corresponding estimate for the angle θ:

(3.26) θ ≤ 1

2
arctanκ(‖B‖) whenever ‖B‖ <

√
d(|Δ| − d).

One observes by inspection that

Ξ(|Δ|, d, b) ≤ tan2

(
1

2
arctanκ(b)

)
, 0 ≤ b <

√
d(|Δ| − d).

Moreover, if |Δ| > 2d, then for
√

d
2 (|Δ|

2 − d) < b <
√
d(|Δ| − d) the strict inequality

Ξ(|Δ|, d, b) < tan2
(

1
2 arctanκ(b)

)
holds. Therefore, the bound (3.26) is not optimal

in the case of eigenvectors.
Now we are in position to prove Theorem 1.1. This theorem appears to be a

simple corollary to Theorem 3.2.
Proof of Theorem 1.1. Set H0 = Ran EA(σ0) and H0 = Ran EA(σ1). With respect

to the orthogonal decomposition H = H0 ⊕ H1, the operators A and V read as 2 × 2
block operator matrices,

A =

(
A0 0
0 A1

)
and V =

(
0 B
B∗ 0

)
,

where B = V |H1 ; Dom(A) = H0 ⊕ Dom(A1) and Dom(L) = Dom(A). Assume that
Δ is a gap of the set σ1 that contains the whole set σ0. Surely, the length |Δ| of
this gap satisfies the estimate |Δ| ≥ 2d, and the bound (1.7) implies the inequality
‖B‖ <

√
d|Δ|. Then by Theorem 3.2 we have

tan2 θ ≤ Ξ(|Δ|, d, ‖V ‖),

taking into account that ‖V ‖ = ‖B‖. Now it remains only to observe that Ξ(D, d, ‖V ‖)
is a nonincreasing function of the variable D, D ≥ 2d. For D varying in the interval
[2d,∞), it achieves its maximal value just at D = 2d, and this value equals

max
D:D≥2d

Ξ(|Δ|, d, ‖V ‖) =
‖V ‖2

d2
.

Thus, the following inequality holds:

tan θ ≤ ‖V ‖
d

.

The proof is complete.
Remark 3.5. Example 2.4 shows that the bound (1.8) is sharp.

REFERENCES

[1] V. Adamyan, H. Langer, and C. Tretter, Existence and uniqueness of contractive solutions
of some Riccati equations, J. Funct. Anal., 179 (2001), pp. 448–473.

[2] C. Davis, The rotation of eigenvectors by a perturbation, J. Math. Anal. Appl., 6 (1963), pp. 159–
173.

[3] C. Davis, The rotation of eigenvectors by a perturbation. II, J. Math. Anal. Appl., 11 (1965),
pp. 20–27.

[4] C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J.
Numer. Anal., 7 (1970), pp. 1–46.

THE A PRIORI TAN Θ THEOREM FOR EIGENVECTORS 697

[5] V. Kostrykin, K. A. Makarov, and A. K. Motovilov, On the existence of solutions to the
operator Riccati equation and the tanΘ theorem, Integral Equations Operator Theory, 51
(2005), pp. 121–140.

[6] V. Kostrykin, K. A. Makarov, and A. K. Motovilov, Perturbation of spectra and spectral
subspaces, Trans. Amer. Math. Soc., 359 (2007), pp. 77–89.

[7] V. Kostrykin, K. A. Makarov, and A. K. Motovilov, A generalization of the tan 2Θ theorem,
Oper. Theory Adv. Appl., 149 (2004), pp. 349–372.

[8] H. Langer and C. Tretter, Diagonalization of certain block operator matrices and applications
to Dirac operators, Oper. Theory Adv. Appl., 122 (2001), pp. 331–358.

[9] A. K. Motovilov and A. V. Selin, Some sharp norm estimates in the subspace perturbation
problem, Integral Equations Operator Theory, 56 (2006), pp. 511–542.

[10] F. Riesz and B. Sz.-Nagy, Leçons d’analyse fonctionnelle, 2nd ed., Académiai Kiado,
Budapest, 1953.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 699–711

ON PSEUDOSPECTRA AND POWER GROWTH∗

THOMAS RANSFORD†

Abstract. The celebrated Kreiss matrix theorem is one of several results relating the norms
of the powers of a matrix to its pseudospectra (i.e., the level curves of the norm of the resolvent).
But to what extent do the pseudospectra actually determine the norms of the powers? Specifically,
let A,B be square matrices such that, with respect to the usual operator norm ‖ · ‖, we have
‖(zI−A)−1‖ = ‖(zI−B)−1‖ (z ∈ C). (Call this (∗).) Then it is known that 1/2 ≤ ‖A‖/‖B‖ ≤ 2. Are
there similar bounds for ‖An‖/‖Bn‖ for n ≥ 2? Does the answer change if A,B are diagonalizable?
What if (∗) holds, not just for the norm ‖ · ‖, but also for higher-order singular values? What if we
use norms other than the usual operator norm? The answers to all these questions turn out to be
negative, and in a rather strong sense.

Key words. matrix, norm, spectral radius, eigenvalue, singular value, pseudospectra

AMS subject classifications. Primary 47A10; Secondary 15A18, 15A60, 65F15

DOI. 10.1137/060658126

1. Introduction and statement of results. Let N ≥ 1, let C
N be complex

Euclidean N -space, and let C
N×N be the algebra of complex N × N matrices. We

write |·| for the Euclidean norm on C
N , defined by |x| := (

∑N
1 |xj |2)1/2, and write ‖·‖

for the associated operator norm on C
N×N , defined by ‖A‖ := sup{|Ax| : |x| = 1}.

It is well known that, given A ∈ C
N×N , the long-term growth of the norms of

powers of A is governed by the spectral radius ρ(A). Indeed, by the spectral radius
formula, we have

‖An‖ ≥ ρ(A)n (n ≥ 1) and lim
n→∞

‖An‖1/n = ρ(A).

However, in the shorter term, ‖An‖ may well be significantly larger than ρ(A)n. The
recent book of Trefethen and Embree [4] contains an account of these transient effects,
illustrated by examples drawn from many different fields. One of the main themes of
the book is that, to accurately predict the growth of ‖An‖, it is important to study
not only the spectrum of A, but also its pseudospectra, which we now define.

Given A ∈ C
N×N and ε > 0, the ε-pseudospectrum of A is defined to be the set

σε(A) := {z ∈ C : ‖(zI −A)−1‖ > ε−1}.

Here and in what follows we adopt the useful convention that ‖(zI − A)−1‖ = ∞ if
z ∈ σ(A), the spectrum of A. Thus σε(A) shrinks to σ(A) as ε ↓ 0. From a knowledge
of the pseudospectra of A, it is possible to deduce both upper and lower bounds on
the growth of ‖An‖. A well-known result of this type is the Kreiss matrix theorem.
We refer to [4] for this and several other such results. In addition, there are efficient
methods for numerical computation of pseudospectra (see [4, Chapter IX]), so this
approach is highly practical.

∗Received by the editors April 25, 2006; accepted for publication (in revised form) by J. H. Brandts
January 2, 2007; published electronically June 5, 2007. This research was supported by grants from
NSERC and the Canada Research Chairs program.

http://www.siam.org/journals/simax/29-3/65812.html
†Département de Mathématiques et de Statistique, Université Laval, Québec City, G1K 7P4, QC,

Canada (ransford@mat.ulaval.ca).

699

700 THOMAS RANSFORD

The purpose of this paper is to show that, in predicting power growth, not even
pseudospectra tell the whole story. The issue was already addressed by Greenbaum
and Trefethen in [3] (see also [4, section 47]). Suppose that two N ×N matrices A,B
have identical pseudospectra, i.e., that

‖(zI −A)−1‖ = ‖(zI −B)−1‖ (z ∈ C).(1.1)

Does it then follow that ‖p(A)‖ = ‖p(B)‖ for every polynomial p? In particular, can
we conclude that ‖An‖ = ‖Bn‖ for all n ≥ 1? The answer is no. An example was
given in [3] (and again in [4]) of two matrices A,B with identical pseudospectra such
that ‖A‖ = 1 and ‖B‖ =

√
2. But this example leaves the following basic questions

unresolved.

1.1. What about higher powers?. By adapting the Greenbaum–Trefethen ex-
ample, one can construct, for each ε > 0, matrices A,B with identical pseudospectra
such that ‖A‖/‖B‖ > 2− ε. On the other hand, it is known that if A,B satisfy (1.1),
then we must have

1/2 ≤ ‖A‖/‖B‖ ≤ 2.(1.2)

(For a proof, see [4, pp. 168–169]; see also the remark after Theorem 5.1 below.) Are
there similar bounds for ‖An‖/‖Bn‖ for n ≥ 2? If this were the case, then we could
justifiably say that pseudospectra determine power norms, at least up to a constant
factor. However, our first result answers this question negatively, and in a fairly strong
sense.

Recall that a (finite or infinite) sequence (αk) is called submultiplicative if αk+l ≤
αkαl for all k, l for which the inequality makes sense. For example, the sequence
(‖Ak‖)k≥1 is submultiplicative for every matrix A.

Theorem 1.1. Let n ≥ 2, and let α2, . . . , αn and β2, . . . , βn be positive sub-
multiplicative sequences. Then there exist N ≥ 1 and matrices A,B ∈ C

N×N such
that

‖(zI −A)−1‖ = ‖(zI −B)−1‖ (z ∈ C)(1.3)

and

‖Ak‖ = αk and ‖Bk‖ = βk (k = 2, . . . , n).(1.4)

We may take N = 2n + 3.
This shows that matrices can have identical pseudospectra and yet their second

and higher powers have norms that are completely unrelated to each other.

1.2. What about diagonalizable matrices?. The matrices A,B in the Green-
baum–Trefethen example are nilpotent, as are those constructed in the proof of The-
orem 1.1 above. Obviously, these are rather special. What happens if, instead, we
consider more generic matrices, for example, diagonalizable matrices? (By “diagonal-
izable” we mean similar to a diagonal matrix.) Could it be that, for such matrices at
least, the pseudospectra completely determine the power growth? Until now, no coun-
terexample was known. We obtain one by combining the construction in Theorem 1.1
with a perturbation argument.

Theorem 1.2. Let n ≥ 2, let α2, . . . , αn and β2, . . . , βn be positive submultiplica-
tive sequences, and let ε > 0. Then there exist N ≥ 1 and diagonalizable matrices
A,B ∈ C

N×N such that

‖(zI −A)−1‖ = ‖(zI −B)−1‖ (z ∈ C)(1.5)

PSEUDOSPECTRA AND POWER GROWTH 701

and

αk − ε < ‖Ak‖ < αk + ε and βk − ε < ‖Bk‖ < βk + ε (k = 2, . . . , n).(1.6)

1.3. What if we use “higher-order” pseudospectra?. Given a matrix A ∈
C

N×N , its singular values s1(A), . . . , sN (A) are the square roots of the eigenvalues
of A∗A, listed in decreasing order. In particular, s1(A) = ‖A‖. One of the principal
methods for computing the pseudospectra of A is to calculate the singular values of
zI − A for z ∈ C (once done for one value of z, it is relatively inexpensive to do for
many z), and then use the fact that

‖(zI −A)−1‖ = s1

(
(zI −A)−1

)
=

1

sN (zI −A)
.

It is thus reasonable to ask whether, by retaining the other singular values of the
resolvent (zI − A)−1, it is possible to determine ‖An‖ for values of n ≥ 2. The
following result gives a partial positive answer.

Theorem 1.3. Let N ≥ 1 and let A,B ∈ C
N×N be matrices satisfying

sj

(
(zI −A)−1

)
= sj

(
(zI −B)−1

)
(z ∈ C, j = 1, . . . , N).(1.7)

Then, for every polynomial p,

1√
N

≤ ‖p(A)‖
‖p(B)‖ ≤

√
N.(1.8)

It would be interesting to know if these bounds can be improved so as to be
independent of N . However, even if this were the case, the theorem would be a
bit unrealistic, because it would require us to keep track of all N singular values,
which is probably too expensive in practice. Is there an analogous result where, by
keeping track of just a few singular values, we can obtain inequalities like (1.8) at least
for polynomials of low degree? The following generalization of Theorem 1.1 gives a
negative answer.

Theorem 1.4. Let n ≥ 2, let α2, . . . , αn and β2, . . . , βn be positive submultiplica-
tive sequences, and let m ≥ 1. Then there exist N ≥ 1 and matrices A,B ∈ C

N×N

such that

sj

(
(zI −A)−1

)
= sj

(
(zI −B)−1

)
(z ∈ C, j = 1, . . . ,m)(1.9)

and

‖Ak‖ = αk and ‖Bk‖ = βk (k = 2, . . . , n).(1.10)

We may take N = (m + 1)(n + 2) − 1.

1.4. What about other norms?. Though the Euclidean-norm case is undoubt-
edly the most important one, there are instances where it is more appropriate to
consider pseudospectra defined with respect to other norms. In [4, sections 56, 57],

several examples are given based on the 1-norm on C
N , defined by |x|1 :=

∑N
j=1 |xj |

and the associated operator norm ‖ · ‖1, given by ‖A‖1 := sup{|Ax|1 : |x|1 = 1}.
There is no analogue of the Greenbaum–Trefethen example for this norm, because of
the following theorem.

702 THOMAS RANSFORD

Theorem 1.5. Let N ≥ 1 and let A,B ∈ C
N×N be matrices satisfying

‖(zI −A)−1‖1 = ‖(zI −B)−1‖1 (z ∈ C).(1.11)

Then ‖A‖1 = ‖B‖1.
Can we also deduce that ‖An‖1 = ‖Bn‖1 for n ≥ 2? Once again, the answer

turns out to be no, and not just for ‖ · ‖1, but for a whole variety of possible norms.
To make this precise, it is convenient to introduce some notation and terminology.

Given square matrices A,B, perhaps of different sizes, we shall write A ⊕ B for
the block matrix (

A 0
0 B

)
.

A norm ||| · ||| on C
N×N will be called admissible if it satisfies the following three

conditions:
• ||| · ||| is an algebra norm, i.e., |||AB||| ≤ |||A|||.|||B||| for all A,B ∈ C

N×N

and |||I||| = 1;
• every permutation matrix Q ∈ C

N×N satisfies |||Q||| = 1;
• every block matrix A⊕B ∈ C

N×N satisfies

|||A⊕B||| = max(|||A⊕ 0|||, |||0 ⊕B|||).

For example, if | · |p is the usual p-norm on C
N , given by |x|p := (

∑N
j=1 |xj |p)1/p, then

the associated operator norm on C
N×N is admissible.

The following result is a generalization of Theorem 1.1 in this context.
Theorem 1.6. Let n ≥ 2, and let α2, . . . , αn and β2, . . . , βn be positive submul-

tiplicative sequences. Then there exist N ≥ 1 and A,B ∈ C
N×N such that, for every

admissible norm ||| · ||| on C
N×N ,

|||(zI −A)−1||| = |||(zI −B)−1||| (z ∈ C)(1.12)

and

|||Ak||| = αk and |||Bk||| = βk (k = 2, . . . , n).(1.13)

We may take N = 2n + 3.
We conclude by remarking that there is at least one well-known norm on C

N×N

for which matrices A,B with identical pseudospectra do have identical power growth.
This is the Hilbert–Schmidt (or Frobenius) norm, as was shown by Greenbaum and
Trefethen in [3]. We shall need their result in section 4, where more details will be
given. Of course, the Hilbert–Schmidt norm is not an admissible norm in our sense;
in fact it fails all three parts of the definition.

The rest of the paper is devoted to the proofs of the six theorems above.

2. Proof of Theorem 1.1. The proof of Theorem 1.1 is based on a construction
using weighted shifts, which will also serve as a model in several other proofs to follow.
It is therefore written in such a way as to be easy to adapt to other situations.

Given ω1, . . . , ωn > 0, we write

S(ω1, . . . , ωn) :=

⎛⎜⎜⎜⎜⎜⎝
0 ω1 0 . . . 0
0 0 ω2/ω1 . . . 0
...

...
...

...
0 0 0 . . . ωn/ωn−1

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ .(2.1)

PSEUDOSPECTRA AND POWER GROWTH 703

Lemma 2.1. Let ω1, . . . , ωn be a positive submultiplicative sequence, and let S =
S(ω1, . . . , ωn). Then

‖Sk‖ = ωk (k = 1, . . . , n)(2.2)

and

1 + max
1≤k≤n

ωk|z|k
2

≤ ‖(I − zS)−1‖ ≤ 1 +

n∑
k=1

ωk|z|k (z ∈ C).(2.3)

Proof. Let k ∈ {1, . . . , n}. Taking Q to be an appropriate cyclic permutation
matrix, we have SkQ = diag(ωk, ωk+1/ω1, . . . , ωn/ωn−k, 0, . . . , 0). Using the submul-
tiplicativity of the sequence ω1, . . . , ωn, we obtain

‖SkQ‖ = max(ωk, ωk+1/ω1, . . . , ωn/ωn−k, 0, . . . , 0) = ωk.

Since ‖Q‖ = 1 = ‖Q−1‖, and ‖ · ‖ is an algebra norm, it follows that ‖Sk‖ = ωk. This
proves (2.2).

For the upper bound in (2.3), note that (I − zS)−1 =
∑n

k=0 z
kSk, whence

‖(1 − zS)−1‖ =

∥∥∥∥∥
n∑

k=0

zkSk

∥∥∥∥∥ ≤
n∑

k=0

|z|k‖Sk‖ = 1 +

n∑
k=1

|z|kωk (z ∈ C).

For the lower bound, first fix k ∈ {1, . . . , n} and z ∈ C. Let Q be the permutation
matrix that exchanges rows 2 and k + 1, and let P := diag(1, eiθ, 0, . . . , 0), where
θ = − arg(zk). Then

PQ(I − zS)−1QP =

(
1 |z|kωk

0 1

)
⊕ 0,

and hence

‖(I − zS)−1‖ ≥
∥∥∥(1 |z|kωk

0 1

)
⊕ 0

∥∥∥.
Conjugating by the permutation matrix that swaps the first two rows, we have∥∥∥(1 |z|kωk

0 1

)
⊕ 0

∥∥∥ =
∥∥∥(1 0

|z|kωk 1

)
⊕ 0

∥∥∥.
Taking averages, it follows that

‖(I − zS)−1‖ ≥
∥∥∥(1 |z|kωk/2

|z|kωk/2 1

)
⊕ 0

∥∥∥.
Since ‖ · ‖ is always at least as large as the spectral radius, we deduce that

‖(I − zS)−1‖ ≥ ρ

((
1 |z|kωk/2

|z|kωk/2 1

)
⊕ 0

)
= 1 +

|z|kωk

2
.

As this holds for each k ∈ {1, . . . , n} and each z ∈ C, we obtain the lower bound in
(2.3).

704 THOMAS RANSFORD

Proof of Theorem 1.1. First, choose α1, β1 large enough so that the sequences
α1, . . . , αn and β1, . . . , βn are submultiplicative, and set

A0 := S(α1, . . . , αn) and B0 := S(β1, . . . , βn).

Then set A := A0 ⊕ C0 and B := B0 ⊕ C0, where C0 is the (n + 2) × (n + 2) matrix
defined by

C0 := S(Γ, γ2, γ3, . . . , γn+1).

Here Γ, γ are positive numbers to be chosen later. Note that the sequence of numbers
Γ, γ2, . . . , γn+1 is submultiplicative provided that Γ ≥ γ. Defined in this way, A,B
are (2n + 3) × (2n + 3) matrices, and we shall show that they satisfy (1.3) and (1.4)
if γ,Γ are chosen suitably.

We first choose γ > 0 small enough so that γk < min(αk, βk) (k = 2, . . . , n).
With this choice,

‖Ak‖ = max(‖Ak
0‖, ‖Ck

0 ‖) = max(αk, γ
k) = αk (k = 2, . . . , n),

and likewise ‖Bk‖ = βk (k = 2, . . . , n).
It remains to choose Γ to ensure that A,B have identical pseudospectra. This

will be the case provided that{
‖(I − zC0)

−1‖ ≥ ‖(I − zA0)
−1‖

‖(I − zC0)
−1‖ ≥ ‖(I − zB0)

−1‖ (z ∈ C).(2.4)

By Lemma 2.1, this will be true if

max

(
Γt

2
,
γn+1tn+1

2

)
≥

n∑
k=1

αkt
k and max

(
Γt

2
,
γn+1tn+1

2

)
≥

n∑
k=1

βkt
k (t ≥ 0).

Now there exists t0, depending on α1, . . . , αn, β1, . . . , βn, γ, but not on Γ, such that

γn+1tn+1

2
≥

n∑
k=1

αkt
k and

γn+1tn+1

2
≥

n∑
k=1

βkt
k (t ≥ t0).

Hence it will suffice that

Γt

2
≥

n∑
k=1

αkt
k and

Γt

2
≥

n∑
k=1

βkt
k (0 ≤ t ≤ t0).

This will certainly be true provided we choose Γ large enough. With this choice, the
construction is complete.

3. Proof of Theorem 1.2. The basic idea is to perturb the construction in the
proof of Theorem 1.1. However, keeping track of the norms of the resolvents requires
a certain amount of care. We shall need two lemmas.

Lemma 3.1. Let V,W ∈ C
N×N . If V is invertible and ‖V −W‖ < 1/(2‖V −1‖),

then W is invertible and

‖V −1 −W−1‖ ≤ 2‖V −1‖2‖V −W‖.

PSEUDOSPECTRA AND POWER GROWTH 705

Proof. We have

‖I − V −1W‖ = ‖V −1(V −W)‖ ≤ ‖V −1‖ ‖V −W‖ ≤ 1/2.

Therefore V −1W is invertible, and hence so is W .
We also have

‖V −1 −W−1‖ = ‖V −1(W − V)W−1‖ ≤ ‖V −1‖ ‖W − V ‖ ‖W−1‖.(3.1)

Since ‖W − V ‖ ≤ 1/(2‖V −1‖), it follows that ‖V −1 − W−1‖ ≤ ‖W−1‖/2, whence
‖W−1‖ ≤ 2‖V −1‖. Substituting this back into (3.1) gives the result.

In the next lemma, adj denotes adjugate and ρ denotes spectral radius.
Lemma 3.2. Let V ∈ C

N×N . Then

‖adj(V) − (−V)N−1‖ ≤ 2Nρ(V)‖V ‖N−2.

Proof. It suffices to prove this when V is invertible, since invertible matrices are
dense in C

N×N .
Let p(z) be the characteristic polynomial of V . Since p(z) =

∏N
j=1(z−λj), where

λ1, . . . , λN are the eigenvalues of V , we have p(z) =
∑N

j=0 ajz
j , where

aN = 1, a0 = (−1)N det(V) and |aj | ≤
(
N

j

)
ρ(V)N−j (j = 0, . . . , N).(3.2)

Now by the Cayley–Hamilton theorem, p(V) = 0. Multiplying by V −1 and rearrang-
ing gives

a0V
−1 + aNV N−1 = −

N−1∑
j=1

ajV
j−1.

Using (3.2), it follows that

‖(−1)N det(V)V −1 + V N−1‖ ≤
N−1∑
j=1

(
N

j

)
ρ(V)N−j‖V ‖j−1.

Since det(V)V −1 = adj(V) and ρ(V) ≤ ‖V ‖, we deduce that

‖(−1)Nadj(V) + V N−1‖ ≤
N−1∑
j=1

(
N

j

)
ρ(V)‖V ‖N−j−1‖V ‖j−1 ≤ 2Nρ(V)‖V ‖N−2,

whence we have the result.
Proof of Theorem 1.2. Define A0, B0, C0 as in the proof of Theorem 1.1. The

choice of γ is the same as before, so that ‖(A0 ⊕ C0)
k‖ = αk and ‖(B0 ⊕ C0)

k‖ = βk

for k = 2, . . . , n. This time, however, we choose Γ a little differently, stipulating that
Γ ≥ γ and

Γt

2
≥

n∑
k=1

αkt
k + 2t and

Γt

2
≥

n∑
k=1

βkt
k + 2t (0 ≤ t ≤ 1/γ).(3.3)

The next step is to perturb A0, B0, C0 so as to obtain diagonalizable matrices.
To this end, we fix distinct complex numbers ζ1, . . . , ζn+1 of modulus 1/2, and set

D := diag(ζ1, . . . , ζn+1) and D′ := diag(ζ1, . . . , ζn+1, 0).

706 THOMAS RANSFORD

Then, for each δ > 0, we define

Aδ := A0 + δD, Bδ := B0 + δD, and Cδ := C0 + δD′.

Each of Aδ, Bδ, Cδ has distinct eigenvalues, so Aδ⊕Cδ and Bδ⊕Cδ are diagonalizable.
By continuity, if δ > 0 is chosen small enough, then∣∣∣‖(Aδ ⊕ Cδ)

k‖ − αk

∣∣∣ < ε and
∣∣∣‖(Bδ ⊕ Cδ)

k‖ − βk

∣∣∣ < ε (k = 2, . . . , n).

We next show that, reducing δ if necessary, we have{
‖(Cδ − zI)−1‖ ≥ ‖(Aδ − zI)−1‖
‖(Cδ − zI)−1‖ ≥ ‖(Bδ − zI)−1‖ (|z| ≥ γ).(3.4)

By Lemma 2.1, we have

‖(I − wC0)
−1‖ − ‖(I − wA0)

−1‖ ≥ (1 + Γ|w|/2) −
(

1 +

n∑
k=1

|αk||w|k
)

(w ∈ C).

From our choice of Γ in (3.3), it follows that

‖(I − wC0)
−1‖ − ‖(I − wA0)

−1‖ ≥ 2|w| (|w| ≤ 1/γ).

We now apply Lemma 3.1 with V = I − wA0 and W = I − wAδ. We find that, if
δ|w|‖D‖ ≤ 1/(2‖(I − wA0)

−1‖), then

‖(I − wAδ)
−1 − (I − wA0)

−1‖ ≤ 2‖(I − wA0)
−1‖2δ|w|‖D‖.

It follows that, if δ is chosen small enough, then

‖(I − wAδ)
−1 − (I − wA0)

−1‖ ≤ |w| (|w| ≤ 1/γ).

Likewise, if δ is small enough, then

‖(I − wCδ)
−1 − (I − wC0)

−1‖ ≤ |w| (|w| ≤ 1/γ).

Putting all of this together, we find that, if δ is sufficiently small, then

‖(I − wCδ)
−1‖ ≥ ‖(I − wAδ)

−1‖ (|w| ≤ 1/γ),

from which (3.4) follows for A. Evidently, a similar argument applies to B.
The next step is to show that, by reducing δ yet further, we may ensure that{

‖(Cδ − zI)−1‖ ≥ ‖(Aδ − zI)−1‖
‖(Cδ − zI)−1‖ ≥ ‖(Bδ − zI)−1‖ (|z| ≤ δ).(3.5)

For this we use Lemma 3.2. Applying this lemma with V = Aδ − zI, and recalling
that this is an (n + 1) × (n + 1) matrix, we obtain

‖adj(Aδ − zI) − (zI −Aδ)
n‖ ≤ 2n+1ρ(Aδ − zI)‖Aδ − zI‖n−1.

Now σ(Aδ − zI) = σ(δD − zI), so

ρ(Aδ − zI) = ρ(δD − zI) ≤ ‖δD − zI‖ ≤ δ + |z|.

PSEUDOSPECTRA AND POWER GROWTH 707

It follows that

‖adj(Aδ − zI) − (zI −Aδ)
n‖ ≤ 2n+1(δ + |z|)‖Aδ − zI‖n−1.

Note also that sup|z|≤δ ‖(zI − Aδ)
n − (−A0)

n‖ = O(δ) as δ → 0. Hence there exists
a constant K, independent of z, δ, such that

‖adj(Aδ − zI) − (−A0)
n‖ ≤ Kδ (|z| ≤ δ).

Similarly, as Cδ is an (n + 2) × (n + 2) matrix, there exists a constant K ′ such that

‖adj(Cδ − zI) − (−C0)
n+1‖ ≤ K ′δ (|z| ≤ δ).

Since An
0 �= 0 and Cn+1

0 �= 0, it follows that if δ is small enough, then{
‖adj(Cδ − zI)‖ ≥ ‖Cn+1

0 ‖/2
‖adj(Aδ − zI)‖ ≤ 2‖An

0‖
(|z| ≤ δ).

Now

adj(Cδ − zI) = det(Cδ − zI)(Cδ − zI)−1,
adj(Aδ − zI) = det(Aδ − zI)(Aδ − zI)−1,

and

det(Cδ − zI)

det(Aδ − zI)
=

det(δD′ − zI)

det(δD − zI)
= −z.

Combining these facts, we obtain that, for sufficiently small δ > 0,

‖(Cδ − zI)−1‖
‖(Aδ − zI)−1‖ ≥ 1

|z|
‖Cn+1

0 ‖
4‖An

0‖
≥ 1

δ

‖Cn+1
0 ‖

4‖An
0‖

(|z| ≤ δ).

Thus, if δ is chosen small enough, then (3.5) holds for A. The argument for B is
similar.

Fix δ > 0 so that (3.4) and (3.5) hold. Summarizing what we have achieved so
far, if we define A := Aδ⊕Cδ and B := Bδ⊕Cδ, then A,B are diagonalizable matrices
satisfying (1.6) and

‖(A− zI)−1‖ = ‖(B − zI)−1‖ (z ∈ C \Q),

where Q is the annulus {z ∈ C : δ < |z| < γ}. Our remaining task is to deal with the
case z ∈ Q, which we do as follows. Let L be the maximum of supz∈Q ‖(A− zI)−1‖
and supz∈Q ‖(B − zI)−1‖. Cover Q by a finite number of disks of radius 1/L, with
centers μ1, . . . , μm ∈ Q, say. Define E := diag(μ1, . . . , μm). Then we have{

‖(E − zI)−1‖ ≥ ‖(A− zI)−1‖
‖(E − zI)−1‖ ≥ ‖(B − zI)−1‖ (z ∈ Q).

Thus, if we replace A,B with A ⊕ E,B ⊕ E, respectively, then they have iden-
tical pseudospectra. Evidently the new A,B are still diagonalizable. Finally, as
μ1, . . . , μm ∈ Q, we have ‖Ek‖ ≤ γk ≤ min(αk, βk) for k = 2, . . . , n, and so (1.6) still
holds. The construction is complete.

Remark. The construction yields matrices A,B having eigenvalues of multiplicity
at most two. It would be interesting to obtain an example where the eigenvalues were
all of multiplicity one.

708 THOMAS RANSFORD

4. Proofs of Theorems 1.3 and 1.4. Theorem 1.3 is an easy consequence of
the following result of Greenbaum and Trefethen. Recall that the Hilbert–Schmidt
norm of a square matrix A is defined by

‖A‖HS :=
√

trace(A∗A).

Theorem 4.1 (see [3, Theorem 3]). Let A,B ∈ C
N×N , and suppose that

‖(zI −A)−1‖HS = ‖(zI −B)−1‖HS (z ∈ C).(4.1)

Then, for every polynomial p,

‖p(A)‖HS = ‖p(B)‖HS .(4.2)

Since [3] was never published, we also include a brief proof for the reader’s con-
venience.

Proof. Setting ζ = 1/z, we see that (4.1) is equivalent to

trace[(I − ζA∗)−1(I − ζA)−1] = trace[(I − ζB∗)−1(I − ζB)−1] (ζ ∈ C).(4.3)

Expanding, we deduce that, for some r > 0,∑
k,l≥0

trace(A∗kAl)ζ
k
ζl =

∑
k,l≥0

trace(B∗kBl)ζ
k
ζl (|ζ| < r).

Taking
(

∂
∂ζ

)k(∂
∂ζ

)l
of both sides and then setting ζ = 0, we obtain

trace(A∗kAl) = trace(B∗kBl) (k, l ≥ 0).

Now, let p be a polynomial, say p(z) =
∑n

j=0 ajz
j . Then

trace(p(A)∗p(A)) =

n∑
k,l=0

akaltrace(A∗kAl)

=

n∑
k,l=0

akaltrace(B∗kBl)

= trace(p(B)∗p(B)),

whence we have ‖p(A)‖HS = ‖p(B)‖HS . This completes the proof.

Proof of Theorem 1.3. Observe that ‖A‖2
HS =

∑N
j=1 sj(A)2. Thus, hypothesis

(1.7) implies that (4.1), and consequently also (4.2), holds. For each polynomial p,
we therefore have

N∑
j=1

sj(p(A))2 =

N∑
j=1

sj(p(B))2.

Recalling that the usual operator norm ‖ · ‖ is just the first singular value s1, we thus
obtain

‖p(A)‖2 = s1(p(A))2 ≤
N∑
j=1

sj(p(A))2 =

N∑
j=1

sj(p(B))2 ≤ Ns1(p(B))2 = N‖p(B)‖2.

PSEUDOSPECTRA AND POWER GROWTH 709

This gives the right-hand side of (1.8), and the left-hand side is proved
similarly.

Remark. In going from (1.7) to (4.1), we are losing some information. In fact
(1.7) is equivalent to the following, more complicated version of (4.3):

trace
(
[(I−ζA∗)−1(I−ζA)−1]n

)
= trace

(
[(I−ζB∗)−1(I−ζB)−1]n

)
(ζ ∈ C, n ≥ 1).

Until now, we have not seen how to exploit this.
Proof of Theorem 1.4. We repeat the construction in the proof of Theorem 1.1,

defining A0, B0, C0 exactly as in that proof. This time, however, we define

A := A0 ⊕
m︷ ︸︸ ︷

C0 ⊕ · · · ⊕ C0 and B := B0 ⊕
m︷ ︸︸ ︷

C0 ⊕ · · · ⊕ C0 .

Then A,B ∈ C
N×N , where N = (n + 1) + m(n + 2) = (m + 1)(n + 2) − 1. Just as

before, we have

‖Ak‖ = max(‖Ak
0‖, ‖Ck

0 ‖, . . . , ‖Ck
0 ‖) = αk (k = 2, . . . , n),

which holds similarly for B, so (1.10) holds. Also, since

(zI −A)−1 = (zI −A0)
−1 ⊕

m︷ ︸︸ ︷
(zI − C0)

−1 ⊕ · · · ⊕ (zI − C0)
−1,

and ‖(zI − C0)
−1‖ ≥ ‖(zI −A0)

−1‖ for all z ∈ C (see (2.4)), it follows that

sj

(
(zI −A)−1

)
= ‖(zI − C0)

−1‖ (z ∈ C, j = 1, . . . ,m).

Likewise, the same is true when A is replaced with B. Thus (1.9) holds, and the proof
is complete.

5. Proofs of Theorems 1.5 and 1.6. We shall in fact prove the following slight
generalization of Theorem 1.5.

Theorem 5.1. Let A,B ∈ C
N×N , and suppose that

‖(I − ζA)−1‖1 = ‖(I − ζB)−1‖1 + o(ζ) as ζ → 0, ζ ∈ C.

Then ‖A‖1 = ‖B‖1.
Proof. The norm ‖·‖1 has the particularity that ‖A‖1 = max(|Ae1|1, . . . , |AeN |1),

where e1, . . . , eN is the standard unit vector basis of C
N . Fix a j so that ‖A‖1 =

|Aej |1. Multiplying A and B by the same unimodular constant, we may suppose that
ajj ≥ 0; in other words, the jth entry in Aej is nonnegative. It then follows that, for
all t ≥ 0,

|(I + tA)ej |1 = 1 + t|Aej |1 = 1 + t‖A‖1.

On the other hand, as t → 0+, we have

|(I + tA)ej |1 ≤ ‖I + tA‖1 = ‖(I − tA)−1‖1 + o(t)

= ‖(I − tB)−1‖1 + o(t) ≤ 1 + t‖B‖1 + o(t).

Combining these facts, we deduce that ‖A‖1 ≤ ‖B‖1. By symmetry, ‖B‖1 ≤ ‖A‖1 as
well.

710 THOMAS RANSFORD

Remark. This theorem may be viewed as a result about numerical ranges in
Banach algebras. For background on numerical ranges, we refer to [1, 2]. Let (A, ‖·‖A)
be a Banach algebra with identity 1, and given a ∈ A, let νA(a) denote the numerical
radius of a. It is well known that

νA(a) = lim sup
ζ→0

‖1 + ζa‖A − 1

|ζ| (a ∈ A),

and also that there exists a constant n(A) ∈ [e−1, 1], called the numerical index of A,
such that

n(A)‖a‖A ≤ νA(a) ≤ ‖a‖A (a ∈ A).

From these facts it follows easily that, if a, b ∈ A satisfy

‖(1 − ζa)−1‖ = ‖(1 − ζb)−1‖ + o(ζ) as ζ → 0, ζ ∈ C,

then νA(a) = νA(b), and hence

n(A) ≤ ‖a‖A/‖b‖A ≤ n(A)−1.

Moreover, it is known that the numerical indices of (CN×N , ‖ · ‖) and (CN×N , ‖ · ‖1)
are equal to 1/2 and 1, respectively. We thus recover as special cases both the result
(1.2) mentioned earlier and Theorem 5.1 above.

We now turn to the proof of Theorem 1.6. Recall that the notion of admis-
sible norm on C

N×N was defined in the introduction, and that the weighted shift
S(ω1, . . . , ωn) was defined in (2.1).

Lemma 5.2. Let ω1, . . . , ωn be a positive submultiplicative sequence, and let S =
S(ω1, . . . , ωn). Then, for every admissible norm ||| · ||| on C

(n+1)×(n+1),

|||Sk||| = ωk (k = 1, . . . , n)

and

1 + max
1≤k≤n

ωk|z|k
2

≤ |||(I − zS)−1||| ≤ 1 +

n∑
k=1

ωk|z|k (z ∈ C).

Proof. Repeat the proof of Lemma 2.1, observing that it is valid for every admis-
sible norm.

Proof of Theorem 1.6. Repeat the proof of Theorem 1.1, using Lemma 5.2 in
place of Lemma 2.1. Note that the choices of γ and Γ depend only on the αj and
βj , and not on the particular norm. Thus, the same pair of matrices A,B works
simultaneously for all admissible norms ||| · |||.

Acknowledgments. I am greatly indebted to Nick Trefethen for introducing
me to this topic, for making available the article [3], and for numerous invaluable
discussions. This work was carried out while I was visiting the Mathematical Institute
of the University of Oxford and the Oxford University Computing Laboratory, and I
am grateful to both institutions for their hospitality.

PSEUDOSPECTRA AND POWER GROWTH 711

REFERENCES

[1] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of
Elements of Normed Algebras, Cambridge University Press, Cambridge, UK, 1971.

[2] F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press, Cambridge,
UK, 1973.

[3] A. Greenbaum and L. N. Trefethen, Do the Pseudospectra of a Matrix Determine Its Be-
havior?, Technical Report TR 93-1371, Computer Science Department, Cornell University,
Ithaca, NY, 1993.

[4] L. N. Trefethen and M. Embree, Spectra and Pseudospectra, Princeton University Press,
Princeton, NJ, 2005.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 712–730

MEAN-SQUARED ERROR ESTIMATION FOR
LINEAR SYSTEMS WITH BLOCK CIRCULANT UNCERTAINTY∗

AMIR BECK† , YONINA C. ELDAR‡ , AND AHARON BEN-TAL§

Abstract. We consider the problem of estimating a vector x in the linear model Ax ≈ y, where
A is a block circulant (BC) matrix with N blocks and x is assumed to have a weighted norm bound.
In the case where both A and y are subjected to noise, we propose a minimax mean-squared error
(MSE) approach in which we seek the linear estimator that minimizes the worst-case MSE over a BC
structured uncertainty region. For an arbitrary choice of weighting, we show that the minimax MSE
estimator can be formulated as a solution to a semidefinite programming problem (SDP), which can
be solved efficiently. For a Euclidean norm bound on x, the SDP is reduced to a simple convex
program with N + 1 unknowns. Finally, we demonstrate through an image deblurring example the
potential of the minimax MSE approach in comparison with other conventional methods.

Key words. minimax estimation, block circulant structure, semidefinite programming, robust
optimization

AMS subject classifications. 90C22, 65F30, 90C90

DOI. 10.1137/050643696

1. Introduction. Many problems in data fitting and estimation give rise to a
system of linear equations Ax ≈ y, where both the matrix A and the right-hand side
y are contaminated by noise. Given the observation y, we seek an estimator x̂ of x
that is close in some sense to x. This estimation problem arises in a large variety of
areas in science and engineering, e.g., communication, economics, signal processing,
seismology, and control.

Several approaches for dealing with uncertainties in the model matrix A and
right-hand side vector y are known in the literature. In the total least squares (TLS)
strategy [11, 15], one seeks the minimal norm perturbations ΔA,Δy of the nominal
model matrix A and observation vector y such that the linear system (A + ΔA)x =
y+Δy is consistent. An alternative strategy is the robust least squares (RLS) method
[10, 22, 6]. Here the underlying assumption is that the perturbation matrix ΔA and
the perturbation vector Δy belong to some bounded uncertainty set U . The solution
(or estimator) is chosen to minimize the worst-case data error (or “residual”) over the
uncertainty region:

(1.1) x̂RLS ∈ argmin
x

max
(ΔA,Δy)∈U

‖(A + ΔA)x − y − Δy‖2.

Both the RLS and TLS solutions optimize a criterion that is based on the data

∗Received by the editors October 28, 2005; accepted for publication (in revised form) by L. Van-
denberghe January 2, 2007; published electronically June 5, 2007.

http://www.siam.org/journals/simax/29-3/64369.html
†MINERVA Optimization Center, Department of Industrial Engineering and Management,

Technion—Israel Institute of Technology, Haifa 32000, Israel (becka@ie.technion.ac.il). The research
of this author was partially supported by the Israel Science Foundation under grant 729/04.

‡Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000,
Israel (yonina@ee.technion.ac.il). The research of this author was partially supported by the Israel
Science Foundation under grant 536/04 and by the EU 6th framework programme via the NEWCOM
network of excellence.

§MINERVA Optimization Center, Department of Industrial Engineering, Technion—Israel Insti-
tute of Technology, Haifa 32000, Israel (abental@ie.technion.ac.il). The research of this author was
partially supported by the Israel Science Foundation under grant 729/04.

712

MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 713

error (‖Ax−y‖ or ‖(A+ΔA)x−y−Δy‖) and therefore might provide poor solutions
in terms of the estimation error ‖x− x̂‖. In view of this, the work [8] suggests seeking
an estimator x̂ that minimizes the mean-squared error (MSE):

MSE = E(‖x − x̂‖2),

and restricting attention to linear estimators of the form x̂ = Gy. The expectation
is with respect to the noise vector Δy, which is assumed to have a zero mean and a
positive definite covariance matrix C. For a linear estimator, the MSE is equal to the
sum of the variance V (x̂) and the squared norm of the bias B(x̂):

E(‖x − x̂‖2) = Tr(GCG∗)︸ ︷︷ ︸
V (x̂)

+x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x︸ ︷︷ ︸
‖B(x̂)‖2

.

Since the bias depends on the unknown vector x and the unknown perturbation
matrix ΔA, we cannot choose an estimator to directly minimize the MSE. The
approach advocated in [8, 7], in order to minimize the MSE, is to use additional
a priori information on the vector x, such as an upper bound on its weighted norm,
x∗Tx ≤ L2, where T is a positive definite matrix, and minimize the worst-case MSE.
This leads to the following optimization problem:

(1.2) min
G

max
x∗Tx≤L2,ΔA∈U

E(‖x − x̂‖2),

where U is an uncertainty set associated with the matrix A. The optimal solution
G of the latter problem is called the minimax MSE matrix, and the associated linear
estimator x̂ = Gy is termed the minimax MSE estimator. In the case when U is
given by a single norm bound, it was shown in [8] that the optimal G can be obtained
by solving a semidefinite programming (SDP) problem. In practice, if L is unknown,
then we can estimate it from the data, for example by using the LS estimator [3].

In this paper we study the minimax MSE estimator when the matrix A has a
block circulant (BC) structure:

(1.3) A =

⎛⎜⎜⎜⎝
A0 A1 · · · AN−1

AN−1 A0 · · · AN−2

...
...

...
A1 A2 · · · A0

⎞⎟⎟⎟⎠ ,

where Aj ∈ C
n×m, 0 ≤ j ≤ N − 1. We use the notation A = C(A0, . . . ,AN−1)

for brevity. The BC structure of A imposes the same structure on the perturbation
matrix, i.e., ΔA = C(ΔA0, . . . ,ΔAN−1) with ΔAj ∈ C

n×m. We also assume that
both the covariance matrix C and weighting matrix T are positive definite BC (which
includes the case C = σ2I and T = I). Thus, the optimization problem we consider
is
(1.4)

min
G

max
x∗Tx≤L2,ΔA∈UΔ

{Tr(GCG∗) + x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x} ,

where the set UΔ, which is the set of possible values of ΔA, is given by

(1.5) UΔ
�
= {Δ = C(Δ0, . . . ,ΔN−1) : ‖Δk‖ ≤ ρk, 0 ≤ k ≤ N − 1}.

Here ‖M‖ denotes the Frobenius norm of M.

714 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

The BC model has previously been used in a variety of signal processing problems,
including image restoration [17], cyclic convolution filter banks [20], texture synthesis
and recognition [24], and detection techniques for CDMA systems [26]. Moreover, in
many practical scenarios A is a block Toeplitz matrix which can be approximated by
a BC matrix [12, 9]. We refer the reader to the example in section 5 that describes a
usage of this Toeplitz/circulant approximation in an image deblurring context. The
BC structure also includes the multiple observation model in which the matrix A is a
block diagonal matrix with the same diagonal matrix (corresponding to A1 = A2 =
· · · = AN−1 = 0 in (1.3)). The minimax MSE estimator for the multiple observation
model was studied in [2].

Besides including several cases of practical interest, one of the attributes of the
BC structure is its analytical tractability. In fact the minimax MSE problem (1.4) is
intractable for most choices of uncertainty sets UΔ. However, in the BC model we are
able to exploit properties of BC matrices (in particular, the matrix discrete Fourier
transform (DFT)) that will enable us to develop a computationally tractable scheme
for computing the minimax MSE estimator.

The BC model has been investigated in the context of structured TLS problems
in [1], where it was shown that by using the matrix DFT, the problem can be decom-
posed into several unstructured TLS problems.

The paper is organized as follows. We begin by reviewing in section 2 some
properties of BC matrices and the matrix DFT. In section 3 we first show that under
the BC model, the optimal minimax MSE estimator x̂ = Gy is such that G is a
BC matrix. This allows us to formulate the minimax MSE estimator as a solution to
an SDP, which is a tractable (i.e., polynomial solvable) convex optimization problem
that can be solved, e.g., using interior point methods [21, 25, 4]. In section 4 we treat
the case where the weighting matrix T is the identity matrix I. When the matrix A
is known, we derive an explicit formula for the minimax MSE estimator. When A
is uncertain but the noise vector consists of independent and identically distributed
random variables (C = σ2I), we show that the task of computing the minimax MSE
estimator reduces to solving a simple convex program in N + 1 variables. Finally, we
demonstrate through an image deblurring example, in section 5, the potential of the
minimax MSE approach in comparison with other conventional strategies.

Notation. We denote vectors by boldface lowercase letters and matrices by bold-
face uppercase letters. The identity matrix of appropriate dimension is denoted by I,
(·)∗ and (·)T denote the Hermitian conjugate and the transpose of the corresponding

matrices, respectively, and (̂·) denotes an estimated vector. For two Hermitian ma-
trices A,B, the notation A � B means that A−B is a positive semidefinite matrix.
For a Hermitian matrix A, λmax(A) denotes the largest eigenvalue of A. We denote
by ‖v‖ the Euclidean norm of the vector v and by ‖A‖ =

√
Tr(A∗A) the Frobe-

nius norm of the matrix A. For a given matrix M, m = vec(M) denotes the vector
obtained by stacking the columns of M.

2. BC matrices and the DFT. The aim of this short section is to give a brief
review of results on BC matrices and the DFT defined on them that will be used later
in the paper. These results can also be found in [1, 2], and they are presented here
for completeness.

We begin by noting that the result of multiplication, addition, and conjugation
of BC matrices is also a BC matrix. Let A = C(A0,A1, . . . ,AN−1); then the DFT of
A is also a BC matrix of the same dimensions given by

F(A) = C(F0(A),F1(A), . . . ,FN−1(A)),

MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 715

where Fj(A) are defined as

Fj(A)
�
=

N−1∑
k=0

ωkjAk, 0 ≤ j ≤ N − 1,

with ω = e−
2πi
N (here i =

√
−1). The matrices Fj(A) are called the discrete

Fourier components. The inverse DFT, denoted by F−1, is defined by F−1(A) =
(F−1

0 (A),F−1
1 (A), . . . ,F−1

N−1(A)), where

F−1
j (A) =

1

N

N−1∑
k=0

ω−kjAk, 0 ≤ j ≤ N − 1.

Note that F−1 is indeed an inverse of F in the sense that for every BC matrix A

F−1(F(A)) = A, F(F−1(A)) = A.

The following properties of Fj are generalizations of well-known properties of the
DFT.

Lemma 2.1. Suppose that A, B, and C are BC matrices. Then for every
0 ≤ j ≤ N − 1 the following hold:

1. (Fj(A))∗ = Fj(A
∗).

2. Fj(ImN) = Im.
3. Fj(A + C) = Fj(A) + Fj(C).
4. Fj(AB) = Fj(A)Fj(B).
5. If A is square and invertible, then Fj(A

−1) = (Fj(A))−1.

Theorem 2.1 shows that the eigenvalues of a Hermitian BC matrix are exactly
the eigenvalues of its discrete Fourier components. Theorem 2.1 below is an extension
of a well-known result on circulant matrices to the case of Hermitian block circulant
matrices; for a proof, see, e.g., [2, Theorem A.1].

Theorem 2.1. Let A0,A1, . . . ,AN−1 ∈ C
k×k be matrices such that A =

C(A0,A1, . . . ,AN−1) is a Hermitian matrix. For each 0 ≤ j ≤ N − 1, let λj,0, λj,1,
. . . , λj,k−1 be the eigenvalues of Fj(A). Then the eigenvalues of A are the N · k
eigenvalues λj,i, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ N − 1.

3. Minimax MSE estimator for BC systems. We now use the properties of
BC matrices and the DFT discussed in the previous section in order to find a G which
is a solution to (1.4). Section 3.1 establishes the fact that G can always be chosen as
a BC matrix. In section 3.2 we use this structure of G to find an SDP formulation
of the estimation problem (1.4), where an SDP is the problem of minimizing a linear
objective subject to linear matrix inequality (LMI) constraints, i.e., constraints of the
form B(x) � 0, where the matrix B depends linearly on x. The advantage in this
formulation is that it readily lends itself to efficient computational methods. Indeed,
by exploiting the many well-known algorithms for solving SDPs, e.g., interior point
methods [21, 25, 23], the optimal estimator can be computed efficiently in polynomial
time. Furthermore, SDP-based algorithms are guaranteed to converge to the global
optimum.

3.1. The structure of G. Before proceeding, we introduce some notation. The
set of all permutations of {0, 1, . . . , N − 1} is denoted by SN . For every permutation

716 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

σ ∈ SN and a positive integer l, we associate an lN × lN matrix Pσ,l comprised of
N ×N blocks of size l × l. The (k, j) block of Pσ,l is defined as

(Pσ,l)k,j = δj,σ(k)Il,

where

δk,j =

{
0, k �= j,
1, k = j

is the Kronecker delta. For example, if N = 3 and σ(0) = 1, σ(1) = 0, and σ(2) = 2,
then

Pσ,3 =

⎛⎝ 0 I3 0
I3 0 0
0 0 I3

⎞⎠ ,

where I3 is the identity matrix of size 3 × 3. We will be interested particularly in a
special class of permutations,

A = {σ0, σ1, . . . , σN−1} ,

where σk(j) = (j + k) mod N . For example, if N = 3, then

Pσ0,3 =

⎛⎝ I3 0 0
0 I3 0
0 0 I3

⎞⎠ , Pσ2,3 =

⎛⎝ 0 0 I3

I3 0 0
0 I3 0

⎞⎠ .

Permutation matrices Pσ,l satisfy some interesting properties that will be useful later
on in the proof of Theorem 3.1.

Property A. For every σ ∈ SN and positive integer l, Pσ,lP
∗
σ,l = P∗

σ,lPσ,l = I.
Property B. For every BC matrix A = C(A0,A1, . . . ,AN−1), where Ak ∈ C

m,n,
and every permutation σ in the class A, we have that Pσ,mAP∗

σ,n = A or, equivalently,
Pσ,mA = APσ,n.

The main result of this section is presented in Theorem 3.1, where we show
that the solution of (1.4) is a BC matrix, i.e., G = C(G0,G1, . . . ,GN−1) for some
G0, . . . ,GN−1 ∈ C

m×n.
Theorem 3.1. Let x denote the unknown vector in the model y = (A+ΔA)x+

Δy, where A is a BC matrix, ΔA is an unknown perturbation matrix satisfying
ΔA ∈ UΔ with UΔ given by (1.5), and Δy is zero-mean random vector with a positive
definite BC covariance matrix C. Let T be a positive definite BC matrix. Then the
problem

min
G

max
x∗Tx≤L2,ΔA∈UΔ

E(‖x̂ − x‖2)

has a unique solution G, which is a BC matrix.
Proof. We first rewrite problem (1.2) as

(3.1) min
G∈Cm×n

Γ(G),

where

Γ(G) = max
x∗Tx≤L2,ΔA∈UΔ

E(‖x̂ − x‖2).

MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 717

The function Γ can be decomposed as follows (see (1.4)):

Γ(G) = θ1(G) + θ2(G),

where

θ1(G) = Tr(GCG∗),

θ2(G) = max
x∗Tx≤L2,ΔA∈UΔ

ϕ(G,x,ΔA),

and ϕ(G,x,ΔA)
�
= x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x. It is easy to see that

the positive definiteness of C implies strict convexity of θ1. Moreover, since ϕ is a
convex function with respect to G, it follows that θ2, being a maximum of convex
functions, is also a convex function. Thus, Γ = θ1 + θ2 is a strictly convex function,
and hence it has a unique optimal solution.

Using Properties A and B, we have

θ1(G) = Tr(GCG∗)
A
= Tr(P∗

σ,mPσ,mGCG∗)

= Tr(Pσ,mGCG∗P∗
σ,m)

B
= Tr(Pσ,mGP∗

σ,nCPσ,nG
∗P∗

σ,m)

= Tr((Pσ,mGP∗
σ,n)C(Pσ,mGP∗

σ,n)∗)

= θ1(Pσ,mGP∗
σ,n)

and

θ2(G) = max
x∗Tx≤L2,ΔA∈UΔ

{x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x}

= max
x∗P∗

σ,mTPσ,mx≤L2,ΔA∈UΔ

{x∗P∗
σ,m(I − G(A + ΔA))∗(I − G(A + ΔA))Pσ,mx}

B
= max

x∗Tx≤L2,ΔA∈UΔ

{x∗P∗
σ,m(I − G(A + ΔA))∗(I − G(A + ΔA))Pσ,mx}

A
= max

x∗Tx≤L2,ΔA∈UΔ

{x∗P∗
σ,m(I − G(A + ΔA))∗Pσ,mP∗

σ,m(I − G(A + ΔA))Pσ,mx}

A
= max

x∗Tx≤L2,ΔA∈UΔ

{x∗(I − Pσ,mG(A + ΔA)P∗
σ,m)∗(I − Pσ,mG(A + ΔA)P∗

σ,m)x}

B
= max

x∗Tx≤L2,ΔA∈UΔ

{x∗(I − (Pσ,mGP∗
σ,n)(A + ΔA))∗(I − (Pσ,mGP∗

σ,n)(A + ΔA))x}

= θ2(Pσ,mGP∗
σ,n).

Therefore, Γ(G) = Γ(Pσ,mGP∗
σ,n). We conclude that if G is an optimal solution of

(3.1), then so is Pσ,mGP∗
σ,n for all σ ∈ A. Hence, by the convexity of Γ it follows that

the convex combination 1
N

∑
σ∈A Pσ,mGP∗

σ,n is also an optimal solution. However,

it can be easily verified that 1
N

∑
σ∈A Pσ,mGP∗

σ,n = C(G0,G1, . . . ,GN−1) for some
matrices G0,G1, . . . ,GN−1 ∈ C

m×n. Specifically, if

G =

⎛⎜⎜⎜⎝
G00 G01 · · · G0,N−1

G10 G11 · · · G1,N−1

...
...

...
GN−1,0 GN−1,1 · · · GN−1,N−1

⎞⎟⎟⎟⎠ ,

then Gk = 1
N

∑N−1
i=0 Gi,i+k, 0 ≤ k ≤ N − 1.

718 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

3.2. SDP formulation of the estimation problem. We now use Theorem 3.1
to develop an SDP formulation of (1.4). We first consider the inner maximization
problem

(3.2) max
x∗Tx≤L2

x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x.

As a result of Theorem 3.1, we can assume that G is a BC matrix. Since I, T, and
A + ΔA are also BC matrices, it follows that H ≡ T−1/2(I − G(A + ΔA))∗(I −
G(A + ΔA))T−1/2 is a BC matrix. By the properties listed in Lemma 2.1, we can
deduce that for every 0 ≤ j ≤ N − 1

Fj(H) = Fj(T)−1/2Fj((I − G(A + ΔA))∗(I − G(A + ΔA)))Fj(T)−1/2

= Sj (I − Ej(Fj(A) + Fj(ΔA)))
∗
(I − Ej(Fj(A) + Fj(ΔA)))Sj ,(3.3)

where Sj = Fj(T)−1/2 and Ej = Fj(G). Therefore, by Theorem 2.1, we have

max
x∗Tx≤L2,ΔA∈UΔ

x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x

= NL2 max
ΔA∈UΔ

max
0≤j≤N−1

αj(ΔA),(3.4)

where αj(ΔA) is given by

(3.5) λmax (Sj(I − Ej(Fj(A) + Fj(ΔA)))∗(I − Ej(Fj(A) + Fj(ΔA)))Sj) .

We can therefore express (3.4) as the solution to the problem

(3.6) min
τ

NL2τ

subject to

(3.7) Sj(I − Ej(Fj(A) + Fj(ΔA)))∗(I − Ej(Fj(A) + Fj(ΔA)))Sj
 τI

for every ΔA ∈ UΔ. Invoking Schur’s lemma [4], we can rewrite the constraint (3.7)
as (

τI Sj(I − Ej(Fj(A) + Fj(ΔA)))∗

(I − Ej(Fj(A) + Fj(ΔA)))Sj I

)
� 0,

which can be further written as

(3.8) Rj � P∗
jFj(ΔA)Qj + Q∗

jFj(ΔA)∗Pj ∀ΔA ∈ UΔ,

where

Rj =

(
τI Sj(I − EjFj(A))∗

(I − EjFj(A))Sj I

)
,

Pj =
(

0 E∗
j

)
, Qj =

(
Sj 0

)
.

We now exploit the following lemma, the proof of which is very similar to the proof
of Lemma 2 in [8] and thus is omitted here.

Lemma 3.1. Given matrices P,Q,R with R = R∗ and the set UΔ in (1.5), the
statement

R � P∗Fj(X)Q + Q∗Fj(X)∗P for every X ∈ UΔ and 0 ≤ j ≤ N − 1

MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 719

holds if and only if there exists a λ ≥ 0 such that(
R − λQ∗Q −ρP∗

−ρP λI

)
� 0,

where ρ =
∑N−1

j=0 ρj.
From Lemma 3.1, it follows that (3.8) is satisfied if and only if there exists λj ≥ 0,

0 ≤ j ≤ N − 1, such that

(3.9)

⎛⎝ τI − λjFj(T)−1 Sj(I − EjFj(A))∗ 0
(I − EjFj(A))Sj I −ρEj

0 −ρE∗
j λjI

⎞⎠ � 0

with ρ =
∑N−1

j=0 ρj . Summarizing the above derivations, we see that problem (1.4)
reduces to

min
τ,λj ,G

{
Tr(GCG∗) + NL2τ

}
subject to (3.9).

Since C and G are both BC matrices, the product GCG∗ is also a BC ma-
trix. Let GCG∗ = C(S0,S2, . . . ,SN−1) for some S0,S2, . . . ,SN−1 ∈ C

m×m. Then
Tr(GCG∗) = N Tr(S0). However,

(3.10) NS0 = NF−1
0 (F(GCG∗)) =

N−1∑
j=0

Fj(GCG∗) =

N−1∑
j=0

EjFj(C)E∗
j .

We thus arrive at the following formulation of problem (1.4):

(3.11) min
τ,λj ,Ej

{
NL2τ +

N−1∑
j=0

Tr(EjFj(C)E∗
j)

}

subject to

(3.12)

⎛⎝ τI − λjFj(T)−1 Sj(I − EjFj(A))∗ 0
(I − EjFj(A))Sj I −ρEj

0 −ρE∗
j λjI

⎞⎠ � 0, 0 ≤ j ≤ N − 1,

which is equivalent to

(3.13) min
τ,tj ,Ej ,λj

{
N−1∑
j=0

tj + NL2τ

}

subject to the LMI (3.12) and

(3.14) Tr(EjFj(C)E∗
j) ≤ tj , 0 ≤ j ≤ N − 1,

which can clearly be expressed as an LMI (see (3.15)). Thus, our problem reduces
finally to an SDP.

We summarize our results in Theorem 3.2, where we present the SDP formulation
for the circulant model.

720 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

Theorem 3.2 (SDP formulation). Consider the setting of Theorem 3.1. Then
the unique solution to (1.4) is the BC matrix G = C(G0, . . . ,GN−1), where

Gj =
1

N

N−1∑
k=0

ω−kjEk, 0 ≤ j ≤ N − 1.

Here ω = e−
2πi
N and Ej, 0 ≤ j ≤ N − 1, are the solution to the SDP

min
τ,λj ,tj ,Ej

{
NL2τ +

N−1∑
j=0

tj

}

subject to (
tj e∗j
ej I

)
� 0, 0 ≤ j ≤ N − 1,(3.15) ⎛⎝ τI − λjFj(T)−1 Sj(I − EjFj(A))∗ 0

(I − EjFj(A))Sj I −ρEj

0 −ρE∗
j λjI

⎞⎠ � 0,

where ej = vec(EjFj(C)1/2), Sj = Fj(T)−1/2, and ρ =
∑N−1

j=0 ρj.

4. Minimax MSE estimator for T = I. In this section we discuss a special
case of the minimax MSE estimator problem where T = I. When A is certain, we
find an explicit expression for the optimal minimax MSE estimator. In the case of
uncertain A, we show that the SDP problem of Theorem 3.2 can be reduced to a
simple convex optimization problem in N + 1 unknowns.

4.1. Minimax MSE estimator for T = I with known A. In the case of
known A, we return to the problem of a single system y = Ax + Δy with x∗Tx ≤
L2. This problem was discussed in [8], where it was shown that the minimax MSE
estimator for the case T = I is given by x̂ = Gy with

(4.1) G = α(A∗C−1A)−1A∗C−1,

where α = L2

L2+B and

(4.2) B = Tr
(
(A∗C−1A)−1

)
.

The estimator of (4.1) is a shrunken estimator proposed by Mayer and Willke [19],
which is simply a scaled version of the LS estimator with an optimal choice of shrinkage
factor.

Note that the dominant computation in (4.1) and (4.2) is the inversion of the
mN × mN matrix A∗C−1A, which requires O(m3N3) operations. This number is
prohibitively large even for medium size problems. On the other hand, the calculation
stemming from Theorem 4.1, which exploits the BC structure, requires the inversion
of N DFT components, each an m ×m matrix resulting in a total of only O(m3N)
operations. For example, if N = 100, then our computation is 10000 cheaper than
the direct computation.

Theorem 4.1. Let x denote the vector of unknown parameters in the model
y = Ax+Δy, where A is a known BC matrix and Δy is a zero-mean random vector
with a positive definite BC covariance matrix C. Then the solution to the problem

MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 721

minG max‖x‖2≤L2 E(‖x̂−x‖2) is given by the BC matrix G = C(G0,G1, . . . ,GN−1),
where

Gj =
1

N

N−1∑
k=0

ω−kjEk, 0 ≤ j ≤ N − 1.

Here

Ej =
L2

L2 + B

(
Fj(A)∗Fj(C)−1Fj(A)

)−1
Fj(A)∗Fj(C)−1, 0 ≤ j ≤ N − 1,

and B =
∑N−1

j=0 Tr
(
(Fj(A)∗Fj(C)−1Fj(A))−1

)
.

Proof. First, we note that B of (4.2) is equal to
∑mN

i=1
1
λi

, where λ1, λ2, . . . , λmN

are the eigenvalues of A∗C−1A. From Theorem 2.1, it follows that

B =

N−1∑
j=0

Tr
(
(Fj(A)∗Fj(C)−1Fj(A))−1

)
.

By Theorem 3.1, G is a BC matrix and thus is equal to C(G0,G1, . . . ,GN−1) for
some G0,G1, . . . ,GN−1 ∈ C

m×n. Using the properties listed in Lemma 2.1, we can
calculate the jth DFT component of G (denoted by Ej):

Ej = Fj

(
L2

L2 + B
(A∗C−1A)−1A∗C−1

)
=

L2

L2 + B
(Fj(A)∗Fj(C)−1Fj(A))−1Fj(A)∗Fj(C)−1.

Applying the inverse DFT, we obtain the desired expression for Gj , and the result
follows.

As can be expected intuitively, when L → ∞, the minimax MSE estimator x̂ =
Gy of Theorem 4.1 reduces to the LS estimator. Indeed, when the norm of x can
be made arbitrarily large, the MSE will also be arbitrarily large unless the bias is
equal to zero. Therefore, in this limit, the worst-case estimation error is minimized
by choosing an estimator with zero bias that minimizes the variance, which leads to
the LS solution.

4.2. Minimax estimator for T = I, C = σ2I, and unknown model
matrix. We now show that in the case where T = I and C = σ2I, the minimax MSE
estimator reduces to a simple convex optimization problem in N + 1 unknowns.

Theorem 4.2. Consider the setting of Theorem 3.1 with C = σ2I. For ev-
ery 0 ≤ j ≤ N − 1, let Fj(A) = UjΣjV

∗
j be the singular value decomposition

of Fj(A) (the jth DFT component of A), where Σj is an n × m diagonal matrix
with diagonal elements σj,k > 0, 1 ≤ k ≤ m, and Uj and Vj are unitary matri-
ces. Then the unique solution to minG max‖x‖2≤L2,ΔA∈UΔ

E(‖x̂ − x‖2) is given by

G = C(G0,G1, . . . ,GN−1), where Gj = F−1
j (E), E = C(E0, . . . ,EN−1), with

Ej = VjZjV
∗
j (Fj(A)∗Fj(A))−1/2Fj(A)∗, 0 ≤ j ≤ N − 1,

where Zj is an m×m diagonal matrix with diagonal elements zj,k = fj,k(τ, λj), with

fj,k(τ, λj) =

σj,kλj −
√
λj(τ − λj)

(
σ2
j,kλj − ρ2(1 + λj − τ)

)
(τ − λj)ρ2 + σ2

j,kλj
,

722 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

where ρ =
∑N−1

j=0 ρj and λ0, . . . , λN−1 and τ are the solution to the convex optimiza-
tion problem

min
τ,λj

{
σ2

N−1∑
j=0

m∑
k=1

f2
j,k(τ, λj) + NL2τ

}

subject to

λjσ
2
j,k ≥ ρ2(1 + λj − τ), 1 ≤ k ≤ m, 0 ≤ j ≤ N − 1,

λj ≥ 0, 0 ≤ j ≤ N − 1,

τ ≥ λj , 0 ≤ j ≤ N − 1.

Proof. From Theorem 3.2, the optimal estimator G is equal to C(G0, . . . ,GN−1),

where Gj = 1
N

∑N−1
k=0 ω−kjEk and (Ej)

N−1
j=0 is the solution to

(4.3) min
τ,Ej ,λj

{
σ2

N−1∑
j=0

Tr(Fj(E)Fj(E)∗) + NL2τ

}
,

subject to

(4.4) Mj
�
=

⎛⎝ (τ − λj)I (I − EjFj(A))∗ 0
(I − EjFj(A)) I −ρEj

0 −ρE∗
j λjI

⎞⎠ � 0.

The proof of the theorem is comprised of three parts. First, we show that the optimal
solution (Ej)

N−1
j=0 to (4.3) and (4.4) is of the form

(4.5) Ej = VjZjV
∗
j (Fj(A)∗Fj(A))

−1/2
Fj(A)∗, 0 ≤ j ≤ N − 1,

for some m×m matrices Z0,Z1, . . . ,ZN−1. We then show that Z0,Z1, . . . ,ZN−1 can
be chosen as diagonal matrices. Finally, we find the diagonal elements of Z0,Z1, . . . ,
ZN−1.

We begin by showing that the optimal (Ej)
N−1
j=0 has the form (4.5). The constraint

(4.4) is equivalent to QjMjQ
∗
j � 0 for any invertible Qj . Choosing

Qj =

⎛⎝ V∗
j 0 0

0 V∗
j 0

0 0 U∗
j

⎞⎠ , 0 ≤ j ≤ N − 1,

(4.4) becomes

(4.6)

⎛⎝ (τ − λj)I V∗
j (I − EjFj(A))∗Vj 0

V∗
j (I − EjFj(A))Vj I −ρV∗

jEjUj

0 −ρU∗
jE

∗
jV λjI

⎞⎠ � 0.

Making the change of variables

(4.7) Bj
�
= V∗

jEjUj ,

so that

(4.8) Ej = VjBjU
∗
j ,

MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 723

the problem of (4.3) and (4.6) can be expressed as

(4.9) min
τ,λj ,Bj

{
σ2

N−1∑
j=0

Tr(B∗
jBj) + NL2τ

}

subject to

(4.10)

⎛⎝ (τ − λj)I (I − BjΣj)
∗ 0

(I − BjΣj) I −ρBj

0 −ρB∗
j λj

⎞⎠ � 0.

Let Bj = (Zj Wj), where Zj is the m×m matrix consisting of the first m columns

of Bj , and let Σ̃j denote the m×m matrix with diagonal elements σj,k, 1 ≤ k ≤ m,
for every 0 ≤ j ≤ N − 1. Then we can express the constraint (4.10) as

(4.11) L(Bj)
�
=

⎛⎜⎜⎝
(τ − λj)I (I − ZjΣ̃j)

∗ 0 0

(I − ZjΣ̃j) I −ρZj −ρWj

0 −ρZ∗
j λjI 0

0 −ρW∗
j 0 λjI

⎞⎟⎟⎠ � 0.

Clearly, if (4.11) is satisfied, then

(4.12) K(Zj)
�
=

⎛⎝ (τ − λj)I (I − ZjΣ̃j)
∗ 0

(I − ZjΣ̃j) I −ρZj

0 −ρZ∗
j λj

⎞⎠ � 0.

Now let Bj = (Zj Wj) be any matrix satisfying (4.11), and define B̃j = (Zj 0). Then

L(B̃j) =

(
K(Zj) 0

0 λj

)
� 0,

since K(Zj) � 0. In addition,

Tr(B̃∗
j B̃j) = Tr(Z∗

jZj) ≤ Tr(Z∗
jZj) + Tr(W∗

jWj) = Tr(B∗
jBj).

Therefore, the optimal value of Bj satisfies Wj = 0 for every 0 ≤ j ≤ N − 1, so that
the problem of (4.9) and (4.10) reduces to

(4.13) min
τ,Zj ,λj

{
σ2

N−1∑
j=0

Tr(Z∗
jZj) + NL2τ

}
,

subject to (4.12). Once we find the optimal (Zj)
N−1
j=0 , the optimal (Ej)

N−1
j=0 can be

found from (4.8) as

Ej = VjZj(I 0)U∗
j = VjZjV

∗
j (Fj(A)∗Fj(A))−1/2Fj(A)∗,

thus completing the first part of the proof.
We now show that the optimal values of (Zj)

N−1
j=0 can be chosen as diagonal

matrices. To this end, we first note that if (Zj)
N−1
j=0 satisfies (4.12), then for every

724 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

0 ≤ j ≤ N − 1

J̃

⎛⎝ (τ − λj)I (I − ZjΣ̃j)
∗ 0

(I − ZjΣ̃j) I −ρZj

0 −ρZ∗
j λj

⎞⎠ J̃

=

⎛⎝ (τ − λj)I (I − JZjJΣ̃j)
∗ 0

(I − JZjJΣ̃j) I −ρJZjJ
0 −ρJZ∗

jJ λj

⎞⎠ � 0,(4.14)

where J is any diagonal matrix with diagonal elements ±1, J̃ = diag(J,J,J), and
we have used the fact that diagonal matrices commute and that J∗J = J2 = I. It
follows from (4.14) that K(Z̃j) � 0 for any J, where Z̃j = JZjJ. In addition, we

have that Tr(Z̃∗
j Z̃j) = Tr(Z∗

jZj). Therefore, if (Zj)
N−1
j=0 is an optimal solution, then

so is (JZjJ)N−1
j=0 . Since our problem is convex, the set of optimal solutions is also

convex [18], which implies that (Z′
j)

N−1
j=0 = ((1/2m)

∑
J JZjJ)N−1

j=0 is also a solution,
where the summation is over all 2m diagonal matrices J with diagonal elements ±1.
It is easy to see that Z′

j is a diagonal matrix. Therefore, we have shown that there
exists an optimal diagonal solution Zj for every 0 ≤ j ≤ N − 1.

Denote the diagonal elements of Zj by zj,k, 1 ≤ k ≤ m, and let diag(α1, . . . , αm)
denote the m×m diagonal matrix with diagonal elements αj . By permuting the rows
and the columns of the matrix K(Zj), it can be seen that the constraint K(Zj) � 0
can be written as

(4.15)

⎛⎝ τ − λj 1 − σj,kzj,k 0
1 − σj,kzj,k 1 −ρzj,k

0 −ρzj,k λj

⎞⎠ , 1 ≤ k ≤ m.

Thus, the problem of (4.13) and (4.12) becomes

(4.16) min
τ,zj,k,λj

{
σ2

N−1∑
j=0

m∑
i=1

z2
j,k + NL2τ

}
subject to

(4.17)

⎛⎝ τ − λj 1 − σj,kzj,k 0
1 − σj,kzj,k 1 −ρzj,k

0 −ρzj,k λj

⎞⎠ � 0

for every 1 ≤ k ≤ m, 0 ≤ j ≤ N −1. We now show that the problem of (4.16) subject
to (4.17) can be further simplified. First, we note that to satisfy (4.17) we must have
that

τ ≥ max
0≤j≤N−1

λj .

Suppose first that τ > max0≤j≤N−1 λj . In this case, by Schur’s lemma, (4.17) is
equivalent to(

1 −ρzj,k
−ρzj,k λj

)
− 1

τ − λj

(
1 − σj,kzj,k

0

)(
1 − σj,kzj,k 0

)
=

(
1 − (1−σj,kzj,k)2

τ−λ −ρzj,k
−ρzj,k λj

)
� 0.(4.18)

MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 725

Now a 2 × 2 matrix is positive semidefinite if and only if the diagonal elements and
the determinant are nonnegative. Therefore, (4.18) is equivalent to the conditions

λj ≥ 0,(4.19)

τ − λj ≥ (1 − σj,kzj,k)
2,(4.20)

λj

(
1 − (1 − σj,kzj,k)

2

τ − λj

)
− ρ2z2

j,k ≥ 0.(4.21)

Clearly, (4.21) and (4.19) together imply (4.20). Furthermore, we can express (4.21)
as

(4.22) z2
j,k

(
(λj − τ)ρ2 − σ2

j,kλj

)
+ 2zj,kσj,kλj + λj(τ − λj − 1) ≥ 0.

Since the coefficient multiplying z2
j,k in (4.22) is negative, it follows that there exists

a zj,k satisfying (4.22) if and only if the discriminant is nonnegative, i.e, if and only if

σ2
j,iλj +

(
(τ − λj)ρ

2 + σ2
j,iλj

)
(τ − λj − 1) ≥ 0.

Using the fact that τ − λj > 0 for every 0 ≤ j ≤ N − 1, the latter inequality is
equivalent to

(4.23) λjσ
2
j,k ≥ ρ2(1 + λj − τ).

If (4.23) is satisfied, then the set of zj,k’s satisfying (4.22) are

z−j,k ≤ zj,k ≤ z+
j,k,

where z−j,k ≤ z+
j,k are the roots of the quadratic function in (4.22). Since we would

like to choose zj,k to minimize (4.16), it follows that the optimal zj,k is

zj,k = fj,k(τ, λj)

=

σj,kλj −
√
λj(τ − λj)

(
σ2
j,kλj − ρ2(1 + λj − τ)

)
(τ − λj)ρ2 + σ2

j,kλj
.(4.24)

Thus, if τ > max0≤j≤N−1 λj , then the optimal value of zj,k is given by (4.24), where,
in addition, conditions (4.23) and (4.19) must be satisfied.

Next, suppose that τ = λj for some j. In this case, to ensure that (4.17) is
satisfied, we must have that

zj,i =
1

σj,k
,(4.25)

λj ≥
ρ2

σ2
j,k

.(4.26)

We can immediately verify that (4.25) and (4.26) are special cases of (4.24) and (4.23)
with τ = λj . We therefore conclude that the optimal value of zj,k is given by (4.24)
subject to (4.23) and (4.19). Substituting the optimal value of zj,k into (4.16), our
problem becomes

(4.27) min
τ,λj

{
σ2

N−1∑
j=0

m∑
k=1

f2
j,k(τ, λj) + NL2τ

}

726 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

subject to

λjσ
2
j,k ≥ ρ2(1 + λj − τ), 1 ≤ k ≤ m, 0 ≤ j ≤ N − 1,

λj ≥ 0, 0 ≤ j ≤ N − 1,

τ ≥ λj , 0 ≤ j ≤ N − 1.(4.28)

Since the problem of (4.16) subject to (4.17) is convex, and the reduced problem
(4.27) subject to (4.28) is obtained by minimizing over some of the variables in (4.16),
the reduced problem is also convex, completing the proof of the theorem.

Remark 4.1. The line of analysis employed in Theorem 4.2 can also be carried
out when T = (A∗A)α for some real number α. The resulting optimization problem
is very similar to the one derived in Theorem 4.2. In some applications such as the
image deblurring examples described in [8], choosing a negative α provides better
results than the Euclidean weighting (i.e., α = 0).

5. An image deblurring example. To illustrate the effectiveness of the mini-
max MSE approach, we consider an image deblurring example from the “Regulariza-
tion Tools” [14].

We consider the square system

Atruextrue = ytrue,

where xtrue ∈ R
1024 is obtained by stacking the columns of the 32×32 image and Atrue

is a 1024 × 1024 matrix that represents an atmospheric turbulence blur originating
from [13] and implemented in the function blur(n,3,0.5) from the “Regularization
Tools” [14] (3 is the half bandwidth and 0.5 is the standard deviation associated
with the corresponding point spread function). The image corresponding to xtrue

is shown at the top of Figure 1. The matrix Atrue is a block Toeplitz matrix with
half bandwidth 3. We note that, in fact, any matrix representing a two-dimensional
convolution has a block Toeplitz structure [16].

The observed matrix A was generated by the function blur(n,3,0.7), and so essen-
tially the uncertainty in the model matrix is due to lack of knowledge of the standard
deviation. The observed vector was generated by adding white noise y = ytrue + σe,
where each component of e ∈ R

1024 was generated from a standard normal distribu-
tion.

In our experiment the standard deviation σ was chosen to be 0.1, which results
with the noisy image shown in Figure 1 (Observation). We considered several estima-
tion methods:

• Least Squares. The LS estimator is given by x̂LS = (A∗A)−1A∗y. As can be
seen in Figure 1, the resulting image is of a poor quality.

• Structured TLS. The structured TLS (STLS) solution x̂STLS to the problem
is the x-part of the solution to the optimization problem

min
ΔA,Δy,x

{‖ΔA‖2 + ‖Δy‖2 : (A + ΔA)x = y + Δy, ΔA is BC}.

The STLS problem with BC structure can be solved by decomposing the
problem into several unstructured TLS problems (for details see [1]). As can
be seen from Figure 1, the STLS method generates an even worse image than
x̂LS. This poor performance of the STLS solution stems from the fact that the
unstructured TLS solution is a deregularization [15] of the LS solution and
as such is rather unstable. The STLS solution for BC systems is constructed

MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 727

True Image

5 10 15 20 25 30

5

10

15

20

25

30

Observation Least Squares Structured TLS

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

Robust LS Uminimax Minimax

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

Fig. 1. Comparison between different estimators.

from several solutions of unstructured TLS problems and is therefore unstable
as well.

• Robust LS. We also considered the RLS method defined in (1.1), where the
uncertainty set U is given by a simple norm constraint U = {(ΔA,Δy) :
‖(ΔA,Δy)‖ ≤ ρR} and ρR is chosen as 1.1 · ‖(A − Atrue, y − ytrue)‖. The
resulting figure is quite blurred. The reason for not using a complicated set
such as UΔ (given in (1.5)) to describe the uncertainty in A is that problem
(1.1) appears to be intractable in this case, since the uncertainty set involves
several norm constraints. Another alternative would be to use the structured
RLS problem [10] and to relax the multiple norm constraints in UΔ into a
single norm constraint. However, the generated SDP needed to be solved in
our example here is too large to handle with standard software.

728 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

• Uminimax. Unstructured minimax is the minimax estimator for the unstruc-
tured case (see [8]). This estimator minimizes the worst-case MSE across all
values of x satisfying x∗Tx ≤ L2 and perturbation matrices ΔA satisfying
‖ΔA‖ ≤ ρB . Note, however, that it ignores the special structure of ΔA.
We have chosen the parameters L, ρB to be 10 percent larger than their true
values (for example, L was chosen to be 1.1 ·x∗

trueTxtrue). T was chosen to be
(A∗A)−1. This choice of T reflects the fact that components corresponding
to small singular values of A∗A should receive a smaller weight than com-
ponents corresponding to large singular values. The resulting image for this
method is of good quality.

• Minimax. Finally, we compared the above-mentioned methods with the min-
imax MSE estimator for BC systems developed in this paper. In implement-
ing the Minimax estimator, we have used a BC approximation of the block
Toeplitz matrix A as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 A1 A2 0 0 . . . 0 0 0
A−1 A0 A1 A2 0 . . . 0 0 0
A−2 A−1 A0 A1 A2 . . . 0 0 0
0 A−2 A−1 A0 A1 . . . 0 0 0
0 0 A−2 A−1 A0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . A0 A1 A2

0 0 0 0 0 . . . A−1 A0 A1

0 0 0 0 0 . . . A−2 A−1 A0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⇓⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 A1 A2 0 0 . . . 0 A−2 A−1

A−1 A0 A1 A2 0 . . . 0 0 A−2

A−2 A−1 A0 A1 A2 . . . 0 0 0
0 A−2 A−1 A0 A1 . . . 0 0 0
0 0 A−2 A−1 A0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . A0 A1 A2

A2 0 0 0 0 . . . A−1 A0 A1

A1 A2 0 0 0 . . . A−2 A−1 A0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The approximation is made by adding three block matrices to the northeast
and southwest corners of A. As in the Uminimax estimator, all parameters
are chosen to be 10 percent larger than their true value. It can be seen that
Minimax gives even a better result than Uminimax.

We note that the Minimax estimate was not calculated by solving the SDP for-
mulation of Theorem 3.2, since its size was too big for standard software such as
SeDuMi [23]. Instead we applied a gradient projection algorithm with armijo-type line
search [5] on the convex optimization formulation of Theorem 4.2. In this algorithm
the dominant computational effort is the calculation of the orthogonal projection onto
the polyhedral feasible set, which amounts to solving a quadratic minimization prob-
lem in 1025 variables. Since the linear system describing the feasible set is extremely
sparse, the CPU time required to calculate a single projection (using SeDuMi) was a
small fraction of a second. The resulting image was obtained after 10 iterations in an
overall CPU time of 0.8 seconds (on a Pentium 4, 1.8 Ghz). The stopping criterion

MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 729

was chosen to be |fk−fk−1| < ε, where ε = 10−3 and fj denotes the objective function
value at the jth iteration. We noticed that the quality of the image does not improve
if we choose a smaller value of ε.

As can be seen from this example, the structured minimax MSE estimator gives
better results than the LS, STLS, RLS, and Uminimax estimators.

REFERENCES

[1] A. Beck and A. Ben-Tal, A global solution for the structured total least squares problem with
block circulant matrices, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 238–255.

[2] A. Beck, A. Ben-Tal, and Y. C. Eldar, Robust mean-squared error estimation of multiple
signals in linear systems affected by model and noise uncertainties, Math. Program., 107
(2006), pp. 155–187.

[3] Z. Ben-Haim and Y. C. Eldar, Blind Minimax Estimation, CCIT report 550, Electrical
Engineering Department, Technion—Israel Institute of Technology, Haifa, Israel, 2005,
IEEE Trans. Inform. Theory, submitted.

[4] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Al-
gorithms, and Engineering Applications, MPS/SIAM Ser. Optim. 2, SIAM, Philadelphia,
2001.

[5] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
[6] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, Parameter estimation in

the presence of bounded data uncertainties, SIAM J. Matrix Anal. Appl., 19 (1998), pp.
235–252.

[7] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, Linear minimax regret estimation of de-
terministic parameters with bounded data uncertainties, IEEE Trans. Signal Process., 52
(2004), pp. 2177–2188.

[8] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, Robust mean-squared error estimation in the
presence of model uncertainties, IEEE Trans. Signal Process., 53 (2005), pp. 168–181.

[9] H. Gazzah, P. A. Regalia, and J. Delmas, Asymptotic eigenvalue distribution of block
Toeplitz matrices and application to blind SIMO channel identification, IEEE Trans. In-
form. Theory, 47 (2001), pp. 1243–1251.

[10] L. El Ghaoui and H. Lebret, Robust solutions to least-squares problems with uncertain data,
SIAM J. Matrix Anal. Appl., 18 (1997), pp. 1035–1064.

[11] G. H. Golub and C. F. Van Loan, An analysis of the total least squares problem, SIAM J.
Numer. Anal., 17 (1980), pp. 883–893.

[12] R. Gray, Toeplitz and Circulant Matrices: A Review, Tech. report 6504-1, Information System
Laboratory, Stanford University, Stanford, CA, 1977.

[13] M. Hanke and P. C. Hansen, Regularization methods for large-scale problems, Surveys Math.
Indust., 3 (1993), pp. 253–315.

[14] P. C. Hansen, Regularization tools: A Matlab package for analysis and solution of discrete
ill-posed problems, Numer. Algorithms, 6 (1994), pp. 1–35.

[15] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Computational Aspects
and Analysis, Frontiers Appl. Math. 9, SIAM, Philadelphia, 1991.

[16] A. K. Jain, Fundamentals of Digital Image Processing, Prentice–Hall, Englewood Cliffs, NJ,
1989.

[17] A. K. Katsaggelos, K. T. Lay, and N. P. Galatsanos, A general framework for frequency
domain multi-channel signal processing, IEEE Trans. Image Process., 2 (1993), pp. 417–
420.

[18] D. G. Luenberger, Optimization by Vector Space Methods, John Wiley and Sons, New York,
1968.

[19] L. S. Mayer and T. A. Willke, On biased estimation in linear models, Technometrics, 15
(1973), pp. 497–508.

[20] H. Murakami, Discrete wavelet transform based on cyclic convolution, IEEE Trans. Signal
Process., 52 (2004), pp. 165–174.

[21] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-
ming, SIAM, Philadelphia, 1994.

[22] A. H. Sayed and S. Chandrasekaran, Parameter estimation with multiple sources and levels
of uncertainties, IEEE Trans. Signal Process., 48 (2000), pp. 680–692.

[23] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,
Optim. Methods Softw., 11/12 (1999), pp. 625–653.

730 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

[24] M. Sznaier, O. Camps, and M. C. Mazzaro, Finite horizon model reduction of a class of neu-
trally stable systems with applications to texture synthesis and recognition, in Proceedings
of the 43rd IEEE Conference on Decision and Control, 2004.

[25] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.
[26] M. Vollmer, M. Haardt, and J. Gotze, Comparative study of joint-detection techniques

for TD-CDMA based mobile radio systems, IEEE Select. Areas Comm., 19 (2001), pp.
1461–1475.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 731–751

ACCURATE COMPUTATIONS WITH
TOTALLY NONNEGATIVE MATRICES∗

PLAMEN KOEV†

Abstract. We consider the problem of performing accurate computations with rectangular
(m×n) totally nonnegative matrices. The matrices under consideration have the property of having
a unique representation as products of nonnegative bidiagonal matrices. Given that representation,
one can compute the inverse, LDU decomposition, eigenvalues, and SVD of a totally nonnegative
matrix to high relative accuracy in O(max(m3, n3)) time—much more accurately than conventional
algorithms that ignore that structure. The contribution of this paper is to show that the high
relative accuracy is preserved by operations that preserve the total nonnegativity—taking a product,
re-signed inverse (when m = n), converse, Schur complement, or submatrix of a totally nonnegative
matrix, any of which costs at most O(max(m3, n3)). In other words, the class of totally nonnegative
matrices for which we can do numerical linear algebra very accurately in O(max(m3, n3)) time
(namely, those for which we have a product representation via nonnegative bidiagonals) is closed
under the operations listed above.

Key words. high relative accuracy, totally positive matrix, totally nonnegative matrix, bidiag-
onal decomposition

AMS subject classifications. 65F15, 15A18

DOI. 10.1137/04061903X

1. Introduction. The matrices with all minors nonnegative are called totally
nonnegative and appear in a wide variety of applications [5, 10, 12, 14, 15, 18, 25].
They are often very ill conditioned, which means that conventional matrix algorithms
such as LAPACK [1] may deliver little or no accuracy when solving totally nonnegative
linear systems or computing inverses, eigenvalues, or SVDs.

Our goal is to derive algorithms for performing accurate and efficient computa-
tions with m× n totally nonnegative matrices. The types of computations we would
like to perform include computing the inverse, LDU decomposition, eigenvalues, and
SVD. By accurate we mean that each quantity must be computed to high relative
accuracy—it must have a correct sign and leading digits. By efficient we mean in at
most O(max(m3, n3)) time.

It turns out that the problem of performing accurate computations with totally
nonnegative matrices is very much a representation problem. If, instead of representing
a matrix by its entries, we represent it as a product of nonnegative bidiagonal matrices

(1.1) A = L(1)L(2) · · ·L(m−1)DU (n−1)U (n−2) · · ·U (1);

then given the entries of L(k), D, and U (k), we can compute A−1, the LDU decom-
position, the eigenvalues, and the SVD of A accurately and efficiently (see section 3).

The existence and uniqueness of the bidiagonal decomposition (1.1) is critical to
the design of our algorithms. Therefore we restrict the class of totally nonnegative
matrices under consideration to only those that are leading contiguous submatrices
of square nonsingular totally nonnegative matrices. If the matrix under consideration

∗Received by the editors November 16, 2004; accepted for publication (in revised form) by Uwe
Helmke December 28, 2006; published electronically June 12, 2007. This work was supported by
National Science Foundation grant DMS-0314286.

http://www.siam.org/journals/simax/29-3/61903.html
†Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

(plamen@math.mit.edu).

731

732 PLAMEN KOEV

is square (m = n), the above restriction means that the matrix itself is nonsingular
totally nonnegative.

We will call the matrices in the above described class TN for short.
The representation (1.1) is intrinsic [19] and immediately reveals the TN structure

of an m×n TN matrix A. The m·n nontrivial nonnegative entries in the factors of (1.1)
parameterize the set of all m× n TN matrices and determine the quantities that we
would like to compute (the entries of A−1, the entries of the LDU decomposition, the
eigenvalues, and the SVD) accurately (section 3).

TN matrices can be obtained in a variety of ways as a result of matrix operations
that preserve the total nonnegativity. The following result is well known [19, 20, 25].

Proposition 1.1. If A = [aij] is TN, then so are the product AB, where B is
also TN; the converse [am+1−i,n+1−j]; the matrix R from a QR decomposition of A
such that rii > 0; the Schur complement of a11 in A; and any submatrix of A. If A is
also square, then the re-signed inverse [(−1)i+jaij]

−1 is TN. If A also is square and
symmetric, then one step of QR iteration with no pivoting preserves the TN structure
in A, provided that R has a positive diagonal.

If A is a TN matrix obtained from other TN matrices by any sequence of these
operations, the question becomes: Can we perform accurate matrix computations
with A? In other words, if these other TN matrices are represented by their corre-
sponding bidiagonal decompositions (1.1), can we accurately and efficiently compute
the bidiagonal decomposition of A?

Our main contribution in this paper is to answer this question affirmatively. In
section 5 we present accurate and efficient algorithms that perform these computa-
tions. These algorithms prove the following theorem.

Theorem 1.2. Let every TN matrix be represented by its bidiagonal decompo-
sition (1.1). Then the set of TN matrices with which we can perform accurate and
efficient matrix computations, including computing the inverse, LDU decomposition,
eigenvalues (when m = n), and SVD, is closed under all transformations listed in
Proposition 1.1 that preserve the TN structure.

For example, we could take the product of the Hilbert matrix and the Pascal
matrix, compute a Schur complement, take a submatrix of its converse, and then
compute the SVD of the resulting matrix highly accurately, all in O(max(m3, n3))
time. In contrast, on examples similar to this one, the conventional algorithms may
fail to compute even the largest singular value accurately (see section 7).

As an application of Theorem 1.2, in section 6 we derive a new algorithm for
computing the bidiagonal decomposition of a TN generalized Vandermonde matrix
based on removing appropriate columns of an ordinary Vandermonde matrix. This is
a major improvement over previous such algorithms in [8, 34].

In the design of our algorithms we take the following approach.
First, we identify the source of large relative errors in conventional matrix al-

gorithms. Relative accuracy in these algorithms is lost due to subtractive cancella-
tion in the subtraction of approximate same-sign quantities. Conversely, the rela-
tive accuracy is preserved in multiplication, division, addition, and taking of square
roots.

Second, we perform any and all transformations listed in Proposition 1.1 as a
combination of the following elementary elimination transformations (EETs):

EET1: Subtracting a multiple of a row (column) from the next in order to create
a zero in such a way that the transformed matrix is still TN;

EET2: Adding a multiple of a row (column) to the previous one;

ACCURATE COMPUTATIONS WITH TN MATRICES 733

EET3: Adding a multiple of a row (column) to the next one;
EET4: Scaling by a positive diagonal matrix.

Each of these EETs preserves the total nonnegativity [19].
Third, instead of applying an EET directly on a TN matrix A, we carry it out

implicitly by transforming the entries of its bidiagonal decomposition, and arrange the
computations in such a way that subtractions are not required. Thus the accuracy is
preserved.

This paper is organized as follows. In section 2 we review the bidiagonal decom-
positions of TN matrices. In section 3 we review algorithms for accurate computations
with TN matrices, given their bidiagonal decompositions. In section 4 we review al-
gorithms from [27] for performing EET1 and EET2 and present new algorithms for
performing EET3 and EET4. In section 5 we present algorithms for computing ac-
curate bidiagonal decompositions of derivative TN matrices, obtained as described in
Proposition 1.1. We present our new algorithm for computing the bidiagonal decom-
position of a generalized Vandermonde matrix in section 6. In section 7 we present
numerical results demonstrating the accuracy of our algorithms. We draw conclusions
and present open problems in section 8.

Note on notation. Throughout this paper we use MATLAB [32] notation for
vectors and submatrices.

2. Bidiagonal decompositions of TN matrices. The TN matrices possess
a very elegant structure, which is not revealed by their entries. Additionally, small
relative perturbations in the entries of a TN matrix A can cause enormous relative
perturbations in the small eigenvalues, singular values, and entries of A−1 [27, sec-
tion 1]. Thus the matrix entries are ill suited as parameters in numerical computations
with TN matrices.

Instead, following [27], we choose to represent a TN matrix as a product of non-
negative bidiagonal matrices. This representation arises naturally in the process of
Neville elimination, which we now review, following [19] (see also [35]).

In the process of Neville elimination a matrix is reduced to upper triangular form
using only adjacent rows. A zero is introduced in position (m, 1) by subtracting a
multiple bm1 = am1/am−1,1 of row m − 1 from row m. Subtracting the multiple
bm−1,1 = am−1,1/am−2,1 of row m− 2 from row m− 1 creates a zero in position (m−
1, 1), and so on. The total nonnegativity is preserved during Neville elimination [19],
and therefore all multipliers bij are nonnegative.

This yields the decomposition

A =

⎛⎝m−1∏
k=1

m∏
j=m−k+1

Ej(bj,k+j−m)

⎞⎠ · U,

where U is m× n upper triangular and

Ej(x) ≡

⎡⎢⎢⎢⎢⎢⎢⎣

1
. . .

x 1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎦
is m×m and differs from the identity only in the (j, j − 1) entry.

734 PLAMEN KOEV

Applying the same process to AT , we obtain the decomposition

(2.1) A =

⎛⎝m−1∏
k=1

m∏
j=m−k+1

Ej(bj,k+j−m)

⎞⎠ ·D ·
(

k=n−1∏
1

j=n∏
n−k+1

ET
j (bk+j−n,j)

)
,

where D is a diagonal m× n matrix and ET
j are n× n. In the notation of (2.1) and

throughout this paper,
∏k=n−1

1 indicates that the product is taken for k from n− 1
down to 1. Although somewhat nonstandard, this notation allows us to preserve the
symmetry in (2.1).

The matrices

L(k) ≡
m∏

j=m−k+1

Ej(bj,k+j−m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

bk,m−k+1 1
bk+1,m−k+2 1

. . .
. . .

bm,m−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

U (k) ≡
j=n∏

n−k+1

ET
j (bk+j−n,j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . . bn−k+1,k

1 bn−k+2,k+1

1
. . .

. . . bn−1,n

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are m×m lower- and n× n upper bidiagonal, respectively. The decomposition (2.1)
now becomes

A = L(1) · · ·L(n−1) ·D · U (n−1) · · ·U (1).

We denote the off-diagonal entries in L(k) and U (k) as

(2.2) l
(k)
i ≡ L

(k)
i+1,i = bi+1,k+i+1−m and u

(k)
i ≡ U

(k)
i,i+1 = bk+i+1−n,i+1.

We will use either l
(k)
i or bi+1,k+i+1−m to denote the nontrivial entries of L(k) (and

similarly with U (k)). In different contexts one notation may be more convenient than
the other, so we will keep (2.2) in mind when switching back and forth.

We now present the fundamental structure theorem for TN matrices.
Theorem 2.1 (Gasca and Peña [19]). An m × n matrix A is TN if and only if

it can be uniquely factored as

(2.3) A = L(1) · · ·L(m−1) ·D · U (n−1) · · ·U (1),

where D is an m×n diagonal matrix with diagonal entries di, i = 1, 2, . . . ,min(n,m);
L(k) are U (k) are m×m unit lower n×n unit upper bidiagonal matrices, respectively,
such that the following hold:

ACCURATE COMPUTATIONS WITH TN MATRICES 735

1. di > 0 for i = 1, 2, . . . ,min(m,n);

2. l
(k)
i = 0, i < m− k; u

(k)
i = 0, i < n− k; and l

(k)
i = u

(k)
i = 0, i > m+ n− k;

3. l
(k)
i ≥ 0, m− k ≤ i ≤ m + n− k, and u

(k)
i ≥ 0, n− k ≤ i ≤ m + n− k;

4. l
(k)
i = 0 implies l

(k−1)
i+1 = 0; u

(k)
i = 0 implies u

(k−1)
i+1 = 0.

We will refer to Theorem 2.1 to verify whether a particular decomposition of a
TN matrix A as a product of bidiagonal matrices is in fact its unique bidiagonal
decomposition.

Following [27], we denote the bidiagonal decomposition (2.3) of a TN matrix A
as BD(A). We store the nontrivial entries of BD(A) compactly in an m × n array,
which we also refer to as BD(A):

(BD(A))ij =

⎧⎪⎨⎪⎩
l
(n−i+j)
i−1 , i > j,

u
(n−j+i)
j−1 , i < j,

di, i = j.

The (i, j)th entry in BD(A) equals the multiplier (bij) used to set the (i, j)th entry
in A to zero (when i �= j), or the ith entry on the diagonal of D (when i = j).

For example,⎡⎣ 2 6
8 29
48 209

⎤⎦ =

⎡⎣ 1
1
6 1

⎤⎦⎡⎣ 1
4 1

7 1

⎤⎦⎡⎣ 2
5

⎤⎦[
1 3

1

]

is stored as

BD

⎛⎝⎡⎣ 2 6
8 29
48 209

⎤⎦⎞⎠ =

⎧⎨⎩
2 3
4 5
6 7

⎫⎬⎭ .

This notation is convenient since we can formally transpose BD(A) to obtain
BD(AT) = (BD(A))T [27, section 4].

In the language of the m × n array B = BD(A), conditions 1–4 in Theorem 2.1
are equivalent to the following:

1. bii > 0, i = 1, 2, . . . ,min(m,n);
2. bij = 0, unless 1 ≤ i ≤ m and 1 ≤ j ≤ n;
3. bij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n;
4. bij = 0 implies bi+1,j = 0 if i < j, and bi,j+1 = 0 if i > j.

If the TN matrix A is also totally positive (i.e., if all its minors are positive), then
the entries bij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, are products and quotients of minors
of A [27, section 3], [16]:

bij =
detA(i− j + 1 : i, 1 : j)

detA(i− j + 1 : i− 1, 1 : j − 1)
· detA(i− j : i− 2, 1 : j − 1)

detA(i− j : i− 1, 1 : j)
, i > j,

bii =
detA(1 : i, 1 : i)

detA(1 : i− 1, 1 : i− 1)
;(2.4)

bji =
detA(1 : j, i− j + 1 : i)

detA(1 : j − 1, i− j + 1 : i− 1)
· detA(1 : j − 1, i− j : i− 2)

detA(1 : j, i− j : i− 1)
, i > j.

One can use the formulas (2.4) to compute explicit formulas for the bidiagonal
decompositions of Vandermonde [10, 23, 33], [27, section 3], Cauchy [4], [27, section
3], Cauchy–Vandermonde [29, 30, 31], generalized Vandermonde [8], and Bernstein–
Vandermonde [28] matrices.

736 PLAMEN KOEV

Neville elimination is just one of eight analogous, but slightly different methods to
eliminate a TN matrix A using only adjacent rows and columns [19, section 4]. Each
method yields a decomposition of A as a product of nonnegative bidiagonal matrices
with analogous but different nonzero patterns. In section 5.1 we show how to obtain
an accurate BD(A) (and then perform accurate computations with A) starting with
any decomposition of A as a product of nonnegative bidiagonal matrices. Therefore
the particular choice of elimination pattern in Neville elimination and the resulting
nonzero pattern in the factors of the decomposition (2.3) do not result in any loss of
generality.

3. Performing accurate matrix computations given BD(A). The entries
of BD(A) determine accurately the entries of the inverse, the entries of the LDU de-
composition, and the values of any minor, eigenvalue, or singular value. Furthermore,
given BD(A), many matrix computations with A can be performed accurately and
efficiently. We review these results below.

3.1. Computing the inverse. If A is a square n×n TN matrix, we can compute
its inverse accurately by inverting (2.1):

(3.1) A−1 =

⎛⎝n−1∏
i=1

n∏
j=n−i+1

ET
j (−bi+j−n,j)

⎞⎠ ·D−1 ·
(

i=n−1∏
1

j=n∏
n−i+1

Ej(−bj,i+j−n)

)
.

Using (3.1) and the Cauchy–Binet identity [13, Vol. 1, p. 9], we conclude that each
entry of A−1 is a linear function in each entry bij of BD(A) with either nonnegative or
nonpositive coefficients. Therefore small relative perturbations in the bij cause small
relative perturbations in any entry of A−1. In other words, BD(A) determines every
entry of A−1 accurately.

We can form A−1 by multiplying out (3.1) in O(n3) time. Each entry of A−1

will be computed accurately, since the multiplication (3.1) involves no subtractive
cancellation. (All matrices in (3.1), their partial products, and A−1 have checkerboard
sign patterns.)

3.2. Solving Ax = b. We can use (3.1) to compute the solution to Ax = b in
O(n2) time by multiplying out the expression

(3.2) x = A−1b =

⎛⎝n−1∏
i=1

n∏
j=n−i+1

ET
j (−bi+j−n,j)

⎞⎠D−1

(
i=n−1∏

1

j=n∏
n−i+1

Ej(−bj,i+j−n)

)
b

right-to-left. The computed solution x̂ has a small componentwise relative backward
error [4]; i.e., a matrix Â exists such that Âx̂ = b and |A − Â| ≤ O(ε)|A|, where the
inequality is meant componentwise.

If b has alternating sign pattern (i.e., sign bi = (−1)i or sign bi = (−1)i−1),
then (3.2) involves no subtractive cancellation, and each component of x is computed
accurately [23].

This approach for solving Ax = b is the basis of the so-called Björck–Pereyra-
type methods for solving structured TN linear systems. Derived originally for Van-
dermonde linear systems [3], these methods received deserved attention because of
their remarkable accuracy1 [22]. Generalizations were later developed for Cauchy [4],

1In the scope of Newton interpolation with positive and increasing nodes (i.e., the conditions
under which the corresponding Vandermonde matrix is TN), the accuracy observation dates back to
1963 and was made by Kahan and Farkas [24].

ACCURATE COMPUTATIONS WITH TN MATRICES 737

Cauchy–Vandermonde [29, 30, 31], generalized Vandermonde [8], and Bernstein–Van-
dermonde [28] matrices. Each of these methods is either explicitly or implicitly based
on a decomposition of the corresponding A−1 as a product of simple bidiagonal ma-
trices analogous to (3.1).

3.3. Computing a minor. The value of any minor of a TN matrix A is de-
termined accurately by BD(A) [6, section 9]. It can be computed accurately and
efficiently given BD(A)—see section 5.8.

3.4. Computing the LDU decomposition. Let A be a square TN nonsingu-
lar n× n matrix. Define

(3.3) L ≡ L(1) · · ·L(n−1) and U ≡ U (n−1) · · ·U (1).

Now (2.3) implies that A = LDU is the LDU decomposition of A. The Cauchy–
Binet identity and (3.3) imply that BD(A) determines each entry of L, D, and U
accurately. Multiplying out (3.3) involves no subtractions and yields every entry of L
and U accurately. The decompositions BD(L) and BD(U) are given by (3.3).

3.5. Computing the eigenvalues and the SVD. In [27, section 7] we proved
that BD(A) accurately determines the eigenvalues and the SVD of a TN matrix A.
In the same paper we presented algorithms for computing the eigenvalues and the
SVD of A accurately and efficiently, given BD(A). These algorithms implicitly reduce
both the eigenvalue and SVD problems to the bidiagonal SVD problem using only
EETs. The resulting bidiagonal SVD problem is then solved accurately using known
means [7, 11].

4. Performing EETs accurately. Let the TN matrix C be obtained from
the m × n TN matrix A by applying an EET to A. In this section we show how,
given BD(A), the decomposition BD(C) can be computed without performing any
subtractions.

In [27, section 4.1] we showed that EET1 is equivalent to simply setting an entry
of BD(A) to zero; EET2 involved some “bulge chasing” in BD(A) [27, section 4.2]
and cost at most 6(m + 2) operations.

Next, we show how to perform EET3 and EET4 accurately.

4.1. Adding a multiple of a row to the next one. Let A be TN and C be
obtained from A by adding a multiple of row i− 1 of A to row i:

C = Ei(x)A, x > 0.

In this section we show how to accurately compute BD(C), given x and BD(A).
The following lemma shows how to compute the bidiagonal decomposition of the

product of two bidiagonal matrices. It is the main building block of Algorithm 4.2
later in this section.

Lemma 4.1. Let B and C be n×n unit lower bidiagonal matrices with offdiagonal
entries bi ≥ 0 and ci ≥ 0, i = 1, 2, . . . , n− 1, respectively, such that bi = 0 whenever
ci−1 = 0. Then there exist bidiagonal matrices B′ and C ′ with off-diagonal entries
b′i ≥ 0 and c′i ≥ 0, i = 1, 2, . . . , n− 1, respectively, such that B′C ′ = BC and b′1 = 0.
Furthermore one can compute b′i and c′i without performing any subtractions in not
more than 4n arithmetic operations.

738 PLAMEN KOEV

Proof. We compare the entries on both sides of B′C ′ = BC,

(4.1)

⎡⎢⎢⎢⎢⎢⎣
1
0 1

b′2 1
. . .

. . .

b′n−1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1
c′1 1

c′2 1
. . .

. . .

c′n−1 1

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
1
b1 1

b2 1
. . .

. . .

bn−1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1
c1 1

c2 1
. . .

. . .

cn−1 1

⎤⎥⎥⎥⎥⎥⎦ ,

to obtain c′1 = b1 + c1,

b′i =
bici−1

c′i−1

,(4.2)

c′i = bi + ci − b′i,

for i = 2, 3, . . . ,min{j|bj = 0}, and b′i = bi, c
′
i = ci otherwise. The subtraction

in (4.2) can be eliminated by introducing auxiliary variables di ≡ bi − b′i. Then
d1 = b1 − b′1 = b1 and

di = bi − b′i

= bi −
bici−1

c′i−1

=
bi

c′i−1

(c′i−1 − ci−1)

=
bi

c′i−1

(bi−1 − b′i−1)

=
bidi−1

c′i−1

.(4.3)

The subtraction-free (and therefore accurate) version of (4.2) is

b′i =
bici−1

c′i−1

,

di =
bidi−1

c′i−1

,

c′i = ci + di.

This computation clearly costs not more than 4n arithmetic operations. Since c′i = 0
implies b′i+1 = 0, the product B′C ′ is BD(BC).

We implement the procedure from Lemma 4.1 in Algorithm 4.1 below. We over-
write di by di+1, and the arrays b and c by b′ and c′, respectively. The quantity
e = bi+1/c

′
i is computed only once and used to update both bi+1 and di+1, thus

saving one division.

ACCURATE COMPUTATIONS WITH TN MATRICES 739

Algorithm 4.1. The following subtraction-free algorithm implements the proce-
dure from Lemma 4.1. It returns the index i where the recurrence (4.4) is terminated.

function [b, c, i] = dqd2(b, c)
t = c1
c1 = b1 + c1
d = b1
b1 = 0
i = 1
while (i < length(b)) and (bi+1 > 0)

e = bi+1/ci
d = ed
bi+1 = et
t = ci+1

ci+1 = ci+1 + d
i = i + 1

end

Note: The only way the product BC differs from BD(BC) is in that b1 �= 0.
The purpose of Algorithm 4.1 is to make b1 zero without changing the product BC.
No other zeros are introduced in B or C, and no nonzeros are introduced in B. At
most one nonzero may be introduced in C. Algorithm 4.1 returns the index i where
this may have happened (ci = 0 on input, ci > 0 on output). Although such an
introduction of a nonzero in C causes no problems in the scope of Lemma 4.1, it
may require additional work and bulge chasing in Algorithm 4.2 below, which uses
Algorithm 4.1 as an intermediate step.

Theorem 4.2. Let A be an m × n TN matrix. Given x > 0 and BD(A), the
decomposition BD(Ei(x)A) can be computed without performing any subtractions in
at most 4m arithmetic operations.

Proof. Let BD(A) be given as in (2.3),

A = L(1)L(2) · · ·L(m−1)DU (n−1)U (n−2) · · ·U (1),

and let L ≡ L(1)L(2) · · ·L(m−1). The TN matrix Ei(x)L is TN unit lower triangular.
The idea is to compute the decomposition BD(Ei(x) · L):

Ei(x)L = L(1)L(2) · · · L(m−1).

Then BD(Ei(x)A) is

Ei(x)A = L(1)L(2) · · · L(m−1)DU (n−1)U (n−2) · · ·U (1).

We use Lemma 4.1 and Algorithm 4.1 to “chase the bulge” Ei(x):

Ei(x)L = Ei(x)L(1)L(2) · · ·L(m−1)

= L(1)Ei1(x1)L
(2) · · ·L(m−1)

= L(1)L(2)Ei2(x2) · · ·L(m−1)

= . . .

= L(1)L(2) · · · L(m−1).

We start with k = 1 and repeat the following process. We apply Algorithm 4.1 to
the trailing principal submatrices of Ei(x) and L(k) consisting of rows and columns
i though n. The only nonzero in Ei(x) disappears, and we obtain a new matrix
L̄(k) = Ei(x)L(k).

740 PLAMEN KOEV

If one of these three condition holds:
1. k = m− 1, or
2. no nonzeros were introduced in L̄(k) that were not in L(k), or

3. a nonzero l̄
(k)
j was introduced in L̄(k), but l

(k+1)
j−1 �= 0,

then we set L(k) ≡ L̄(k); the “bulge chasing” is thus over, and we are done.

Otherwise (a nonzero l̄
(k)
j was introduced in L̄(k), and l

(k+1)
j−1 = 0, k < m− 1), we

have L̄(k) = L(k) · Ej(l̄
(k)
j), where L(k) has the same nonzero pattern as L(k). We set

i = j, x = l
(k)
j , increase k by one, and repeat the same process.

The computation of BD(Ei(x)A) is subtraction-free. At most 2n − 3 entries
in BD(A) are changed at not more than two arithmetic operations per entry (see
Algorithm 4.1). The total cost therefore does not exceed 4n.

The following algorithm implements the procedure from Theorem 4.2.
Algorithm 4.2. Let A be an m× n TN matrix and B = BD(A). The following

subtraction-free algorithm computes BD(Ei(x)A) in at most 4n time. For simplicity
we assume that bjl = 0 for j /∈ {1, 2, . . . ,m} or l /∈ {1, 2, . . . , n}.

function B = TNAddToNext(B, x, i)
[m,n] = size(B)
z = 0
bi0 = x
while (z < min(i− 1, n)) and (bi−1,z = 0)

for j = 1 : m− i + 1
[cj , dj] = bj+i+1,z+j−1:z+j

end

[c, d, q] = dqd2(c, d)
for j = 1 : m− i + 1

bj+i+1,z+j−1:z+j = [cj , dj]
end

i = i + q − 1
z = z + q

end

4.2. Multiplication by a diagonal matrix. The product of a diagonal matrix
F = diag(f1, . . . , fm), fi > 0, i = 1, 2, . . . ,m, and an m × n TN matrix A is TN. We
now show how to compute BD(FA), given F and BD(A).

We propagate F through the factors L(k) in BD(A) using

⎡⎢⎢⎢⎣
f1

f2

. . .

fm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
c1 1

. . .
. . .

cm−1 1

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
1
b1 1

. . .
. . .

bm−1 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

f1

f2

. . .

fm

⎤⎥⎥⎥⎦ ,

where bi = cifi+1/fi, i = 1, 2, . . . ,m− 1.

ACCURATE COMPUTATIONS WITH TN MATRICES 741

Algorithm 4.3. Given B = BD(A) and the vector (f1, f2, . . . , fm), the follow-
ing algorithm computes BD(diag(f1, f2, . . . , fm) · A) using only multiplications and
divisions in at most 2mn time.

function B = TNDiagonalScale(f,B)
[m,n] = size(B)
b11 = b11f1

for i = 2 : m
if i ≤ n

bii = biifi
end

bi,1:min(i−1,n) = bi,1:min(i−1,n) · fi/fi−1

end

5. The bidiagonal decomposition of derivative TN matrices. Let A be
a TN matrix obtained from other TN matrices using one of the operations listed in
Proposition 1.1 that preserve the total nonnegativity.

In this section we present accurate and efficient subtraction-free algorithms for
computing BD(A), given the corresponding bidiagonal decompositions of the input
TN matrices.

MATLAB implementation of all algorithms for performing accurate computations
with TN matrices presented in this paper and [27] are available online from [26].

5.1. A product of EETs. Let the TN matrix A be given as

A = F (1)F (2) · · ·F (k),

where F (i) represents an EET; namely, it equals either Ej(x), ET
j (x), or a positive di-

agonal matrix. Then BD(A) can be accurately accumulated using Algorithms 4.2, 4.3,
as well as Proposition 4.1 and Algorithm 4.1 from [27].

We will use this approach throughout this section. Say we want to compute
BD(A), where the TN matrix A is obtained from other TN matrices using operations
that preserve the total nonnegativity. We will represent A as a product of EETs,
which we will then accumulate.

Since any nonnegative bidiagonal matrix is a product of EETs, any representa-
tion A as a product of nonnegative bidiagonal matrices is a good starting point for
performing accurate computations with A. Given any such representation, we can
accumulate BD(A) without loss of accuracy.

5.2. The product of TN matrices. Let F and C be m × n and n × p TN
matrices such that m ≤ n or n ≥ p. Their product FC is a TN matrix. If B = BD(C),
then from (2.1) we have

C =

⎛⎝n−1∏
i=1

n∏
j=n−i+1

Ej(bj,i+j−n)

⎞⎠ ·D ·

⎛⎝i=p−1∏
1

j=p∏
p−i+1

ET
j (bi+j−p,j)

⎞⎠ .

Therefore, forming the product FC is equivalent to applying a number of EETs to F .
Algorithm 5.1 (product). Let F and C be m × n and n × p TN matrices,

respectively, where m ≤ n or n ≥ p. Given A = BD(F) and B = BD(C), the
following subtraction-free algorithm computes BD(FC) in O(mnp) time:

742 PLAMEN KOEV

function A = TNProduct(A,B)
[m,n] = size(A)
p = size(B, 2)
for i = 1 : n− 1

for j = n− i + 1 : min(n, n + p− i)
A = TNAddToPrevious(A, bj,i+j−n, 1, j)

end

end

A = A(:, 1 : min(n, p))
A = TNDiagonalScale(diag(B), AT)T

for i = p− 1 : −1 : 1
for j = p : −1 : p− i + 1

A = TNAddToNext(AT , bi+j−p,j , j)
T

end

end

The function TNAddToPrevious(A, x, 1, i) “adds” a multiple x of column i to
column i− 1 and costs at most 6(m + 2) [27, Algorithm 4.1].

5.3. The re-signed inverse. Let A be an n × n TN matrix, and let J be a
diagonal matrix of alternating 1’s and −1’s (Jii = (−1)i−1, i = 1, 2, . . . , n). The
re-signed inverse of A,

A∗ ≡
[
(−1)i+jaij

]−1
= (JAJ)−1 = JA−1J,

is also TN [14]. Using J2 = I, (Ei(x))−1 = Ei(−x), JEi(−x)J = Ei(x), and (2.1),

A∗ = J ·

⎛⎝n−1∏
i=1

n∏
j=n−i+1

ET
j (−bi+j−n,j)

⎞⎠ ·D−1 ·
(

i=n−1∏
1

j=n∏
n−i+1

Ej(−bj,i+j−n)

)
· J

=

⎛⎝n−1∏
i=1

n∏
j=n−i+1

JET
j (−bi+j−n,j)J

⎞⎠ · JD−1J ·
(

i=n−1∏
1

j=n∏
n−i+1

JEj(−bj,i+j−n)J

)

=

⎛⎝n−1∏
i=1

n∏
j=n−i+1

ET
j (bi+j−n,j)

⎞⎠ ·D−1 ·
(

i=n−1∏
1

j=n∏
n−i+1

Ej(bj,i+j−n)

)
.

Algorithm 5.2 (re-signed inverse). Let A be a square n× n TN matrix. Given
B = BD(A), the following subtraction-free algorithm computes C = BD(A∗) in O(n3)
time:

function C = TNRSInverse(B)
n = size(B, 1)
C = I
for i = 1 : n− 1

for j = n− i + 1 : n
C = TNAddToNext(C, bj,i+j−n, j)

end

end

C = TNDiagonalScale((1/b11, . . . , 1/bnn), C)
for i = n− 1 : −1 : 1

for j = n : −1 : n− i + 1
C = TNAddToPrevious(CT , bi+j−n,j , 1, j)

T

end

end

ACCURATE COMPUTATIONS WITH TN MATRICES 743

5.4. The converse. If the m × n matrix A = [aij]
m,n
i,j=1 is TN, then so is its

converse [19]

A# ≡ [am+1−i,n+1−j]
m,n
i,j=1.

Let B = BD(A), and let Yk ≡ [δk+1−i,j]
k
i,j=1 be the reverse identity of size k. Using

Y 2
k = I and E#

i (x) = YkEi(x)Yk = ET
k+2−i(x), we obtain

A# = YmAYn

= Ym

⎛⎝m−1∏
i=1

m∏
j=m−i+1

Ej(bj,i+j−m)

⎞⎠D

(
i=n−1∏

1

j=n∏
n−i+1

ET
j (bi+j−n,j)

)
Yn

=

⎛⎝m−1∏
i=1

m∏
j=m−i+1

YmEj(bj,i+j−m)Ym

⎞⎠YmDYn

(
i=n−1∏

1

j=n∏
n−i+1

YnE
T
j (bi+j−n,j)Yn

)

=

⎛⎝m−1∏
i=1

m∏
j=m−i+1

ET
m+2−j(bj,i+j−m)

⎞⎠D#

(
i=n−1∏

1

j=n∏
n−i+1

En+2−j(bi+j−n,j)

)
,

(5.1)

where D# = YmDYn is an m×n diagonal matrix, D#
ii = bk+1−i,k+1−i, k = min(m,n),

i = 1, 2, . . . , k. We compute BD(A#) as the bidiagonal decomposition of the product
of all EETs in (5.1).

Algorithm 5.3 (converse). Given B = BD(A) of an m × n TN matrix A, the
following subtraction-free algorithm computes BD(A#) in O(mn2) time:

function C = TNConverse(B)
[m,n] = size(B)
C = eye(m,n)
for i = 1 : m− 1

for j = m− i + 1 : m
C = TNAddToNext(AT , bj,i+j−m,m + 2 − j)T

end

end

e = diag(B)
C = TNDiagonalScale(e(min(m,n) : −1 : 1), CT)T

for i = n− 1 : −1 : 1
for j = n : −1 : n− i + 1

A = TNAddToPrevious(A, bi+j−n,j , 1, n + 2 − j)
end

end

5.5. QR decomposition. Let A be TN, and let A = QR be its QR decompo-
sition such that R has a positive diagonal. Then R is TN and can be obtained by
applying Givens rotations to A. Each Givens rotation preserves the TN structure of
A and equals the product of three EETs [27, section 4.3].

Algorithm 5.4 (QR decomposition). Let A be an m × n TN matrix, and let
A = QR be a QR decomposition of A such that rii > 0, i = 1, 2, . . . ,min(m,n). Given
B = BD(A), the following subtraction-free algorithm computes BD(R) in O(mn2)
time:

744 PLAMEN KOEV

function B = TNQR(B)
[m,n] = size(B)
for i = 1 : n

for j = m : −1 : i + 1
x = bji
bji = 0
c =

√
1 + x2

B = (TNAddToPrevious(BT , x/c, c, j))T

end

end

5.6. QR iteration. Gladwell showed in [20] that if A is TN and symmetric,
then one step of QR iteration without pivoting (provided R has a positive diagonal)
preserves the TN structure. We will now show how to compute the result of this
iteration accurately using algorithms we already have.

Let A be TN and symmetric, and let A = LDU = QR be its LDU and QR
decompositions, respectively, with R having a positive diagonal.2 Let Q = LD1U1 be
the LDU decomposition of Q (Q and A share the L factor).

Let F = RQ be the result of one step of QR iteration performed on A. Then
F = RQ = RLD1U1. Since F is symmetric, it suffices to compute the lower bidiagonal
factors and the diagonal factor of BD(F). Since U1 is unit upper triangular, it thus
suffices to compute BD(RLD1). Since the factors are TN, this task is easy. We first
use TNQR to obtain BD(R) and then TNProduct to obtain BD(RLD1). We obtain D1

by comparing the diagonals of the upper triangular matrices DU = D1U1R.

5.7. The Schur complement. Let A be an m × n TN matrix, and let A′ be
obtained from A after one step of Gaussian elimination. We have A′ = KA, where

K=

⎡⎢⎢⎢⎢⎢⎣
1

−a21

a11
1

−a32

a11
1

...
. . .

−am1

a11
1

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
1

1
. . .

1
am1

am−1,1
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1

1
. . .

am−1,1

am−2,1
1

1

⎤⎥⎥⎥⎥⎥⎦· · ·
⎡⎢⎢⎢⎢⎢⎣

1
1
a31

a21
1

. . .

1

⎤⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎣
1

−a21

a11
1

−a31

a21
1

. . .
. . .

− am1

am−1,1
1

⎤⎥⎥⎥⎥⎥⎦
=

i=m∏
3

Ei(bi1) ×
m∏
i=2

Ei(−bi1)

2Technically, since A is symmetric, U = LT , but this is unimportant here.

ACCURATE COMPUTATIONS WITH TN MATRICES 745

is a product of EETs. Forming the product(
m∏
i=2

Ei(−bi1)

)
·A

is equivalent to using adjacent rows to zero out the first column of A. It is therefore
equivalent to simply setting bi1 = 0, i = 2, 3, . . . ,m [27, section 4.1].

The multiplications by Ei(bi1), i = m, . . . , 3, are performed using Algorithm 4.2.
Algorithm 5.5 (Schur complement). Let A be an m×n TN matrix, and let A′

be obtained from A after one step of Gaussian elimination. Given B = BD(A), the
following subtraction-free algorithm computes BD(A′) and costs O(mn):

function B = TNSchurComplement(B)
m = size(B, 1)
c = B(:, 1)
B(2 : m, 1) = 0
for i = 3 : m

B = TNAddToNext(B, ci, i)
end

5.8. A submatrix. Any submatrix C of a TN matrix A is TN. In this section
we show how to compute BD(C), given BD(A). It suffices to describe how to compute
BD(C) when C is obtained by removing row i from A. We assume that C is TN.

Consider first the case i = 1, i.e., C is obtained by removing the first row of A:

A =

⎡⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎤⎥⎥⎥⎦ , C =

⎡⎢⎣ a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎤⎥⎦ .

Let

BD(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , BD(C) =

⎧⎪⎨⎪⎩
f21 f22 . . . f2n

...
...

. . .
...

fm1 fm2 . . . fmn

⎫⎪⎬⎪⎭ .

Let A′ be obtained from A by using adjacent columns to zero out the first row of A
above the main diagonal:

(5.2) A′ = A · ET
n (−b1n) · ET

n−1(−b1,n−1) · · ·ET
2 (−b12).

Then

A′ =

⎡⎢⎢⎢⎣
a′11 0 . . . 0
a′21 a′22 . . . a′2n
...

...
. . .

...
a′m1 a′m2 . . . a′mn

⎤⎥⎥⎥⎦ and BD(A′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b11 0 . . . 0
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Let C ′ be obtained by removing the first row of A′. From (5.2) we have

C ′ = C · ET
n (−b1n) · ET

n−1(−b1,n−1) · · ·ET
2 (−b12),

746 PLAMEN KOEV

which implies

(5.3) C = C ′ · ET
2 (b12) · ET

3 (b13) · · ·ET
n (b1n).

Therefore, it suffices to obtain BD(C ′). (Then we will use Algorithm 4.2 to obtain
BD(C) using (5.3).)

Let

C ′ =

⎡⎢⎣ a′21 a′22 . . . a′2n
...

...
. . .

...
a′m1 a′m2 . . . a′mn

⎤⎥⎦ and BD(C ′) =

⎧⎪⎨⎪⎩
f ′
21 f ′

22 . . . f ′
2n

...
...

. . .
...

f ′
m1 f ′

m2 . . . f ′
mn

⎫⎪⎬⎪⎭ .

Consider the process of Neville elimination applied to A′ and C ′ to eliminate the
entries a′jk, j �= k, k+1, and reduce A′ and C ′ to lower and upper bidiagonal matrices

Ā and C̄, respectively. The same multipliers will be used in this elimination:

f ′
jk = bjk for j �= k, k + 1.

The matrix

(5.4) C̄ =

⎡⎢⎢⎢⎣
f ′
21

f ′
32

f ′
43

. . .

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 f ′
22

1 f ′
33

1
. . .

⎤⎥⎥⎥⎦
is obtained by removing the first row of

(5.5) Ā =

⎡⎢⎢⎢⎣
1
b21 1

b32 1
. . .

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

b11
b22

b33
. . .

⎤⎥⎥⎥⎦ .

By comparing entries in (5.4) and (5.5), we obtain

f ′
i+1,i = bi+1,ibii and f ′

i+1,i+1 =
bi+1,i+1

bi+1,ibii
.

We have obtained the entire BD(C ′).
Now consider the general case—we remove the ith row of A to obtain C. In the

process of Neville elimination, the same multipliers will be used to eliminate the first
row of C that were used to eliminate the first row of A.

We emulate the Neville elimination of the first column of C by eliminating the
first column of A in a slightly different order. We use adjacent rows to eliminate the
entries of the first column of A with the exception of ai+1,1. We use row i − 1 to
eliminate ai+1,1—the exact same row that would be used to eliminate ai+1,1 in C
using adjacent rows.

This Gaussian-type elimination of rows i and i + 1 in A can be handled in the
same way as in section 5.7. We represent the elimination of rows i and i + 1 as a

ACCURATE COMPUTATIONS WITH TN MATRICES 747

sequence of three EETs:⎡⎣ 1
− ai

ai−1
1

− ai+1

ai−1
1

⎤⎦ =

⎡⎣ 1
−bi1 1

−bi+1,1bi1 1

⎤⎦
=

⎡⎣ 1
1

bi+1,1 1

⎤⎦⎡⎣ 1
−bi1 1

−bi+1,1 1

⎤⎦
= Ei+1(bi+1,1)Ei(−bi1)Ei+1(−bi+1,1).

We then proceed by induction. We eliminate the second row and the second
column of A and so on until we have eliminated the first i rows and the first i columns
of A. Now we are in familiar territory—we need to remove the first row of the trailing
submatrix A(i : m, i : n).

Algorithm 5.6 (submatrix). Let A be an m × n TN matrix, and let C be
obtained by removing the ith row of A. Given BD(A), the following subtraction-free
algorithm computes BD(C) in O(n2) time:

function B = TNSubmatrix(B, i)
[m,n] = size(B)
if i < m

for j = 1 : min(i− 1, n)
B(j+1 : m, j+1 : n) = TNAddToNext(B(j+1 : m, j+1 : n), bi+1,j , i−j+1)
bi+1,j = bi+1,jbij

end

for j = min(n,m) + (m > n) : −1 : i + 1
bj,j−1 = bj,j−1bj−1,j−1

if j ≤ n
bjj = bjj/bj,j−1

end

end

for j = i + 1 : n
B(i + 1 : m, i : n) = TNAddToNext(B(i + 1 : m, i : n)T , bij , j − i + 1)T

end

end

Remove the ith row of B

6. Generalized Vandermonde matrices. In this section we describe how to
easily, accurately, and efficiently compute the bidiagonal decomposition of a TN gen-
eralized Vandermonde matrix

G ≡
[
x
j−1+λn−j+1

i

]n
i,j=1

with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, λi ∈ Z, i = 1, 2, . . . , n. The matrix G is well known
to be TN when 0 < x1 < x2 < · · · < xn [14, p. 76]. The nodes xi and the partition
λ = (λ1, λ2, . . . , λn) of |λ| = λ1 +λ2 + · · ·+λn are typical parameters used to describe
generalized Vandermonde matrices. When λ = (0, . . . , 0), G reduces to the ordinary
Vandermonde matrix V ≡

[
xj−1
i

]n
i,j=1

.

There have been a couple of attempts at deriving accurate algorithms for this
class of matrices, and both have shortcomings.

In 1977 Van de Vel [34] proposed a subtraction-free algorithm for the LDU decom-
position of G. While accuracy was clearly guaranteed, efficiency was not. Recently,

748 PLAMEN KOEV

motivated by this result and some theoretical arguments [6, section 9.1(2)], Dem-
mel and the current author presented an accurate algorithm for computing BD(G)
[8, 9]. While this algorithm is accurate and efficient (its complexity is bounded by
O(n2|λ|2+ρλ3+ρ

1), where ρ is tiny [8, (3.9)]), it requires extended precision arithmetic
when computing the Schur function in the intermediate steps [9]. This is a drawback.

With the results of this paper we are finally able to put this issue to rest by
presenting a new very simple algorithm for computing BD(G), which is accurate and
efficient—it costs only O(n2λ1) (and is thus much more efficient than the algorithm
in [8]) and does not require the use of extended precision arithmetic. Once we have
BD(G), we can clearly perform virtually all linear algebra with G at a modest O(n3)
additional cost.

Our idea is very simple: Start with the rectangular (ordinary) TN Vandermonde
matrix

F =
[
xj−1
i

]n,n−1+λ1

i=1,j=1
.

The decomposition BD(F) is readily available in O(n(n+λ1)) time using the formulas
in [27, section 3, (3.6)]. We can then use Algorithm 5.6 to remove the appropriate λ1

columns of F (at the cost of O(n2) per column) to obtain BD(G). The total cost is
nicely bounded by O(n2λ1).

7. Numerical experiments. The algorithms presented in this paper can be
used to perform a variety of accurate computations with TN matrices. We performed
many tests to confirm their correctness and accuracy. In this section we present
two numerical examples which incorporate several techniques for computing with TN
matrices and demonstrate the accuracy and significance of our new algorithms.

For our experiments we selected two well-known notoriously ill-conditioned TN
matrices—Hilbert and Pascal:

H =

[
1

i + j − 1

]m,n

i,j=1

and P =

[(
i + j

i

)]n,p
i,j=1

.

We selected m = 20, n = 30, and p = 20, yielding fairly ill-conditioned rectangular
H and P : κ(H) = 3.3 · 1025 and κ(P) = 1.2 · 1020. Both experiments involved the
product T = HP , which was also severely ill-conditioned: κ(T) = 6 · 1045.

In our first experiment, we computed the singular values of T = HP using the
MATLAB implementations of our accurate algorithms3

(7.1) TNSingularValues(TNProduct(TNCauchyBD(1:m,0:n-1),ones(n,p)))

and also via the conventional MATLAB call

(7.2) svd(H*P).

For verification, we formed H and P , computed their product T , and computed
T ’s singular values in 70-digit decimal floating point arithmetic using the MATLAB
function vpa. Since κ(T) = 6 · 1045, vpa returned the singular values of T with at
least 16 correct decimal digits in each. The results of vpa agreed to at least 14 digits
with the ones computed using (7.1), confirming the accuracy of our algorithms.

3TNSingularValues is Algorithm 6.1 from [27], TNProduct is Algorithm 5.1 (see section 5);
TNCauchyBD computes the bidiagonal decomposition of H accurately using the formulas from [27,
section 3]; the entries of BD(P) are all ones, i.e., BD(P) equals ones(n,p).

ACCURATE COMPUTATIONS WITH TN MATRICES 749

0 5 10 15 20

10
–30

10
–20

10
–10

10
0

10
10

Singular values of H×P

Singular value index
0 5 10 15 20

10
–30

10
–20

10
–10

10
0

10
10

Singular values of 10th Schur complement of H×P

Singular value index

Fig. 7.1. The singular values of the product T of the 20× 30 Hilbert matrix H and the 30× 20
Pascal matrix P (left plot) and the 10th Schur complement of T (right plot); “×” = new, accurate
algorithms, “+” = conventional. The dashed line represents the roundoff threshold, ‖T‖ · ε.

In contrast, the conventional singular value algorithms (7.2) in double precision [2]
binary floating point arithmetic computed only the largest ones (σi > σ1ε = ‖T‖ε,
where ε ≈ 10−16 is the machine precision) with any relative accuracy at all.

The results of this experiment are plotted in Figure 7.1, left.
In our second experiment, we computed the singular values of the 10th Schur

complement of T using the same three methods—our new algorithms (in particular,
TNSchurComplement, Algorithm 5.5) and a conventional MATLAB call, and finally
verified the results in extended precision arithmetic. As expected, our new algorithms
computed all singular values of the 10th Schur complement of T accurately, while the
conventional MATLAB call failed to compute even a single singular value accurately
(Figure 7.1, right).

Although this experiment is somewhat artificially contrived, it shows that very
simple TN-preserving operations can result in a situation where the conventional
matrix algorithms fail to deliver any accuracy at all.

8. Conclusions and open problems. Using the intrinsic representation of TN
matrices as a products of bidiagonal matrices allows for accurate computations with
these matrices. The cost is similar to that of the conventional algorithms, but the
computations are performed to high relative accuracy, as opposed to the high absolute
accuracy of the conventional algorithms.

The singular (square) totally nonnegative matrices may not have a bidiagonal
decomposition, or it may not be unique. Designing new algorithms (or adapting the
ones in this paper) to perform accurate computations with these matrices is still an
open problem.

The problem of finding algorithms for computing accurate eigenvectors of TN
matrices is also open. In particular, such algorithms should guarantee the intrin-
sic properties of the eigenvector matrix—the jth computed eigenvector should have
j − 1 changes of sign in its entries, and the eigenvector matrix should have an LU
decomposition such that L and U−1 are TN [14, 17].

The caveat in our algorithms is that every TN matrix must be represented by
its bidiagonal decomposition. While every TN matrix intrinsically possesses such a
decomposition, and for many classes of structured matrices this decomposition is very

750 PLAMEN KOEV

easy to obtain accurately (see section 2), there are important TN matrices for which
we know of no accurate and efficient way to compute their bidiagonal decompositions.
Two such examples are the following:

• the TN generalized Vandermonde matrix
[
x
yj

i

]n
i,j=1

, where 0 < x1 < · · · < xn,

0 < y1 < y2 < · · · < yn, and at least one yi is not an integer;
• the TN matrices appearing in the study of the hypergeometric function of a

matrix argument [21].

Acknowledgments. I am deeply indebted to James Demmel for suggesting this
problem and for providing motivation and insights during the preparation of this
work. I also thank Froilán Dopico and Juan Manuel Peña for the careful reading of
the manuscript and for pointing out inconsistencies in its earlier versions.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, Third Edition, Software Environ. Tools 9, SIAM, Philadelphia, 1999.

[2] ANSI/IEEE, IEEE Standard for Binary Floating Point Arithmetic, New York, Std 754-
1985 ed., 1985.

[3] Ȧ. Björck and V. Pereyra, Solution of Vandermonde systems of equations, Math. Comp.,
24 (1970), pp. 893–903.

[4] T. Boros, T. Kailath, and V. Olshevsky, A fast parallel Björck-Pereyra-type algorithm for
solving Cauchy linear equations, Linear Algebra Appl., 302/303 (1999), pp. 265–293.

[5] F. Brenti, Combinatorics and total positivity, J. Combin. Theory Ser. A, 71 (1995), pp. 175–
218.

[6] J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač, Computing
the singular value decomposition with high relative accuracy, Linear Algebra Appl., 299
(1999), pp. 21–80.

[7] J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci.
Stat. Comput., 11 (1990), pp. 873–912.

[8] J. Demmel and P. Koev, The accurate and efficient solution of a totally positive generalized
Vandermonde linear system, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 142–152.

[9] J. Demmel and P. Koev, Accurate and efficient evaluation of Schur and Jack functions, Math.
Comp., 75 (2006), pp. 223–239.

[10] S. M. Fallat, Bidiagonal factorizations of totally nonnegative matrices, Amer. Math. Monthly,
108 (2001), pp. 697–712.

[11] K. Fernando and B. Parlett, Accurate singular values and differential qd algorithms, Numer.
Math., 67 (1994), pp. 191–229.

[12] S. Fomin and A. Zelevinsky, Total positivity: Tests and parametrizations, Math. Intelligencer,
22 (2000), pp. 23–33.

[13] F. Gantmacher, The Theory of Matrices, AMS Chelsea, Providence, RI, 1998.
[14] F. Gantmacher and M. Krein, Oscillation Matrices and Kernels and Small Vibrations of

Mechanical Systems, revised ed., AMS Chelsea, Providence, RI, 2002.
[15] M. Gasca and C. A. Micchelli, eds., Total Positivity and Its Applications, Math. Appl. 359,

Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
[16] M. Gasca and J. M. Peña, Total positivity and Neville elimination, Linear Algebra Appl.,

165 (1992), pp. 25–44.
[17] M. Gasca and J. M. Peña, Total positivity, QR factorization, and Neville elimination, SIAM

J. Matrix Anal. Appl., 14 (1993), pp. 1132–1140.
[18] M. Gasca and J. M. Peña, Corner cutting algorithms and totally positive matrices, in Curves

and Surfaces in Geometric Design (Chamonix-Mont-Blanc, 1993), A. K. Peters, Wellesley,
MA, 1994, pp. 177–184.

[19] M. Gasca and J. M. Peña, On factorizations of totally positive matrices, in Total Positivity
and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996,
pp. 109–130.

[20] G. M. L. Gladwell, Total positivity and the QR algorithm, Linear Algebra Appl., 271 (1998),
pp. 257–272.

[21] K. I. Gross and D. S. P. Richards, Total positivity, spherical series, and hypergeometric
functions of matrix argument, J. Approx. Theory, 59 (1989), pp. 224–246.

ACCURATE COMPUTATIONS WITH TN MATRICES 751

[22] N. J. Higham, Error analysis of the Björck-Pereyra algorithms for solving Vandermonde sys-
tems, Numer. Math., 50 (1987), pp. 613–632.

[23] N. J. Higham, Stability analysis of algorithms for solving confluent Vandermonde-like systems,
SIAM J. Matrix Anal. Appl., 11 (1990), pp. 23–41.

[24] W. Kahan and I. Farkas, Algorithms 167-169, Comm. ACM, 6 (1963), pp. 164–165. See also
the Certification, Comm. ACM, 6(9):523.

[25] S. Karlin, Total Positivity. Vol. I, Stanford University Press, Stanford, CA, 1968.
[26] P. Koev, Algorithms for totally nonnegative matrices, http://www-math.mit.edu/˜plamen.
[27] P. Koev, Accurate eigenvalues and SVDs of totally nonnegative matrices, SIAM J. Matrix

Anal. Appl., 27 (2005), pp. 1–23.
[28] A. Marco and J.-J. Martinez, A fast and accurate algorithm for solving Bernstein–

Vandermonde linear systems, Linear Algebra Appl., 422 (2007), pp. 616–628.
[29] J. J. Mart́ınez and J. M. Peña, Factorizations of Cauchy-Vandermonde matrices, Linear

Algebra Appl., 284 (1998), pp. 229–237.
[30] J. J. Mart́ınez and J. M. Peña, Fast algorithms of Björck-Pereyra type for solving Cauchy-

Vandermonde linear systems, Appl. Numer. Math., 26 (1998), pp. 343–352.
[31] J. J. Mart́ınez and J. M. Peña, Factorizations of Cauchy-Vandermonde matrices with one

multiple pole, in Recent Research on Pure and Applied Algebra, Nova Science Publishers,
Hauppauge, NY, 2003, pp. 85–95.

[32] The MathWorks, Inc., MATLAB Reference Guide, Natick, MA, 1992.
[33] H. Oruç and G. M. Phillips, Explicit factorization of the Vandermonde matrix, Linear Al-

gebra Appl., 315 (2000), pp. 113–123.
[34] H. Van de Vel, Numerical treatment of a generalized Vandermonde system of equations, Linear

Algebra Appl., 17 (1977), pp. 149–179.
[35] A. M. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math., 2 (1952),

pp. 88–92.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 752–773

SYMMETRIC INDEFINITE PRECONDITIONERS FOR SADDLE
POINT PROBLEMS WITH APPLICATIONS TO

PDE-CONSTRAINED OPTIMIZATION PROBLEMS∗

JOACHIM SCHÖBERL† AND WALTER ZULEHNER‡

Abstract. We consider large scale sparse linear systems in saddle point form. A natural
property of such indefinite 2-by-2 block systems is the positivity of the (1,1) block on the kernel
of the (2,1) block. Many solution methods, however, require that the positivity of the (1,1) block
is satisfied everywhere. To enforce the positivity everywhere, an augmented Lagrangian approach
is usually chosen. However, the adjustment of the involved parameters is a critical issue. We will
present a different approach that is not based on such an explicit augmentation technique. For the
considered class of symmetric and indefinite preconditioners, assumptions are presented that lead
to symmetric and positive definite problems with respect to a particular scalar product. Therefore,
conjugate gradient acceleration can be used. An important class of applications are optimal control
problems. It is typical for such problems that the cost functional contains an extra regularization
parameter. For control problems with elliptic state equations and distributed control, a special
indefinite preconditioner for the discretized problem is constructed, which leads to convergence rates
of the preconditioned conjugate gradient method that are not only independent of the mesh size
but also independent of the regularization parameter. Numerical experiments are presented for
illustrating the theoretical results.

Key words. saddle point problems, indefinite preconditioners, KKT systems, conjugate gradient
methods, PDE-constrained optimization problems, optimal control problems

AMS subject classifications. 65F10, 15A12, 49M15

DOI. 10.1137/060660977

1. Introduction. In this paper we consider large scale sparse linear systems of
equations in saddle point form

(1.1)

(
A BT

B 0

)(
x
p

)
=

(
f
g

)
,

where A is a real, symmetric, and positive semidefinite n-by-n matrix, B is a real
m-by-n matrix with full rank m ≤ n, and BT denotes the transposed matrix of B.
Such systems typically result from the discretization of mixed variational problems
for systems of partial differential equations (PDEs) (see Brezzi and Fortin [8]) in
particular, from the discretization of optimization problems with PDE-constraints. A
natural property of such a problem is that A is positive definite on the kernel of B,
i.e.,

(1.2) (Aw,w) > 0 for all w ∈ kerB with w �= 0,

∗Received by the editors May 26, 2006; accepted for publication (in revised form) by A. J. Wathen
January 22, 2007; published electronically July 4, 2007.

http://www.siam.org/journals/simax/29-3/66097.html
†Center for Computational Engineering Science, RWTH Aachen, D-52074 Aachen, Germany. Cur-

rent address: Johann Radon Institute for Computational and Applied Mathematics (RICAM), Aus-
trian Academy of Sciences, A-4040 Linz, Austria (schoeberl@mathcces.rwth-aachen.de, js@jku.at).

‡Institute of Computational Mathematics, Johannes Kepler University, A-4040 Linz, Austria
(zulehner@numa.uni-linz.ac.at). The work of this author was supported in part by the Austrian
Science Fund (FWF) under the grant SFB F013/F1309.

752

SYMMETRIC INDEFINITE PRECONDITIONERS 753

where (x,w) denotes the Euclidean scalar product. This condition guarantees, in
combination with the full rank of B, that the matrix

K =

(
A BT

B 0

)
is nonsingular.

Under the assumptions stated above, the system (1.1) can be interpreted as the
Karush–Kuhn–Tucker (KKT) conditions, which characterize the solution x of the
following constrained optimization problem (see, e.g., Fletcher [14]):

Minimize J(x) ≡ 1

2
(Ax, x) − (f, x) subject to the constraints Bx = g

with associated Lagrangian parameter p.
Most of the work on efficient iterative methods for solving (1.1) has been done

under the assumption that the matrix A is positive definite not only on kerB but
on the whole space R

n, with the consequence that the (negative) Schur complement
S = BA−1BT is well defined. Most of the proposed methods can be viewed as pre-
conditioned Richardson methods for (1.1) typically accelerated by a Krylov subspace
method; see Saad and van der Vorst [23] for a review of iterative methods for linear
systems. The discussed preconditioners for K are 2-by-2 block matrices K̂ depending
on a preconditioner Â for approximating A and a preconditioner Ŝ, which is either
interpreted as an approximation of the Schur complement S or as an approximation
of the so-called inexact Schur complement H = BÂ−1BT . Typical classes of such
preconditioners which rely on a positive definite matrix A are block diagonal pre-
conditioners (see, e.g., Rusten and Winther [22], Silvester and Wathen [24]), block
triangular preconditioners (originating from the classical Uzawa method [2]; see also,
e.g., Elman and Golub [12], Bramble, Pasciak, and Vassilev [7]), symmetric indefi-
nite preconditioners (see, e.g., Dyn and Ferguson [11], Bank, Welfert, and Yserentant
[3], Rozlozńık and Simoncini [21], Al-Jeiroudi, Gondzio, and Hall [1], and Dollar [9]),
and symmetric positive definite block (but not block diagonal) preconditioners; see
Vassilevski and Lazarov [26]. Depending on the properties of the preconditioned sys-
tems, Krylov subspace methods either for symmetric indefinite or for nonsymmetric
systems like MINRES, BiCG, or GMRES were proposed. In Bramble and Pasciak
[6], a block triangular preconditioner was used in order to obtain a preconditioned
system which is symmetric and positive definite and, therefore, can be solved by the
conjugate gradient method (CG), which is usually considered the best or at least the
best-understood Krylov subspace method. The block triangular preconditioner in [6]
requires a symmetric and positive definite approximation Â with A− Â positive def-
inite. In [21] an interesting equivalence between the right preconditioned simplified
BiCG and a preconditioned conjugate gradient method (PCG) was obtained for the
proposed indefinite preconditioner for a particular choice of the residuals. Yet an-
other strategy to use CG was discussed, e.g., in Fischer et al. [13] and in Benzi and
Simoncini [5], where the saddle point problem (1.1) was reformulated by multiplying
the second block row by −1 leading to a positive stable but nonsymmetric system
matrix.

In this paper, however, we will focus on systems where A is positive definite
in a stable way (to be specified later) only on kerB, a typical situation for certain
classes of optimization problems with PDE-constraints. One strategy is to enforce the
definiteness on the whole space R

n by the augmented Lagrangian approach, where

754 JOACHIM SCHÖBERL AND WALTER ZULEHNER

the matrix A and the vector f in (1.1) are replaced by a matrix of the form AW =
A+BTWB and a vector fW = f+BTWg, respectively, with an appropriate matrix W ;
see, e.g., Fortin and Glowinski [15]. This does not change the solution of the problem,
and the new (1,1) block AW becomes positive definite if W is properly chosen, e.g.,
if it is positive definite and all methods from above applied to the augmented system
could be used, in principle. It is, however, a delicate issue to choose the matrix W in
order to obtain good convergence properties; see the discussions in Golub and Greif
[16], Golub, Greif, and Varah [17]. Another approach is offered by a particular class
of symmetric indefinite preconditioners; the so-called constraint preconditioners; see,
e.g., Keller, Gould, and Wathen [20], Gould, Hribar, and Nocedal [18], and Dollar
et al. [10]. These preconditioners are not restricted to the case of positive definite
matrices A. For this class of preconditioners (projected), PCG was successfully used
as an acceleration technique. One possible drawback of this class of preconditioners
is the computational costs involved in the application of the preconditioner, where in
some way or another some projection onto kerB has to be realized.

For a much more detailed discussion of available methods for saddle point prob-
lems, we refer to the review article by Benzi, Golub, and Liesen [4].

Here we will take a different approach and discuss preconditioners K̂ for the
original system matrix K (without augmentation), which, nevertheless, also work well
in the case that A is positive definite only on the kernel of B. Under appropriate
assumptions it will be shown that the preconditioned matrix K̂−1K is even symmetric
and positive definite in some appropriate scalar product. Therefore, CG acceleration
can be applied. In contrast to Bramble and Pasciak [6], this new technique requires a
symmetric and positive definite approximation Â with Â−A positive definite, which
is easier to achieve and can also be applied if A itself is only positive definite on the
kernel of B.

An important field of applications are PDE-constrained optimization problems, in
particular, optimal control problems; see, e.g., Tröltzsch [25]. It is typical for optimal
control problems that the cost functional contains an extra regularization parameter.
If discretized by an appropriate finite element method, the resulting KKT system is
of the form (1.1), where the matrices A and B depend on the underlying subdivision,
say with mesh size h, and on the regularization parameter, say ν. For optimal control
problems with elliptic state equations and distributed control, a special symmetric
indefinite preconditioner will be constructed, and convergence rate estimates are given
which are robust in h as well as in ν.

The paper is organized as follows: In section 2 the considered class of precondi-
tioners is introduced and analyzed. Section 3 describes how the algebraic conditions
for the preconditioners are linked to the conditions of Brezzi’s theorem for mixed
variational problems, and a general framework for constructing the preconditioners is
sketched. In section 4 a problem from optimal control is discussed and precondition-
ers are constructed which are robust with respect to the mesh size as well as to the
involved regularization parameter. Implementation issues are discussed in section 5
and numerical experiments are presented in section 6, followed by some concluding
remarks.

Throughout the paper the following notations are used: M < N (N > M) iff
N −M is positive definite, and M ≤ N (N ≥ M) iff N −M is positive semidefinite
for symmetric matrices M and N . For a symmetric and positive definite matrix M ,
the associated scalar product (v, w)M and norm ‖v‖M are given by

(v, w)M = (Mv,w) and ‖v‖M = (v, v)
1/2
M ,

SYMMETRIC INDEFINITE PRECONDITIONERS 755

where (v, w) (without index) denotes the Euclidean scalar product. The Euclidean
norm of a vector v is denoted by ‖v‖ (without index).

2. A class of symmetric and indefinite preconditioners. A well-known
class of preconditioners is given by

K̂ =

(
Â BT

B BÂ−1BT − Ŝ

)
,

where Â and Ŝ are symmetric and positive definite matrices; see Bank, Welfert, and
Yserentant [3]. More precisely, we will assume that Â and Ŝ are preconditioners; i.e.,
efficient evaluations of Â−1s and Ŝ−1t are available for given vectors s and t.

We have the following factorization:

K̂ =

(
I 0

BÂ−1 I

)(
Â BT

0 −Ŝ

)
,

which implies that K̂ is nonsingular and that the solution of a linear system

K̂
(
w
q

)
=

(
s
t

)
reduces to the consecutive solution of the following three linear systems:

Âŵ = s,

Ŝ q = Bŵ − t,

Âw = s−BT q.

So, one application of the preconditioner K̂ requires two applications of the precon-
ditioner Â and one application of the preconditioner Ŝ.

In Bank, Welfert, and Yserentant [3] and later in Zulehner [27], this preconditioner
has been analyzed for the case that A is positive definite. One important part of the
analysis easily carries over to the case considered here.

Theorem 2.1. Assume that A ≥ 0, condition (1.2) is satisfied, and rankB = m.
Let Â > 0 and Ŝ > 0.

1. If

(2.1) Â ≥ A and Ŝ ≤ BÂ−1BT ,

then all eigenvalues of K̂−1K are real and positive.
2. If

(2.2) Â > A and Ŝ < BÂ−1BT ,

then K̂−1K is symmetric and positive definite with respect to the scalar product

(2.3)

((
x
p

)
,

(
w
q

))
D

= ((Â−A)x,w) + ((BÂ−1BT − Ŝ)p, q).

756 JOACHIM SCHÖBERL AND WALTER ZULEHNER

Proof. Apply Theorem 5.2 from Zulehner [27] to the regularized matrices A+ ε I
and Â+ ε I for ε > 0, take the limit ε → 0, and observe that K is nonsingular.

Estimates for the extreme eigenvalues of K̂−1K were derived in Zulehner [27] under
the assumption that A is positive definite on the whole space. However, the estimate
for the smallest eigenvalue degenerates, if directly applied to the case considered here.
In this paper this gap will be closed.

First of all, we have to discuss reasonable assumptions on Â and Ŝ, which measure
the quality of these preconditioners. Comparing the matrix K and the preconditioner
K̂, it seems to be natural to consider Â as an approximation to A at least on kerB
and to consider Ŝ as an approximation to the so-called inexact Schur complement H,
given by

H = BÂ−1BT .

Therefore, we assume that constants α > 0 and β > 0 exist such that

(Aw,w) ≥ α (Âw,w) for all w ∈ kerB

and

BÂ−1BT ≤ β Ŝ.

Observe that we will still require condition (2.1); therefore α ≤ 1 and β ≥ 1. The
closer α and β are to 1 the better we expect the preconditioner K̂ will be. This results
in the following theorem.

Theorem 2.2. Assume that A ≥ 0, condition (1.2) is satisfied, and rankB = m.
Let Â > 0 and Ŝ > 0 with

(2.4) (Aw,w) ≥ α (Âw,w) for all w ∈ kerB and Â ≥ A,

and

(2.5) Ŝ ≤ BÂ−1BT ≤ β Ŝ

with constants α and β with 0 < α ≤ 1 and 0 < β ≤ 1. Then

λmax(K̂−1K) ≤ β +
√
β2 − β = β (1 +

√
1 − 1/β)

and

λmin(K̂−1K) ≥ 1

2

[
2 + α− 1/β −

√
(2 + α− 1/β)2 − 4α

]

≥ α

[
2√

1 − 1/β +
√

5 − 1/β

]2

> 0.

Proof. The upper bound directly follows from Theorem 5.2 in Zulehner [27] again
by considering the regularized matrices A + ε I and Â + ε I for ε > 0 with ε → 0.

For the lower bound we consider an eigenvalue λ of the matrix K̂−1K:

K
(
x
p

)
= λ K̂

(
x
p

)
,

SYMMETRIC INDEFINITE PRECONDITIONERS 757

which is equivalent to the eigenvalue problem

K
(
x
p

)
= μD

(
x
p

)
with

λ =
μ

1 + μ
and D = K̂ − K =

(
Â−A 0

0 BÂ−1BT − Ŝ

)
,

or, in an equivalent variational form,

(Ax,w) + (Bw, p) = μ ((Â−A)x,w) for all w ∈ R
n,

(Bx, q) = μ ((BÂ−1BT − Ŝ)p, q) for all q ∈ R
m.

Now, two cases are distinguished: First, for the case μ ≤ 0, it follows that λ =
μ/(1 + μ) > 1, since λ must be positive by Theorem 2.1. (The case μ = −1 can be
excluded, since K̂ is nonsingular.) So, in this case, the eigenvalues λ are bounded
from below by 1.

Next, we consider the remaining case μ > 0. Let

W = kerB, W⊥ = {x ∈ R
n : (Âx, w) = 0 for all w ∈ W}.

Then there is a unique representation of x of the following form:

x = x1 + x2 with x1 ∈ W and x2 ∈ W⊥.

Now the variational form reads

(Ax1, w1) + (Ax2, w1) = μ
[
((Â−A)x1, w1) − (Ax2, w1)

]
,

(Ax1, w2) + (Ax2, w2) + (Bw2, p) = μ
[
−(Ax1, w2) + ((Â−A)x2, w2)

]
,

(Bx2, q) = μ ((BÂ−1BT − Ŝ)p, q)

for all w1 ∈ W , w2 ∈ W⊥, q ∈ R
m. From the first equation we obtain for w1 = x1

that

α (x1, x1)Â ≤ (Ax1, x1) = μ ((Â−A)x1, x1) − (μ + 1)(Ax2, x1).

Using

|(Aw2, w1)| = |((Â−A)w2, w1)| ≤ ((Â−A)w1, w1)
1/2((Â−A)w2, w2)

1/2

≤
√

1 − α ‖w1‖Â ‖w2‖Â for all w1 ∈ W, w2 ∈ W⊥,

it follows that

α (x1, x1)Â ≤ μ (1 − α) (x1, x1)Â + (μ + 1)
√

1 − α ‖x1‖Â‖x2‖Â,

which implies

α ‖x1‖Â ≤ μ (1 − α) ‖x1‖Â + (μ + 1)
√

1 − α ‖x2‖Â.

758 JOACHIM SCHÖBERL AND WALTER ZULEHNER

From the second equation we obtain

sup
w2∈W⊥

(Bw2, p)

‖w2‖Â
= sup

w2∈W⊥

−(μ + 1)(Ax1, w2) + ((μ(Â−A) −A)x2, w2)

‖w2‖Â
.

Using

|(Ax1, w2)| = |(Aw2, x1)| ≤
√

1 − α ‖x1‖Â ‖w2‖Â
and

|([μ(Â−A) −A]x2, w2)| = |(Â−1[μ(Â−A) −A]x2, w2)Â|
≤ ‖Â−1[μ(Â−A) −A]‖Â‖x2‖Â ‖w2‖Â

with

‖Â−1[μ(Â−A) −A]‖Â ≤ μ ‖Â−1(Â−A)‖Â + ‖Â−1A‖Â ≤ μ + 1,

it follows that

sup
w2∈W⊥

(Bw2, p)

‖w2‖Â
≤ (μ + 1)

√
1 − α ‖x1‖Â + (μ + 1) ‖x2‖Â.

From the third equation we obtain

sup
0 �=q

(Bx2, q)

‖q‖H
= sup

0 �=q

μ ((BÂ−1BT − Ŝ)p, q)

‖q‖H
≤ μ (1 − 1/β) ‖p‖H .

Observe that, for the left-hand sides of the last two inequalities, we have the following
well-known representations:

sup
w2∈W⊥

(Bw2, p)

‖w2‖Â
= sup

w∈Rn

(Bw, p)

‖w‖Â
= (BÂ−1BT p, p)1/2 = ‖p‖H

and

sup
0 �=q∈Rm

(Bx2, q)

‖q‖H
= (BTH−1Bx2, x2)

1/2 = (Â−1BTH−1Bx2, x2)
1/2

Â

= (x2, x2)
1/2

Â
= ‖x2‖Â,

since P = Â−1BTH−1B is a projection onto W⊥, so Px2 = x2 for x2 ∈ W⊥.
Hence, in summary,⎛⎝ α −

√
1 − α 0

−
√

1 − α −1 1
0 1 0

⎞⎠
︸ ︷︷ ︸

K

⎛⎝‖x1‖Â
‖x2‖Â
‖p‖H

⎞⎠
︸ ︷︷ ︸

e

≤ μ

⎛⎝ 1 − α
√

1 − α 0√
1 − α 1 0
0 0 1 − 1/β

⎞⎠
︸ ︷︷ ︸

D

⎛⎝‖x1‖Â
‖x2‖Â
‖p‖H

⎞⎠
︸ ︷︷ ︸

e

.(2.6)

SYMMETRIC INDEFINITE PRECONDITIONERS 759

Since K−1 is nonnegative elementwise, it follows that

e ≤ μK−1De.

Elementary calculations show that

ν+ =
1

2α

[
2 − α− 1/β +

√
(2 − α− 1/β)2 + 4α(1 − 1/β)

]
is a nonnegative eigenvalue of K−1D with componentwise nonnegative left eigenvector
lT+, given by

lT+ =
(√

1 − α, 1, αν+ − 1 + α
)
.

Then

lT+e ≤ μν+l
T
+e.

Obviously, lT+e ≥ 0. One can easily show that ν+ > 0 and lT+e > 0: ν+ = 0 implies
α = β = 1, then (2.6) implies e = 0. In a similar way the case lT+e = 0 can be
excluded.

Therefore, after dividing by lT+e > 0, we obtain

μ ≥ 1

ν+
.

Consequently,

λ =
μ

1 + μ
≥ 1

1 + ν+
=

1

2

[
2 + α− 1/β −

√
(2 + α− 1/β)2 − 4α

]
=

2α

2 + α− 1/β +
√

(2 + α− 1/β)2 − 4α

≥ 2α

3 − 1/β +
√

(3 − 1/β)2 − 4
= α

[
2√

1 − 1/β +
√

5 − 1/β

]2

> 0.

This lower bound is obviously smaller than 1, which was the lower bound for the first
case μ ≤ 0. This completes the proof.

By slightly strengthening the conditions (2.4) and (2.5) to

(2.7) (Aw,w) ≥ α (Âw,w) for all w ∈ kerB and Â > A

and

(2.8) Ŝ < BÂ−1BT ≤ β Ŝ,

the scalar product (2.3) is well defined, and, by Theorem 2.1, the standard CG can
be applied to the preconditioned system

(2.9) K̂−1K
(
x
p

)
= K̂−1

(
f
g

)
with respect to the scalar product (2.3).

760 JOACHIM SCHÖBERL AND WALTER ZULEHNER

The actual construction of the preconditioners Â and Ŝ is usually done in two
steps. First, some preliminary candidates Â0 and Ŝ0 are chosen which approximate
the matrices A and BÂ−1

0 BT . In the second step, these candidates are properly

scaled: Â = (1/σ) Â0 and Ŝ = (σ/τ) Ŝ0, where the positive parameters σ and τ must
be chosen such that (2.2) are satisfied, i.e.,

1

σ
Â0 > A and

1

τ
Ŝ0 < BÂ−1

0 BT .

So, the correct choice of the parameters σ and τ requires some rough information of
the size of the largest eigenvalue of A relative to Â0, which is, in general, quite easy to
obtain and of the size of the smallest eigenvalue of BÂ−1

0 BT relative to Ŝ0, which, in
general, is more costly, but which is available here from the analysis for the problem
discussed in section 4. The values of α and β in (2.7) and (2.8) are not needed for the
construction, but only for the analysis.

It is well known (see, e.g., Hackbusch [19]) that the error e(k) for the kth iterate
(x(k), p(k))T measured in the corresponding energy norm can be estimated by

e(k) ≤ 2qk

1 + q2k
e(0) with q =

√
κ(K̂−1K) − 1√
κ(K̂−1K) + 1

,

where κ(K̂−1K) denotes the relative condition number

κ(K̂−1K) =
λmax(K̂−1K)

λmin(K̂−1K)
.

From Theorem 2.2 the following upper bound for the relative condition number fol-
lows:

κ(K̂−1K) ≤ 2(β +
√

β2 − β)

2 + α− 1/β −
√

(2 + α− 1/β)2 − 4α
≡ κ(α, β)

≤ β

α
(1 +

√
1 − 1/β)

[√
1 − 1/β +

√
5 − 1/β

2

]2

.

This shows that the convergence rate q can be bounded by α and β only. If the
preconditioners are chosen such that α and β are independent of certain parameters
like the mesh size h of some discretization or some involved regularization parameter
ν, then the convergence rate is also robust with respect to such parameters.

Furthermore, for α → 1 and β → 1, the lower and upper bounds for the eigenval-
ues in Theorem 2.2 both approach 1 (implying that all eigenvalues of the precondi-
tioned matrix K̂−1K approach 1), leading to a relative condition number approaching
1 and a convergence factor q approaching 0.

In the limit case α = 1 and β = 1, one can easily derive the following representa-
tions for the preconditioners from the conditions (2.4) and (2.5):

Â = A + BT W B and Ŝ = BÂ−1BT

for some matrix W ≥ 0. Then, we obtain:

K̂ =

(
A + BTWB BT

B 0

)
.

SYMMETRIC INDEFINITE PRECONDITIONERS 761

From the previous considerations, it follows in this case that all eigenvalues of K̂−1K
must be equal to 1. Moreover, it can easily be shown that[

I − K̂−1K
]2

= 0.

So, the corresponding preconditioned Richardson method terminates at the solution
after two steps.

In a simplified way one could describe the proposed strategy as follows: Good
preconditioners Â can be interpreted as good approximations to some augmented
matrix A + BTWB, but we do not change the matrix A itself in the system matrix
K. This seems to be only a slight variant to the augmented Lagrangian approach,
where first A itself is replaced by A+BTWB in K. However, the actual construction
of the preconditioner is not based on first selecting some augmentation matrix W
and then preconditioning the augmented matrix. Instead, as will be detailed in the
next section, the construction is guided by the analysis of an underlying (infinite-
dimensional) variational problem, whose discretization leads to the discussed large
scale linear systems of equations in saddle point form.

3. Application to mixed variational problems. Consider an (infinite-
dimensional) mixed variational problem of the following form: Find x ∈ X and p ∈ Q
such that

a(x,w) + b(w, p) = 〈F,w〉 for all w ∈ X,

b(x, q) = 〈G, q〉 for all q ∈ Q.

Here, X and Q are real Hilbert spaces, a : X × X −→ R and b : X × Q −→ R are
bilinear forms, F : X −→ R and G : Q −→ R are continuous linear functionals, and
〈F,w〉 (〈G, q〉) denotes the evaluation of F (G) at the element w (q).

The existence and uniqueness of a solution to this mixed variational problem
is well established (Brezzi’s theorem; see Brezzi and Fortin [8]) under the following
conditions:

1. The bilinear form a is bounded:

a(x,w) ≤ ‖a‖ ‖x‖X‖w‖X for all x,w ∈ X.

2. The bilinear form a is coercive on kerB = {w ∈ X : b(w, q) = 0 for all q ∈ Q}:
There exists a constant α0 > 0 such that

a(w,w) ≥ α0 ‖w‖2
X for all w ∈ kerB.

3. The bilinear form b is bounded:

sup
0 �=w∈X

b(w, q)

‖w‖X
≤ ‖b‖ ‖q‖Q for all q ∈ Q.

4. The bilinear form b satisfies the inf-sup condition: There exists a constant
k0 > 0 such that

sup
0 �=w∈X

b(w, q)

‖w‖X
≥ k0 ‖q‖Q for all q ∈ Q.

762 JOACHIM SCHÖBERL AND WALTER ZULEHNER

Under the additional assumptions that
5. the bilinear form a is symmetric on X:

a(x,w) = a(w, x) for all x,w ∈ X, and

6. the bilinear form a is nonnegative on X:

a(w,w) ≥ 0 for all w ∈ X,

Brezzi’s theorem implies the equivalence of the mixed variational problem to the
following constrained optimization problem: Find x ∈ X such that

(3.1) J(x) = min
w∈Xg

J(w)

with

J(w) =
1

2
a(w,w) − 〈F,w〉

and

Xg = {w ∈ X : b(w, q) = 〈G, q〉 for all q ∈ Q}.

For discretizing the infinite-dimensional problem the spaces X and Q are replaced
by finite-dimensional subspaces Xh ⊂ X and Qh ⊂ Q, which results in the following
finite-dimensional variational problem: Find xh ∈ Xh and ph ∈ Qh such that

a(xh, wh) + b(wh, ph) = 〈F,wh〉 for all wh ∈ Xh,

b(xh, qh) = 0 for all qh ∈ Qh.

By introducing suitable basis functions in Xh and Qh, we finally obtain the following
saddle point problem in matrix-vector notation:

Ahxh + BT
h ph = f

h
,

Bhxh = g
h
,

where xh and p
h

denote the corresponding vectors of coefficients with respect to these
basis functions.

We assume that the conditions of Brezzi’s theorem are also satisfied in Xh and
Qh. This is trivial for the first and third conditions. The second and fourth conditions
must be proven for the particular equations and elements. To simplify the notation
the same symbols are used to denote the constants.

The scalar products (x, q)X and (p, q)Q are bilinear forms on Xh and Qh. The
associated matrices representing these scalar products are denoted by Xh and Q

h
,

respectively, i.e.,

(xh, wh)X = (Xhxh, wh), (ph, qh)Q = (Q
h
p
h
, q

h
).

Using matrix-vector notations, the conditions of Brezzi’s theorem on Xh and Qh are

Ah ≤ ‖a‖Xh,(3.2)

(Ah, wh, wh) ≥ α0 (Xhwh, wh) for all wh ∈ kerBh,(3.3)

BhX
−1
h BT

h ≤ ‖b‖2 Q
h
,(3.4)

BhX
−1
h BT

h ≥ k2
0 Qh

.(3.5)

SYMMETRIC INDEFINITE PRECONDITIONERS 763

For the third and fourth condition we used the well-known representation

sup
0 �=wh∈Xh

b(wh, qh)

‖wh‖X
= (BhX

−1
h BT

h qh, qh)1/2.

Comparing (3.2)–(3.5) with the conditions (2.7) and (2.8) it seems to be reasonable
to choose for Âh a suitable multiple of the matrix Xh and for Ŝh a suitable multiple
of the matrix Q

h
. However, since the application of the preconditioner K̂h requires

the solution of linear systems with the matrices Âh and Ŝh, this would require the
inversion of these matrices Xh and Q

h
. In typical applications (see the next section)

(parts of) Xh and Q
h

are the stiffness matrices of second order differential operators.
So, the exact inversion could be too costly. Therefore, it is recommended to use
approximations, say X̂h and Q̂h, that are easy to invert (i.e., preconditioners) instead
of Xh and Q

h
:

(3.6) Âh =
1

σ
X̂h and Ŝh =

σ

τ
Q̂h

for some real parameters σ > 0 and τ > 0, which are needed for a suitable scaling.
We assume that the quality of these preconditioners can be described by spectral
estimates, e.g., of the form

(3.7) (1 − qX) X̂h ≤ Xh ≤ X̂h and (1 − qQ) Q̂h ≤ Q
h
≤ Q̂h

with constants qX , qQ ∈ [0, 1). The smaller these constants are the better the precon-

ditioners X̂h and Q̂h approximate the matrices Xh and Q
h
.

Combining all estimates we easily obtain the following lemma.
Lemma 3.1. Assume that (3.2)–(3.7) hold. Then the conditions (2.7) and (2.8)

are satisfied with

α = σ (1 − qX)α0 and β = τ ‖b‖2

if the parameters σ and τ are chosen such that

σ <
1

‖a‖ and τ >
1

(1 − qX)(1 − qQ)k2
0

.

Proof. We have

Ah ≤ ‖a‖Xh ≤ ‖a‖ X̂h = σ ‖a‖ Âh < Âh

if σ < 1/‖a‖. Next

(Ahwh, wh) ≥ α0 (Xhwh, wh) ≥ (1 − qX)α0 (X̂hwh, wh) = α (Âhwh, wh)

with α = σ (1 − qX)α0. Next

BhÂ
−1
h BT

h = σ BhX̂
−1
h BT

h ≤ σ BhX
−1
h BT

h ≤ σ ‖b‖2 Q
h
≤ σ ‖b‖2 Q̂h = β Ŝh

with β = τ ‖b‖2. Finally

BhÂ
−1
h BT

h = σ BhX̂
−1
h BT

h ≥ σ (1 − qX)BhX
−1
h BT

h ≥ σ (1 − qX) k2
0 Qh

≥ σ (1 − qX) (1 − qQ) k2
0 Q̂h = τ (1 − qX) (1 − qQ) k2

0 Ŝh > Ŝh

764 JOACHIM SCHÖBERL AND WALTER ZULEHNER

if τ > 1/[(1 − qX)(1 − qQ)k2
0].

Good and efficient preconditioners X̂h and Q̂h are usually available, as will be
shown for a particular problem in the next section. Therefore, the quantities qX and
qQ are typically small, say 0.1.

Roughly speaking, the parameter σ has to be sufficiently small, while the param-
eter τ has to be sufficiently large in order to guarantee the conditions (2.7) and (2.8).
On the other hand, in order to obtain a small upper bound κ(α, β) for the condition
number of the preconditioned matrix K̂−1K, α should be as large as possible and β
should be as small as possible, i.e., σ should be as large as possible and τ should be
as small as possible. This, of course, requires at least a rough quantitative knowledge
of the constants ‖a‖ and k0, which are involved in the choice of σ and τ .

Next, we will study a particular problem from optimal control, where the param-
eters ‖a‖, α0, ‖b‖, and k0 are known.

4. A problem from optimal control. Let Ω ⊂ R
d be an open and bounded

set. We consider the following optimization problem with PDE-constraints: Find the
state y ∈ H1(Ω) and the control u ∈ L2(Ω) such that

J(y, u) = min
(z,v)∈H1(Ω)×L2(Ω)

J(z, v)

subject to the state equation with distributed control u

−Δy + y = u in Ω,

∂y

∂n
= 0 on ∂Ω,

where the cost functional is given by

J(y, u) =
1

2

∫
Ω

(y − yd)
2 dx +

ν

2

∫
Ω

u2 dx.

More precisely, we prescribe the state equation in weak form:∫
Ω

∇y · ∇q dx +

∫
Ω

y q dx =

∫
Ω

u q dx for all q ∈ H1(Ω).

Let X = Y ×U with Y = H1(Ω), U = L2(Ω), and Q = H1(Ω). With x = (y, u) ∈ X,
w = (z, v) ∈ X, and q ∈ Q, we introduce the following bilinear forms and linear
functionals:

a(x,w) =

∫
Ω

y z dx + ν

∫
Ω

u v dx,

b(w, q) =

∫
Ω

∇z · ∇q dx +

∫
Ω

z q dx−
∫

Ω

v q dx,

〈F,w〉 =

∫
Ω

yd z dx,

〈G, q〉 = 0.

With this setting the optimization problem is of the standard form (3.1).

SYMMETRIC INDEFINITE PRECONDITIONERS 765

The conditions of Brezzi’s theorem can easily be verified for the Hilbert spaces
X = Y ×U and Q introduced above and equipped with the standard scalar products
(y, z)H1(Ω) in Y , (u, v)L2(Ω) in U , and (p, q)H1(Ω) in Q. Then, however, the parameters
‖a‖, α0, ‖b‖, and k0 depend on the regularization parameter ν, eventually resulting
in convergence rates also depending on ν.

With a different scaling of the scalar products in Y , U , and Q we obtain parame-
ters ‖a‖, α0, ‖b‖, and k0 independent of ν, eventually leading to preconditioners with
convergence rates robust in ν. In particular, we consider the following new scalar
products (y, z)Y in Y = H1(Ω), (u, v)U in U = L2(Ω), and (p, q)Q in Q = H1(Ω):

(y, z)Y = (y, z)L2(Ω) +
√
ν (y, z)H1(Ω), (u, v)U = ν (u, v)L2(Ω),

and

(p, q)Q =
1

ν
(p, q)L2(Ω) +

1√
ν

(p, q)H1(Ω),

and we set (x,w)X = (y, z)Y + (u, v)U for x = (y, u), w = (z, v) ∈ X = Y × U .
Observe that the corresponding new norms are equivalent to the standard norms in
these spaces for fixed ν > 0.

With these definitions of the scalar products the following properties can be ver-
ified.

Lemma 4.1.

1. The bilinear form a is bounded:

a(x,w) ≤ ‖x‖X‖w‖X for all x,w ∈ X.

2. The bilinear form a is coercive on kerB:

a(w,w) ≥ α0 ‖w‖2
X for all w ∈ kerB with α0 =

2

3
.

3. The bilinear form b is bounded:

sup
0 �=w∈X

b(w, q)

‖w‖X
≤ ‖q‖Q for all q ∈ Q.

4. The bilinear form b satisfies the inf-sup condition:

sup
0 �=w∈X

b(w, q)

‖w‖X
≥ k0 ‖q‖Q with k0 =

√
3

4
.

Proof. 1 of Lemma 4.1 is trivial since a is symmetric and a(w,w) ≤ ‖w‖2
X . For 2

take w = (z, v) ∈ kerB. Then

(z, q)H1(Ω) = (v, q)L2(Ω) for all q ∈ H1(Ω).

In particular, it follows for q = z that

‖z‖2
H1(Ω) = (v, z)L2(Ω) ≤ ‖v‖L2(Ω)‖z‖L2(Ω),

which implies

‖w‖2
X = ‖z‖2

Y + ‖v‖2
U ≤ ‖z‖2

L2(Ω) +
√
ν ‖z‖L2(Ω)‖v‖L2(Ω) + ν ‖v‖2

L2(Ω).

766 JOACHIM SCHÖBERL AND WALTER ZULEHNER

Then

a(w,w) ≥ α0 ‖w‖2
X

is certainly satisfied if

a(w,w) ≥ α0

[
‖z‖2

L2(Ω) +
√
ν ‖z‖L2(Ω)‖v‖L2(Ω) + ν ‖v‖2

L2(Ω)

]
,

which is equivalent to

(1 − α0) ‖z‖2
L2(Ω) − α0

√
ν ‖z‖L2(Ω)‖v‖L2(Ω) + (1 − α0) ν ‖v‖2

L2(Ω) ≥ 0.

This is obviously the case for α0 = 2/3, since

1

3
‖z‖2

L2(Ω) −
2

3

√
ν ‖z‖L2(Ω)‖v‖L2(Ω) +

1

3
ν ‖v‖2

L2(Ω) =
1

3

[
‖z‖L2(Ω) −

√
ν‖v‖L2(Ω)

]2
.

To show 3 and 4, we start with the following formula:

sup
0 �=w∈X

b(w, q)2

‖w‖2
X

= sup
0 �=(z,v)∈Y×U

[
(z, q)H1(Ω) − (v, q)L2(Ω)

]2
‖z‖2

Y + ‖v‖2
U

= sup
0 �=z∈Y

(z, q)2H1(Ω)

‖z‖2
Y

+ sup
0 �=v∈U

(v, q)2L2(Ω)

‖v‖2
U

= sup
0 �=z∈Y

(z, q)2H1(Ω)

‖z‖2
Y

+
1

ν
‖q‖2

L2(Ω).

Then 3 easily follows from the estimates

sup
0 �=z∈Y

(z, q)2H1(Ω)

‖z‖2
Y

+
1

ν
‖q‖2

L2(Ω) ≤ sup
0 �=z∈Y

‖z‖2
H1(Ω)‖q‖2

H1(Ω)

‖z‖2
Y

+
1

ν
‖q‖2

L2(Ω)

= sup
0 �=z∈Y

‖z‖2
H1(Ω)‖q‖2

H1(Ω)

‖z‖2
L2(Ω) +

√
ν ‖z‖2

H1(Ω)

+
1

ν
‖q‖2

L2(Ω)

≤ 1√
ν
‖q‖2

H1(Ω) +
1

ν
‖q‖2

L2(Ω) = ‖q‖2
Q.

For 4 observe that

sup
0 �=z∈Y

(z, q)2H1(Ω)

‖z‖2
Y

+
1

ν
‖q‖2

L2(Ω) ≥
‖q‖4

H1(Ω)

‖q‖2
Y

+
1

ν
‖q‖2

L2(Ω)

=
‖q‖4

H1(Ω)

‖q‖2
L2(Ω) +

√
ν ‖q‖2

H1(Ω)

+
1

ν
‖q‖2

L2(Ω).

Then the inf-sup condition

sup
0 �=w∈X

b(w, q)

‖w‖X
≥ k0 ‖q‖Q

SYMMETRIC INDEFINITE PRECONDITIONERS 767

is certainly satisfied if

‖q‖4
H1(Ω)

‖q‖2
L2(Ω) +

√
ν ‖q‖2

H1(Ω)

+
1

ν
‖q‖2

L2(Ω) ≥ k2
0 ‖q‖2

Q = k2
0

[
1

ν
‖q‖2

L2(Ω) +
1√
ν
‖q‖2

H1(Ω)

]
,

which is equivalent to

(1 − k2
0) ‖q‖4

H1(Ω) + (1 − 2k2
0)

1√
ν
‖q‖2

L2(Ω)‖q‖2
H1(Ω) + (1 − k2

0)
1

ν
‖q‖4

L2(Ω) ≥ 0.

This is obviously the case for k2
0 = 3/4 since

1

4
‖q‖4

H1(Ω) −
1

2

1√
ν
‖q‖2

L2(Ω)‖q‖2
H1(Ω) +

1

4

1

ν
‖q‖4

L2(Ω)

=
1

4

[
‖q‖2

H1(Ω) −
1√
ν
‖q‖2

L2(Ω)

]2

.

By Brezzi’s theorem it now follows that the optimization problem is equivalent
to the following mixed variational problem: Find x ∈ H1(Ω)× L2(Ω) and p ∈ H1(Ω)
such that

a(x,w) + b(w, p) = 〈F, x〉 for all w ∈ H1(Ω) × L2(Ω),

b(x, q) = 0 for all q ∈ H1(Ω).

For the spaces Yh = Uh = Qh we choose, as an example, the space of piecewise
linear and continuous functions on a simplicial subdivision of Ω. By introducing the
standard nodal basis, we finally obtain the following saddle point problem in matrix-
vector notation:

Ahxh + BT
h ph =f

h
,

Bhxh = 0,

with

Ah =

(
Mh 0
0 ν Mh

)
and Bh =

(
Kh −Mh

)
,

where Mh denotes the mass matrix representing the L2(Ω) inner product on Yh and
Kh denotes the stiffness matrix representing the bilinear form (on Y) of the state
equation, here (∇y,∇q)L2(Ω) + (y, q)L2(Ω), on Yh.

For the matrices Xh and Q
h

representing the scalar products (x,w)X = (y, z)Y +
(u, v)U and (p, q)Q on Xh and Qh, we obtain

Xh =

(
Y h 0
0 ν Mh

)
and Q

h
=

1

ν
Y h

with

Y h =
√
ν Kh + Mh.

768 JOACHIM SCHÖBERL AND WALTER ZULEHNER

Observe that Y h is the stiffness matrix representing the bilinear form
√
ν(∇y,∇q)L2(Ω)

+ (
√
ν + 1) (y, q)L2(Ω) on Yh, which is of the same type as the bilinear form (on Y) of

the state equation, but with modified coefficients.
It is easy to see that Lemma 4.1 remains valid with the same constants if Y , U ,

Q are replaced by the finite-dimensional spaces Yh, Uh, Qh, as long as Yh = Qh ⊂ Uh.
As discussed before, it is reasonable to use a (properly scaled) preconditioner for

Xh to approximate Âh and to use a (properly scaled) preconditioner for Q
h

to approx-

imate Ŝh. For Y h, which appears in the first diagonal block of Xh and in Q
h
, we use,

e.g., a standard multigrid preconditioner Ŷh for the second order elliptic differential
operator represented by the bilinear form

√
ν (∇y,∇q)L2(Ω)+(

√
ν+1) (y, q)L2(Ω). For

the well-conditioned matrix Mh, which appears in the second diagonal block of Xh,
a simple preconditioner M̂h, e.g., a few steps of a symmetric Gauss–Seidel iteration,
is used. So, eventually we set

(4.1) Âh =
1

σ
X̂h =

1

σ

(
Ŷh 0

0 ν M̂h

)
and Ŝh =

σ

τ

1

ν
Ŷh

with real parameters σ > 0 and τ > 0.
In summary, the preconditioner

K̂h =

(
Âh BT

h

Bh BhÂ
−1
h BT

h − Ŝh

)
for the matrix

Kh =

(
Ah BT

h

Bh 0

)
is given by (4.1), where Ŷh is a preconditioner for the second order elliptic differential
operator represented by the bilinear form

√
ν (∇y,∇q)L2(Ω) +(

√
ν+1) (y, q)L2(Ω) and

a simple preconditioner M̂h for the mass matrix.
It is reasonable to assume that

(1 − qX) Ŷh ≤ Y h ≤ Ŷh and (1 − qX) M̂h ≤ Mh ≤ M̂h

for some small value qX ∈ [0, 1). The factor qX describes the quality of the precondi-
tioners Ŷh and M̂h.

The discussion in the previous section shows that the conditions (2.7) and (2.8)
are satisfied with

α = σ (1 − qX)
2

3
and β = τ

for parameters σ and τ satisfying

σ < 1 and τ >
4

3(1 − qX)2
.

In particular, assuming that qX ≈ 0, we can expect α ≈ 2/3 and β ≈ 4/3 for σ ≈ 1
and τ ≈ 4/3, leading to a rough estimate of the condition number κ ≈ κ(2/3, 4/3) ≈ 4,
which implies a convergence factor q ≈ 1/3 for the CG method.

SYMMETRIC INDEFINITE PRECONDITIONERS 769

5. Implementation issues. The proposed method in this paper is the standard
CG method applied to the preconditioned system

K̂−1
h Kh

(
xh

p
h

)
= K̂−1

h

(
f
h

g
h

)
with the nonstandard scalar product((

xh

p
h

)
,

(
wh

q
h

))
Dh

= ((Âh −Ah)xh, wh) + ((BhÂ
−1
h BT

h − Ŝh)p
h
, q

h
).

For the matrices Âh and Ŝh, preconditioners X̂h and Q̂h are needed which approximate
the matrices Xh and Q

h
representing the scalar products on the discrete spaces Xh

and Qh, respectively. The discrete spaces Xh and Qh typically involve discretizations
of Sobolev spaces, whose scalar products are the bilinear forms associated with elliptic
differential operators. So, in the end, good preconditioners for these elliptic differential
operators are required, such as multilevel or multigrid preconditioners.

A straightforward implementation of the CG method would require the evaluation
of the nonstandard scalar product, which can be done if the operation

Dh

(
wh

q
h

)
with Dh =

(
Âh −Ah 0

0 BhÂ
−1
h BT

h − Ŝh

)
= K̂h −Kh

is available. This would involve matrix-vector products with the preconditioners Âh

and Ŝh, which is, in general, prohibitively costly for multilevel or multigrid precon-
ditioners Âh and Ŝh. A closer look at the CG method reveals that this operation is
only required for vectors of the form(

wh

q
h

)
= K̂−1

h

(
sh
th

)
.

But then

Dh

(
wh

q
h

)
= D̂hK̂−1

h

(
sh
th

)
= (K̂h −Kh)K̂−1

h

(
sh
th

)
=

(
sh
th

)
−Kh

(
wh

q
h

)
,

which shows that direct matrix-vector products with the preconditioners Â and Ŝh

are not needed. As discussed in section 2, the operation

K̂−1
h

(
sh
th

)
requires only operations of the form Â−1

h s̃h and Ŝht̃h, which are, of course, available
for multilevel or multigrid preconditioners.

6. Numerical experiments. We consider the optimal control problem from
the previous section on the unit cube Ω = (0, 1)3 and with homogeneous data yd ≡ 0.
Starting from an initial mesh of 24 tetrahedra (starting level l = 1), we obtain a
hierarchy of nested meshes by uniform refinement up to some final level l = L. On
each tetrahedral mesh, piecewise linear and continuous finite elements are used for
Yh = Uh = Qh.

The discretized mixed problem is solved on the finest mesh (level l = L) by
using the CG method for the preconditioned system (2.9) with the scalar product

770 JOACHIM SCHÖBERL AND WALTER ZULEHNER

(2.3) as described before. For the preconditioner we used the proposed symmetric
block preconditioner, where Ŷh is one V -cycle of the multigrid method with m1 for-
ward Gauss–Seidel steps for presmoothing and m1 backward Gauss–Seidel steps for
postsmoothing (in short V (m1,m1)) for the second order elliptic differential operator
represented by the bilinear form

√
ν (∇y,∇q)L2(Ω) + (

√
ν + 1) (y, q)L2(Ω). For M̂h we

use m2 steps of the symmetric Gauss–Seidel method (in short SGS(m2)).

Starting values x
(0)
h and p

(0)
h are generated randomly. The exact solution of the

problem is the trivial solution xh = 0 and p
h

= 0. The quality of an approximation

(x
(k)
h , p

(k)
h) is measured by either the energy norm e(k) of the error, which here is given

by

e(k) =

∥∥∥∥∥
(
x

(k)
h

p
(k)
h

)∥∥∥∥∥
DhK̂−1

h Kh

,

or the residual r(k):

r(k) =

∥∥∥∥∥Kh

(
x

(k)
h

p
(k)
h

)∥∥∥∥∥ .
All computations were performed on a Linux-PC with a 2.0GHz 64-bit processor and
3GB memory.

Figure 6.1 shows a typical convergence history (number of iterations k versus
e(k)/e(0) and r(k)/r(0)) for level L = 5 (number of unknowns 3 × 17,985) and reg-
ularization parameter ν = 1 using a V (3, 3)-cycle for Ŷh and SGS(3) for M̂h and
parameters σ = 0.9 and τ = 1.1/k2

0 with k2
0 = 3/4. The solid straight line with the

circular markers illustrates the theoretically predicted behavior (convergence factor
q = 1/3; see the discussion at the end of section 4), which is in good agreement with
the observed behavior.

Remark 1. The convergence rate of the proposed method was shown to be
bounded below 1 independently of ν (and h). However, the norm itself depends
on ν. This might lead to the suspicion that, nevertheless, the performance depends
on the parameter ν. Observe that the Euclidean norm of the residuals shows a sim-
ilar behavior as the energy norm, which is not predicted by the theory. So, after a
fixed number of iterations (here 30 iterations), the values of the residuals cannot be
distinguished from 0 relative to the initial residual within machine precision. In this
sense the numerical experiments confirm that the method is really robust in ν.

Table 6.1 shows that the number of iterations does not depend on the level of
refinement. L denotes the level of refinement, n+m the total number of all unknowns
y
h
, uh, and p

h
, k the number of iterations needed to satisfy the stopping rule

r(k) ≤ ε r(0) with ε = 10−8,

and t the total CPU time in seconds.
Table 6.2 shows that the number of iterations does not depend on the regulariza-

tion parameter ν either. The results are given for refinement level L = 5.

7. Concluding remarks. Comparing the matrix Kh and the preconditioner K̂h,
a first remarkable observation is that the mass matrix Mh (representing the L2 inner
product on Yh) in the first diagonal block of Ah is preconditioned by a preconditioner
for a second order elliptic differential operator. Of course, such a preconditioner
cannot be a good preconditioner for Mh on the whole space Yh, but it is a good

SYMMETRIC INDEFINITE PRECONDITIONERS 771

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0 5 10 15 20 25 30 35 40

energy norms
residuals
predicted

Fig. 6.1. Convergence history: Number of iterations versus relative accuracy.

Table 6.1

Dependence of the number of iterations on the mesh size for fixed ν = 1.

Level L Number of unknowns n + m Iterations k CPU time t (in seconds)
3 1,107 14 0.06
4 7,395 15 0.61
5 53,955 15 6.96
6 412,035 16 62.04
7 3,200,227 15 559.16

Table 6.2

Dependence of the number of iterations on ν for fixed refinement level L = 5.

ν Iterations k
10−4 15
10−2 14

1 15
102 14
104 15

preconditioner on the kernel of Bh, as it was shown. This suffices for the convergence
analysis.

A more straightforward alternative would be to use some lumped mass matrix
for preconditioning Mh or even to use Mh itself because it is well conditioned and,
therefore, easy to invert. However, the resulting inexact Schur can then be interpreted
as a discretized fourth order elliptic differential operator, for which it is much harder
to find an efficient preconditioner. With our choice of the preconditioner for the mass
matrix, the inexact Schur complement remains a discretized second order differential
operator of the same complexity as the discretized second order differential operator

772 JOACHIM SCHÖBERL AND WALTER ZULEHNER

of the state equation, for which an efficient preconditioner is usually available.

So in this context, it pays to invest (a little) more in preconditioning the mass
matrix by a (properly scaled) Laplace-type preconditioner instead of some simple
preconditioner. This would normally be considered a very obscure strategy. However,
it is a very natural thing to do here because it just reflects the standard conditions of
Brezzi’s theorem.

A second remarkable observation concerns the discussed problem from optimal
control. For the considered case of distributed control, it was shown theoretically and
confirmed experimentally that the proposed preconditioner leads to convergence rates
not only robust with respect to the mesh size h but also robust with respect to the
regularization parameter ν.

Acknowledgments. We would like to thank the anonynmous referees for their
valuable comments and suggestions which helped to improve this manuscript.

REFERENCES

[1] G. Al-Jeiroudi, J. Gondzio, and J. Hall, Preconditioning Indefinite Systems in Interior
Point Methods for Large Scale Linear Optimization, Technical report MS-2006-003, School
of Mathematics, The University of Edinburgh, Edinburgh, Scotland, 2006.

[2] K. Arrow, L. Hurwicz, and H. Uzawa, Studies in Nonlinear Programming, Stanford Univer-
sity Press, Stanford, CA, 1958.

[3] R. E. Bank, B. D. Welfert, and H. Yserentant, A class of iterative methods for solving
saddle point problems, Numer. Math., 56 (1990), pp. 645–666.

[4] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numer., 14 (2005), pp. 1–137.

[5] M. Benzi and V. Simoncini, On the eigenvalues of a class of saddle point matrices, Numer.
Math., 103 (2006), pp. 173–196.

[6] J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite systems resulting
from mixed approximations of elliptic problems, Math. Comp., 50 (1988), pp. 1–17.

[7] J. H. Bramble, J. E. Pasciak, and A. T. Vassilev, Analysis of the inexact Uzawa algorithm
for saddle point problems, SIAM J. Numer. Anal., 34 (1997), pp. 1072–1092.

[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag,
New York, 1991.

[9] H. S. Dollar, Iterative Linear Algebra for Constrained Optimization, Ph.D. Thesis, University
of Oxford, Oxford, UK, 2005.

[10] H. S. Dollar, N. I. M. Gould, W. H. A. Schilders, and A. J. Wathen, Implicit-factorization
preconditioning and iterative solvers for regularized saddle-point systems, SIAM J. Matrix
Anal. Appl., 28 (2006), pp. 170–189.

[11] N. Dyn and W. E. Ferguson, The numerical solution of equality constrained quadratic pro-
gramming problems, Math. Comp., 41 (1983), pp. 165–170.

[12] H. C. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point
problems, SIAM J. Numer. Anal., 31 (1994), pp. 1645–1661.

[13] B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, Minimum residual methods for
augmented systems, BIT, 38 (1998), pp. 527–543.

[14] R. Fletcher, Practical Methods of Optimization. Vol. 2: Constrained Optimization, John
Wiley & Sons, Chichester, UK, 1981.

[15] M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical
Solution of Boundary Value Problems, North–Holland, Amsterdam, 1983.

[16] G. H. Golub and C. Greif, On solving block-structured indefinite linear systems, SIAM J.
Sci. Comput., 24 (2003), pp. 2076–2092.

[17] G. H. Golub, C. Greif, and J. M. Varah, An algebraic analysis of a block diagonal precon-
ditioner for saddle point problems, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 779–792.

[18] N. I. M. Gould, M. E. Hribar, and J. Nocedal, On the solution of equality constrained
quadratic programming arising in optimization, SIAM J. Sci. Comput., 23 (2001), pp. 1376–
1395.

SYMMETRIC INDEFINITE PRECONDITIONERS 773

[19] W. Hackbusch, Iterative Solutions of Large Sparse Systems of Equations, Springer-Verlag,
New York, 1994.

[20] C. Keller, N. I. M. Gould, and A. J. Wathen, Constraint preconditioning for indefinite
linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300–1317.

[21] M. Rozlozńık and V. Simoncini, Krylov subspace methods for saddle point problems with
indefinite preconditioning, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 368–391.

[22] T. Rusten and R. Winther, A preconditioned iterative method for saddlepoint problems,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 887–904.

[23] Y. Saad and H. A. van der Vorst, Iterative solution of linear systems in the 20th century,
J. Comput. Appl. Math., 123 (2000), pp. 1–33.

[24] D. Silvester and A. Wathen, Fast iterative solution of stabilized Stokes systems. Part II:
Using block diagonal preconditioners, SIAM J. Numer. Anal., 31 (1994), pp. 1352–1367.

[25] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen. Theorie, Verfahren und
Anwendungen, Vieweg, Wiesbaden, Germany, 2005.

[26] P. S. Vassilevski and R. D. Lazarov, Preconditioning mixed finite element saddle-point
elliptic problems, Numer. Linear Algebra Appl., 3 (1996), pp. 1–20.

[27] W. Zulehner, Analysis of iterative methods for saddle point problems: A unified approach,
Math. Comp., 71 (2002), pp. 479–505.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 774–795

A HYBRID APPROACH COMBINING CHEBYSHEV FILTER AND
CONJUGATE GRADIENT FOR SOLVING LINEAR SYSTEMS WITH

MULTIPLE RIGHT-HAND SIDES∗

GENE H. GOLUB† , DANIEL RUIZ‡ , AND AHMED TOUHAMI§

Abstract. One of the most powerful iterative schemes for solving symmetric, positive definite
linear systems is the conjugate gradient algorithm of Hestenes and Stiefel [J. Res. Nat. Bur. Stan-
dards, 49 (1952), pp. 409–435], especially when it is combined with preconditioning (cf. [P. Concus,
G.H. Golub, and D.P. O’Leary, in Proceedings of the Symposium on Sparse Matrix Computations,
Argonne National Laboratory, 1975, Academic, New York, 1976]). In many applications, the solution
of a sequence of equations with the same coefficient matrix is required. We propose an approach
based on a combination of the conjugate gradient method with Chebyshev filtering polynomials,
applied only to a part of the spectrum of the coefficient matrix, as preconditioners that target some
specific convergence properties of the conjugate gradient method. We show that our preconditioner
puts a large number of eigenvalues near one and do not degrade the distribution of the smallest
ones. This procedure enables us to construct a lower dimensional Krylov basis that is very rich with
respect to the smallest eigenvalues and associated eigenvectors. A major benefit of our method is
that this information can then be exploited in a straightforward way to solve sequences of systems
with little extra work. We illustrate the performance of our method through numerical experiments
on a set of linear systems.

Key words. linear systems, symmetric positive definite matrices, conjugate gradient algorithm,
Chebyshev filtering polynomials, polynomial preconditioning, iterative methods

AMS subject classifications. 65F10, 65F15, 65F50, 65H10, 65H17, 65N22

DOI. 10.1137/060649458

1. Introduction. The preconditioned conjugate gradient algorithm is among
the most powerful techniques for solving linear systems of the form

(1.1) Ax� = b,

where A ∈ R
n×n is large and symmetric positive definite, and b ∈ R

n is a given
right-hand side (see, e.g., [8]). Concerning preconditioning, the use of polynomial
preconditioners is one attractive possibility, considered by several authors [18, 24].
The polynomial preconditioner is generally chosen so that the preconditioned matrix
has an eigenvalue distribution that is favorable to the conjugate gradient method, i.e.,
either with a largely reduced condition number so that the conjugate gradient method
applied to the preconditioned system converges rapidly and/or with eigenvalues con-
fined to a small number of intervals.

∗Received by the editors January 9, 2006; accepted for publication (in revised form) by D. B. Szyld
February 21, 2007; published electronically July 11, 2007.

http://www.siam.org/journals/simax/29-3/64945.html
†Department of Computer Science, SC-CM Program, Stanford University, Gates 2B, Stanford,

CA 94305-9025 (golub@stanford.edu). The work of this author was supported in part by the DOE.
‡ENSEEIHT-IRIT, 2 rue C. Camichel, 31071 Toulouse Cedex, France (Daniel.Ruiz@enseeint.fr).

The work of this author was partially supported by the ACI GRID TLSE project from the French
ministry of research and education, grant 02 2 0678.

§Corresponding author. ENSEEIHT-IRIT, 2 rue C. Camichel, 31071 Toulouse Cedex, France.
Current address: Hassan 1st University, Faculty of Sciences and Technologies, Mathematics and Com-
puter Science Department, BP: 577, route de Casablanca, Settat, Morocco (Ahmed.Touhami@fsts.
ac.ma, Ahmed.Touhami@uh1.ac.ma, Ahmed.Touhami@enseeiht.fr). This author’s work was partially
supported by the ACI GRID TLSE project from the French ministry of research and education, grant
02 2 0678.

774

CHEBYSHEV FILTERING POLYNOMIALS AS PRECONDITIONER 775

For the Chebyshev iteration, estimates of λmin and λmax are needed. Often,
good upper bounds λmax can be obtained easily, using simple techniques such as Ger-
shgorin’s theorem [24]. It is far more difficult to estimate the smallest eigenvalue.
Saad [24] proposed a polynomial preconditioning technique that requires only an up-
per bound for the largest eigenvalue, while the trivial bound λmin = 0 is used for
the smallest eigenvalue of A. His technique is based on the least-squares polyno-
mials associated with the family of Jacobi weights [28]. Another way to avoid the
computation of λmin and λmax is to use the conjugate gradient polynomial itself as a
preconditioner. This approach was investigated by O’Leary [22]. The disadvantage of
this technique is that the preconditioned system is not guaranteed to be positive defi-
nite. Golub and Kent [14] gave a method for estimating the extreme eigenvalues based
on modified moments. Ashby, Manteuffel, and Otto [3] demonstrated in a variety of
numerical examples that the effectiveness of Chebyshev and least-squares polynomial
preconditioners depends on the eigenvalue distribution of the coefficient matrix A.

Here, a different approach is proposed that aims at putting the conjugate gradient
in cluster mode, where the condition number of the preconditioned matrix is not so
much reduced but its spectrum is largely clustered around one. Our preconditioner,
called the ChebFilter, consists of applying the Chebyshev filtering polynomials
only to a part of the spectrum of the given iteration matrix in an attempt to shift
the maximum number of eigenvalues of the coefficient matrix close to one without
degrading the distribution of the smallest eigenvalues. With this preconditioning
technique, the conjugate gradient method still exhibits plateaus in its convergence
behavior and does not enter linear mode as usually expected. These plateaus, which
are mostly due to the combination of ill-conditioning and clusters of eigenvalues at
the extremes, are greatly reduced in length, and the resulting method distinguishes
itself by its ability to construct small dimensional Krylov bases that are very rich with
respect to the smallest eigenvalues and associated eigenvectors.

In the following, we assume that A is a large s.p.d. matrix with a spectrum
largely clustered, and the goal is to solve a sequence of large linear systems involving
the same matrix but different right-hand sides. For simultaneous right-hand sides,
block Krylov linear solvers [21] might be appropriate; for a sequence of right-hand
sides that do not vary much, a straightforward idea is to use the former solution as an
initial guess for the next solution. If only one right-hand side is available at a time,
the method of Fischer [11], the deflated conjugate gradient method (deflated CG) [26],
or the hybrid method of Simoncini and Gallopoulos [27] may be employed. Fischer’s
method first looks for a solution in the space spanned by the previous solution vectors
in the sequence, which is helpful only if the solution vectors are correlated. In the
deflated CG method, only a small number of the initial Lanczos vectors for every
system are used to update the approximate invariant subspace. This is efficient, in
both computation and memory use, but the convergence to an invariant subspace is
slow. Hence, the improvement in the number of iterations is modest. The hybrid
method of Simoncini and Gallopoulos is most effective only when the right-hand sides
share common spectral information.

The alternative approach that we shall investigate in this work is not much differ-
ent in spirit from these techniques but takes advantage of the particular Chebyshev
preconditioners to construct a Krylov basis of small dimension very rich with respect to
the eigeninformation linked to the smallest eigenvalues, without the need for any post-
processing. The main idea is to solve the first linear system with conjugate gradient
combined with Chebyshev filters as a preconditioner and to exploit the resulting com-
plete Krylov basis, generated at the first solution in the sequence, either to deflate the

776 GENE H. GOLUB, DANIEL RUIZ, AND AHMED TOUHAMI

initial residual before using the classical conjugate gradient in the next solutions, or to
build some particular preconditioned or deflated conjugate gradient algorithms. This
approach is also rather independent of the right-hand sides, because the Chebyshev
polynomial filters act uniformly on the eigencomponents independently of the residual
vectors. The conjugate gradient, on the other hand, constructs a polynomial explicitly
linked with these eigencomponents to minimize the A-norm of the current error vector.

The outline of the paper is as follows. Section 2 presents our preconditioner
and discusses some of its properties. In section 3, we illustrate the efficiency of
the proposed technique on a set of model problems arising from the discretization
via finite elements of some 2D heterogeneous diffusion PDE problems. Section 4
shows how we can use the Chebyshev filter with the conjugate gradient to solve a
sequence of linear systems involving the same matrix but different right-hand sides.
In section 5, we analyze in more detail the computational complexity of our approach.
This technique is better than the conjugate gradient only for the solution of a sequence
of linear systems with the same matrix but changing right-hand sides. We analyze
in particular how quickly the extra work at the beginning, when solving the first
system in the sequence, can be paid back after a few consecutive solutions. Finally,
we conclude with some remarks and perspectives in section 6.

2. Chebyshev filtering polynomials as a preconditioner. The present sec-
tion is devoted to the description of the proposed combination of conjugate gradients
with Chebyshev filtering polynomials as preconditioners called ChebFilterCG. To
describe this in detail, we first introduce the eigendecomposition of the s.p.d. ma-
trix A:

A = UΛUT = U1Λ1U
T
1 + U2Λ2U

T
2 ,

where the spectrum of A is split in two parts: Λ1 is the diagonal matrix containing
all eigenvalues of A less than a given positive number μ, where 0 < μ < λmax is fixed
(user-given) and denotes the cutoff filtering value. U1 is the rectangular matrix whose
columns are the corresponding orthonormal set of eigenvectors in matrix form, and
Λ2 and U2 are the corresponding complementary matrices.

Let x(0) ∈ R
n be any initial guess for the solution of (1.1), and let r(0) = b−Ax(0)

be the associated residual vector. We then introduce the filtered vector

(2.1) wf = Fm(A) r(0) = U1Fm(Λ1)U
T
1 r(0) + U2Fm(Λ2)U

T
2 r(0),

where Fm is a polynomial function of degree m given by

(2.2) Fm(λ) =
Tm(Θμ(λ))

Tm(Θμ(0))
,

with Tm being the usual Chebyshev polynomial of degree m, and Θμ is the linear
mapping function that maps the interval [μ, λmax] onto the unit interval [−1, 1] (with
Θμ(μ) = 1 and Θμ(λmax) = −1).

For given values of μ, λmax(A), and ε, we can fix the degree m of Tm such that
1/|Tm(Θμ(0))| < ε and consequently ||Fm(λ)||∞ < ε on [μ, λmax]. Using (2.1), we can
then write

(2.3) ||UT
2 wf ||2 ≤ ||Fm(Λ2)||2 ||UT

2 r(0)||2 ≤ ε ||UT
2 r(0)||2 .

Equation (2.3) explains explicitly how the action of the Chebyshev filtering in A
applied on a given vector r(0) can reduce, below a value ε, the eigencomponents in

CHEBYSHEV FILTERING POLYNOMIALS AS PRECONDITIONER 777

Algorithm 2.1: ChebFilter

[wf ,xf] = ChebFilter

(
A,b, μ, λmax(A),x(0), ε

)
Begin

1. αμ =
2

λmax(A) − μ
and dμ =

λmax(A) + μ

λmax(A) − μ
2. Given the initial guess x(0)

3. xf = x(0), set wf = b − Axf

4. y = xf , m = 1, σ0 = 1, and σ1 = dμ

5. xf = xf +
αμ

dμ
wf and wf = b − Axf

6. Do While 1/σm ≥ ε
i. σm+1 = 2 dμ σm − σm−1

ii. p = 2
σm

σm+1

(
dμxf + αμwf

)
− σm−1

σm+1
y

iii. y = xf and xf = p
iv. wf = b − Axf

v. m = m + 1
7. EndDo

End

r(0) associated to all eigenvalues in the range [μ, λmax(A)] relative to the others. The
number of Chebyshev steps required to achieve a given level of filtering ε is directly
related to the rate of convergence of Chebyshev polynomials on the interval [μ, λmax]
(see, e.g., [14], [16, p. 47]), which depends only on the ratio λmax/μ.

We can then introduce the Algorithm 2.1, which we call ChebFilter and which
corresponds to the application of a Chebyshev polynomial in A to reduce by a
factor ε the eigencomponents in r(0) = b − Ax(0) associated with all eigenvalues
in the range [μ, λmax(A)]. As a result, the algorithm provides the filtered resid-
ual wf = Fm+1(A) r(0) and the corresponding iterate approximation xf such that
b−Axf = wf . In this algorithm, steps 6.ii and 6.iii are connected together with the
following relation:

wf = w(m+1) = Fm+1(A) r(0) =
Tm+1(Θμ(A)) r(0)

Tm+1(dμ)
=

1

σm+1
Tm+1

(
dμ I−αμ A

)
r(0),

where we note dμ = λmax+μ
λmax−μ , αμ = 2

λmax−μ , and σm = Tm(dμ) for all m ≥ 0. In
that respect, step 6.iv can also be replaced by the equivalent following three-term
recurrence relation:

(2.4) wf = w(m+1) = 2
σm

σm+1

(
dμw

(m) − αμAw(m)
)
− σm−1

σm+1
w(m−1),

which corresponds to the usual Chebyshev three-term recurrence formula giving w(m+1)

in a function of w(m) and w(m−1) for m ≥ 1, with w(0) set to r(0) at the beginning
and w(1) set to

(
I − αμ

dμ
A
)
r(0).

Let us denote now by x(i) the ith iterate in the preconditioned conjugate gradient
and by r(i) = b − Ax(i) = A(x − x(i)) the associated residual. The application of
the ChebFilter polynomial as a preconditioner consists in solving approximatively

778 GENE H. GOLUB, DANIEL RUIZ, AND AHMED TOUHAMI

the linear system Az(i) = r(i) such that its final residual is given by r(i) − Az(i) =
Fm(A) r(i), which can be expressed as

(2.5) z(i) = A−1
(
I −Fm(A)

)
r(i) = M−1r(i).

We mention that our polynomial preconditioner, in the way it is implemented, carries
out a fixed number of steps for given values of λmax(A), μ, and ε, independently of
the right-hand side.

The ith iteration in the preconditioned conjugate gradient consists of searching
x(i) ∈ {x(0)} + Ki(M

−1A, z(0)), with z(0) = M−1b and r(i) ⊥ Ki(M
−1A, z(0)).

Ki(M
−1A, z(0)) is the ith Krylov subspace and is given by

(2.6)

Ki

(
M−1A, z(0)

)
= Span

(
z(0), . . . ,

(
M−1A

)i−1
z(0)

)
= Span

(
z(0), . . . ,

(
I −Fm(A)

)i−1
z(0)

)
= Span

(
z(0), . . . ,

(
Fm(A)

)i−1
z(0)

)
,

since A−1Fm(A) = Fm(A)A−1, and consequently M−1A = A−1
(
I − Fm(A)

)
A =(

I − Fm(A)
)
A−1A. Equation (2.6) shows explicitly that the Chebyshev precondi-

tioned conjugate gradient search directions remain in a filtered Krylov subspace.
Note that, since A is s.p.d., then M−1 = A−1

(
I−Fm(A)

)
is symmetric positive

definite. Indeed, since A−1 and Fm(A) commute, it is easy to see that M−1 is
symmetric. Finally, using the eigendecomposition of the s.p.d. matrix A, A = UΛUT ,
we can write M−1 = UΛ−1

(
I − Fm(Λ)

)
UT , where Λ−1

(
I − Fm(Λ)

)
is diagonal

positive definite since Fm(λ) ∈ [−ε, 1[for all λ in]0, λmax]. In addition we can see
that the matrices M−1A and AM−1 have the same eigenvalues, which are those of
(I−Fm(A)). Therefore, the eigenvalues of M−1A are given by 1 −Fm(λi), with λi,
i ∈ {1, . . . , n}, the eigenvalues of A.

An important aspect in the use of such a Chebyshev filter as a preconditioner
is that it acts uniformly on the range [μ, λmax(A)], independently of the right-hand
side, as opposed to the conjugate gradient, which finds the polynomial minimizing
the A-norm of the error in the given linear system.

3. Numerical experiments. In this section, we illustrate with some numerical
experiments the efficiency of the polynomial preconditioner introduced above. Our
test problems PDE1 and PDE2 are extracted from the finite element discretization
using Matlab of the partial differential equation problem:{

−div
(
Λ(x) · ∇u

)
= f in Ω,

u|∂Ω = 0,

where Ω ⊂ R
2 is an L-shaped region as described in Figure 3.1.

The major differences between PDE1 and PDE2 are in the settings for Λ(x) and
in the size of discretization.

In the PDE1 problem, f = 10, and the function Λ(x) ∈ L∞(Ω) takes different
scalar values in each subdomain:

Λ(x) =

⎧⎨⎩
1 x ∈ Ω1 ∪ Ω4,
106 x ∈ Ω2,
104 x ∈ Ω3.

The resulting linear system (1.1) has 7,969 degrees of freedom, the number of nonzero
elements in the coefficient matrix A is nnz (A) = 55, 131, and the norm of A is equal
to 9.54 · 106.

CHEBYSHEV FILTERING POLYNOMIALS AS PRECONDITIONER 779

Ω

Ω

(–1 , –1) (0 , –1)

 (–1 , +1) (+1 , +1)

(0 , 0) (0 , +1)

Ω

Ω4

1

2

3

Fig. 3.1. Geometry of the domain Ω.

In the PDE2 problem, f = 200, and the PDE problem incorporates some hetero-
geneity and anisotropy with the matrix Λ(x) that takes the following values:

Λ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

1 4λ1

4λ1 λ1

]
if x ∈ Ω1 and λ2 I2 if x ∈ Ω2,[

λ1 −2λ1

−2λ1 1

]
if x ∈ Ω4 and λ3 I2 if x ∈ Ω3,

where λ1 = 6 · 10−2, λ2 = 1 · 106, λ3 = 1 · 102, and I2 denotes the (2 × 2) identity
matrix. The resulting linear system (1.1) has 161,313 degrees of freedom, the number
of nonzero elements in the coefficient matrix A is nnz (A) = 1, 125, 897, and the norm
of A is equal to 1.00 · 107.

Moreover, we use three kinds of the first level of preconditioners: the classical
Jacobi diagonal matrix M1 = diag(A), the incomplete Cholesky decomposition of A
with no fill-in, and the incomplete Cholesky decomposition of A with drop tolerance
10−2, cholinc(A, 10−2) as in Matlab notations.

Using the incomplete Cholesky decompositions, we compute the lower triangular
matrix L such that M1 = LLT . The purpose of this first level of preconditioner is
to better cluster the spectrum of our iteration matrix, which is favorable to the solu-
tion technique we propose here. Additionally, in the different figures illustrating the
experimental results, we shall denote by “Classical CG” the preconditioned conjugate
gradient with the classical Jacobi or the incomplete Cholesky factorization as the first
level of preconditioner only.

First, we consider the case of the PDE1 problem. In Table 3.1, we report on the
values of the condition numbers κ(A) and κ(M−1

1 A) for the Jacobi and the incomplete
Cholesky with no fill-in and with drop tolerance 10−2. The condition number of A
is of order 109; after incomplete Cholesky preconditioning with drop tolerance 10−2,
κ(M−1

1 A) is of order 106.
In Table 3.2, we indicate the number of eigenvalues in the interval [λmin, μ] in

the case of the PDE1 problem for a large range of the value of the parameter μ for
each preconditioner. From these data, we can see that the original matrix is very
badly scaled, and that the Jacobi preconditioner is able to cluster the eigenvalues
quite substantially, although the condition number remains very large.

780 GENE H. GOLUB, DANIEL RUIZ, AND AHMED TOUHAMI

Table 3.1

Estimates for κ(M−1
1 A), λmin, and λmax for the PDE1 problem.

First level preconditioner κ(M−1
1 A) λmin λmax

M1 = I 2.6 · 109 3.7 · 10−3 9.6 · 106

M1 = Classical Jacobi ; M1 = diag(A) 6.8 · 108 3.1 · 10−9 2.08
M1 = IC ; no fill-in 9.4 · 107 1.7 · 10−8 1.6
M1 = IC ; drop tolerance 10−2 6.2 · 106 1.8 · 10−7 1.1

Table 3.2

Number of eigenvalues in [λmin, μ] for the PDE1 problem.

μ = λmax/γ Preconditioner M1

γ Identity Jacobi scaling Inc. Cholesky(0) Inc. Cholesky(10−2)

109 3
108 41
107 >200
103 3
500 5
200 18
100 43 3
50 89 11
20 >200 32
10 68 3
5 157 9
2 >200 40

In the following tables, the CPU times will not be shown, since all of our ex-
periments were performed using Matlab, to illustrate the numerical features of the
proposed approach.

3.1. Impact of the cutoff value and level of filtering. The ChebFilter

preconditioner developed in section 2 depends on two different parameters, namely, the
choice of the cutoff filtering value μ and the filtering level ε. In Table 3.3, we consider
the case of the PDE1 problem; the initial guess is x(0) = 0, and the right-hand side
is chosen so that the solution x� of the linear system is the vector of all ones. In this
table, we display the number of Chebyshev filtering steps (ChebIt), the number of
iterations of CG (CGIt), and the total number matrix-vector products (ChebIt×CGIt)
for different values of the filtering level ε and for the cutoff filtering value μ. In these
tests, we have stopped the CG iterations when ||x� − x(k)||A ≤ 10−9 ||x�||A. From
these data, we can observe the combined effects of these two parameters on our test
examples.

The parameter μ splits the spectrum of the matrix A in two subsets and de-
termines the convergence rate of the classical Chebyshev iterations that will be per-
formed in each conjugate gradient iteration for preconditioning, since this defines the
damping interval [μ, λmax] where the Chebyshev polynomial uniformly converges to
0. The rapid change in the Chebyshev rate of convergence with smaller values of μ
induces many more Chebyshev filtering steps at each iteration, and this can be coun-
terbalanced only by a very strong reduction in the total number of iterations in the
preconditioned conjugate gradient algorithm. In other words, it is worth reducing the
value of μ only if there is a very strong clustering of eigenvalues in the spectrum of
the iteration matrix. In that respect, a first level of preconditioning M1 is a key issue
that may help to enforce this situation in the iteration matrix M−1

1 A.

CHEBYSHEV FILTERING POLYNOMIALS AS PRECONDITIONER 781

Table 3.3

Comparison of the number of Chebyshev filtering steps, the number of iterations of CG, and the
total number of matrix-vector products for different values of the filtering level and different bounds
for the damping interval for the PDE1 problem.

• CGIt denotes the number of conjugate gradient iterations.
• ChebIt denotes the number of Chebyshev filtering steps for preconditioning at each CG

iteration.
• ChebIt×CGIt denotes the total number of matrix-vector products.

PDE1 preconditioned with Jacobi

CG without Chebyshev preconditioning performs CGIt = 485

μ = λmax/500 μ = λmax/100 μ = λmax/50

Value of ε ChebIt CGIt ChebIt×CGIt ChebIt CGIt ChebIt×CGIt ChebIt CGIt ChebIt×CGIt

10−16 420 5 2100 188 11 2068 132 16 2112
10−8 214 6 1284 96 16 1536 68 23 1564
10−4 111 8 888 50 22 1100 35 31 1085
10−2 60 12 720 27 30 810 19 43 817
10−1 34 19 646 15 42 630 11 59 649

PDE1 preconditioned with incomplete Cholesky (no fill-in)

CG without Chebyshev preconditioning performs CGIt = 191

μ = λmax/100 μ = λmax/50 μ = λmax/20

Value of ε ChebIt CGIt ChebIt×CGIt ChebIt CGIt ChebIt×CGIt ChebIt CGIt ChebIt×CGIt

10−16 188 4 752 132 6 792 83 9 747
10−8 96 5 480 68 8 544 43 13 559
10−4 50 7 350 35 11 385 22 18 396
10−2 27 11 297 19 15 285 12 25 300
10−1 15 18 270 11 22 242 7 35 245

PDE1 preconditioned with incomplete Cholesky (tol=10−2)

CG without Chebyshev preconditioning performs CGIt = 54

μ = λmax/20 μ = λmax/10 μ = λmax/5

Value of ε ChebIt CGIt ChebIt×CGIt ChebIt CGIt ChebIt×CGIt ChebIt CGIt ChebIt×CGIt

10−16 83 4 332 58 4 232 39 5 195
10−8 43 4 172 30 5 150 20 7 140
10−4 22 6 132 16 7 102 11 9 99
10−2 12 10 120 9 10 90 6 13 78
10−1 7 15 105 5 16 80 4 17 68

The second parameter, the filtering level ε, directly influences the number of
Chebyshev steps. Note that, for a fixed level of filtering ε, the total number of matrix-
vector products (ChebIt×CGIt) does not change dramatically when varying μ.

For a fixed value of μ, if we consider the total number of matrix-vector products
(ChebIt×CGIt), it is clear that the conjugate gradient alone performs better than the
combination of conjugate gradient with Chebyshev filters, simply because the Cheby-
shev polynomial is not optimal in the A-norm and acts uniformly and independently
of the eigencomponents of the given residual. We shall see, however, that if we intend
to reuse the generated filtered Krylov basis for the acceleration of further solutions,
the size of this basis is of great importance, and smaller values of the filtering level ε
should be considered to minimize that size.

If we consider a filtering value ε close to 10−1 to minimize the effort within
each Chebyshev filtering step, we can observe that the total number of matrix-vector

782 GENE H. GOLUB, DANIEL RUIZ, AND AHMED TOUHAMI

Table 3.4

Relative error on the smallest eigenvalues λi, 1 ≤ i ≤ 7, for a level of filtering ε = 10−4 and
for different cutoff filtering values μ. The problem considered is PDE1.

Matrix preconditioned with IC(10−2) Matrix preconditioned with IC(0)

λmax = 1.1 Value of |λi − δi|/|λi| λmax = 1.6 Value of |λi − δi|/|λi|
λi μ = λmax/10 μ = λmax/5 λi μ = λmax/50 μ = λmax/20

1.79 · 10−7 4.92 · 10−10 3.40 · 10−10 1.66 · 10−8 8.87 · 10−9 8.45 · 10−9

1.80 · 10−5 1.10 · 10−11 1.85 · 10−13 1.67 · 10−6 2.74 · 10−11 3.58 · 10−11

6.89 · 10−2 1.00 · 10−15 2.61 · 10−15 8.19 · 10−3 2.07 · 10−14 1.69 · 10−14

1.65 · 10−1 2.78 · 100 4.01 · 10−5 1.64 · 10−2 2.89 · 10−4 2.36 · 10−6

1.66 · 10−1 3.33 · 100 1.48 · 10−2 1.64 · 10−2 9.55 · 10−4 7.94 · 10−9

1.67 · 10−1 4.08 · 100 1.42 · 10−2 2.09 · 10−2 8.86 · 10−7 1.08 · 10−10

1.69 · 10−1 8.77 · 100 8.77 · 10−2 2.15 · 10−2 3.08 · 10−5 3.01 · 10−9

products achieved is not that far from that achieved by the conjugate gradient alone.
The important point to highlight is the substantial reduction of the dimension of the
Krylov basis generated with this combination of CG with Chebyshev filters. This
basis is indeed reduced by a factor of 3 in the case of IC(10−2), by a factor of about 6
with incomplete Cholesky no fill-in, and by a factor of about 10 with a simple Jacobi
as the first level of preconditioner. This reduction is even stronger with smaller values
for the filtering level ε. These different issues will be analyzed in more detail in terms
of floating-point operations in section 5.

3.2. Relevance of the Krylov basis. In this section, we consider the case of
the PDE1 problem. We evaluate the relevance of the information stored in the Krylov
subspace Wk obtained from the CG method, after k iterations of ChebFilterCG.
To do so, we perform Ritz’s spectral analysis of Wk, and we also study the cosines
of the principal angles between this Krylov subspace and the corresponding invariant
subspace Uk, associated with the k smallest eigenvalues in the given matrix. Uk is
computed with ARPACK [19].

3.2.1. Ritz’s spectral analysis. The Ritz values δi, 1 ≤ i ≤ k, are the eigen-
values of the Rayleigh matrix WT

k AWk, where Wk is a n× k matrix whose columns
are the corresponding orthonormalized set of Krylov vectors. In Table 3.4, we give
the relative residual corresponding to the smallest eigenvalues λi, 1 ≤ i ≤ 7, which
indicates the number of correct digits in each approximated eigenvalue δi, 1 ≤ i ≤ 7,
for a level of filtering ε = 10−4 and for different cutoff filtering values μ. For instance,
the conjugate gradient with a Chebyshev filter as preconditioner (ChebFilterCG)
gives a good approximation of the three smallest eigenvalues (ten correct digits) for
the preconditioned matrix with IC(10−2) and μ = λmax/10. We can observe that,
with μ = λmax/10, the other four larger eigenvalues are not well approximated. This
is simply because these eigenvalues fall directly in the interval [λmax/10, λmax], where
the Chebyshev polynomials used for preconditioning uniformly converge to 0.

This table proves the interest of the spectral information stored inside the Krylov
basis generated by ChebFilterCG and which gives a good approximation of the
spectral part in the range]0, μ[.

3.2.2. Cosines of the principal angles. In Table 3.5, we give the cosines of the
principal angles between the two subspaces Wk and Uk, where Wk is the orthonormal
basis for the Krylov subspace generated by the ChebFilterCG algorithm, and Uk is
the subspace spanned by the k smallest eigenvectors of the given matrix. The index k
refers to the number of iterations of the conjugate gradient with a Chebyshev filter as

CHEBYSHEV FILTERING POLYNOMIALS AS PRECONDITIONER 783

Table 3.5

Cosines of the principal angles between Range (Wk) and Range (Uk), the invariant subspace
associated with the k smallest eigenvalues. The matrix is initially preconditioned with incomplete
Cholesky with drop tolerance (10−2), and the cutoff filtering value in the ChebFilterCG algorithm
has been fixed to μ = λmax/10. The problem considered is PDE1.

SVD(WT
k Uk)

Values of filtering level ε and corresponding size k of the Krylov basis Wk

ε = 10−16 and (k = 4) ε = 10−4 and (k = 7) ε = 10−1 and (k = 16)
1.000E+00 1.000E+00 1.000E+00 9.999E-01
1.000E+00 1.000E+00 1.000E+00 9.994E-01
9.999E-01 9.999E-01 1.000E+00 9.731E-01
9.538E-01 9.815E-01 9.999E-01 9.580E-01

9.725E-01 9.999E-01 9.389E-01
9.586E-01 9.993E-01 8.682E-01
8.998E-01 9.999E-01 8.192E-01

9.999E-01 6.219E-01

the preconditioner. The computation is done using the singular value decomposition
(SVD), as proposed in [15], since the singular values of WT

k Uk correspond to the
cosines of the principal angles between the two subspaces Range (Wk) and Range (Uk).
As we can see in Table 3.5, these principal angles stay very close to zero.

We deduce from these cosines of the principal angles that the two subspaces
Range (Wk) and Range (Uk) are very collinear and especially for the directions which
are related to the interval]0, μ[.

4. Reusing the filtered Krylov subspaces in further runs. Let us now
consider the case of a series of linear systems with different right-hand sides and the
same coefficient matrix, viz.

(4.1) Ax� = b�, � = 1, . . . , s,

where A is a symmetric positive definite matrix in R
n×n; x� and b� are vectors of R

n.
The main idea is to solve the first system Ax1 = b1 in this sequence by means of the
conjugate gradient with a Chebyshev filter as the preconditioner (ChebFilterCG)
and to exploit the resulting complete Krylov basis to compute the solution of the
remaining systems.

Once this Krylov basis Wk is obtained from the CG method, after k iterations
of ChebFilterCG when solving the first system in (4.1), we can use it in the Init-

CG algorithm; see, e.g., [6, 7, 10, 12, 13, 23, 25, 26, 29] for the computation of the
solutions in each of the following linear systems (4.1). We insist on the fact that we
keep the same precomputed basis Wk for the solution of all of the remaining systems
in the sequence. The Init-CG algorithm performs an oblique projection of the initial
residual (i.e., a projection onto Span(AWk) along Ker(Wk

T)), in order to get the
eigencomponents in the solution corresponding to the smallest eigenvalues, and then
performs a classical conjugate gradient to compute the remaining part of the solution
vector.

For the practical details, we use the conjugate gradient to solve M−1
1 Ax� =

M−1
1 b� (� ≥ 2) with the starting guess x

(0)
� = Wk(W

T
k AWk)

−1WT
k b�, where Wk, of

dimension k, is equal to the Krylov basis obtained after k iterations of the ChebFil-

terCG when solving the first system with the preconditioned matrix M−1
1 A. Our

Krylov basis Wk generated by ChebFilterCG is formed by the search direction
vectors and not by the residuals. In this case Wk is already an A-orthogonal basis

784 GENE H. GOLUB, DANIEL RUIZ, AND AHMED TOUHAMI

Algorithm 4.1:

Begin

1. [x1,W] = ChebFilterCG

(
A,b1,x

(0), tol1,M1

)
2. Ac = WTAW is a diagonal matrix
3. For � = 2, . . . , s Do

i. x(0) = WA−1
c WTb�

ii. x� = PCG (A,b�,x
(0), tol2,M1)

4. EndFor
End

of the Krylov subspace, and Ac = WT
k AWk is a diagonal matrix. Note that we do

not project the given matrix in any way but that we use the preconditioned conjugate
gradient with the original matrix and the first level of preconditioning M1 and with
an initial guess which, we expect, will remove all of the difficulties that the conjugate
gradient algorithm would encounter otherwise, e.g., the plateaus that can be observed
in the convergence history. This approach is resumed in Algorithm 4.1.

To illustrate this strategy, we consider the case of the PDE1 problem, and we
present some numerical experiments where we solve a first system and then a second
system. The initial guess is x(0) = 0, and the first right-hand side b1 is chosen so
that the solution x� of the linear system is the vector of all ones and the solution in
ChebFilterCG of this first linear system is stopped when the A-norm of the error is
below 10−9. The second right-hand side b2 is chosen so that the solution of the linear
system is a vector with normally distributed random numbers. In these runs, we have
monitored the A-norm of the error down to machine precision in order to illustrate
and study the complete convergence history. For all of the numerical experiments
reported in this work, the ChebFilterCG algorithm is used for the first right-hand
side b1, while the Init-CG algorithm is used for the second right-hand side b2.

Figures 4.1 and 4.2 summarize the improvement when reusing the Krylov sub-
spaces generated by the ChebFilterCG algorithm in the solution of linear systems
with the same matrix and with changing right-hand sides. We plot the convergence
history, in the Init-CG method, of the error measured in the energy norm, respec-
tively, for the Jacobi preconditioner and for the incomplete Cholesky with no fill-in
preconditioner. We also plot the curve of the errors measured in the energy norm when
the conjugate gradient method is used without this deflation of the initial residual.

Figure 4.1 shows the effectiveness of the Krylov basis generated by the conjugate
gradient with a Chebyshev filter as the preconditioner for different values of filtering
level ε. We observe that, for a fixed value of μ, the convergence history of Init-CG

for different values of filtering level ε yields a constant numerical behavior, since all of
these curves coincide almost completely, except perhaps after stagnation. We can also
observe that the number of iterations is reduced by a factor of about 4 to reach an A-
norm of the error of 10−8, which illustrates the relevance of the information contained
in the Krylov subspaces generated by the conjugate gradient with a Chebyshev as the
preconditioner. An important property of the ChebFilter preconditioner is that it
does not need a level of filtering ε close to 10−16 for the Krylov basis to be efficient.

In Figure 4.2, we consider the case when the filtering value is fixed (for instance,
ε = 10−1) and the cutoff value μ is varied. The convergence history of the Init-

CHEBYSHEV FILTERING POLYNOMIALS AS PRECONDITIONER 785

PDE1 preconditioned with Jacobi (μ = λmax/500)

0 100 200 300 400 500 600 700 800
10

–15

10
–10

10
–5

10
0

 Number of iterations

 A
–n

o
rm

 o
f

th
e

er
ro

r
Classical CG
Init–CG , ε = 10–16

Init–CG , ε = 10–4

Init–CG , ε = 10–1

PDE1 preconditioned with incomplete Cholesky (no fill-in), (μ = λmax/100)

0 50 100 150 200 250 300
10

–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

 Number of iterations

 A
–n

o
rm

 o
f

th
e

er
ro

r

Classical CG
Init–CG , ε = 10–16

Init–CG , ε = 10–4

Init–CG , ε = 10–1

Fig. 4.1. Convergence history of the Init-CG algorithm when solving the second linear system
Ax2 = b2 and exploiting the Krylov basis generated by the conjugate gradient with a Chebyshev
filter as the preconditioner from the first solution. This for different values of ε and for a fixed value
of μ. The problem considered is PDE1.

CG with the Krylov basis generated by the conjugate gradient with a Chebyshev
as the preconditioner (ChebFilterCG), for different values of μ, exhibits the same
numerical behavior. Although these runs are restricted to only two systems, the gains
obtained can easily be extended to longer sequences of linear systems with the same
coefficient matrix.

Finally, the different histograms show that the level of filtering ε and the cutoff
eigenvalue μ do not have a big effect on the quality of the Krylov basis, since the

786 GENE H. GOLUB, DANIEL RUIZ, AND AHMED TOUHAMI

PDE1 preconditioned with Jacobi

0 100 200 300 400 500 600 700 800
10

–15

10
—10

10
–5

10
0

 Number of iterations

 A
–n

o
rm

 o
f

th
e

er
ro

r
Classical CG
Init–CG , λ

max
/1000

Init–CG , λ
max

/500
Init–CG , λ

max
/100

PDE1 preconditioned with incomplete Cholesky (no fill-in)

0 50 100 150 200 250 300
10

–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

 Number of iterations

 A
–n

o
rm

 o
f

th
e

er
ro

r

Classical CG
Init–CG , λ

max
/100

Init–CG , λ
max

/50
Init–CG , λ

max
/20

Fig. 4.2. Convergence history of Init-CG when solving the second linear system Ax2 = b2 and
exploiting the Krylov basis generated by the conjugate gradient with a Chebyshev as the preconditioner
from the first solution. This for ε = 10−1 and different values of μ. The problem considered is PDE1.

convergence behavior of the Init-CG algorithm does not vary much for a basis W
obtained with different values for these parameters. Nevertheless, these parameters
certainly act on the size of the resulting basis W, which remains at any rate rel-
atively small and very rich with respect to the smallest eigenvalues and associated
eigenvectors.

5. Practical considerations. We consider the operations count for the Cheb-

FilterCG and Init-CG algorithms. All costs are evaluated in number of floating-

CHEBYSHEV FILTERING POLYNOMIALS AS PRECONDITIONER 787

point operations. The cost for a matrix-vector product is given by

(5.1) CA ≈ 2 nnz (A) − n,

where nnz (A) is the number of nonzero elements in A.
In the conjugate gradient method with a Chebyshev filter as the preconditioner,

we use the Chebyshev filtering polynomials in the matrix A at each conjugate gradient
iteration to reduce, under the level of filtering ε, the eigencomponents in the residual
associated with all eigenvalues in the range [μ, λmax] relatively to the others. The cost
of one Chebyshev filtering step (one iteration in Algorithm 2.1) involves one sparse
matrix-vector product with A and three vector updates (AXPY). This cost can be
estimated by

(5.2) CChebFilter = CA + 3 C AXPY, where C AXPY ≈ 2n.

In addition to the sparse matrix-vector product with A, the conjugate gradient
method merely adds two dot products (DOT) and three vector updates (AXPY). The
cost of these operations is given by

(5.3) CCG = CA + 2 C DOT + 3 C AXPY, where C DOT ≈ 2n.

Thus, the total cost of our scheme is of order

(5.4) CChebFilterCG =
(
CCG + ChebIt× CChebFilter

)
× CGIt,

where ChebIt is the number of Chebyshev filtering steps performed at each conjugate
gradient iteration, and CGIt is the number of conjugate gradient iterations.

5.1. Cost benefits and remarks. In this paragraph, we show the cost benefits
of our technique for solving large linear systems with different right-hand sides and
the same coefficient matrix (4.1). We solve the first system by the conjugate gradient
with a Chebyshev filter as the preconditioner, and we use the resulting complete
Krylov basis W in the Init-CG algorithm (see section 4) for the computation of the
solutions in each of the following global iterations.

As mentioned at the beginning of section 3, a first level left preconditioner M1

is also used, whose purpose is to better cluster the spectrum of our iteration matrix.
The cost of the multiplication of M1 by a vector is represented by CM1 . Since M1 is
constructed in our experiments by means of the incomplete Cholesky factorization or
Jacobi, CM1 can be estimated as

(5.5) CM1
≈ 4 nnz (L) − 2n,

where nnz (L) is the number of nonzero elements in the factor L from the incomplete
Cholesky factorization or Jacobi, and n is the size of the linear system. The cost of
this first level of preconditioning M1 must be incorporated in the floating-point counts
detailed in section 5. This simply results in adding CM1 explicitly at each Chebyshev
filtering step and each conjugate gradient (CG) and (Init-CG) iteration (see (5.2),
(5.3), and (5.8)).

Our implementation of the Init-CG algorithm performs, at the beginning of
the conjugate gradient algorithm, an oblique projection of the right-hand side b to
construct the starting guess x(0) = WkA

−1
c WT

k b, where Ac = WT
k AWk is a matrix

788 GENE H. GOLUB, DANIEL RUIZ, AND AHMED TOUHAMI

of order k, and sets r(0) = b − Ax(0) and p(0) = r(0). The computation of Ac is a
BLAS3 operation whose cost is given by

(5.6) CAc
≈ nk2 + 2 nnz (A) k − nk.

We note that Ac is factored once at the beginning of the Init-CG algorithm, and
these factors are used for any subsequent solution with Ac.

We mention again that, if the basis Wk is formed from the set of A-orthogonal
Krylov vectors in the CG iterations, Ac is diagonal and does not need to be factored,
and this cost can be ignored in this case. We have incorporated this cost to be
general and to consider also the case when Wk is obtained with other techniques. In
particular, for a basis coming from Lanczos, Ac is tridiagonal. If Wk is obtained with
any of the classical spectral factorization techniques, Ac is also diagonal as with the
A-orthogonal vectors in CG. However, if Wk is just a very rough approximation to
all of these, Ac should be considered dense.

With Ac precomputed and factored, the computation of an oblique projection
and an update of the initial residual can be done using common BLAS2 operations.
The total cost of these operations is represented by

(5.7) CProj ≈ 4 (k + 1)n,

where the costs in O(k3) operations have been neglected.
In addition, each iteration also requires one sparse matrix-vector product with

A, two dot products (DOT), and three vector updates (AXPY) (see (5.1) and (5.3)).
The total cost of the Init-CG algorithm is represented by

(5.8) CInitCG =
(

CA + CProj︸ ︷︷ ︸
At the beginning

)
+
(
CA + 3 C AXPY + 2 C DOT︸ ︷︷ ︸

At each iteration

)
× Nit,

where Nit is the total number of Init-CG iterations.
In Table 5.1, we report the number of floating-point operations (CChebFilterCG)

of the ChebFilterCG algorithm (in millions, Mflop), when solving the first linear
system Ax1 = b1 in the sequence (4.1). We also illustrate the cost benefit of the Init-

CG algorithm when solving the second linear system Ax2 = b2 and exploiting the
spectral information obtained from the first solution. We stop the conjugate gradient
iterations when ||x�−x(k)||A ≤ 10−9 ||x�||A. For each level of filtering ε, we indicate
in this table the cost CAc (see formula (5.6)) in Mflop, the size k of the resulting Krylov
basis from the solution of the first linear system with ChebFilterCG (this number k
also corresponds to CGIt in Table 3.3), the number of Init-CG iterations (Nit), and
the number of floating-point operations (CInitCG) to reach the above stopping criterion
for the A-norm of the error.

We also compute the number of right-hand sides that have to be considered in
subsequent consecutive solutions before the extra cost CChebFilterCG, for solving the first
linear system and computing the Krylov basis W, is compensated. This is indicated
as the number of amortization vectors (Amor). To compute this number, we must
compare the number of floating-point operations needed to reach the given level of
the A-norm of the error with the conjugate gradient algorithm and the number of
floating-point operations to reach the same level with the Init-CG algorithm. Note
that Ac is factored once at the end of the first solution, and these factors are used
for any solution with Ac. Consequently, the number of amortization vectors (Amor)

CHEBYSHEV FILTERING POLYNOMIALS AS PRECONDITIONER 789

Table 5.1

Number of floating-point operations (CChebFilterCG) of the ChebFilterCG algorithm and cost
and benefits of Init-CG for different values of the level of filtering ε and for different cutoff filtering
values. The iterations of the Init-CG algorithm (Nit) are stopped when the A-norm of the error is
below 10−9. The problem considered is PDE1.

PDE1 preconditioned with Jacobi

CG without Chebyshev preconditioning performs 485 iterations

with a cost of 95.79 Mflop

μ = λmax/500 μ = λmax/100 μ = λmax/50

ε CChebFilterCG CAc k Nit CInitCG AmorCChebFilterCG CAc k Nit CInitCG AmorCChebFilterCG CAc k Nit CInitCG Amor

Mflop Mflop Mflop Mflop Mflop Mflop Mflop Mflop Mflop

10−16 349.68 0.71 5 152 30.19 4 345.56 2.09 11 160 31.96 4 353.85 3.68 16 153 30.74 5

10−8 214.39 0.90 6 152 30.22 2 258.21 3.68 16 142 28.56 3 264.25 6.57 23 131 26.61 3

10−4 149.03 1.33 8 163 32.46 1 187.00 6.11 22 130 26.38 2 186.29 10.89 31 140 28.58 2

10−2 121.92 2.38 12 159 31.79 1 140.43 10.24 30 127 26.04 1 144.17 19.13 43 126 26.26 1

10−1 111.03 4.82 19 159 32.02 1 112.92 18.35 42 126 26.23 1 119.44 33.78 59 126 26.76 1

PDE1 preconditioned with incomplete Cholesky (no fill-in)

CG without Chebyshev preconditioning performs 191 iterations

with a cost of 55.52 Mflop

μ = λmax/100 μ = λmax/50 μ = λmax/20

ε CChebFilterCG CAc k Nit CInitCG AmorCChebFilterCG CAc k Nit CInitCG AmorCChebFilterCG CAc k Nit CInitCG Amor

Mflop Mflop Mflop Mflop Mflop Mflop Mflop Mflop Mflop

10−16 196.97 0.54 4 62 17.31 4 207.97 0.90 6 60 17.38 4 197.13 1.57 9 60 17.78 4

10−8 126.44 0.71 5 62 17.34 2 143.98 1.33 8 60 17.44 2 149.36 2.68 13 60 17.90 2

10−4 93.17 1.11 7 62 17.41 2 103.46 2.10 11 58 17.53 2 108.37 4.42 18 59 17.78 2

10−2 80.54 2.10 11 62 17.53 1 78.58 3.33 15 56 16.79 1 85.42 7.54 25 48 14.77 1

10−1 75.56 4.42 18 62 17.77 1 69.44 6.11 22 52 15.84 1 74.02 13.34 35 48 15.01 1

PDE1 preconditioned with incomplete Cholesky (tol=10−2)

CG without Chebyshev preconditioning performs 54 iterations

with a cost of 22.91 Mflop

μ = λmax/20 μ = λmax/10 μ = λmax/5

ε CChebFilterCG CAc k Nit CInitCG AmorCChebFilterCG CAc k Nit CInitCG AmorCChebFilterCG CAc k Nit CInitCG Amor

Mflop Mflop Mflop Mflop Mflop Mflop Mflop Mflop Mflop

10−16 131.99 0.54 4 21 8.99 8 92.74 0.54 4 18 7.71 5 78.65 0.71 5 18 7.74 4

10−8 69.20 0.54 4 21 8.99 4 60.99 0.71 5 18 7.74 4 57.91 1.11 7 18 7.81 3

10−4 54.35 0.90 6 21 9.05 3 46.92 1.11 7 18 7.81 3 42.67 1.57 9 18 7.87 2

10−2 51.34 1.81 10 21 9.19 3 39.56 1.81 10 18 7.92 2 36.13 2.68 13 18 8.00 2

10−1 47.57 3.32 15 21 9.35 3 38.18 3.68 16 18 8.10 2 33.89 4.04 17 18 8.13 2

is given by

(5.9) Amor =

⌈
CChebFilterCG + CAc − CCG

CCG − CInitCG

⌉
.

This formula takes into account the fact that construction of Wk also provides the
solution for the first linear system Ax1 = b1 in the sequence (4.1).

For instance, to reach an A-norm of the error of 10−9, the conjugate gradient
algorithm performs 485 iterations in the case of the matrix preconditioned with Jacobi,
with a cost of 95.79 Mflop , and 191 iterations in the case of the matrix preconditioned

790 GENE H. GOLUB, DANIEL RUIZ, AND AHMED TOUHAMI

with incomplete Cholesky (no fill-in), with a cost of 55.52 Mflop , and 54 iterations in
the case of the matrix preconditioned with incomplete Cholesky with drop tolerance
10−2, with a cost of 22.91 Mflop .

If we consider the case of the matrix preconditioned with incomplete Cholesky
with drop tolerance 10−2, with a level of filtering ε = 10−4 and a parameter μ =
λmax/10, in particular, 46.92 Mflop are needed for solving the first linear system
and computing the Krylov basis Wk, out of which Init-CG convergence is achieved
in 18 iterations (see Table 5.1), i.e., a reduction of 66% compared to the run of
the conjugate gradient algorithm. The 46.92 extra Mflop are paid back after three
consecutive runs of Init-CG (see Table 5.1). In this particular case, the eigenvalues of
the preconditioned matrix are indeed well clustered (see Tables 3.2 and 3.4) and enable
a strong reduction in the number of iterations with a subspace Wk of dimension 4
already. This shows how this spectral approximation technique can be an effective
complementary tool to other classical preconditioning techniques.

Table 5.1 also shows the impact of varying the filtering level ε and the parameter
μ on the actual number of amortization vectors. We can observe that the number of
amortization vectors (Amor) does not change dramatically for the Init-CG algorithm
for a given level of filtering ε and that in all cases the amortization of the cost of the
computation of the Krylov basis Wk is very fast.

In summary, when the sequence of several linear systems with the same matrix
but different right-hand sides is very long, the strategy of choice is to compute the
solution of the first linear system by the conjugate gradient with a Chebyshev filter
as the preconditioner using a level of filtering ε close 10−16, in order to minimize the
size of the Krylov basis Wk, and to exploit the resulting complete Krylov basis in
the Init-CG algorithm to compute the solution of remaining systems. Indeed, a level
of filtering very close to machine precision enables us to obtain, on the one hand,
a smaller dimensional Krylov basis and at the same time less memory requirements
and, on the other hand, an optimal cost of the Init-CG algorithm or not far from
the optimal one.

5.2. Application to the anisotropic problem PDE2 of larger size. We
have also considered the larger test problem PDE2 introduced in section 3. In this
case, we have used the incomplete Cholesky decomposition of A with no fill-in as the
first level of the left preconditioner M1 = LLT , where nnz (L) = 643, 605.

In Figure 5.1, we plot the convergence history of the error measured in the energy
norm in the Init-CG algorithm (when solving Ax2 = b2), with different values of
the level of filtering ε and a fixed value of μ on the top figure and with different values
of the cutoff value μ and a fixed filtering level ε on the bottom figure. We also plot
the history of the errors measured in the energy norm when the conjugate gradient
method is used without the deflation of the initial residual. We can observe that the
number of iterations is reduced by a factor of 4 to reach an A-norm of the error of
10−8, which shows the effectiveness of the information stored inside the orthonormal
basis of the filtered Krylov subspace.

In this larger size test case, we have stopped all iterations at a level of 10−8.
It can be observed in Figure 5.1 that the phenomenon of plateaus occurs again at
that level of convergence of the Init-CG algorithm. This is due to the sensitivity
of the oblique projector to the total size of the linear system [2]. If better accuracy
is required, however, a possibility is to use the Two-Grid cycle scheme presented
in [5, 12, 29] or to perform iterative refinement in the usual way. In [12], [29, section
3.3.4], for instance, the effectiveness of this strategy has been experimented with either

CHEBYSHEV FILTERING POLYNOMIALS AS PRECONDITIONER 791

0 500 1000 1500
10

–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

 Number of iterations

 A
–n

o
rm

 o
f

th
e

er
ro

r

Classical CG
Init–CG , ε = 10–16

Init–CG , ε = 10–8

Init–CG , ε = 10–4

Init–CG , ε = 10–2

(a) The cutoff value μ = λmax/1000

0 500 1000 1500
10

–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

 Number of iterations

 A
–n

o
rm

 o
f

th
e

er
ro

r

Classical CG
Init–CG , λ

max
/1000

Init–CG , λ
max

/500
Init–CG , λ

max
/200

Init–CG , λ
max

/100

(b) The level of filtering ε = 10−16

Fig. 5.1. Convergence history of the preconditioned conjugate gradient without the deflation of
the initial residual and the Init-CG algorithm with different values of the level of filtering ε and for
different values of μ, on the PDE2 problem.

conjugate gradient or Chebyshev polynomials or even a Richardson iteration as the
smoother.

In Table 5.2, we display the number of Chebyshev filtering steps (ChebIt) per-
formed at each conjugate gradient step, the number of conjugate gradient iterations
(CGIt), and the number of floating-point operations (CChebFilterCG) (in thousand mil-
lion, Gflop), and this with different values of level of filtering ε. The cost of the first
level of preconditioning M1 has also been incorporated in the floating-point counts of
the conjugate gradient with a Chebyshev filter as the preconditioner.

792 GENE H. GOLUB, DANIEL RUIZ, AND AHMED TOUHAMI

Table 5.2

Cost of ChebFilterCG for different values of the level of filtering ε and for different cutoff
filtering values. The ChebFilterCG iterations are stopped when the A-norm of the error is below
10−8. The problem considered is PDE2.

CG without Chebyshev preconditioning performs 1060 iterations

with a cost of 6.31 Gflop

μ = λmax/1000 μ = λmax/500 μ = λmax/200

Value of ε ChebIt CGIt CChebFilterCG ChebIt CGIt CChebFilterCG ChebIt CGIt CChebFilterCG
Gflop Gflop Gflop

10−16 594 8 25.28 420 11 24.60 265 18 25.44
10−8 303 11 17.76 214 16 18.28 135 25 18.07
10−4 157 15 12.59 111 22 13.10 70 36 13.60
10−2 84 21 9.49 60 31 10.06 38 49 10.18

Table 5.3

Cost and benefits of Init-CG for different values of the level of filtering ε and for different
cutoff filtering values. The iterations of the Init-CG algorithm are stopped when the A-norm of the
error is below 10−8. The problem considered is PDE2.

CG without Chebyshev preconditioning performs 1060 iterations

with a cost of 6.31 Gflop

μ = λmax/1000 μ = λmax/500 μ = λmax/200

Value of ε CAc k Nit CInitCG Amor CAc k Nit CInitCG Amor CAc k Nit CInitCG Amor

Gflop Gflop Gflop Gflop Gflop Gflop

10−16 0.02 8 274 1.64 5 0.04 11 230 1.38 4 0.09 18 265 1.59 5
10−8 0.04 11 291 1.74 3 0.07 16 246 1.48 3 0.15 25 252 1.55 3
10−4 0.06 15 343 2.06 2 0.12 22 259 1.56 2 0.28 36 312 1.88 2
10−2 0.11 21 320 1.92 1 0.21 31 324 1.96 1 0.48 49 341 2.07 1

In Table 5.3, we illustrate the cost benefit of the Init-CG algorithm. We stop the
conjugate gradient iterations when the A-norm of the error is below 10−8. The pre-
conditioned conjugate gradient method (no initial deflation) performs 1060 iterations
with a cost of 6.31 Gflop . We also indicate the cost CAc in Gflop , the number of
conjugate gradient iterations (Nit), the number of floating-point operations (CInitCG)
in Gflop , and the number of amortization vectors (Amor). All of this information
is given for each level of filtering ε. We derive, from these data, the same general
conclusions as with the smaller size test cases in the previous section. In particular,
for a fixed value of the level of filtering ε, the number of floating-point operations
(Gflop) does not change dramatically when varying the parameter μ. In Table 5.3,
we can observe that the number of iterations is cut from 1060 to under 349 and as
low as 230.

5.3. Comments about the parameter λmax and its estimation. In the
various test examples used for discussion in this article, the value of λmax(A) has been
obtained rather accurately with the use of ARPACK [19]. The purpose of this spectral
precomputation of the spectrum of A was to ease the analysis of the various results
and to understand better the behavior of our algorithm in the different situations.

Of course, this has a cost, and it is not mandatory that either parts of the spectrum
of A or even λmax(A) only be accurately precomputed. An estimate λ̃max of λmax

should be sufficient as a parameter in this approach. The only requirement, to keep

CHEBYSHEV FILTERING POLYNOMIALS AS PRECONDITIONER 793

Table 5.4

λmax and its estimation λ̃max for the PDE1 problem.

First level preconditioner λmax λ̃max 2 × λ̃max

M1 = I 9.6·106 5.18·106 1.03·107

M1 = diag(A) 2.08 1.28 2.56
M1 = IC(0) 1.6 1.01 2.03
M1 = IC(10−2) 1.1 9.78·10−1 1.95

the Chebyshev polynomial filters bounded on the spectrum of A, is that this estimate
λ̃max be an upper bound of the actual largest eigenvalue. A cheap way to achieve
this is to perform a few steps of the power method and to multiply the final Rayleigh
quotient by some factor to ensure the overestimation. Let’s suppose, for instance, that
we multiply by “2” a value giving the order of magnitude of λmax. The consequence of
this will be that the choice of the cutoff value μ̃ = λ̃max/γ (γ = 10 or 100, for instance)
will be larger than the actual value λmax/γ. Therefore, the effective filtering interval
will become [μ̃, λmax] (and not [μ, λmax] as in our experiments), because the behavior

of Chebyshev on]λmax, λ̃max] does not have any impact on the preconditioning of A.
Still, and this is illustrated in the results in Table 3.3, choosing λmax/100 or

λmax/50 as in the case of the matrix preconditioned with incomplete Cholesky (no fill-
in) does not change much the size of the resulting Krylov basis in the ChebFilterCG

algorithm. The major impact is the increase of the total number of Chebyshev steps
for the same resulting Krylov basis, and the amortization will take a little longer, but
not a lot more, as shown in Table 5.1. We can conclude that an overestimation λ̃max

of λmax is not very crucial with respect to the conclusions and observations made in
the previous sections.

A more crucial issue is to find the range of values of μ in which the behavior of the
algorithm is rather stable, as observed in the various experiments. This is specifically
linked to the actual eigenvalue distribution of the given iteration matrix and depends
on the problem and on the first level of preconditioner (when used). We must not
forget also that the total number of systems to solve in the sequence may lead to
different strategies when choosing μ or ε to minimize the total amount of work.

In the previous discussions, we have not included the cost of the precomputation of
λ̃max for two reasons. The first one is that we have not investigated the most powerful
techniques for such computation, such as, for instance, power method, polynomial,
and Krylov techniques and combinations of these. The second reason is that, in
some cases, as with row projection techniques [1, 4, 9], for instance, that also yield a
symmetrizable iteration matrix, the preconditioning technique can readily provide a
more or less sharp estimate of λmax(A). Finally, at the expense of one usual CG run,
we can be sure to get a “nice” estimate of λmax. Therefore, we can consider that the
cost for precomputing λmax will at most increase the amortization value of “1.”

As an illustration, we indicate in Table 5.4 the values of λmax and the corre-
sponding estimation λ̃max obtained in the case of the PDE1 problem for each first
level preconditioner. The largest eigenvalue λmax is computed with ARPACK [19]

and λ̃max results from three iterations of the power method with a random initial
vector. We also report in this table the “over” estimation of λmax, which corresponds
to 2 × λ̃max and which is not too far from the largest eigenvalue.

6. Conclusion. In this paper, we have proposed a solution technique suited
for the solution of a sequence of linear systems with the same matrix but changing

794 GENE H. GOLUB, DANIEL RUIZ, AND AHMED TOUHAMI

right-hand sides. This technique uses Chebyshev filtering polynomials, applied only
to a part of the spectrum of the coefficient matrix, as a preconditioner that helps the
conjugate gradient method to generate a low dimensional Krylov basis that is very
rich with respect to the smallest eigenvalues and associated eigenvectors. The pro-
posed approach is guaranteed to put a large number of eigenvalues near one, without
degrading the distribution of the smallest ones.

We have illustrated, on a set of Matlab examples, the behavior of this technique
on sparse linear systems arising from the discretization via a finite element of some
2D heterogeneous and anisotropic diffusion PDE problems. An analysis of the com-
putational costs in section 5.1 has shown that the gains can be rather substantial and
the cost for precomputing the Krylov basis can rapidly be amortized when solving
several linear systems with multiple right-hand sides.

An important aspect of our approach is that the proposed ChebFilterCG algo-
rithm requires only matrix-vector products plus some vector updates and many fewer
dot products, since these do not appear in the Chebyshev steps that are performed
at each conjugate gradient iteration during the solution of the first system. This is
of some importance in the context of parallel computing and, in particular, in dis-
tributed memory environments where the computation of the dot product requires
particular attention.

Our perspectives are to investigate also this approach to construct multilevel
preconditioners combining Chebyshev filters and a Krylov basis generated by Cheb-

FilterCG when solving the first system of the sequence. In the case of the resolution
of nonlinear problems, it is possible to benefit simply from the low intrinsic dimension
of these Krylov bases to construct an adaptive preconditioner based on the Krylov
space information generated at previous steps in the nonlinear iteration (cf. [20, 29]).

Acknowledgments. We thank Iain Duff and Gérard Meurant for their construc-
tive comments and fruitful discussions during the development of this work and also
for their careful reading and remarks which were very helpful to improve the paper.

REFERENCES

[1] M. Arioli, I. Duff, J. Noailles, and D. Ruiz, A block projection method for sparse matrices,
SIAM J. Sci. Comput., 13 (1992), pp. 47–70.

[2] M. Arioli and D. Ruiz, A Chebyshev-Based Two-Stage Iterative Method as an Alternative
to the Direct Solution of Linear Systems, Technical report RAL-TR-2002-021, Rutherford
Appleton Laboratory, Atlas Center, Didcot, Oxfordshire, OX11 0QX, England, 2002.

[3] S.F. Ashby, T.A. Manteuffel, and J.S. Otto, A comparison of adaptive Chebyshev and
least squares polynomial preconditioning for Hermitian positive definite linear systems,
SIAM J. Sci. Comput., 13 (1992), pp. 1–29.

[4] R. Bramley and A. Sameh, Row projection methods for large nonsymmetric linear systems,
SIAM J. Sci. Comput., 13 (1992), pp. 168–193.

[5] B. Carpentieri, L. Giraud, and S. Gratton, Additive and multiplicative two-level spectral
preconditioning for general linear systems, SIAM J. Sci. Comput., to appear.

[6] T.F. Chan and M.K. Ng, Galerkin projection methods for solving multiple linear systems,
SIAM J. Sci. Comput., 21 (1999), pp. 836–850.

[7] T.F Chan and W.L. Wan, Analysis of projection methods for solving linear systems with
multiple right-hand sides, SIAM J. Sci. Comput., 18 (1997), pp. 1698–1721.

[8] P. Concus, G.H. Golub, and D.P. O’Leary, A generalized conjugate gradient method for
the numerical solution of elliptic partial differential equations, in Proceedings of the Sym-
posium on Sparse Matrix Computations, Argonne National Laboratory, 1975, Academic,
New York, 1976, pp. 309–332.

[9] T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Numer.
Math., 35 (1980), pp. 1–12.

CHEBYSHEV FILTERING POLYNOMIALS AS PRECONDITIONER 795

[10] J. Erhel and F. Guyomarc’h, An augmented conjugate gradient method for solving consecu-
tive symmetric positive linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1279–
1299.

[11] P.F. Fischer, Projection techniques for iterative solution of Ax = b with successive right-hand
sides, Comput. Methods Appl. Mech. Engrg., 163 (1998), pp. 193–204.

[12] L. Giraud, D. Ruiz, and A. Touhami, A comparative study of iterative solvers exploiting
spectral information for SPD systems, SIAM J. Sci. Comput., 27 (2006), pp. 1760–1786.

[13] L. Giraud, D. Ruiz, and A. Touhami, Krylov based and polynomial iterative solvers combined
with partial spectral factorization for SPD linear systems, in Vector and Parallel Processing,
Lecture Notes in Comput. Sci. 3402, M. Daydé, J. Dongarra, and V. Hernández, and
J.M.L.M. Palma, eds., Springer-Verlag, Berlin, Heidelberg, 2005, pp. 635–655.

[14] G.H. Golub and M.D. Kent, Estimates of eigenvalues for iterative methods, Math. Comput.,
53 (1989), pp. 249–263.

[15] G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins Studies in the Math-
ematical Sciences, 3d ed., The Johns Hopkins University Press, Baltimore, MD, 1996.

[16] L.A. Hageman and D.M. Young, Applied Iterative Methods, Academic Press, New York and
London, 1981.

[17] M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. Nat. Bur. Standards, 49 (1952), pp. 409–435.

[18] O.G. Johnson, C.A. Micchelli, and G. Paul, Polynomial preconditioners for conjugate gra-
dient calculations, SIAM J. Numer. Anal., 20 (1983), pp. 362–376.

[19] R.B. Lehoucq, D.C. Sorensen, and C. Yang, ARPACK User’s Guide: Solution of Large-
Scale Problem with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.

[20] D. Loghin, D. Ruiz, and A. Touhami, Adaptive preconditioners for nonlinear systems of
equations, J. Comput. Appl. Math., 189 (2006), pp. 362–374.

[21] D.P. O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra
Appl., 29 (1980), pp. 293–322.

[22] D.P. O’Leary, Yet another polynomial preconditioner for the conjugate gradient algorithm,
Linear Algebra Appl., 154 (1991), pp. 388–377.

[23] B.N. Parlett, A new look at the Lanczos algorithm for solving symmetric systems of linear
equations, Linear Algebra Appl., 29 (1980), pp. 323–346.

[24] Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient method, SIAM
J. Sci. Comput., 6 (1985), pp. 865–881.

[25] Y. Saad, On the Lanczos method for solving symmetric linear systems with several right-hand
sides, Math. Comp., 178 (1987), pp. 651–662.

[26] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h, A deflated version of the conjugate
gradient algorithm, SIAM J. Sci. Comput., 21 (2000), pp. 1909–1926.

[27] V. Simoncini and E. Gallopoulos, An iterative method for nonsymmetric systems with mul-
tiple right-hand sides, SIAM J. Sci. Comput., 16 (1995), pp. 917–933.

[28] G. Szegö, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1975.
[29] A. Touhami, Utilisation des Filtres de Tchebycheff et Construction de Préconditonneurs

Spectraux pour l’Accélération des Méthodes de Krylov, Ph.D. thesis, INPT–ENSEEIHT,
Toulouse, France, 2005.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 796–825

TWO VARIABLE ORTHOGONAL POLYNOMIALS ON THE
BICIRCLE AND STRUCTURED MATRICES∗

JEFFREY S. GERONIMO† AND HUGO WOERDEMAN‡

Abstract. We consider bivariate polynomials orthogonal on the bicircle with respect to a
positive linear functional. The lexicographical and reverse lexicographical orderings are used to
order the monomials. Recurrence formulas are derived between the polynomials of different degrees.
These formulas link the orthogonal polynomials constructed using the lexicographical ordering with
those constructed using the reverse lexicographical ordering. Relations between the coefficients in the
recurrence formulas are derived and used to give necessary and sufficient conditions for the existence
of a positive linear functional. These results are then used to construct a class of two variable
measures supported on the bicircle that are given by one over the magnitude squared of a stable
polynomial. Applications to Fejér–Riesz factorization are also given.

Key words. bivariate orthogonal polynomials, positive definite linear functionals, moment
problem, doubly Toeplitz matrices, recurrence coefficients

AMS subject classifications. 42C05, 30E05, 47A57, 15A48, 47B35

DOI. 10.1137/060662472

1. Introduction. Bivariate polynomials orthogonal on the bicircle have been
investigated mostly in the electrical engineering community in relation to the design
of stable recursive filters for two-dimensional filtering. In particular we note the work
of Genin and Kamp [7] who were interested in the following problem. Given any two
variable polynomials q(z, w), with q(0, 0) �= 0, let ak,l(z, w) be its planar least squares
inverse polynomial of degree (k, l); i.e., ak,l minimizes the mean quadratic value of
1 − ak,lq on the bicircle. What properties does ak,l have? At the time it was conjec-
tured the minimizing polynomials were stable, i.e., ak,l(z, w) �= 0, |z| ≤ 1, |w| ≤ 1,
which they showed was false. Their investigation was carried further by Delsarte,
Genin, and Kamp [4] who developed the connection between these polynomials and
matrix polynomials orthogonal on the unit circle [3]. In the development of this con-
nection these authors were led to examine moment matrices that were block Toeplitz
matrices where each block entry is itself a Toeplitz matrix. Such structured matrices
are called doubly Toeplitz matrices and arise naturally in the bivariate trigonometric
moment problem. These types of matrices arose more recently in the work of Geron-
imo and Woerdeman [8] in their investigation of the bivariate Fejér–Riesz factorization
theorem. These authors were able to resolve the question when a strictly positive bi-
variate trigonometric polynomial of a certain degree can be written as the magnitude
squared of a stable polynomial of the same degree. In this work the authors used the
fact that the theory of orthogonal polynomials on the unit circle provides a proof of
the one variable Fejér–Riesz theorem which does not use the fundamental theorem of
algebra. We intend here to continue to investigate the properties of bivariate polyno-
mials orthogonal on the bicircle and clarify their role in the Fejér–Riesz theorem.

∗Received by the editors June 8, 2006; accepted for publication (in revised form) by D. A. Bini
February 23, 2007; published electronically July 11, 2007. The authors were partially supported by
an NSF grant and a NATO collaborative linkage grant.

http://www.siam.org/journals/simax/29-3/66247.html
†School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 (geronimo@

math.gatech.edu).
‡Department of Mathematics, Drexel University, Philadelphia, PA 19104 (Hugo.Woerdeman@

drexel.edu).

796

TWO VARIABLE ORTHOGONAL POLYNOMIALS 797

A major difficulty encountered in the theory of orthogonal polynomials of more
than one variable is which monomial ordering to use. For bivariate real orthogonal
polynomials the preferred ordering is the total degree ordering which is the one set by
Jackson [14]. For polynomials with the same total degree the ordering is lexicographi-
cal. As noted in Delgado et al. [2] in their study of orthogonal polynomials associated
with doubly Hankel matrices, there is a good reason for choosing this ordering which is
that if new orthogonal polynomials of higher degree are to be constructed, then their
orthogonality relations will not affect the relations governing the lower degree polyno-
mials. However, in order for the moment matrix to be doubly Toeplitz the monomial
orderings that need to be used are lexicographical and reverse lexicographical.

We begin in section 2 by considering finite-dimensional subspaces spanned by the
monomials ziwj , |i| ≤ n, |j| ≤ m, and exhibiting the connection between positive lin-
ear functionals defined on this space and positive definite doubly Toeplitz matrices.
We then introduce certain matrix orthogonal polynomials and show how they give
the Cholesky factors for the inverse of the doubly Toeplitz matrices considered above.
The results in [8] show that these polynomials play a role in the parametric moment
problem. In section 3 we construct two variable orthogonal polynomials, where the
monomials are ordered according to the lexicographical ordering. When these poly-
nomials are organized into vector orthogonal polynomials, they can be related to the
matrix orthogonal polynomials constructed previously. From this relation it is shown
that these vector polynomials are the minimizers of a certain quadratic functional.
Using the orthogonality relation, recurrence relations satisfied by the vector polyno-
mials and their counterparts in the reverse lexicographical ordering are derived, and
relations between these recurrence coefficients are exhibited. In section 4 a number
of Christoffel–Darboux-like formulas are derived. In section 5 we use the relations
between the coefficients derived in section 3 to develop an algorithm to construct the
coefficients in the recurrence formulas at a particular level (n,m), say, in terms of the
coefficients at the previous levels plus a certain number of unknowns. The collection of
these unknowns is in one to one correspondence with the number of moments needed
to construct the vector polynomials up to level (n,m). This is used in section 6 to
construct a positive linear functional from the recurrence coefficients. The construc-
tion allows us to find necessary and sufficient conditions on the recurrence coefficients
for the existence of a positive linear functional which is in one to one correspondence
with the set of positive definite doubly Toeplitz matrices. In section 7 we examine
conditions under which the linear functional can be represented as a positive measure
supported on the bicircle having the form of one over the magnitude squared of a
stable polynomial. This gives a new proof of the Fejér–Riesz result of [8]. Finally in
section 8 examples are given that illustrate various aspects of the theory developed.

2. Positive linear functionals and doubly Toeplitz matrices. In this sec-
tion we consider moment matrices associated with the lexicographical ordering, which
is defined by

(k, �) <lex (k1, �1) ⇔ k < k1 or (k = k1 and � < �1),

and the reverse lexicographical ordering, defined by

(k, �) <revlex (k1, �1) ⇔ (�, k) <lex (�1, k1).

Both of these orderings are linear orders, and in addition they satisfy

(k, �) < (m,n) ⇒ (k + p, � + q) < (m + p, n + q).

798 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

In such a case, one may associate a half-space with the ordering which is defined by
{(k, l) : (0, 0) < (k, l)}. In the case of the lexicographical ordering we shall denote
the associated half-space by H and refer to it as the standard half-space. In the case
of the reverse lexicographical ordering we shall denote the associated half-space by
H̃. Instead of starting with the ordering, one may also start with a half-space Ĥ of
Z

2 (i.e., a set Ĥ satisfying Ĥ + Ĥ ⊂ Ĥ, Ĥ ∩ (−Ĥ) = ∅, Ĥ ∪ (−Ĥ) ∪ {(0, 0)} = Z
2)

and define an ordering via

(k, l) <Ĥ (k1, l1) ⇐⇒ (k1 − k, l1 − l) ∈ Ĥ.

We shall refer to the order <Ĥ as the order associated with Ĥ. Note that the lexico-
graphical and reverse lexicographical orderings do not respect total degree.

Let
∏n,m

denote the bivariate Laurent linear subspace span{ziwj , −n ≤ i ≤
n, −m ≤ j ≤ m}. Let Ln,m be a linear functional defined on

∏n,m
by

Ln,m(z−iw−j) = ci,j = L(ziwj).

We will call ci,j the (i, j) moment of Ln,m and Ln,m a moment functional. If we form
the (n + 1)(m + 1) × (n + 1)(m + 1) matrix Cn,m for Ln,m in the lexicographical
ordering, then, as noted in the introduction, it has the special block Toeplitz form

(2.1) Cn,m =

⎡⎢⎢⎣
C0 C−1 · · · C−n

C1 C0 · · · C−n+1
...

. . .
...

Cn Cn−1 · · · C0

⎤⎥⎥⎦ ,

where each Ci is an (m + 1) × (m + 1) Toeplitz matrix as follows:

(2.2) Ci =

⎡⎢⎣ ci,0 ci,−1 · · · ci,−m

...
. . .

...
ci,m · · · ci,0

⎤⎥⎦ , i = −n, . . . , n.

Thus Cn,m has a doubly Toeplitz structure. If the reverse lexicographical ordering is

used in place of the lexicographical ordering, we obtain another moment matrix C̃n,m

where the roles of n and m are interchanged.
Let us introduce the notion of centrotranspose symmetry. We denote the trans-

pose of a matrix A by AT . A square matrix A is said to be centrotranspose symmetric if
JAJ = AT , where J is the matrix with ones on the antidiagonal and zeros elsewhere.
Note that a Toeplitz matrix is centrotranspose symmetric. We have the following
useful lemmas which characterize Toeplitz and doubly Toeplitz matrices in terms of
centrotranspose symmetry.

Lemma 2.1. An (n + 1) × (n + 1) matrix A = (ai,j)
n
i,j=0 is Toeplitz if and only

if both A and Â := (ai,j)
n−1
i,j=0 are centrotranspose symmetric.

Proof. Notice that JAJ = AT is equivalent to an−i,n−j = aj,i, 0 ≤ i, j ≤ n.

Similarly, the centrotranspose symmetry of Â is equivalent to an−1−i,n−1−j = aj,i,
0 ≤ i, j ≤ n− 1. But then

ai+1,j+1 = an−j−1,n−i−1 = ai,j , 0 ≤ i, j ≤ n− 1,

and thus it follows that A is Toeplitz.

TWO VARIABLE ORTHOGONAL POLYNOMIALS 799

As A and Â are Toeplitz, the converse is immediate.
Lemma 2.2. Let A = (Ai,j), i, j = 1, . . . , k, where each Ai,j is a complex m×m

matrix. Then A is a doubly Toeplitz matrix if and only if AT = JAJ , AT
1 = J1A1J1,

and AT
2 = J1A2J1. Here A1 is obtained from A by deleting the last block row and

column, and A2 is obtained from A by removing the last row and column of each
Ai,j. The matrices J and J1 are square matrices of appropriate size with ones on the
antidiagonal and zeros everywhere else.

Proof. Again the necessary conditions follow from the structure of A. To see the
converse note that AT = JAJ implies that AT

j,i = J2Ak−i,k−jJ2, where J2 is the m×m
matrix with ones on the reverse diagonal and zeros everywhere else. This coupled with
the condition on A1 implies that A is a block Toeplitz matrix from Lemma 2.1 and
J2Ai,jJ2 = AT

i,j . These relations plus the condition on A2 and Lemma 2.1 give the
result.

Remark 2.3. The conclusions of the above lemmas hold if we replace deleting the
last (last block) row and column by deleting the first (first block) row and column.

We say that the moment functional Ln,m :
∏n,m → C is positive definite or

positive semidefinite if

(2.3) Ln,m(|p|2) > 0 or Ln,m(|p|2) ≥ 0

for every nonzero polynomial p ∈
∏n,m

. It follows from a simple quadratic form
argument that Ln,m is positive definite or positive semidefinite if and only if its
moment matrix Cn,m is positive definite or positive semidefinite, respectively.

We will say that L is positive definite or positive semidefinite if

L(|p|2) > 0 or L(|p|2) ≥ 0

for all nonzero polynomials, respectively. Again these conditions are equivalent to the
moment matrices Cn,m being positive definite or positive semidefinite for all positive
integers n and m. The above discussion leads to the following.

Lemma 2.4. Let Cn,m be a positive (positive semi-) definite (n+1)(m+1)× (n+
1)(m + 1) matrix given by (2.1) and (2.2). Then there is a positive (positive semi-)
definite moment functional Ln,m :

∏n,m → C associated with Cn,m given by

ci,j = Ln,m(z−iw−j) = Ln,m(ziwj), −n ≤ i ≤ n, −m ≤ j ≤ m.

The converse also holds.
Let

∏n
m+1 be the set of all (m+1)× (m+1) complex-valued matrix polynomials

of degree n or less,
∏

m+1 the set of all (m + 1) × (m + 1) complex-valued matrix

polynomials, and Mm,n the space of m × n matrices. For a matrix M we let M†

denote the conjugate transpose (or the adjoint) of M . For a polynomial Q(z, w) we
let Q†(z, w) denote the polynomial in z−1 and w−1 defined by Q(z, w)† = Q†(1

z ,
1
w)†.

If the positive moment functional Ln,m :
∏n,m → C is extended to two variable

polynomials with matrix coefficients in the obvious way, we can associate it with a
positive matrix function Lm :

∏n
m+1 ×

∏n
m+1 → Mm+1,m+1 defined by

(2.4) [Lm(P (z), Q(z))]i,j = Ln,m(
[
P (z, w) Q†(z, w)

]
i,j

), 1 ≤ i, j ≤ m + 1

where

P (z, w) = P (z)

⎡⎣wm

...
1

⎤⎦ and Q(z, w) = Q(z)

⎡⎣wm

...
1

⎤⎦ .

800 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

Equation (2.4) shows that if Ln,m can be represented in terms of a positive mea-
sure μ supported on the bicircle, then for f an (m + 1) × (m + 1) matrix function
continuous on the unit circle,

Lm(f) =

∫ π

−π

f(θ)dMm(θ),

where Mm is the (m + 1) × (m + 1) matrix measure given by

dMm(θ) =

∫ π

φ=−π

⎡⎣wm

...
1

⎤⎦ dμ(θ, φ)

⎡⎣wm

...
1

⎤⎦†

,

which shows that Mm is Toeplitz.
Because of the structure of Cn,m we can associate with Lm matrix valued orthog-

onal polynomials in the following manner [3], [4], [8]. Let {Rm
i (z)}ni=0 and {Lm

i (z)}ni=0

be (m + 1) × (m + 1) complex-valued matrix polynomials given by

(2.5) Rm
i (z) = Rm

i,iz
i + Rm

i,i−1z
i−1 + · · · , i = 0, . . . , n,

and

(2.6) Lm
i (z) = Lm

i,iz
i + Lm

i,i−1z
i−1 + · · · , i = 0, . . . , n,

satisfying

(2.7) Lm(Rm
i

†, Rm
j

†) = δijIm+1

and

(2.8) Lm(Lm
i , Lm

j) = δijIm+1,

respectively, where Im+1 denotes the (m + 1) × (m + 1) identity matrix. The above
relations uniquely determine the sequences {Rm

i }ni=0 and {Lm
i }ni=0 up to a unitary

factor, and this factor will be fixed by requiring Rm
i,i and Lm

i,i to be upper triangular
matrices with positive diagonal entries. We write

(2.9) Lm
i (z) = [0 · · · 0 Lm

i,i L
m
i,i−1 · · · Lm

i,0]

⎡⎢⎢⎣
znIm+1

zn−1Im+1
...

Im+1

⎤⎥⎥⎦ ,

and

(2.10) L̂m
n (z) =

⎡⎢⎢⎣
Lm
n (z)

Lm
n−1(z)...
Lm

0 (z)

⎤⎥⎥⎦ = L

⎡⎢⎢⎢⎣
znIm+1

zn−1Im+1

...
Im+1

⎤⎥⎥⎥⎦ ,

where

(2.11) L =

⎡⎢⎢⎢⎣
Lm
n,n Lm

n,n−1 · · · Lm
n,0

0 Lm
n−1,n−1 · · · Lm

n−1,0
...

. . .

0 0 · · · Lm
0,0

⎤⎥⎥⎥⎦ .

TWO VARIABLE ORTHOGONAL POLYNOMIALS 801

In an analogous fashion write

(2.12) R̂m
n (z) =

⎡⎢⎢⎣
Rm

0 (z)
Rm

1 (z)
...

Rm
n (z)

⎤⎥⎥⎦ =
[
Im+1 . . . znIm+1

]
R,

where

(2.13) R =

⎡⎢⎢⎣
Rm

0,0 Rm
1,0 · · · Rm

n,0

0 Rm
1,1 · · · Rm

n,1
...

. . .

0 0 · · · Rm
n,n

⎤⎥⎥⎦ .

By lower (respectively, upper) Cholesky factor A (respectively, B) of a positive definite
matrix M , we mean

(2.14) M = AA† = BB†,

where A is a lower triangular matrix with positive diagonal elements, and B is an
upper triangular matrix with positive diagonal elements. With the above we have the
following well known lemma [15].

Lemma 2.5. Let Cn,m be a positive definite block Toeplitz matrix given by (2.1);
then L† is the lower Cholesky factor, and R is the upper Cholesky factor of C−1

n,m.
Proof. To obtain (2.14) note that (2.8) implies that

I = Lm(L̂m
n , L̂m

n) = LLm

⎛⎜⎜⎝
⎡⎢⎢⎣

znIm+1

zn−1Im+1
...

Im+1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
znIm+1

zn−1Im+1
...

Im+1

⎤⎥⎥⎦
⎞⎟⎟⎠L† = LCn,mL†,

where I is the (n+1)(m+1)× (n+1)(m+1) identity matrix. Since Cn,m is invertible
we find

C−1
n,m = L†L.

The result for R follows in an analogous manner.
From this formula and (2.11) we find

(2.15) Lm
n (z) =

[
(Lm

n,n
†)−1, 0, 0, . . . 0

]
C−1

n,m[znIm+1, z
n−1Im+1, . . . , Im+1]

T ,

and

(2.16) Rm
n (z) = [Im+1, zIm+1, . . . , z

nIm+1]C
−1
n,m

[
0, 0, . . . , 0, (R̄m

n,n)−1
]T

.

Note that Lm
n,n

† is the lower Cholesky factor of [Im+1, 0, · · · , 0]C−1
n,m [Im+1, 0, · · · , 0]T ,

while Rm
n,n is the upper Cholesky factor of [0, · · · , Im+1]C

−1
n,m [0, · · · , Im+1]

T .
The theory of matrix orthogonal polynomials (see [3], [15], [17], [19]) can be

applied to obtain the recurrence formulas

Ai+1,mLm
i+1(z) = zLm

i (z) − Ei+1,m
←−
R

m

i (z), i = 0, . . . , n− 1,

Rm
i+1(z)Âi+1,m = zRm

i (z) −←−
L

m

i (z)Ei+1,m, i = 0, . . . , n− 1,
(2.17)

802 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

where

(2.18) Ei+1,m = Lm(zLm
i ,

←−
Rm

i) = Lm(
←−
Lm

i

†
,
(
zRm

i)†
)

and

Ai+1,m = Lm(zLm
i , Lm

i+1) = Lm
i,i(L

m
i+1,i+1)

−1,

Âi+1,m = Lm(Rm†
i+1,

(
zRm

i)†
)

= (Rm
i+1,i+1)

−1Rm
i,i.

(2.19)

For a matrix polynomial B of degree n in z,
←−
B (z) = zn

∑n
i=0 B

†
i z

−i. By multiplying

the first equation in (2.17) on the left by z̄Lm
i (z)

†
and the second equation on the

right by z̄Rm
i (z)

†
and then integrating, we see that

Ai+1,mA†
i+1,m = Im+1 − Ei+1,mE†

i+1,m,

Â†
i+1,mÂi+1,m = Im+1 − E†

i+1,mEi+1,m.
(2.20)

The above equations and the properties of Ai+1,m and Âi+1,m show that Ei+1,m is a
strictly contractive matrix and that Ai+1,m is the upper Cholesky factor of Im+1 −
Ei+1,mE†

i+1,m. Similarly Â†
i,m is the lower Cholesky factor of Im+1 − E†

i+1,mEi+1,m.
Furthermore (2.19) and (2.20) show that

(2.21) det((Lm
i+1,i+1)

†Lm
i+1,i+1)

−1 = det(C0)

i+1∏
j=1

det(Im+1 − Ej,mE†
j,m).

The recurrence formulas (2.17) can be inverted in the following manner. Multiply the
reverse of the second equation in (2.17) on the right by Ei+1,m to obtain

Ei+1,mÂ†
i+1,m

←−
Rm

i+1(z) = Ei+1,m
←−
Rm

i (z) − zEi+1,mE†
i+1,mLm

i (z).

Add this equation to the first equation in (2.17) and then use (2.20) to eliminate

Ai+1,m and Â†
i+1,m to find

(2.22) (A†
i+1,m)−1Lm

i+1(z) + Ei+1,m(Âi+1,m)−1←−Rm
i+1(z) = zLm

i (z).

In a similar manner we find

(2.23) Rm
i+1(z)(Â

†
i+1,m)−1 +

←−
Lm

i+1(z)(Ai+1,m)−1Ei+1,m = zRm
i (z).

From the recurrence formulas it is not difficult to derive the Christoffel–Darboux
formulas [3]:

←−
Rm

k (z)
†←−
Rm

k (z1) − z̄z1L
m
k (z)

†
Lm
k (z1) = (1 − z̄z1)

k∑
i=0

Lm
i (z)

†
Lm
i (z1),

←−
Lm

k (z1)
←−
Lm

k (z)
†
− z̄z1R

m
k (z1)R

m
k (z)

†
= (1 − z̄z1)

k∑
i=0

Rm
i (z1)R

m
i (z)

†
.

(2.24)

These formulas give rise to the matrix Gohberg–Semencul formulas [11], [15] when
the linear equations obtained by equating like powers of z̄izj1 are put in matrix form.

TWO VARIABLE ORTHOGONAL POLYNOMIALS 803

Some properties that follow from the above formulas [3, Theorems 9, 14, and 15] are

that
←−
Rm

i (z) and
←−
Lm

k (z) have empty kernels for |z| ≤ 1; i.e.,

(2.25) det(
←−
Rm

i (z)) �= 0 �= det(
←−
Lm

k (z)), |z| ≤ 1.

Such polynomials are called stable matrix polynomials, and if we write

(2.26) Wk(z) =

[
←−
Lm

k (z)
←−
Lm

k (z)
†
]−1

and

Ck
j =

1

2π

∫ π

−π

e−ijθWk(e
iθ)dθ,

then

(2.27) Ck
j = Cj , |j| ≤ k.

Furthermore

(2.28) Wk =

[
←−
Rm

k (z)
†←−
Rm

k (z)

]−1

.

If
←−
Lm

k (z) (
←−
Rm

k (z)) satisfies (2.25) and (2.27), we will say it is stable and has spectral
matching (up to level k). Another useful result shown in [3] is

(2.29) log det((Lm
i+1,i+1)

†Lm
i+1,i+1)

−1 =
1

2π

∫ π

−π

log detWk(θ)dθ.

From the stability of
←−
Rm

i+1 and
←−
Lm

i+1, (2.22) and (2.23) give the following formulas
for the recurrence coefficients Ei+1,m:

Ei+1,m = −(A†
i+1,m)−1Lm

i+1(0)
←−
Rm

i+1(0)−1Âi+1,m

= −Ai+1,m
←−
Lm

i+1(0)−1Rm
i+1(0)(Â†

i+1,m)−1.
(2.30)

We also note that
←−
Lm

k (z) and
←−
Rm

k (z) are minimizers of certain quadratic functions.
To see this denote the set of (m + 1) × (m + 1) hermitian matrices as Herm(m + 1),
and let M :

∏
m+1 → Herm(m + 1) be given by

(2.31) M[X(z)] = Lm(X,X) − (X(0) + X(0)†),

then Delsarte, Genin, and Kamp have shown [3] that for a given degree k, M is

minimized by
←−
Lm

k (z)Lm
k,m with the value (Lm

k,m)†Lm
k,m. Likewise M̂ :

∏
m+1 →

Herm(m + 1) given by

(2.32) M̂[X(z)] = Lm(X†, X†) − (X(0) + X(0)†)

is minimized by Rm
k,m

←−
Rm

k (z) and takes the value Rm
k,m(Rm

k,m)†. Thus we find

(2.33) (Lm
k,m)†Lm

k,m ≥ (Lm
k+1,m)†Lm

k+1,m

804 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

and

(2.34) Rm
k,m(Rm

k,m)† ≥ Rm
k+1,m(Rm

k+1,m)†.

Here A ≥ B for two (m + 1) × (m + 1) matrices means that A − B is positive
semidefinite. The above discussion leads to Burg’s entropy theorem. Consider the
class of Mm of (m + 1) × (m + 1) matrix Borel measures on the unit circle, and
for each such measure μ write the Lebesgue decomposition of μ = μac + μs, where
dμac/dθ = W (θ). Let Sm

n be the subset of Mm such that each μ ∈ Sm
n has the

same Fourier coefficients Ci, |i| ≤ n, and E(μ) = 1
2π

∫ π

−π
ln det(W)dθ > −∞. Then

there is a unique measure which maximizes the above entropy function E(μ), and this
measure is given by dμ = W (θ)dθ, with W (θ) = Qm

n (θ)−1, where Qm
n (θ) is a positive

(m + 1) × (m + 1) matrix trigonometric polynomial of degree n.
This leads to a simple proof of the matrix Fejér–Reisz factorization theorem (Hel-

son [13], Dritschel [5], McLean and Woerdeman [16], Geronimo and Lai [10]) which
will be useful later.

Lemma 2.6. Let Qm
n (θ) be a strictly positive (m+1)×(m+1) matrix trigonometric

polynomial; then Qm
n (θ) =

←−
Lm

n (z)(
←−
Lm

n (z))†, z = eiθ, where
←−
Lm

n is a stable (m+1)×
(m + 1) matrix polynomial of degree n. Furthermore Lm

n is given by (2.15).
Proof. Since Qm

n (θ) is strictly positive we can compute the moments Cj =
1
2π

∫ π

−π
e−ijθQm

n (θ)−1dθ. If we compute the matrix orthogonal polynomials associ-
ated with these Fourier coefficients, we find that Wn has spectral matching up to n.
That is, its Fourier coefficients match Ci for |i| ≤ n. The maximum entropy theorem
implies that Qm

n (θ) = W−1
n , which gives the result.

The matrix Fejér–Riesz theorem now follows.
Theorem 2.7. Let Qm

n (θ) ≥ 0 be a positive (m+1)×(m+1) matrix trigonometric
polynomial; then Qm

n (θ) = Pm
n (z)(Pm

n (z))†, z = eiθ, where Pm
n is an outer (nonzero

for |z| < 1) (m + 1) × (m + 1) matrix polynomial.
Proof. Let Qm

n,ε = εI + Qm
n , ε > 0; then Qm

n,ε satisfies the hypotheses of the

above lemma. Thus Qm
n,ε = Pm

n,ε(P
m
n,ε)

†. The proof now follows by taking the limit as
ε tends to zero.

It was observed by Delsarte et al. [4] that if the Ck in Cn,m are centrotranspose
symmetric, then

(2.35) (Lm
i,i

†Lm
i (z))T = JmRm

i (z)Rm
ii

†Jm, i = 0, . . . , n,

where Jm is the (m + 1) × (m + 1) matrix with ones on the reverse diagonal and
zeros everywhere else. This can easily be seen from (2.15) and (2.16) since in this
case from Lemma 2.2 CT

n,m = JCn,mJ , with J the (n + 1)(m + 1) × (m + 1)(n + 1)
matrix with ones down the antidiagonal and zeros everywhere else. This leads to
the following characterization of positive definite doubly Toeplitz matrices in terms
of certain recurrence coefficients. We will denote by Cm

0 the m×m matrix obtained
from C0 by eliminating the first row and first column of C0.

Theorem 2.8. Suppose Cn,m is positive definite. Then the Fourier coefficients
Ci, |i| ≤ n, are centrotranspose symmetric if and only if Ek,m, k = 1, . . . , n, and C0

are centrotranspose symmetric. Consequently, Cn,m is doubly Toeplitz if and only if
Ek,i, k = 1, . . . , n, i = m− 1,m, C0, and Cm

0 are centrotranspose symmetric.
Proof. Examining the leading coefficients in (2.35) and using the fact that Lm

i,i

and Rm
i,i are upper triangular, we find that (see also [4]) (Lm

i,i)
T = JmRm

i,iJm for
i = 0, . . . , n. Thus

(2.36) Lm
i (z)T = JmRm

i (z)Jm, i = 0, . . . , n.

TWO VARIABLE ORTHOGONAL POLYNOMIALS 805

The above equation and (2.19) imply that

(2.37) JmAi+1,mJm = AT
i+1,m.

Using this coupled with (2.36) and its reverse in (2.30) yields

JmEi+1,mJm = −Jm(A†
i+1,m)−1Lm

i+1(0)
←−
Rm

i+1(0)−1Âi+1,mJm

= −(Ai+1,m
←−
Lm

i+1(0)−1Rm
i+1(0)(Â†

i+1,m)−1)T = ET
i+1,m.(2.38)

To show the converse note that if Ei,m is centrotranspose symmetric, then from (2.20)
we obtain

Jm(Ai,mA†
i,m)TJm = Jm(Im − Ei,mE†

i,m)Jm = (I − E†
i,mEi,m) = ÂT

i,mÂi,m,

which gives (2.37). Since C0 is centrotranspose symmetric and L†
0,m(z) is the lower

Cholesky factor of C0, we see that JmLm
0 Jm = Rm

0
T . Thus by induction using (2.17)

we find that JmLm
n (z)Jm = Rm

n (z)�. The first part of the result now follows from the
spectral matching of Wn, (2.26), and (2.28). The second part of the theorem follows
by applying the above argument to Cn,m−1 and Cm

0 and then using Lemma 2.1.
In the next two sections we present recurrence formulas and an algorithm that

computes recurrence coefficients for a positive definite doubly Toeplitz matrix.

3. Bivariate orthogonal polynomials. In this section we examine the prop-
erties of two variable orthogonal polynomials where the monomial ordering is either
lexicographical or reverse lexicographical. The study of orthogonal polynomials on the
bicircle with this ordering was begun by Delsarte et al. [4] and extended in [8]. Given a

positive definite linear functional LN,M :
∏N,M → C we perform the Gram–Schmidt

procedure using the lexicographical ordering and define the orthonormal polynomials
φl
n,m(z, w), 0 ≤ n ≤ N, 0 ≤ m ≤ M, 0 ≤ l ≤ m, by the equations

LN,M (φl
n,mz−iw−j) = 0, 0 ≤ i < n and 0 ≤ j ≤ m or i = n and 0 ≤ j < l,

LN,M (φl
n,m(φl

n,m)†) = 1,
(3.1)

and

(3.2) φl
n,m(z, w) = kn,ln,m,lz

nwl +
∑

(i,j)<lex(n,l)

ki,jn,m,lz
iwj .

With the convention kn,ln,m,l > 0, the above equations uniquely specify φl
n,m. Polyno-

mials orthonormal with respect to LN,M but using the reverse lexicographical ordering

will be denoted by φ̃l
n,m. They are uniquely determined by the above relations with

the roles of n and m interchanged.
Set

(3.3) Φn,m =

⎡⎢⎢⎢⎣
φm
n,m

φm−1
n,m
...

φ0
n,m

⎤⎥⎥⎥⎦ = Kn,m

⎡⎢⎢⎣
znwm

znwm−1

...
1

⎤⎥⎥⎦ ,

where the (m + 1) × (n + 1)(m + 1) matrix Kn,m is given by

(3.4) Kn,m =

⎡⎢⎢⎢⎣
kn,mn,m,m kn,m−1

n,m,m · · · · · · · · · k0,0
n,m,m

0 kn,m−1
n,m,m−1 · · · · · · · · · k0,0

n,m,m−1
...

. . .
. . .

. . .
. . .

. . .

0 · · · kn,0n,m,0 kn−1,m
n,m,0 · · · k0,0

n,m,0

⎤⎥⎥⎥⎦ .

806 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

As indicated above denote

(3.5) Φ̃n,m =

⎡⎢⎢⎢⎣
φ̃n
n,m

φ̃n−1
n,m
...

φ̃0
n,m

⎤⎥⎥⎥⎦ = K̃n,m

⎡⎢⎢⎣
wmzn

wmzn−1

...
1

⎤⎥⎥⎦ ,

where the (n + 1) × (n + 1)(m + 1) matrix K̃n,m is given similarly to (3.4) with the
roles of n and m interchanged. For the bivariate polynomials φl

n,m(z, w) above we

define the reverse polynomials
←−
φ l

n,m(z, w) by the relation

(3.6)
←−
φ l

n,m(z, w) = znwmφ̄l
n,m(1/z, 1/w).

With this definition
←−
φ l

n,m(z, w) is again a polynomial in z and w, and furthermore

(3.7)
←−
Φn,m(z, w) :=

⎡⎢⎢⎢⎢⎣
←−
φm

n,m←−
φm−1

n,m
...

←−
φ 0

n,m

⎤⎥⎥⎥⎥⎦
T

.

An analogous procedure is used to define
←−̃
φ l

n,m.
In order to ease the notation to find recurrence formulas for the vector polynomials

Φn,m, we introduce the inner product

(3.8) 〈X,Y 〉 = LN,M (XY †).

Let
∏̂n,m

be the linear span of ziwj , 0 ≤ i ≤ n, 0 ≤ j ≤ m,
∏̂n,m

k be the vector

space of k dimensional vectors with entries in
∏̂n,m

, and
∏̂m

m+1 =
∏̂∞,m

m+1.
Utilizing the orthogonality relations (3.1) we obtain the following auxiliary results.

Lemma 3.1. Suppose Φ ∈
∏̂n,m

k . If Φ satisfies the orthogonality relations

(3.9) 〈Φ, ziwj〉 = 0, 0 ≤ i < n, 0 ≤ j ≤ m,

then Φ = TΦn,m, where T is a k×(m+1) matrix. If k = m+1, T is upper triangular
with positive diagonal entries, and if 〈Φ,Φ〉 = Im+1, then T = Im+1.

Lemma 3.2. Suppose Φ̃ ∈
∏̂n,m

k . If Φ̃ satisfies the orthogonality relations

(3.10) 〈Φ̃, ziwj〉 = 0, 0 ≤ i ≤ n, 0 ≤ j < m,

then Φ̃ = T Φ̃n,m, where T is a k× (n+1) matrix. If k = n+1, T is upper triangular

with positive diagonal entries, and if 〈Φ̃, Φ̃〉 = In+1, then T = In+1.
With the above we can make contact with the matrix orthogonal polynomials

introduced in section 2. This was observed by Delsarte et al. [4].
Lemma 3.3. Let Φn,m be given by (3.3). Then

(3.11) Φn,m = Lm
n (z)[wm, wm−1, . . . , 1]T ,

(3.12)
←−
Φn,m = [1, w, . . . , wm]Jm

←−
Rm

n (z)TJm,

TWO VARIABLE ORTHOGONAL POLYNOMIALS 807

and ⎡⎢⎢⎣
Φn,m(z, w)

Φn−1,m(z, w)
...

Φ0,m(z, w)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
Lm
n (z)

Lm
n−1(z)

...
Lm

0 (z)

⎤⎥⎥⎥⎦ [wm, wm−1, . . . , 1]T

= L

⎡⎢⎢⎣
znIm+1

zn−1Im+1
...

Im+1

⎤⎥⎥⎦ [wm, wm−1, . . . , 1]T .(3.13)

Proof. If we substitute the equation

Φn,m = L̂n(z)[wm · · · 1]T =
∑
i

L̂n,iz
i[wm · · · 1]T

into (3.9), where L̂n(z) is an (m + 1) × (m + 1) matrix polynomial of degree n, we
find, for j = 0, . . . , n− 1,

0 =

〈
Φn,m, zj

⎡⎣wm

...
1

⎤⎦〉 =

n∑
i=0

L̂n,i

〈
zi

⎡⎣wm

...
1

⎤⎦ , zj

⎡⎣wm

...
1

⎤⎦〉

=

n∑
i=1

L̂n,i

⎡⎣ LNM (zi−j) · · · LNM (zi−jw−m)
...

...
LNM (zi−jwm) · · · LNM (zi−j)

⎤⎦
=

n∑
i=1

L̂n,iLm(zi, zj) = Lm(L̂n(z), zj).

Similarly,

〈Φn,m, Φn,m〉 = Im+1 = Lm〈L̂n(z), L̂n(z)〉.

This, coupled with (2.8) and the fact that (3.3) implies that L̂n,m is upper triangular
with positive diagonal entries, gives (3.11). Equation (3.12) follows from (3.11) and
(2.36), while (3.13) follows from (3.11) and the definition of L.

Analogous formulas for bivariate orthogonal polynomials in the reverse lexico-
graphical ordering are obtained by interchanging the roles on n and m.

The function M given by (2.31) can be used to show that
←−
Φn,m satisfies a mini-

mization condition. Define M̄ :
∏̂m

m+1 → Herm(m + 1) by

M̄(Φ) = 〈Φ†, Φ†〉 − (Φ0 + Φ†
0).

We find the following.

Lemma 3.4. The polynomial
←−
Φn,m is the unique minimizer on

∏̂n,m

m+1.

Proof. Since Φ ∈
∏̂n,m

m+1 can be represented as

Φ(z, w) = [1, w, . . . , wm]Φ̂(z) = [1, w, . . . , wm]

n∑
i=0

Φiz
i,

808 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

and from (2.4)〈
zi

⎡⎣wm

...
1

⎤⎦ , zj

⎡⎣wm

...
1

⎤⎦〉 =

⎡⎣ LNM (zi−j) · · · LNM (zi−jw−m)
...

...
LNM (zi−jwm) · · · LNM (zi−j)

⎤⎦ = Lm(zi, zj),

we find M̄(Φ) = M̂(Φ̂). The result now follows from (3.12) and the fact that

Rm
n,m

←−
Rm

n (z) minimizes M̂ on
∏n

m+1.
We can now derive recurrence relations between the various polynomials.
Theorem 3.5. Given {Φn,m} and {Φ̃n,m}, 0 ≤ n ≤ N , 0 ≤ m ≤ M , the

following recurrence formulas hold:

An,mΦn,m = zΦn−1,m − Ên,m
←−
ΦT

n−1,m,(3.14)

Φn,m + A†
n,mÊn,m(AT

n,m)−1←−ΦT
n,m = A†

n,mzΦn−1,m,(3.15)

Γn,mΦn,m = Φn,m−1 −Kn,mΦ̃n−1,m,(3.16)

Γ1
n,mΦn,m = wΦn,m−1 −K1

n,m

←−̃
ΦT

n−1,m,(3.17)

Φn,m = In,mΦ̃n,m + Γ†
n,mΦn,m−1,(3.18)

←−
ΦT

n,m = I1
n,mΦ̃n,m + (Γ1

n,m)T
←−
ΦT

n,m−1,(3.19)

where

Ên,m = 〈zΦn−1,m,
←−
ΦT

n−1,m〉 = En,mJm = ÊT
n,m ∈ Mm+1,m+1,(3.20)

An,m = 〈zΦn−1,m,Φn,m〉 ∈ Mm+1,m+1,(3.21)

Kn,m = 〈Φn,m−1, Φ̃n−1,m〉 ∈ Mm,n,(3.22)

Γn,m = 〈Φn,m−1,Φn,m〉 ∈ Mm,m+1,(3.23)

K1
n,m = 〈wΦn,m−1,

←−̃
ΦT

n−1,m〉 ∈ Mm,n,(3.24)

Γ1
n,m = 〈wΦn,m−1,Φn,m〉 ∈ Mm,m+1,(3.25)

In,m = 〈Φn,m, Φ̃n,m〉 ∈ Mm+1,n+1,(3.26)

I1
n,m = 〈←−ΦT

n,m, Φ̃n,m〉 ∈ Mm+1,n+1.(3.27)

Remark 3.6. Formulas similar to (3.14)–(3.19) hold for Φ̃n,m and will be denoted
by (3̃.14)–(3̃.19). Throughout the rest of the paper we use the same notation to denote
the extension to Φ̃n,m of existing formulas stated for Φn,m.

Proof. Equation (3.14) follows from Lemma 3.3, (2.17), (2.36), and (2.37). Like-
wise (3.15) follows in an analogous manner from (2.22). To prove (3.16) note that,
because of the linear independence of the entries of Φn,m, there is an m × (m + 1)

matrix Γn,m such that Γn,mΦn,m − Φn,m−1 ∈
∏̂n−1,m

m . Furthermore

〈Γn,mΦn,m − Φn,m−1, z
iwj〉 = 0, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1.

Thus Lemma 3.2 implies that

Γn,mΦn,m − Φn,m−1 = Hn,mΦ̃n−1,m.

The remaining recurrence formulas follow in a similar manner.

TWO VARIABLE ORTHOGONAL POLYNOMIALS 809

Remark 3.7. As indicated in the proof, (3.14) follows from the theory of matrix
orthogonal polynomials and so allows us to compute in the n direction along a strip of
size m+1. This formula does not mix the polynomials in the two orderings. However,
to increase m by one for polynomials constructed in the lexicographical ordering, the
remaining relations show that orthogonal polynomials in the reverse lexicographical
ordering must be used.

Using the orthogonality relations from Lemmas 3.1 and 3.2 and (3.1), we find the
following relations.

Proposition 3.8. The following relations hold between the coefficients in the
equations for Φ̃ and Φ:

K̃n,m = K†
n,m, Ĩn,m = I†n,m,(3.28)

Ĩ1
n,m = (I1

n,m)T , K̃1
n,m = (K1

n,m)T .(3.29)

Also

An,mA†
n,m = Im − Ên,mÊ†

n,m,(3.30)

Γn,mΓ†
n,m = Im −Kn,mK†

n,m,(3.31)

Γ1
n,m(Γ1

n,m)† = Im −K1
n,m(K1

n,m)†,(3.32)

In,mI†n,m + Γ†
n,mΓn,m = Im+1,(3.33)

I1
n,m(I1

n,m)† + (Γ1
n,m)†Γ1

n,m = Im+1.(3.34)

Remark 3.9. The matrix Γn,m has a zero in the entries (i, j), i ≥ j, and has
positive (i, i+1) entries. Since Γn,mΓ†

n,m = Γn,mU†
mUmΓ†

n,m, where Um is the m×m+1
matrix given by

(3.35) Um =
[
0, Im

]
,

we see that Γn,mU†
m is the upper Cholesky factorization of the right-hand side of

(3.31). From this Γn,m can be obtained once Kn,m is specified. The matrix Γ1
n,m has

zeros in the entries (i, j), i > j, with positive (i, i) entries. The matrix In,m has the
first row and column equal to zero except for a one in the (1, 1) entry.

The above recurrence formulas also give pointwise formulas for the recurrence
coefficients. In order to obtain these formulas we define the m×m+ 1 matrix U1

m as

(3.36) U1
m =

[
Im, 0

]
,

and the (n+ 1)(m+ 1)× (n+ 1)(m+ 1) matrix Pn,m
rl , which takes monomials in the

lexicographical ordering to those in the reverse lexicographical ordering; i.e.,

(3.37) Pn,m
rl [znwm, znwm−1, . . . , 1]T = [wmzn, wmzn−1, . . . , 1]T .

Analogous equations hold for the n× (n + 1) matrices Ũn and Ũ1
n.

Proposition 3.10. Let

(3.38) Φn,m(z, w) = Φm
n (z)

⎡⎣wm

...
1

⎤⎦ and Φ̃n,m(z, w) = Φ̃n
m(w)

⎡⎣zn...
1

⎤⎦ ,

where

Φm
n (z) = Φm

n,nz
n + Φm

n,n−1z
n−1 + · · · ,

Φ̃n
m(w) = Φ̃n

m,mwm + Φ̃n
m,m−1w

m−1 + · · · ;(3.39)

810 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

then the following relations hold:

Γn,m = Φm−1
n,n Um(Φm

n,n)−1,(3.40)

Γ1
n,m = Φm−1

n,n U1
m(Φm

n,n)−1,(3.41)

Kn,m = −Γn,mIn,mF̃n,m,(3.42)

K1
n,m = −Γ1

n,mĪ1
n,m

¯̃F 1
n,m,(3.43)

In,m = (Φm
n,n

†)−1[Im+1, 0, . . . , 0]C−1
n,mPn,m

rl
T
[In+1, 0, . . . , 0]T (Φ̃n

m,m)−1,(3.44)

I1
n,m = (Φm

n,n
T)−1[0, . . . , 0, Jm+1]C

−1
n,mPn,m

rl
T
[In+1, 0, . . . , 0]T (Φ̃n

m,m)−1,(3.45)

where F̃n,m = Φ̃n
m,mUT

n (Φ̃n−1
m,m)−1, and F̃ 1

n,m = Φ̃n
m,m(U1

n)T (Φ̃n−1
m,m)−1.

Proof. Equation (3.41) follows by equating the coefficients of zn in (3.17) on the
left. The same argument gives (3.41). To show (3.42) multiply (3.18) on the left
by Γn,m and then subtract the resulting equation from (3.16). Now equating the
coefficients of wm gives the result. Equation (3.43) follows by taking the transpose of
the reverse of (3.17), then multiplying (3.19) on the left by Γ̄1

n,m, and subtracting the
resulting equations. Equating powers of wm then gives the result. Equation (3.44)
follows by equating the highest powers of w in (3.18), and (3.45) follows in a similar
manner from (3.19) and the fact that Cn,m is a doubly Toeplitz matrix.

Remark 3.11. From (3.11) and Lemma 2.5 we see that (Φm
n,n)† is the lower

Cholesky factor of [Im+1, 0, . . . , 0]Cn,m[Im+1, 0, . . . , 0]T and a similar relation holds

between Φ̃n
m,mand C̃n,m. Thus (3.44) and (3.45) give the relation between In,m and

I1
n,m and the Fourier coefficients of LN,M . These coupled with (3.42) and (3.43) relate

the Fourier coefficients of LN,M to Kn,m and K1
n,m.

We now give relations between the coefficients in the recurrence formulas at one
level in terms of those at previous levels.

Lemma 3.12 (relations for Kn,m). For 0 < n,m,

Γ1
n,m−1Kn,m = Kn,m−1(Ã

−1
n−1,m)† −K1

n,m−1
ˆ̃E†
n−1,m(Ã−1

n−1,m)†,(3.46)

Kn,m(Γ̃1
n−1,m)† = A−1

n,m−1Kn−1,m −A−1
n,m−1Ên,m−1K̄1

n−1,m.(3.47)

Proof. To show (3.46) multiply (3.22) on the left by Γ1
n,m−1 and then use (3.17)

with m reduced by one to obtain

Γ1
n,m−1Kn,m = 〈wΦn,m−2, Φ̃n−1,m〉.

Eliminating Φ̃n−1,m using (3̃.14) and then applying (3.22) and (3.24) gives (3.46).
Equation (3.47) follows in an analogous manner.

Lemma 3.13 (relations for K1
n,m). For 0 < n,m,

Γn,m−1K1
n,m = K1

n,m−1(Ã
−1
n−1,m)T −Kn,m−1(

ˆ̃En−1,m)T (Ã−1
n−1,m)T ,(3.48)

K1
n,m(Γ̃n−1,m)T = A−1

n,m−1K1
n−1,m −A−1

n,m−1Ên,m−1K̄n−1,m.(3.49)

Proof. To show (3.48) multiply (3.24) on the left by Γn,m−1 and then use (3.16)
to obtain

Γn,m−1K1
n,m = 〈wΦn,m−2,

←−̃
ΦT

n−1,m〉.

TWO VARIABLE ORTHOGONAL POLYNOMIALS 811

Now use (3̃.14) with n reduced by one and then (3.24) and (3.22) to find (3.48).
Equation (3.49) follows in a similar manner.

Lemma 3.14 (relations for Ên,m). For 0 < n,m,

Γn−1,mÊn,m = An,m−1Kn,m(I1
n−1,m)† + Ên,m−1Γ̄

1
n−1,m,(3.50)

Ên,m(Γ1
n−1,m)T = In−1,m(K1

n,m)TAT
n,m−1 + Γ†

n−1,mÊn,m−1.(3.51)

Proof. To establish (3.50) multiply (3.20) on the left by Γn−1,m and then use
(3.16) to obtain

Γn−1,mÊn,m = 〈zΦn−1,m−1,
←−
ΦT

n−1,m〉.

With the use of (3.14) to eliminate zΦn−1,m−1, we find

Γn−1,mÊn,m = An,m−1〈Φn,m−1,
←−
ΦT

n−1,m〉 + Ên,m−1〈
←−
ΦT

n−1,m−1,
←−
ΦT

n−1,m〉.

The second inner product on the right-hand side of the above equation evaluates to
Γ̄1
n−1,m, while the first may be evaluated using (3.19) followed by (3.22) to give the

claimed equation. To obtain (3.51) multiply (3.20) on the right by (Γ1
n−1,m)T and

then use (3.17) to get

Ên,m(Γ1
n−1,m)T = 〈zΦn−1,m,

←−
ΦT

n−1,m−1〉.

Using (3.14) to eliminate
←−
ΦT

n−1,m−1 yields

Ên,m(Γ1
n−1,m)T = 〈zΦn−1,m,

←−
ΦT

n,m−1〉AT
n,m−1 + 〈Φn−1,m,Φn−1,m−1〉ÊT

n,m−1.

Equation (3.23) can be used to evaluate the second inner product on the right-hand
side of the above equation, while the reverse transpose of (3.17) and (3.26) can be
used to obtain the first inner product.

Lemma 3.15 (relation for Γ1
n,m). For 0 < n,m,

Γ1
n,mΓ†

n,m = In,m−1
˜̂
En,m(I1

n,m−1)
T + Γ†

n,m−1Γ
1
n,m−1(3.52)

+ K1
n,m

¯̃A−1
n−1,m

˜̂
E†

n−1,mÃn−1,mK†
n,m.

Proof. To show (3.52) multiply (3.25) on the left by Γ†
n,m and use (3.16) to find

(3.53) Γ1
n,mΓ†

n,m = 〈wΦn,m−1,Φn,m−1〉 − 〈wΦn,m−1, Φ̃n−1,m〉K†
n,m.

Eliminating wΦn,m−1 in the second term on the right-hand side of the above equation
using (3.17) and then applying (3̃.15) gives the third term on the right-hand side of
(3.52). In the first term on the right-hand side of the above equation, substitute the
reverse transpose of (3.19) to find

〈wΦn,m−1,Φn,m−1〉 = 〈wΦn,m−1,
←−̃
ΦT

n,m−1〉(I1
n,m−1)

T + Γ†
n,m−1Γ

1
n,m−1,

where (3.23) has been used to obtain the second term on the right-hand side of the
above equation. The result may now be obtained by applying (3.18) for Φn,m−1 and
then using (3̃.20).

812 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

Lemma 3.16 (relations for In,m and I1
n,m).

In,mΓ̃†
n,m = −Γ†

n,mKn,m,(3.54)

I1
n,m = −Ā−1

n,mÊ†
n,mAn,mIn,m + AT

n,mI1
n−1,mΓ̃n,m, 0 < n.(3.55)

Proof. Equation (3.54) follows by multiplying (3.26) on the right by Γ̃†
n,m and

then using (3̃.16) and (3.23). In (3.27) use (3̃.18) and (3.28) to find

I1
n,m = 〈←−ΦT

n,m,Φn,m〉In,m + 〈←−ΦT
n,m, Φ̃n−1,m〉Γ̃n,m.

The first inner product on the right-hand side may be evaluated using (3.15). To

evaluate the second inner product, eliminate
←−
ΦT

n,m using the reverse transpose of
(3.15) and then use (3.27) to obtain the claimed equation.

4. Christoffel–Darboux formulas. The Christoffel–Darboux formula plays an
important role in the theory of one variable scalar and matrix orthogonal polynomials.
Using the connection between two variable orthogonal polynomials and matrix orthog-
onal polynomials, we derive two variable analogs of the Christoffel–Darboux formula.
These will play an important role in the theory of two variable stable polynomials
discussed later.

Lemma 4.1. Given {Φn,m} and {Φ̃n,m},

←−
Φn,m(z, w)

←−
Φ †

n,m(z1, w1) − z̄1zΦ
T
n,m(z, w)Φ†

n,m(z1, w1)
T(4.1a)

= (1 − z̄1z)Φn,m(z, w)TΦ†
n,m(z1, w1)

T

+
←−
Φn−1,m(z, w)

←−
Φ †

n−1,m(z1, w1) − z̄1zΦ
T
n−1,m(z, w)Φ†

n−1,m(z1, w1)
T(4.1b)

= (1 − z̄1z)Φ̃n,m(z, w)T Φ̃†
n,m(z1, w1)

T

+
←−
Φn,m−1(z, w)

←−
Φn,m−1(z1, w1)

T − z̄1zΦn,m−1(z, w)TΦ†
n,m−1(z1, w1)

T .(4.1c)

Proof. The equality (4.1a)=(4.1b) follows by subtracting (2.24) with n reduced by
one from the original equation and then using Lemma 3.3. The equality (4.1a)=(4.1c)
can be obtained in the following manner. Let

Zn,m(z, w) = [1, w, . . . , wm][Im+1, zIm+1, . . . , z
nIm+1],

and let Z̃n,m(z, w) be given by a similar formula with the roles of z and w and n and
m interchanged. Then from Lemma 2.5, (2.24), and (3.11) we find

←−
Φn,m(z, w)

←−
Φ †

n,m(z1, w1) − z̄1zΦ
T
n,m(z, w)Φ†

n,m(z1, w1)
T

1 − z̄1z

= Zn,m(z, w)C−1
n,mZn,m(z1, w1)

† = Z̃n,m(z, w)C̃−1
n,mZ̃n,m(z1, w1)

†

= Φ̃T
n,m(z, w)Φ̃†

n,m(z1, w1)
T + Z̃n,m−1(z, w)C̃−1

n,m−1Z̃n,m−1(z1, w1)
†.

Switching back to the lexicographical ordering in the second term in the last equation
and then using Lemma 2.5 yields the result.

TWO VARIABLE ORTHOGONAL POLYNOMIALS 813

As an immediate application of the above lemma we obtain the following.
Theorem 4.2 (Christoffel–Darboux formula). Given {Φn,m} and {Φ̃n,m},

←−
Φn,m(z, w)

←−
Φ †

n,m(z1, w1) − z̄1zΦ
T
n,m(z, w)Φ†

n,m(z1, w1)
T

1 − z̄1z

=

n∑
k=0

ΦT
k,m(z, w)Φ†

k,m(z1, w1)
T

=

m∑
j=0

Φ̃T
n,j(z, w)Φ̃†

n,j(z1, w1)
T .

In the first line of the above equation, the terms z̄1z may be replaced by w̄1w if
we switch to Φ̃n,m.

An interesting variant of (4.1c) is the following.
Lemma 4.3.

Φn,m(z, w)TΦ†
n,m(z1, w1)

T − ΦT
n,m−1(z, w)Φ†

n,m−1(z1, w1)
T

= Φ̃n,m(z, w)T Φ̃†
n,m(z1, w1)

T − Φ̃T
n−1,m(z, w)Φ̃†

n−1,m(z1, w1)
T .(4.2)

Proof. Equating the sums in the above theorem yields

Φn,m(z, w)TΦ†
n,m(z1, w1)

T −
m−1∑
j=0

Φ̃T
n,j(z, w)Φ̃†

n,j(z1, w1)
T(4.3)

= Φ̃n,m(z, w)T Φ̃†
n,m(z1, w1)

T −
n−1∑
j=0

ΦT
j,m(z, w)Φ†

j,m(z1, w1)
T .(4.4)

Switching to the lexicographical ordering in the sum on the left-hand side of the
above equation and reverse lexicographical ordering in the sum on the right-hand
side, extracting the highest terms, and then using the Christoffel–Darboux formula
to eliminate the remaining sums gives the result.

Remark 4.4. The above equations can be derived from the recurrence formulas
in the previous sections. However, the derivation of (4.1c) is rather tedious.

5. Algorithm. In this section we use the relations developed earlier to provide
an algorithm that allows us to compute the coefficients in the recurrence formula
at higher levels in terms of those at lower levels plus some indeterminates that are
equivalent to the moments. This will allow us to construct positive definite doubly
Toeplitz matrices. As a byproduct we construct the orthogonal polynomials associated
with these matrices. More precisely, at each level we use the new indeterminates and
the coefficients on the levels (n,m − 1) and (n − 1,m) to construct Kn,m and K1

n,m.
With this we can construct the other coefficients needed to proceed to the next level.
The Ên,m are closely related to the matrix recurrence coefficients needed to compute

Cn,m. Furthermore Φn,m and Φ̃n,m can also be computed. In order to construct the
above matrices we will have need of the m × (m + 1) matrices Um and U1

m given by
(3.35) and (3.36), respectively, and the vector em1 ∈ R

m, which is the vector with one

814 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

in the first entry and zeros everywhere else. From the definition of K1
n,m we see that

K1
n,m = 〈wΦn,m−1,

←−̃
ΦT

n−1,m〉

=

〈
w

⎡⎢⎣φ
m−1
n,m−1

...
φ0
n,m−1

⎤⎥⎦ ,

⎡⎢⎢⎣
←−̃
φ n−1

n−1,m
...

zn
←−̃
φ 0

n−1,m

⎤⎥⎥⎦
〉

= c−n,−mdn,mem1 (en1)T + Rn,m,(5.1)

where Rn,m is an m×n matrix containing moments ci,j , {|i| ≤ n, |j| ≤ m}\{(±n,±m)}.
Likewise, with the help of (3.38) and its tilde counterpart we find

Kn,m = 〈Φn,m−1, Φ̃n−1,m〉

= c−n,mΦn,m−1
n,m−1

⎡⎢⎣0
...
1

⎤⎥⎦
⎛⎜⎝Φ̃m,n−1

m,n−1

⎡⎢⎣0
...
1

⎤⎥⎦
⎞⎟⎠

†

+ R̂n,m,(5.2)

where R̂n,m contains only moments from lower levels.
We proceed as follows: At level (0, 0) we have the parameter u0,0 > 0, which

corresponds to c0,0. The polynomials Φ0,0 and Φ̃0,0 are chosen as 1√
u0,0

. From (3.26)

and (3.27) we see that I0,0 = 1 = I1
0,0. At level (i, 0) there is one new parameter ui,0,

which can be taken to correspond with the one-dimensional recurrence coefficient
i.e., ui,0 = αi = Êi,0, corresponding to the (i, 0) level and must be less than one in
magnitude. From (3.30) and the normalization chosen for the polynomials, Ai,0 =√

1 − |Êi,0|2. This allows us to compute Φi,0, and
←−
Φ i,0. The sizes of the matrices

given in (3.22), (3.23), (3.24), and (3.25) show that

Ki,0 = K̃i,0 = Γi,0 = K1
i,0 = K̃1

i,0 = Γ1
i,0 = 0,

where (3.28) and (3.29) have also been used. Furthermore (3.33) and Remark 3.9

imply that Ii,0 = (ei+1
1)T = Ĩ†i,0 where (3.28) has been used. Equation (3̃.31) implies

that Γ̃i,0 = Ui, while (3.55) and (3.29) allow us to compute

(5.3) I1
i,0 = (Ĩ1

i,0)
T = −

[
Ê†

i,0 Ai,0Ê
†
i−1,0 . . . −

∏i
j=1 Aj,0

]
.

Φ̃i,0 can now be computed from (3̃.18).
At level (0, j) there is one new parameter u0,j , which as above can be taken to

correspond with the one-dimensional recurrence coefficient, i.e., u0,j = αj =
˜̂
E0,j , cor-

responding to the (0, j) level and must be less than one in magnitude. The analysis
for the (i, 0) level can be carried over with the roles of the lexicographical and re-
verse lexicographical orderings interchanged. Thus from (3̃.30) and the normalization

chosen for the polynomials, Ã0,j =

√
1 − | ˜̂E0,j |2, which allows us to compute Φ̃0,j .

Again

K̃0,j = K0,j = Γ̃0,j = K̃1
0,j = K1

0,j = Γ̃1
0,j = 0.

Likewise Ĩ0,j = (ej+1
1)T = I†0,j and Γ0,j = Uj . Equations (3̃.55) and (3.29) allow us to

compute Ĩ1
0,j as above with i and j interchanged as well as the orderings. Equation

(3.18) now allows us to compute Φ0,j .

TWO VARIABLE ORTHOGONAL POLYNOMIALS 815

At level (n,m), with n,m > 0, there are two new parameters un,m and u−n,m

since u−n,−m = un,m and un,−m = u−n,m. These along with the coefficients on the
(n− 1,m) and (n,m− 1) level will be used to compute Kn,m and K1

n,m. This will be
sufficient to compute the remaining coefficients on level (n,m). We begin with the
following.

Computation of Kn,m. If n = 1,m = 1, then (3.22) shows that K1,1 is a scalar
which we choose as ū1,−1. If m > 1, we see from (3.41) and (3.36) that

Γ1
n,m−1Φ

m−1
n,n emm = 0,

where emm is the m-dimensional vector with zeros in all its entries except the last,
which is one. Since Φm−1

n,n = A−1
n,m−1 . . . A

−1
1,m−1Φ

m−1
0,0 is an upper triangular invertible

matrix, we find

Γ1
n,m−1Φ

m−1
n,n ((U1

m−1)
TU1

m−1 + emm(emm)T) = Γ1
n,m−1Φ

m−1
n,n (U1

m−1)
TU1

m−1,

and from (3.41) Γ1
n,m−1Φ

m−1
n,n (U1

m−1)
T = Φm−2

n,n . Thus (3.46) can be written as

U1
m−1(Φ

m−1
n,n)−1Kn.m((Φ̃n−1

m,m)†)−1

= (Φm−2
n,n)−1(Kn,m−1(Ã

−1
n−1,m)† −K1

n,m−1
ˆ̃E†
n−1,m(Ã−1

n−1,m)†)((Φ̃n−1
m,m)†)−1

= (Φm−2
n,n)−1(Kn,m−1 −K1

n,m−1
ˆ̃E†
n−1,m)((Φ̃n−1

m−1,m−1)
†)−1

= Hn,m−1.

In the last equality we have used the fact that Ãn−1,mΦ̃n−1
m,m = Φ̃n−1

m−1,m−1. Likewise,

(Φm−1
n,n)−1Kn,m((Φ̃n−1

m,m)−1)†(U1
n−1)

T

= (Φm−1
n−1,n−1)

−1(Kn−1,m − Ên,m−1K̄1
n−1,m)((Φ̃n−2

m,m)†)−1

= H̃n−1,m.

If

(5.4) (emm)T (Φm−1
n,n)−1Kn,m((Φ̃n−1

m,m)†)−1enn = ūn,−m,

then Kn,m can be solved for as

Kn,m

(5.5)

= Φm−1
n,n

(
u−n,memm(enn)T + (U1

m−1)
THn,m−1 + emm(emm)T H̃n−1,m(U1

n−1)
)

(Φ̃n−1
m,m)†.

A necessary condition in order to be able to continue is that ||Kn,m|| < 1.
Computation of Γn,m. Since Kn,m is presumed to be a contraction, Remark

3.9 shows that Γn,m and Γ̃n,m may be computed from the upper Cholesky factor of
I −Kn,mK†

n,m and I −K†
n,mKn,m, respectively.

Computation of K1
n,m. In K1

n,m we see from (5.1) that the only new entry is
(Kn,m)1,1. If n = 1,m = 1, set K1,1 = ū1,1. If m > 1, we will show that all of the
rows except the first can be obtained from (3.48). The structure of Γn,m−1 implies
that Γn,m−1e

m
1 = 0 so that

Γn,m−1 = Γn,m−1(U
T
m−1Um−1 + em1 (em1)T) = Γn,m−1U

T
m−1Um−1.

816 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

But Γn,m−1U
T
m−1 is an invertible matrix, which allows us to rewrite (3.48) as follows:

Um−1K1
n,m = (Γn,m−1U

T
m−1)

−1(K1
n,m−1(Ã

−1
n−1,m)T −Kn,m−1

ˆ̃ET
n−1,m(Ã−1

n−1,m)T).

This gives all of the entries in K1
n,m except the first row.

Similarly, if n > 1 we can write

Γ̃n−1,m = Γ̃n−1,m(UT
n−1Un−1 + en1 (en1)T) = Γ̃n−1,mUT

n−1Un−1,

i.e., Γ̃T
n−1,m = UT

n−1Un−1Γ̃
T
n−1,m, and (3.49) can be rewritten as

(5.6) K1
n,mUT

n−1 = (A−1
n,m−1K1

n−1,m −A−1
n,m−1Ên,m−1K̄n−1,m)(Un−1Γ̃

T
n−1,m)−1.

Thus the m× (n− 1) matrix K1
n,mUT

n−1, which is obtained from K1
n,m by deleting the

first column, is known from the previous levels. This allows us to compute all entries
in the first row of K1

n,m except (K1
n,m)1,1, and we put

(5.7) (K1
n,m)1,1 = ūn,m.

A necessary condition on the parameters in order to be able to continue is that
||K1

n,m|| < 1, which implies that |un,m| < 1.

Computation of Ên,m. We begin by taking the transpose of (3.51), using the fact

that Ên,m is symmetric, and then multiplying on the left by the matrix em+1
1 (em1)T .

Now multiply (3.50) by UT
m and add the resulting equations. If Γ̂n−1,m is the (m +

1) × (m + 1) matrix obtained by stacking the first row of Γ1
n−1,m on Γn−1,m, we find

Γ̂n−1,mÊn,m =UT
m(An,m−1Kn,m(I1

n−1,m)† + Ên,m−1Γ̄
1
n−1,m)

+ em+1
1 (em1)T (An,m−1K1

n,mITn−1,m + Ên,m−1Γ̄n−1,m).(5.8)

From the structure of Γ1 and Γ we see that Γ̂n−1,m is an upper triangular matrix

with positive diagonal entries and is hence invertible. Thus Ên,m can be computed

from the above equation. If ||Ên,m|| < 1, then ˆ̃En,m may be computed from (3̃.50)

and (3̃.51). We may also compute An,m, Ãn,m, and the polynomials Φn,m and Φ̃n,m.

While the condition that Ên,m be a contraction is necessary and sufficient to be able
to continue, it is not optimal in the sense that it does not take into account the
redundancy inherent in the equations giving Ên,m. This will be taken into account in
the computation of Γ1

n,m.
Computation of Γ1

n,m. As above we see that (3.52) gives

Γ1
n,mUT

m = (In,m−1
ˆ̃En,m(I1

n,m−1)
T + Γ†

n,m−1Γ
1
n,m−1(5.9)

+ K1
n,m

¯̃A−1
n−1,m

ˆ̃E†
n−1,mÃn−1,mK†

n,m)(UmΓ†
n,m)−1,

which allows the computation of all of the entries of Γ1
n,m except the (1, 1) entry.

Since (em1)T In,m−1 = (em1)T , (em1)TΓ†
n,m−1 = 0, and likewise, with In,m−1 and Γ†

n,m−1

replaced by Ĩn,m and Γ̃T
n,m−1, respectively, we find with the help of (5.8)

(5.10) (em1)TΓ1
n,mUT

m = (em1)TH2
n,m + (em1)TK1

n,mH1
n,m,

TWO VARIABLE ORTHOGONAL POLYNOMIALS 817

where

H2
n,m = In,m−1((I

1
n,m−1)

†K̄n,mÃT
n−1,m + (Γ̃1

n,m−1)
† ˆ̃En−1,m)(5.11)

× Un(
˜̂
ΓT
n,m−1)

−1(I1
n,m−1)

T (UmΓ†
n,m)−1,

and

H1
n,m = ÃT

n−1,men1 (en+1
1)T (

˜̂
ΓT
n,m−1)

−1(I1
n,m−1)

T (UmΓ†
n,m)−1(5.12)

+ ¯̃A−1
n−1,m

˜̂
E†

n−1,mÃn−1,mK†
n,m(UmΓ†

n,m)−1.

Thus the first entry Γ1 can be computed using the first row of (5.10) and (3.32),
which gives

(5.13) |(Γ1
n,m)(1,1)|2 = 1 − (em1)TH3

n,m(em1),

where

(5.14) H3
n,m = (H2

n,m + K1
n,mH1

n,m)(H2
n,m + K1

n,mH1
n,m)† + K1

n,m(K1
n,m)†.

Computation of the remaining coefficients. Using the arguments above we see that
the relevant part of In,m may be computed from (3.54) and I1

n,m may be computed

from (3.55). The matrix Γ̃1
n,m can be computed in the same manner as Γ1

n,m.

6. Construction of a positive linear functional. The above algorithm allows
us to find a linear functional given the coefficients in the recurrence formulas. More
precisely, it is as follows.

Theorem 6.1. Given parameters ui,j ∈ C, 0 ≤ i ≤ n, |j| ≤ m,u−i,j = ūi,−j we
construct

• scalars Êi,0, i = 1, . . . , n, and
˜̂
E0,j, j = 1, . . . ,m;

• i× j matrices Ki,j, i = 1, . . . , n, j = 1, . . . ,m; and

• i× j numbers (ej1)
TH3

i,je
j
1, i = 1, . . . , n, j = 1, . . . ,m.

If

(6.1) u0,0 > 0, |Êi,0| < 1, | ˜̂E0,j | < 1, ||Ki,j || < 1, and ej1
T
H3

i,je
j
1 < 1,

then there exists a positive linear functional L on
∏n,m

such that

(6.2) L(Φi,mΦ†
j,m) = δi,jIm+1 and L(Φ̃n,iΦ̃

†
n,j) = δi,jIn+1.

The conditions (6.1) are also necessary.
Proof. We construct the linear functional by induction. First, if n = m = 0 we

set

L(1) = u0,0 and Φ0,0 = Φ̃0,0 =
1

√
u0,0

,

and thus L(Φ0,0Φ
†
0,0) = L(Φ̃0,0Φ̃

†
0,0) = 1.

If m = 0, we construct Ai,0 =
√

1 − |Êi,0|2, where Êi,0 = ui,0. The polynomials

Φi,0, i = 0, . . . n, are now computed using (3.14), and then we define

L(Φi,0Φ
†
j,0) = δi,j .

This gives a well-defined positive linear functional on zj for |j| ≤ n.

818 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

Likewise, if n = 0, we construct Φ̃0,k using (3̃.14) and define

L(Φ̃0,iΦ̃
†
0,j) = δi,j ,

which gives the linear functional on wj for |j| ≤ m. Thus (6.2) will hold if m = 0 or
n = 0.

Assume now that the functional L is well defined and positive for all levels 0 ≤
i ≤ n − 1, 0 ≤ j ≤ m and 0 ≤ i ≤ n, 0 ≤ j ≤ m − 1 before (n,m). To ease notation
we will use the bracket given in (3.8) with LN,M replaced by L. We first extend L so
that

(6.3) 〈Φn,m−1, Φ̃n−1,m〉 = Kn,m.

To check that the above equation is consistent with how L is defined on the previous
levels, note that from (3.46)

(6.4) 〈Γ1
n,m−1Φn,m−1, Φ̃n−1,m〉 = Γ1

n,m−1Kn,m,

which follows from the construction of Kn,m and the definition of L on the previous
levels (see Lemma 3.12). Similarly, using the second defining relation of Kn,m (i.e.,
the last row of (3.47)) we see that

(6.5) 〈Φn,m−1, Γ̃
1
n−1,mΦ̃n−1,m〉 = Kn,m(Γ̃1

n−1,m)†.

Equations (6.4) and (6.5) show that most of (6.3) is automatically true. We now
define L(znw−m) so that (5.4) holds, which completes (6.3).

Using an analogous argument we can use the construction of K1
n,m to extend the

functional to znwm so that

(6.6) K1
n,m = 〈wΦn,m−1,

←−̃
ΦT

n−1,m〉.

This completes the extension of L. What remains to be shown is that (6.2) holds. This

is accomplished by first constructing
˜̂
En,m from (5̃.8). The condition on (em1)TH3

n,mem1
and (5.9) shows that the first row of Γ1

n,m may be computed and that we may choose

(Γ1
n,m)1,1 > 0.

With the first row of Γ1
n,m and all of Γn,m (which is calculated from the Cholesky

factorization of Kn,mK†
n,m), Φn,m may be constructed from (3.16) and (3.17). Equa-

tions (6.3) and (6.6), coupled with (3.16), (3.17), and the orthogonality relations on
the previous levels show that

〈ΓnmΦn,m, Φ̃n−1,k〉 = 0, k = 0, 1, . . . ,m,

and

(6.7)

〈
(em1)TΓ1

nmΦn,m, wk

⎡⎣zn−1

...
1

⎤⎦〉 = 0, k = 1, 2, . . . ,m.

Equations (6.7) and (3.17) show

0 = 〈(em1)TΓ1
n,mΦn,m,

←−̃
ΦT

n−1,m〉 =

〈
(em1)TΓ1

nmΦn,m,

⎡⎣zn−1

...
1

⎤⎦〉 .

TWO VARIABLE ORTHOGONAL POLYNOMIALS 819

The fact that
←−̃
ΦT

n−1,m has an invertible coefficient multiplying⎡⎣zn−1

...
1

⎤⎦
has been used to obtain the second equality in the above equation. The above implies
that

〈Φn,m, Φ̃n−1,k〉 = 0, k = 0, 1, . . . ,m,

which in turn implies that

〈Φn,m, Φj,m〉 = 0, j = 0, 1, . . . , n− 1.

To show that

〈Φn,m, Φn,m〉 = Im+1

we note that (3.16), (3.17), and (3.52) imply that

〈(em1)TΓ1
nmΦn,m, ΓnmΦn,m〉 = (em1)TΓ1

n,mΓ†
n,m

and (3.32) implies that

〈(em1)TΓ1
nmΦn,m, (em1)TΓ1

nmΦnm〉 = (em1)TΓ1
nm(Γ1

nm)†(em1).

Thus L is a positive linear functional. The orthogonality relations for the polynomials
Φ̃i,j now follow.

Let C(T2) denote the set of continuous functions on the bicircle; above the theo-
rem now allows the following.

Theorem 6.2. Given parameters ui,j ∈ C, with ui,−j = ū−i,j, if (6.1) holds for
all 0 ≤ i, j, then there exists a positive measure μ supported on the bicircle such that
for any f ∈ C(T2)

L(f) =

(
1

2π

)2 ∫
T2

f(θ, φ)dμ(θ, φ).

Proof. From the hypotheses imposed above, Theorem 6.1 shows that Cn,m is
positive definite for all n and m, so the result follows from Bochner’s theorem [18,
section 1.4.3].

Remark 6.3. The above construction gives a criterion for the existence of a one
step extension of the functional. That is, given moments so that there exists a positive
linear functional on

∏n−1,m ∪
∏n,m−1

, any set

{un,m, u−n,m}, u−n,−m = ūn,m, un,−m = ū−n,m,

that satisfies (6.1) can be used to extend the functional to
∏n,m

. However it is not
difficult to construct examples where no extension exists. See section 8.

7. Two variable stable polynomials and Fejér–Riesz factorization. In
this section we study the consequences of Kn,m = 0. This will make a connection
with the results in [8] on stable polynomials and the Fejér–Riesz factorization theorem.

820 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

We say that a polynomial p(z, w) is stable if p(z, w) �= 0, |z| ≤ 1, |w| ≤ 1. A
polynomial p is of degree (n,m) if

p(z, w) =

n∑
i=0

m∑
j=0

ki,jz
iwj ,

with kn,m �= 0. Finally we say that the polynomial pn,m of degree (n,m) has the
spectral matching property (up to (n,m)) if

L(zkwj) =
1

(2π)2

∫
T2

zkwj

|pn,m(z, w)|2 dθdφ, z = eiθ, w = eiφ,

for |k| ≤ n, |j| ≤ m.
Lemma 7.1. Suppose that L is a positive definite linear functional on

∏n,m
and

Kn,m = 0; then

←−
φm

n,m(z, w)
←−
φm

n,m(z1, w1) − φm
n,m(z, w)φm

n,m(z1, w1)

= (1 − ww̄1)
←−
Φn,m−1(z, w)

←−
Φ †

n,m−1(z1, w1)

+ (1 − zz̄1)Φ̃n−1,m(z, w)T Φ̃†
n−1,m(z1, w1).(7.1)

Proof. If Kn,m = 0, then (3.16) shows that Γn,mΦn,m(z, w) = Φn,m−1(z, w). Thus
←−
Φn,m(z, w)Γ†

n,m = w
←−
Φn,m−1(z, w). Also (3.31) implies that (Γn,m)(i,i+1) = 1, i =

1, . . . ,m with all other entries zero. Thus we find

←−
Φn,m(z, w)

←−
Φn,m(z1, w1)

†

=
←−
φm

n,m(z, w)
←−
φm

n,m(z1, w1) +
←−
Φn,m(z, w)Γ†

n,mΓn,m
←−
Φn,m(z1, w1)

†

=
←−
φm

n,m(z, w)
←−
φm

n,m(z1, w1) + ww̄1
←−
Φn,m−1(z, w)

←−
Φn,m−1(z1, w1)

†.(7.2)

From (4.1c) observe that

←−
φm

n,m(z, w)
←−
φm

n,m(z1, w1) − zz̄1φ
m
n,m(z, w)φm

n,m(z1, w1)

= (1 − ww̄1)
←−
Φn,m−1(z, w)

←−
Φ †

n,m−1(z1, w1)

+ (1 − zz̄1)Φ̃n,m(z, w)T Φ̃†
n,m(z1, w1).

Using (3̃.16) and the fact that φ̃n
n,m(z, w) = φm

n,m gives the result.
We now have the following.
Theorem 7.2. Suppose that L is a positive definite linear functional on

∏n,m

and Kn,m = 0; then
←−
φm

n,m(z, w) is stable and

L(e−ikθe−ilφ) =

(
1

2π

)2 ∫
T2

e−ikθe−ilφ

|φm
n,m(eiθ, eiφ)|2 dθdφ, |k| ≤ n, |l| ≤ m.

Conversely if πn,m(z, w) is a polynomial of degree (n,m) such that ←−π n,m is stable and

L(e−ikθe−ilφ) =

(
1

2π

)2 ∫
T2

e−ikθe−ilφ

|πn,m(eiθ, eiφ)|2 dθdφ, |k| ≤ n, |l| ≤ m,

then Kn,m = 0.

TWO VARIABLE ORTHOGONAL POLYNOMIALS 821

Proof. If L is positive definite and Kn,m is equal to zero, then Lemma 7.1 shows

that
←−
φ n

n,m(z, w) satisfies (7.1). The first part of the result now follows from the proof
of Theorem 2.3.1 in [8]. To show the second part, let f(z, w) = 1/|←−π n,m(z, w)|2, |z| =
1 = |w| be the spectral density function associated with πn,m. Then from (2.1.5) in
[8] and Lemma 3.3 we find that

←−
Φn,m(z, w) = [←−π n,m(z, w), w

←−
Φn,m−1(z, w)].

But this implies that Φn,m(z, w) = [πn,m(z, w),Φn,m−1(z, w)T]T . Hence from (3.16)
Kn,m = 0.

This leads to the following alternative proof of the two-variable Fejér–Riesz the-
orem in [8].

Theorem 7.3. Suppose that f(z, w) =
∑n

k=−n

∑m
l=−m fklz

kwl is positive for
|z| = |w| = 1. Then there exists a polynomial

p(z, w) =
n∑

k=0

m∑
l=0

pklz
kwl,

with p(z, w) �= 0 for |z|, |w| ≤ 1, and f(z, w) = |p(z, w)|2 if and only if Kn,m = 0.

Proof. For g ∈ C(T2) let L(g) = 1
(2π)2

∫
T2

g(θ,φ)
|p(eiθ,eiφ)|2 dθdφ. Then L is a positive

definite linear functional on T
2. The necessary part of the above result now follows

from Theorem 7.2. The sufficiency also follows from the above theorem and the
maximal entropy condition [1].

An alternative approach for finding a factorization as above may be done using the
notion of intersecting zeros (see [9]). Also, the question of factorizing a nonnegative
trigonometric polynomial as a modulus square of an outer polynomial was addressed in
[6], allowing for generalizations in the operator valued case. When such a factorization
of the desired degree does not exist, one can approximate the trigonometric polynomial
with one that does have the desired factorization. This question was pursued in [12].

The vanishing of Kn,m has the following geometric interpretation.
Lemma 7.4. Suppose L is positive definite on

∏n,m
; then Kn,m = 0 if and only

if for Φn,m−1 constructed as in (3.3)

(7.3) 〈Φn,m−1, z
iwm〉 = 0, 0 ≤ i ≤ n− 1.

Proof. The definition of Φn,m−1 shows that it is already orthogonal to ziwj ,
0 ≤ i < n, 0 ≤ j ≤ m− 1. The remaining orthogonality conditions show that Φn,m−1

is orthogonal to all of the monomials in Φ̃n−1,m. Thus the sufficiency part of the
theorem follows from (3.22). To see the necessary part note that from the definition
of Φn,m−1

(7.4) Kn,m =

〈
Φn,m−1, Φ̃

n−1
n−1,m

⎡⎣zn−1

...
1

⎤⎦wm

〉
,

with Φ̃n−1
n−1,m an invertible matrix. Thus (7.3) follows.

Unfortunately at this point we are unable to see what the condition Kn,m = 0
implies for ui,j , |i| ≤ n, |j| ≤ m, except for un,−m = 0, which follows from (5.4). We
can, however, get a partial characterization for when a positive measure on the bicircle
can be written as the reciprocal of the magnitude square of a stable polynomial. We
begin with the following auxiliary result.

822 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

Lemma 7.5. If Êi,j = 0, then the first column of K1
i,j is equal to zero, in par-

ticular ui,j = 0. If Êi,j , Ki,j, and Ki−1,j are zero, then so is Êi,j−1. Conversely if

Ki,j , Ki−1,j, Êi,j−1, and ui,j are zero, then Êi,j = 0. In both cases K1
i,j = [0,K1

i−1,j].

Likewise if ˆ̃Ei,j = 0, then the first row of K1
i,j is equal to zero. If ˆ̃Ei,j , Ki,j, and

Ki,j−1 are zero, then so is ˆ̃Ei,j−1. Conversely if Ki,j , Ki,j−1, ˆ̃Ei−1,j, and ui,j are

zero, then ˆ̃Ei,j = 0. In both cases K1
i,j = [0, (K1

i,j−1)
T]T .

Proof. If Êi,j = 0, then (3.51) and Remark 3.9 show that the first column of K1
i,j

is zero. If Ki−1,j is equal to zero, then (3.54) shows that all of the entries of Ii−1,j are

zero except for a one in the first entry. Thus (3.50) and (3.51) imply that if Êi,j = 0,

Ki,j = 0, and Ki−1,j = 0, then Êi,j−1Γ̄
1
i−1,j = 0 and Êi,j−1Γ̄i−1,j = 0. Following the

argument in the construction of Ên,m we see that Êi,j−1 = 0. The above hypothesis

on Ki−1,j shows that Γ̃i−1,j = Ui−1; thus (5.6) and the fact that the first column of
K1

i,j is zero gives K1
i,j = [0,K1

i−1,j]. The converse statement follows from (5.8). The
remaining statements follow in an analogous fashion using Proposition 3.8.

Lemma 7.6. Let μ be a positive measure on the bicircle. Then μ is purely
absolutely continuous with respect to the Lebesgue measure and

dμ(θ, φ) =
1

|pn,m|2 dθdφ,

where pn,m is a polynomial of degree (n,m), with ←−p n,m(z, w) stable if and only if

Ki,j = 0, Êi+1,j = 0, and ˆ̃En,j+1 = 0, i ≥ n, j ≥ m.

Proof. Suppose that dμ = 1
|pn,m(z,w)|2 dθdφ, with ←−p n,m stable; then the sequence

{ψi,j(z, w)} ψi,j(z, w) = zi−nwj−mpn,m(z, w), i ≥ n, j ≥ m,

is a set of polynomials with degrees (i, j), respectively, such that
←−
ψ i,j = ←−p n,m are

stable and have the spectral matching property. Thus Theorem 7.2 implies that

Ki,j = 0 for i ≥ n, j ≥ m. Since
←−
ψ i+1,j =

←−
ψ i,j , i ≥ n, j ≥ m, we see from (2.1.5)

in [8] that
←−
Φ i+1,j =

←−
Φ i,j for i ≥ n, j ≥ m. This implies that Ai+1,j = Ij+1 so that

(3.14) shows that Êi+1,j = 0, i ≥ n, j ≥ m. Since
←−̃
φ i

i,j+1 =
←−̃
φ i

i,j , i ≥ n, j ≥ m, the

preceding argument shows that Ẽi,j+1 = 0, i ≥ n, j ≥ m. This proves the necessary
part.

To prove sufficiency note that if Ki,j = 0, i ≥ n, j ≥ m, there exist polynomials

ψi,j of degree (i, j) where
←−
ψ i,j is a stable polynomial which has the spectral match-

ing property. In order to show that
←−
ψ i,j =

←−
ψ n,m we note that since Êi+1,j = 0

(3.14) implies that Φi+1,j = Φi,j , i ≥ n, j ≥ m. Furthermore ˆ̃En,j+1 = 0, j ≥ m,

implies that Φ̃n,j+1 = Φ̃n,m. Since ψi,j = φj
i,j = φ̃i

i,j for i ≥ n, j ≥ m, the result
follows.

The conditions on Ki,j , Ei,j , and Ẽn,j given in Lemma 7.6 are not optimal since
they are redundant. Some of this redundancy is removed in the next theorem.

Theorem 7.7. Let μ be a positive measure on the bicircle. Then μ is purely
absolutely continuous with respect to the Lebesgue measure and dμ = dθdφ

|pn,m|2 , where

pn,m is a polynomial of degree (n,m) with ←−p n,m stable if and only if

TWO VARIABLE ORTHOGONAL POLYNOMIALS 823

(a) Kn,j = 0,
˜̂
En−1,j+1 = 0, and un,j+1 = 0, j ≥ m;

(b) Ki,m = 0, Êi,m−1 = 0, and ui,m = 0, i > n;
(c) u|i|,j = 0, i > n, j > m.
Remark 7.8. Equation (5.4) and Lemma 7.5 show that u−n,j , u−i,m, un−1,j+1,

and ui,m−1 are also equal to zero for j ≥ m, i > n.
Proof. If μ has the form indicated in the hypotheses, then Lemma 7.6 says

that Ki,j = 0, i ≥ n, j ≥ m, which coupled with (5.4) implies that u−i,j = 0,
i ≥ n, j ≥ m; the remaining conditions on the coefficients follow from Lemma 7.5.

If the coefficients obey (a)–(c), then Lemma 7.5 shows that Êi+1,m and ˆ̃En,j+1 are

equal to zero for i ≥ n and j ≥ m. Since Ên,m+1 = 0, ˆ̃En+1,m = 0, and by hypothesis
u−n−1,m+1 = 0, (5.5) shows that Kn+1,m+1 = 0. With this Lemma 7.5 shows that

Ên+1,m+1 = 0 and
˜̂
En+1,m+1 = 0. The result now follows by induction.

It is possible to modify slightly the hypotheses of Theorem 7.7 to obtain a state-
ment just on the coefficients in the recurrence formulas.

Theorem 7.9. Suppose ui,j are given so that (6.1) is satisfied for 0 ≤ i ≤
n , |j| ≤ m, and so that (a)–(c) in Theorem 7.7 hold. Then for f ∈ C(T2)

L(f) =

(
1

2π

)2 ∫
T2

f(θ, φ)dμ(θ, φ),

where μ is absolutely continuous with respect to the Lebesgue measure with dμ =
dθdφ

|pn,m|2 . Here pn,m is a polynomial of degree (n,m) with ←−p n,m stable.

Proof. From Theorem 6.1 there exists a positive definite linear functional on
∏n,m

with the above parameters, and from Theorem 7.2 the functional has the representa-
tion

L(e−ikθe−ilφ) =

(
1

2π

)2 ∫
T2

e−ikθe−ilφ

|pn,m(eiθeiφ)|2 dθdφ, |k| ≤ n, |l| ≤ m,

with pn,m a polynomial of degree (n,m) with ←−p n,m stable. The result now follows
from Theorem 7.7.

8. Examples. We now give some examples that illustrate various aspects of
the results presented earlier. We begin with the case n = 1,m = 1, with u0,0 = 1,
K1,1 = u−1,1 = 0, and K1

1,1 = ū1,1. From Theorem 6.1 we see that we must choose
|u0,1| < 1 and |u1,0| < 1. Since K1,1 = 0 the only remaining condition for L to

be a positive linear functional on
∏1,1

is for e1
1
T
H̃3

1,1e
1
1 < 1. From (5.9) we see

that Γ1
1,1U

T
1 = I1,0

ˆ̃E1,1(I
1
1,0)

T . The construction of I1,0, I
1
1,0, and (5.8) shows that

e1
1
T
H̃3

1,1e
1
1 < 1 is given by

a|u1,1|2 + b(ū1,1ū0,1u1,0 + u1,1u0,1ū1,0) + c < 1,

with a =
1−|u0,1u1,0|2

1−|u1,0|2 , b =

√
1−|u0,1|2√
1−|u1,0|2

, and c = |u0,1|2. This simplifies to

|û1,1| < 1,

where

û1,1 =
(1 − |u0,1u1,0|2)u1,1√
1 − |u0,1|2

√
1 − |u1,0|2

+ u0,1ū1,0.

824 JEFFREY S. GERONIMO AND HUGO WOERDEMAN

Thus from Theorems 6.1 and 7.2 we see that with u0,0 = 1

L(e−ikθe−ijφ) =

(
1

2π

)2 ∫
T2

e−ikθe−ijφ

|φ1,1(eiθ, eiφ)|2 dθdφ, |k| ≤ 1, |j| ≤ 1,

where φ1,1 constructed using (3.16) and the top row of (3.17) is a polynomial of degree

(1,1) with
←−
φ 1,1 stable if and only if |u0,1| < 1, |u1,0| < 1, u−1,1 = 0, and |û1,1| < 1.

Furthermore if we set uj,0, u0,j , ui,j equal to zero for i > 1, |j| > 1, then Theorem 7.9
shows that the above representation for L extends to all continuous functions on T

2.
We can also use the previous results to investigate contractive Toeplitz matrices.

In this case we find

(8.1) C1,1 =

[
I C−1

C1 I

]
,

where C−1 = C†
1 is a 2× 2 Toeplitz matrix. In this case u0,0 = 1 and u0,1 = 0 so that

Ẽ0,1 = 0, Ã0,1 = 1. Since K1,1 = u−1,1, we find Γ1,1 = [0,
√

1 − |u−1,1|2]. This plus

the computation of Γ̃1
1,0 described in the construction of L yields

I = (e1
1)

T H̃3
1,1(H̃

3
1,1)

†(e1
1)(8.2)

= (1 + d)|u1,1|2 + d(u1,1u−1,1 + ū1,1ū−1,1) + d|u−1,1|2 < 1,

where

d =
|u1,0|2

(1 − |u1,0|2)(1 − |u−1,1|2)
.

By completing the square this can be simplified to

|û1,1| < 1,

where

û1,1 = (1 + d)
√

1 − |u1,0|2u1,1 + d1ū−1,1,

and

d1 =
|u1,0|2

(1 − |u−1,1|2)
√

1 − |u1,0|2
,

which puts constraints on u−1,1. Thus we find that the conditions for L to be a positive
linear functional and hence C1 to be a contractive Toeplitz matrix are |u1,0| < 1,
|u−1,1| < 1, and |û1,1| < 1. These constraints may not be strong enough to allow L
to be extended. To see this suppose n = 1,m = 2, u0,2 = 0, and u1,0 = 0. It is not

difficult to see then that Ê1,1 = diag(ū1,1, u−1,1). With u1,0 = 0 the constraint on
û1,1 above reduces to |u1,1| < 1. However,

K1,2 =

(
u−1,1

(1−|u1,1|2)1/2

u−1,2

(1−|u−1,1|2)1/2

)
,

so we see that in order for K1,2 to be a contraction
|u−1,1|√
1−|u1,1|2

< 1, which may not be

satisfied.

TWO VARIABLE ORTHOGONAL POLYNOMIALS 825

REFERENCES

[1] M. Bakonyi and G. Naevdal, On the matrix completion method for multidimensional moment
problems, Acta Sci. Math. (Szeged), 64 (1998), pp. 547–558.

[2] A. M. Delgado, J. S. Geronimo, P. Iliev, and F. Marcellán, Two variable orthogonal
polynomials and structured matrices, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 118–147.

[3] Ph. Delsarte, Y. V. Genin, and Y. G. Kamp, Orthogonal polynomial matrices on the unit
circle, IEEE Trans. Circuits Syst. I Regul. Pap., 25 (1978), pp. 149–160.

[4] Ph. Delsarte, Y. V. Genin, and Y. G. Kamp, Planar least squares inverse polynomials. I.
Algebraic properties, IEEE Trans. Circuits Syst. I Regul. Pap., 26 (1979), pp. 59–66.

[5] M. A. Dritschel, On factorization of trigonometric polynomials, Integral Equations Operator
Theory, 49 (2004), pp. 11–42.

[6] M. A. Dritschel and H. J. Woerdeman, Outer factorizations in one and several variables,
Trans. Amer. Math. Soc., 357 (2005), pp. 4661–4679.

[7] Y. V. Genin and Y. G. Kamp, Two-dimensional stability and orthogonal polynomials on the
hypercircle, Proc. IEEE, 65 (1977), pp. 873–881.

[8] J. S. Geronimo and H. J. Woerdeman, Positive extensions, Fejér-Riesz factorization and
autoregressive filters in two variables, Ann. of Math., 160, (2004), pp. 839–906.

[9] J. S. Geronimo and H. J. Woerdeman, Two-variable Polynomials: Intersecting zeros and
stability, IEEE Trans. Circuits Syst. I Regul. Pap., 53, (2005), pp. 1130-1139.

[10] J. S. Geronimo and M. J. Lai, Factorization of multivariate Laurent polynomials, J. Approx.
Theory, 139 (2006), pp. 327–345.

[11] I. Gohberg and G. Heinig, Inversion of finite Toeplitz matrices consisting of elements of a
noncommutative algebra, Rev. Roumaine Math. Pures Appl., 19 (1974), pp. 623–663.

[12] Y. Hachez and H. J. Woerdeman, Approximating sums of squares with a single square,
Linear Algebra Appl., 399 (2005), pp. 87–201.

[13] H. Helson, Lectures on Invariant Subspaces, Academic, New York, 1964.
[14] D. Jackson, Formal properties of orthogonal polynomials in two variables, Duke Math. J., 2

(1936), pp. 423–434.
[15] T. Kailath, A. Vieira, and M. Morf, Inverses of Toeplitz operators, innovations and or-

thogonal polynomials, SIAM Rev., 20 (1978), pp. 106–119.
[16] J. W. Mclean and H. J. Woerdeman, Spectral factorization and sums of squares representa-

tions via semidefinite programming SIAM J. Matrix Anal. Appl., 23 (2001), pp. 646–655.
[17] L. Rodman, Orthogonal matrix polynomials, Orthogonal Polynomials, NATO Sci. Ser. C Math.

Phys. Sci. 294, Paul Nevai, ed., Kluwer Academic, Dordrecht, 1990, pp. 345–362,
[18] W. Rudin, Fourier analysis on groups. in Interscience Tracts in Pure and Applied Math. 12,

L. Bers, Interscience, NY, 1962.
[19] B. Simon, Orthogonal polynomials on the unit circle. Part 1. Classical theory, in Amer. Math.

Soc. Colloq. Publ. 54, Part 1. American Mathematical Society, Providence, RI, 2005.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 826–837

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX∗

CARLOS CAMPOS† , DAVID GUERRERO‡ , VICENTE HERNÁNDEZ‡ , AND RUI RALHA§

Abstract. A new stable method for the reduction of rectangular dense matrices to bidiagonal
form has been proposed recently. This is a one-sided method since it can be entirely expressed in
terms of operations with (full) columns of the matrix under transformation. The algorithm is well
suited to parallel computing and, in order to make it even more attractive for distributed memory
systems, we introduce a modification which halves the number of communication instances. In
this paper we present such a modification. A block organization of the algorithm to use level 3
BLAS routines seems difficult and, at least for the moment, it relies upon level 2 BLAS routines.
Nevertheless, we found that our sequential code is competitive with the LAPACK DGEBRD routine.
We also compare the time taken by our parallel codes and the ScaLAPACK PDGEBRD routine. We
investigated the best data distribution schemes for the different codes and we can state that our
parallel codes are also competitive with the ScaLAPACK routine.

Key words. bidiagonal reduction, parallel algorithms

AMS subject classifications. 15A18, 65F30, 68W10

DOI. 10.1137/05062809X

1. Introduction. The problem of computing the singular value decomposition
(SVD) of a matrix is one of the most important operations in numerical linear algebra
and is employed in a variety of applications. The SVD is defined as follows.

For any rectangular matrix A ∈ R
m×n (we will assume that m ≥ n), there exist

two orthogonal matrices U ∈ R
m×m and V ∈ R

n×n and a matrix Σ =
[
ΣA

0

]
∈ R

m×n,
where ΣA = diag (σ1, . . . , σn) is a diagonal matrix, such that A = UΣV t. The values
σ1 ≥ · · · ≥ σn ≥ 0 are called the singular values of A.

To compute the SVD of a dense matrix, an important class of methods starts
with Householder bidiagonalization [11], [12], [14], [15], [19], [20], [21], reducing A to
upper bidiagonal form B ∈ R

n×n, from which the singular values are computed in an
iterative manner [2], [16], [18], [22].

The Householder bidiagonalization computes UB ∈ R
m×m and VB ∈ R

n×n, as
products of Householder matrices, such that

(1) A = UB

[
B

0

]
V t
B , where B =

⎡⎢⎢⎢⎢⎣
α1 β2

α2
. . .

. . . βn

αn

⎤⎥⎥⎥⎥⎦ .

The classical method for producing this decomposition is a two-sided algorithm
which employs both premultiplication and postmultiplication by Householder matri-

∗Received by the editors March 30, 2005; accepted for publication (in revised form) by J. L.
Barlow February 1, 2007; published electronically July 25, 2007.

http://www.siam.org/journals/simax/29-3/62809.html
†Departamento de Matemática, Escola Superior de Tecnologia e Gestão (Leiria), Campus 2, Morro

do Lena, Alto do Vieiro, 2401-951 Leiria, Portugal (ccampos@estg.ipleiria.pt).
‡Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia,

Camino de Vera s/n, E-46022 Valencia, Spain (dguerrer@dsic.upv.es, vhernand@dsic.upv.es).
§Departamento de Matemática, Universidade do Minho, 4710-057 Braga, Portugal (r ralha@

math.uminho.pt). The research of this author was supported by the Portuguese Foundation for
Science and Technology through the research program POCI 2010.

826

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 827

ces. In order to establish an algorithm which is better suited to parallel implemen-
tation than the standard bidiagonalization method, Ralha [25], [26], and Ralha and
Mackiewicz [27] proposed a new technique that uses only multiplication on the right
side of A by Householder matrices. Inspired by Ralha’s method, Barlow, Bosner,
and Drmač [4] proposed a new stable method for the reduction of rectangular dense
matrices to the bidiagonal form.

In this paper we present both methods and propose a modification to the Barlow
method which halves the number of communication instances in the parallel imple-
mentation, making the algorithm even more attractive for distributed memory sys-
tems.

This paper is organized as follows. In section 2 we describe the new bidiagonaliza-
tion methods. Section 3 deals with the sequential and parallel implementations, using
LAPACK [1] and ScaLAPACK [8] routines. In section 4 we analyze the experimental
results of our numerical tests. Section 5 summarizes our conclusions and future work.

2. New bidiagonalization methods.

2.1. Ralha bidiagonal reduction. Given a rectangular dense matrix A ∈
R

m×n, the bidiagonalization method proposed by Ralha is comprised of two stages.
The first stage consists of a sequence of n− 2 Householder transformations

(2) Ar = Ar−1 · diag (Ir, Hr) (r = 1, . . . , n− 2),

where Ir is the identity matrix of order r, A0 = A, and the columns ai and aj of the
final matrix An−2 satisfy

(3) atiaj = 0 for |i− j| > 1.

This can be understood as an implicit reduction of the symmetric semidefinite positive
matrix AtA to tridiagonal form. In the rth step, the construction of the Householder
vector vr in

(4) Hr = In−r −
2

vtrvr
vrv

t
r

requires the computation of n− r dot products involving the appropriate columns of
Ar−1.

Having produced An−2, the second stage is a variant of the Gram–Schmidt or-
thogonalization method that produces the factorization An−2 = QB, where B is the
required upper bidiagonal matrix.

Representing by ai and qi the columns of An−2 and Q, respectively, we have

(5)
[
a1 · · · ai · · · an

]
=

[
q1 · · · qi · · · qn

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2

α2
. . .

. . . βi

αi
. . .

. . . βn

αn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with

(6) q1 =
a1

α1
, qi =

ai − βiqi−1

αi
(i = 2, . . . , n) .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

828 C. CAMPOS, D. GUERRERO, V. HERNÁNDEZ, AND R. RALHA

Each βi is chosen to make qi orthogonal to qi−1, and each αi is such that ‖qi‖2 = 1;
with these conditions, we get from (6)

α1 = ‖a1‖2 ,(7)

βi = atiqi−1 (i = 2, . . . , n) ,

αi = ‖ai − βiqi−1‖2 (i = 2, . . . , n) .

The first stage of this method is perfectly stable in the sense that the computed
Ãn−2 satisfies

(8) Ãn−2 = (A + E)P,

where P is exactly orthogonal and

(9) ‖E‖2 ≤ g(m,n)εM ‖A‖2

for some modestly growing function g(m,n) and machine epsilon εM [24, pp. 94–96].
Furthermore, if A = DX, where D is diagonal and cond(X) � cond(A), then these
one-sided orthogonal transformations preserve the small singular values better than
two-sided transformations [10].

It may happen that some nonadjacent columns of Ãn−2 are not orthogonal to
working precision1 and, even when all those columns are numerically orthogonal, the
process of producing a bidiagonal B from Ãn−2 may bring trouble. To give an insight
into the problem, consider the following triangular matrix:

R =

⎡⎢⎢⎢⎢⎣
1 1 0 0 0
0 10−9 1 10−9 10−7

0 0 10−3 10−6 −10−4

0 0 0 1 10−11

0 0 0 0 1

⎤⎥⎥⎥⎥⎦ .

We have

RtR =

⎡⎢⎢⎢⎢⎣
1 1 0 0 0
1 1 + 10−18 10−9 10−18 10−16

0 10−9 1 + 10−6 2 × 10−9 0
0 10−18 2 × 10−9 1 + O(10−12) O(−10−10)
0 10−16 0 O(−10−10) 1 + O(10−8)

⎤⎥⎥⎥⎥⎦ ,

which differs from a tridiagonal matrix by quantities not larger than 10−16. If
A = QR, with Q orthogonal, then AtA = RtR and the nonadjacent columns of
A are orthogonal to working precision; however, from the uniqueness of the QR de-
composition, it follows that there is no bidiagonal B satisfying A = QB; in other
words, small perturbations outside the tridiagonal band of AtA cause much larger (as
large as O(10−4) in this case) perturbations in B; i.e., the problem is ill-conditioned.

1See [26] for an example: the Lauchli matrix L(n, μ) with n = 7 and μ = εM .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 829

2.2. Barlow bidiagonal reduction. Barlow, Bosner, and Drmač [4] recently
proposed a stable algorithm which consists, essentially, in interleaving the two stages
of Ralha’s method. More precisely,

1. the vector qr is computed immediately after applying the Householder trans-
formation Hr; and

2. the Householder vector used in the transformation Hr+1 is computed from
xr = A (:, r + 1 : n)

t
qr.

Those authors also noted that the computation of the dot product βr = qtr−1A (:, r)
may be avoided (this is also the case with Ralha’s algorithm); in [4], an extensive er-
ror analysis of the proposed algorithm is carried out which shows that the method is
always able to compute an upper bidiagonal matrix B in a backward stable manner.
That is, we have, for each k = 1, . . . , n,

(10) |σk(B) − σk(A)| ≤ f(m,n)εM ‖A‖2 + O
(
ε2
M

)
for some modestly growing function f(m,n). As was already the case with Ralha’s
bidiagonalization, there are ill-conditioned matrices where this algorithm obtains
small relative errors for all the singular values [26], [10]. Furthermore, the orthogo-
nality of the columns of U is similar to that of the matrix Q in the QR factorization
by the modified Gram–Schmidt method [6], [7]; that is, U may be far from orthogonal
(see [4, Example 3.1]). Nevertheless, the leading left singular vectors of A can be
recovered with good orthogonality (see [4, Corollary 3.20]).

The algorithm may be stated simply as follows (for a more complete statement
see [4]).

Algorithm 1 (Barlow bidiagonal reduction).

for r = 1 : n− 2
αr = ‖A (:, r)‖2

qr = A(:,r)
αr

xr = A (:, r + 1 : n)
t
qr

compute Hr such that Ht
rxr = βr+1e1

A (:, r + 1 : n) = A (:, r + 1 : n)Hr

A (:, r + 1) = A (:, r + 1) − βr+1qr
end
αn−1 = ‖A (:, n− 1)‖2

qn−1 = A(:,n−1)
αn−1

βn = qtn−1A (:, n)
A (:, n) = A (:, n) − βnqn−1

αn = ‖A (:, n)‖2

qn = A(:,n)
αn

2.3. Modified Barlow bidiagonal reduction. The advantages of one-sided
transformations for parallel bidiagonalization on a multiprocessor system with dis-
tributed memory were first discussed in [25]. The best data decomposition consists
in assigning to each one of p processors a number of rows of the matrix under trans-
formation, that is, a segment of length m/p of each column (we are assuming, for
simplicity, that p is a divisor of m; if this is not the case, then each processor should
get either floor(m/p) or floor(m/p) + 1 rows). According to the ideas proposed in
[25], in the rth step, each processor gets a copy of the entire vector xr and computes
its own copy of the corresponding Householder vector. So, there is some redundancy

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

830 C. CAMPOS, D. GUERRERO, V. HERNÁNDEZ, AND R. RALHA

in the computation, but its negative effect in the overall efficiency is not dramatic
when m/p is large (see [25]). The reward for this approach is two-fold: the load bal-
ancing is optimal and interprocessor communication is required only for the n− r+ 1
dot products involved in the computation of the norm αr and the vector xr.

Following this strategy, in the parallel implementation of Barlow’s method, a
communication event, involving all processors, is required to compute αr alone. Then,
a normalization is carried out to produce qr, and this will be followed by a second
communication event involving the processors in the computation of the n − r dot
products xr = A (:, r + 1 : n)

t
qr.

These two communication events may be reduced to only one if we postpone the
normalization of the rth column of Ar; that is, the processors cooperate in the global
task of computing the n− r+1 dot products xr = A (:, r : n)

t
A (:, r) and, from these,

each processor will compute locally αr =
√
xr (1), where xr (1) = A (:, r)

t
A (:, r), and

the local segment of qr = A (:, r) /αr. Observe that xr(2 : n− r + 1) differs from the
vector xr computed in Barlow’s method by a factor equal to αr, but there is no need
to perform a scaling of xr(2 : n − r + 1) since the resulting Householder reflector in
(4) is invariant under such a scaling. However, in the computation of the off-diagonal
element we must take into account that the relation

(11) βr+1 =
‖xr(2 : n− r + 1)‖2

αr

holds in each step.
An essential ingredient in the proof presented in [4] for the error bound given in

(10) is the fact that, in each step, the computed Ar is the exact product (Ar−1 +Er) ·
diag (Ir, Hr), where Hr is the exact Householder reflector corresponding to the vector
xr of the inner products and ‖Er‖2 ≤ O(εM) ‖Ar−1‖2. This matrix Er encapsulates
the errors in the approximation v̂r computed for the exact vector vr and also the
errors produced in the update Ar−1 · diag(Ir, Ĥr), with Ĥr = In−r − 2

v̂t
r v̂r

v̂rv̂
t
r. In the

modified method, a slightly different approximation ṽr will be produced (for a detailed
error analysis in the computation of the Householder vector see [30, pp. 152–157]),
but, similarly to v̂r, ṽr defines a Householder reflector, say, H̃r, that is very close to
the exact one; i.e., we have ‖H̃r −Hr‖2 = O(εM). We therefore claim that the error
analysis given in [4] also applies to our modified method.

Our proposal does not change the arithmetic complexity of Barlow’s method
and does not reduce the volume of data to be transferred but halves the number
of communication events, therefore reducing the overhead caused by the latency in
the communications. The total cost of communication depends upon the parallel
computation of the inner products only; in [25] it is shown that, on a simple chain of
processors, this cost is approximately given by

(12) p
n2

2
(tflop + 2tcom) ,

where tflop represents the time taken by one floating point operation and tcom stands
for the time required to pass a floating point number from one processor to another.
The factor p in (12) essentially reflects the diameter of the network and may be
replaced by

√
p in the case of a square grid.

The computation of αn−1 and βn may also be arranged in a way that saves one
communication event in the parallel implementation. As in the previous steps, we
may use communication to get xn−1 = A (:, n− 1 : n)

t
A (:, n− 1) in each processor;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 831

then, we have

(13) αn−1 =
√
xn−1 (1) and βn = xn−1 (2) /αn−1.

In practical implementations of these algorithms, qr may overwrite A(:, r) to
reduce the volume of the storage required. In the next section we do so.

3. Sequential and parallel implementations. In this section we describe the
methodology used to develop our sequential and parallel implementations. The same
methodology was applied to all implementations, but from now on we will refer only
to the sequential and parallel implementations of the modified Barlow method.

In order to obtain high portability and efficiency, all our implementations use,
as much as possible, LAPACK and ScaLAPACK routines. It must be stressed that
our implementations rely on level 2 BLAS routines [17]. A block organization of the
Barlow method has been under development by Bosner and Barlow (see [9]), who
have reported significant reduction in the execution time of the sequential algorithm,
depending upon the size of the matrices. However, those authors also found that for
parallel processing the nonblocked algorithm is preferred due to large overheads in
the block version.

From our sequential codes we obtained the corresponding parallel codes by trans-
lating the BLAS and the LAPACK routines into calls of the equivalent parallel rou-
tines of PBLAS [13] and ScaLAPACK. This translation process takes into account the
data distribution and the corresponding rules to convert sequential LAPACK-based
programs into parallel ScaLAPACK-based programs.

Our parallel implementation of the modified Barlow method, including the cor-
responding PBLAS and ScaLAPACK routines, is stated as follows.

Algorithm 2 (parallel implementation).

Get the context of ScaLAPACK’s process grid BLACS GRIDINFO
Create ScaLAPACK’s descriptor for xr DESCINIT
for r = 1 : n− 2

xr = A (:, r : n)
t
A (:, r) PxGEMV

αr =
√
xr (1)

A (:, r) = A(:,r)
αr

PxSCAL

compute Hr such that Ht
rxr (2 : n− r + 1) = φre1 PxLARFG

A (:, r + 1 : n) = A (:, r + 1 : n)Hr PxLARF
βr+1 = φr

αr

A (:, r + 1) = A (:, r + 1) − βr+1A (:, r) PxAXPY
end
xn−1 = A (:, n− 1 : n)

t
A (:, n− 1) PxGEMV

αn−1 =
√
xn−1 (1)

βn = xn−1 (2) /αn−1

A (:, n− 1) = A(:,n−1)
αn−1

PxSCAL

A (:, n) = A (:, n) − βnA (:, n− 1) PxAXPY
αn = ‖A (:, n)‖2 PxNRM 2

A (:, n) = A(:,n)
αn

PxSCAL
With the ScaLAPACK data distribution, which follows a two-dimensional block

cyclic scheme, we manage to assign m/p rows (not contiguous) to each processor by
reducing the grid to a single column of processors. We emphasize that, as a direct con-
sequence of the use of the routines from ScaLAPACK, we have not fully implemented
the parallel algorithm as presented in the previous section. In our implementation,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

832 C. CAMPOS, D. GUERRERO, V. HERNÁNDEZ, AND R. RALHA

the computation of the inner products is carried out with PxGEMV and, as follows
from the array descriptor that we have used, the resulting vector xr is stored on a
single processor (processor 0, say). As a consequence of this distribution, during the
execution of PxLARFG, the computation of φr is carried out on processor 0 only and
no communication is required. The application of the Householder reflectors (with
PxLARF) requires communication to make the value φr available on each processor.

Finally, we note that, in applications where it is not necessary to produce a matrix
Q with normalized columns, we may change Algorithm 2 in a way that reduces the
number of floating point divisions. This consists of removing the scaling operations
A(:, r) = A(:, r)/αr (PxSCAL) for r = 1, . . . , n and rewriting the PxAXPY operations

as A(:, r + 1) = A(:, r + 1) − βr+1

αr
A(:, r) for r = 1, . . . , n − 1, with a total savings of

mn− (n− 1) divisions.

4. Experimental results.

4.1. Introduction. In this section we analyze the execution times of our im-
plementations, obtained on a cluster with 20 biprocessor nodes where each node is
a Pentium Xeon at 2GHz, 1GB of RAM, and Redhat Linux operating system. The
nodes are connected through a SCI network, organized in a 4× 5 2D torus grid. Each
node has been treated as a single processor machine and the biprocessor feature has
not been exploited. Unfortunately, only 10 nodes of the cluster were available for our
computational tests.

All experiments were performed using Fortran 90 and IEEE standard double
precision floating point arithmetic [23]. As already said, we made use of LAPACK and
ScaLAPACK routines in order to ensure a high level of portability and efficiency of our
implementations. The communications in ScaLAPACK were carried out using Scali
MPI [28], which is an optimized implementation of the standard MPI communication
library [29] for SCI networks.

In all experiments, the execution times were measured in seconds, and the test
matrices (rectangular matrices with sizes ranging from 10000× 1000 to 10000× 4500
and square matrices with sizes ranging from 1000×1000 to 4500×4500) were generated
randomly.

The execution times that will be reported are strictly for the process of producing
the bidiagonal; i.e., no accumulation of the orthogonal transformations was carried
out.

4.2. Sequential codes. In Figure 1 we compare the execution times of the
LAPACK routine DGEBRD and our sequential codes for the case of rectangular
matrices. If m is much larger than n, it is more efficient to carry out an initial QR
decomposition [11]. In our tests we have not done this, mainly because PDGEBRD
(from ScaLAPACK) also does not perform such a decomposition. As can be seen,
the new bidiagonalization methods have similar execution times, and, in general, our
sequential codes are competitive with DGEBRD.

The number of flops involved in the new methods is approximately equal to 3mn2

flops and the operation count for DGEBRD is 4mn2 − 4/3n3; therefore, the new
methods require fewer flops whenever m > 4

3n [4], [25]. For m fixed, the new methods
are less competitive as n grows. For m = 10000 and n = 4000, DGEBRD uses about
4
3 the number of flops required by the new method. However, looking at Figure 1,
we see that the execution times are almost equal. This is because DGEBRD applies
block updates of the form A−UXt−Y V t using two calls to the level 3 BLAS routine
DGEMM; these calls account for about half the work [1] and make the code more

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 833

Fig. 1. DGEBRD versus new methods (rectangular matrices).

efficient. The new methods are based upon level 2 BLAS routines; i.e., the ratio of
floating point operations to memory references is lower.

4.3. Parallel codes. In this section we compare, in terms of the execution times
measured, the ScaLAPACK routine PDGEBRD and our parallel codes. We have
observed that there is a nonnegligible influence of the sizes of the rectangular grid used
for the configuration of the processors. Unlike the ScaLAPACK routine, our parallel
implementations perform better on a grid with a single column. In the following
comparisons we will always use the best execution time.

In Figure 2 we report the execution times of the Barlow and the modified Barlow
parallel codes running on 2, 4, 6, 8, and 10 processors for rectangular matrices. For
each n (number of columns), there are five pairs of consecutive bars, one pair for
each value of p (number of processors). On each pair, the dark bar corresponds to
the Barlow method, and the white bar corresponds to the modified method. The
gain that can be observed for the parallel implementation of the modified method
is not impressive. This is not surprising because our computational platform has
efficient communication, as one can conclude from the high efficiency obtained for
all the parallel algorithms. Since the modified method reduces the communication
overheads, we expect the gain to be much more significant on a system where the cost
of the communications is heavier (a loosely coupled network of personal computers,
for example).

Figure 3 allows a comparison of the execution times of PDGEBRD and the mod-
ified method on 2, 4, 6, 8, and 10 processors. Again, for each n, there are five pairs
of consecutive bars, dark and white, the dark bar corresponding to PDGEBRD, and
the white bar to the modified method. As can be seen, on two processors our code
is slower than PDGEBRD, but the situation is reversed as we increase the number
of processors. At this point, in our experiments, we were very sorry to not have the
opportunity to use many more processors since we do believe that the new method has
better scalability than the ScaLAPACK routine. In section 5 we justify this conviction
with some arguments.

In Figure 4, for each n, we give the efficiency obtained for PDGEBRD (dark) and
for the parallel code of the modified Barlow algorithm (white), running on 2, 4, 6, 8,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

834 C. CAMPOS, D. GUERRERO, V. HERNÁNDEZ, AND R. RALHA

Fig. 2. Barlow’s versus modified (rectangular matrices).

Fig. 3. PDGEBRD versus modified (rectangular matrices).

and 10 processors. The efficiency is computed according to the usual formula:

(14) Efficiency =
Execution time on a single processor

p× (Execution time on p processors)
.

Finally, to illustrate the influence of the processors grid, we ran PDGEBRD on
a linear array of processors. This causes a significant degradation of the efficiency of
PDGEBRD (compare the dark bars for efficiency in Figures 4 and 5), and, in this
case, the new code is clearly more efficient.

5. Conclusions and future work. Inspired by an algorithm proposed by one
of us, Barlow, Bosner, and Drmač recently presented a backward stable method for
the reduction of a matrix to bidiagonal form.

We have presented parallel implementations of the method as proposed by those
authors and also of a modified method that halves the number of communication
events.

The advantages of one-sided transformations over two-sided methods for parallel
bidiagonalization have been explained in detail in [25]. The parallel code for the one-
sided algorithm is essentially the sequential code with a procedure to compute the dot

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 835

Fig. 4. PDGEBRD versus modified (efficiency).

Fig. 5. PDGEBRD versus modified (efficiency on a linear array of processors).

products in parallel. This procedure (dubbed GLOBAL.SDOT in [25]) encapsulates
all the communication that is required in the parallel algorithm, provided that each
processor gets full rows of the matrix. For this reason we do not use a two-dimensional
block cyclic distribution. Note that the ScaLAPACK routine PDGEBRD does require
communication not only to compute the dot products but also to compute and ap-
ply the Householder reflectors. Our one-dimensional distribution, together with the
acceptance of some redundancy in the arithmetic, due to the computation of the
Householder vectors, produces a parallel algorithm which is well load-balanced and
reduces significantly the communication needs, as compared to the ScaLAPACK code.
The communication overhead expressed in (12) allows us to conclude (see [25]) that
our parallel algorithm is efficient provided that m/p is large enough.

We have described the methodology employed to develop our sequential and paral-
lel codes which intends to use, as much as possible, calls of LAPACK and ScaLAPACK
routines, in order to obtain high levels of portability and efficiency.

Our results show that the sequential code for the new method is competitive with
the LAPACK routine DGEBRD; although for square matrices we found DGEBRD to
be faster. This is not surprising since DGEBRD requires in this case about 8

3n
3 flops

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

836 C. CAMPOS, D. GUERRERO, V. HERNÁNDEZ, AND R. RALHA

and the new method uses 1
3n

3 additional flops. Furthermore, DGEBRD has a better
ratio of floating point operations to memory references, because it uses level 2 and
level 3 BLAS, whereas the new algorithm does not use any level 3 BLAS routine. Even
so, without an initial QR decomposition, the new method is faster than DGEBRD if
m is much larger than n (in our tests, this happened with m = 10000 and n = 3500).

Our experimental results on a multiprocessor system do not show as clearly as we
expected initially the superiority of the new method. There is a very good reason for
this: the ScaLAPACK routine PDGEBRD proved to be very efficient in our tests; this
is due to the fact that the communications in our machine are fast and also because
we used a maximum of 10 processors only. Since the new algorithm reduces the
communication overheads, its virtues will emerge whenever the cost of communication
becomes higher comparatively to computation time (a larger number of processors
and/or slower communications). Nevertheless, for rectangular matrices our parallel
code was marginally faster than PDGEBRD. We expect to be able to use a larger
number of processors in the very near future in order to be able to support our claim
that the new method has better scalability than the ScaLAPACK routine.

The modification proposed in this paper for the new algorithm reduces to half
the number of communication events. In our tests, the gain has not been dramatic,
but it may be much more significant on systems with a larger number of processors
and/or larger latency in the communications.

To conclude, let us express our view that the new algorithm is very promising
for parallel processing. There is still scope to optimize our code and to make it even
more competitive with the highly optimized code of the ScaLAPACK routine.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, 3rd ed., Software Environ. Tools 9, SIAM, Philadelphia, 1999.

[2] P. Arbenz, Divide-and-conquer algorithms for the computation of the SVD of bidiagonal ma-
trices, in Vector and Parallel Computing, Ellis Horwood Ser. Comput. Appl., Horwood,
Chichester, UK, 1989, pp. 1–10.

[3] J. Barlow, More accurate bidiagonal reduction for computing the singular value decomposi-
tion, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 761–798.

[4] J. Barlow, N. Bosner, and Z. Drmač, A new stable bidiagonal reduction algorithm, Linear
Algebra Appl., 397 (2005), pp. 35–84.

[5] J. Barlow and J. Demmel, Computing accurate eigensystems of scaled diagonally dominant
matrices, SIAM J. Numer. Anal., 27 (1990), pp. 762–791.

[6] A. Björck, Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT, 7
(1967), pp. 1–21.

[7] A. Björck, Numerics of Gram-Schmidt orthogonalization, Linear Algebra Appl., 197/198
(1994), pp. 297–316.

[8] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,

S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley,
ScaLAPACK Users’ Guide, Software Environ. Tools 4, SIAM, Philadelphia, 1997.

[9] N. Bosner and J. Barlow, Block and Parallel Versions of One-Sided Bidiagonaliza-
tion, Tech. report, University of Zagreb, Zagreb, Croatia, 2005; poster available on
http://osijek.fernuni-hagen.de/∼luka/Presentations/Nela.pdf.

[10] N. Bosner and Z. Drmač, On accuracy properties of one-sided bidiagonalization algorithm and
its applications, in Proceedings of the Conference on Applied Mathematics and Scientific
Computing, Z. Drmač, M. Marušić, and Z. Tutek, eds., Springer, Dordrecht, 2005, pp. 141–
150.

[11] T. F. Chan, An improved algorithm for computing the singular value decomposition, ACM
Trans. Math. Software, 8 (1982), pp. 72–83.

[12] T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88/89 (1987), pp. 67–82.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL BIDIAGONALIZATION OF A DENSE MATRIX 837

[13] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. Whaley, A pro-
posal for a set of parallel basic linear algebra subprograms, LAPACK Working Note 100,
University of Tennessee, Knoxville, TN, 1995.

[14] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[15] J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač, Computing

the singular value decomposition with high relative accuracy, LAPACK Working Note 119,
University of Tennessee, Knoxville, TN, 1997.

[16] J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci.
Statist. Comput., 11 (1990), pp. 873–912.

[17] J. Dongarra, J. Croz, S. Hammarling, and R. Hanson, An extended set of FORTRAN
basic linear algebra subprograms, ACM Trans. Math. Software, 14 (1988), pp. 1–17.

[18] K. V. Fernando and B. N. Parlett, Accurate singular values and differential QD algorithms,
Numer. Math., 67 (1994), pp. 191–229.

[19] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
SIAM J. Numer. Anal., 2 (1965), pp. 205–224.

[20] G. H. Golub and C. Reinsch, Singular value decomposition and least squares solution, Numer.
Math., 14 (1970), pp. 403–420.

[21] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[22] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the bidiagonal SVD, SIAM
J. Matrix Anal. Appl., 16 (1995), pp. 79–92.

[23] IEEE, IEEE Standard for Binary Floating Point Arithmetic, ANSI/IEEE std 754/1985, IEEE
Computer Society, Los Alamitos, CA, 1985.

[24] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice–Hall, Englewood Cliffs, NJ,
1980.

[25] R. Ralha, A new algorithm for singular value decompositions, in Proceedings of the Second
Euromicro Workshop on Parallel and Distributed Processing, IEEE Computer Society, Los
Alamitos, CA, 1994, pp. 240–244.

[26] R. Ralha, One-sided reduction to bidiagonal form, Linear Algebra Appl., 358 (2003), pp. 219–
238.

[27] R. Ralha and A. Mackiewicz, An efficient algorithm for the computation of singular values,
in Proceedings of the Third International Congress of Numerical Methods in Engineering
(Zaragoza, Spain), M. Doblaré, J. M. Correas, E. Alarcón, L. Gavete, and M. Pastor, eds.,
Spanish Society of Numerical Methods in Engineering, Barcelona, Spain, pp. 1371–1380,
1996.

[28] Scali AS, Scali System Guide, http://www.scali.com, 2002.
[29] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete

Reference, MIT Press, Cambridge, MA, 1996.
[30] J. H.Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, UK,

1965.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 838–849

ON NORMWISE STRUCTURED BACKWARD ERRORS FOR
SADDLE POINT SYSTEMS∗

HUA XIANG† AND YIMIN WEI‡

Abstract. We derive the explicit expressions of the normwise structured backward errors of
saddle point systems; we extend the previous results of Sun [Linear Algebra Appl., 288 (1999),
pp. 75–88] to a general 2×2 block linear system, where the (1,1) block is general and not symmetric.
We also compare the structured backward error with the unstructured one and find that the difference
can be arbitrarily large.

Key words. saddle point systems, Karush–Kuhn–Tucker (KKT) systems, backward error

AMS subject classifications. 15A06, 65F99, 65G99

DOI. 10.1137/060663684

1. Introduction. Backward error is of great importance in numerical analysis.
It can answer how close the problem that is actually solved is to the one we want
to solve and reveals the stability of a numerical method [12]. For solving a general
linear system, there exist explicit expressions for the normwise and componentwise
backward errors [15, 16]. Here we consider a special kind of linear system—the saddle
point system—as follows:

(1.1)

[
A BT

B 0

] [
u
p

]
=

[
f
g

]
,

where A ∈ R
m×m, B ∈ R

n×m. When the (1,1) block A is symmetric, (1.1) is called a
Karush–Kuhn–Tucker (KKT) system. In addition, (1.1) is also called an equilibrium
equation [19, 22] or an augmented system [2, 11]. Saddle point systems occur in many
areas of computational science and engineering (see [1] and the references therein) such
as computational fluid dynamics (CFD) [6, 7, 8, 14], electrical circuits and networks
[18, 19], and constrained optimization [25, 26], constrained and weighted least squares
problems [5, 10, 21, 24].

For simplicity, we rewrite (1.1) as

(1.2) Az = d.

Assuming that the computed solution is z̃ = [ũT , p̃T]T , we define the normwise
unstructured backward error η(z̃) as

η(z̃) := min
ΔA,Δd

{∥∥∥[‖ΔA‖F

‖A‖F
, ‖Δd‖2

‖d‖2

]∥∥∥
2

: (A + ΔA)z̃ = d + Δd
}
,

∗Received by the editors June 24, 2006; accepted for publication (in revised form) by A. J. Wathen
February 2, 2007; published electronically July 25, 2007. This project is supported by the National
Natural Science Foundation of China under grant 10471027 and the Shanghai Education Committee.

http://www.siam.org/journals/simax/29-3/66368.html
†School of Mathematics and Statistics, Wuhan University, Wuhan 430072, People’s Republic of

China. Current address: INRIA Futurs, Parc Club Orsay Université, 4 rue Jacques Monod - Bât G,
91893 Orsay Cedex, France (hua.xiang@inria.fr).

‡Corresponding author. School of Mathematical Sciences, Fudan University, Shanghai, 200433,
People’s Republic of China and Key Laboratory of Mathematics for Nonlinear Sciences, Fudan Uni-
versity, Ministry of Education, Shanghai, 200433, People’s Republic of China (ymwei@fudan.edu.cn).

838

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED BACKWARD ERRORS FOR SADDLE POINT SYSTEMS 839

which can be expressed as

η(z̃) =
‖d−Az̃‖2√

‖A‖2
F ‖z̃‖2

2 + ‖d‖2
2

.(1.3)

We have discussed the structured condition numbers of (1.1) [28]. Here we will
consider its structured backward error. Taking into consideration the special block
structure of (1.1), we define the normwise structured backward error as

ηS(ũ, p̃) := min
{ΔA, ΔB, Δf, Δg}∈ F

∥∥∥[‖ΔA‖F

‖A‖F
, ‖ΔB‖F

‖B‖F
, ‖Δf‖2

‖f‖2
, ‖Δg‖2

‖g‖2

]∥∥∥
2
,

where F is defined by

F =

{
{ΔA, ΔB, Δf, Δg} :

[
A + ΔA (B + ΔB)T

B + ΔB 0

] [
ũ
p̃

]
=

[
f + Δf
g + Δg

]}
.

Following the definition in [20], we further define

η(θ, λ, μ)(ũ, p̃) := min
{ΔA, ΔB, Δf, Δg}∈F

∥∥[‖ΔA‖F , θ‖ΔB‖F , λ‖Δf‖2, μ‖Δg‖2

]∥∥
2
.

If A �= 0, B �= 0, f �= 0, and g �= 0, then taking θ∗ = ‖A‖F /‖B‖F , λ∗ = ‖A‖F /‖f‖2,
μ∗ = ‖A‖F /‖g‖2, we have ηS(ũ, p̃) = 1

‖A‖F
η(θ∗, λ∗, μ∗)(ũ, p̃).

If η(z̃) is small, then the computed solution z̃ satisfies a nearby system (A +
ΔA)z̃ = d + Δd, where ‖ΔA‖F and ‖Δd‖2 are relatively small. We can say that
the algorithm is normwise backward stable. But the perturbed coefficient A + ΔA
may not have the saddle point form like (1.1). If we require the perturbation ΔA
to preserve its original structure, ‖ΔA‖F may not be small anymore; that is, the
structured backward error ηS(ũ, p̃) may be large. However, if ηS(ũ, p̃) is small, then
the algorithm is strongly stable [3, 4], and we solve a nearby saddle point system. A
stable algorithm for solving saddle point systems is not necessarily a strongly stable
one [20].

In many cases, there is no perturbation in the (1,1) block; for example, in linear
least squares problems (LLSPs), the (1,1) block A is the identity matrix I and is not
allowed to be perturbed. So we define

γS(ũ, p̃) := min
{ΔB, Δf, Δg}∈ G

∥∥∥[‖ΔB‖F

‖B‖F
, ‖Δf‖2

‖f‖2
, ‖Δg‖2

‖g‖2

]∥∥∥
2
,

where G is determined by

G =

{
{ΔB, Δf, Δg} :

[
A (B + ΔB)T

B + ΔB 0

] [
ũ
p̃

]
=

[
f + Δf
g + Δg

]}
.

To derive γS(ũ, p̃), we need

γ(λ,μ)(ũ, p̃) := min
{ΔB, Δf, Δg}∈ G

∥∥[‖ΔB‖F , λ‖Δf‖2, μ‖Δg‖2

]∥∥
2
.

We can verify that γS(ũ, p̃) = 1
‖B‖F

γ(λ∗,μ∗)(ũ, p̃), where λ∗ = ‖B‖F

‖f‖2
, μ∗ = ‖B‖F

‖g‖2
.

Let us review some previous results. In [20] Sun investigated the case where the
(1,1) block A is symmetric and defined

ηsym(ũ, p̃) := min
{ΔA, ΔB, Δf, Δg}∈ E

∥∥∥[‖ΔA‖F

‖A‖F
, ‖ΔB‖F

‖B‖F
, ‖Δf‖2

‖f‖2
, ‖Δg‖2

‖g‖2

]∥∥∥
2
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

840 HUA XIANG AND YIMIN WEI

where

E =
{
{ΔA, ΔB, Δf, Δg} : {ΔA, ΔB, Δf, Δg} ∈ F , (ΔA)T = ΔA

}
.

In the deduction, the following definition is also needed:

η(θ, λ, μ)
sym (ũ, p̃) := min

{ΔA, ΔB, Δf, Δg}∈E

∥∥[‖ΔA‖F , θ‖ΔB‖F , λ‖Δf‖2, μ‖Δg‖2

]∥∥
2
.

A special case, where A = I and g = 0, is considered in [13]. In that case, there are
no perturbations in A and g. In this paper, we first consider the case where ΔA �= 0
and the (1,1) block A is a general matrix, which is the case arising from CFD. We
then investigate the case where no perturbation in the (1,1) block is permitted; i.e.,
ΔA = 0. We categorize the problem into two classes because we should treat these
two cases with different methods. We give the explicit expressions for the normwise
structured backward errors of these two cases. The special case ΔB = 0, Δf = 0, or
Δg = 0 can be derived directly.

Before our discussion, we need the following three lemmas, which can be found
in [20].

Lemma 1. Given f �= 0 ∈ R
m and g ∈ R

n, the solution of Xf = g can be
expressed as

XT = f†T gT + (I − ff†)Z,

where Z ∈ R
m×n and f† denotes Moore–Penrose inverse [23].

Lemma 2. Assume F ∈ R
p×m, G ∈ R

n×q, and K ∈ R
p×q, and let X∗ = F †KG†;

we have

min
X∈Rm×n

‖FXG−K‖F = ‖FX∗G−K‖F .

Lemma 3. Suppose Φ is a symmetric positive definite matrix defined by

Φ =

[
αIm + βξuuT −ξupT

−ξpuT γIn + ξppT

]
,

where u ∈ R
m, p ∈ R

n, α, β, γ, and ξ are real scalars, and α, β, γ > 0. Let

Φ−1 =

[
Ψ11 Ψ12

ΨT
12 Ψ22

]
, Ψ11 ∈ R

m×m.

Then

Ψ11 =
1

α

(
Im − ξ(βγ + βγ‖p‖2

2 − ξ‖p‖2
2)uu

T /ψ
)
,

Ψ22 =
1

γ

(
In − ξ(α + βξ‖u‖2

2 − ξ‖u‖2
2)pp

T /ψ
)
, Ψ12 = ξupT /ψ,

where ψ = α(γ + ξ‖p‖2
2) + ξ‖u‖2

2(βγ + βξ‖p‖2
2 − ξ‖p‖2

2).
The rest of this paper is organized as follows. In section 2, we derive the explicit

expression of η(θ, λ, μ)(ũ, p̃), which yields the normwise structured backward error.
In section 3, we give an upper bound of η(θ, λ, μ)(ũ, p̃) and show that the structured
backward error can be arbitrarily larger than the normal unstructured one. Then
numerical examples are illustrated in section 4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED BACKWARD ERRORS FOR SADDLE POINT SYSTEMS 841

2. Expression of η(θ, λ, μ)(ũ, p̃). Let [ũT , p̃T]T be the computed solution, and
let ũ �= 0. To derive the expression of η(θ, λ, μ)(ũ, p̃), we need η(θ)(ũ, p̃) first, which is
defined as

η(θ)(ũ, p̃) := min

{∥∥[‖ΔA‖F , θ‖ΔB‖F
]∥∥

2
:

[
A + ΔA (B + ΔB)T

B + ΔB 0

] [
ũ
p̃

]
=

[
f
g

]}
.

We now consider only the perturbation of the coefficient matrix, such that

(2.1)

[
A + ΔA (B + ΔB)T

B + ΔB 0

] [
ũ
p̃

]
=

[
f
g

]
.

Let rf := f − Aũ − BT p̃, rg := g − Bũ be the computed residuals. In the following
‖ · ‖ stands for the 2-norm, where we omit the subscript for simplicity. The following
lemma gives the explicit expression of η(θ)(ũ, p̃).

Lemma 4. With the notation above, we have the expression of η(θ)(ũ, p̃) as fol-
lows: [

η(θ)(ũ, p̃)
]2

=
θ2‖rg‖2

‖ũ‖2
+

(rTf ũ− rTg p̃)
2

‖ũ‖4
+

θ2[‖ũ‖2‖rf‖2 − (rTf ũ)2]

‖ũ‖2(θ2‖ũ‖2 + ‖p̃‖2)
.(2.2)

Proof. According to the second formula of (2.1), we have

ΔB ũ = rg.

Using Lemma 1, we get

(ΔB)T = ũ†T rTg + (I − ũũ†)Z,

where Z ∈ R
m×n, ũ† denotes the Moore–Penrose inverse of ũ. Substituting it into

the first formula of (2.1), we obtain

ΔA ũ = rf − (rTg p̃)ũ
†T − (I − ũũ†)Zp̃.

Again applying Lemma 1, we deduce that

ΔAT = ũ†T [rf − (rTg p̃)ũ
†T − (I − ũũ†)Zp̃]T + (I − ũũ†)W,

where W ∈ R
m×m. With the definition F := (I − ũũ†)Z, G := rf ũ

† − (rTg p̃)ũ
†T ũ†,

we have

‖ΔA‖2
F + θ2‖ΔB‖2

F = θ2‖rgũ†‖2
F + θ2‖F‖2

F + ‖GT − ũ†T p̃TFT ‖2
F + ‖(I − ũũ†)W‖2

F

= θ2tr(FFT) + tr
(
(G− F p̃ũ†)(GT − ũ†T p̃TFT)

)
+ θ2‖rgũ†‖2

F + ‖(I − ũũ†)W‖2
F

= tr
(
F [θ2I + p̃ũ†(p̃ũ†)T]FT − F (p̃ũ†GT) − (p̃ũ†GT)TFT

)
+ θ2‖rgũ†‖2

F + ‖G‖2
F + ‖(I − ũũ†)W‖2

F .

The formula above can be rewritten as

‖ΔA‖2
F + θ2‖ΔB‖2

F = ‖M −N‖2
F − ‖N‖2

F + θ2‖rgũ†‖2
F + ‖G‖2

F + ‖(I − ũũ†)W‖2
F ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

842 HUA XIANG AND YIMIN WEI

where M := F [θ2I + p̃ũ†(p̃ũ†)T]
1
2 , NT := [θ2I + p̃ũ†(p̃ũ†)T]−

1
2 p̃ũ†GT .

Applying Lemma 2, we can obtain

min
Z

‖M −N‖2
F = min

Z

∥∥∥(I − ũũ†)Z[θ2I + p̃ũ†(p̃ũ†)T]
1
2 −N

∥∥∥2

F
= ‖ũũ†N‖2

F ,

and the minimum is obtained at Zmin = −(I − ũũ†)†N [θ2I + p̃ũ†(p̃ũ†)T]−
1
2 . Noticing

that ũũ†, I − ũũ† are orthogonal projectors, we get ‖N‖2
F − ‖ũũ†N‖2

F = tr(NT (I −
ũũ†)N) = ‖(I − ũũ†)N‖2

F , and so[
η(θ)(ũ, p̃)

]2
= min

Z,W

{
‖ΔA‖2

F + θ2‖ΔB‖2
F

}
= θ2‖rg‖2‖ũ†‖2 + ‖G‖2

F −‖(I − ũũ†)N‖2
F .

Therefore,

[
η(θ)(ũ, p̃)

]2
=

θ2‖rg‖2

‖ũ‖2
+

1

‖ũ‖4

∥∥∥∥∥rf ũT −
rTg p̃

‖ũ‖2
ũũT

∥∥∥∥∥
2

F

− 1

‖ũ‖4

∥∥∥∥∥
(
θ2I +

p̃p̃T

‖ũ‖2

)− 1
2

(
p̃rTf −

rTf ũ

‖ũ‖2
p̃ũT

)∥∥∥∥∥
2

F

.(2.3)

The formula above can be simplified. The second term of (2.3) is equal to

1

‖ũ‖4
tr

[(
ũrTf −

rTg p̃

‖ũ‖2
ũũT

)(
rf ũ

T −
rTg p̃

‖ũ‖2
ũũT

)]

=
1

‖ũ‖4

[
‖ũ‖2‖rf‖2 − 2(rTf ũ)(rTg p̃) + (rTg p̃)

2
]
.

And the third term of (2.3) is equivalent to

− 1

‖ũ‖4
tr

[(
rf p̃

T −
rTf ũ

‖ũ‖2
ũp̃T

)(
θ2I +

p̃p̃T

‖ũ‖2

)−1
(
p̃rTf −

rTf ũ

‖ũ‖2
p̃ũT

)]

= − ‖p̃‖2

‖ũ‖2(θ2‖ũ‖2 + ‖p̃‖2)

[
‖rf‖2 −

(rTf ũ)2

‖ũ‖2

]
,

where we use the Sherman–Morrison–Woodbury formula [9](
θ2I +

p̃p̃T

‖ũ‖2

)−1

= θ−2

(
I − p̃p̃T

θ2‖ũ‖2 + ‖p̃‖2)

)
.

Hence, η(θ)(ũ, p̃) can be expressed as[
η(θ)(ũ, p̃)

]2
=

θ2‖rg‖2

‖ũ‖2
+

(rTg p̃)
2

‖ũ‖4
−

2(rTf ũ)(rTg p̃)

‖ũ‖4
+

θ2‖rf‖2

θ2‖ũ‖2 + ‖p̃‖2

+
‖p̃‖2(rTf ũ)2

‖ũ‖4(θ2‖ũ‖2 + ‖p̃‖2)
,

which is equivalent with the expression (2.2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED BACKWARD ERRORS FOR SADDLE POINT SYSTEMS 843

In the case where (1,1) block A is symmetric, we define

η(θ)
sym(ũ, p̃) := min

{ΔA, ΔB, 0, 0}∈E

∥∥[‖ΔA‖F , θ‖ΔB‖F
]∥∥

2
.

Its expression is given by Sun [20]:[
η(θ)
sym(ũ, p̃)

]2
=

θ2‖rg‖2

‖ũ‖2
+

(rTf ũ− rTg p̃)
2

‖ũ‖4
+

2θ2[‖ũ‖2‖rf‖2 − (rTf ũ)2]

‖ũ‖2(θ2‖ũ‖2 + 2‖p̃‖2)
.

For convenience, we denote η(θ)(ũ, p̃) as[
η(θ)(ũ, p̃)

]2
= θ2τ‖rg‖2 + (τ − σ)‖rf‖2 + τ2(rTg p̃)

2 − 2τ2(rTf ũ)(rTg p̃) + τσ(rTf ũ)2,

where τ := ‖ũ‖−2, σ := τ2‖p̃‖2(θ2 + τ‖p‖2)−1. In addition we define ρ := τ −σ+λ2.
We now consider perturbations both in the coefficient matrix and the right-hand

side:

(2.4)

[
A + ΔA (B + ΔB)T

B + ΔB 0

] [
ũ
p̃

]
=

[
f + Δf
g + Δg

]
,

where ũ �= 0. We use η(θ)(ũ, p̃) to derive the expression of η(θ, λ, μ)(ũ, p̃), which is
given in the following theorem.

Theorem 1. With the definition above, we have the explicit expression

[η(θ, λ, μ)(ũ, p̃)]2 =
θ2μ2

Ω0
‖rg‖2 +

λ2μ4‖ũ‖2

Ω0Ω
(rTg p̃)

2 − 2λ2μ2

Ω
(rTf ũ)(rTg p̃)

+
θ2λ2

Ω1
‖rf‖2 +

λ4μ2‖p̃‖2

Ω1Ω
(rTf ũ)2,(2.5)

where

Ω0 := θ2 + μ2‖ũ‖2,

Ω1 := θ2 + λ2‖p̃‖2 + θ2λ2‖ũ‖2,

Ω := θ2 + μ2‖ũ‖2 + λ2‖p̃‖2 + θ2λ2‖ũ‖2 + λ2μ2‖ũ‖4.

Proof. By the definition, we have

[η(θ, λ, μ)(ũ, p̃)]2 = min
Δf, Δg

{
λ2‖Δf‖2 + μ2‖Δg‖2 + min

ΔA, ΔB
‖[‖ΔA‖F , θ‖ΔB‖F]‖2

F

}
:= min

Δf, Δg
χ(Δf,Δg),

where

χ(Δf,Δg) = λ2‖Δf‖2 + μ2‖Δg‖2 + θ2τ‖rg + Δg‖2 + (τ − σ)‖rf + Δf‖2

+ τ2[(rg + Δf)T p̃]2 − 2τ2[(rf + Δf)T ũ][(rg + Δg)T p̃]

+ τσ[(rf + Δf)T ũ]2

= [η(θ)(ũ, p̃)]2 + 2

[
Δf
Δg

]T [
(τ − σ)rf + (τσrTf ũ− τ2rTg p̃)ũ

τθ2rg + τ2(rTg p̃− rTf ũ)p̃

]

+

[
Δf
Δg

]T [
ρIm + τσũũT −τ2ũp̃T

−τ2p̃ũT (τθ2 + μ2)In + τ2p̃p̃T

] [
Δf
Δg

]
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

844 HUA XIANG AND YIMIN WEI

We denote the formula above as

χ(w) = [η(θ)(ũ, p̃)]2 + 2wT b + wTΦw.

Obviously, the minimum is obtained when w = −Φ−1b. Correspondingly,

(2.6) [η(θ, λ, μ)(ũ, p̃)]2 = [η(θ)(ũ, p̃)]2 − bTΦ−1b.

Applying Lemma 3, we have

Φ−1 =

[
Ψ11 Ψ12

ΨT
12 Ψ22

]
,

and

Ψ11 =
1

ρ

(
Im − τξ

ψ
ũũT

)
,

Ψ22 =
1

τθ2 + μ2

(
In − τ2λ2

ψ
p̃p̃T
)
,

Ψ12 =
τ2

ψ
ũp̃T ,

where ξ := σ(τθ2 + μ2) + τ2(σ − τ)‖p̃‖2, and ψ := ρ(τθ2 + μ2 + τ2‖p̃‖2) + ξ. After
tedious computation, we obtain

bTΦ−1b = K0f‖rf‖2 + K0g‖rg‖2 + K1f (rTf ũ)2 + K1g(r
T
g p̃)

2 + Kfg(r
T
f ũ)(rTg p̃),

where

K0f :=
θ4

(θ2‖ũ‖2 + ‖p̃‖2)Ω1
,

K0g :=
θ4

‖ũ‖2Ω0
,

K1f :=
‖p̃‖2

‖ũ‖4(θ2‖ũ‖2 + ‖p̃‖2)
− λ4μ2‖p̃‖2

Ω1Ω
,

K1g :=
1

‖ũ‖4
− λ2μ4‖ũ‖2

Ω0Ω
,

Kfg := − 2

‖ũ‖4
+

2λ2μ2

Ω
.

Combining this with the expression of η(θ)(ũ, p̃), we obtain (2.5).
Remark 1. If we let σ = (2τ2‖p̃‖2− τθ2)(θ2 +2τ‖p‖2)−1 in the former deduction,

we can get

[η(θ, λ, μ)
sym (ũ, p̃)]2 =

θ2μ2

Ω0
‖rg‖2 +

λ2μ4‖ũ‖2

Ω0Ω
(rTg p̃)

2 − 2λ2μ2

Ω
(rTf ũ)(rTg p̃)

+
2θ2λ2

Ω2
‖rf‖2 +

2λ4μ2‖p̃‖2 − θ2λ4Ω0

Ω2Ω
(rTf ũ)2,(2.7)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED BACKWARD ERRORS FOR SADDLE POINT SYSTEMS 845

where Ω2 := 2θ2 + 2λ2‖p̃‖2 + θ2λ2‖ũ‖2 = 2Ω1 − θ2λ2‖ũ‖2. We can show that (2.7) is
equivalent to Sun’s result [20].

Remark 2. The induction above is taken under the assumption that ũ �= 0. In
the case ũ = 0, we can also derive a similar result:

η(θ, λ, μ)(0, p̃) =

√
θ2λ2‖rf‖2

θ2 + λ2‖p̃‖2
+ μ2‖rg‖2.

This is just a special case of (2.5).

Remark 3. In many cases where g = 0, there should be no perturbation in g, i.e.,
Δg = 0. For this case, we define

η(θ, λ)(ũ, p̃) := min
{ΔA, ΔB, Δf}∈Fg

∥∥[‖ΔA‖F , θ‖ΔB‖F , λ‖Δf‖
]∥∥ ,

where

Fg =

{
{ΔA, ΔB, Δf} :

[
A + ΔA (B + ΔB)T

B + ΔB 0

] [
ũ
p̃

]
=

[
f + Δf

g

]}
.

Let μ tend to ∞ in (2.5); we then obtain

[η(θ, λ)(ũ, p̃)]2 =
θ2λ2‖rf‖2

Ω1
+

θ2‖rg‖2

‖ũ‖2
+

λ4‖p̃‖2(rTf ũ)2

‖ũ‖2(1 + λ2‖ũ‖2)Ω1

+
λ2(rTg p̃)

2

‖ũ‖2(1 + λ2‖ũ‖2)
−

2λ2(rTf ũ)(rTg p̃)

‖ũ‖2(1 + λ2‖ũ‖2)
.(2.8)

We can also obtain (2.8) the same way we derive ηθ,λ,μ(ũ, p̃). Here we provide a simple
and efficient way. Similarly, we can treat the case of Δf = 0, or ΔB = 0.

Remark 4. In the case where the (1,1) block A is not perturbed, we can derive
γ(λ, μ)(ũ, p̃) [27], which is given by

[γ(λ, μ)(ũ, p̃)]2 =
λ2

Θλ
‖rf‖2 +

μ2

Θμ
‖rg‖2 − 2λ2μ2

Θ
(rTf ũ)(rTg p̃)

+
λ2μ2(Θλ − 1)

ΘλΘ
(rTf ũ)2 +

λ2μ2(Θμ − 1)

ΘμΘ
(rTg p̃)

2,(2.9)

where Θλ := 1 + λ2‖p̃‖2, Θμ := 1 + μ2‖ũ‖2 , and Θ := 1 + μ2‖ũ‖2 + λ2‖p̃‖2.

For the case Δg = 0, we can let μ tend to ∞ in (2.9) and then obtain the result
of [13]. We can deal with the case Δf = 0 or ΔB = 0 similarly.

3. Comparison between ηS(ũ, p̃) and η(z̃). From (2.4), we have Δũ +
(ΔB)T p̃− Δf = rf , ΔBũ− Δg = rg. That is,

[
ΔA, β(ΔB)T , λΔf

] ⎡⎣ ũ
1
β p̃

− 1
λ

⎤⎦ = rf ,
[
αΔB, μΔg

] [1
α ũ
− 1

μ

]
= rg.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

846 HUA XIANG AND YIMIN WEI

Using Lemma 1, we obtain

[
ΔA, β(ΔB)T , λΔf

]T
=

⎡⎣ ũ
1
β p̃

− 1
λ

⎤⎦†T

rTf +

⎛⎜⎝I −

⎡⎣ ũ
1
β p̃

− 1
λ

⎤⎦⎡⎣ ũ
1
β p̃

− 1
λ

⎤⎦†⎞⎟⎠W,

[
αΔB, μΔg

]T
=

[1
α ũ
− 1

μ

]†T
rTg +

(
I −
[1

α ũ
− 1

μ

] [1
α ũ
− 1

μ

]†)
Z,

where W ∈ R
(m+n+1)×m, Z ∈ R

(m+1)×n. Therefore,[
η(θ, λ, μ)(ũ, p̃)

]2
= min

Z,W

α2+β2=θ2

{∥∥[ΔA, β(ΔB)T , λΔf]
∥∥2

F
+
∥∥[α(ΔB)T , μΔg]

∥∥2

F

}
� min

α2+β2=θ2

{
min
W

∥∥[ΔA, β(ΔB)T , λΔf]
∥∥2

F
+ min

Z

∥∥[α(ΔB)T , μΔg]
∥∥2

F

}
= min

α2+β2=θ2

{
‖rf‖2

β−2‖p̃‖2 + ‖ũ‖2 + λ−2
+

‖rg‖2

α−2‖ũ‖2 + μ−2

}

=
(‖ũ‖‖rf‖ − ‖p̃‖‖rg‖)2 + θ2μ−2‖rf‖2 + θ2(‖ũ‖2 + λ−2)‖rg‖2

(‖ũ‖2 + θ2μ−2)(‖ũ‖2 + λ−2) + μ−2‖p̃‖2
.

Supposing θ > 1, we have

ηS(ũ, p̃)

η(z̃)
�
(

θ2(‖ũ‖2 + λ−2)‖rg‖2

(‖ũ‖2 + θ2μ−2)(‖ũ‖2 + ‖p̃‖2 + λ−2)

‖ũ‖2 + ‖p̃‖2

‖rf‖2 + ‖rg‖2

) 1
2

= θ

√
‖ũ‖2 + λ−2

‖ũ‖2 + θ2μ−2

√
‖ũ‖2 + ‖p̃‖2

‖ũ‖2 + ‖p̃‖2 + λ−2

√
‖rg‖2

‖rf‖2 + ‖rg‖2
.

If θ � 1, and

(3.1) ‖rf‖ ∼ ‖rg‖, θμ−1 ∼ O(1), λ ∼ O(1),

then

ηS(ũ, p̃)

η(z̃)
∼ O(θ) � 1,

which shows that the structured backward error can be arbitrarily larger than the
unstructured one.

4. Numerical examples. In this section we will examine two numerical cases
and compare the normwise structured and unstructured backward errors.

Example 1. Consider the saddle point systems with

B =

⎡⎣ 0 0 1 0 0 0
0 1 0 0 0 0

10−3 0 0 0 0 0

⎤⎦ , A = DMD,

M = magic(6) + eye(6), D = diag([1, 5, 10, 50, 100, 10000]),

f = [108, 10, 0, 0, 0, 0]T , g = [10−8, 0, 0]T .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED BACKWARD ERRORS FOR SADDLE POINT SYSTEMS 847

-2754

-2753.75

-2753.5

-2753.25

-2753

0

0.2

0.4

0.6

0.8

x

0

0.2

0.4

0.6

0.8

y

X Y

Fig. 1. Three-dimensional surface plot of pressure.

This unsymmetric case is slightly adapted from the example in [20]. We use the
MATLAB backslash function (or matrix left division) to solve this problem and obtain
the following computed solutions:

ũ =

⎛⎜⎜⎜⎜⎜⎜⎝
−3.430234778891480 × 10−09

4.517200836796800 × 10−10

9.834679521009126 × 10−09

−1.139022982251766 × 10−09

−3.743828054634186 × 10−10

−1.254493123951351 × 10−11

⎞⎟⎟⎟⎟⎟⎟⎠ ,

p̃ =

⎛⎝ 4.563714591880652 × 10−05

1.000002220308359 × 10+01

1.000000000000047 × 10+11

⎞⎠ .

By (1.3) we get the unstructured backward error

η(z̃) = 4.0 × 10−30.

But the structured backward error is given by

ηS(ũ, p̃) = 2.7 × 10−2.

We can see that Gaussian elimination with partial pivoting for solving this saddle
point systems is backward stable but not strongly stable.

Example 2. Consider the impressible flow in Ω = (0, 1) × (0, 1), with Dirichlet
boundary conditions on ∂Ω. Let u = (u1, u2)

T denote the velocity field and p the
pressure. On the boundaries the velocities are zeros except for the horizontal velocity,
which is u1 = 1 on the upper boundary. The governing equations are Navier–Stokes
equations:

−νΔu + (u · ∇)u + ∇p = 0,

−∇ · u = 0.

Using the MAC finite difference scheme, where the discrete velocities and pres-
sures are defined on staggered grids, we have the saddle point systems (1.1) with g = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

848 HUA XIANG AND YIMIN WEI

0 2 4 6 8 10 12 14 16 18 20
10

-18

10
 -17

10
 -16

10
 -15

10
 -14

10
 -13

10
 -12

10
 -11

10
 -10

structured (n=50, ν=1/100)
unstructured(n=50, ν=1/100)
structured (n=64, ν=1/200)
unstructured(n=64, ν=1/200)

Fig. 2. Backward error.

In practical computation, we take 64×64 grids, choose ν = 1/200, and apply GMRES
[17] to solve (1.1). After 19 Picard iterations, we obtain the converged pressure field
as shown in Figure 1. Using (2.8) the structured backward error of the last Picard
iteration is 5.43 × 10−13, while the unstructured backward error is 2.96 × 10−16 (see
Figure 2). Though the structured backward error is about three orders larger than
the unstructured one, they are both small. When ν becomes larger, the difference
between structured and unstructured backward error is smaller. For example, if we
take ν = 1/100 and 50 × 50 grids, the structured backward error is only two times
the unstructured one at each Picard iteration, as shown in Figure 2. We can conclude
that the algorithm is strongly stable for this problem.

Acknowledgments. The authors would like to thank the editor Andy Wathen
and two referees for their very useful and detailed suggestions on our early version.

REFERENCES

[1] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numer., 14 (2005), pp. 1–137.

[2] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[3] J. R. Bunch, The weak and strong stability of algorithms in numerical linear algebra, Linear

Algebra Appl., 88/89 (1987), pp. 49–66.
[4] J. R. Bunch, J. W. Demmel, and C. F. Van Loan, The strong stability of algorithms for

solving symmetric linear systems, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 494–499.
[5] L. Eldén, Perturbation theory for the least squares problem with linear equality constraints,

SIAM J. Numer. Anal., 17 (1980), pp. 338–350.
[6] H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier–

Stokes equations, SIAM J. Sci. Comput., 17 (1996), pp. 33–46.
[7] H. C. Elman, Preconditioning for the steady-state Navier–Stokes equations with low viscosity,

SIAM J. Sci. Comput., 20 (1999), pp. 1299–1316.
[8] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative Solvers: With

Applications in Incompressible Fluid Dynamics, Oxford University Press, Oxford, UK,
2005.

[9] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,
Baltimore, MD, 1996.

[10] M. Gulliksson, X. Jin, and Y. Wei, Perturbation bounds for constrained and weighted least
squares problems, Linear Algebra Appl., 349 (2002), pp. 221–232.

[11] M. Gulliksson and P. Å. Wedin, Perturbation theory for generalized and constrained linear
least squares, Numer. Linear Algebra Appl., 7 (2000), pp. 181–195.

[12] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,
2002.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED BACKWARD ERRORS FOR SADDLE POINT SYSTEMS 849

[13] X. Li and X. Liu, Structured backward errors for structured KKT systems, J. Comput. Math.,
22 (2004), pp. 605–610.

[14] Y. Lin and Y. Wei, Fast corrected Uzawa methods for solving symmetric saddle point problems,
Calcolo, 43 (2006), pp. 65–82.

[15] W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with
given error bounds for coefficients and right-hand sides, Numer. Math., 6 (1964), pp. 405–
409.

[16] J. L. Rigal and J. Gaches, On the compatibility of a given solution with data of a linear
system, J. Assoc. Comput. Mach., 14 (1967), pp. 543–548.

[17] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[18] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA,
1986.

[19] G. Strang, A framework for equilibrium equations, SIAM Rev., 30 (1988), pp. 283–297.
[20] J.-G. Sun, Structured backward errors for KKT systems, Linear Algebra Appl., 288 (1999),

pp. 75–88.
[21] J.-G. Sun, A note on backward errors for structured linear systems, Numer. Linear Algebra

Appl., 12 (2005), pp. 585–603.
[22] S. A. Vavasis, Stable numerical algorithms for equilibrium systems, SIAM J. Matrix Anal.

Appl., 15 (1994), pp. 1108–1131.
[23] G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: Theory and Computations, Science

Press, Beijing, 2004.
[24] M. Wei, Perturbation theory for the rank-deficient equality constrained least squares problem,

SIAM J. Numer. Anal., 29 (1992), pp. 1462–1481.
[25] M. H. Wright, Interior methods for constrained optimization, in Acta Numerica 1992, Acta

Numer., Cambridge University Press, Cambridge, UK, 1992, pp. 341–407.
[26] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.
[27] H. Xiang, Iterative Methods and Perturbation Analysis of Structured Linear Systems, Ph.D.

thesis, School of Mathematical Sciences, Fudan University, Shanghai, China, 2006.
[28] H. Xiang, Y. Wei, and H. Diao, Perturbation analysis of generalized saddle point systems,

Linear Algebra Appl., 419 (2006), pp. 8–23.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 850–854

UNITARILY INVARIANT NORMS OF TOEPLITZ MATRICES WITH
FISHER–HARTWIG SINGULARITIES∗

SEAK-WENG VONG† AND XIAO-QING JIN†

Abstract. We provide upper bounds for unitarily invariant norms of finite Toeplitz matrices
generated by functions with a Fisher–Hartwig singularity. These bounds are sharp as the matrix size
goes to infinity. Our results improve previous estimates and confirm a conjecture recently raised by
Böttcher.

Key words. unitarily invariant norm, Schatten norm, Ky Fan norm, Toeplitz matrix, Fisher–
Hartwig singularity

AMS subject classifications. 47B35, 15A60, 65F10

DOI. 10.1137/070681065

1. Introduction. Denote by Tn(a) the n×n Toeplitz matrix (aj−k)
n
j,k=1, where

am =
1

2π

∫ π

−π

a(x)e−imxdx, m = 0,±1,±2, . . . ,

are the Fourier coefficients of a function a ∈ L1(−π, π). In this paper, we consider
asymptotic properties of unitarily invariant norms of Tn(a) when a has a singularity
of the Fisher–Hartwig type. An archetypal example [2, 3] of such a function is

ω+
α (x) =

⎧⎨⎩
0, x ∈ (−π, 0),

x−α, x ∈ (0, π),
(1)

where 0 < α < 1.
Now, we introduce a class of unitarily invariant norms called the Schatten p-norms

[1]. For 1 ≤ p < ∞, the Schatten p-norms ‖Tn(a)‖p are defined by

‖Tn(a)‖p ≡

⎡⎣ n∑
j=1

spj (Tn(a))

⎤⎦1/p

,(2)

and ‖Tn(a)‖∞ is defined as s1(Tn(a)), where s1(Tn(a)) ≥ · · · ≥ sn(Tn(a)) are the
singular values of Tn(a). For ω+

α given by (1), one can compute the Frobenius norm,
which is just the case p = 2 in (2), to obtain that

‖Tn(ω+
α)‖2 ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C2(α)n1/2, α < 1/2,

C2(α)(n log n)1/2, α = 1/2,

C2(α)nα, α > 1/2,

(3)

∗Received by the editors January 26 , 2007; accepted for publication (in revised form) by M. Benzi
February 5, 2007; published electronically July 25, 2007.

http://www.siam.org/journals/simax/29-3/68106.html
†Department of Mathematics, University of Macau, Macao, China (swvong@umac.mo, xqjin@

umac.mo).

850

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES WITH FISHER–HARTWIG SINGULARITIES 851

where C2(α) is a positive constant depending on α [2].
Note that if we put ω−

α (x) = ω+
α (−x), then functions of the form

a(x) = ω−
α (x)b(x) + ω+

α (x)c(x),

where b, c ∈ L∞, include all functions with a Fisher–Hartwig singularity. It is proved
in [2] that for a given 0 < α < 1, one has the following bound for the Schatten
p-norms:

‖Tn(a)‖p ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cp(a)n

α(log n)1+α, p = 1/α,

Cp(a)n
α log n, 1/α < p < ∞,

Cp(a)n
α, p = ∞,

(4)

where Cp(a) is a positive constant depending on p and a.
Comparing the above two estimates (3) and (4), it seems that there is room for

improvement. Böttcher [2] conjectured that the nα(log n)1+α in (4) can be replaced
by (n log n)α and that the nα log n in (4) can be improved to nα. The proof of these
conjectures is the objective of this paper. We would like to mention that the results
in [2] were obtained through a subtle analysis on the Dirichlet kernel. Our method
goes in another direction and depends mainly on a basic theory of unitarily invariant
norms.

It is well known [1] that a function ‖ · ‖ defined on n × n matrices is a unitarily
invariant norm if and only if there exists a symmetric gauge function Φ on Rn such
that

‖A‖ = Φ(s1(A), . . . , sn(A)).

We recall that a function Φ : Rn → R+ is called a symmetric gauge function if it
satisfies the following properties:

(i) Φ is a norm.
(ii) Φ(Px) = Φ(x) for all x ∈ Rn and all permutation matrices P .
(iii) Φ(ε1x1, . . . , εnxn) = Φ(x1, . . . , xn) if εj = ±1 for any j.
(iv) Φ(1, 0, . . . , 0) = 1.

In the following discussion, we use ‖ · ‖Φ to denote the unitarily invariant norm cor-
responding to a given symmetric gauge function Φ.

The paper is organized as follows. In section 2, by using the Fan dominance
theorem and Ky Fan k-norms, a general estimate on unitarily invariant norms is
established. In section 3, we apply the estimate obtained in section 2 to get an
improved bound on the Schatten p-norms.

2. An estimate on unitarily invariant norms. We first concentrate on ω±
α (x).

Our analysis depends mainly on the following theorem [1].
Theorem 1 (Fan dominance theorem). Let A,B be two n× n matrices. If

‖A‖(k) ≤ ‖B‖(k) for k = 1, 2, . . . , n,

then

|||A||| ≤ |||B|||

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

852 SEAK-WENG VONG AND XIAO-QING JIN

for all unitarily invariant norms. Here,

‖A‖(k) ≡
k∑

j=1

sj(A)

are called the (unitarily invariant) Ky Fan k-norms.
Theorem 1 implies that in order to compare any given unitarily invariant norm

of two matrices, one needs only to compare the Ky Fan k-norms. This gives the
importance of the Ky Fan k-norms among unitarily invariant norms and inspires
one to estimate the Ky Fan k-norms of ω±

α . Using that Tn(h) may be interpreted
as a compression of the operator of multiplication by h on L2(−π, π), we see that
s1(Tn(h)) = ‖Tn(h)‖∞ ≤ ‖h‖∞ = hmax. This implies the following.

Theorem 2. For 1 ≤ k ≤ n, we have

‖Tn(ω±
α)‖(k) ≤

(2π)−1 + 1 − α

1 − α
k1−αnα ≤ C

1 − α
k1−αnα.

Here and in the following, we use C to denote positive constants independent of n, k,
and α.

Proof. We need only to work out the proof for ω+
α (x). The case for ω−

α (x) is
similar. For a fixed k, we write

ω+
α (x) = g(x) + h(x),

where

g(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, x ∈ (−π, 0),

x−α, x ∈ (0, k/n),

0, x ∈ (k/n, π),

(g ∈ L1),

h(x) =

⎧⎨⎩
0, x ∈ (−π, k/n),

x−α, x ∈ (k/n, π),
(h ∈ L∞).

We clearly have

Tn(ω+
α) = Tn(g) + Tn(h).

This implies that

‖Tn(ω+
α)‖(k) ≤ ‖Tn(g)‖(k) + ‖Tn(h)‖(k)

≤
n∑

j=1

sj(Tn(g)) +

k∑
j=1

sj(Tn(h))

≤ tr(Tn(g)) + ks1(Tn(h)) ≤ n

2π

∫ π

−π

g(x)dx + khmax

=
(2π)−1 n

1 − α

(
k

n

)1−α

+ k

(
k

n

)−α

=
(2π)−1 + 1 − α

1 − α
k1−αnα.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES WITH FISHER–HARTWIG SINGULARITIES 853

As mentioned above, a function with a Fisher–Hartwig singularity of degree α
can be written as

a(x) = b(x)ω−
α (x) + c(x)ω+

α (x).

By the fact that

|a(x)| ≤ ‖b‖∞ω−
α (x) + ‖c‖∞ω+

α (x),

we thus have [4]

‖Tn(a)‖(k) ≤ ‖b‖∞‖Tn(ω−
α)‖(k) + ‖c‖∞‖Tn(ω+

α)‖(k).

This gives by Theorem 2 the following.
Theorem 3. For a function a(x) with a Fisher–Hartwig singularity of degree α,

we have

‖Tn(a)‖(k) ≤
C

1 − α
k1−αnα, 1 ≤ k ≤ n.

A direct consequence of Theorems 1 and 2 is an estimate on unitarily invariant
norms of Tn(ω±

α). To this end, we compare the Ky Fan k-norms of Tn(ω±
α) and that

of the diagonal matrix

Dα ≡ (2π)−1 + 1 − α

1 − α
nαdiag(1, 21−α−1, . . . , k1−α−(k−1)1−α, . . . , n1−α−(n−1)1−α).

By Theorem 2, it is easy to see that

‖Tn(ω±
α)‖(k) ≤ ‖Dα‖(k)

for k = 1, 2, . . . , n. Recall that every unitarily invariant norm is induced by a sym-
metric gauge function Φ on Rn. We thus conclude the following.

Theorem 4. For any given unitarily invariant norm ‖ · ‖Φ (notice that Φ is a
norm on Rn), we have

‖Tn(ω±
α)‖Φ ≤ ‖Dα‖Φ =

(2π)−1 + 1 − α

1 − α
nα

×Φ(1, 21−α − 1, . . . , k1−α − (k − 1)1−α, . . . , n1−α − (n− 1)1−α).

3. Application to the Schatten p-norms. Recall the definition of the Schat-
ten p-norms defined by (2). By Theorem 4, in order to estimate ‖Tn(ω±

α)‖p, we need
to get an upper bound for [

n∑
k=1

(k1−α − (k − 1)1−α)p

]1/p

.

Using that ϕ(k) − ϕ(k − 1) = ϕ′(ξk) with k − 1 ≤ ξk ≤ k, we see that, for 2 ≤ k ≤ n,

0 < k1−α − (k − 1)1−α = (1 − α)ξ−α
k ≤ (1 − α)(k − 1)−α.

Hence, Theorem 4 gives

‖Tn(ω+
α)‖p ≤ Cnα

1 − α

(
1 +

n−1∑
k=1

k−αp

)1/p

≤ Cnα

1 − α

(
2 +

∫ n−1

1

x−αpdx

)1/p

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

854 SEAK-WENG VONG AND XIAO-QING JIN

The right-hand side can be bounded with respect to p as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
1

(1 − α)(1 − αp)1/p
n1/p, αp < 1,

C
1

1 − α
nα(log n)1/p, αp = 1,

C
1

(1 − α)(αp− 1)1/p
nα, αp > 1.

Similar to the discussion given in the case of the Ky Fan k-norms, we get the following.
Theorem 5. Let a(x) be a function having a Fisher–Hartwig singularity of degree

α. For 1 ≤ p < ∞, we have

‖Tn(a)‖p ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
1

(1 − α)(1 − αp)1/p
n1/p, αp < 1,

C
1

1 − α
(n log n)α, αp = 1,

C
1

(1 − α)(αp− 1)1/p
nα, αp > 1.

Remark. Theorem 5 is clearly better than (4) and is consistent with (3). This
theorem confirms a conjecture raised in [2]. Moreover, the method we used here is
elementary.

REFERENCES

[1] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[2] A. Böttcher, Schatten norms of Toeplitz matrices with Fisher-Hartwig singularities, Electron.

J. Linear Algebra, 15 (2006), pp. 251–259.
[3] A. Böttcher and J. Virtanen, Norms of Toeplitz matrices with Fisher–Hartwig symbols,

SIAM J. Matrix Anal. Appl., 29 (2007), pp. 660–671.
[4] S. Serra and P. Tilli, On unitarily invariant norms of matrix-valued linear positive operators,

J. Inequal. Appl., 7 (2002), pp. 309–330.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 855–869

NUMERICALLY STABLE IMPLEMENTATIONS OF THE
STRUCTURED COVARIANCE EXPECTATION-MAXIMIZATION

ALGORITHM∗

DANIEL R. FUHRMANN†

Abstract. Numerically stable methods for the computations required in the expectation-
maximization (EM) algorithm for maximum-likelihood structured covariance estimation are pre-
sented. It is shown that the basic computational task at each iteration is the calculation of a
pseudoinverse of a certain linear system of equations. In the no-noise case this is a hard-decision, or
Moore–Penrose, pseudoinverse, whereas in the additive noise case it is a soft-decision pseudoinverse.
An approach to computing the soft-decision pseudoinverse, which can handle all combinations of
dimension and rank in this system of equations, based on the singular value decomposition (SVD),
is proposed. An alternative method based on the LQ factorization, which is applicable in certain
circumstances, is also proposed. The intermediate calculations required in the EM algorithm can be
used to calculate the log-likelihood and the gradient of the log-likelihood.

Key words. structured covariance estimation, spectrum estimation, signal processing, EM
algorithm, SVD

AMS subject classifications. 62H12, 65F30

DOI. 10.1137/040609495

1. Introduction. The estimation of the second-order statistics of time series
or sensor array data is a central problem in statistical signal processing. When the
model for the data involves a linear transformation of a large number of independent
components, or perhaps of a continuous independent-increments process, then the
problem is one of spectrum estimation. When one considers the variance or covariance
of the discrete data themselves, as determined by the spectrum, then the problem is
one of structured covariance estimation. These problems are obviously closely related
and have been well studied; see, e.g., [1, 2, 3, 4, 5, 6] and the many references contained
therein.

The canonical problem in this class is one in which the spectrum denotes the power
or power density of independent sinusoidal or complex exponential components, and
the resulting time series has a Toeplitz covariance structure [6, 7, 8]. However, there
are many generalizations and extensions of this basic problem. In problems involving
space, or space and time, the spectrum could represent power or power density as a
function of spatial variables or angle of arrival [9, 10]. The sensors could be placed in
some arbitrary geometry and have relatively unstructured response vectors [11]. The
relationship between the underlying independent-increments process and the data may
be nonstationary, as in radio astronomy or time-varying arrays [12, 13]. In the radar
imaging problem described in [14, 15], the scattering function parameters are indexed

∗Received by the editors June 4, 2004; accepted for publication (in revised form) by H. J. Werner
March 5, 2007; published electronically August 1, 2007. This work was supported by the U.S. De-
fense Advanced Research Projects Agency (DARPA) under agreement F30602-03-2-0043. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein are those of
the author and should not be interpreted as necessarily representing official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government.

http://www.siam.org/journals/simax/29-3/60949.html
†Electronics Systems and Signals Research Laboratory, Department of Electrical and Systems

Engineering, Washington University in St. Louis, St. Louis, MO 63130 (danf@ese.wustl.edu).

855

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

856 DANIEL R. FUHRMANN

by the radar-centered parameters of range and Doppler, leading to the estimation of a
block-diagonal matrix with independent Toeplitz blocks. In our recent work in radar
imaging [16], we showed how the scattering function may be estimated in an active
way, with the illumination under the control of the data collection instrumentation.

When the underlying spectrum is discretized, many of these problems are based
on the complex multivariate statistical model1

yk ∼ CN(0,Rk),(1.1)

where

Rk = AkΣAH
k .(1.2)

The maximum-likelihood estimation of the diagonal matrix Σ given the data y1 . . .yK

is an interesting statistical inference problem with no known closed-form solution. The
expectation-maximization (EM) algorithm [17] has been developed and implemented
for a number of versions of this problem [7, 9, 10, 11, 12, 13, 14, 15, 16].

Our concern here is with the computational aspects of the steps of the EM algo-
rithm. Recent work in scattering function estimation shows that one can have, in the
same problem, several different matrices Ak which can be either wide or long2 and
can be either full-rank or rank-deficient. The standard derivations of the structured
covariance EM algorithm assume that Ak is wide and full-rank. Other possibilities
do not invalidate the basic maximum-likelihood approach; they simply require more
care. This paper presents a computational approach that handles all combinations of
dimension and rank in a numerically stable3 way. It is based on the singular value de-
composition (SVD) of the matrix AkΣ

1
2 , which can be viewed as a square root of the

covariance Rk. Although the SVD itself is often seen as computationally expensive,
calculations that are based on it are straightforward and have an intuitive appeal.
Computational methods for the SVD are well understood, have been optimized over
several decades of numerical linear algebra research and software development, and
may not be the bottleneck commonly presumed.

In the standard case (A wide and full-rank), a computationally efficient method
can be built on the LQ factorization rather than the SVD. Both the SVD and the LQ
approaches have the advantage of not requiring data-squaring or sample covariance
calculations; algorithms such as these are often called data-domain algorithms.

The quantities computed in the course of the structured covariance EM algorithm
are essentially the same as those needed for the computation of the log-likelihood and
the gradient of the log-likelihood with respect to the spectrum. Thus the algorithms
presented here may have applicability beyond the EM algorithm itself.

Section 2 reviews the maximum-likelihood estimation problem and the derivation
of the EM algorithm, for both the no-noise and additive noise cases. Section 3 shows
how the basic computational task can be interpreted as either a hard-decision (Moore–
Penrose) or a soft-decision pseudoinverse, for the no-noise and additive noise cases,

1(1.1) is shorthand for “yk is subject to a complex multivariate Gaussian distribution with mean 0
and covariance Rk,” and this notation will be used throughout. The superscript H denotes Hermitian
transpose.

2An M ×N matrix A is said to be wide if M < N , square if M = N , and long if M > N .
3By “numerically stable” it is meant simply that the numerical or round-off behavior does not

deteriorate badly as the rank of A goes to 0 or as R becomes singular. This paper contains no formal
round-off analysis of the proposed methods; rather, we appeal to the favorable numerical properties
of SVD and LQ factorizations and the least-squares methods based on them.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED COVARIANCE EM ALGORITHM IMPLEMENTATION 857

respectively. Section 4 shows how the pseudoinverses can be computed with the aid of
the SVD and LQ factorizations. Finally, we show how the intermediate computations
can be applied to the calculation of the log-likelihood and the gradient of the log-
likelihood.

2. Structured covariance estimation and the EM algorithm.

2.1. Basic model. We begin with a brief review of the structured covariance
estimation problem and an abbreviated derivation of the EM algorithm.

Suppose that there exist K independent and identically distributed (i.i.d.) com-
plex Gaussian random vectors x1 . . .xK , with mean 0 and diagonal covariance Σ.
This is denoted by

xk ∼ CN(0,Σ), k = 1 . . .K, i.i.d.,(2.1)

where

Σ = diag(σ(1) . . . σ(N)).(2.2)

The diagonal elements of Σ can be thought of as a discrete power spectrum that we
wish to estimate.4 If the xk were observable, the sufficient statistic for σ(n) would be

τ(n) =
1

K

K∑
k=1

|xk(n)|2, n = 1 . . . N,(2.3)

and the maximum-likelihood estimate of σ(n) would be equal to τ(n).
Suppose now that, instead of observing the xk directly, one is only able to observe

the xk through a linear transformation A. That is, the data are complex Gaussian
random vectors yk, k = 1 . . .K, described by

yk = Axk.(2.4)

It follows that the distribution of the yk is

yk ∼ CN(0,R),(2.5)

where

R = AΣAH.(2.6)

The maximum-likelihood estimation problem is to estimate Σ from the yk, which is
generally a much more difficult problem than estimating Σ from the xk. We refer
to the xk as the complete data and the yk as the incomplete data. Because R, the
covariance for yk, is constrained to belong to a proper subset of the space of the
nonnegative Hermitian matrices, as given in (2.6), the estimation problem is often
called structured covariance estimation.

The sufficient statistic for R, as in any covariance estimation problem, is the
sample covariance given by

S =
1

K

K∑
k=1

yky
H
k .(2.7)

4Although σ is commonly used for standard deviation, here we use it for variance to maintain a
consistency in notation for σ and Σ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

858 DANIEL R. FUHRMANN

The incomplete-data log-likelihood, with constant terms removed, is

l(R;S) = −K log detR −KtrR−1S.(2.8)

The maximum-likelihood estimation problem is to maximize (2.8) with respect to
either Σ or the constrained R. It is usually convenient to cast the optimization
problem as one of searching in Σ-space.

The following two identities, stated here without proof (see [6]), are useful in
determining the gradient of the log-likelihood and thus the necessary conditions for a
maximizer. They are

δ log detR = trR−1δR(2.9)

and

δR−1 = −R−1δRR−1,(2.10)

where the symbol δ denotes the first variation. From (2.6) it is clear that

δR = AδΣAH.(2.11)

It follows then that the variation of the log-likelihood is given by

δl = trAH(R−1SR−1 − R−1)AδΣ.(2.12)

One way to interpret (2.12) is that the diagonal elements of AH(R−1SR−1 −R−1)A
form a gradient vector g for the parameter vector σ. The σ(n) are nonnegative but are
otherwise unconstrained. It follows that the Kuhn–Tucker conditions for a maximizer
of the log-likelihood are (a) for any σ(n) �= 0, the corresponding gn = 0, and (b) for
any σ(n) = 0, the corresponding gn ≤ 0.

The EM algorithm [17] for the structured covariance estimation problem is an
iterative algorithm whose stationary points satisfy the Kuhn–Tucker conditions just
given. Define Σ(p) as the estimate of Σ at iteration p. Each iteration of the EM
algorithm comprises two steps, the E-step (expectation) and the M-step (maximiza-
tion). The E-step is to compute the conditional expected value of the complete-data
sufficient statistics, given the current estimate Σ(p) and the incomplete-data sufficient
statistic S. In this case, the complete-data sufficient statistics are the s(n) as given
in (2.3). The M-step is the trivial operation of setting the next iterate σ(p)(n) equal
to the estimated s(n).

The expected squared magnitude of xk(n) is the squared magnitude of the con-
ditional mean, plus the conditional variance. The conditional mean is given by

E{xk|yk,Σ
(p)} = Rxy(p)R−1

yy (p)yk

= Σ(p)AHR−1
yy (p)yk,

(2.13)

where Ryy(p) is the covariance of yk at iteration p, and Rxy(p) is the cross-covariance
of xk and yk, both constructed with the assumed value of Σ(p).

The conditional covariance of the xk is given by

cov{xk|yk,Σ
(p)} = Rxx(p) − Rxy(p)R−1

yy (p)Ryx

= Σ − Σ(p)AHR−1
yy (p)AΣ(p).

(2.14)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED COVARIANCE EM ALGORITHM IMPLEMENTATION 859

Substituting these conditional expectations in place of the actual xk in (2.3), and
using the fact that

Ryy(p) = R(p) = AΣ(p)AH,(2.15)

we have finally the EM iteration given by

Σ(p+1) = Σ(p) + diag
[
Σ(p)AHR−1(p)SR−1(p)AΣ(p)

]
− diag

[
Σ(p)AHR−1(p)AΣ(p)

]
.

(2.16)

2.2. Nonstationary observation model. In many applications, such as radio
astronomy or airborne radar, the relationship between the observed and the observer
is changing over time. An extension of the model presented in the previous subsection
is one in which each observation is taken through a different linear transformation Ak.
In this case, one cannot aggregate all of the data into a single sample covariance, but
rather the conditional expectation of the complete-data sufficient statistics must be
taken on each data vector or perhaps the sample covariance for a subset of the data
vectors.

The extended model for the data is described by

yk = Akxk,(2.17)

and the incomplete-data distribution is thus given by

yk ∼ CN(0,Rk),(2.18)

where

Rk = AkΣAH
k .(2.19)

We now have an estimation problem in which one must estimate not just a single
covariance R but rather an entire sequence R1 . . .RK . The “thread” that ties all of
the Rk together is the desired spectrum Σ, which is considered constant over time.

The EM algorithm for this estimation problem requires that we determine the
conditional expectation of the squared magnitudes of the components of xk, as before.
The results are then averaged together in the M-step of the algorithm.

Denote the estimated covariance for data vector yk at EM iteration p as Ryy(p, k).
Given Σ(p) and yk, the conditional mean of xk is

E{xk|yk,Σ
(p)} = Rxy(p, k)R−1

yy (p, k)yk

= Σ(p)AH
k R−1

yy (p, k)yk.

(2.20)

The conditional covariance of xk is given by

cov{xk|yk,Σ
(p)} = Rxx(p, k) − Rxy(p, k)R−1

yy (p, k)Ryx(p, k)

= Σ − Σ(p)AH
k R−1

yy (p, k)AkΣ
(p).

(2.21)

The desired conditional variances are the diagonal elements of (2.21). Averaging the
conditional expectations of the squared magnitudes of the xk components, we arrive
at the EM algorithm step

Σ(p+1) = Σ(p) +
1

K

K∑
k=1

diag
[
Σ(p)AH

k R−1(p, k)SkR
−1(p, k)AkΣ

(p)
]

− 1

K

K∑
k=1

diag
[
Σ(p)AH

k R−1(p, k)AkΣ
(p)

]
,

(2.22)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

860 DANIEL R. FUHRMANN

where

R(p, k) = AkΣ
(p)AH

k .(2.23)

Here Sk is either yky
H
k or the sample covariance for the kth observation interval,

should that include more than one observation for the same Ak.

2.3. Additive noise model. In some applications, such as radar imaging, the
data are observed in the presence of additive white instrument or background noise.
In this case, the data model is (reverting to the stationary observation case)

yk = Axk + nk,(2.24)

where nk is CN(0, εI) and independent of xk. It follows that

yk ∼ CN(0,AΣAH + εI).(2.25)

Again the basic task in the EM algorithm is to compute the conditional distribution
for xk given yk and Σ. The conditional mean is

E{xk|yk,Σ} = RxyR
−1
yyyk

= ΣAH(AΣAH + εI)−1yk.

(2.26)

The conditional covariance is

cov{xk|yk,Σ} = Rxx − RxyR
−1
yyRyx

= Σ − ΣAH(AΣAH + εI)−1AkΣ.

(2.27)

Folding these into the EM algorithm as before we get

Σ(p+1) = Σ(p) + diag
[
Σ(p)AH(AΣ(p)AH + εI)−1S(AΣ(p)AH + εI)−1AΣ(p)

]
− diag

[
Σ(p)AH(AΣ(p)AH + εI)−1AΣ(p)

]
.

(2.28)

This result can be extended to the the nonstationary observation model in the obvious
way, by averaging the complete-data sufficient statistics over the K observations.

3. Basic computational tasks. In the derivation above, no mention was made
of the size or rank of the matrices A or Ak, or even whether or not the covariances
R or Rk are invertible. In fact, the results obtained above for the no-noise case are
valid only in the case where A (Ak) is wide and full-rank. Nevertheless, we now
show that there exists a single interpretation of the E-step for the underdetermined,
overdetermined, full-rank, and rank-deficient cases of the basic problem. The basic
computations for the stationary and nonstationary observation cases are the same,
the only difference being in the aggregation of data into sample covariance matrices
under the stationary observation case. The result is slightly different for the additive
noise case, so it will be treated separately.

3.1. No-noise model. The essential computational task at iteration p is to
compute the conditional distribution of the xk given the incomplete data yk and the
current Σ(p). For notational simplicity, we will drop the superscript p (iteration num-
ber) and the subscript k (data index) and concern ourselves with the calculation of the
conditional distribution of x given y and Σ. We assume without loss of generality that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED COVARIANCE EM ALGORITHM IMPLEMENTATION 861

all elements of Σ are positive. If any σ(n) = 0, then the conditional expected value
of s(n) is zero as well, and the nth column of A can be removed from consideration.

Let A be M×N , with rank r ≤ min(M,N). For the purposes of this derivation, it
is assumed that r is known and that the min(M,N)−r singular values of A are exactly
0. In section 4, the results will be applied to the case more commonly encountered
in practice, in which r is the “numerical rank” determined by comparing the smallest
singular values to a small but nonzero threshold.

Define the matrix B by

B = AΣ
1
2 .(3.1)

Let the SVD of B be given by

AΣ
1
2 = UDVH.(3.2)

This is the “full-size” SVD, where U and V are unitary matrices of size M ×M and
N ×N , respectively, and D is a diagonal rectangular M ×N matrix, with

D(i, i) = di, i = 1 . . . r,
= 0, otherwise.

(3.3)

The di are the singular values of B, and the columns of U and V are the left and
right singular vectors, respectively, of B.

Define

z = UHy(3.4)

and

w = Σ− 1
2 x.(3.5)

Both of these mappings are one-to-one; hence, observation of z is equivalent to ob-
servation of y, and the conditional distribution of x can be determined from the
conditional distribution of w. It suffices to determine the conditional distribution of
w given z. These two vectors are related by the linear transformation

z = DVHw.(3.6)

The unconditional distribution for w is

w ∼ CN(0, IN).(3.7)

Now define w̃ = VHw. V is a unitary, and hence invertible, transformation, and

w̃ ∼ CN(0, IN).(3.8)

Since Z = Dw̃ there are r observed components of w̃, namely, w̃(1) . . . w̃(r), and
the remaining N − r entries of w̃ are unobserved. Furthermore, these other N − r
entries are uncorrelated with the first r, so their distribution is not changed under
conditioning. Thus we have

E{w̃(n)|z} =
z(n)

dn
, n = 1 . . . r,

= 0, n = r + 1 . . . N

(3.9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

862 DANIEL R. FUHRMANN

and

cov{w̃|z} =

[
0r×r 0(N−r)×r

0r×(N−r) I(N−r)×(N−r)

]
.(3.10)

The conditional distribution for w given y follows immediately from the conditional
distribution for w̃ given z. Using w = Vw̃ and z = UHy we have

E{w|y} = V diag
[
d−1
1 . . . d−1

r 0 . . . 0
]
UHy(3.11)

and

cov{w|y} = V2V
H
2 .(3.12)

In (3.12), V2 comprises columns r + 1 . . . N of the unitary matrix V and spans the

orthogonal complement of the row space of B = AΣ
1
2 .

The conditional mean in (3.11) is the minimum-norm least-squares (MNLS) so-
lution to the rectangular system of equations

y = Bw,(3.13)

which we denote as ŵMNLS . As the name implies, there are two aspects of the MNLS
solution: the least-squares part and the minimum-norm part. The solution is least-
squares because the reconstruction BŵMNLS is as close as possible to y and lies in
the column space of B. It is minimum-norm because ŵMNLS is orthogonal to the
row space of B. The matrix that multiplies y in (3.11) is called the Moore–Penrose
pseudoinverse of the matrix B [18, 19].

The conditional distribution of x now follows immediately from (3.11)–(3.12) and
(3.5). It is given by

E{x|y} = Σ
1
2 ŵMNLS(3.14)

and

cov{x|y} = Σ
1
2 V2V

H
2 Σ

1
2 .(3.15)

The EM algorithm requires the computation of the squared magnitudes of the
components of (3.14) and the diagonal elements of (3.15). If there are multiple ob-
servations y1 . . .yK , then either the calculation in (3.14) is repeated K times or an
operation can be carried out on the sample covariance S. The diagonal elements of
(3.15) are found by summing the squared magnitudes of the rows of ΣV2.

When A is rectangular with M ≤ N and full-rank, then the required matrix
inverses exist, and the iteration obtained here coincides with the usual EM algorithm.
Note that, in this case, (2.16) can be written

Σ(p+1) = diag
[
Σ(p) 1

2 BH(BBH)−1S(BBH)−1BΣ(p) 1
2

+Σ(p) − Σ(p) 1
2 BH(BBH)−1BΣ(p) 1

2

]
.

(3.16)

In summary, each iteration of the EM algorithm in the no-noise case requires (a)
the MNLS solution to the rectangular system of equations

y = (AΣ
1
2)w(3.17)

and (b) an orthogonal basis for the row space of AΣ
1
2 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED COVARIANCE EM ALGORITHM IMPLEMENTATION 863

3.2. Additive noise case. In the presence of additive noise, the basic compu-
tation changes somewhat. In a certain sense, the problem is better-posed in this case
since the matrix inverses in the EM iterations of section 2.3 exist, independent of M ,
N , and r.

Again the basic computational task is the calculation of the conditional distribu-
tion of x given y and Σ. Define L = min(M,N) and write the “economy-size” SVD

of B = AΣ
1
2 as

B = UDVH,(3.18)

where U is M × L, D is L× L, and V is N × L. The conditional mean of x is

E{x|y; Σ} = Σ
1
2 (VDUH)(UD2UH + εI)−1y.(3.19)

The matrix inverse in (3.19) exists independent of M , N , and r. We have that

UD2UH + εI = U(D2 + εI)UH (M < N)(3.20a)

= U(D2 + εI)UH + εU2U
H
2 (M > N),(3.20b)

where, in the M > N case, U2 is the orthonormal matrix whose columns span the
orthogonal complement of the column range of U. In either case, we have

E{x|y; Σ} = Σ
1
2 VDUHU(D2 + εI)−1UHy

= Σ
1
2 V

⎡⎢⎢⎢⎢⎢⎣
d1

d2
1 + ε

. . .
dL

d2
L + ε

⎤⎥⎥⎥⎥⎥⎦UHy.

(3.21)

Note that when r < L, there are no singularities or discontinuities; L − r elements
of the diagonal matrix in (3.21) go to 0 continuously as di → 0. For this reason we
define the matrix in (3.21) as a soft-decision pseudoinverse, in contrast to the Moore–
Penrose pseudoinverse, which requires a hard decision as to whether a singular value
is above or below some tolerance.

Using the same economy-size SVD, the conditional covariance of x is

cov{x|y; Σ} = Σ
1
2 VDUHU(D2 + εI)−1UUHDVHΣ

1
2

= Σ
1
2 V

⎡⎢⎢⎢⎢⎢⎣
d2
1

d2
1 + ε

. . .

d2
L

d2
L + ε

⎤⎥⎥⎥⎥⎥⎦VHΣ
1
2 .

(3.22)

Since only the diagonal elements of (3.22) are required, it suffices to compute V first,
then to compute the weighted inner products

L∑
j=1

αj |v(i, j)|2,(3.23)

with

αj =
d2
j

d2
j + ε

,(3.24)

followed by pointwise multiplication by the elements of Σ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

864 DANIEL R. FUHRMANN

4. Computational alternatives. As shown in section 2.2 above, the primary
computational task at each iteration of the EM algorithm is the calculation of some
sort of pseudoinverse of the system of equations

y = Bw,(4.1)

where B = AΣ
1
2 . Any routine that does this must be general-purpose and numerically

stable, meaning that it should handle any combination of (M,N) (the size of A) and
rank r. In the no-noise case, we need the Moore–Penrose pseudoinverse (or hard-
decision pseudoinverse) given by

B#
MP = VEMPUH,(4.2)

with

eMP (i, i) =
1

di
, di > tol,

= 0, di < tol.

(4.3)

In the additive-noise case, the solution is given by the soft-decision pseuodoinverse

B#
SD = VESDUH,(4.4)

with

eSD(i, i) =
di

d2
i + ε

.(4.5)

To calculate the conditional covariance term of the EM algorithm we must also
know an orthonormal basis for the row space of AΣ

1
2 .

4.1. SVD-based approach. We advocate a computational approach based on
the SVD, following exactly the development in section 3. There is obviously a signif-
icant computational overhead associated with computing the SVD of AΣ

1
2 ; however,

all of the required quantities in the EM algorithm follow trivially from the SVD, as
has already been shown. Furthermore, all computations are numerically stable, and
all possible combinations of M , N , and r are unified in a single algorithm.

The use of the soft-decision pseudoinverse could also unify the additive-noise
and no-noise models. Since it can be argued that any data acquisition system has
some level of additive noise, one could always use the additive-noise model with some
small value of ε. One very important advantage of the soft-decision pseudoinverse
is that it is continuous with respect to small changes in the matrix B. Since Σ is
changing through the course of the EM algorithm, the fact that the Moore–Penrose
pseudoinverse is discontinuous may lead to unpredictable numerical behavior—say,
for example, when the numerical rank of AΣ

1
2 changes from one iteration to the next.

A second recommendation, for computational efficiency, is to replace the data
matrix Y = [y1 . . .yK] with the lower-triangular Cholesky factor of the sample co-
variance matrix when K > M . Note that

S =
1

K
YYH.(4.6)

When K > M , one can write the LQ factorization of Y as

Y = LQ,(4.7)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED COVARIANCE EM ALGORITHM IMPLEMENTATION 865

where L is an M × M lower-triangular matrix, and Q is an M × K matrix with
orthonormal rows. Since QQH = I, we have that

S =
1

K
LLH,(4.8)

or, put another way, L is the lower Cholesky factor of KS. In the algorithm summary
below, the matrix Y can represent either this triangular factor, which needs to be
computed only once, or in the K < M case it can represent the data matrix directly.

We summarize here the basic computational step of the EM algorithm, using
the SVD and the soft-decision pseudoinverse. This description is for the stationary
observation model; the extension to the nonstationary observation is to repeat the
calculation below for each of the observations and average the Σ’s which result.

Algorithm 1 (SVD). Given the observation model matrix A, the left factor of
the sample covariance Y, the additive-noise level or numerical tolerance ε, and the
current iterate Σ(p):

1. Compute the SVD of the matrix AΣ
1
2 :

A(Σ(p))
1
2 = UDVH.(4.9)

2. Compute the matrix

T1 = VESDUNY,(4.10)

where

ESD = diag

[
d1

d2
1 + ε

. . .
dM

d2
M + ε

]
.(4.11)

3. Set

T2 = V.(4.12)

4. Compute the next EM iterate for n = 1 . . . N according to

σ(p+1)
n = σp

n

⎡⎣1 +
1

K

min(K,M)∑
j=1

|t1(n, j)|2 −
M∑
j=1

αj |t2(n, j)|2
⎤⎦ ,(4.13)

where

αj =
d2
j

d2
j + ε

.(4.14)

4.2. LQ-based approach. The SVD-based algorithm described above has de-
sirable numerical properties and works for all combinations of M , N , and r but does
suffer from the overhead of computing the SVD itself. We describe now an alternative
method which is applicable in the commonly encountered situation in which (a) no

noise is included in the model, (b) M < N , and (c) AΣ
1
2 is full-rank. Condition (c)

is guaranteed as long as A is full-rank and Σ is all-positive, or, alternatively, if A has
the property that any collection of M columns is linearly independent, and at least
M diagonal elements of Σ are nonzero.

Under the conditions stated above, there exists a decomposition of B = AΣ
1
2 ,

called the LQ decomposition, given by

B = LQ,(4.15)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

866 DANIEL R. FUHRMANN

where L is an M ×M lower-triangular matrix, and Q is an M ×N matrix with or-
thonormal rows. (This is the transpose of the QR decomposition of BH.) Calculation
of the LQ decompositions requires O(M2N) flops.

Given the LQ decomposition of B, the conditional mean of x given y and Σ is

E{x|y} = Σ
1
2 BH(BBH)−1y

= Σ
1
2 QHLH(LQQHLH)−1y

= Σ
1
2 QHL−1y.

(4.16)

The triangular backsolve L−1y requires O(M2) flops, and multiplication by Σ
1
2 QH

requires O(NM) flops. For K vectors y1 . . .yK , or some other factorization of the
sample covariance matrix with K columns, the above computational estimates are
multiplied by a factor of K.

The conditional covariance of x given y is

cov{x|y} = Σ − Σ
1
2 BH(BBH)−1BΣ

1
2

= Σ
1
2 (I − QHQ)Σ

1
2 .

(4.17)

The diagonal elements of (4.17) are found by computing the column sums
∑M

i=1 |qij |2
and then weighting by σj . This requires O(MN) operations.

The summary of the LQ algorithm is as given below.
Algorithm 2 (LQ). Given the observation model matrix A, the left factor of

the sample covariance Y, and the current iterate Σ(p):
1. Compute the LQ decomposition of the matrix AΣ

1
2 :

A(Σ(p))
1
2 = LQ.(4.18)

2. Compute the matrix

T1 = QHL−1Y.(4.19)

3. Set

T2 = QH.(4.20)

4. Compute the next EM iterate for n = 1 . . . N according to

σ(p+1)
n = σp

n

⎡⎣1 +
1

K

K∑
j=1

|t1(n, j)|2 −
M∑
j=1

|t2(n, j)|2
⎤⎦(4.21)

Given the respective decompositions, both the LQ and the SVD methods require
a similar computational load. An informal study of the QR and SV decompositions
indicates that, while both are O(NM2) algorithms, the SVD requires about 3 times
the computation of the QRD. This suggests that the LQ approach may be an attractive
alternative as long as the conditions set forth at the beginning of this section are
satisfied. The primary benefit of using the SVD is the “peace of mind” that comes
with knowing that no special efforts must be made to ensure invertibility of matrices
involved in the calculations. We also point out that, as K (the number of columns in
the factor of the sample covariance matrix) approaches M , the calculations in the EM
algorithm after the decomposition become comparable with the decomposition itself,
and thus the relative advantage of the LQ over the SVD method begins to disappear.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED COVARIANCE EM ALGORITHM IMPLEMENTATION 867

4.3. Calculation of related quantities. The calculations described above are
central not only to the structured covariance EM algorithm but to closely related
quantities in the maximum-likelihood estimation problem, namely, the log-likelihood
and the gradient of the log-likelihood. The log-likelihood is given by

l(R;S) = − log detR − trR−1S,(4.22)

and the gradient of the log-likelihood, with respect to Σ and expressed as a diagonal
matrix, is

G(Σ;S) = diag
[
AH(R−1SR−1 − R−1)AH

]
.(4.23)

We use here only the additive noise model for which R = AΣAH + εI.
Let the SVD of AΣ

1
2 be UDVH as before. Then the expression for R is

R = UD2UH + εI.(4.24)

It follows that the first term in the log-likelihood is

log detR =

M∑
i=1

log(d2
i + ε) (M ≤ N)(4.25a)

=

M∑
i=1

log(d2
i + ε) + (M −N) log ε (M > N).(4.25b)

The second term in the log-likelihood is

(4.26a)

trR−1S = trYH(UD2UH + εI)−1Y

=

M∑
i=1

1

d2
i + ε

K∑
j=1

|(UHY)(i, j)|2 (M ≤ N)(4.26b)

=

M∑
i=1

1

d2
i + ε

K∑
j=1

|(UHY)(i, j)|2 +
1

ε

M−N∑
i=1

K∑
j=1

|(UH
2 Y)(i, j)|2 (M > N),(4.26c)

where, in the second M > N case, U2 is an orthonormal basis spanning the orthogonal
complement of the range of U.

Calculation of the gradient is easy as long as none of the σi are equal to 0. The
EM iteration itself can be written as

Σ(p+1) = Σ(p) + (Σ(p))2G(p),(4.27)

where

G(p) = G(Σ(p);S)(4.28)

as given in (4.23). If T(p) is defined as the diagonal matrix of quantities inside the
square brackets in (4.13), then

Σ(p+1) = Σ(p) + Σ(p)T(p).(4.29)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

868 DANIEL R. FUHRMANN

It follows that

G(p) = (Σ(p))−1T(p).(4.30)

The difficulty with the expression in (4.30) is that some of the σi may be 0. The

effect of this on T, by the SVD of AΣ
1
2 , is that the corresponding tii is also 0, and

thus the correct value of the gradient is indeterminate from (4.30).
When the possibility exists for some of the σj to be equal to 0, then an approach

to computing the gradient that relies on direct calculation with A is required. Given
the SVD of AΣ

1
2 = UDVH as before, the gradient can be written

G(Σ;S) = diag
[
AH(UD2UH + εI)−1YYH(UD2UH + εI)−1A

]
− diag

[
AH(UD2UH + εI)−1A

]
.

(4.31)

For the case M < N , define B = UHA and Z = UHY. Further define

T1 = BH(D2 + εI)−1Z(4.32)

and

T2 = (D2 + εI)−
1
2 B.(4.33)

Then the jth term of the gradient (the jth diagonal element of G) is given by

gj =

M∑
i=1

|t1(i, j)|2 −
M∑
i=1

|t2(i, j)|2.(4.34)

Some extra calculations are required for the M > N case. Define B2 = UH
2 A and

Z2 = U2Y, where U2 is any orthogonal matrix spanning the orthogonal complement
of U. Then the definitions of T1 and T2 change to

T1 = BH(D2 + εI)−1Z + ε−1BH
2 Z2(4.35)

and

T2 =

[
(D2 + εI)−

1
2 B

ε−
1
2 B2

]
.(4.36)

With these new definitions for T1 and T2, the expression for the gradient given in
(4.34) remains the same. If special care is taken to ensure that the range of A and the

range of U are the same, even when some values of σj are zero (which causes AΣ
1
2 to

be rank-deficient), then B2 = 0, and the modifications to T1 and T2 for the M > N
case become unnecessary.

5. Conclusion. Numerically stable methods for the computations required in
the EM algorithm for maximum-likelihood structured covariance estimation have been
presented. The basic computational task at each iteration is the calculation of a
pseudoinverse of a certain linear system of equations, which is either a hard-decision
or Moore–Penrose inverse in the no-noise case or a soft-decision pseudoinverse in the
additive-noise case. An approach to computing this pseudoinverse that can handle
all combinations of dimension and rank in this system of equations, based on the
SVD, was proposed. An alternative method based on the LQ decomposition, which

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED COVARIANCE EM ALGORITHM IMPLEMENTATION 869

is applicable in the case where A is wide and full-rank, was also proposed. Finally,
it was shown how the intermediate calculations required in the EM algorithm can
be used to calculate the log-likelihood and the gradient of the log-likelihood for this
maximum-likelihood structured covariance estimation problem.

REFERENCES

[1] L. Marple, Digital Spectral Analysis with Applications, Prentice-Hall, Englewood Cliffs, NJ,
1987.

[2] S. Kay, Modern Spectral Estimation, Theory and Application, Prentice-Hall, Englewood Cliffs,
NJ, 1988.

[3] S. Haykin, ed., Advances in Spectrum Analysis and Array Processing, Vol. 1, Prentice-Hall,
Englewood Cliffs, NJ, 1991.

[4] S. Haykin, ed., Advances in Spectrum Analysis and Array Processing, Vol. 2, Prentice-Hall,
Englewood Cliffs, NJ, 1991.

[5] P. Stoica and R. Moses, Introduction to Spectral Analysis, Prentice-Hall, Upper Saddle River,
NJ, 1997.

[6] J. Burg, D. Luenberger, and D. Wenger, Estimation of structured covariance matrices,
Proc. IEEE, 70 (1982), pp. 963–974.

[7] M. Miller and D. Snyder, The role of likelihood and entropy in incomplete-data problems:
Application to estimating point-processing intensities and Toeplitz constrained covariances,
Proc. IEEE, 75 (1987), pp. 892–907.

[8] D. Fuhrmann and M. Miller, On the existence of positive-definite maximum-likelihood esti-
mates of structured covariance matrices, IEEE Trans. Inform. Theory, 34 (1988), pp. 722–
729.

[9] T. Barton and D. Fuhrmann, Estimation of block-Toeplitz covariances, in Proceedings of the
24th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 1990,
pp. 779–783.

[10] T. Barton and S. Smith, Structured covariance estimation for space-time adaptive processing,
in Proceedings of the IEEE ICASSP97, Munich, Germany, 1997, pp. 3493–3496.

[11] F. Robey and D. Fuhrmann, Structured covariance and signal estimation, adaptive beam-
forming and detection, in Proceedings of the 1990 Conference on Information Science and
Systems, Princeton University, Princeton, NJ, 1990, pp. 836–840.

[12] A. Lanterman, Statistical imaging in radio astronomy via an expectation-maximization algo-
rithm for structured covariance estimation, in Statistical Methods in Imaging: Medicine,
Optics, and Communication, J. O’Sullivan, ed., Springer-Verlag, to appear (preprint avail-
able at http://users.ece.gatech.edu/˜lanterma/adl-monographs.html).

[13] D. Rieken, D. Fuhrmann, and A. Lanterman, Spatial spectrum estimation for time-varying
arrays using the EM algorithm, in Proceedings of the 38th Allerton Conference on Com-
munications, Control, and Computing, University of Illinois, 2000, pp. 648–657.

[14] D. Snyder, J. O’Sullivan, and M. Miller, The use of maximum likelihood estimation for
forming images of diffuse radar targets from delay-Doppler data, IEEE Trans. Inform.
Theory, 35 (1989), pp. 536–548.

[15] P. Moulin, J. O’Sullivan, and D. Snyder, A method of sieves for multiresolution spectrum
estimation and radar imaging, IEEE Trans. Inform. Theory, 38 (1992), pp. 801–813.

[16] D. Fuhrmann and L. Boggio, Radar imaging from multiple viewpoints and multiple noncoher-
ent data sets, in Proceedings of the 2004 Conference on Information Science and Systems,
Princeton University, Princeton, NJ, 2004, pp. 1093–1098.

[17] A. Dempster, N. Laird, and D. Rubin, Maximum likelihood from incomplete data via the
EM algorithm, J. Roy. Statist. Soc. Ser. B, 39 (1977), pp. 1–38.

[18] C. Lawson and R. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs,
NJ, 1974.

[19] G. Golub and C. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University Press,
Baltimore, MD, 1989.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 870–894

A MULTIGRID METHOD TO SOLVE LARGE SCALE SYLVESTER
EQUATIONS∗

LARS GRASEDYCK† AND WOLFGANG HACKBUSCH†

Abstract. We consider the Sylvester equation AX−XB+C = 0, where the matrix C ∈ R
n×m

is of low rank and the spectra of A ∈ R
n×n and B ∈ R

m×m are separated by a line. The solution X
can be approximated in a data-sparse format, and we develop a multigrid algorithm that computes
the solution in this format. For the multigrid method to work, we need a hierarchy of discretizations.
Here the matrices A and B each stem from the discretization of a partial differential operator of elliptic
type. The algorithm is of complexity O(n+m), or, more precisely, if the solution can be represented
with (n + m)k data (k ∼ log(n + m)), then the complexity of the algorithm is O((n + m)k2).

Key words. fast solver, Lyapunov equation, Riccati equation, Sylvester equation, control
problem, low rank approximation, multigrid method

AMS subject classifications. 65F05, 65F30, 65F50

DOI. 10.1137/040618102

1. Introduction. In this article we consider the matrix Sylvester equation

AX −XB + C = 0,

where A ∈ R
n×n, B ∈ R

m×m, and C ∈ R
n×m are given input matrices, and the sought

solution is X ∈ R
n×m. We make two assumptions concerning the matrices A,B,C.

First, A and −B are stiffness matrices from the discretization of a linear elliptic
partial differential operator. This allows for the use of a multigrid method to solve
the Sylvester equation in O(nm) for a general matrix C. In the outlook we comment
on the case when A and B are general sparse matrices.

Second, the matrix C is of low rank kC , i.e., given in factorized form C = UV T ,
with matrices U ∈ R

n×k, V ∈ R
m×k. Under these assumptions the solution X can

be approximated by a matrix X̃ of rank k = O(| log ε|kC) such that ‖X − X̃‖2 ≤ ε.
The multigrid method can be adapted so that it is of linear complexity O((n+m)k2)
instead of quadratic complexity.

In the following section we will consider a simple model problem where the multi-
grid techniques are applicable without further complications. The model is an opti-
mal control problem that leads to an algebraic matrix Riccati equation, which can
be solved iteratively by Newton’s method so that in each step a Lyapunov equation
ATX + XA = C has to be solved. Such a Lyapunov equation is a special case of
the more general Sylvester equation. We also give an example from model reduction
where the Sylvester equation appears directly for the computation of cross-Gramians.
In section 2 we give a short introduction to low rank arithmetics. Section 3 examines
the tensor structure of a Sylvester equation, and as a special case we consider diagonal
Sylvester equations in section 4. This special case is the basis for the Jacobi iteration
introduced in section 5. In section 6 we derive the multigrid method and prove its
convergence. Last we present numerical results for large scale matrix equations.

∗Received by the editors November 2, 2004; accepted for publication (in revised form) by
V. Mehrmann April 24, 2007; published electronically August 22, 2007.

http://www.siam.org/journals/simax/29-3/61810.html
†Department of Scientific Computing, Max Planck Institute for Mathematics in the Sciences,

Inselstr. 22-26, D-04103 Leipzig, Germany (lgr@mis.mpg.de, wh@mis.mpg.de).

870

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 871

1.1. Model problem. The model problem to be introduced in this section is the
(distributed) control of the two-dimensional heat equation (cf. [13] and the references
therein) which is used, e.g., in optimal control problems for the selective cooling of
steel [14]. The domain where the PDE is posed is the unit square. Using a uniform
tensor mesh, it allows for a simple discretization. Of course, the method that we
propose is in no way limited to regular grids or simple PDEs, but it simplifies both
the implementation and the presentation.

1.1.1. Continuous model. We fix the domain Ω := (0, 1) × (0, 1) and the
boundary Γ := ∂Ω. The goal is to minimize the quadratic performance index

J(u) :=

∫ ∞

0

(
y(t)2 + u(t)2

)
dt

for u ∈ L2(0,∞) and the output y ∈ L2(0,∞) of the corresponding control system

(1.1)

∂tx(t, ξ) = ∂2
ξ1
x(t, ξ) + ∂2

ξ2
x(t, ξ) + κ(ξ)u(t), ξ ∈ Ω, t ∈ (0,∞),

x(t, ξ) = 0, ξ ∈ Γ, t ∈ (0,∞),

x(0, ξ) = x0, ξ ∈ Ω,

y(t) :=
∫
Ω
ω(ξ)x(t, ξ)dξ, t ∈ (0,∞).

The values of κ and ω are

κ(ξ) :=

{
1 ξ ∈ (1

2 , 1) × (0, 1),

0 otherwise,
ω(ξ) :=

{
1 ξ ∈ (0, 1) × (1

2 , 1),

0 otherwise.

Here we focus on a single-input–single-output system, but a generalization to multiple
inputs and multiple outputs is straightforward.

We seek the optimal control u∗ in linear state feedback form

u∗(t, ·) = Πx(t, ·),

but since an analytic solution is available only for special cases, we construct a se-
quence of (semi)discretizations. For each discretization level � = 0, 1, . . . an approxi-
mation Π� to the operator Π is computed so that Π� → Π [4, 13].

1.1.2. Semidiscretization by finite differences. The differential equation
(1.1) is discretized by finite differences on a uniform mesh of [0, 1]2 with n interior
grid points (xi)

n
i=1 and mesh width h = (

√
n + 1)−1. By φi we denote the piecewise

linear interpolant on the mesh with φi(xi) = 1 and φi(xj) = 0 for j �= i. The
corresponding space-discrete system is

(1.2)

∂tx(t) = Ax(t) + Ku(t), t ∈ (0,∞),

x(0) = x0,

y(t) := Wx(t), t ∈ (0,∞),

where A := AFD ∈ R
n×n is the standard finite difference discretization of the 2d

Laplacian, x(t) ∈ R
n, u(t), y(t) ∈ R, and the vectors K := KFD ∈ R

n and W ∈ R
n

are

(1.3) KFD
i := κ(xi), Wi :=

∫
Ω

ω(ξ)φi(ξ)dξ.

The stiffness matrix A is symmetric negative definite, sparse, and ill-conditioned.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

872 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

1.1.3. Semidiscretization by finite elements. Instead of the finite difference
discretization from the previous section we can as well discretize (1.1) in the weak
or variational form by finite elements on a uniform mesh of [0, 1]2 with n interior
grid points (xi)

n
i=1, mesh width h = (

√
n + 1)−1, and piecewise linear basis functions

(φi)
n
i=1. The corresponding space-discrete system is (1.2), where W is defined as in

(1.3), K := KFEM := E−1KFD for the matrix KFD from (1.3), and A := E−1AFEM

for the matrices

(1.4) AFEM
i,j :=

∫
Ω

〈∇φi(ξ),∇φj(ξ)〉dξ, Ei,j :=

∫
Ω

φi(ξ)φj(ξ)dξ.

The mass matrix E is symmetric positive definite, well-conditioned, and sparse. The
system matrix A = E−1AFEM has a negative spectrum and is nonsymmetric, dense,
and ill-conditioned. Therefore, one avoids working with A and instead uses a gener-
alized formulation; see (1.7).

1.1.4. Linear state feedback control. The discrete optimal control u can be
realized in linear state feedback form [12]

u(t) = −KTXx(t), t ∈ [0,∞),

where X is the unique solution—in the set of symmetric positive semidefinite matrices—
to the algebraic matrix Riccati equation

(1.5) ATX + XA−XKKTX + WWT = 0.

The matrix A is of size n × n. The matrices KKT and WWT are of size n × n and
are data-sparse in the sense that only K and W have to be stored, i.e., 2n entries.

1.1.5. Solution of the algebraic matrix Riccati equation. The nonlinear
equation (1.5) can be solved by Newton’s method [11]. The initial guess X0 := 0 is
sufficient to guarantee global convergence, but in the context of multilevel methods
a good initial guess can also be obtained by a coarser level solution in the nested
iteration. In each step i of Newton’s method, we have to solve a Lyapunov equation

(1.6) AT
i Xi + XiAi + Ci = 0,

where the matrices Ai and Ci are of the form

Ai := A−KKTXi−1, Ci := WWT −Xi−1KKTXi−1.

For the finite difference discretization A = AFD the negative definite matrix Ai in
the ith step of Newton’s method is data-sparse in the sense that only the sparse n×n
matrix A, the vector K, and the vector KTXi−1 have to be stored. For Ci we have
to store W and Xi−1K in addition.

For the finite element discretization it is advantageous to consider the generalized
Lyapunov equation.

Lemma 1.1. Let A,K,W denote the matrices of the space-discrete system (1.2)

for the finite element discretization (1.4). Let X̂i be the unique solution to the gener-
alized Lyapunov equation

(1.7) ÂT
i X̂iE + EX̂iÂi + Ĉi = 0,

where the matrices Âi, Ĉi are

Âi := AFEM −KFD(KFD)T X̂i−1E, Ĉi := WWT − EX̂i−1K
FD(KFD)T X̂i−1E.

Then the solution Xi to (1.6) is Xi = EX̂iE.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 873

Proof. By inserting X̂i = E−1XiE
−1 we get

ÂT
i X̂iE = (AFEM −KFD(KFD)T X̂i−1E)TE−1XiE

−1E

= (E−1AFEM − E−1KFD(KFD)TE−1EX̂i−1E)TXi

= (E−1AFEM −KKTXi−1)
TXi

= AT
i Xi

and analogously for EX̂iÂi = XiAi. The right-hand side fulfils

Ĉi = WWT − EX̂i−1K
FD(KFD)T X̂i−1E = WWT −Xi−1KKTXi−1 = Ci.

The matrices Âi in the generalized Lyapunov equation (1.7) are data-sparse in

the sense that AFEM is sparse and the matrix KFD(KFD)T X̂i−1M of rank 1.
The Lyapunov equation (1.6) is a special Sylvester equation which is of the form

(1.8) AX −XB + C = 0

for the matrices A := AT
i , B := −Ai, and C := Ci. A Sylvester equation is uniquely

solvable for all matrices C if and only if the spectra of A and B are disjoint. In our
setting the matrix Ai is negative definite, and therefore A < 0 and B > 0 such that
the existence of a unique solution is guaranteed.

In the following subsection 1.3 we determine a suitable format for an approxima-
tion to the solution X of the Sylvester equation (1.8) where the matrix C is of low
rank.

1.2. Second model problem. The model problem of this section is identical
to the linear time invariant control problem (1.1) except that the governing PDE is
now

ẋ(t, ξ) = ∂2
ξ1x(t, ξ) + ∂2

ξ2x(t, ξ) + β∂ξ1x(t, ξ) + κ(ξ)u(t),

leading to a discrete system

ẋ(t) = Ax(t) + Ku(t), y(t) = WTx(t)

with a nonsymmetric matrix A. We aim at finding a lower order system

˙̂x(t) = Âx̂(t) + K̂u(t), y(t) = ŴT x̂(t)

so that Â is considerably smaller than A while the input-output error is bounded and
the reduced system stable [2]. The reduced system can be constructed based on a low
rank approximation X̃ of the so-called cross-Gramian X which is the solution of the
Sylvester equation [2]

AX + XA + KWT = 0.

1.3. Structure of the solution. In the ith step of Newton’s method to solve
the algebraic matrix Riccati equation (1.5), we have to solve a Sylvester equation
(1.8) where the matrix C is of rank at most

rank(C) ≤ rank(WWT) + rank(Xi−1KKTXi−1) ≤ 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

874 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

Since the discrete system (1.2) involves a discretization error, it is reasonable to solve
the Sylvester equation only up to an accuracy ε of the size of the discretization error;
i.e., we seek an approximation X̃ to the solution X of (1.8) such that

‖X − X̃‖2 ≤ ε‖X‖2.

The idea now is to choose a matrix X̃ that allows for a data-sparse representation.
Definition 1.2 (R(k)-matrix representation). Let k, n,m ∈ N. A matrix R ∈

R
n×m is called an R(k)-matrix (given in R(k)-representation) if R is represented in

factorized form

(1.9) R = UV T , U ∈ R
n×k, V ∈ R

m×k,

with U, V in full matrix representation.
The two factors in the representation (1.9) of an R(k)-matrix involve k(n + m)

values to be stored. The matrix-vector multiplication y := Rx can be done in two
steps involving the two matrix-vector products z := V Tx and y := Uz that consist of
O(k(n + m)) basic arithmetic operations.

The R(k)-matrix format is a suitable representation for matrices of rank at most
k: Each matrix of rank at most k can be written in the factorized form (1.9) by use
of a (reduced) singular value decomposition, and each matrix of the form (1.9) is of
rank at most k. The next theorem proves the existence of a low rank approximant X̃
to the solution X of (1.8).

Theorem 1.3 (existence of a low rank approximant). Let A ∈ R
n×n and B ∈

R
m×m be matrices with spectrum σ(A) and σ(B) separated by a line (e.g., negative

and positive). Then for each matrix C ∈ R
n×m of rank at most kC and each 0 < ε < 1

there exists a matrix X̃ ∈ R
n×m that approximates the solution X to (1.8) by

(1.10) ‖X − X̃‖2 ≤ ε‖X‖2,

where the rank of X̃ is bounded by rank(X̃) ≤ kCkε, kε = O(log(1/ε)).
The proof of Theorem 1.3 is given in [6] (see also [16, 1]). One should note that

the rank kε depends on the location of the spectra of A and B. In our model problem
this is k = O(log(1/ε) log(n)).

1.4. Large scale Sylvester equations. A fixed Sylvester equation (1.8) can,
e.g., be solved by the Bartels–Stewart algorithm [3], which is of complexity O(n3).
In the context of large scale Sylvester equations (i.e., n > 105) one is interested in
reducing the complexity for a certain class of matrices A,B,C.

Hu and Reichel [20] propose to use Krylov subspace methods for the solution of
the Sylvester equation. In each iterative step the equation is projected to a small
dimension where one can use, e.g., the Bartels–Stewart algorithm as a solution. The
authors do not exploit some kind of low rank structure but the fact that A and
B allow for a fast matrix-vector multiplication. One step of their algorithm is of
complexity O(nm), and the necessary number of iterations increases as the condition
of the Sylvester equation increases.

Li and White [15] propose an iterative method for the solution of the Lyapunov
equation based on the factorization of the matrix C and the solution X. Their method
is a special implementation of the classical ADI algorithm (previously proposed by
Penzl [18]) and requires the solution of a shifted linear system A − λI in each step.
The number J of steps necessary to gain a good approximation X̃ to X depends on
the choice of the shifts λ. For the nonsymmetric case there is no nontrivial upper

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 875

bound for J . The main problem is that the approximation of rank J (after J steps
of ADI) is not necessarily close to a best approximation of rank J .

Penzl [17] presents a multigrid method to compute the solution X to the Lyapunov
equation, but he does not exploit the fact that X can—at least if C is of low rank—be
approximated by a low rank matrix X̃; therefore, the complexity of one multigrid step
is O(n2). He also gives a convergence analysis for a simple model problem and proves
that the convergence rate is bounded independently of the problem size n.

In this paper, we explain how one can compute a low rank approximation X̃ to
the solution X of (1.8) by use of the multigrid method. We use the usual Jacobi
smoother and standard prolongation and restriction operators but extend the basic
multigrid cycle by a projection step Xi �→ Tk(Xi) that ensures that the rank of the
ith iterate Xi is bounded. For a sufficiently large rank k the error ‖Xi − Tk(Xi)‖
due to the projection of the iterate Xi (cf. section 2) can be regarded as the standard
truncation error due to limited machine precision.

Each multigrid step is of complexity O(n + m), and a nested iteration combined
with a level independent good convergence rate guarantees that we need only O(1)
steps to solve the equation up to the discretization error.

The convergence analysis for simple model problems turns out to be fairly trivial.
The structure of the Sylvester equation allows us to carry results for linear systems
Ax = b over to the Sylvester equation such that the convergence rate can be bounded
also for general domains and operators. The effect of the projection to low rank in
the multigrid cycle can be regarded as a reduction of the machine precision. In our
numerical tests the convergence rate is not deteriorated by the projection.

2. R(k)-matrix arithmetics. The set of n × m R(k)-matrices is not a linear
space because the addition of two matrices of rank at most k might result in a matrix
of rank larger than k. In this sense the R(k)-matrix format is not suitable for iterative
solution schemes for the Sylvester equation.

However, R(k)-matrices allow for an efficient singular value decomposition such
that the projection (a best approximation) to lower rank is of complexity O(k2(n+m)).
This projection can be used to keep the iterates in the set R(k).

Lemma 2.1 (reduced SVD, truncation). (a) Let R = UV T ∈ R
n×m be an R(k)-

matrix. A reduced singular value decomposition of R can be computed with complexity
NR,SVD(n,m, k) � 6k2(n + m) + 23k3 as follows:

1. Calculate a (reduced) QR-decomposition U = QURU of U , QU ∈ R
n×k, RU ∈

R
k×k.

2. Calculate a (reduced) QR-decomposition V = QV RV of V , QV ∈ R
m×k, RV ∈

R
k×k.

3. Calculate a singular value decomposition RUR
T
V = ŨΣṼ T .

4. Define Û := QU Ũ and V̂ := QV Ṽ .
Then R = ÛΣV̂ T is a (reduced) SVD. Due to [5, sections 5.2.9 and 5.4.5], the

complexity of the previous steps is

QR-decomposition of U : 4nk2

QR-decomposition of V : 4mk2

Multiplication of RUR
T
V : 2k3

SVD of RUR
�
V : ≈ 21k3

Multiplication of QU Ũ and QV Ṽ : 2nk2 + 2mk2

Altogether: NR,SVD(n,m, k) = 6k2(n + m)+ 23k3

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

876 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

Table 2.1

Time in seconds for the reduced SVD of an n× n R(k)-matrix, n = 10242.

Rank k = 4 k = 8 k = 16 k = 32 k = 64 k = 128
Time 6.19 15.32 49.37 172.73 653.40 2637.5

(b) A truncation of an R(k)-matrix R to rank k′ ≤ k is defined as the best
approximation with respect to the Frobenius and spectral norm of R in the set of R(k′)-

matrices. This can be computed by using the first k′ columns of the matrices ÛΣ and
V̂ from the reduced singular value decomposition of R with the same complexity as
above. We denote the truncation to k′ by the symbol

(2.1) Tk′ .

If k′ ≥ k, then Tk′ is the identity. In the R(k)-matrix representation (1.9), the
matrices U, V are extended by k′ − k zero columns.

We remark that the truncation in part (b) becomes nonunique when the k′th and
(k′ + 1)st singular values are equal.

Lemma 2.2 (spectral and Frobenius norm). The spectral and Frobenius norm
of an n × m R(k)-matrix R can be computed as in Lemma 2.1a with complexity
NR,‖·‖(n,m, k) � 4k2(n + m) + 23k3.

Proof. The norms can be obtained from the singular values; i.e., steps 1–3 from
Lemma 2.1a are to be performed.

Example 2.3 (complexity of the truncation in practice). We implement the trunca-
tion procedure of Lemma 2.1 on a SUN UltraSPARC III with 900 MHz CPU clock
rate and 150 MHz memory clock rate by use of the LAPACK subroutines dgeqrf

and dgesvd for the QR-factorization and singular value decomposition of full matri-
ces. The 10242×10242 matrix R of rank k is given in R(k)-matrix representation and
has random entries in the factors U, V . We truncate R down to rank k/2. The time
in seconds to compute the result is given in Table 2.1.

3. Tensor structure of the Sylvester equation. In order to formulate and
analyze the iterative solutions for the Sylvester equation, we need to reformulate the
matrix equation in terms of a standard linear system of equations. For notational
purposes we also introduce the Kronecker product formulation.

3.1. Algebraic structure. The Sylvester equation (1.8) can be written (for
each entry (i, j)) in the form

n∑
ν=1

AiνXνj −
m∑

ν=1

XiνBνj = −Cij ,

which means that the entries of the Sylvester operator SA,B : R
n×m → R

n×m, X �→
AX −XB are

(3.1) SA,B
ij,pq = δjqAip − δipBqj , δjq =

{
1 if j = q,
0 otherwise.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 877

If we order the indices columnwise (rowwise), the matrix representation is

SA,B
col =

⎡⎢⎣ A
. . .

A

⎤⎥⎦−

⎡⎢⎣ B11I · · · Bm1I
...

. . .
...

B1mI · · · BmmI

⎤⎥⎦ ,

SA,B
row =

⎡⎢⎣ A11I · · · A1nI
...

. . .
...

An1I · · · AnnI

⎤⎥⎦−

⎡⎢⎣ B
. . .

B

⎤⎥⎦ .

The Kronecker product

X ⊗ Y :=

⎡⎢⎣ X11Y · · · X1nY
...

. . .
...

Xn1Y · · · XnnY

⎤⎥⎦
allows us to use the short notation

SA,B := SA,B
col = I ⊗A−BT ⊗ I.

For the finite element discretization it was advantageous to consider the generalized
Sylvester operator

SA,B,E : R
n×m → R

n×m, X �→ AXE − EXB,

which can be written in terms of the Kronecker product by

SA,B,E = E ⊗A−BT ⊗ E;

i.e., the entries of the matrix SA,B,E are

SA,B,E
ij,pq = EjqAip − EipBqj .

3.2. Analytic structure. In this section we want to identify the matrices SA,B

and SA,B,E of the (generalized) Sylvester operator as the discretization of a tensor
product operator on the tensor domain Ω × Ω. This will enable us to use proofs of
multigrid convergence for the product operator.

3.2.1. Finite element discretization. We consider the finite element Galerkin
discretization of the operator A : H1

0 (Ω × Ω) ×H1
0 (Ω × Ω) → H−1(Ω × Ω)

(3.2) A[u](x, y) = −
2∑

ν=1

∂2
xν
u(x, y) −

2∑
ν=1

∂2
yν
u(x, y)

using the set Vn2 := {ϕij | i, j = 1, . . . , n} of tensor product basis functions based on
the basis functions φi from section 1.1.3:

ϕij(x, y) := φi(x)φj(y), x, y ∈ Ω.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

878 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

The Galerkin stiffness matrix is the matrix A with entries

Aij,pq =

∫
Ω

∫
Ω

〈∇xϕij(x, y),∇xϕpq(x, y)〉 + 〈∇yϕij(x, y),∇yϕpq(x, y)〉 dxdy

=

∫
Ω

∫
Ω

〈∇φi(x),∇φp(x)〉φj(y)φq(y) + 〈∇φj(y),∇φq(y)〉φi(x)φp(x) dxdy

=

∫
Ω

〈∇φi(x),∇φp(x)〉 dx

∫
Ω

φj(y)φq(y) dy

+

∫
Ω

〈∇φj(y),∇φq(y)〉 dy

∫
Ω

φi(x)φp(x) dx

= AipEjq + EipAjq = SA,A,E
ij,pq ,

where A,E are the stiffness and mass matrices from section 1.1.3 and SA,A,E is the
Sylvester operator from section 3.1. Therefore, A is just another notation for SA,A,E ,
but it allows us to regard it as a standard finite element discretization of an elliptic
operator; hence, standard multigrid theory can be applied.

3.2.2. Finite difference discretization. For a finite difference discretization
of the operator (3.2) one can derive as in the previous section

A
FD
ij,pq = SA,A

ij,pq, i.e., A
FD = SA,A,

where A is the finite difference matrix from section 1.1.2.
Before we introduce the multigrid method, we first consider one important in-

gredient, namely, the smoother. The standard smoother used in a multigrid method
is Jacobi (or Gauss–Seidel), which requires in our setting the solution of diagonal
Sylvester equations (resp., diagonal generalized Sylvester equations).

4. Diagonal Sylvester equation. A diagonal Sylvester equation

(4.1)

⎡⎢⎣ a1

. . .

an

⎤⎥⎦X −X

⎡⎢⎣ b1
. . .

bm

⎤⎥⎦ + C = 0

with ai < bj for all 1 ≤ i ≤ n and 1 ≤ j ≤ m allows for a direct solution by

(4.2) Xij = Cij/(bj − ai).

If the matrix C is of rank 1 with R(1)-matrix representation C = cdT , then

X =

⎡⎢⎣ c1
. . .

cn

⎤⎥⎦
⎡⎢⎣ (b1 − a1)

−1 · · · (bm − a1)
−1

...
. . .

...
(b1 − an)−1 · · · (bm − an)−1

⎤⎥⎦
⎡⎢⎣ d1

. . .

dm

⎤⎥⎦ .

The following Lemma 4.2 proves that the Cauchy matrix Cij = (bj − ai)
−1 allows for

a low rank approximation (a special case of Theorem 1.3). The idea is to construct a
separable representation for the function

f(x, y) :=
1

x− y
≈

k∑
ν=1

gν(x)hν(y)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 879

so that

Cij ≈
k∑

ν=1

gν(bj)hν(ai).

However, if the distance between the sets

Ia := {a1, . . . , an} and Ib := {b1, . . . , bm}
is small compared to their diameters, then the separable approximation requires a
large rank k. Therefore we subdivide the sets Ia and Ib into subsets t ⊂ Ia and s ⊂ Ib
so that they fulfil the admissibility condition

(4.3) min{diam(t),diam(s)} ≤ dist(t, s).

An explicit construction is given in the following.
Construction 4.1 (local R(k)-matrix approximation of the Cauchy matrix).

Let t ⊂ Ia and s ⊂ Ib fulfil (4.3) and let

t0 :=
1

2
(min
ai∈t

ai + max
ai∈t

ai), s0 :=
1

2
(min
bj∈s

bj + max
bj∈s

bj).

Then we define for i ∈ t and j ∈ s the approximation

C̃ij :=

{ ∑k
ν=0(t0 − bj)

−ν−1(t0 − ai)
ν if diam(t) ≤ diam(s),∑k

ν=0(ai − s0)
−ν−1(bj − s0)

ν otherwise.

The matrix C̃i∈t,j∈s is an R(k)-matrix where the factors U, V are

Uiν :=

{
(t0 − ai)

ν if diam(t) ≤ diam(s),
(ai − s0)

−ν−1 otherwise,

Vjν :=

{
(t0 − bj)

−ν−1 if diam(t) ≤ diam(s),
(bj − s0)

ν otherwise.

Lemma 4.2 (local approximation error). Let t, s, and C̃ be as in Construction
4.1 and let 0 < ε < 1. Then

(4.4) |C̃ij − Cij | ≤ ε|Cij |
holds for all i ∈ t,j ∈ s and a rank

k := �log3(1/ε)� + 1.

Proof. Without loss of generality we assume diam(t) ≤ diam(s). The exact Taylor
expansion of f with respect to x is

f(x, y) =

∞∑
ν=0

1

ν!
∂ν
xf(t0, bj)(ai − t0)

ν =

∞∑
ν=0

(t0 − bj)
−ν−1(t0 − ai)

ν .

Using this representation and the assumption (4.3) we get

|C̃ij − Cij | =
∣∣∣ ∞∑
ν=k

(t0 − bj)
−ν−1(t0 − ai)

ν
∣∣∣ ≤

∞∑
ν=k

|t0 − bj |−ν−1|t0 − ai|ν

≤
∞∑

ν=k

(
dist(t, s) +

1

2
diam(t)

)−ν (
1

2
diam(t)

)ν

|t0 − bj |−1

(4.3)

≤
∞∑

ν=k

3−ν |t0 − bj |−1 = 3−k+1 1

2
|t0 − bj |−1 ≤ ε|Cij |.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

880 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

st st

Fig. 4.1. Recursive subdivision of one (left) or two (right) subintervals and the corresponding
partitions of the Cauchy matrix C.

In order to satisfy the admissibility condition (4.3) there are two strategies.
First, we can subdivide the set t recursively into two parts t1 and t2 of half the

diameter so that one of the two is admissible to s (cf. Figure 4.1). The other one
is then further subdivided until the diameter is less than the distance to s. This
strategy produces blocks t′ × s, t′ ⊂ t, for which we can apply Construction 4.1. The

number of blocks is p := �log2(
diam(t)
dist(t,s))� + 1. In total we have to store and compute

O(pk(n + m)) entries of the R(k)-matrix representation.
Second, we can subdivide always both sets s and t each into two parts of half

the diameter so that three of the four pairs are admissible and the fourth one has
to be subdivided further (cf. Figure 4.1). This strategy will then produce p :=

3�log2(
diam(t)
dist(t,s))� + 1 blocks (more than the first strategy), but they are of different

size which is decaying geometrically. Therefore we have to store and compute only
O(k(n + m)) entries of the R(k)-matrix representations.

In both cases, the rank of the approximation C̃ is pk. In the second case we can
exploit the hierarchical structure for the efficient computation of an approximation
for X. We will give the details later in Construction 4.5.

Corollary 4.3 (approximation error). Let C̃ be an approximation to the Cauchy
matrix with relative error ε, i.e., |C̃ij − Cij | ≤ ε|Cij | for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Let C be an R(kC)-matrix with entries Cij =
∑kC

ν=1 c
(ν)
i d

(ν)
j . Then the matrix X̃ij :=∑kC

ν=1 c
(ν)
i C̃ijd(ν)

j approximates the solution X to (4.1) by

|Xij − X̃ij | ≤ ε|Xij |, ‖X − X̃‖F ≤ ε‖X‖F .

Proof.

|Xij − X̃ij | =

∣∣∣∣∣
kC∑
ν=1

c
(ν)
i d

(ν)
j

∣∣∣∣∣ |C̃ij − Cij | ≤ ε

∣∣∣∣∣
kC∑
ν=1

c
(ν)
i d

(ν)
j

∣∣∣∣∣ |Cij | = ε|Xij |.

Remark 4.4 (adaptive choice of the rank). In practice, one is interested in a good
approximation C̃ to the Cauchy matrix C, preferably an approximation with minimal
rank for a prescribed accuracy ε. Our construction yields only a suboptimal candidate
where the rank is higher than necessary. In the multigrid method the approximation
C̃ will be used several times, such that it pays to spend more effort in the computation
of C̃. One way to do this is to compute a candidate C̃1 as above up to accuracy ε/10
and compute an approximant C̃ to C̃1 up to accuracy ε with minimal rank by use of
the reduced singular value decomposition of Lemma 2.1.

The construction of a good low rank approximant C̃ to the Cauchy matrix bears
two bottlenecks:

First, one has to store a matrix of rank pk. For a large scale problem with
n = m = 106, |b1 − an| = 10−3, |an − a1| = 1, and ε = 10−6, there are more than 300
million entries to be stored, which requires more than two Gigabytes of memory in
double precision arithmetic.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 881

Second, the estimated rank pk (in the above example pk = 154) is typically too
large. The truncation to lower rank is of quadratic complexity in the rank, which
means prohibitively expensive (cf. Example 2.3).

Construction 4.5 (hierarchical construction). Assume that C is subdivided
as indicated in Figure 4.1. The construction consists of three parts. In part 1 we
define the blockwise local approximation of C. In part 2 we construct a blockwise local
approximation of X, and in part 3 we combine the blocks to a global approximation
X̃ of X.

Part 1. For each of the blocks t × s ⊂ Ia × Ib we define the approximation
C̃|t×s as in Construction 4.1 but with a different target accuracy by taking the rank
k′ := �log3(ε

−1/3)� + 1.

Part 2. Let C =
∑kC

ν=1 c
(ν)(d(ν))T . The matrix X is blockwise of the form

X|t×s =

kC∑
ν=1

diag(c(ν)|t) C|t×s diag(d(ν)|s),

and we approximate it by

X̃ ′|t×s :=

kC∑
ν=1

diag(c(ν)|t) C̃|t×s diag(d(ν)|s).

At last we recompress the matrix blockwise by use of the reduced SVD to find a minimal
rank approximation X̃ ′′|t×s so that

‖X̃ ′|t×s − X̃ ′′|t×s‖F ≤ ε

3
‖X̃ ′|t×s‖F .

Part 3. We define X̃ recursively, starting with the largest block Ia × Ib and going
down recursively. On each level (level number � = 1 for the largest block, level number
� = 2 for the blocks of half the size, and so forth) with corresponding block t × s, we
prescribe an accuracy of

ε� := 2−� ε

3
‖X̃ ′′‖F .

Let t × s be a block that is subdivided into t1 × s1, t2 × s1, t1 × s2, t2 × s2. Then we
define

X̃t,s := Tk

([
X̃ ′′|t1×s1 X̃ ′′|t1×s2

X̃t2,s1 X̃ ′′|t2×s2

])

by use of the truncation operator from (2.1) and a target accuracy ε� in the absolute
Frobenius norm.

The relative Frobenius norm accuracy ‖X − X̃‖F /‖X‖F for the approximation
X̃ := X̃Ia,Ib will be estimated in the following lemma.

Lemma 4.6. For the approximation X̃ from Construction 4.5 holds:

‖X − X̃‖F ≤ ε‖X‖F + O(ε2).

The complexity of the hierarchical construction is O((n+m)(k2
C(k′)2 +k2

final)), where
k′ is the rank used for the local approximation of the Cauchy matrix, kC is the rank
of the matrix C, and kfinal is the rank used for the approximation of the solution X.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

882 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

Proof. (1) Approximation error. The Cauchy matrix approximation in part 1 of
Construction 4.5 was chosen such that |Cij − C̃ij | ≤ ε|Cij |/3. From Corollary 4.3 we

conclude ‖X̃ ′ − X‖F ≤ ε‖X‖F /3. In part 2 of Construction 4.5 the matrix X̃ ′ is
recompressed so that

‖X − X̃ ′′‖F ≤ ‖X − X̃ ′‖F + ‖X̃ ′ − X̃ ′′‖F ≤ ε‖X‖F /3 + ε‖X‖F /3 + O(ε2).

Next we will show that ‖X̃ ′′ − X̃‖F ≤ ε‖X‖F /3 + O(ε2), which gives the desired
estimate.

The truncation accuracy in part 3 of Construction 4.5 yields on each level � of a
block t× s

‖X̃t,s − X̃ ′′|t×s‖F ≤ ε� = 2−�ε‖X̃ ′′‖F /3.

Over all levels � = 1, . . . this sums up to

∞∑
�=1

ε� =
1

3
ε‖X̃ ′′‖F =

1

3
ε‖X‖F + O(ε2).

(2) Complexity. Part 1 of Construction 4.5 is of complexity 21−�k′n for a block
on level �. On each level there are at most three blocks so that this sums up to

∞∑
�=1

21−�3k′n ≤ 6k′n.

In part 2 we truncate each of the blocks (we neglect the diagonal scaling). Due to
Lemma 2.1 the complexity is bounded by

∞∑
�=1

21−�3n(kCk
′)2 ≤ 6k2

C(k′)2n.

At last we combine the blocks levelwise. On each level we add four matrices, each of
rank at most kfinal, so that the complexity is bounded by

∞∑
�=1

21−�nk2
final ≤ 2k2

finaln.

In order to illustrate the benefits and the complexity of Construction 4.1 and the
alternatives from Remark 4.4 and Construction 4.5, we test the method for a simple
artificial model problem.

Example 4.7. The entries of the diagonal matrices A and B are

ai = −i, bj = j, 1 ≤ i, j ≤ 10242.

We want to approximate the solution X and the Cauchy matrix C for a matrix C of
rank kC = 5 up to an accuracy of ε := 10−6 by approximations C̃ and X̃ of minimal
rank.

According to Construction 4.5 we compute the approximant in three steps:
1. (Part 1) Hierarchical approximation of C by C̃. Since the entries of C̃ are

derived analytically, this is very fast. The blockwise rank k is 15 (as defined
in Construction 4.5).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 883

2. (Part 2) Blockwise approximation in the R(k)-matrix format.
3. (Part 3) Hierarchical conversion to the R(k)-matrix format.

The following table displays the times the three steps take and the amount of storage
needed (in the first step for C̃ and in the second and third step for X̃ ′′ and X̃,
respectively). The numerical tests were performed on a SUN UltraSPARC III with
900 MHz CPU clock rate and 150 MHz memory clock rate.

time (seconds) storage (Megabyte)
Part 1 10.3 720
Part 2 943 180
Part 3 422 360

The amount of storage needed in step 1 can be omitted by immediate truncation
of each block to lower rank. The final approximation X̃ has a rank of kX̃ = 22.

The previous example illustrates that the hierarchical truncation is an efficient
way to generate a best approximation either to the Cauchy matrix or to the solution
of a diagonal Sylvester equation. In practice, we will use the construction to solve
diagonal Sylvester equations as they appear in the Jacobi iteration. There the diagonal
entries are of similar size; i.e., the matrix is well-conditioned such that the number of
levels is small (typically one). The situation simplifies if all diagonal entries are equal.

Example 4.8. The entries of the diagonal matrices A and B are

ai ≡ a, bj ≡ b, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Then the Cauchy matrix is C = (b − a)−1I (I is the identity), and the solution is
X = (b− a)−1C.

In the following example we want to compare our construction with an iterative
scheme that approximates the solution X to (4.1). For this example we fix a matrix
C of rank kC := 5.

Example 4.9. The entries of the diagonal matrices A and B are

ai = −i, bj = j, 1 ≤ i, j ≤ 10242.

The ADI iteration from [18] to solve AX − XB + C = 0 starts with X0 := 0 and
generates the matrices

Xi+1 := (A− piI)(A + piI)
−1 Xi (A− piI)(A + piI)

−1

−2pi(A + piI)
−1 C (A + piI)

−1,

where the parameters pi for J steps of the iteration are given by κ := (a1/an)1/J , t0 :=
a1, tj := κ tj−1, pj := −√

tj−1tj for j = 1, . . . , J . This parameter choice allows for an
explicit bound on the relative error, such that the number J of steps can be determined
a priori. The rank of the resulting approximant X̃ADI to X is equal to JkC . In this
example the number of iterations J = 81 ensures that the a priori error bound is less
than 10−6.

The computation of an approximation X̃ADI takes ca. 580 seconds (this time
can be reduced by using the ADI variant from [15]). However, the rank used in the
representation of X̃ADI is k = 405 so that a truncation to smaller (minimal) rank
would require approximately 25000 seconds (cf. Table 2.1). Alternatively, one could
truncate in intermediate steps (no control of the accuracy) so that the time reduces
to approximately 5000 seconds. The complexity is higher than for the hierarchical
Construction 4.5 because the local blockwise ranks are much smaller than the global
rank JkC from the ADI iteration.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

884 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

4.1. Diagonal generalized Sylvester equation. At last we want to comment
on diagonal generalized Sylvester equations. There the system⎡⎢⎣ a1

. . .

an

⎤⎥⎦X

⎡⎢⎣ e1

. . .

em

⎤⎥⎦−
⎡⎢⎣ ê1

. . .

ên

⎤⎥⎦X

⎡⎢⎣ b1
. . .

bm

⎤⎥⎦+C = 0

has to be solved. We assume that ej > 0, êi > 0, ai < 0, and bj > 0 for all entries
of the diagonal matrices. This system can, by multiplication with diag(ê−1

1 , . . . , ê−1
n)

from the left and diag(e−1
1 , . . . , e−1

m) from the right, be transformed into a standard
Sylvester equation for which the techniques from above are applicable, in particular

(4.5) Xij = ê−1
i Cije

−1
j /(bj/ej − ai/êi).

5. Smoothing iterations. In this section we will consider possible smoothing
iterations that are useful in the context of the multigrid method. The two simplest
ones are Richardson and Jacobi, and these will be given in detail in the following.

5.1. Richardson iteration. For linear systems of equations Mx = b the (sta-
tionary) Richardson iteration is defined by

x0 := 0, xi := xi−1 − θ(Mxi−1 − b) for i ≥ 1.

Convergence is guaranteed for positive definite matrices M if the parameter θ ∈ R

fulfils 0 < θ < 2‖M‖−1
2 (see, e.g., [8] and also for a generalization to nonsymmetric

systems). For the linear system AX −XB + C = 0 the iteration reads

(5.1) X0 := 0, Xi := Xi−1 − θ(AXi−1 −Xi−1B + C) for i ≥ 1.

The optimal damping factor is θ = 2/(‖M‖2 + ‖M−1‖−1
2), which can be estimated

by θ ≈ 3
2‖M‖−1

2 , where ‖M‖2 = ‖A‖2 + ‖B‖2 is easily computable via the power
iteration (here we assumed A < 0 and B > 0).

If the iterate Xi−1 is an R(k)-matrix and the right-hand side C is an R(kC)-
matrix, then the next iterate Xi is an R(2k + kC)-matrix whose representation can
be computed by k matrix-vector multiplications for the matrices A and B. In order
to stay in the set of R(k)-matrices one can truncate the resulting matrix Xi to lower
rank k. This will be called the R(k)-Richardson iteration:

(5.2) X0 := 0, Xi := Tk(Xi−1 − θ(AXi−1 −Xi−1B + C)) for i ≥ 1.

Lemma 5.1. Let A ∈ R
n×n and B ∈ R

m×m be data-sparse matrices in the sense
that the matrix-vector multiplication for A and B can be performed with complexity
O(n) and O(m).

(a) One step of the Richardson iteration (5.1) is of complexity O(nm).
(b) One step of the R(k)-Richardson iteration (5.2) is of complexity

O(k2(n + m)).
Although the Richardson iteration is convergent for sufficiently small θ, the rate

of convergence can be poor. In the context of multigrid methods one is not necessarily
interested in convergence properties but in the smoothing property (cf. [8]). The next
lemma provides the necessary assumptions.

Lemma 5.2. Let A ∈ R
n×n and B ∈ R

m×m be symmetric with spectra on two
disjoint half-planes: σ(A) > σ(B). Let (the mass matrix) E be symmetric positive

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 885

definite. Then the Sylvester operators SA,B and SA,B,E are both symmetric positive
definite.

Proof. If σ(A) = {λ1, . . . , λn} and σ(B) = {μ1, . . . , μm}, then the nm eigen-
values of the (linear) Sylvester operator S : X �→ AX − XB are λi − μj . By as-

sumption all eigenvalues are positive. The symmetry follows from SA,B
ij,pq = δjqAip −

δipBqj = δqjApi − δpiBjq = SA,B
pq,ij . Analogously symmetry holds for the general-

ized Sylvester operator SA,B,E . From σ(A) > σ(B) and the symmetry of A,B

we conclude σ(E− 1
2AE− 1

2) > σ(E− 1
2BE− 1

2). From the first part we know S =

I ⊗E− 1
2AE− 1

2 −E− 1
2BE− 1

2 ⊗ I > 0 and thus by multiplying E
1
2 ⊗E

1
2 from the left

and right: SA,B,E = E ⊗A−B ⊗ E > 0.

5.2. Jacobi iteration. The Jacobi iteration is defined by

(5.3) X0 := 0, Xi := Xi−1 − θdiag(S)−1(AXi−1 −Xi−1B + C) for i ≥ 1,

where S is the Sylvester operator. The diagonal entries of the Sylvester operator are

SA,B
ij,ij = Aii −Bjj , SA,B,E

ij,ij = EjjAii − EiiBjj ,

so that the corresponding Sylvester equations are

diag(A)X −Xdiag(B) = Ci, diag(A)Xdiag(E) − diag(E)Xdiag(B) = C̃i.

We have to solve the diagonal (generalized) Sylvester equations for the right-hand
side Ci = AXi−1 − Xi−1B + C and C̃i = AXi−1E − EXi−1B + C, respectively.
The solution is given by (4.2) and (4.5). The optimal damping factor for the Jacobi
iteration is θ := 2/(Λ + λ) [8], where Λ and λ are the best bounds for

λdiag(M) ≤ M ≤ Λdiag(M), M = SA,B or SA,B,E .

Later we will use the parameter θ := 1/2, which is sufficient to guarantee the smooth-
ing property [8] needed for the multigrid method.

If the iterate Xi−1 is an R(k)-matrix and the right-hand side C is an R(kC)-
matrix, then the right-hand side is an R(2k+ kC)-matrix. A low rank approximation
Xi+1 to the solution of the diagonal Sylvester equation can be computed by means
of the hierarchical Construction 4.5. The effect is the same if we solve the diagonal
equation exactly and truncate the result to a fixed rank k or a fixed accuracy ε.
Therefore, the R(k)-Jacobi iteration can be written in the form

(5.4) X0 := 0, Xi := Tk(Xi−1 − θdiag(S)−1(AXi−1 −Xi−1B + C)).

Lemma 5.3. Let A ∈ R
n×n and B ∈ R

m×m be data-sparse matrices in the sense
that the matrix-vector multiplication for A and B can be performed with complexity
O(n) and O(m).

(a) One step of the Jacobi iteration (5.3) is of complexity O(nm).
(b) One step of the R(k)-Jacobi iteration (5.4) is of complexity O(k2(n + m)).

5.3. ADI iteration as a smoother. Apart from Richardson and Jacobi there
are many other popular smoothers such as Gauss–Seidel, SOR, ILU, etc. Since these
are not compatible with the low rank format, they are not of interest here. The only
notable exception that we are aware of is the ADI iteration from Example 4.9. There
we have to solve systems of the form

Ax = b,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

886 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

which can be accomplished, e.g., by a multigrid method. However, one has to be
careful with the choice of the shift parameters pi, since the optimal parameters for
the smoothing property differ from the usual ones that yield the optimal convergence
rate [7].

For sure, the Richardson iteration is the most simple of the smoothers under
consideration. The Jacobi iteration is necessary for nonuniform grids (e.g., locally
refined) in order to get mesh-independent good convergence rates. The same goal is
reached by the ADI iteration.

6. Multigrid method. The Richardson and Jacobi iterations introduced in the
previous section smooth the defect in the multigrid method on one level (=grid). In
the multigrid method we transfer the smoothed defect to a coarser grid and compute
a defect correction on the coarser grid. The coarse grid correction is then transferred
to the fine grid in order to reduce the smooth parts of the defect. On the coarsest
level we use a standard solution for the Sylvester equation. For the transfer between
different grids ranging from coarse (n0 = 9 degrees of freedom) to fine (n8 = 1046529
degrees of freedom), we need the prolongation and restriction operator defined in the
following. Whereas the Richardson and Jacobi iteration had to be adopted to the low
rank setting, this is not necessary for the grid transfer operators.

Let X ∈ R
n×n be a matrix, and let p̂ : R

n → R
m be a linear mapping, the

so-called prolongation. Then the corresponding matrix mapping p is defined by

(6.1) p(X) := p̂Xp̂T .

The adjoint operator r, the so-called restriction, is given by

(6.2) r(Y) := p̂TY p̂

for Y ∈ R
m×m. Since the linear mapping p does not increase the rank of a matrix, we

stay in the set of R(k) matrices (only of different size n,m). Moreover, if X = ABT

is an R(k)-matrix, then

p(X) = (p̂A)(p̂B)T ,

so that the prolonged (or restricted in the case r(Y)) matrix is naturally given in the
desired R(k) format. In the notation of section 3.1 the prolongation is of the tensor
structure p = p̂⊗ p̂.

6.1. Multigrid algorithm and convergence results. Let � = 0, . . . , L be the
level numbers, and assume that on each level we have a discrete linear equation1

A�x� = b� (0 ≤ � ≤ L),

with symmetric and positive definite n�×n� matrices A�, while b� is some right-hand
side and x� the corresponding solution. For some domains (e.g., the unit square from
our model problem) the hierarchy (A�)

L
�=0 of discrete problems is naturally given by

successive refinement of the coarsest grid. For more complicate domains one needs
suitable coarsening algorithms, e.g., composite finite elements [10] or algebraic multi-
grid [19, 21].

We recall the general multigrid algorithm (for details of the algorithm or the
following statements we refer to Hackbusch [7], [8]):

1The Fraktur style letters indicate matrices and vectors which will be later identified with corre-
sponding quantities of the Sylvester equation. For instance, the vector x� will become the unknown
solution matrix X�.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 887

function MGM(�, x, b); (returns the new iterate)
if � = 0 then x := A

−1
0 f else

begin
for i := 1 to ν do x := S�(x, b); (presmoothing)

d := r(A�x − b); (restriction of the defect)

y := 0; (starting value for the corrections)

for i := 1 to γ do v := MGM(�− 1, y, d);
x = x − py; (coarse-grid correction)

for i := 1 to ν do x := S�(x, b); (postsmoothing)

end;
MGM := x (new iterate returned)

The V -cycle (W -cycle) corresponds to γ = 1 (γ = 2). ν is the number of pre- and
postsmoothing steps using the smoothing procedure S� (e.g., Richardson, Jacobi, or
the R(k) counterparts). p is the prolongation from (6.1), e.g., the piecewise linear
interpolation in the case of difference schemes, or the canonical finite element transfer
in the case of finite element subspaces V�−1 ⊂ V�).

The essential conditions for the convergence of the W -cycle are the smoothing
and approximation properties. A simplified version of the smoothing property is

(6.3) ‖A�S
ν
� ‖ ≤ Csm ‖A�‖σ�η(ν) for ν ≥ 1 with lim

ν→∞
η(ν) = 0,

where S� is the iteration matrix of the iteration S� (i.e., S�(x, b) = S�x+T�b) and Csm

is a constant independent of �, while σ� is any scaling quantity (except of section 6.6,
only σ� = 1 will occur). For convenience, ‖·‖ may be considered as the spectral norm,
but other norms are possible. Often η(ν) equals

(6.4) η0(ν) := νν/ (ν + 1)
ν+1

.

The approximation property reads

(6.5) ‖A−1
� − pA−1

�−1r‖ ≤ Capp/ (‖A�‖σ�) ,

with an �-independent constant Capp and the same scaling quantity σ� as in (6.3).
Under these assumptions (and simple technical conditions on p, r, and S�), the W -
cycle converges with the rate const · η(ν) (under standard symmetry conditions on p,
r, and S�, even ν = 1 leads to convergence).

6.2. Approximation property. Assuming a finite element discretization with
subspaces V�−1 ⊂ V� with quasi-uniform grid sizes h�−1, h� (h�−1/h� ≤ const), one
obtains the estimate ‖A−1

� − pA−1
�−1r‖ ≤ const · ‖A−1

� ‖h2
� for the spectral norm, pro-

vided that full regularity holds; i.e., the underlying boundary value problem satisfies
‖u‖H2(ω) ≤ const ‖f‖L2(ω) for the solution of Lu = f. If the coefficients are sufficiently

smooth and ω is convex (or an image of a convex domain under a smooth mapping),
full regularity holds (cf. Hackbusch [9, Theorem 9.1.22]). In our application, the
domain ω is the product Ω × Ω. Convexity of Ω implies convexity of ω.

Since the scaling of the stiffness matrix is such that ‖A�‖‖A−1
� ‖ is proportional

to h−2
� , the inequality ‖A−1

� − pA−1
�−1r‖ ≤ const · ‖A−1

� ‖h2
� is equivalent to (6.5) with

σ� := 1.
Weaker regularity can also be treated (see section 6.6).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

888 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

6.3. Smoothing property without truncation. First we consider the Richard-
son iteration

S�(x�, b�) = S�x� + T�b�, with S� = I − ϑ�A�, T�b� =ϑ�b�,

with the damping factor ϑ� = 1/ ‖A�‖2 (also ϑ� = 1/ρ(A�) because of the symmetry
of A�).

Lemma 6.1 (see [8, Theorem 10.6.5]). Let A� be symmetric and positive definite.
Then the Richardson iteration with ϑ� = 1/ ‖A�‖2 satisfies the smoothing property
with η(ν) = η0(ν) from (6.4) and Csmσ� = 1.

For the application to the Sylvester equation, we have to make use of ϑ� =
1/ρ(A�) = 1/(maxλ∈σ(A) λ − minμ∈σ(B) μ). Since the matrices A� = SA,B and A� =
SA,B,M are symmetric and positive definite (Lemma 5.2), the previous lemma applies.

Next, we consider the damped Jacobi iteration

(6.6) S�(x�, b�) = S�x� + T�b�, with S� = I − ϑ�D
−1
� A�, T�b� =ϑ�D

−1
� b�,

where D� is the diagonal part of A� with ϑ� such that ϑ�ρ(D
−1
� A�) ≤ 1. Then we

obtain the following.
Lemma 6.2 (see [7, section 6.2]). Let A� be symmetric and positive definite. Then

the Jacobi iteration (6.6) with

(6.7) ϑ� ≤ 1/ρ(D−1
� A�) and ‖D�‖2 ≤ Csmϑ� ‖A�‖2

satisfies the smoothing property with η(ν) = η0(ν) and Csmσ� = 1. Moreover, this re-
sult holds for all symmetric and positive definite matrices D� satisfying the inequalities
(6.7).

The Jacobi iteration (5.3) for the Sylvester equation with suitable θ satisfies the
assumptions of the previous lemma (due to Lemma 5.2); therefore, the smoothing
property holds. In the case that the matrix D� is replaced by an approximation D′

�

due to the fact that we solve the diagonal Sylvester equation with a perturbed Cauchy
matrix, we chose a symmetric R(k)-approximation of the Cauchy matrix. Since D� is
well-conditioned, the approximation remains positive definite and satisfies the inequal-
ities (6.7) with a possibly modified constant Csm. Hence, the Jacobi iteration with
R(k)-Cauchy matrix approximation also possesses the smoothing property. In com-
bination with the approximation property from above, we obtain level-independent
convergence of the W -cycle. Similarly, the V -cycle proof from [7] can be applied. The
iterates Xi are all treated as full matrices, and the multigrid method therefore has a
complexity of O(n�), where Xi ∈ R

√
n�×

√
n� .

6.4. Truncation of the iterates. The effect of the truncation in each step of
the multigrid method (during the smoothing iteration and defect correction) can be
regarded as an artificially limited machine precision. After one full multigrid cycle,
the ith iterate xi� on level � is perturbed by si� so that the equation

A�x
i
� = b� − A�s

i
�

holds. The vector si� accumulates all of the perturbations of size ε during the ith cycle
(due to the truncation to a fixed rank), ‖si�‖ ≤ Cn�

ε. Since we expect a convergence
rate of

‖xi� − x�‖ < ρ‖xi−1
� − x�‖, ρ < 1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 889

we immediately get

‖(xi� + s
i
�) − x�‖ < ρ‖xi−1

� − x�‖ + Cn�
ε ≤

(
ρ +

Cn�
ε

‖xi−1
� − x�‖

)
︸ ︷︷ ︸

ρ̃

‖xi−1
� − x�‖.

As long as we can represent x
i−1
� sufficiently well, the term Cn�

ε is small and the
perturbed convergence rate ρ̃ ≈ ρ. As we come closer to the solution x� and fix
the accuracy ε (the rank k, resp.), the convergence will break down (the iteration
stagnates). This is also observed in the numerical tests.

Remark 6.3 (nonsymmetry). Although the analysis given here requires the
symmetry of the system matrix A� (which is induced by the symmetry of A and B),
the multigrid method still works well for the nonsymmetric case.

In principle, the whole machinery of (algebraic) multigrid methods can be trans-
ferred to the Sylvester case by the tensor product relation. The crucial point is the
connection between the hierarchies of the A matrices and the B matrices since these
are generated independently. This “natural” anisotropy is considered in the next
section.

6.5. Anisotropic case. As seen from (3.2) and the derived approximation, the
stiffness matrix A is the sum Ax + Ay, where Ax,Ay belong to the x- and y-variables.
In the case of (3.2), the differential operator A[u](x, y) is A = −Δx − Δy; i.e., the
x- and y-parts are equal so that Ax and Ay have identical eigenvalues. A typical
anisotropic differential operator is A = −Δx − εΔy, with small, positive ε. In this
case the approximation property contains an additional factor 1/ε, which may be
formulated by the choice σ� = ε. Therefore, we need a smoothing procedure such that
the estimate (6.3) is improved by the same factor σ� = ε. This can be obtained by
the iteration

(6.8) S�(x�, b�) = S�x� + T�b�, with S� = I − A
−1
x,�A�, T�b� = A

−1
x,�b�,

where A� = Ax,� + εAy,�. The terms Ax,� and εAy,� are the discretizations Ax,Ay at
level �.

Lemma 6.4 (see [7, Lemma 10.1.2]). Let Ax,�,Ay,� be symmetric and positive
definite. In addition, we assume

Ax,� · Ay,� = Ay,� · Ax,�, ‖Ay,�‖2 ≤ const ‖A�‖2 .

Then the iteration (6.8) satisfies the smoothing property with η(ν) = η0(ν − 1) and
Csmσ� = ε.

Proof. For convenience, we repeat the proof, which is based on the identity

A�S
ν
� = (Ax,� + εAy,�) S

ν
� = Ax,�S

ν
� + εAy,�S

ν
� = Ax,�

(
I − A

−1
x,�A�

)
S

ν−1
� + εAy,�S

ν
�

= (Ax,� − A�) S
ν−1
� + εAy,�S

ν
� = −εAy,�S

ν−1
� + εAy,�S

ν
�

= εAy,� (I − S�) S
ν−1
� .

The commutativity is used to show that S� is symmetric with eigenvalues in
[0, 1]. This implies ‖(I − S�)S

ν−1
� ‖2 = ρ((I − S�)S

ν−1
�) ≤ η0(ν − 1) (cf. [8, Lemma

10.6.1]). The final result follows from ‖A�S
ν
� ‖2 = ε‖Ay,�(I − S�)S

ν−1
� ‖2 ≤ ε‖Ay,�‖2

‖(I − S�)S
ν−1
� ‖2 ≤ ε · const · ‖A�‖2η0(ν − 1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

890 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

Since the extra factor ε from the smoothing property cancels with the 1/ε fac-
tor in the approximation property, the estimate of the multigrid convergence rate is
independent of � and ε.

The commutativity Ax,� · Ay,� = Ay,� · Ax,� holds in the case of the Sylvester
equation because of the tensor structure.

The solution of the system Ax,� in each step of the iteration (6.8) requires the
solution of a system

A�X� = C�, X� ∈ R

√
n�×

√
n� ,

which can be done columnwise for full matrices or just for the k column vectors of U
in the R(k)-matrix representation of Definition 1.2.

6.6. Weaker regularity. In the case of a reentrant corner of Ω, the full regu-
larity is not satisfied, but A : H2−s(Ω × Ω) → H−s(Ω × Ω) is an isomorphism for
some s ∈ [0, 1) (cf. [9]). In this case, one has to modify the matrix norms in (6.3) and
(6.5): ∥∥∥A

1−s/2
� S

ν
� A

−s/2
�

∥∥∥
2
≤ Csm ‖A�‖1−s

2 σ�η(ν),(6.9a)

‖A−s/2
�

(
A

−1
� − pA−1

�−1r
)
A

s/2
� ‖2 ≤ Capp/

(
‖A�‖1−s

2 σ�

)
,(6.9b)

involving fractional powers of A�. In the case of Ax,� ·Ay,� = Ay,� ·Ax,�, it follows that
Aα

� (0 ≤ α ≤ 1), with A� = Ax,� + εAy,�, is spectrally equivalent with Aα
x,� + εαAα

y,�.
Using these matrices in (6.9) instead of Aα

� , one can repeat the proof of Lemma 6.4

with σ� = ε1−s and η(ν) = (η0(ν))
1−s

.

7. Numerical results. In this section we apply the R(k)-multigrid algorithm
developed in the previous sections to the model problem of section 1.1 with ω := 1
in (1.1), namely, the first step of the Newton method where we have to solve (1.6)
with a rank one right-hand side C and the two-dimensional discrete Laplacian A. The
simple geometry allows us to use two-dimensional bilinear (tensor) basis functions φi

and a nested hierarchy of grids with a coarse grid that contains n0 = 9 degrees of
freedom; see Figure 7.1.

The computations are performed on a SUN ULTRASPARC III with 900 MHz
CPU clock rate and 150 MHz memory clock rate. We make use of the Lapack and
Blas libraries (http://www.netlib.org) for the truncation procedure and use the
standard C programming language otherwise.

The initial approximation on level � is obtained by prolongation of a solution from
level �− 1; i.e., we use a nested iteration so that only O(1) steps on the fine grid are
necessary in order to reduce the error down to the size of the discretization error. The
rank on level � − 1, . . . , 0 is chosen as twice the rank k on the fine grid � on which
we want to compute the solution. In the V -cycle multigrid we use ν = 2 pre- and
postsmoothing steps.

Fig. 7.1. The three coarsest grids with n0 = 9, n1 = 49, and n2 = 225 interior nodes.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 891

Table 7.1

The relative discretization error ‖x� − x9‖/‖x9‖ in the L2-norm.

� = 3 � = 4 � = 5 � = 6 � = 7 � = 8
n = 312 n = 632 n = 1272 n = 2552 n = 5112 n = 10232

5.1 × 10−2 2.0 × 10−2 7.1 × 10−3 2.5 × 10−3 8.9 × 10−4 1.9 × 10−4

Table 7.2

The relative error ‖xi� − x�‖/‖x�‖ on level � = 6 in the L2-norm for the iterates i = 0, . . . , 4.

i = 0 i = 1 i = 2 i = 3 i = 4

6.4 × 10−3 4.2 × 10−3 2.8 × 10−3 2.0 × 10−3 2.0 × 10−3

Table 7.3

The relative error ‖xi� − x�‖/‖x�‖ on level � = 7, 8, 9 in the L2-norm for the iterates i = 0, . . . , 4.

� k i = 0 i = 1 i = 2 i = 3 i = 4 Time

7 3 2.3 × 10−3 1.5 × 10−3 9.1 × 10−4 5.4 × 10−4 84.2
8 4 9.6 × 10−4 6.5 × 10−4 4.4 × 10−4 3.0 × 10−4 2.1 × 10−4 1064.1
9 4 3.5 × 10−4 2.4 × 10−4 1.6 × 10−4 1.1 × 10−4 7.0 × 10−5 6964.1

7.1. Discretization error. First, we perform the multigrid method with rank
k = 20 in order to produce a reference solution on each level � = 0, . . . , 9. The solution
on level � = 9 is used to estimate the discretization error on level � = 0, . . . , 8; see
Table 7.1. The rank k is large enough so that the truncation has no influence.

Alternatively, one could use the multigrid method without truncation working
with full matrices instead of the R(k)-matrix format. For level � = 3 this takes only
2.6 seconds to compute an accurate solution, but the complexity is quadratic in n, so
that on level � = 5 we need more than 600 seconds for the solution and on level � = 8
we would (theoretically) need approximately 775 hours.

7.2. Truncation error. Next, we perform the multigrid cycle on level � = 6
with fixed rank k = 2, so that the truncation error ε due to the small rank k becomes
dominant; see Table 7.2. As was expected from the theory, the convergence breaks
down after we get close to the solution. Since we are already at the size of the
discretization error, we can stop the iteration after three steps which takes 9.7 seconds.

7.3. Large scale problems. The last three levels � = 7, 8, 9 in our numeri-
cal test would require storing (and computing) solution matrices X� of size up to
4190209 × 4190209. Without the low rank format the storage in double precision of
these requires 128 Terabyte. In the R(k)-matrix format we need only 256 MB. In
the following numerical example we use the R(k)-multigrid algorithm based on the
R(k)-Richardson iteration. The time in seconds for the computation of a solution
that is accurate up to the discretization error is given in Table 7.3.

The nested iteration combined with the multigrid method has a complexity of
O(k2n�) to solve the discrete system A�x� = b� on level �. Although the dependency
is linear in n�, the rank k for the representation of the solution depends on n�, typically
k = log(n�). Therefore, the overall complexity of our algorithm is O(n� log2(n�)). A
goal for future research is to reduce this complexity down to O(n�).

7.4. Second model problem. For the second model problem from section 1.2
we consider the dependency on the parameter β that governs the nonsymmetry of
the system. For β = 0 the model problem is identical to the one considered in the
previous section.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

892 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

Table 7.4

The first k = 1, . . . , 9 singular values of the solution X� on level � = 5 for the parameter
β ∈ {1, 10, 100}.

k β = 1 β = 10 β = 100

1 2.6 × 10−2 6.3 × 10−2 1.0 × 10−1

2 2.3 × 10−3 1.2 × 10−2 3.1 × 10−2

3 4.2 × 10−4 2.4 × 10−3 1.3 × 10−2

4 1.2 × 10−4 6.8 × 10−4 6.1 × 10−3

5 3.2 × 10−5 1.8 × 10−4 3.0 × 10−3

6 7.5 × 10−6 5.2 × 10−5 1.6 × 10−3

7 1.9 × 10−6 1.6 × 10−5 8.1 × 10−4

8 4.9 × 10−7 5.0 × 10−6 4.3 × 10−4

9 1.5 × 10−7 1.6 × 10−6 2.2 × 10−4

Table 7.5

The relative error ‖xi�−x�‖/‖x�‖ on level � = 5 in the L2-norm and parameter β ∈ {1, 20, 40, 80}
(left: relative error; right: convergence rate).

i β = 1 β = 20 β = 40 β = 80

1 1.3 × 10−2 .55 1.3 × 10−2 .44 1.9 × 10−2 .43 2.4 × 10−2 .41
2 7.1 × 10−3 .55 7.5 × 10−3 .57 1.0 × 10−2 .54 1.4 × 10−2 .58
3 4.1 × 10−3 .57 2.2 × 10−3 .29 3.6 × 10−3 .35 5.6 × 10−3 .40
4 2.4 × 10−3 .58 1.2 × 10−3 .55 3.0 × 10−3 .83 3.4 × 10−3 .60
5 1.4 × 10−3 .59 5.6 × 10−4 .46 8.5 × 10−4 .29 2.0 × 10−3 .58
6 8.1 × 10−4 .59 2.5 × 10−4 .45 4.5 × 10−4 .53 1.8 × 10−3 .91
7 4.8 × 10−4 .59 8.8 × 10−5 .35 2.4 × 10−4 .52 1.3 × 10−3 .74

For larger β we face two distinct problems: First, the required rank for the
accurate representation of the solution will increase, because the spectrum of the
system matrix A will become complex and approach the imaginary axis. Second,
the convergence rate of the multigrid method will not be bounded away from 1 as
β → ∞, because the smoother (in this case R(k)-Richardson) is not suitable for
convection-dominated problems.

In Table 7.4 we can clearly see that for β = 100 the decay of the singular values of
the solution is less steep than for β = 1. In the multigrid method we use the damping
parameter θ := 1/‖A�‖2, but the coarsest grid level will now depend on the parameter
β: For β = 1 we choose the coarsest grid level � = 0, and for β = 20, 40, 80 we take
� = 1, 2, 3, so that the ratio β ·h� is constant on the coarsest grid. Of course, for larger
values of β the coarsest grid on which we have to solve the Sylvester equation by some
other means will grow. The convergence rates of the multigrid iteration are given in
Table 7.5. If either the damping parameter θ is chosen too large or the coarsest grid
too coarse, then the multigrid iteration diverges.

7.5. First model problem. At last we consider the first model problem from
section 1.1 (parameter κ(ξ) = 10000 for ξ ∈ (1

2 , 1) × (0, 1)), where a Riccati equa-
tion has to be solved. In each step of Newton’s method (initial guess X�−1 from
the coarse grid) we have to solve a Lyapunov equation, which is done by using the
multigrid method. Here we employ the Jacobi smoother, where the damping fac-
tor is computed as in section 5 for the coarsest grid solver on level � = 1, i.e.,
θ := 2/‖diag(A�)

−1/2 A� diag(A�)
−1/2‖2. In the first three steps of the multigrid

method we use the same choice of the damping parameter. From step 4 on we use
θ := 1/2. The Cauchy matrix approximation C̃ uses a rank of 1. We fix the dis-
cretization level � = 5 with n� = 16129 degrees of freedom and a solution matrix

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SYLVESTER MULTIGRID 893

Table 7.6

Convergence rates for the first i = 1, . . . , 10 steps of the multigrid iteration in the Newton step
j = 1, 2, 3, based on the Jacobi smoother (left: relative error; right: convergence rate).

i NS j = 1 NS j = 2 NS j = 3

1 6.1 × 10−3 .13 7.5 × 10−6 .08 3.3 × 10−7 .74
2 7.8 × 10−3 .13 5.1 × 10−6 .67 2.4 × 10−7 .74
3 1.3 × 10−4 .16 3.8 × 10−6 .75 1.8 × 10−7 .74
4 7.4 × 10−5 .58 2.8 × 10−6 .74 1.3 × 10−7 .74
5 5.1 × 10−5 .69 2.1 × 10−6 .74 9.8 × 10−8 .74
6 3.6 × 10−5 .71 1.5 × 10−6 .74 7.3 × 10−8 .74
7 2.6 × 10−5 .73 1.1 × 10−6 .74 5.4 × 10−8 .74
8 1.9 × 10−5 .73 8.3 × 10−7 .74 4.0 × 10−8 .74
9 1.4 × 10−5 .73 6.1 × 10−7 .74 2.9 × 10−8 .74
10 1.0 × 10−5 .73 4.5 × 10−7 .74 2.1 × 10−8 .74

X ∈ R
n�×n� . The rank for the R(k)-multigrid algorithm is fixed to k = 20. We

perform three Newton steps and apply i = 10 multigrid steps each.
By Xj we denote the (almost) exact solution of the Lyapunov equation in the

jth Newton step (NS) on level �. By Xj
i we denote the ith iterate of the multigrid

iteration in the jth Newton step. In Table 7.6 the relative error ‖Xj −Xj
i ‖2/‖Xj‖2

is reported for the three Newton steps j = 1, 2, 3.
We conclude that the R(k)-multigrid method is well-suited for the solution of the

linear matrix equations in each step of Newton’s method to solve the algebraic matrix
Riccati equation. The Jacobi smoother yields uniformly bounded convergence rates
ρ ≈ 0.74. If the parameter κ is much smaller, i.e., κ(ξ) = O(1), then the convergence
rate is ρ ≈ 0.52.

REFERENCES

[1] A. Antoulas, D. Sorensen, and Y. Zhou, On the decay rate of Hankel singular values and
related issues, Systems Control Lett., 46 (2002), pp. 323–342.

[2] A. Antoulas and D. Sorensen, The Sylvester equation and approximate balanced reduction,
Linear Algebra Appl., 351–352 (2002), pp. 671–700.

[3] R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX +XB = C, Comm.
ACM, 15 (1972), pp. 820–826.

[4] H. Banks and K. Kunisch, The linear regulator problem for parabolic systems, SIAM J.
Control Optim., 22 (1984), pp. 684–696.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
London, 1996.

[6] L. Grasedyck, Existence of a low rank or H-matrix approximant to the solution of a Sylvester
equation, Numer. Linear Algebra Appl., 11 (2004), pp. 371–389.

[7] W. Hackbusch, Multi-Grid Methods and Applications, 2nd ed., Springer-Verlag, Berlin, 2003.
[8] W. Hackbusch, Iterative Solution of Large Sparse Systems, 2nd ed., Springer-Verlag, Berlin,

2003.
[9] W. Hackbusch, Elliptic Differential Equations. Theory and Numerical Treatment, 2nd ed.,

Springer-Verlag, Berlin, 2003.
[10] W. Hackbusch and S. Sauter, Composite finite elements for the approximation of PDEs on

domains with complicated micro-structures, Numer. Math., 75 (1997), pp. 447–472.
[11] D. Kleinman, On an iterative technique for Riccati equations computation, IEEE Trans. Au-

tomat. Control, 13 (1968), pp. 114–115.
[12] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, New

York, 1972.
[13] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous

and Approximation Theories, Cambridge University Press, Cambridge, 2000.
[14] R. Lezius and R. F. Tröltzsch, Theoretical and numerical aspects of controlled cooling of

steel profiles, in Progress in Industrial Mathematics at ECMI94, H. Neunzert, ed., Wiley-
Teubner, Leipzig, 1996, pp. 380–388.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

894 LARS GRASEDYCK AND WOLFGANG HACKBUSCH

[15] J. Li and J. White, Low rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl.,
24 (2002), pp. 260–280.

[16] T. Penzl, Eigenvalue decay bounds for solutions of Lyapunov equations: The symmetric case,
Systems Control Lett., 40 (2000), pp. 139–144.

[17] T. Penzl, A Multi-Grid Method for Generalized Lyapunov Equations, Technical report 24,
SFB 393 at University Chemnitz, 1997.

[18] T. Penzl, A cyclic low rank Smith method for large sparse Lyapunov equations, SIAM J. Sci.
Comput., 21 (2000), pp. 1401–1418.

[19] J. Ruge and K. Stüben, Efficient solution of finite difference and finite element equations
by algebraic multigrid, in Multigrid Methods for Integral and Differential Equations, D. J.
Paddon and H. Holstein, eds., Oxford University Press, NY, 1985, pp. 169–212.

[20] D. Hu and L. Reichel, Krylov-subspace methods for the Sylvester equation, Linear Algebra
Appl., 172 (1992), pp. 283–313.

[21] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, London,
2001.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 895–926

A HESSENBERG REDUCTION ALGORITHM FOR RANK
STRUCTURED MATRICES∗

STEVEN DELVAUX† AND MARC VAN BAREL†

Abstract. In this paper, we show how to perform the Hessenberg reduction of a rank structured
matrix under unitary similarity operations in an efficient way, using the Givens-weight representation.
This reduction can be used as a first step for eigenvalue computation. We also show how the algorithm
can be modified to compute the bidiagonal reduction of a rank structured matrix, this latter method
being a preprocessing step for computing the singular values of the matrix. For the main cases of
interest, the algorithms we describe in this paper are of complexity O((ar + bs)n2), where n is the
matrix size, r is some measure for the average rank index of the rank structure, s is some measure for
the bandwidth of the unstructured matrix part around the main diagonal, and a, b ∈ R are certain
weighting parameters. Numerical experiments demonstrate the stability of this approach.

Key words. rank structured matrix, (zero-creating) Givens-weight representation, Hessenberg
reduction, eigenvalue computation, singular value computation, structure inheritance

AMS subject classifications. 65F15, 15A21, 15A03

DOI. 10.1137/060658953

1. Introduction. In this paper, we describe how for a rank structured matrix
with given Givens-weight representation, we can efficiently compute its Hessenberg
form using unitary similarity transformations. The algorithm is particularly useful
when the underlying matrix is Hermitian.

Hessenberg reduction is often the first step for computing the eigenvalues of a
given matrix A ∈ C

n×n. This process transforms the given matrix into Hessenberg
form using a unitary similarity transformation A �→ QHAQ, which may be based on
either Givens or Householder transformations [9, 18]. Since the resulting Hessenberg
matrix has the same eigenvalues as the original matrix, the eigenvalue problem reduces
to finding the eigenvalues of a Hessenberg matrix, for which efficient algorithms can
then be applied such as the QR-algorithm [9, Chapters 7 and 8] and [14, Chapter 8].

Classical algorithms for the Hessenberg reduction of banded matrices are con-
tained in [16, 15]. Concerning Hessenberg reduction for rank structured matrices,
we may refer to [7, 13] for the case of weakly semiseparable matrices of semisep-
arability rank one and to [1] for semiseparable plus banded matrices of arbitrary
semiseparability rank. But we should mention that these papers use what we call a
uv-representation for representing these matrices, this latter condition implying some

∗Received by the editors May 4, 2006; accepted for publication (in revised form) by N. Mas-
tronardi February 20, 2007; published electronically August 31, 2007. This research was partially
supported by the Research Council K. U. Leuven, project OT/05/40 (Large rank structured ma-
trix computations), Center of Excellence: Optimization in Engineering, by the Fund for Scientific
Research–Flanders (Belgium), G.0455.0 (RHPH: Riemann–Hilbert problems, random matrices and
Padé–Hermite approximation), G.0423.05 (RAM: Rational modelling: optimal conditioning and sta-
ble algorithms), and by the Belgian Programme on Interuniversity Poles of Attraction, initiated by
the Belgian State, Prime Minister’s Office for Science, Technology and Culture, project IUAP V-22
(Dynamical Systems and Control: Computation, Identification & Modelling). The scientific respon-
sibility rests with the authors.

http://www.siam.org/journals/simax/29-3/65895.html
†Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-

3001 Leuven (Heverlee), Belgium (Steven.Delvaux@cs.kuleuven.ac.be, Marc.VanBarel@cs.kuleuven.
ac.be).

895

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

896 STEVEN DELVAUX AND MARC VAN BAREL

intrinsic restrictions to the class of matrices for which the algorithm can be applied.
In this paper, we will not assume such a restriction.

For the main cases of interest, the algorithm we describe in this paper is of
complexity O((ar + bs)n2), where n is the matrix size, r is some measure for the
average rank index of the rank structure, s is some measure for the bandwidth of
the unstructured matrix part around the main diagonal, and a, b ∈ R are certain
weighting parameters.

Rank structured matrices arise in a variety of ways in the literature. For example,
they arise in the study of time-varying linear systems [6]. Another example is the
hierarchical H- and H2-matrices of Hackbusch, Khoromskij, and Sauter [11], which
appear from the discretization of integral equations. Rank structured matrices can
also be successfully used for the numerical approximation of Toeplitz matrices [12].

This paper is organized as follows. In section 2, we review some topics of the
Givens-weight representation from [3], paying particular attention to the so-called
zero-creating Givens-weight representation. Section 3 handles the Hessenberg reduc-
tion algorithm for a lower rank structured matrix. This section contains both a the-
oretical part concerning structure inheritance, as well as a practical part concerning
the exploitation of these inheritance results. Section 4 deals with some variants of the
algorithm, showing how to exploit symmetry or general rank structure in the upper
triangular part during the algorithm. We also explain here how the algorithm can
be modified to compute the bidiagonal reduction of a given rank structured matrix.
Section 5 deals with some numerical experiments.

2. Givens-weight representation. Before proceeding to the algorithm, in this
section we provide and recall some topics concerning the Givens-weight representation.

2.1. General definitions. In this subsection we review the basic ideas of the
Givens-weight representation from [3]. This subsection is a summary of the ideas in
[3], except that Definition 1 is more general here. Readers familiar with these ideas
might wish to move directly to section 2.2.

First, we define the class of rank structured matrices.
Definition 1 (see [2]). We define a rank structure R on C

m×n as a collection
of so-called structure blocks R = {Bk}k. Each structure block Bk is characterized as
a 4-tuple

Bk = (ik, jk, rk, λk),

where ik is the row index, jk the column index, rk the rank upper bound, and λk ∈ C

the shift element. We say a matrix A ∈ C
m×n to satisfy the rank structure R if for

each k,

rankAk(ik : m, 1 : jk) ≤ rk, where Ak = A− λkI.

Thus after subtracting the shift element λk from the diagonal entries, we must get a
low rank block.

As a special case, when a structure block Bk has a shift element equal to zero,
or when it is situated strictly below the main diagonal, then we call it pure. We
sometimes denote such a structure block by Bpure,k.

Figure 2.1 shows an example with two structure blocks.
In practice, it often happens that the block upper triangular part is also rank

structured, i.e., that the matrix AT also satisfies rank structure in the sense of Defi-
nition 1. We will indiscriminately use the term rank structure also in this case.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 897

Rk 3

Rk 1

λ =0.891

Fig. 2.1. Example of a rank structure with two structure blocks. The left structure block B1

intersects the diagonal and has shift λ1 = 0.89, while the second structure block B2 is “pure.” The
notation “Rk r” denotes that the structure block is of rank at most r.

We will assume in what follows that we are working with a rank structure R for
which there are no structure blocks that are “contained” in each other, i.e., for which
the structure blocks Bk can be ordered such that both their row and column indices
ik and jk increase in a strictly monotonic way.

Now we will try to indicate the underlying ideas of unitary-weight representations,
following [3]. To this end we will take the structure in Figure 2.2 as a didactical
example. First, it may be noted that this figure does not show the surrounding
matrix box anymore: this reflects the fact that only the area spanned by the structure
blocks will be relevant for the representation, and that the “outside world” will be
inaccessible.

Rk 1

Rk 2

Rk 1

Fig. 2.2. Example of a rank structure with three structure blocks B1,B2, and B3. We will
use this example to explain the mechanism of the unitary-weight and Givens-weight representation
during the following paragraphs. From now on the surrounding matrix box, as in Figure 2.1, will
not be shown anymore.

In what follows, we will often work with elementary unitary operations. These
are defined as unitary matrices having a block diagonal form U = Ia ⊕Q⊕ Ib, where
Ia, Ib denote identity matrices of suitable sizes. When such a unitary operation U
acts on the rows of a given matrix, we will represent it in a pictorial way by a vertical
line segment, placed on the position of the rows on which it acts (see further).

The unitary-weight representation is obtained by reducing the structure blocks
into blocks of zeros by the use of unitary row transformations. First, we apply an
(elementary) unitary transformation to transform the bottom Rk 1 block into a block
of zeros with one row less; see Figure 2.3.

Note that this unitary transformation acts only on the columns on the left of the
vertical line which is indicated in boldface in the figure: we say that this line borders

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

898 STEVEN DELVAUX AND MARC VAN BAREL

the action radius of the unitary transformation. Thus the action radius of the current
unitary transformation is equal to 9.

Having applied this operation, note that in columns 7, 8, and 9 we have already
reached the “top” of the structure. Therefore, this is now the right moment to consider
the top elements of these columns and to store them. These elements will be called
weights and they are visualized on a grey background in Figure 2.3.

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

=

Rk 1

Rk 1

Rk 2 Rk 2

Rk 1

Fig. 2.3. We apply a unitary transformation to transform the bottom two rows of the structure
into zeros. This transformation acts only on the columns on the left of the vertical line which is
indicated in boldface in the figure; we say that this line borders the action radius of the unitary
transformation. Having performed this unitary transformation, the elements indicated on a grey
background are stored and are called weights.

From now on we consider columns 7, 8, and 9 as finished, and we restrict our
perspective to the previous columns. We can then apply a unitary transformation
to transform the middle Rk 2 block into a block of zeros, with two rows less; see
Figure 2.4.

Note that again, this unitary operation acts only on the columns on the left of the
vertical line indicated in boldface in the figure. Thus the action radius of the current
unitary transformation is equal to 6.

Having applied this operation, note that also in columns 4, 5, and 6 we have
reached the top of the structure. Therefore, this is now the right moment to consider
the top elements of these columns and to store them. This yields us a second block
of weights, which is again visualized on a grey background in Figure 2.4.

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

=
Rk 2

Rk 1 Rk 1

Fig. 2.4. We apply the next unitary transformation and store the new block of weights.

From now on we drop columns 4, 5, and 6 from our perspective. We can then
apply a unitary transformation to transform the top Rk 1 block into a block of zeros
with one row less; see Figure 2.5. We conclude by storing the final block of weights.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 899

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

=

Rk 1

Fig. 2.5. We apply the final unitary transformation and store the new block of weights.

The weights can now be collected into a single matrix, which we call the weight
matrix. Together with the computed unitary transformations, this matrix yields us
the complete unitary-weight representation of the given matrix; see Figure 2.6.

Fig. 2.6. Schematic picture of the unitary-weight representation for the rank structure in
Figure 2.2.

Of course, to be a useful representation, the unitary-weight representation should
allow the possibility to restore the original matrix which we started from. This can
be done by reversing the previous steps. This reversal process is called spreading out
the unitary-weight representation and is described in [3].

Now we can come to the general definition of unitary-weight representations.
Definition 2 (index sets). Let R = {Bk}Kk=1 be a rank structure, where the

structure blocks are ordered from top left to bottom right. Then we define index sets
Ik = {ik, . . . , ik+1 − 1}, Ik,top = {ik, . . . , ik + rk − 1}, and Jk = {jk−1 + 1, . . . , jk},
for k = 1, . . . ,K. Here the extremal values of row and column indices are defined as
iK+1 := N + 1 and j0 := 0, and we define also rK+1 := 0.

Definition 3 (unitary-weight representation). Let A ∈ C
m×n be a matrix satis-

fying a rank structure R = {Bk}Kk=1, where the structure blocks are ordered from top
left to bottom right. A unitary-weight representation of the matrix A according to the
structure R consists of a pair ({Uk}Kk=1,W). Each Uk is a unitary transformation,

acting on the rows and columns indexed by Ik∪Ik+1,top and
⋃k

l=1 Jl, respectively, and
intended to create zeros in each of these rows, except those of Ik,top. These unitary
transformations Uk should be applied subsequently for k = K,K − 1, . . . , 1. On the
other hand, the matrix W ∈ C

m×n is called the weight matrix and it contains all
the blocks of elements obtained in the rows and columns indexed by Ik,top and Jk,
respectively, at the moment just after applying Uk. See Figure 2.7.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

900 STEVEN DELVAUX AND MARC VAN BAREL

Rk 3

Rk 3

Rk 2

(a) (b)

Fig. 2.7. For the rank structure in the left picture, the right figure shows a schematic picture
of the unitary-weight representation.

We can now specify from unitary-weight to Givens-weight representations. In
what follows, we will use the term Givens transformation to denote an elementary
unitary operation which differs from the identity matrix only in two subsequent rows
and columns i and i + 1. This transformation will sometimes be denoted as Gi,i+1,
and the index i will be called the row index of the Givens transformation. Similar to
our notation for elementary unitary operations, we will graphically denote the Givens
transformation Gi,i+1 by means of a vertical line segment, with the height at which
this line segment is standing in the figure determined by the row index i (see further).

Rather than individual Givens transformations, it will be useful to work with
Givens arrows: these are defined as products of the form Gi+k,i+k+1 . . . Gi,i+1, for
some k ≥ 0. Graphically, this can be considered as a collection of Givens transforma-
tions where each Givens transformation is situated precisely one position below the
previous one; see Figure 2.8.

=

Fig. 2.8. A Givens arrow Gi+2,i+3Gi+1,i+2Gi,i+1 consisting of three Givens transformations.
Concerning this figure, we remind the reader that we consider each Givens transformation as “act-
ing” on the rows of an (invisible) matrix standing on the right of it, and hence that the Givens
transformations in the figure should be evaluated from right to left, hereby explaining the downward
direction of the Givens arrow.

The number of Givens transformations of which a Givens arrow consists will be
called the width of the Givens arrow. Moreover, we define the top and the tail of the
Givens arrow to be the largest and the smallest row index of the Givens transforma-
tions of which the Givens arrow consists, respectively. These notions have an obvious
graphical interpretation.

Definition 4 (Givens-weight representation; see [3]). Let A ∈ C
m×n be a matrix

satisfying a pure rank structure R = {Bk}, where the structure blocks are ordered from
top left to bottom right. A Givens-weight representation of A according to the structure
R is a unitary-weight representation where additionally each unitary component Uk

is decomposed into a product of Givens arrows, such that
• each of the Givens arrows has width at most rk,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 901

== =

Fig. 2.9. Suppose that the current structure block is Rk 3, and that the corresponding uni-
tary transformation Uk spans over six rows. Then we assume for this unitary transformation a
decomposition into a product of Givens arrows of width at most 3.

• both the tops and the tails of the subsequent Givens arrows of each Uk are
monotonically proceeding upwards. For the tails, we assume that this mono-
tonicity is strict.

See Figure 2.9.
We should still explain why the assumption is made that each Givens arrow in

the decomposition of Uk has width at most rk. To this end, recall that the unitary
transformation Uk serves to create zeros in a certain Rk(rk) submatrix, except for its
top rk rows. This effect can always be realized by a succession of Givens arrows as
prescribed; see [3, section 3] for more details.

Note that by decomposing each unitary transformation Uk as specified in Def-
inition 4, we formally obtain a decomposition into a product of too many Givens
transformations, in the sense that the beginning and trailing Givens transformations
of two subsequent unitary transformations Uk may overlap. But we will not be con-
cerned about this here, since we will work with a very special kind of Givens-weight
representation to be described next.

2.2. Zero-creating Givens-weight representation. The algorithm to be de-
scribed in this paper requires a very special kind of Givens-weight representation.
Namely, we must assume it to be in “zero-creating” form, which means, loosely
speaking, that each Givens transformation has to create a zero in the matrix. If
this condition is not satisfied yet, then it has to be imposed, and the way to do this
will be the subject of the present subsection.

Definition 5 (zero-creating Givens-weight representation). Under the same
conditions as in Definition 4, a Givens-weight representation is called zero-creating
if

(i) when stacking the Givens arrows of all the subsequent Uk together, the tails
are strictly monotonically proceeding upwards, and

(ii) for two subsequent weight blocks Wk−1,Wk of the weight matrix W for which
rk−1 < rk, the bottom rk−rk−1 rows of Wk must be in upper triangular form,
k = 1, . . . ,K.

Here we assumed that a pseudo structure block B0 : (i, j, r) = (1, 0, 0) has been added
to the rank structure.

Note that condition (i) in Definition 5 implies that the Givens transformations
can be stored in a 2-dimensional array in a natural way, by storing at the (i, j)th
block entry of this array, the jth Givens transformation of the Givens arrow with tail
index i (which must then be unique). This property is convenient for implementation
purposes.

On the other hand, condition (ii) in Definition 5 might seem strange at first, but
this turns out to be nothing but a natural consequence of the zero-creating character.
Note that this condition implies, in particular, that the top weight block W1 must be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

902 STEVEN DELVAUX AND MARC VAN BAREL

upper triangular. In fact, we will need only a weaker version of this condition.
Definition 6 (weakly zero-creating Givens-weight representation). Suppose that

Definition 5 is satisfied, but now with condition (ii) replaced by the following weaker
condition: (ii’) the first column of the top left weight block W1 must be in upper
triangular form. We will speak then of a weakly zero-creating Givens-weight repre-
sentation.

Let us transform a given Givens-weight representation into (weakly) zero-creating
form. Part of this process has already been sketched in [3], but we will provide here
a detailed description. First we recall the pull-through lemma from [3].

Lemma 7 (pull-through lemma). Given a unitary 3 by 3 matrix Q which is
factorized as

Q = G′
1,2G2,3G1,2,

then there exists a refactorization

Q = G̃′
2,3G̃1,2G̃2,3.

See Figure 2.10.

=

Fig. 2.10. Pull-through lemma applied in the downward direction. One could imagine that the
leftmost Givens transformation is really “pulled through” the two rightmost Givens transformations.

Now in order to transform an arbitrary Givens-weight representation into a zero-
creating one, we start on top of the matrix. We are concerned with condition (ii),
and so we apply extra Givens transformations to bring the top weight block W1 into
upper triangular form. These Givens transformations are then simply “concatenated”
to the top unitary transformation U1. Next, we restore condition (i) by applying the
pull-through lemma a maximal number of times in the downward direction inside this
unitary transformation U1; see Figure 2.11.

Fig. 2.11. After applying Givens transformations to bring the top weight block in upper tri-
angular form (indicated by the thick black lines), we apply pull-through operations to bring the top
unitary operation U1 of the Givens-weight representation to zero-creating form.

Note that these operations have led to the top unitary operation U1 being in
zero-creating form. We can then split U1 = U1,newU1,2, where U1,2 consists of the
bottom r2 − 1 Givens arrows, i.e., those which act entirely on the rows of the next
weight block W2. These Givens transformations are then “transferred” to the unitary
operation U2 by enlarging their action radius. This means that these transformations
are applied to all the columns lying between their current and their future radius, as
indicated by the thick black vertical lines in Figure 2.12.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 903

Fig. 2.12. Having brought U1 into zero-creating form in Figure 2.11, its bottom Givens arrows
(which are encircled by the thick black line) can be transferred to the next unitary operation U2 by
enlarging their action radius as indicated.

Suppose then that in the reduction process to zero-creating form, we have arrived
at the unitary transformation Uk for certain 2 ≤ k ≤ K. We can then do the
same as before: first, we apply extra Givens transformations to bring the bottom
rk − rk−1 rows of the weight block Wk into upper triangular form, provided that this
number is greater than or equal to two. These Givens transformations are then just
concatenated to the unitary transformation Uk; this is valid since it can be shown that
for these bottom rk − rk−1 rows, there is no overlap with the Givens transformations
of the unitary operations Uk−1, . . . , U1 above. We can then again restore condition
(i) by applying the pull-through lemma a maximal number of times in the downward
direction inside this unitary transformation Uk. We can then split Uk = Uk,newUk,k+1,
as before and so on.

At the end of this process we will obtain a Givens-weight representation in zero-
creating form. A piece of this is shown in Figure 2.13. Note that the tails of the
subsequent Givens arrows in this figure (indicated by the thick black lines) are indeed
strictly monotonically proceeding upwards.

Fig. 2.13. Part of a zero-creating Givens-weight representation.

To explain the name zero-creating, it can be shown that each of the Givens
transformations of a zero-creating Givens-weight representation has to create a zero
in an appropriate place of the matrix. We will need only a weaker version of this
result.

Lemma 8 (weakly zero-creating). If a weakly zero-creating Givens-weight rep-
resentation is given, then the tails of the subsequent Givens arrows create zeros at
positions n, n− 1, . . . , i1 + 1 of the first column of the matrix.

Proof. Suppose that we compress the given matrix by means of the unitary
operations of the Givens-weight representation. At the moment that we apply the tail
of the first Givens arrow Gk,k+1, we can apply the remaining Givens transformations
of which the Givens arrow consists. But instead of doing this, we can already apply
the tail of the next Givens arrow Gk−1,k, because this operation acts on rows k−1, k,
which are strictly disjoint from the rows k+ 1, k+ 2, . . . on which the remaining part
of the current Givens arrow acts. Repeating this argument, we can rearrange the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

904 STEVEN DELVAUX AND MARC VAN BAREL

compressing unitary operations as V2V1, where V1 consists of the succession of all
the subsequent tails of the Givens arrows and V2 contains the remaining parts of the
Givens arrows. Since the weakly zero-creating character implies that the first column
of the top weight block W1 must be in upper triangular form, and because V2 acts
only on rows strictly below the top nonzero entry of this column, we see that these
zeros in the first column must have been created purely by means of the tails of the
subsequent Givens arrows.

This lemma states that the tails of the Givens arrows, which are indicated by
the thick black lines in Figure 2.13, have to create zeros in the first column of the
underlying matrix. Both the meaning and the proof of this lemma can be illuminated
by interpreting them in terms of this figure.

A similar property holds for the actual zero-creating Givens-weight representation.
The idea is that the corresponding Givens transformations must create zeros in the
subsequent columns of the matrix. Due to the presence of the low rank blocks, extra
zeros will be induced automatically in the further columns during this process. We
can then look further and create zeros in the first column which has not been zeroed
out yet. It is possible to give an exact expression for the subsequent places where the
zeros have to be created, but this expression is rather complicated and we believe that
it does not provide extra insight. Moreover, we will not need to know these details
for this paper.

Finally, we describe here an alternative construction of zero-creating Givens-
weight representations. Since this construction will not be used in the remainder
of this paper, the reader may skip the following paragraphs.

The starting point is that we must possess at least a “dual” Givens-weight rep-
resentation, which we describe now.

Definition 9 (rank-decreasing). A Givens-weight representation is called rank-
decreasing if, when stacking the Givens arrows of all the subsequent Uk together, the
tops are strictly monotonically proceeding upwards.

Note that this definition is the same as in condition (i) of Definition 5 above,
except that the word tails has been replaced by tops. Such Givens-weight represen-
tations were called canonical of type 2 in [3].

Just as zero-creating Givens-weight representations are “efficient” in the sense
that each Givens transformation effectively creates a zero in the matrix, the efficiency
of the rank-decreasing version consists of the fact that each Givens arrow definitively
eliminates a row of the matrix, which is not touched by the next Givens arrows
anymore, due to the monotonicity of the tops of the Givens arrows. The reader should
try to see this. Moreover, this feature is important since it allows rank-decreasing
Givens-weight representations to arise in several, natural ways; see [3].

We recall here the general fact that Givens-weight representations can also be
constructed by means of unitary column instead of row operations. In particular, the
rank-decreasing concept can be translated to the case of a column-based Givens-weight
representation as well, by replacing in Definition 9 the word upwards by rightwards.

Concerning this last paragraph, we recall that there has been described a so-called
swapping process in [3] to transform a column-based into a row-based Givens weight
representation, or vice versa. This process will be illustrated in a moment. Let us
now motivate our interest in this process.

Theorem 10 (duality theorem). Rank-decreasing and zero-creating Givens-
weight representations are each others “duals” under the swapping process described
in [3]. This means that a rank-decreasing, column-based Givens-weight representation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 905

is “swapped” by the swapping process into a zero-creating, row-based Givens-weight
representation and vice versa.

Proof. We consider here the case of a rank-decreasing, column-based Givens-
weight representation. The swapping process is illustrated in Figure 2.14.

(a) Apply row operations to
compress the bottom weight
block WK .

(b) Spread out WK by means
of the rank-decreasing unitary
operation UH

K .

(c) Apply further row oper-
ations to compress the next
weight block.

(d) We can now go on to
spread out by means of the
next rank-decreasing unitary
operation UH

K−1.

Fig. 2.14. Swapping from a rank-decreasing, column-based into a zero-creating, row-based
Givens-weight representation.

Let us comment on this figure. We start by bringing the bottom weight block WK

in upper triangular form by a series of auxiliary row operations. We can obviously do
this in a “zero-creating” way, a fact which is indicated by highlighting the tails of the
subsequent Givens arrows in Figure 2.14(a); see also Figure 2.15.

=

Fig. 2.15. Zero-creating character of Figure 2.14(a).

Next, we spread out the bottom weight block WK by applying the “decompress-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

906 STEVEN DELVAUX AND MARC VAN BAREL

ing” unitary operation UH
K to it. This operation UH

K is shown in Figure 2.14(b), where
we assume that the subsequent decompressing Givens transformations have to be ap-
plied from top to bottom. Since we assumed the given Givens-weight representation
to be rank-decreasing, it can be checked that the operation UH

K is such that its left-
most Givens transformations, highlighted in Figure 2.14(b), monotonically proceed
leftwards. This property implies the crucial observation that the upper triangularity
of the current weight block is completely preserved during the spreading-out process.

In particular, this preservation of upper triangularity implies that condition (ii)
in the definition of zero-creating Givens-weight representation holds, i.e., when rk >
rk−1, then the rk− rk−1 bottommost rows of the swapped weight block Wk are upper
triangular; see, e.g., the vanishing of the (7,3) element in Figure 2.14(c).

We have now arrived at the next weight block WK−1. We compress this weight
block by means of some new auxiliary row operations. By the fact that the upper
triangularity of the previous weights was preserved, we can do this by just continuing
the zero-creating pattern of Givens transformations on the rows; see Figure 2.14(c).

If follows from the above observations that the swapped Givens-weight repre-
sentation must indeed be zero-creating. The final weight matrix is shown in Figure
2.16.

Fig. 2.16. Final weight matrix of the resulting zero-creating, row-based Givens-weight repre-
sentation at the end of the swapping process.

Conversely, we can swap from a zero-creating, row-based into a rank-decreasing,
column-based Givens-weight representation. Since this process is “dual” to the one
above, it will not be shown anymore.

Summarizing, we have described two ways of constructing (weakly) zero-creating
Givens-weight representations, namely, either by the use of pull-through techniques, as
in Figures 2.11 and 2.12, starting from an arbitrary Givens-weight representation, or
by the use of swapping techniques, as in Figure 2.14, assuming that a rank-decreasing
Givens-weight representation is available. The pull-through scheme will be the one
that we use in practice.

In the next section, we will come to the main theme of this paper.

3. Hessenberg reduction. Assuming now that we have a weakly zero-creating
Givens-weight representation to our disposal, we can start the reduction algorithm
into Hessenberg form.

3.1. Structure propagation. First, we will consider the structures which are
propagated during the reduction of a matrix into Hessenberg form. First, by the
fact that we use only unitary similarity transformations, it is easy to see that the
properties of being Hermitian plus low rank, unitary plus low rank, and so on will be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 907

preserved by the reduction process. This corresponds to what were called “polynomial
structures” in [2].

Still, following the analogy with [2], we would also like rank structures to be
preserved during the Hessenberg reduction process. To this end, we have to make
the assumption that the reduction process is based on Givens transformations,
i.e., that in the kth step of this process, k = 1, . . . , n − 1, the kth column of the
matrix is brought in Hessenberg form by an upwards pointing sequence of Givens
transformations Gn−1,n, . . . , Gk+1,k+2. In order to preserve the eigenvalue spectrum,
we then multiply with the Hermitian transposes of these Givens transformations
GH

n−1,n, . . . , G
H
k+1,k+2 to the columns, hereby not destroying the created zeros any-

more. This process is illustrated by a 4 by 4 example in Figure 3.1.

(a) (b) (c) (d)

Fig. 3.1. Hessenberg reduction for a 4 by 4 matrix.

Clearly, it will be sufficient if we can characterize the structure propagation after
the Hessenberg reduction of the first column.

Theorem 11 (structure propagation). Let A ∈ C
n×n be a matrix satisfying a

structure block B = (i, j, r, λ) with i ≥ 2, such that the first column of A|B is not
equal to the zero vector. (Here A|B denotes the submatrix of A which is “cut out” by
B.) Then by reducing the first column of A into Hessenberg form by means of Givens
transformations, the structure block B moves one position to the bottom right position,
i.e., it transforms into a new structure block B̃ = (i + 1, j + 1, r, λ); see Figure 3.2.

0
0
0
0
0
0
0
0

λ
Rk r

λ
Rk r

=

Fig. 3.2. Structure propagation after the Hessenberg reduction of the first column.

Proof. First, we show that the proof can be reduced to the case of a pure structure
block. To this end, note that by definition, the matrix Apure := A − λI satisfies the
pure structure block Bpure which is obtained from B by putting the shift element equal
to zero. Now let us denote with QH the unitary row transformation which reduces
the first column of A into Hessenberg form. Since QH does not involve the top row
of the matrix, it must also reduce the first column of Apure = A−λI into Hessenberg

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

908 STEVEN DELVAUX AND MARC VAN BAREL

form. Moreover, it holds that QHAQ = QHApureQ + QH(λI)Q = QHApureQ + λI.
Hence indeed, it will suffice to prove the theorem for the matrix Apure.

To prove this remaining case, we use an easy argument based directly on the
Givens transformations, as shown in Figure 3.3.

Let us comment on this figure. The figure starts by applying Givens transforma-
tions to the rows, in order to make the first column Hessenberg. Thus at the moment
that we are at the point of “leaving” the structure block B, the first column of A|B
will be entirely zero, except for its top element, which is nonzero by the assumptions
in the theorem. The key observation is then that the top row of A|B cannot be written
as a linear combination of the further rows, and hence the structure block obtained
by removing this top row from B must be of rank at most r − 1; see Figures 3.3(a)
and 3.3(b).

The proof can now be finished by remarking that this Rk(r − 1) structure block
cannot be destroyed anymore by the next row operations. On the other hand, the
application of the column operations will result in the structure block being enlarged
by one column and with rank increased by one; see Figures 3.3(c) and 3.3(d).

It should be noted that the above theorem holds only under the condition that
the first column of A|B is nonzero. Although this condition is very mild, it excludes
the case of rank zero structure blocks; in this case, one should work with the top
induced rank one structure block instead; see Figure 3.4.

Let us note some more topics concerning the above proof.
Remark 12.

1. By repeating the argument in Figures 3.3(a) and 3.3(b) several times, it
follows that the given structure block can be transformed into a new structure
block with k rows less, and with rank diminished by k, by means of a sequence
of Givens arrows of width k creating zeros in the first k columns; see also [4].

2. It is clear that in finite precision arithmetic, creating zeros in the first column
and then expecting the rank to decrease, as in Figures 3.3(a) and 3.3(b), is
likely to be an unstable procedure. This is because if the first column is close
to the zero vector, then it can severely deviate from the overall column space
of the low rank block, due to round-off errors. The solution to this problem
will be to compute the zero-creating Givens-weight representation by means
of the stable techniques which were described in section 2.2.

Although Theorem 11 was stated for general shift elements λ, we will first exploit
it for pure rank structures in what follows. This process will be described in the next
subsection.

3.2. Hessenberg reduction algorithm. In this subsection we describe the
algorithm for the Hessenberg reduction of the given rank structured matrix. We start
with an algorithm for bringing the first column into Hessenberg form. The upper
triangular part of the matrix will currently be assumed to be unstructured.

Note that the Givens transformations that bring the first column in Hessenberg
form have already been precomputed, precisely by the concept of weakly zero-creating
Givens-weight representation. Indeed, Lemma 8 guarantees that these transforma-
tions are nothing but the tails of the subsequent Givens arrows, as highlighted by
the thick black lines in Figure 2.13. This means that the algorithm will suffice with
“peeling off” these tails from the subsequent Givens arrows, in a sense to be made
exact later.

The idea of the algorithm will be illustrated for the starting rank structure shown
in Figure 3.5(a). The corresponding weakly zero-creating Givens-weight representa-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 909

Rk r

(a) Apply the first Givens
transformations to the
rows. They will transform
the given Rk r block into a
Rk(r − 1) structure block
with one row less.

0
0
0
0
0 Rk r−1

(b) Apply the remaining
Givens transformations to
the rows.

0
0
0
0
0 Rk r−1
0
0
0

(c) Apply the transposed
Givens transformations to
the columns, until the
Rk(r−1) structure block is
reached.

0
0
0
0
0 Rk r
0
0
0

(d) Enlarge the Rk(r − 1)
block into a Rk r structure
block with one more col-
umn, and apply the remain-
ing Givens transformations
to the columns.

Fig. 3.3. The figure shows the propagation of pure structure blocks by the Hessenberg reduction
process directly in terms of the Givens transformations.

tion is shown in Figure 3.5(b). Note that this figure shows a unitary-weight rather
than a Givens-weight representation, in order not to overload the figure.

The application of the Givens transformations Gk,k+1 to the rows will be achieved
by what we call a peeling-off process. On the other hand, the application of the Givens
transformations GH

k,k+1 to the columns makes use of the general techniques for updat-
ing the Givens-weight representation under the influence of Givens transformations
reported in [3], in the form of what we called there a generalized swapping process.
These processes are shown in Figure 3.6.

Let us comment on this figure. Figure 3.6(a) shows the starting Givens-weight
representation. It is assumed here that the first Givens transformations have already

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

910 STEVEN DELVAUX AND MARC VAN BAREL

00 0 0
00 0 0
00 0 0
00 0 0
00 0 0

Rk 1

Fig. 3.4. In case of a rank zero structure block, one should work with the top induced Rk 1
structure block which is indicated in the figure.

Rk 3

Rk 2

Rk 2

(a) (b)

Fig. 3.5. Starting rank structure with corresponding weakly zero-creating Givens-weight repre-
sentation.

been peeled off from the structure, up to the transformation G6,7, and that they have
been applied to the rows and the columns.

The application of the row operations has led to the fact that the Givens arrows
in several unitary transformations have “ shrunk” because they have “lost their tail.”
Correspondingly, some of the originally grey elements of the two bottom structure
blocks have turned white in Figure 3.6(a), since there is no Givens transformation
anymore which acts upon them. We note that this peeling-off process corresponds to
the Rk r structure blocks turning into Rk(r − 1) structure blocks with one row less,
as explained before.

The application of the column operations has led to the fact that the original
unitary operations Uk are now interlaced with some auxiliary Givens arrows which
were computed during the algorithm. Furthermore, some of the elements, such as
the (9, 6) element in Figure 3.6(a), are assumed to be disturbances coming from the
application of the previous Givens transformations to the columns.

Now we are at the moment of peeling off the next Givens transformations. This
will cause the corresponding Givens arrows to lose their tail. While applying these
Givens transformations, we exploit the fact that the result after their application has
already been partially precomputed. This is why we apply them only to the columns
strictly on the right of their current action radius; see Figure 3.6(b).

Note that after their application, the top row of the top weight block will have
been “completely released” in the sense that there are no Givens transformations
anymore which act upon it. This means that these elements turn from grey into

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 911

(a) Starting situation. We assume
that the tails of the Givens ar-
rows up to G6,7 have already been
peeled off. Only the top unitary
transformation is shown as a de-
composition of Givens arrows.

(b) Peel off the tails of the next
Givens arrows and apply them to
the rows.

(c) Multiply the transposes of the
Givens transformations of Figure
3.6(b) to the columns.

(d) Apply the final Givens trans-
formations to the rows.

Fig. 3.6. Hessenberg reduction of the first column (a-d).

white; see Figures 3.6(b) and 3.6(c).
To complete the similarity transformation, we should apply the Hermitian trans-

posed operations to the columns. This is done in Figure 3.6(c).
We can then go on to apply the final Givens transformations for bringing the

first column in Hessenberg form; see Figure 3.6(d). We would then like to complete
the similarity transformation and apply these final Givens transformations on the
columns too. But this means that we are at the point of contaminating the structure
block in columns 2, 3 with some of the elements in the column on the right of it.
This contamination would lead to a mix of real-size elements and weights, which is
definitely not allowed.

The solution consists of enlarging the action radius of the Givens-weight repre-
sentation. This means that we bring the contaminating column, which is standing
just on the right of the structured part, “into” the representation; see Figure 3.6(e).
The corresponding elements in Figure 3.6(f) have then turned from white into grey.

Having done this, it is now safe to apply the desired Givens transformations to the
columns. But we do not do this yet, since applying all these column operations would
lead to a complete fill-in in the lower triangular part. We want to minimize this fill-in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

912 STEVEN DELVAUX AND MARC VAN BAREL

(e) Enlarge the action radius of the
row representation.

(f) Apply auxiliary Givens trans-
formations to the rows to bring the
weights as much as possible to the
top.

(g) Multiply the transposes of the
Givens transformations of Figure
3.6(d) to the columns.

(h) We have reduced the first col-
umn into Hessenberg form.

Fig. 3.6. (cont.) Hessenberg reduction of the first column (e-h).

as far as possible, and therefore we first apply some auxiliary Givens transformations
to the rows, to bring the newly introduced weights as far as possible to the top; see
Figure 3.6(f).

Having done all of these preparations, we can finally apply the desired Givens
transformations to the columns; see Figure 3.6(g). We have then completely reduced
the first column of the matrix into Hessenberg form.

Figure 3.6(h) shows the final Givens-weight representation. Note that the weight
blocks have uniformly moved one position to the bottom right position, as predicted
by Theorem 11.

Note that the algorithm has led to a Givens-weight representation in interlaced
form, i.e., a unitary-weight representation for which each unitary transformation Uk

has a natural decomposition of the form Uk = ṼkVk, where Vk is a unitary transfor-
mation situated on “top” of Uk, containing what is left of the original Givens-weight
representation, and Ṽk is a unitary transformation situated on the “bottom” of Uk,
containing the chain of auxiliary Givens transformations computed during the Hes-
senberg reduction algorithm; see Figure 3.6(h).

Now we would like to go on by making the second column Hessenberg. This

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 913

means that we should first bring the Givens-weight representation back to its weakly
zero-creating form, using the pull-through techniques of section 2.2. In fact, these
techniques must be slightly modified since we are working here with a Givens-weight
representation in interlaced form, which is not a Givens-weight representation in the
strict sense anymore.

Let us briefly apply these techniques to the present situation. First, we apply an
extra upwards pointing Givens arrow, in order to restore the upper triangularity of
the first column of the top left weight block in Figure 3.6(h); see Figure 3.7.

=

Fig. 3.7. We apply an extra unitary operation to bring the first column of the top weight block
in Figure 3.6(h) in upper triangular form.

The resulting unitary transformations, to which this extra Givens arrow is added,
are shown in Figure 3.8.

Fig. 3.8. Resulting unitary transformations of Figure 3.6(h).

Next, we apply the pull-through lemma a maximal number of times in the down-
ward direction, in order to bring the representation back into (weakly) zero-creating
form; see Figure 3.9.

While the pull-through process proceeds from top to bottom of the matrix, one
should not forget to appropriately enlarge the action radii of the involved Givens
transformations, as explained in section 2.2. The treatment of a single step in this
process is shown in Figure 3.10.

(a) (b) (c)

Fig. 3.9. The left picture shows a decomposition of Figure 3.8 in terms of individual Givens
transformations. It is then brought to weakly zero-creating form by repeatedly using the pull-through
lemma, resulting in the situation of the middle picture.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

914 STEVEN DELVAUX AND MARC VAN BAREL

(a) (b)

Fig. 3.10. The picture shows a specification of Figure 3.9. After applying the pull-through
operations inside the top unitary operation U1 as shown in the left picture, the resulting unitary
operation is decomposed as U1 = U1,newU1,2, where the Givens transformations of U1,2 are circled
in the right picture. One can then enlarge the action radius of U1,2 so that it is transferred to
the next unitary operation U2. This scheme can then be repeated for the next unitary operations
U2, U3,

At the end of the pull-through process, the Givens transformations indicated by
the thick black lines in Figure 3.9(c) will constitute the new tails of the Givens arrows,
which will hence be peeled off during the Hessenberg reduction of the second column.

From the schematic illustration of the pull-through process in Figure 3.9, we can
note the interesting fact that the (updated) chain of auxiliary Givens transformations,
used for the auxiliary upward movement during the Hessenberg reduction algorithm,
replaces the original tails of the Givens arrows at the end of the pull-through process;
see Figure 3.9(c). Hence they will be precisely the Givens transformations to be peeled
off during the Hessenberg reduction of the second column.

Finally, we have now obtained a Givens-weight representation which is back in
weakly zero-creating form. We are then ready to bring the second column in Hes-
senberg form as well. Since this problem is completely similar to the Hessenberg
reduction of the first column, it will not be explained anymore.

4. Some modifications to the algorithm. In this section we describe some
variants to the Hessenberg reduction algorithm of the previous section. We start with
a treatment of rank structure lying in the upper triangular part.

4.1. Exploiting rank structure in the upper triangular part. In this sub-
section we describe how the efficiency of the algorithm can be improved by an order of
magnitude in case the matrix A has rank structure in its upper triangular part as well.
The total algorithm complexity will decrease in this way from the cubic O(n3) to the
quadratic O((ar + bs)n2), where r is some measure for the average semiseparability
rank, s is some measure for the bandwidth of the unstructured matrix part around
the main diagonal, and a, b ∈ R are certain weighting parameters.

We start with the case of rank structure originating from the fact that A is
Hermitian, or more generally, when it is Hermitian plus a low rank correction in the
sense that A − AH = Rk k with Rk k a matrix of rank at most k. The algorithm
can proceed then by just keeping track of the lower triangular part, since then the
upper triangular part is known by symmetry. In the case where A is Hermitian up
to some low rank correction, one should also keep track of the low rank correction
matrix Rk k. The algorithm proceeds then by only computing each time the required
superdiagonal element, by symmetry, next applying the row and column operation,
and then again removing the superdiagonal element; see Figure 4.1.

It is easy to check that in this way, the complexity of the Hessenberg reduction

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 915

(a) Compute the required super-
diagonal element, and fill it in the
weight matrix.

(b) Apply the current Givens
transformation to the rows.

(c) Apply the transposed Givens
transformation to the columns.

(d) The current superdiagonal el-
ement has no role anymore, and
therefore it is removed from the
weight matrix.

Fig. 4.1. Exploiting symmetry.

algorithm for the kth column decreases to O((ar+ bs)n), for suitable a, b ∈ R. Hence
the total cost of the Hessenberg reduction algorithm reduces to O((ar + bs)n2).

Next, we describe how, even if the matrix is not Hermitian up to some low rank
correction, rank structure in the upper triangular part can be exploited. To this
end, the reader should reacquaint familiarity with the propagation mechanism for
structure blocks in the lower triangular part in Figure 3.3. It can then be noted that
the argument in Figures 3.3(a) and 3.3(b) crucially depends on the fact that zeros are
created in the lower triangular part of the matrix during the Hessenberg reduction
process.

The corresponding propagation of rank structure in the upper triangular part
does not benefit from such a creation of zeros, as shown in Figure 4.2.

It should be clear from Figure 4.2 that the ranks could soon start to increase.
After a few columns have been transformed into Hessenberg form, there will probably
be not much left of the rank structure, due to the growth of the rank indices of the
rank structure.

There is one notable exception to this idea, namely, we know that the ranks
should stay constant also in the case where A is a unitary matrix, or unitary up to
some low rank correction, because then the rank structure in the upper triangular
part is a direct consequence of that in the lower triangular part; see, e.g., [5]. We will

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

916 STEVEN DELVAUX AND MARC VAN BAREL

0
0
0
0
0
0
0
0

λ
Rk r = λ

Rk r+1

Fig. 4.2. Structure propagation in the upper triangular part after the Hessenberg reduction of
the first column. Note that the structure block moves one position to the bottom right position, but
that the original rank index r can increase to r + 1.

come back to this later.

Anyway, also in the case of arbitrary rank structure in the upper triangular part,
and where the ranks increase, we will give the tools to update the representation.
These tools are based on the methods for updating a Givens-weight representation
under the action of Givens transformations described in [3]. We saw there how to
update the representation using what was called concatenation, pull-through, gener-
alized swapping, and generalized regression techniques.

Essentially, the only difference with respect to [3] is that we want to apply the
disturbing Givens transformations simultaneously on rows and columns. This will lead
to two methods being applied at the same time. We consider here the case where the
Givens-weight representation of the upper triangular part is based on row operations.
We will then simultaneously have a mixture of concatenation (for the row operations)
and generalized regression techniques (for the column operations). See Figure 4.3.

Let us comment on this figure. Figure 4.3(a) shows the starting Givens-weight
representation for the structured upper triangular part. Note that we preferred here to
show the decompressing rather than the compressing unitary operations of the Givens-
weight representation, i.e., in order to obtain the full matrix, we should spread out by
means of the subsequent unitary operations shown in Figure 4.3(a), evaluating from
left to right. The bottommost unitary transformation is assumed to be a disturbance
coming from previous steps.

We are now at the moment of applying the next Givens transformations to the
rows; see Figure 4.3(b). We apply these transformations only to columns 1, . . . , 3. For
the application to the structured upper triangular part in columns 4, . . . , we do not
actually apply these Givens transformations, but instead just concatenate them to the
Givens-weight representation. To see what this means, the reader should recall that
the weight matrix contains a kind of “compressed” information about the full matrix.
Moreover, in order to obtain the real values of these elements, we should spread out
the weight matrix by applying all the subsequent unitary operations, evaluating from
left to right. The concatenation process means then simply that, at the very end of
this decompressing process, one should apply the newly added Givens transformations
as well, so that they can be considered from now on as being part of the Givens-weight
representation.

Now we would like to apply the transpose of these Givens transformations to the
columns. To do this in a valid way, we have to avoid a mixture of real-size elements
and weights. Therefore we first regress the action radius of the representation; see

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 917

(a) Starting Givens-weight
representation. The ar-
rows on the right de-
note the unitary transfor-
mations used to spread out
the structure.

(b) Apply the next
Givens transformations
to columns 1,. . . ,3, and
concatenate them to the
representation.

(c) Regress the action ra-
dius of the representation.

(d) Apply the transposed
Givens transformations
of Figure 4.3(b) to the
columns.

Fig. 4.3. Updating the structured upper triangular part during the Hessenberg reduction algo-
rithm, assuming that it is represented by a row-based Givens-weight representation.

Figure 4.3(c). We can then safely apply the Givens transformations to the columns;
see Figure 4.3(d). The next operations are not shown anymore.

Finally, let us come back to the case where the rank structured matrix is unitary
plus low rank. In this case, the above algorithm will yield that the ranks increase from
r to r + 1 in each step, although we know that they should stay constant. Thus it
should be possible to perform a numerical approximation of the structure after each
step to approximate the ranks again by their actual values. If the structure blocks in
the upper triangular part have been chosen wisely, this implies an extra term O(r2n)
for the complexity in each step; see [3]. This quadratic term in the rank index can
be avoided by just performing the numerical approximation procedure only after each
O(r) steps in the Hessenberg reduction process. The above O(r2n) term can then be
distributed over O(r) different steps, so that the total algorithm complexity becomes
O((ar + bs)n2), for suitable a, b ∈ R, just as in the Hermitian case.

Summarizing, we have now described how the Hessenberg reduction algorithm can
be modified to take advantage of the rank structure in the upper triangular matrix
part. The next subsection considers a second modification to the algorithm.

4.2. Bidiagonal reduction algorithm. In this subsection we will explain how
a rank structured matrix can be reduced to bidiagonal form. This means that we
will apply an operation of the form A �→ UAV , where U and V are possibly different
unitary transformations. Such a reduction does not preserve the eigenvalue spectrum,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

918 STEVEN DELVAUX AND MARC VAN BAREL

but it can be used as the first step for computing the singular value decomposition of
the given matrix [8, 9].

Before starting, we recall that during the Hessenberg reduction process, the ranks
in the lower triangular part were preserved, but those in the upper triangular part
could increase from r to r + 1 in each step. The reason underlying this was that the
Hessenberg reduction created zeros only in the lower triangular part of the matrix,
implying that the argument of Figures 3.3(a) and 3.3(b) is invalid for the structure
blocks in the upper triangular part.

This conclusion does not hold anymore for the bidiagonal reduction process. In-
deed, by exploiting the freedom of applying possibly different unitary transformations
U and V to rows and columns, this reduction succeeds in a creation of zeros in both
the lower and upper triangular part of the matrix. Hence it is easy to see that the
structure propagation argument of Figures 3.3(a) and 3.3(b) will be valid now for
both the lower and the upper triangular part, without any increase of ranks, in any
case. On the other hand, a small price has to be paid in the sense that the structure
propagation will hold now only for pure rank structures; see Figure 4.4.

0
0
0
0

000000

=

0
0
0
0

0
00

Rk r
Rk r

Fig. 4.4. Structure propagation in the upper triangular part after the bidiagonal reduction of
the first column and row. Note that the given, pure structure block moves one position to the bottom
right corner, with rank index r being preserved. A similar result holds for the lower triangular part
as well.

Let us now discuss the practical implementation of the bidiagonal reduction pro-
cess. The algorithm will closely follow the Hessenberg reduction process of section 3.
The starting point will be that we have available a row-based Givens-weight represen-
tation for the lower triangular part and a column-based Givens-weight representation
for the upper triangular part of the given rank structured matrix.

By induction, let us assume then that zeros have been created already in the first
k − 1 columns and rows of the matrix, 1 ≤ k ≤ n − 1. We assume that the Givens-
weight representation of the lower triangular part is in weakly zero-creating form. We
can then peel off its tails Gn−1,n, . . . , Gk,k+1 to bring the kth column of the matrix in
upper triangular form. During this process, the rank structure in the upper triangular
part can be updated in much the same way as in section 3, but now with the role
of rows and columns interchanged. Having done this, we bring the Givens-weight
representation of the upper triangular part back to its weakly zero-creating form. We
can then peel off its tails G̃H

n−1,n, . . . , G̃
H
k+1,k+2 and apply them to the columns, to

create zeros in the kth row of the matrix. During this process, the rank structure in
the lower triangular part can be updated in the same way as in section 3, and so on.

Summarizing, we have now described how the Hessenberg reduction algorithm
could be modified to a bidiagonal reduction algorithm. We now turn to a final modi-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 919

fication of the algorithm.

4.3. The case of nonpure structure blocks. We assumed in section 3 that
the structure blocks were pure and lying strictly below the main diagonal. In this
subsection, we will explain how the Hessenberg reduction algorithm can be adapted to
work for nonpure structure blocks as well. Along this line, further in this subsection
we will describe how to reduce a matrix to lower semiseparable plus diagonal instead
of Hessenberg form.

First, we have to explain what the Givens-weight representation for such a non-
pure rank structure looks like. We have to assume that the shift elements are compati-
ble in the sense that two structure blocks intersecting each other on the main diagonal
have the same shift element. If the shift elements are compatible, then we can just
represent the rank structured matrix as Dλ +Apure, where Dλ is the diagonal matrix
containing the shift elements, and Apure is a matrix satisfying a pure rank structure.
The latter matrix can now be represented by a usual Givens-weight representation.

Let us explain how the nonpure Givens-weight representation, as just described,
can be updated during the algorithm. For simplicity, we will restrict this explanation
to the case where only the lower triangular part of the matrix is rank structured.

Starting from the example of Figure 4.5, the algorithm is shown in Figure 4.6.

λ
Rk 3

Rk 1

Rk 2

Fig. 4.5. Starting nonpure rank structure.

Let us comment on this figure. The starting situation is shown in Figure 4.6(a); it
is assumed here that the tails of the subsequent Givens arrows until G6,7 have already
been peeled off from the representation. Hence the next operations are at the point
of entering the nonpure diagonal part of the nonpure structure block B.

Still concerning this figure, let us note that the circle notation expresses that,
after spreading out the matrix, the value λ should be added to each of the three
originally circled entries of the structure block.

Since we are going to enter the nonpure part of B, it is now the right moment
to subtract the shift element λ from the entry in the bottom right position of the
structure block; this is indicated by the highlighted circle in Figure 4.6(a). Note that
this subtraction will allow us to split a multiple of the identity matrix λI4 from the
structure.

We will now apply the next operations. First, we enlarge the current action
radius, and we apply an auxiliary unitary operation to bring the weights upwards; see
Figures 4.6(b) and 4.6(c). Note that these operations can be performed exactly as in
the shift-free case, since they involve only the pure part of the representation, so that
the shift element λ is not involved.

We can then peel off the tails of the next Givens arrows and apply them to rows
and columns. Since the shift element λ appears only in the form of a multiple of
the identity matrix λI4, which will clearly be preserved by this unitary similarity

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

920 STEVEN DELVAUX AND MARC VAN BAREL

(a) Starting situation; sub-
tract the shift element λ from
the indicated entry.

(b) Enlarge the action radius
of the representation.

(c) Apply auxiliary unitary
operations to bring the
weights upwards.

(d) Apply the tails of the next
Givens arrows to the rows.

(e) Multiply the transposed

operations of Figure 4.6(b) to
the columns.

(f) Add the shift element λ to
the indicated entry.

Fig. 4.6. The case of nonpure structure blocks.

operation, we can carry out these operations exactly as in the shift-free case; see
Figures 4.6(d) and 4.6(e).

These peeling-off operations have caused the structure block B to move one po-
sition to the bottom right matrix corner. This means that the element which was
originally situated in the top left position of B has now come for free. We can re-
store this element to its real-size form by adding the shift element λ to it; see the
highlighted circle in Figure 4.6(f). The next operations are not shown anymore.

Summarizing, we have now completely propagated through the nonpure structure
block B. During this process, the entry on the bottom right of the structure block
was “brought into” the influence of the shift element in Figure 4.6(a), while the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 921

top left entry was “released” in Figure 4.6(f), corresponding to the structure block
propagating to the bottom right matrix corner.

We note that similar techniques for manipulating shift elements under the action
of unitary similarity operations were used in [17], for the special case of reducing an
arbitrary matrix into a diagonal plus semiseparable matrix of semiseparability rank
one.

The connection with the paper [17] can be made even tighter. More precisely,
we will describe how the Hessenberg reduction algorithm can be modified so as to
transform a given rank structured matrix A into lower semiseparable plus diagonal
form. Although this reduction could be achieved by first performing the Hessenberg
reduction, and subsequently using this as input for the algorithm in [17], we will
describe here an intermingled version of the algorithm.

For definiteness, let us denote with λk ∈ C, k = 1, . . . , n, the subsequent shift ele-
ments of the required, lower semiseparable plus diagonal structure. The corresponding
structure blocks are defined as

Bk : (ik, jk, rk, λk) = (k, k, 1, λk).

The algorithm proceeds by introducing the shift elements in the reverse order
λn, . . . , λ1 on top of the matrix and chasing them to the bottom right. We can start
this process by adding the last shift element λn on top of the matrix, where it trivially
satisfies a structure block B : (i, j, r, λ) = (1, 1, 1, λn); see Figure 4.7(a).

Let us note that in terms of the Givens-weight representation, this extra structure
block B of Figure 4.7(a) can be incorporated in the factorization Dλ+Apure by placing
the value λn at the (1, 1) element of Dλ and subtracting it from the corresponding
element of Apure. It also implies an extra unitary transformation U0 to be added to
the Givens-weight representation of Apure, in order to compress the pure variant of
this extra structure block, which we denote as Bpure, by bringing its weight completely
to the top row of the matrix Apure. Since the structure block Bpure is Rk 1, the Givens
arrows of U0 will be of width one.

Now we create zeros in the first column of Apure by applying the tails of the subse-
quent Givens arrows Gn−1,n, . . . , G1,2 to the rows and their transposes GH

n−1,n, . . . , G
H
1,2

to the columns. Since the first column is also involved in this process, the created ze-
ros in the first column will be destroyed again. On the other hand, each of the existing
structure blocks will be chased one position to the bottom right position, according
to the implementation in Figure 4.6. In particular, it follows that the extra structure
block B will transform into a new structure block B̃ : (i, j, r, λ) = (2, 2, 1, λn); see
Figure 4.7(b).

Suppose then that we have already created k−1 lower semiseparable plus diagonal
structure blocks in the top left corner of the matrix, and suppose that we are at the
point of applying the kth upward sweep of Givens transformations, 2 ≤ k ≤ n − 1.
Before doing this, we add the new shift element λn+1−k on top of the matrix, where
it trivially satisfies a structure block B : (i, j, r, λ) = (1, 1, 1, λn+1−k). We can then
correspondingly update the Givens-weight representation. Next, we can do the same
as above, i.e., we apply similarity transformations based on the subsequent tails of
the Givens arrows Gn−1,n, . . . , G1,2 of the matrix Apure in order to chase each of the
existing structure blocks one position to the bottom right matrix corner.

Note that at the end of this process, the given rank structured matrix will be
brought completely into lower semiseparable plus diagonal form, with the required
shift elements λk.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

922 STEVEN DELVAUX AND MARC VAN BAREL

λ n

Rk 3

Rk 1

(a)

λ n−1

λ n

Rk 3

Rk 1
Rk 1

(b)

Fig. 4.7. The left picture shows the starting situation for the lower semiseparable plus diagonal
reduction algorithm. The first extra structure block B has already been added to the top left corner.
The right picture shows the situation after applying the first sweep of Givens transformations of the
lower semiseparable plus diagonal reduction algorithm. Note that the structure blocks have moved
to the bottom right corner, and that the next extra structure block has already been added to the top
left corner.

Let us point out one more thing about the previous reduction algorithm. In
principle, one should be cautious about the validity of the structure propagation
mechanism for the trivially satisfied structure block B in the top left matrix corner,
since this structure block involves the first row of the matrix, so that the result of
Theorem 11 does not hold anymore. Still, the structure propagation argument does
remain valid, by the fact that, by construction, the applied Givens transformations
created zeros in the first column of the pure component Apure, rather than A itself,
and this was precisely the necessary condition needed in the first paragraph of the
proof of Theorem 11.

Remark 13.

1. The presence of rank structure in the upper triangular part was left out
of the previous discussion, but can be handled similarly as before. Let us
assume, e.g., that the matrix is Hermitian. Then we will suffice with having
access over the Givens-weight representation of the lower triangular part,
having now a “bulge” at each place where the structure goes beyond the
main diagonal. Let us consider, e.g., the situation in Figure 4.6(b). Here
we need to have access over the three top elements lying in between the two
thick vertical lines. Each of these elements could then be computed by the
Hermitian character, using the knowledge of the corresponding element in
the lower triangular part, which can be obtained by means of some auxiliary
spreading-out operations of the corresponding column of the lower triangular
part (one should use an auxiliary variable for doing this). Let us note that
these spreading-out operations become more expensive when the required
element is situated further from the main diagonal.

2. The Hessenberg reduction algorithm can be seen as a special case of the lower
semiseparable plus diagonal reduction algorithm, provided that one chooses
λk = ∞ for each k, in the sense described in [5].

3. When the required diagonal plus semiseparable structure is close to Hessen-
berg form, i.e., λk ≈ ∞, it can be expected that numerical problems may arise
due to large values of the λk. To solve this problem, we may observe that
the only place where information about the shift elements is needed is for the
determination of each top Givens transformation G1,2. Once this has been

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 923

3 4 5 6 7 8 9 10 11 12 13
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

k

av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

rank 1

rank 2

rank 3

Fig. 5.1. Average execution time for five random samples of size n = 2k and rank r = 1, 2, 3.

done, the application of this and other Givens transformations can be applied
in a “shift-free” way, by working with the induced pure structure blocks, lying
just below the main diagonal. Our numerical experiments indicate that this
shift-free variant is indeed more stable than the variant described previously,
even for moderate sizes of the shift elements λk.

5. Numerical experiments. In this section we report on the results of some
numerical experiments. The algorithms were implemented in MATLAB.1 The exper-
iments were executed on an Intel PC running MATLAB Version 7.0.1.24704 (R14)
under Linux having 1GByte of memory and an Intel Pentium 4 processor running at
3.2 GHz. The software of these experiments can be requested from the authors.

We constructed symmetric rank structured matrices in R
n×n, with n = 2k for

k = 4, . . . , 12. Starting from a diagonal matrix containing the desired eigenvalues,
which were uniformly randomly chosen in the interval [−1, 1], we applied to this
matrix a similarity transformation based on a “disturbing” sequence of Givens arrows
of width r. This resulted in a rank structure whose structure blocks are situated
just below the main diagonal, following immediately one after the other. The upper
triangular part is then known by symmetry.

Since it can be argued that the above construction yields rather special rank
structured matrices, we next applied a “randomization” procedure. We did this by
applying an additional similarity transformation based on Givens transformations,
computed in a structure-preserving way. Note that symmetry is preserved during all
these operations. A detailed description of this randomization method will not be
given here.

For each size n, the above scheme was carried out for subsequent rank indices
r = 1, 2, 3. For each of these sizes and each of these rank indices, there were considered
five samples. Figure 5.1 shows for each size n = 2k and each rank index r the execution
time Tk,r averaged over the five samples of performing the reduction to Hessenberg
form.

To check that the computational complexity is quadratic in the size of the matrix,

1MATLAB is a registered trademark of The MathWorks, Inc.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

924 STEVEN DELVAUX AND MARC VAN BAREL

3 4 5 6 7 8 9 10 11 12
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

k

av
er

ag
e

fa
ct

or

Fig. 5.2. Fraction Tk+1,r/Tk,r averaged over five random samples and over ranks r = 1, 2, 3 in

function of the size n = 2k.

3 4 5 6 7 8 9 10 11 12 13
10

−16

10
−15

10
−14

10
−13

k

av
er

ag
e

re
la

tiv
e

er
ro

r
ei

ge
nv

al
ue

s

matlab eig

Hessenberg reduction

Fig. 5.3. Relative 2-norm of the error of the eigenvalues averaged over five random samples and
over ranks r = 1, 2, 3 in function of the size n = 2k.

Figure 5.2 shows the fraction Tk+1,r/Tk,r averaged over the five samples and over the
ranks r = 1, 2, 3.

To measure the accuracy of the algorithm, we computed the relative norm ||λ−λ0||2
||λ0||2 ,

where λ0, λ ∈ R
n denote the vectors containing the exact and computed eigenvalues.

Figure 5.3 shows the relative 2-norm of the error averaged over the five samples and
the rank indices r = 1, 2, 3.2

The computation of Givens transformations during the algorithm was performed
according to the implementation described in [9, section 5.1]. We note that the
accuracy of the algorithm turns out to be slightly sensitive to the choice of the used

2The eigenvalues of the resulting tridiagonal matrix at the end of the Hessenberg reduction
process were computed using the MATLAB routine “trideig” due to P.-O. Persson. This routine is
available at http://www.mit.edu/∼persson/mltrid/index.html.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HESSENBERG REDUCTION FOR RANK STRUCTURED MATRICES 925

0 1 2 3 4 5 6 7 8
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

r

tim
in

g
fa

ct
or

Fig. 5.4. Fraction T2r/Tr for size n = 29 in function of the rank index r = 2l with l = 0, 1, . . . , 6.

Givens routine, but this effect is rather modest.

The pull-through lemma was implemented in the trivial way. This means that, us-
ing the notations of Lemma 7, we explicitly computed the 3 by 3 matrix G′

1,2G2,3G1,2

in its full form. Subsequently, we computed Givens transformations such that

(5.1) (G̃2,3)
H(G̃1,2)

H(G̃′
2,3)

HG′
1,2G2,3G1,2

is upper triangular, with positive diagonal elements. Hence (5.1) is a unitary, upper
triangular matrix with positive diagonal elements, so that this must be the identity
matrix. Rewriting this fact leads to the desired refactorization of Lemma 7. We
note that our future work will describe in more detail the implementation of the
pull-through lemma, including a nontrivial speed-up which was already implicit in
[10].

To check that the computational complexity is linear as a function of the rank
index r, we considered the execution time Tr for matrices of fixed size n = 29 = 512
and varying rank index r = 2l with l = 0, 1, . . . , 7. Figure 5.4 gives the fraction T2r/Tr

for subsequent rank indices. Note that the fraction tends to approximate 2 for large
rank indices r. In fact, the fraction tends to go even below this value of 2; but we
note that this is artificial since for high ranks the ranks become relatively large with
respect to the size n = 29, so that the distribution of Givens transformations on the
“borders” of the matrix start to have a nonneglible impact on the timings.

We note that similar experiments have also been performed for other kinds of
rank structures, which are less regular than the one we took for the above numerical
experiments. The results of these experiments were similar to those reported above.

6. Conclusion. In this paper we described an algorithm for performing the
Hessenberg reduction of rank structured matrices. Numerical experiments indicated
that this approach leads to a stable computation of the eigenvalues of the given
matrix. We showed that the algorithm has complexity O((ar + bs)n2) in case of
a Hermitian plus low rank matrices for suitable a, b ∈ R. We explained that this
complexity holds also for unitary plus low rank matrices, provided that one agrees to
perform numerical approximations during the algorithm. Our future work includes an

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

926 STEVEN DELVAUX AND MARC VAN BAREL

alternative algorithm for the Hessenberg reduction of unitary and related matrices,
using an appropriate representation.

REFERENCES

[1] S. Chandrasekaran and M. Gu, Fast and stable eigendecomposition of symmetric banded
plus semi-separable matrices, Linear Algebra Appl., 313 (2000), pp. 107–114.

[2] S. Delvaux and M. Van Barel, Structures preserved by the QR-algorithm, J. Comput. Appl.
Math., 187 (2005), pp. 29–40.

[3] S. Delvaux and M. Van Barel, A Givens-Weight Representation for Rank Structured Ma-
trices, SIAM J. Matrix Anal. Appl., to appear.

[4] S. Delvaux and M. Van Barel, Rank structures preserved by the QR-algorithm: The singular
case, J. Comput. Appl. Math., 189 (2006), pp. 157–178.

[5] S. Delvaux and M. Van Barel, Structures preserved by matrix inversion, SIAM J. Matrix
Anal. Appl., 28 (2006), pp. 213–228.

[6] P. Dewilde and A.-J. van der Veen, Time-Varying Systems and Computations, Kluwer
Academic Publishers, Boston, 1998.

[7] D. Fasino, N. Mastronardi, and M. Van Barel, Fast and stable algorithms for reducing
diagonal plus semiseparable matrices to tridiagonal and bidiagonal form, Contemp. Math.,
323 (2003), pp. 105–118.

[8] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
SIAM J. Numer. Anal., 2 (1965), pp. 205–224.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, 1996.

[10] W. B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math.,
16 (1986), pp. 1–8.

[11] W. Hackbusch, B. N. Khoromskij, and S. A. Sauter, On H2-matrices, in Lect. Appl. Math.,
H. Bungartz and L. Horsten, eds., Springer-Verlag, Berlin, 2000, pp. 9–29.

[12] P. G. Martinsson, V. Rokhlin, and M. Tygert, A fast algorithm for the inversion of general
Toeplitz matrices, Comput. Math. Appl., 50 (2005), pp. 741–752.

[13] N. Mastronardi, S. Chandrasekaran, and S. Van Huffel, Fast and stable algorithms for
reducing diagonal plus semiseparable matrices to tridiagonal and bidiagonal form, BIT, 41
(2001), pp. 149–157.

[14] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics Appl. Math. 20, SIAM, Philadel-
phia, 1998.

[15] H. Rutishauser, On Jacobi rotation patterns, in Proceedings of Symposia in Applied Math-
ematics, Experimental Arithmetic, High Speed Computing, and Mathematics 15, AMS,
Providence, RI, 1963, pp. 219–239.

[16] H. R. Schwartz, Tridiagonalization of a symmetric band matrix, Numer. Math., 12 (1968),
pp. 231–241.

[17] R. Vandebril, E. Van Camp, M. Van Barel, and N. Mastronardi, Orthogonal similarity
transformation of a symmetric matrix into a diagonal-plus-semiseparable one with free
choice of the diagonal, Numer. Math., 102 (2006), pp. 709–726.

[18] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, UK,
1965.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 927–953

BLOCK AND PARALLEL VERSIONS OF ONE-SIDED
BIDIAGONALIZATION∗

NELA BOSNER† AND JESSE L. BARLOW‡

Abstract. Two new algorithms for one-sided bidiagonalization are presented. The first is a
block version which improves execution time by improving cache utilization from the use of BLAS
2.5 operations and more BLAS 3 operations. The second is adapted to parallel computation. When
incorporated into singular value decomposition software, the second algorithm is faster than the cor-
responding ScaLAPACK routine in most cases. An error analysis is presented for the first algorithm.
Numerical results and timings are presented for both algorithms.

Key words. singular value decomposition, bidiagonalization, block algorithm, parallel algo-
rithm, numerical analysis

AMS subject classifications. 15A18, 65F30, 68W10

DOI. 10.1137/050636723

1. Introduction. There are two main types of algorithms for computing the
complete singular value decomposition (SVD) of a matrix A: one-sided Jacobi meth-
ods [12] and algorithms based upon bidiagonalization. Recently there have been
significant improvements in both types of methods [2], [3], [17], [18], [23], [24]; this
work considers bidiagonalization-based algorithms. Such algorithms use orthogonal
transformations to obtain a bidiagonal form and then apply a fast algorithm to obtain
the SVD of the bidiagonal matrix [19], [24], [32].

Let A ∈ R
m×n, m ≥ n (for m < n, consider AT). Then there exist a left

orthogonal matrix U ∈ R
m×n (i.e., UTU = In), an orthogonal matrix V ∈ R

n×n (i.e.,
V TV = V V T = In), and a bidiagonal matrix

(1.1) B =

⎡⎢⎢⎢⎢⎢⎣
ψ1 φ2

ψ2 φ3

. . .
. . .

ψn−1 φn

ψn

⎤⎥⎥⎥⎥⎥⎦
such that

(1.2) A = UBV T .

Equation (1.2) describes bidiagonalization of the matrix A. There are several algo-
rithms for bidiagonalization of a matrix, and they differ in the way they construct
the matrices U and V . The most commonly used algorithms for computing (1.2)
are given by Golub and Kahan in [20], and Golub and Reinsch in [21], where the
matrices U and V are products of Householder reflectors. Lawson and Hanson in [27,

∗Received by the editors July 23, 2005; accepted for publication (in revised form) by B. J.
K̊agström May 10, 2007; published electronically August 31, 2007.

http://www.siam.org/journals/simax/29-3/63672.html
†Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia (nela@

math.hr). This author’s research was supported by Croatian MZOS grant 0037120.
‡Department of Computer Science and Engineering, Pennsylvania State University, University

Park, PA 16802-6822 (barlow@cse.psu.edu). This author’s research was supported by NSF grant
CCF-0429481.

927

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

928 NELA BOSNER AND JESSE L. BARLOW

p. 119] and Chan in [10] present a modification of the Golub–Kahan algorithm, which
performs a QR factorization of the matrix A before bidiagonalization, resulting in
an algorithm with fewer operations if m > 5/3n and U is not explicitly formed. A
bidiagonalization algorithm based on Givens rotations, which can attain higher accu-
racy, is given by Barlow [2]. Grosser and Lang in [23] propose a two-stage method,
where in the first stage a matrix is reduced to a banded matrix and then in the sec-
ond stage a banded matrix is bidiagonalized. This algorithm performs the majority
of calculations in matrix-matrix products and can be faster than the ScaLAPACK
bidiagonalization routine. Another different approach is described in [20], where the
bidiagonal form is obtained by means of the Lanczos algorithm. This approach is fast
but can be numerically unstable. Still there are many applications that do not suffer
from this instability, and there is a simple procedure that corrects the possible loss of
orthogonality; cf. [31].

Recently, in [28], [30], and [29] Ralha proposed a new approach for bidiagonalizing
a matrix, the so-called one-sided bidiagonalization. The main idea is to implicitly
tridiagonalize the matrix ATA:

V TATAV = T, T = tridiagonal matrix,

by a one-sided orthogonal transformation of A

F = AV.

V is computed as a product of Householder reflectors without explicitly forming ATA.
Then the Gram–Schmidt QR factorization of the matrix F is performed to obtain

UB = F = AV,

where B is upper triangular. In the case when A has full rank, the matrix B is
the Cholesky factor of T , that is, T = BTB, and hence B must be bidiagonal. That
property results in a fast bidiagonalization algorithm, which is much more suitable for
parallel computing than the standard bidiagonalization algorithms. Here the modified
Gram–Schmidt QR factorization of F is computed by orthogonalizing the kth column
of F against the (k−1)th column of U and normalizing. Unfortunately, this procedure
is not always numerically stable and may lead to a matrix U that is far from being
left orthogonal in finite precision arithmetic.

To improve Ralha’s algorithm, Barlow, Bosner, and Drmač [3] proposed a mod-
ification, where one step of Gram–Schmidt orthogonalization and postmultiplication
with one Householder reflector are performed simultaneously, resulting in a direct bidi-
agonalization algorithm. This algorithm produces exactly the same result as Ralha’s
algorithm in exact arithmetic, but it turns out to be numerically stable in finite pre-
cision arithmetic.

The rest of this paper is organized as follows. The recently developed one-sided
bidiagonalization from [3] is presented in section 2, together with a bound on its
backward error. In section 3, a block version of the new one-sided bidiagonalization
is introduced, and a detailed numerical analysis is given in Theorem 3.4. The results
of numerical tests regarding efficiency of the block one-sided bidiagonalization are
presented in section 4. Sections 5 and 6 deal with parallel versions of the new one-
sided bidiagonalization and its efficiency.

2. The new stable one-sided bidiagonalization. The main difference be-
tween Ralha’s algorithm and the new stable algorithm proposed in [3] is that, in the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 929

new bidiagonalization algorithm, transformations with Householder reflectors and the
Gram–Schmidt orthogonalization are interlaced, whereas Ralha’s bidiagonalization
separates these processes. The criteria for choosing Householder reflectors are also
different.

Let uk be the kth column of the matrix U , and let Uk = [u1, . . . , uk] be a matrix
containing the first k columns of U . Further, let Vk denote a Householder reflector
such that

Vk = I − vkv
T
k , where ‖vk‖2 =

√
2.

Then the new stable bidiagonalization can be described in its simplest form as follows:
• A0 = A.
• For k = 1, 2, . . . ,

◦ uk is produced from the kth column of Ak−1 by orthogonalization against
uk−1 (if k > 1) and normalization

Uk = [u1, . . . , uk], k = 1, . . . , n.

◦ Householder reflector Vk is chosen so that

(2.1) UT
k Ak−1Vk = Bk ∈ R

k×n, Bk is bidiagonal,

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸

UT
k

• • • ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦ ◦ ◦︸ ︷︷ ︸

Ak−1

1
1

1
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸
Vk

=
� �
� �
� �︸ ︷︷ ︸

Bk

and the matrix Ak−1 is postmultiplied with Vk

Ak = Ak−1Vk, k = 1, . . . , n− 2.

• End of loop.
• V is produced by accumulation of the Householder reflectors

(2.2) V = V1 · · ·Vn−2, F = An−2 = AV.

Remark 2.1. The elements of Ak−1 denoted by ◦ are used in the current step of
the algorithm to compute the vector zk, which determines the Householder reflector
Vk. The Householder reflector Vk is defined as

(2.3) Vk =

[
Ik 0
0 Vk

]
,

and the Householder reflector Vk ∈ R
(n−k)×(n−k) is chosen so that Vkzk = ±‖zk‖2e1.

The elements denoted by • are computed columns of F , and in the next steps they
remain unchanged. The computed elements of B are denoted by �.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

930 NELA BOSNER AND JESSE L. BARLOW

Remark 2.2. In order to produce U with n columns, the matrix A should have full
column rank. If rank (A) < n, then ψk = 0 for some k. In [3], it is shown that this
case can be easily handled by an O(mn+n2) postprocessing procedure that produces
a decomposition

A = UcBcV
T
c ,

where Uc ∈ R
m×p and Vc ∈ R

n×p are left orthogonal, Bc ∈ R
p×p is upper bidiagonal

and nonsingular, and p = rank(A).
The following pseudocode provides the details of the described algorithm.1

Algorithm 2.1. For A ∈ R
m×n, rank(A) = n > 2, this algorithm computes

a left orthogonal U = [u1, . . . , un], a bidiagonal B having the form (1.1), and an
orthogonal V = V (n−2) such that A = UBV T .
(1) A0 = A;
(2) f1 = A(: , 1); ψ1 = ‖f1‖2;
(3) u1 = f1/ψ1;
for k = 1: n− 2

(4) zk = Ak−1(: , k + 1: n)Tuk;
(5) [φk+1, vk] = householder(zk);
(6) Ak(: , 1: k) = Ak−1(: , 1: k);
(7) Ak(: , k + 1: n) = Ak−1(: , k + 1: n) −Ak−1(: , k + 1: n)vkv

T
k ;

(8) fk+1 = Ak(: , k + 1);
(9) sk+1 = fk+1 − φk+1uk; ψk+1 = ‖sk+1‖2;
(10) uk+1 = sk+1/ψk+1;

end;
(11) fn = An−2(: , n); φn = uT

n−1fn;
(12) sn = fn − φnun−1; ψn = ‖sn‖2;
(13) un = sn/ψn;
(14) V T = householder product(v1, . . . , vn−2)
end.

The auxiliary functions householder() and householder product() are defined as
follows.

function [φ, v]=householder(z)
{The function householder() computes φ and v with ‖v‖2 =

√
2 as described in [25,

Chapter 19]. The Householder reflector is then formed as V = I − vvT with property
that V z = φe1.}
function V T = householder product(v1, . . . , vn)
{The function householder product() computes a matrix V T as a product of n
Householder reflectors, where V T = Vn · · ·V1, Vk for k = 1, . . . , n are defined in
relation (2.3), and Vk = I−vkv

T
k . Accumulation of the Householder reflectors is done

by a block algorithm implemented in the LAPACK routine sorgbr() [1].}
In [3], the following theorem about the numerical stability of Algorithm 2.1 was

proved. Here we denote the unit roundoff with ε.
Theorem 2.1. If B̃ is the bidiagonal matrix computed by Algorithm 2.1, then

there exist an orthogonal (m+n)× (m+n) matrix P̂, an orthogonal n×n matrix V̂ ,

1FORTRAN routines for the SVD using the one-sided bidiagonalization methods described in
this paper are available from the first author.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 931

and backward perturbations ΔA, δA such that

(2.4)

[
B̃
0

]
= P̂T

[
ΔA

A + δA

]
V̂ ,

∥∥∥∥[ΔA
δA

]∥∥∥∥
F

≤ ξ‖A‖F ,

where ξ = O(mn + n3)ε. The computed approximation Ṽ of the matrix V̂ satisfies
‖Ṽ −V̂ ‖F ≤ O(n2)ε. Further, there exist a left orthogonal matrix Ŭ and a perturbation

δ̆A such that

(2.5) A + δ̆A = Ŭ B̃V̂ T , ‖δ̆A‖F ≤
√

2ξ‖A‖F .
Although this result implies that Algorithm 2.1 is numerically stable for com-

puting B and V , we cannot guarantee that the computed matrix U is numerically
orthogonal. In many circumstances, the possible loss of orthogonality is irrelevant [8].
One can also get nearly orthogonal bases for the parts associated with the leading
singular values of A [3, Theorem 3.19 and Corollary 3.20].

Another important characteristic of an algorithm is its efficiency, and the prefer-
able way to evaluate efficiency is through execution time. The execution time of a
numerical algorithm depends on two properties: the floating point operation count and
the time spent on communication among hierarchically organized computer memory.
We are concerned about the efficiency of full SVD algorithms that include bidiago-
nalization, when computing all of the SVD factors: P , Q, and Σ = diag(σ1, . . . , σn)
such that A = PΣQT .

Extensive numerical tests were performed to test the efficiency of the SVD al-
gorithms. Even though an SVD routine with Algorithm 2.1 requires fewer floating
point operations (see [3]), a straightforward implementation of Algorithm 2.1 is often
slower than the current LAPACK [1] routine in sgesvd(), since the LAPACK routine
optimizes cache memory usage, whereas Algorithm 2.1 does not. In order to decrease
cache communication time, we develop a block version of Algorithm 2.1 next.

3. Block version of the new stable one-sided bidiagonalization. The new
block version of Algorithm 2.1 improves the usage of fast cache memory by performing
as many operations as possible on the data that are currently stored in the cache. In
order to do that, one has to transform the original algorithm. The first modification of
the algorithm is that transformations by Householder reflectors are aggregated, where
the WY representation is used for a product of Householder reflectors [4]. In the WY
representation the product of j Householder reflectors is presented as Vj · · ·V1 =
I−WY T , where W and Y have j columns. This means that the matrix A is updated
after every b steps, where m × b is the block dimension. Most of the operations in
Algorithm 2.1 are matrix-vector operations, coded as BLAS 2 operations [13]. Memory
hierarchy is utilized more efficiently if such algorithms are written in terms of matrix-
matrix operations, coded as BLAS 3 operations [14], [15], or grouped matrix-vector
operations, called BLAS 2.5 operations [11], [26]. Employing the WY representation of
products of Householder transformations results in more BLAS 3 operations; using the
BLAS 2.5 approach of Howell et al. [26] leads to further improvement. Operations on
the same data, but performed in different places in Algorithm 2.1, are now performed
simultaneously. These operations are

(3.1)
x ← x + AT y
w ← Ax

or
A ← A + uvT

x ← AT y
w ← Ax

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

932 NELA BOSNER AND JESSE L. BARLOW

Now we discuss our modifications of Algorithm 2.1. As an input to the algorithm
we will take the matrix A ∈ R

m×n and partition it into block columns. Let n = b·g+r,
r ≤ b+1, where b is a given block column dimension and g = �(n−2)/b� is the number
of blocks of dimension m×b. We choose the last two columns to be outside of the block
partition, because the last two steps of the one-sided bidiagonalization (corresponding
to the last two columns) do not involve computation of a Householder reflector. The
g blocks will be updated by means of aggregated Householder transformations and
BLAS 2.5 transformations related to the first group of transformations in (3.1). The
remaining r = n − b · g columns will be updated with nonaggregated Householder
transformations and the second group of BLAS 2.5 transformations in (3.1). As each
block consists of b columns, the steps of the algorithm will be organized in two loops:
the outer loop going through g blocks and the inner loop going through b columns of
the block. Thus we will denote by Aj,k the matrix A after the first j − 1 blocks, and
the first k columns in the jth block have been updated.

The main difference between the stable bidiagonalization and its block version is
the way Householder reflectors are computed and applied to the matrix A. In the kth
step of Algorithm 2.1, columns k+1 through n of the matrix A are updated with the
Householder reflector Vk. After this step, the (k+1)th column is not changed anymore
and is consequently equal to the (k + 1)th column of the matrix F defined in (2.2).

In the block version of the stable bidiagonalization, updates with Householder
reflectors are done blockwise. This means that, only when all of the columns in one
block are updated and assigned to F (they will not be modified in the next steps), the
rest of the matrix will then be updated with b Householder reflectors in aggregated
form that correspond to b steps of Algorithm 2.1. Until then, only the current column
is updated. Let us assume that we have computed the first (j−1) blocks of the matrix
F obtaining the matrix Aj,0 and that we are observing the operations in the jth step
of the outer loop. Then for k = 2, . . . , b only the ((j − 1)b + k)th column is updated
by Householder reflectors from the steps 1, . . . , k− 1 of the same block, obtaining the
matrix Aj,k, and a new Householder reflector V(j−1)b+k is computed. V(j−1)b+k will
affect the columns ((j− 1)b+ k+1) through n, but no updates are done. The matrix
Aj,1 is equal to Aj,0 because the ((j − 1)b+ 1)th column is already updated; only the
Householder reflector V(j−1)b+1 is computed. We use the WY form for a product of
Householder reflectors described in [4] to write

(3.2) V(j−1)b+1 . . .V(j−1)b+k−1 = I − Yj(: , 1: k − 1)Wj(: , 1: k − 1)T .

After the (jb)th column has been updated, the columns jb+1 through n are updated
with the product V(j−1)b+1, . . . ,Vjb in WY form (3.2). This process is illustrated
in Figure 3.1 with notation defined in (3.3). The (g + 1)th block is updated with
Householder reflectors in the usual way, as it is done in Algorithm 2.1.

This is the same approach as in the LAPACK routine sgebrd() [16], where the
routine slabrd() is called first, followed by the routine sgebd2(). slabrd() per-
forms the two-sided aggregated Householder transformation over the first g blocks,
and sgebd2() performs the unblocked transformations. The differences are that in
the block version of Algorithm 2.1 only one-sided Householder transformations are
performed and that the dimension of the block is computed differently.

Aggregated Householder transformations represent only one modification of Al-
gorithm 2.1. The other modification is achieved by using the ideas described in [26].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 933

� � �

� �

Aj,0 =

Aj,1 Aj,2 Aj,3

Aj,4 Aj+1,0

the columns of Aj,0, that are

not modified in the described

steps

the columns updated with

Householder reflectors

Vj,1, . . . ,Vj,b at the

end of the jth step of the

outer loop

the columns of F that will not

be modified in the next steps

Fig. 3.1. Column update in the jth block of the matrix A.

Let us define the following correspondence:

� = (j − 1)b + k, current �th column is the kth column in the jth block,

� ↔ (j, k) the indices with � are replaced by (j, k).(3.3)

This correspondence is introduced only for notational convenience. Now we will in-
vestigate the lines (4), (5), and (7) in Algorithm 2.1, but with the index k replaced
by �. In all of these statements the vector z� → zj,k is directly or indirectly used.
In line (4) u� is multiplied by A�−1(: , � + 1: n)T → Aj,k−1(: , � + 1: n)T in order
to obtain zj,k. On the other hand, in line (7) the vector v� → vj,k is multiplied by
Aj,k−1(: , � + 1: n), and vj,k is realized from zj,k through line (5) and the function
householder(). From the definition of householder(), we have

zj,k = Aj,k−1(: , � + 1, n)Tu�,

vj,k =

√
2(zj,k − φ�+1e1)

‖zj,k − φ�+1e1‖2
, and thus(3.4)

Aj,k−1(: , � + 1: n)vj,k =

√
2[Aj,k−1(: , � + 1: n)zj,k − φ�+1Aj,k−1(: , � + 1)]

‖zj,k − φ�+1e1‖2
.

From the previous observations concerning the update of the matrix Aj,0 with House-
holder reflectors, in the �th step (which in the block version will correspond to the
jth step of the outer loop and the kth step of the inner loop) columns �+1, . . . , n are
not yet updated. Since Aj,k−1 = Aj,0Vj,1 . . .Vj,k−1, (3.2) and (3.4) imply that

zj,k = Aj,0(: , � + 1, n)Tu�

−Wj(� + 1: n, 1: k − 1)Yj(: , 1: k − 1)TAT
j,0u�,(3.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

934 NELA BOSNER AND JESSE L. BARLOW

Aj,k−1(: , � + 1: n)vj,k = Aj,0(: , � + 1: n)vj,k

−Aj,0Yj(: , 1: k − 1)Wj(� + 1: n, 1: k − 1)T vj,k

=

√
2[Aj,0(: , � + 1: n)zj,k − φ�+1Aj,0(: , � + 1)]

‖zj,k − φ�+1e1‖2

−Aj,0Yj(: , 1: k − 1)Wj(� + 1: n, 1: k − 1)T vj,k.(3.6)

If we define

z
(1)
j,k = −Wj(� + 1: n, 1: k − 1)Yj(: , 1: k − 1)TAT

j,0u�

as the first phase in the computation of zj,k and

x
(1)
j,k = Aj,0(: , � + 1: n)zj,k

as the first phase in the computation of the vector x
(4)
j,k = Aj,k−1(: , �+1: n)vj,k, then

zj,k = z
(1)
j,k + Aj,0(: , � + 1: n)Tu� from (3.5)

x
(1)
j,k = Aj,0(: , � + 1: n)zj,k from (3.6)

will be computed simultaneously, and they comprise the first group of BLAS 2.5
transformations in (3.1). By simultaneous computation we mean that as soon as one

component of zj,k is computed, x
(1)
j,k is updated with this new data by the BLAS 1

saxpy() operation. The components of zj,k can be partitioned in blocks of dimension
c, so that BLAS 2 segmv() is used in the simultaneous computation instead of BLAS
1 operations. This improves the cache memory usage even more.

In the kth step of the inner loop for the last (g+1)th block update with Vg+1,k−1,

computation of zg+1,k and x
(1)
g+1,k will be done simultaneously. Again let � = gb + k.

First, we have

Ag+1,k−1(: , � + 1: n) = Ag+1,k−2(: , � + 1: n)

−Ag+1,k−2(: , � : n)vg+1,k−1vg+1,k−1(2 : n− � + 1)T

= Ag+1,k−2(: , � + 1: n) − x
(3)
g+1,k−1vg+1,k−1(2 : n− � + 1)T ,

where x
(3)
g+1,k = Ag+1,k−1(: , � + 1: n)vg+1,k, and from (3.4) it follows that

Ag+1,k−1(: , � + 1: n)vg+1,k

=

√
2[Ag+1,k−1(: , � + 1: n)zg+1,k − φ�+1Ag+1,k−1(: , � + 1)]

‖zg+1,k − φ�+1e1‖2
.(3.7)

Again, if we define

x
(1)
g+1,k = Ag+1,k−1(: , � + 1: n)zg+1,k

as the first phase in the computation of the vector x
(3)
g+1,k, then

Ag+1,k−1(: , � + 1: n) = Ag+1,k−2(: , � + 1: n)

−x
(3)
g+1,k−1vg+1,k−1(2 : n− � + 1)T

zg+1,k = Ag+1,k−1(: , � + 1: n)Tu�

x
(1)
g+1,k = Ag+1,k−1(: , � + 1: n)zg+1,k

comprises the second group of BLAS 2.5 transformations in (3.1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 935

The reason why these operations are performed simultaneously is that the same
parts of the matrix A are involved, as well as the same parts of the vector zj,k.
Thus, when a particular block of the matrix and the vector is stored in the fast cache
memory, all of the operations can be done without transferring blocks from slower
memory to the cache, saving some of the time spent on memory by Algorithm 2.1.

Before stating a detailed algorithm, we have to introduce one more definition.
The update of the �th column of the matrix Aj,k, where � = (j − 1)b + k, is done by
the following relations:

Aj,k(: , �) = [Aj,0Vj,1 . . .Vj,k−1](: , �)

= Aj,0(: , �) −Aj,0Yj(: , 1: k − 1)Wj(�, 1: k − 1)T .

The term Aj,0Yj(: , 1: k− 1) also occurs in relations (3.5) and (3.6); hence, we define
Xj = Aj,0Yj . From the definition of the matrices Yj and Wj in [4], Wj and Xj satisfy
the following recurrences:

Wj(: , 1) = vj,1,

Wj(: , 1: k) = [Wj(: , 1: k − 1), vj,k],

Xj(: , 1) = Aj,0Yj(: , 1) = Aj,0vj,1,(3.8)

Xj(: , 1: k) = Aj,0Yj(: , 1: k)

= [Xj(: , 1: k − 1), Aj,0vj,k

−Xj(: , 1: k − 1)Wj(: , 1: k − 1)Tvj,k].

Now we can state the complete algorithm.
Algorithm 3.1. For A ∈ R

m×n, rank(A) = n > 2, this algorithm computes a
left orthogonal U , a bidiagonal B, and an orthogonal V such that A = UBV T .
Initialize:

the block dimension for aggregated Householder transformations b;
the block dimension for BLAS 2.5 transformations c;

A1,0 = A;
s1 = A1,0(: , 1);
g = �(n− 2)/b�;
for j = 1: g

{Update the jth block of the matrix A with aggregated Householder
transformations and the first group of BLAS 2.5 transformations from (3.1).}
Xj = 0m×b; Wj = 0n×b;
for k = 1: b

� = (j − 1)b + k;
Aj,k(: , 1: �− 1) = Aj,k−1(: , 1: �− 1);
if k > 1

Aj,k(: , �) = Aj,0(: , �) −Xj(: , 1: k − 1)Wj(�, 1: k − 1)T ;
s� = Aj,k(: , �) − φ�u�−1;

else
Aj,k(: , �) = Aj,k−1(: , �);

end;
ψ� = ‖s�‖2;
u� = s�/ψ�;
if k > 1

z
(1)
j,k = −Wj(� + 1: n, 1: k − 1)Xj(: , 1: k − 1)Tu�;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

936 NELA BOSNER AND JESSE L. BARLOW

else

z
(1)
j,k = 0(n−�)×1;

end;

x
(1)
j,k = 0m×1;

for i = � + 1: c : n
d = min(c, n− i + 1);

zj,k(i− � : i− � + d− 1) = z
(1)
j,k (i− � : i− � + d− 1) + Aj,0(: , i : i + d− 1)Tu�;

x
(1)
j,k = x

(1)
j,k + Aj,0(: , i : i + d− 1)zj,k(i− � : i− � + d− 1);

end;

[φ�+1, vj,k, x
(3)
j,k] = householder 2(zj,k, x

(1)
j,k, Aj,0(: , � + 1));

Wj(� + 1: n, k) = vj,k;

x
(4)
j,k = x

(3)
j,k −Xj(: , 1: k − 1)Wj(� + 1: n, 1: k − 1)T vj,k;

Xj(: , k) = x
(4)
j,k;

end;

{Update the rest of the matrix A with aggregated Householder transformations
from the jth block.}
Aj+1,0(: , 1: jb) = Aj,b(: , 1: jb);
Aj+1,0(: , jb + 1: n) = Aj,b(: , jb + 1: n) −XjWj(jb + 1: n, :)T ;
sjb+1 = Aj+1,0(: , jb + 1) − φjb+1ujb;

end;
r = n− gb;

{Update the last block of the matrix A with the second group of BLAS 2.5
transformations from (3.1).}
for k = 1: r − 1

� = gb + k;
if k > 1

Ag+1,k(: , 1: �− 1) = Ag+1,k−1(: , 1: �− 1);

Ag+1,k(: , �) = Ag+1,k−1(: , �) − vg+1,k−1(1)x
(3)
g+1,k−1;

s� = Ag+1,k(: , �) − φ�u�−1;
else

Ag+1,k(: , 1: �) = Ag+1,k−1(: , 1: �);
end;
ψ� = ‖s�‖2;
u� = s�/ψ�;

x
(1)
g+1,k = 0m×1;

for i = � + 1: n
if k > 1

Ag+1,k−1(: , i) = Ag+1,k−2(: , i) − vg+1,k−1(i− � + 1)x
(3)
g+1,k−1;

end;
if � < n− 1

zg+1,k(i− �) = Ag+1,k−1(: , i)Tu�;

x
(1)
g+1,k = x

(1)
g+1,k + zg+1,k(i− �)Ag+1,k−1(: , i);

end;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 937

end;
if � < n− 1

[φ�+1, vg+1,k, x
(3)
g+1,k] = householder 2(zg+1,k, x

(1)
g+1,k, Ag+1,k−1(: , � + 1));

end ;
end;
φn = uT

n−1Ag+1,r−1(: , n);
sn = Ag+1,r−1(: , n) − φnun−1;
ψn = ‖sn‖2;
un = sn/ψn;

V T = householder product(v1,1, . . . , vg+1,r−2);
end.

The auxiliary function householder 2() is defined as follows.

function [φ, v, y]=householder 2(z, x, b)
{The function householder 2() computes φ, v, and y, where φ and v are computed by
the function householder() in the same way as in Algorithm 2.1. The Householder
reflector is formed as V = I − vvT with the property that V z = φe1 and y = Bv,
where x = Bz and b = Be1.}
[φ, v]=householder(z);
if φ > 0

w = x− φb;

y =
√

2w/‖z − φe1‖2;
else
y = 0;

end

Remark 3.1. The choice of block dimensions b and c depends upon which com-
puter executes Algorithm 3.1. Their sizes are chosen to obtain optimal efficiency. In
LAPACK routines, the function ilaenv() is used to determine the optimal block size
for block algorithms. Section 5.2 in [1] explains how ilaenv() works: “The version of
ilaenv() supplied with the package contains default values that led to good behavior
over a reasonable number of the test machines, but to achieve optimal performance,
it may be beneficial to tune ilaenv() for the particular machine environment.” Our
optimal block dimensions were obtained through tests.

Algorithm 2.1 is numerically backward stable for computing B and V , but what
about Algorithm 3.1? The answer to this question is given by Theorem 3.4. Before
stating a proof of Theorem 3.4, we will need the results of three technical lemmas.
The lemmas are based on the numerical analysis of basic numerical algorithms given
by Higham [25] and the analysis of the modified Gram–Schmidt algorithm given by
Björck and Paige [5]. The proofs of the lemmas can be found in [7]. In our numerical
analysis we will use the following notation: Tildes (˜) will mark computed quantities,
and hats (̂ , ˘) will denote vectors and matrices that correspond to certain exact
relations and exist only as theoretical entities, not actually computed.

Lemma 3.1. When Algorithm 3.1 is executed in finite precision arithmetic with
the unit roundoff error ε, then the computed values are of the following form:

ṽj,k = v̂j,k + δv̂j,k, ‖δv̂j,k‖2 ≤ O(n− l)ε,

W̃j(: , 1: k) = Ŵj(: , 1: k) + δŴj(: , 1: k), ‖δŴj(: , 1: k)‖F ≤ O(
√
kn)ε,

X̃j(: , k) = Ãj,0Ŷj(: , k) + δX̂j(: , k), ‖δX̂j(: , k)‖2 ≤ O(kn)ε‖Ãj,0‖F ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

938 NELA BOSNER AND JESSE L. BARLOW

where v̂j,k define exact Householder reflectors V̂j,k, and Ŵj, Ŷj, and X̂j = Ãj,0Ŷj are
the exact matrices that are related to Householder vectors v̂j,k as described in (3.8).
Further, the exact values can be bounded by

‖Ŵj(: , 1: k)‖F ≤
√

2
√
k,

‖X̂j(: , 1: k)‖F = ‖Ãj,0Ŷj(: , 1: k)‖F ≤ 2
√

2
√
k‖Ãj,0‖F .

Lemma 3.2. The computed elements of the matrix B̃ from Algorithm 3.1 satisfy
the following relations:[

φ̃k+1ek + ψ̃k+1ek+1

0

]
= P̂k+1P̂k

([
0

fk+1

]
+

[
Δfk+1

δfk+1

])
,∥∥∥∥[Δfk+1

δfk+1

]∥∥∥∥
2

≤ O(bm)ε‖F‖F ,

where P̂k, k = 1, . . . , n, are exact (m + n) × (m + n) Householder reflectors defined
in [5].

Lemma 3.3. The computed vector ũ� and the computed submatrix Ãg+1,r−1(: , �+
2: n) from Algorithm 3.1 satisfy the following relation:

‖ũT
� Ãg+1,r−1(: , � + 2: n)‖2 ≤ O(b2n + bm + bn2)ε‖A‖F .

Theorem 3.4. If B̃ is the bidiagonal matrix computed by Algorithm 3.1, then
there exist an orthogonal (m+n)× (m+n) matrix P̂, an orthogonal n×n matrix V̂ ,
and backward perturbations ΔA, δA such that

(3.9)

[
B̃
0

]
= P̂T

[
ΔA

A + δA

]
V̂ ,

∥∥∥∥[ΔA
δA

]∥∥∥∥
F

≤ ξ‖A‖F ,

where 0 ≤ ξ ≤ O(b(mn+ n3))ε. The computed approximation Ṽ of the matrix V̂ sat-
isfies ‖Ṽ − V̂ ‖F ≤ O(n2)ε. Further, there exist a left orthogonal Ŭ and a perturbation

δ̆A such that

(3.10) A + δ̆A = Ŭ B̃V̂ T , ‖δ̆A‖F ≤
√

2ξ‖A‖F .

Proof. The proof is rather technical and we will divide it into three steps.
Step 1. We will set F = fl(AV) = Ãg+1,r−1, � = (j − 1)b + k and r = n − gb,

where Ãg+1,r−1 is the result of Algorithm 3.1 performed in finite precision arithmetic.
Thus, in floating point computation we can use f� = F (: , �) instead of

f� =

⎧⎨⎩
Ãj,k(: , �) for j = 1, . . . g, k = 1, . . . , b, � = 1, . . . , gb,

Ãg+1,k(: , �) for k = 1, . . . , r − 1, � = gb + 1, . . . , n− 1,

Ãg+1,r−1(: , n) for � = n,

because the denoted column will not be modified in successive steps of the algorithm
(see Figure 3.1).

In this step of the proof we will analyze the application of Householder reflectors
to the matrix A, in floating point arithmetic. This application is divided into g steps,
where b columns of F are computed in each step, and r remaining steps, where only
one column of F is computed per step. First, we are investigating the computations
performed in one block j ∈ {1, 2, . . . , g}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 939

Lemma 3.1 gives the error estimate

X̃j(: , 1: k) = Ãj,0Ŷj(: , 1: k) + δX̂j(: , 1: k),

where

‖δX̂j(: , 1: k)‖F =

√√√√ k∑
i=1

‖δX̂j(: , i)‖2
2 ≤ O(k

3
2n)ε‖Ãj,0‖F ,

and

W̃j(: , 1: k) = Ŵj(: , 1: k) + δŴj(: , 1: k),

with

‖δŴj(: , 1: k)‖F ≤ O(
√
kn)ε.

The only thing that remains is to find a bound on the error introduced by the
application of Householder reflectors to the matrix A. First, for � = (j − 1)b + k,
k = 1, . . . , b, we define the matrices V̂j,k, Ṽj,k ∈ R

(n−l)×(n−l) as (see [7] for the proof
of Lemma 3.1 and [1] for the documentation of the LAPACK routine slarfg())

V̂j,k = I − τ̂j,kv̂j,kv̂
T
j,k, Ṽj,k = I − τ̃j,kṽj,kṽ

T
j,k,

and Q̂j , Q̃j ∈ R
n×n as

Q̂j =

[
Ijb 0

0 V̂j,b

]
. . .

[
I(j−1)b+2 0

0 V̂j,2

] [
I(j−1)b+1 0

0 V̂j,1

]
,

Q̃j =

[
Ijb 0

0 Ṽj,b

]
. . .

[
I(j−1)b+2 0

0 Ṽj,2

] [
I(j−1)b+1 0

0 Ṽj,1

]
,

where Q̂j = I − Ŵj Ŷ
T
j and Q̃j = I − W̃j Ỹ

T
j .

Then, for X̂j , X̃j ∈ R
m×b and Ŵj , W̃j ∈ R

n×b, from Lemma 3.1 it follows that

Ãj+1,0 = fl(Ãj,0Q̃
T
j) = fl(Ãj,0 − fl(X̃jW̃

T
j))

= Ãj,0 − [(X̂j + δX̂j)(Ŵ
T
j + δŴT

j) + δ1Aj+1,0] + δ2Aj+1,0

= Ãj,0 − X̂jŴ
T
j + δAj+1,0 = Ãj,0 − Ãj,0ŶjŴ

T
j + δAj+1,0

= Ãj,0Q̂
T
j + δAj+1,0,

where

‖δ1Aj+1,0‖F ≤ O(b2)ε‖Ãj,0‖F , ‖δ2Aj+1,0‖F ≤ O(b)ε‖Ãj,0‖F ,

which implies

‖δAj+1,0‖F ≤ O(b2n)ε‖Ãj,0‖F .

Finally, we obtain the result for F = Ãg+1,r−1, where the first g updates are performed
as shown above, and the last r − 1 = n − gb − 1 updates can be considered in the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

940 NELA BOSNER AND JESSE L. BARLOW

same framework but with b = 1. Let us denote gt = g + r − 1 as the total number of
update steps. We can note that

‖F‖F ≤ ‖Ãg+1,r−2‖F + O(ε) ≤ · · · ≤ ‖Ãg+1,1‖F + O(ε) ≤ ‖Ãg+1,0‖F + O(ε)

≤ ‖Ãg,0‖F + O(ε) ≤ · · · ≤ ‖Ã2,0‖F + O(ε) ≤ ‖A‖F + O(ε).

Then by induction we have

F = ((. . . ((AQ̂T
1 + δA2,0)Q̂

T
2 + δA3,0) . . .)Q̂

T
gt−1 + δAg+1,r−2)Q̂

T
gt + δAg+1,r−1

= AQ̂T
1 Q̂

T
2 · · · Q̂T

gt +

g∑
j=1

δAj+1,0Q̂
T
j+1 . . . Q̂

T
gt +

r−1∑
k=1

δAg+1,kQ̂
T
g+k+1 . . . Q̂

T
gt

= AV̂ + δ1F,

where

‖δ1F‖F ≤ [O(gb2n) + O((n− gb)n)]ε‖A‖F ≤ O(bn2)ε‖A‖F .

At the end of this step of the proof, for V̂ = Q̂T
1 Q̂

T
2 . . . Q̂T

gt we can state that

F = (A + δ1A)V̂ , ‖δ1A‖F ≤ ηF ‖A‖F , ηF ≤ O(bn2)ε,

where δ1A = δ1F · V̂ T .
Step 2. Since the computation of B̃ from F = [f1, . . . , fn] corresponds to the

modified Gram–Schmidt algorithm, we can use the results from [5] and represent
the computation in an equivalent form, as the Householder QR factorization of the
augmented matrix [

0
F

]
=

[
0

A + δ1A

]
V̂ .

By Lemma 3.2, the following relations hold:[
φ̃k+1ek + ψ̃k+1ek+1

0

]
= P̂k+1P̂k

{[
0

fk+1

]
+

[
Δfk+1

δfk+1

]}
,∥∥∥∥[Δfk+1

δfk+1

]∥∥∥∥
2

≤ O(bm)ε‖F‖F ,

where

P̂k = Im+n −
[

−ek
ûk

] [
−eTk ûT

k

]
,

and ûk = s̃k/‖s̃k‖2 is the exact vector with ‖ûk‖2 = 1. Putting all columns of B̃
together, we get[

B̃
0

]
=

[[
ψ̃1e1

0

]
,

[
φ̃2e1 + ψ̃2e2

0

]
, . . . ,

[
φ̃nen−1 + ψ̃nen

0

]]
=

[
P̂1

[
Δf1

f1 + δf1

]
, P̂2P̂1

[
Δf2

f2 + δf2

]
, . . . , P̂nP̂n−1

[
Δfn

fn + δfn

]]
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 941

and using the fact that

P̂i

[
B̃(: , j)

0

]
=

[
φ̃jej−1 + ψ̃jej

0

]
=

[
B̃(: , j)

0

]
for all i �= j, j − 1,

we obtain[
B̃
0

]
=

[
P̂nP̂n−1 . . . P̂2P̂1

[
Δf1

f1 + δf1

]
, P̂nP̂n−1 . . . P̂2P̂1

[
Δf2

f2 + δf2

]
,

P̂nP̂n−1 . . . P̂3P̂2

[
Δf3

f3 + δf3

]
, P̂nP̂n−1 . . . P̂4P̂3

[
Δf4

f4 + δf4

]
,

. . . , P̂nP̂n−1P̂n−2

[
Δfn−1

fn−1 + δfn−1

]
, P̂nP̂n−1

[
Δfn

fn + δfn

]]
.

The kth column of the computed bidiagonal matrix is of the form

P̂nP̂n−1 . . . P̂kP̂k−1

[
Δfk

fk + δfk

]
,

and the desired form is

P̂nP̂n−1 . . . P̂2P̂1

[
Δ̂fk

fk + δ̂fk

]
= P̂T

[
Δ̂fk

fk + δ̂fk

]
, P = P̂1P̂2 . . . P̂n−1P̂n.

The first two columns (k = 1, 2) are already in the desired form and Δ̂fk = Δfk,

δ̂fk = δfk. For k ≥ 3 we write

[
B̃(: , k)

0

]
= (P̂nP̂n−1 . . . P̂kP̂k−1

I︷ ︸︸ ︷
P̂k−2 . . . P̂2P̂1)(P̂1P̂2 . . . P̂k−2)

[
Δfk

fk + δfk

]
,

and then

P̂1P̂2 . . . P̂k−2

[
Δfk

fk + δfk

]
=

[
0
fk

]
+

[
Δ1fk
δ1fk

]
+ P̂1

[
Δ2fk
δ2fk

]
+ P̂1P̂2

[
Δ3fk
δ3fk

]
+ · · · + P̂1 . . . P̂k−3

[
Δk−2fk
δk−2fk

]
+ P̂1 . . . P̂k−2

[
Δfk
δfk

]
=

[
0
fk

]
+

[
Δ̂fk
δ̂fk

]
,

where [
Δjfk
δjfk

]
=

[
ej
−ûj

]
(ûT

j fk), j = 1, . . . , k − 2,

with [
Δ̂fk
δ̂fk

]
= P̂1 · · · P̂k−2

[
Δfk
δfk

]
+

[
Δ1fk
δ1fk

]
+

k−2∑
j=2

P̂1 . . . P̂j−1

[
Δjfk
δjfk

]
.

Hence, [
B̃
0

]
= P̂T

[[
Δ̂f1

f1 + δ̂f1

]
, . . . ,

[
Δ̂fk

fk + δ̂fk

]
, . . . ,

[
Δ̂fn

fn + δ̂fn

]]
= P̂T

{[
0
F

]
+

[
ΔF
δF

]}
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

942 NELA BOSNER AND JESSE L. BARLOW

where, after suitable reordering of the entries in the sums,[
ΔF
δF

]
=

[[
Δf1

δf1

]
,

[
Δf2

δf2

]
, . . . , P̂1 . . . P̂k−2

[
Δfk
δfk

]
, . . . , P̂1 . . . P̂n−2

[
Δfn
δfn

]]

+

n−2∑
j=1

P̂1 . . . P̂j−1

⎡⎢⎣0, . . . , 0︸ ︷︷ ︸
j+1

,

[
Δjfj+2

δjfj+2

]
, . . . ,

[
Δjfn
δjfn

]⎤⎥⎦ .

Taking norms, we obtain∥∥∥∥[ΔF
δF

]∥∥∥∥
F

≤ O(bm
√
n)ε‖F‖F +

√
2

n−2∑
j=1

‖ûT
j

[
fj+2 fj+3 . . . fn

]
‖2

≤ O(bm
√
n)ε‖F‖F +

√
2

n−2∑
j=1

(‖ũT
j Ãg+1,r−1(: , j + 2: n)‖2

+‖δûj‖2‖F (: , j + 2: n)‖F).

It remains to estimate the products ũT
i f� for � = 3, . . . , n and i = 1, . . . , � − 2,

where � = (j − 1)b + k, k = 1, . . . , b. For this estimate, the important role plays the
choice of the vector zj,k. From Lemma 3.3 it follows that

‖ũT
� Ãg+1,r−1(: , � + 2: n)‖2 ≤ O(b2n + bm + bn2)ε‖A‖F .

Then∥∥∥∥[ΔF
δF

]∥∥∥∥
F

≤ O(b(mn + n3))ε‖F‖F ≤ O(b(mn + n3))(1 + ηF)‖A‖F .

To get the relation (3.9), we collect the perturbations from both implicit tridiagonal-
ization and the Gram-Schmidt computation[

B̃
0

]
= P̂T

{[
0
F

]
+

[
ΔF
δF

]}
= P̂T

{[
0

A + δ1A

]
V̂ +

[
ΔF
δF

]}
= P̂T

{[
0

A + δ1A

]
+

[
ΔF
δF

]
V̂ T

}
V̂ .

Step 3. Finally, using P11 = P(1 : n, 1: n), P21 = P(n + 1: n + m, 1: n), we have[
ΔA

A + δA

]
V̂ =

[
P11

P21

]
B̃, PT

11P11 + PT
21P21 = I,

and (3.10) follows by an application of [5, Lemma 3.1]. The proof that (3.10) holds
for the nonblock version of the algorithm is given in Theorem 3.18 [3]. The same
arguments can be applied to the block version.

Note that in (3.10) we can write A + δ̆A = Ŭ B̃Ṽ T (I + Γ), ‖Γ‖F ≤
O(n2)ε.

In our numerical experiments, the optimal choice for the block dimension b was
usually 16, so the accuracy predicted by the bound in Theorem 3.4 is close to the
accuracy predicted by Theorem 2.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 943

Fig. 3.2. Error in singular values from Example 3.1.

Example 3.1. Let A = [aij] be the n× n Kahan matrix as in [3], with

aij =

{
αi−1 i = j,

−αj−1β i > j,

where α2 + β2 = 1 and α, β > 0. For our tests we chose α = sin(1.2) and n =
50, 60, . . . , 200. In this case the matrices are ill-conditioned. The first n− 1 singular
values gradually decay and are bounded away from zero, but, on the other hand, the
smallest singular value decays rapidly with n.

We compare the accuracy of Algorithm 3.1 with Algorithm 2.1 and Ralha’s one-
sided bidiagonalization, by using the Wielandt–Hoffman measure

(3.11)

√√√√ n∑
k=1

(σk(A) − σk(B))2

‖A‖F
.

This example is performed in MATLAB and in double precision. The one-sided bidi-
agonalization routines are implemented in the same way as the FORTRAN routines
in the next section. The singular values σk(A) of the matrix A are computed by the
MATLAB command svd(). The results are shown in Figure 3.2.

We can note that Algorithm 3.1 sometimes produces the bidiagonal matrix B
with slightly less accurate singular values than Algorithm 2.1. Theorem 3.4 asserts
that the bound on (3.11) for Algorithm 3.1 is b times larger than the corresponding
bound for Algorithm 2.1, where b is the block dimension. In our case, we took b = 16.
If we compare the computed errors measured by (3.11), we can see that the largest
difference is obtained for n = 180, where the error of Algorithm 3.1 is 1.67 times larger
than the error of Algorithm 2.1. In this case, the estimation of the error bounds on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

944 NELA BOSNER AND JESSE L. BARLOW

(3.11) from Theorems 2.1 and 3.4 are

Algorithm 2.1 Algorithm 3.1

(n2 + n3)ε = 6.51 · 10−10 b(n2 + n3)ε = 1.04 · 10−8

Hence, our computed results are in accordance with the approximate bounds in The-
orems 2.1 and 3.4 and reveal that these bounds can significantly overestimate the
actual error.

Similar to the results of Björck and Paige in [5], Corollary 3.18 in [3] states that
for the nonblock version of one-sided bidiagonalization algorithm we have

(3.12) ‖ŨT Ũ − I‖F ≤ p(m,n)κ2(B̃)ε + O(ε2),

where Ũ is the computed matrix of left singular vectors, p(m,n) is a polynomial with
modest degree, and κ2(B̃) = ‖B̃‖2‖B̃−1‖2. In fact, arguments given in the proof of
this corollary hold for any bidiagonalization algorithm for which Theorem 3.4 can be
proved. That means that if B is ill-conditioned, Ũ might be far from left orthogonal
matrix, but sometimes the bound in (3.12) is too pessimistic.

On the other hand, suppose that a numerically backward stable SVD is performed
on the matrix B̃ from Theorem 3.4, obtaining matrices Ỹ , Σ̃, and W̃ . From [3,

Theorem 3.7] it follows that there exists a perturbation δ̂A such that A+δ̂A = P̃ Σ̃Q̃T ,

where P̃ = Ũ Ỹ , Q̃ = Ṽ W̃ , and ‖δ̂A‖F ≤ O(ε)‖A‖F . P̃ can be considered as a matrix
of computed left singular vectors of A, Q̃ as a matrix of computed right singular
vectors of A, and Σ̃ = diag(σ̃1, . . . , σ̃n), where σ̃1 ≥ · · · ≥ σ̃n, is a matrix of computed
singular values. By the same argument as in Corollary 3.20 in [3], we can state that

‖P̃T
1 P̃1 − I‖F ≤ q(m,n)

σ̃1

σ̃k
ε + O(ε2),

where P̃1 is a matrix which contains k computed left singular vectors that correspond
to the k largest singular values, and q(m,n) is a polynomial with modest degree. This
shows that the basis for the leading principal subspace of left singular vectors can be
computed with near orthogonality.

4. Efficiency of the stable block one-sided bidiagonalization. For the
block version of the new stable one-sided bidiagonalization, extensive testing was
carried out. Computations were performed in the Advanced Computing Laboratory
of the Department of Mathematics, University of Zagreb. The laboratory consists of
20 computers, connected in a local 1Gb network. The specifications of the computers
are shown in Table 4.1.

The computers are working under a Debian GNU/Linux operating system. The
tests were written in FORTRAN 77 programming language, and a GNU (v0.5.24)

Table 4.1

The specifications of the computers in Advanced Computing Laboratory.

2 processors Athlon Mp 1800+
Frequency 1533 MHz
L1 Cache 64 kB
L2 Cache 256 kB
RAM 1 GB

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 945

Table 4.2

Average execution times for full SVD algorithms.

m × n t1 t2 tL p2,1 p2,L

100 × 100∗ 0.008 0.008 0.011 0.00% 27.27%
200 × 200∗ 0.058 0.055 0.065 5.17% 15.38%
500 × 50∗ 0.005 0.005 0.008 0.00% 37.50%
500 × 100∗ 0.022 0.021 0.035 4.55% 40.00%
500 × 500 4.910 4.360 4.590 11.20% 5.01%

1000 × 100∗ 0.072 0.054 0.096 25.00% 43.75%
1000 × 500 6.980 5.810 5.290 16.76% -9.83%
1000 × 500∗∗ 5.550 5.030 5.290 9.37% 4.91%
1000 × 1000 39.810 35.200 36.730 11.58% 4.17%
2000 × 200 1.860 1.490 0.670 19.89% -122.39%
2000 × 200∗∗ 0.600 0.590 0.670 1.67% 11.94%
2000 × 1000 58.280 49.630 44.480 14.84% -11.58%
2000 × 1000∗∗ 47.590 43.150 44.480 9.33% 2.99%
2000 × 2000 320.640 285.960 294.380 10.82% 2.86%
3000 × 3000 1284.300 1152.940 1193.340 10.23% 3.39%

compiler with optimization (option “-O”) was used to obtain executable files. LA-
PACK and BLAS routines were called in these programs, and ATLAS (Automatically
Tuned Linear Algebra Software) tuned for Athlon processors was used to implement
BLAS routines. Tests were done in single precision. Matrices in the tests were gener-
ated as products A = UΣV T , where Σ is a diagonal matrix with fixed singular values
{1, 2, . . . , n}, and U and V are random orthogonal matrices.

The block dimensions b and c in the tests were chosen to obtain the best execution
time. In our case it turned out to be b = 16, and we took c = 8. Table 4.2 gives
average execution times for full SVD algorithms, expressed in seconds.

The meaning of the headers in Table 4.2 are as follows:
t1 — the SVD with Algorithm 2.1 for bidiagonalization.

The LAPACK routine sbdsqr() is used for the
SVD of a bidiagonal matrix, which implements the
bidiagonal QR algorithm.

t2 — the SVD with Algorithm 3.1 for bidiagonalization.
The LAPACK routine sbdsqr() is used for the
SVD of a bidiagonal matrix, which implements the
bidiagonal QR algorithm.

tL — the LAPACK sgesvd() routine.
p2,1 = 100(t1 − t2)/t1 — the percentage of time decrease, when the SVD

with Algorithm 3.1 is compared to the SVD with
Algorithm 2.1.

p2,L = 100(tL − t2)/tL — the percentage of time decrease, when the SVD
with Algorithm 3.1 is compared to the LAPACK
routine.

∗ — the time was measured for 10 consecutive
executions of the routines and then divided by 10.

∗∗ — QR factorization is performed before the SVD with
Algorithms 2.1 and 3.1 for bidiagonalization.

We can conclude that the block version of the one-sided bidiagonalization algorithm
did decrease the execution time of Algorithm 2.1, as expected. Compared to the
SVD with Algorithm 2.1 the most significant time decrease is 25.00% for matrix
dimensions 1000 × 100. The SVD routine with Algorithm 3.1 produces a code that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

946 NELA BOSNER AND JESSE L. BARLOW

is not slower than the LAPACK sgesvd() routine in most cases when all of the
SVD factors are required, although this varies with the dimensions of the matrix. In
many cases we observed some gains in speed. Here it should be emphasized that the
QR factorization was not applied before the one-sided bidiagonalization algorithms
except in cases denoted by ∗∗, and we can note that the one-sided bidiagonalization
algorithms achieved the largest speedup compared to the LAPACK routine when m
is much larger than n. This can be explained by the fact that the SVD with the one-
sided bidiagonalization algorithm has a smaller operation count than the LAPACK
sgesvd() routine (see [3, Table 1]). On the other hand, for dimensions 1000 × 500,
2000 × 200, and 2000 × 1000 the QR factorization was necessary to make Algorithm
3.1 faster than the sgesvd() routine. It seems that the memory hierarchy was utilized
better that way. If the matrix U is not needed, then the advantage of the one-sided
bidiagonalization over the LAPACK routine might be lost. That happens because
U is always computed, whether it is needed or not (see [3, Table 1]). When solving
the problems described in [8], our algorithm would be preferable since possible loss
of orthogonality of the matrix Ũ is irrelevant in these cases, and the SVD with the
one-sided bidiagonalization algorithm is often faster than the LAPACK routine.

5. Parallel version of the new stable one-sided bidiagonalization. The
parallel bidiagonalization algorithm is performed on several processors simultaneously.
Each matrix is distributed over the memories of all processors, and this distribution
is balanced. This means that the dimensions of the submatrices assigned to each
processor are almost the same. It is important to minimize communication between
processors, as the time spent for communication can be expected to be a significant
part of the overall execution time.

In our case we used the following setting:
• the processors were organized in linear order:

1 ←→ 2 ←→ 3 ←→ 4 ;

• we used ScaLAPACK [6] for the computation;
• we used the message passing interface [22] for the interprocessor communica-

tion.
The matrix distribution over the processors is performed rowwise, because the

algorithm is one-sided and column-oriented.
The most important features of the parallel version of the stable one-sided bidi-

agonalization algorithm are the following:
1. The matrix layout is one-dimensional block-cyclic row distribution. Each

m×n matrix is divided in mb×n blocks of contiguous rows, where mb is the
block row dimension. Then the blocks are distributed across the processors
in cyclic order, which guarantees good load balancing (see Figure 5.1 and [6]).

2. The algorithm is performed in the same way as Algorithm 2.1, with extra
interprocessor communication. Interprocessor communication is required for:

• computation of zk as matrix–vector multiplication,
• broadcasting the vector zk to all processors,
• computing scalar products.

The rest of the computations consist of BLAS 1 operations (operations with
vectors), as well as computation and application of Householder reflectors,
which need no additional communication.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 947

A =

1
2
3
4
5
6
7
8

−→

1
1
5
�

2
2
6
�

3
3
7
�

4
4
8

Fig. 5.1. The block distribution of the matrix A.

The complete parallel algorithm with explanations is listed in Algorithm 5.1.
Algorithm 5.1. For A ∈ R

m×n, rank(A) = n > 2, this algorithm computes in
parallel a left orthogonal U = [u1, . . . , un], a bidiagonal B, and an orthogonal V such
that A = UBV T .
(1) Distribute Ψ = [ψ1 . . . ψn]T over the processors;
(2) distribute Φ = [φ1 . . . φn−1]T over the processors;
(3) A0 = A;
(4) f1 = A(: , 1); ψ1 = ‖f1‖2; parallel dot product;
(5) u1 = f1/ψ1; BLAS 1 operation

without communication;
for k = 1: n− 2

(6) zk = Ak−1(: , k + 1: n)Tuk; parallel matrix-vector product;
the resulting vector is stored in
one processor and then
broadcast to all other
processors;

(7) [φk+1, vk] = householder(zk); computation performed on each
processor; each processor owns a
copy of vk and φk+1;

(8) Ak(: , 1: k) = Ak−1(: , 1: k);
(9) Ak(: , k + 1: n) = Ak−1(: , k + 1: n) −Ak−1(: , k + 1: n)vkv

T
k ;

parallel update
without communication;

(10) fk+1 = Ak(: , k + 1);
(11) sk+1 = fk+1 − φk+1uk; BLAS 1 operation

without communication;
(12) ψk+1 = ‖sk+1‖2; parallel dot product;
(13) uk+1 = sk+1/ψk+1; BLAS 1 operation

without communication;
end;
(14) fn = An−2(: , n); φn = uT

n−1fn; parallel dot product;
(15) sn = fn − φnun−1; BLAS 1 operation

without communication;
(16) ψn = ‖sn‖2; parallel dot product;
(17) un = sn/ψn; BLAS 1 operation

without communication;
(18) V T = householder product(v1, . . . , vn−2) parallel computation;
end.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

948 NELA BOSNER AND JESSE L. BARLOW

The parallel version of the stable bidiagonalization algorithm performs the same
operations as the serial nonblock version. Preliminary numerical experiments showed
that a parallel block version, applying Algorithm 3.1 in parallel, has a large overhead
on our computers; thus, it was almost always slower than the ScaLAPACK routine.
The results of Theorem 2.1 hold for Algorithm 5.1 as well.

6. Efficiency of the stable parallel one-sided bidiagonalization.

6.1. Tests performed at the Advanced Computing Laboratory. The tests
for the parallel version of the new stable bidiagonalization algorithm were done over
a large variety of matrix dimensions. The computations were performed in the com-
putational environment described in section 4 and matrices were generated in the
same way. QR factorization was not performed before bidiagonalization, because
Algorithm 5.1 is suitable for the parallel computing in its original form. The QR fac-
torization would just increase the interprocessor communication. The tests confirmed
this statement even for the ScaLAPACK psgesvd() routine, where in most cases the
QR factorization introduced before bidiagonalization caused a slowdown in producing
the full SVD. The block cyclic distribution was also used for testing the ScaLAPACK
routine, but the linear layout of the processors may not always be optimal for this
routine. So in this case we performed our test with all possible layouts for the fixed
processor number, and we chose the best execution time. The parallel tests were per-
formed over a variety of block dimensions, where block column and row dimensions
were the same. The block dimensions were chosen from the set {8, 16, 32, 64, 128, 256},
and the best execution time among block dimensions was displayed in Table 6.1. For
the SVD with Algorithm 5.1 the block dimension was equal to 8 in most cases, and
for the ScaLAPACK SVD routine it was equal to 32 in most cases. Table 6.1 gives the
average execution times expressed in seconds for full SVD algorithms when computed
on p processors. The meaning of the headers in Table 6.1 are as follows:

t3 — the parallel SVD with Algorithm 5.1.
pm × pn — processor layout with the best execution time

of the ScaLAPACK routine.
tS — the ScaLAPACK psgesvd() routine.
p3,S = 100(tS − t3)/tS — the percentage of time decrease, when the

parallel SVD with Algorithm 5.1 is compared
to the ScaLAPACK routine.

η3,p = (t2/t3)/p — the efficiency of the parallel SVD with
Algorithm 5.1 on p processors.

ηS,p = (tL/tS)/p — the efficiency of the ScaLAPACK routine on p
processors.

As we can see from Table 6.1, we accomplished a considerable decrease in execution
time for m × n matrices when m > n. In that case the SVD with the described
parallel version of the one-sided bidiagonalization algorithm is much faster than the
ScaLAPACK routine psgesvd(). Compared to the ScaLAPACK routine, the most
significant time decrease is 68.28% for matrix dimensions 5000 × 100 and for 8 pro-
cessors. On the other hand, for squared matrices the ScaLAPACK routine is up to
55.08% faster, and in this case a block version of the parallel one-sided algorithm is
required. Efficiency of such block algorithms is described in the next subsection.

Another important feature of parallel algorithms is the efficiency. In an ideal
situation an algorithm executed on p processors should be p times faster than the same
algorithm executed on only one processor. The efficiency measures departure from the
ideal execution time. Table 6.1 shows the efficiency for both SVD algorithms applied

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 949

Table 6.1

Average execution times for full parallel SVD algorithms.

m×n p t3 pm × pn tS p3,S η3,p ηS,p
1000×100 4 0.1305 2×2 0.3004 56.56 0.1034 0.0799
1000×500 4 2.2733 2×2 3.1061 26.81 0.5532 0.4258
1000×1000 4 10.1454 2×2 12.3271 17.70 0.8674 0.7449
1000×1000 8 7.4465 8×1 16.0945 53.73 0.5909 0.2853
1000×1000 16 5.2669 4×4 8.5679 38.53 0.4177 0.2679
2000×200 4 0.5734 2×2 0.9863 41.86 0.2572 0.1698
2000×1000 4 14.1258 2×2 15.8176 10.70 0.7637 0.7030
2000×1000 8 9.6341 8×1 18.5550 48.08 0.5599 0.2996
2000×1000 16 6.6574 4×4 11.7242 43.22 0.4051 0.2371
2000×2000 4 92.2496 2×2 96.6973 4.60 0.7750 0.7611
2000×2000 8 41.3098 8×1 63.7957 35.25 0.8653 0.5768
2000×2000 16 35.3350 4×4 37.7961 6.51 0.5058 0.4868
4000×200 8 0.9272 8×1 2.4123 61.56 — —
4000×1000 8 14.0244 8×1 21.7543 35.53 — —
4000×1000 16 9.0173 16×1 16.2978 44.67 — —
4000×4000 8 378.1784 8×1 433.7231 12.81 — —
4000×4000 16 246.8128 2×8 181.0293 -36.34 — —
5000×100 8 0.4337 8×1 1.3674 68.28 — —
5000×1000 16 10.0963 16×1 17.1380 41.09 — —

5000×5000 16 538.0723 4×4 346.9633 -55.08 — —
8000×1000 16 13.3496 16×1 19.1207 30.18 — —
8000×8000 16 2449.5129 4×4 2077.7632 -17.89 — —

10000×1000 16 15.4075 16×1 19.4387 20.74 — —
10000×10000 16 3422.0708 4×4 2963.5295 -15.47 — —

to matrices with small dimensions. In the case of larger dimensions we were not able
to run the codes on a single processor due to memory limitations, and therefore the
efficiency is not computed. We can see that the parallel SVD with Algorithm 5.1
has better efficiency than the ScaLAPACK routine psgesvd() in all cases. The new
algorithm has also better scalability than the ScaLAPACK routine when the number
of processors is increased from 4 to 8 processors, which is illustrated in Figure 6.1.
The y axis in Figure 6.1 represents the reduction factor in execution time when the
number of processors is doubled and the matrix dimensions are fixed. The labels on
the x axis denote matrix dimensions and ratios p1/p2, which indicate that the number
of processors is increased from p1 to p2. Theoretically, the reduction factor in the
execution time, when the number of processors is doubled, is bounded by 2. However,
in two cases we obtained a reduction factor greater than 2, once for the one-sided
bidiagonalization and once for the ScaLAPACK routine. This “superlinear speedup”
is usually explained by the fact that, as we reduce the amount of data per processor, a
larger percentage of the local data is stored in the caches, thus reducing the memory
traffic overheads. So it appears that, in this case, such savings in time are more than
enough to pay for the extra time required by the communication involving twice as
many processors. We can conclude that, for squared matrices in case the number
of processors is increased from 8 to 16 processors, the ScaLAPACK routine becomes
much more efficient since it is a blocked algorithm. This illustrates the importance
of the block algorithms and gives us a motivation for developing an efficient block
parallel version of the one-sided bidiagonalization algorithm.

6.2. Tests performed at the High Performance Computing Center
North. The same tests as in subsection 6.1 were also performed on the “Sarek”
cluster at the High Performance Computing Center North Sweden. The cluster con-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

950 NELA BOSNER AND JESSE L. BARLOW

Fig. 6.1. Reduction in execution time in the case when the number of processors is doubled.

Table 6.2

The specifications of the nodes in the “Sarek” cluster.

2 processors AMD Opteron 248
Frequency 2.2 GHz
L1 Cache 64 kB + 64 kB
L2 Cache 1024 kB
RAM 8 GB

sists of 190 nodes, connected to a Gigabit ethernet communication network and to
a Myrinet high-performance network. The specifications of the nodes are shown in
Table 6.2. The nodes are working under a Debian GNU/Linux operating system. The
test codes were compiled with MPIF77 1.2.5.12 and PGF77 with optimization (option
“-fast”). “Goto BLAS” (r0.94) was used to implement BLAS routines. QR factor-
ization was not performed before bidiagonalization. Table 6.3 gives the execution
times expressed in seconds for full SVD algorithms when computed on p processors.
Four rounds of tests were performed with four different parallel variants of the stable
one-sided bidiagonalization algorithm. In each round the one-sided bidiagonalization
routine was executed together with the ScaLAPACK psgesvd() routine for compar-
ison. Due to the lack of space in Table 6.3, instead of the execution time of the
ScaLAPACK routine tS we present the ratio ti/tS , where ti is the execution time of
the ith version of the parallel bidiagonalization algorithm.

The meaning of the headers in Table 6.3 are as follows:
tS — the ScaLAPACK psgesvd() routine.
t3 — the parallel SVD with Algorithm 5.1.
t4 — the parallel SVD with a modified one-sided bidiagonalization

algorithm. Campos et al. [9] have proposed a modification of the
stable one-sided bidiagonalization. This version reduces
communications events

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 951

Table 6.3

Average execution times for full parallel SVD algorithms.

m×n p t3 t3/tS t4 t4/tS t5 t5/tS t6 t6/tS
1000×100 4 0.023 0.88 0.022 0.83 0.023 0.88 0.021 0.80
1000×500 4 0.530 0.87 0.524 0.86 0.495 0.81 0.503 0.82
1000×1000 4 3.081 0.84 3.058 0.83 2.970 0.81 2.986 0.81
1000×1000 8 1.732 0.83 1.697 0.81 1.669 0.80 1.641 0.79
1000×1000 16 1.284 0.92 1.185 0.85 1.262 0.91 1.174 0.85
2000×200 4 0.116 0.92 0.113 0.89 0.108 0.85 0.107 0.84
2000×1000 4 4.626 0.99 4.588 0.99 4.139 0.90 4.213 0.90
2000×1000 8 2.395 0.98 2.285 0.93 2.281 0.93 2.200 0.90
2000×1000 16 1.519 0.94 1.440 0.89 1.483 0.92 1.388 0.87
2000×2000 4 26.95 0.96 26.31 0.94 24.44 0.88 25.06 0.89
2000×2000 8 13.78 0.92 13.66 0.91 14.22 0.91 12.85 0.86
2000×2000 16 7.666 0.95 7.417 0.93 7.539 0.93 7.260 0.91
4000×200 8 0.131 0.93 0.126 0.89 0.123 0.87 0.116 0.82
4000×1000 8 4.016 1.17 3.923 1.14 3.883 1.05 3.427 1.01
4000×1000 16 2.117 1.07 2.012 1.03 2.029 1.03 1.918 0.98
4000×4000 8 114.5 0.98 114.2 0.99 120.3 0.94 108.2 0.93
4000×4000 16 58.53 1.04 57.38 1.03 54.69 0.97 54.31 0.97
5000×100 8 0.050 0.90 0.046 0.83 0.049 0.86 0.045 0.80
5000×1000 16 2.538 1.15 2.427 1.10 2.335 1.05 2.239 1.01
5000×5000 16 112.8 1.06 112.5 1.06 105.7 0.99 106.0 0.97
8000×1000 16 3.776 1.26 3.660 1.24 3.762 1.15 3.241 1.08
8000×8000 16 638.2 1.05 635.9 1.00 620.9 0.99 670.9 1.06

10000×1000 16 5.613 1.46 5.450 1.42 4.588 1.18 4.662 1.21
10000×10000 16 1231 0.95 1226 0.97 1129 0.87 1216 0.96

t5 — the parallel SVD with a block one-sided bidiagonalization algorithm.
It is a simplified block version of the one-sided bidiagonalization.
Only the application of the Householder reflectors is aggregated,
but the BLAS 2.5 approach is not used since it introduces one
matrix-vector product more per iteration.

t6 — the parallel SVD with a modified block one-sided bidiagonalization
algorithm. It is the blocked version with the modification of Campos
et al.

As we can see from Table 6.3, the situation on the Sarek cluster is a little bit differ-
ent from the situation described in subsection 6.1. The Sarek cluster has very fast
interprocessor communication and Algorithm 5.1 is not so favorable as it was on the
cluster of computers in the Advanced Computing Laboratory in the case when m > n.
The worst result was obtained for matrix dimensions 10000× 1000 and 16 processors
when the execution time of the parallel SVD with Algorithm 5.1 was 1.46 times longer
than the execution time of psgesvd(). This was the reason for developing three ad-
ditional implementations of the parallel stable one-sided bidiagonalization routines,
which are explained in the description of Table 6.3. The modification of Campos
and his coauthors proposes reduction in communication events. This is achieved by
simultaneous execution of the operations in steps (6) and (12) of Algorithm 5.1,
since each of these operations presents a communication event. Thus instead of two
communication events, only one is performed per iteration. The work of Campos et
al. was developed independently of the work presented in this paper. The block par-
allel implementation is similar to Algorithm 3.1, except that BLAS 2.5 operations are
not implemented. We can conclude that the presented variants of Algorithm 3.1 did
gain some speedup and that block and modified block algorithms are faster than the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

952 NELA BOSNER AND JESSE L. BARLOW

ScaLAPACK routine in most cases. For some matrix dimensions these two variants
are up to 21.5% faster. On the other hand, the matrix dimension 10000 × 1000 for
16 processors remains critical. We achieved a reduction in slowdown from 45.53%
to 18.25%, but the ScaLAPACK routine is still faster in this case. There is still an
open question of whether we can make our parallel implementation of the one-sided
bidiagonalization more efficient on the clusters with a fast network. This will be the
subject of our future work.

7. Conclusion. Ralha’s one-sided bidiagonalization [29] performs fewer opera-
tions than the standard Golub–Kahan bidiagonalization [20], but it is numerically
unstable. Barlow’s modification [3] of Ralha’s algorithm avoided this problem, so the
new algorithm became numerically backward stable for computing the matrices Σ
and V , with the same operation count. On modern computers, a smaller operation
count does not necessarily lead to reduced execution times, due to the time spent on
communication between different levels of memory. This is the reason why we have
developed block and parallel versions of the new stable one-sided bidiagonalization al-
gorithm. The block version optimizes the usage of faster memory, without sacrificing
numerical backward stability. As numerical tests demonstrate, the SVD algorithm
with the block one-sided bidiagonalization is faster than the corresponding LAPACK
routine. The stable one-sided bidiagonalization is more suitable for parallelization
than the corresponding ScaLAPACK routine. The tests established improvement of
the parallel one-sided bidiagonalization when compared with the ScaLAPACK routine
in most cases. In the best case our algorithm is 68.28% faster than the ScaLAPACK
routine on a cluster with slow interprocessor communication and 21.5% faster on a
cluster with fast interprocessor communication. From the numerical point of view it
is equivalent to the original stable one-sided algorithm proposed in [3] or its block
version and thus numerically stable in the same way. In the future we will work on
the more efficient parallel version of the stable one-sided bidiagonalization.

Acknowledgments. We thank Zlatko Drmač and Daniel Kressner for carefully
reading the paper and making many helpful suggestions. Rui Ralha and Carlos Cam-
pos are developing one-sided bidiagonalization software, and we thank them for their
support. We also thank both referees for helping us to make this paper better. This
research was conducted using the resources of the High Performance Computing Cen-
ter North (HPC2N).

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz,

A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C. Sorensen, LAPACK
Users’ Guide, 3rd ed., SIAM, Philadelphia, 1999.

[2] J. L. Barlow, More accurate bidiagonal reduction for computing the singular value decompo-
sition, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 761–798.

[3] J. L. Barlow, N. Bosner, and Z. Drmač, A new stable bidiagonal reduction algorithm, Linear
Algebra Appl., 397 (2005), pp. 35–84.

[4] C. Bischof and C. Van Loan, The WY representation for products of Householder matrices,
SIAM J. Sci. Comput., 8 (1987), pp. s2–s13.

[5] Å . Björck and C. C. Paige, Loss and recapture of orthogonality in the modified Gram–
Schmidt algorithm, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 176–190.

[6] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. J. Don-

garra, S. J. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.

Whaley, ScaLAPACK Users’ Guide, SIAM, Philadelphia, 1997.
[7] N. Bosner, Fast methods for large scale singular value decomposition, Ph.D. thesis, Depart-

ment of Mathematics, University of Zagreb, 2006, http://www.math.hr/∼nela/eng.html.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK AND PARALLEL ONE-SIDED BIDIAGONALIZATIONS 953

[8] N. Bosner and Z. Drmač, On accuracy properties of one-sided bidiagonalization algorithm and
its applications, in Proceedings of the Conference on Applied Mathematics and Scientific
Computing, Z. Drmač, M. Marušić, and Z. Tutek, eds., Springer, Dordrecht, 2005, pp. 141–
150.

[9] C. Campos, D. Guerrero López, V. Hernandez, and R. Ralha, Parallel bidiagonalization
of a dense matrix, SIAM J. Matrix Anal. Appl., to appear.

[10] T. F. Chan, An improved algorithm for computing the singular value decomposition, ACM
Trans. Math. Software, 8 (1982), pp. 72–83.

[11] J. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 720–755.

[12] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 1204–1245.

[13] J. J. Dongarra, J. J. DuCroz, S. J. Hammarling, and R. J. Hansen, An extended set of
Fortran basic linear algebra subroutines, ACM Trans. Math. Software, 14 (1988), pp. 1–17.

[14] J. J. Dongarra, J. Du Croz, S. J. Hammarling, and I. S. Duff, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1–17.

[15] J. J. Dongarra, J. Du Croz, S. J. Hammarling, and I. S. Duff, Algorithm 679; A set of
level 3 basic linear algebra subprogram: Model implementation and test programs, ACM
Trans. Math. Software, 16 (1990), pp. 18–28.

[16] J. J. Dongarra, S. J. Hammarling, and D. C. Sorensen, Block reduction of matrices to
condensed forms for eigenvalue computations, J. Comput. Appl. Math., 27 (1989), pp. 215–
227.

[17] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm: I, SIAM J. Matrix
Anal. Appl., to appear.

[18] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm: II, SIAM J. Matrix
Anal. Appl., to appear.

[19] K. V. Fernando and B. N. Parlett, Accurate singular values and differential qd algorithms,
Numer. Math., 67 (1994), pp. 191–229.

[20] G. Golub and W. Kahan, Calculating the singular values and pseudoinverse of a matrix,
SIAM J. Numer. Anal., 2 (1965), pp. 205–224.

[21] G. H. Golub and C. Reinsch, Singular value decomposition and least squares solutions, Nu-
mer. Math., 14 (1970), pp. 403–420.

[22] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the
Message Passing Interface, 2nd ed., Scientific and Engineering Computation Series, MIT
Press, Cambridge, 1999.

[23] B. Großer and B. Lang, Efficient parallel reduction to bidiagonal form, Parallel Comput.,
25 (1999), pp. 969–986.

[24] B. Großer and B. Lang, An O(n2) algorithm for the bidiagonal SVD, Linear Algebra Appl.,
358 (2003), pp. 45–70.

[25] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,
2002.

[26] G. Howell, C. Fulton, J. Demmel, S. J. Hammarling, and K. Marmol, Cache efficient
bidiagonalization using BLAS 2.5 operators, Lapack Working Note 174, 2006.

[27] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall Series in
Automatic Computation, Prentice-Hall, Englewood Cliffs, NJ, 1974.

[28] R. Ralha, A new algorithm for singular value decompositions, in Proceedings of the 3rd Eu-
romicro Workshop on Parallel and Distributed Processing, IEEE Press, Piscataway, NJ,
1994, pp. 240–244.

[29] R. Ralha, One-sided reduction to bidiagonal form, Linear Algebra Appl., 358 (2003), pp. 219–
238.

[30] R. Ralha and A. Mackiewicz, An efficient algorithm for the computation of singular values,
in Proceedings of the III International Congress on Numerical Methods in Engineering,
M. Doblaré, J. M. Correas, L. Gaverte, and M. Pastor, eds., SEMNI (Sociedad Española
de Métodos Numéricos en Ingenieria), 1996, pp. 1371–1380.

[31] H. D. Simon and H. Zha, Low-rank matrix approximation using the Lanczos bidiagonalization
process with applications, SIAM J. Sci. Comput., 21 (2000), pp. 2257–2274.

[32] P. R. Willems, B. Lang, and C. Vömel, Computing the bidiagonal SVD using multiple rel-
atively robust representations, Special Issue on Accurate Solution of Eigenvalue Problems,
SIAM J. Matrix Anal. Appl., 28 (2006), pp. 907–926.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 954–971

A CHEBYSHEV–DAVIDSON ALGORITHM FOR LARGE
SYMMETRIC EIGENPROBLEMS∗

YUNKAI ZHOU† AND YOUSEF SAAD‡

Abstract. A polynomial filtered Davidson-type algorithm is proposed for symmetric eigenprob-
lems, in which the correction-equation of the Davidson approach is replaced by a polynomial filtering
step. The new approach has better global convergence and robustness properties when compared
with standard Davidson-type methods. The typical filter used in this paper is based on Chebyshev
polynomials. The goal of the polynomial filter is to amplify components of the desired eigenvectors in
the subspace, which has the effect of reducing both the number of steps required for convergence and
the cost in orthogonalizations and restarts. Numerical results are presented to show the effectiveness
of the proposed approach.

Key words. polynomial filter, Davidson-type method, global convergence, Krylov subspace,
correction-equation, eigenproblem

AMS subject classifications. 15A18, 15A23, 15A90, 65F15, 65F25, 65F50

DOI. 10.1137/050630404

1. Introduction. We consider a Davidson-type method for the standard eigen-
value problem

(1.1) Au = λu,

where A ∈ R
n×n is symmetric, n is large, and a large number of eigenpairs need to be

computed. We assume throughout that the eigenvalues wanted are the smallest ones.
There is a growing need for solving this type of problem efficiently. To cite just one
example, symmetric eigenvalue problems usually constitute the most time-consuming
part of electronic structure calculations [18, 12, 6].

The original Davidson method [11] was initially designed for diagonally dominant
matrices, which for eigenvalue problems means matrices whose off-diagonal elements
are small compared with the changes in magnitude between diagonal elements [19].
The Davidson approach sacrifices the attractive Krylov subspace structure, at the
cost of having to compute eigenpairs and associated residual vectors of a projection
matrix at each (outer) iteration. The trade-off is that the Davidson approach can
augment the subspace by a new vector potentially much better than the one based
on a strict Krylov subspace structure.

The “augmentation vector” added to the subspace at each step usually results
from solving a correction-equation. The efficiency of the standard Davidson-type
methods depends on the quality of the correction-equation used. Efficient (precondi-
tioned) linear equation solvers are often utilized to solve the correction-equations. The
original Davidson method uses the correction-equation (diag(A) − μI)t = −r, where

∗Received by the editors May 2, 2005; accepted for publication (in revised form) by D. Cal-
vetti March 28, 2007; published electronically October 5, 2007. This work was supported by the
U.S. Department of Energy under contract DE-FG02-03ER25585, by NSF grants ITR-0428774 and
CMMI-0727194, and by the Minnesota Supercomputing Institute.

http://www.siam.org/journals/simax/29-3/63040.html
†Department of Mathematics, Southern Methodist University, Dallas, TX 75275 (yzhou@

smu.edu).
‡Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN

55455 (saad@cs.umn.edu).

954

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 955

r = Ax − μx is the residual vector corresponding to a Ritz pair (μ, x), and t is the
augmentation vector to be computed. In [19] better approximations of A are used to
replace the diagonal of A in the correction equation. However, it was noted in [19] that
using the “exact preconditioner” leads to stagnation, since t = (A − μI)−1r = −x
cannot augment the subspace. This led to the development of the more efficient
Jacobi–Davidson (JD) algorithm [32, 14, 31]. Work in the literature has shown that
the JD can be competitive with efficient Krylov subspace methods such as those in
[33, 17, 36, 42, 45]. In [41, 43] other correction-equations for Davidson-type methods
are derived.

The JD method can be related to the Newton method or the approximate Rayleigh-
quotient iteration (RQI). As such, it has been observed that the method can be rather
slow if the starting vector is far away from the desired eigenvector. We note that even
though RQI is globally convergent for symmetric eigenproblems (see [22], [23, p. 81]),
it may converge to an unwanted eigenpair. The global convergence can be slow when
the approximate RQI is used in a subspace method and the method is required to
converge to wanted eigenpairs. Global acceleration schemes for JD have been studied.
For example, in [5] a nonlinearized JD correction-equation is proposed; however, the
preconditioning may be difficult to apply for the nonlinearized correction-equation,
and the approach can become much more expensive than the JD method when the
number of desired eigenpairs is large. Another approach to achieving better global
convergence, as suggested in [19, 14], is to apply an Arnoldi or Lanczos method to get
a good initial vector and then apply the JD algorithm.

In this paper, we explore a different Davidson-type approach called the Chebyshev–
Davidson method. There is no need to form or solve any correction-equations within
this approach; instead, intervalwise filtering based on Chebyshev polynomials is uti-
lized.

The Chebyshev–Davidson approach is very suitable for problems where solving
(preconditioned) equations is expensive, e.g., when good preconditioners for correction-
equations are either unknown or too expensive to construct.

Details of the Chebyshev–Davidson method are presented in sections 3–4. Com-
parisons with existing representative eigenvalue algorithms are in section 6. The
Chebyshev–Davidson method (written in Fortran95) has been applied to solve a class
of highly challenging problems with dimension over a few millions, where more than
ten thousand eigenpairs need to be computed.

2. Advantages of polynomial filtering. The global convergence of a Davidson-
type method can be improved in a natural and systematic way via polynomial filtering.
We first make the following three observations. The first is on the well-known poly-
nomial filtering argument: For a symmetric matrix A with the eigendecomposition
A = QΛQT , any polynomial ψ(s) : R → R satisfies

(2.1) ψ(A)v = Qψ(Λ)QT v ∀v ∈ R
n.

The second observation is on the fast local convergence of JD. It is shown in [43]
that the locally fast convergence of JD is mainly caused by the retention of the ap-
proximate RQI direction in the basis of the projection subspace. Assume throughout
that (μ, x) denotes the current Ritz pair that best approximates a wanted eigenvalue,
and the Ritz vector x is of unit length, and let r = Ax − μx denote the residual. It
was observed in [43] that the JD correction equation,

(2.2) Solve for t ⊥ x from (I − xxT)(A− μI)(I − xxT)t = r,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

956 YUNKAI ZHOU AND YOUSEF SAAD

can be simplified to

(2.3) Solve for t from (I − xxT)(A− μI)t = r.

The right projection by (I − xxT) and the final orthogonality constraint t ⊥ x can
be omitted. It is the approximate RQI direction, which is an approximation to (A−
μI)−1x, that leads to the success of the JD approach. The left projector (I − xxT)
in (2.2) is crucial in retaining the important approximate RQI direction in the JD
direction (solution t of (2.2)). This can be readily seen by writing (2.2) or (2.3) as

(2.4) (A− μI)t = r + x α,

where α is a nonzero scalar. The left projector also improves the conditioning of (2.2)
and (2.3) on the x⊥ subspace—the subspace in which a vector to augment the current
projection subspace is sought, but this property is irrelevant for this paper.

Note that the exact RQI direction is (A−μI)−1x, which is the current Ritz vector
x filtered by the rational polynomial ϕ(s) = 1

s−μ . This polynomial significantly
magnifies the direction of a possibly wanted eigenvector corresponding to the Ritz
value μ (the current best approximation to a wanted eigenvalue of A).

The third observation is that one can improve global convergence by choosing a
polynomial ψ(s) which magnifies not only the direction corresponding to one single
point, but also directions corresponding to an interval containing wanted eigenvalues,
and at the same time dampens unwanted eigenvalues. With polynomial filtering, it
is unlikely that wanted eigenvalues will be missed, because when the whole interval
containing wanted eigenvalues is magnified, so is each wanted eigenvalue in the inter-
val. In contrast, standard Davidson-type methods may miss some wanted eigenvalues.
This is because correction-equations often resemble certain shift-invert formulations,
and the shift chosen at some step may approximate larger eigenvalues before all the
wanted smaller eigenvalues are computed. Chebyshev filtering offers an alternative
which can improve global convergence as well as robustness (in the sense that wanted
eigenvalues are not missed) of Davidson-type methods.

Note that polynomial filters have long been exploited to accelerate Arnoldi/Lanczos
algorithms; see, e.g., [26, 33]. Here we consider a natural application of Chebyshev
polynomials within a Davidson-type (non-Krylov) framework. This approach com-
bines the acceleration power of the Chebyshev filtering technique and the flexibility
and robustness of the Davidson approach.

To further explain the third observation, we suppose that the eigenvalues of A
are ordered as λ1 ≤ λ2 ≤ · · · ≤ λn, and that the wanted eigenvalues are located in
[λ1, λk]. If ψ(s) is chosen to approximate the step function

(2.5) φ(s) =

{
1, λ1 ≤ s ≤ λk,
0, λk < s ≤ λn,

then (2.1) shows that ψ(A)v ≈
∑k

i=1 αiqi, where qi is the ith column of Q and
αi = qTi v. That is, ψ(A)v is contained in the subspace spanned by the wanted
eigenvectors Q(:, 1 : k). If this ψ(A)v is augmented into the basis, convergence to
the wanted eigenvectors is expected to be much faster than augmenting the basis by
a vector closer to unwanted eigenvectors. This claim can be verified by explicitly
computing Q and using

∑k
i=1 αiqi (αi = qTi x, where x denotes the current Ritz

vector at each iteration) as the augmentation vector in a Davidson-type method. This
is equivalent to using a filter that exactly approximates (2.5). Note that this filter

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 957

leads to no gap among wanted eigenvalues, but in this ideal setting it can still lead
to fast convergence in a Davidson-type method. However, a low degree polynomial
cannot approximate (2.5) well. In real computations, a filter that can introduce more
favorable gaps for the wanted eigenvalues is far better than others that introduce no
gap.

For a subspace method applied to (1.1), the essence in obtaining fast convergence
is in augmenting the subspace by vectors close to the wanted invariant subspace of A.
Therefore, a convergence acceleration scheme should construct a suitable filter ψ so
that the vector ψ(A)v used for augmentation is contained in the wanted eigensubspace.
By this filtering we obtain better global convergence.

According to observations just made, it is essential to filter the current Ritz
vector x, not the residual vector r. Note that at each iteration of a Davidson-type
method, r is orthogonal to the projection basis, and this basis is used to approximate
the wanted eigenvectors; hence r can become orthogonal to the wanted eigenvectors
during the iteration. The residual vector r is not suitable for the filtering because,
when Q(:, 1 : k)T r ≈ 0, ψ(A)r = Qψ(Λ)QT r is approximately inside the subspace
spanned by unwanted eigenvectors.

We also mention that our own experiments, together with those in [13], show
that the preconditioned Davidson method based on equation (A − μI)t = r can be
inefficient because of the higher possibility of stagnation if this equation is solved more
accurately. An efficient correction-equation essentially should retain the approximate
RQI direction in its solution. Thus, the JD method is equivalent to (2.4), but the
x term in the right-hand side of (2.4) may be more important than the r term.
However, in the case of rather inaccurate solves with a fixed preconditioner, [1] shows
that (A− μI)t = r can have better performance than other correction equations.

3. Chebyshev polynomial filter. The observations in section 2 suggest that
polynomials which significantly magnify the lowest end of a wanted interval and damp-
ens unwanted intervals at the same time can be used as a filter to improve global
convergence. The well-known Chebyshev polynomials are a natural choice for this
task. Using Chebyshev polynomials to accelerate symmetric eigenvalue computations
dates back to [24, 25]. A nice discussion on Chebyshev accelerated subspace iteration
can be found in [23, pp. 329–330], where it is mentioned that the Lanczos method is
usually better than the Chebyshev accelerated (fixed dimension) subspace iteration
algorithm. Here we integrate Chebyshev filtering into a varying dimension Davidson-
type algorithm.

With Chebyshev acceleration, the subspace used in a Davidson-type method can
be of much smaller dimension than that is required by a Lanczos-type method for
good efficiency. Therefore the filtering approach leads to substantial savings in (re-)
orthogonalization costs.

Recall that the real Chebyshev polynomials of the first kind are defined by (see,
e.g., [23, p. 371], [27, p. 142])

Ck(t) =

{
cos(k cos−1(t)), −1 ≤ t ≤ 1,
cosh(k cosh−1(t)), |t| > 1.

Note that C0(t) = 1, C1(t) = t. Recall also the important three-term recurrence,

(3.1) Ck+1(t) = 2tCk(t) − Ck−1(t), t ∈ R.

A remarkable property of the Chebyshev polynomial is its rapid growth outside
the interval [−1, 1]. This property is illustrated in Figure 3.1. Here we plot only the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

958 YUNKAI ZHOU AND YOUSEF SAAD

−2 0 2
−400

−200

0

200

400
m=5

−2 0 2
−1

0

1

2

3
x 10

5 m=10

−2 0 2
−2

−1

0

1

2
x 10

8 m=15

−2 0 2
−5

0

5

10

15
x 10

10

m=20
−2 0 2

−1

−0.5

0

0.5

1
x 10

14

m=25
−2 0 2

−2

0

2

4

6

8
x 10

16

m=30

Fig. 3.1. Rapid increase outside [−1, 1] of Chebyshev polynomial of degree m.

polynomial on the [−2, 2] interval, but note that the farther away we are from [−1, 1],
the larger the magnitude of Ck(t). Suppose that the spectrum of A is contained in
[a0, b] and we want to dampen the interval [a, b] for a > a0; then we need only to map
[a, b] into [−1, 1] by an affine mapping. This mapping will map the wanted lower end
of the spectrum, i.e., the eigenvalues closer to a0, farther away from [−1, 1] than the
ones closer to a. Applying the three-term Chebyshev recurrence will then magnify
eigenvalues near a0 and dampen eigenvalues in [a, b], which is the desired filtering.

In practice, we need the lower bound a of the unwanted interval, which is easy
to approximate during each iteration in a Davidson-type method. The upper bound
b of the eigenvalues of A can by obtained by Gerschgorin’s theorem. It can also be
estimated by an upper-bound-estimator (Algorithm 4.3 in [47]), which applies a few
steps of Lanczos iteration with a final safeguard step.

The Chebyshev iteration, which dampens values in [a, b] while magnifying values
in the interval to the left of [a, b], is presented in Algorithm 3.1 below. Here we follow
the formula derived in [26], [27, p. 223] for the complex Chebyshev iteration and adapt
it to the real case. The iteration of the algorithm is equivalent to computing

(3.2) y = pm(A)x, where pm(t) = Cm

(
t− c

e

)
.

As defined in the algorithm, c is the center of the interval [a, b] and e its half-width;
both depend on the bounds used.

In Algorithm 3.1, the σ’s are used for scaling purposes; the a0 is a crude approx-
imation of the smallest eigenvalues of A. The following discusses certain details of
scaling. The three-term recurrence using pm(A) yields the iteration

xj+1 =
2

e
(A− cI)xj − xj−1, j = 1, 2, . . . ,m− 1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 959

with x0 given and x1 = (A−cI)x0. This is equivalent to a power iteration of the form(
xj+1

xj

)
=

(
2
e (A− cI) −I

I 0

)
︸ ︷︷ ︸

B

(
xj

xj−1

)
.

A little analysis would show that all the eigenvalues of the nonsymmetric matrix B
are complex and of modulus one, except that those corresponding to eigenvalues of
A that are less than a are mapped to real eigenvalues larger than one in magnitude.
Therefore, as for the standard power method, a scaling at each step is recommended.
The simplest strategy, discussed in [27], is to consider the scaled sequence

x̃j =
Cj [

2
e (A− cI)]

Cj [
2
e (a0 − cI)]

x0,

where ρj = Cj [
2
e (a0 − cI)] is the scaling factor. This requires a0, but since it is only

used for scaling, a rough estimate of a0 is sufficient. For the first Chebyshev–Davidson
iteration, we can use a value a0 ≤ a; for the latter Chebyshev–Davidson steps, the
smallest Ritz value from the previous step can be used. The vector sequence is not
computed as shown above, because ρj itself can be large and this would defeat the
purpose of scaling. Instead, each x̃j+1 is updated using the scaled vectors x̃j and
x̃j−1. This is discussed in [27], and Algorithm 3.1 implements this scaling (the tildes
and vector subscripts are omitted).

Algorithm 3.1. [y] = Chebyshev filter(x,m, a, b, a0).
Purpose: Filter x by an m degree Chebyshev polynomial which dampens on [a, b].

1. e = (b− a)/2; c = (b + a)/2;
2. σ = e/(a0 − c); σ1 = σ;
3. y = (Ax− cx)σ1/e;
4. For i = 2 : m
5. σnew = 1

(2/σ1−σ) ;

6. ynew = 2(Ay − cy)σnew/e− σσnewx;
7. x = y; y = ynew; σ = σnew;
8. End For

Note that the filter is intervalwise; hence no shifts such as Chebyshev zeros or
Leja points are required. This is to be contrasted with pointwise filtering methods,
e.g., [33, 17, 2, 3].

Clearly, polynomials other than Chebyshev can be used for filtering. Several poly-
nomials are discussed in [34], with emphasis on approximating rational functions of
the form ϕ(s) = 1/(s − μ). In contrast, we do not approximate the (shift-inverted)
rational functions, but require polynomials to have the desired intervalwise filter-
ing property, i.e., dampen an interval and significantly magnify other intervals. We
choose Chebyshev polynomials because of their desirable filtering properties and ease
of implementation. Note that the Chebyshev filtering used in [34] is different from
Algorithm 3.1, since the former requires an additional parameter Δ, which is not
straightforward to specify. Another difference is that in [34] Chebyshev filtering is
used in a Lanczos-type algorithm, while here we integrate Chebyshev filtering into a
Davidson-type framework. The Rayleigh–Ritz step in a Davidson-type method read-
ily provides the necessary bounds for constructing efficient Chebyshev filters. The
resulting Chebyshev–Davidson method compares favorably with other methods, as
shown in section 6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

960 YUNKAI ZHOU AND YOUSEF SAAD

Algorithm 3.1 requires no inner products, and this is another appealing feature of
Chebyshev acceleration, since inner products incur a global reduction which requires
additional communication costs in a parallel computing context.

4. Chebyshev polynomial accelerated Davidson method. The pseudocode
for the Chebyshev–Davidson method is presented in Algorithm 4.1 below. This code
is very different from other Davidson-type methods in the literature (e.g., [4]). We
use a natural but useful indexing scheme. The deflation of converged eigenvectors
is handled by indexing the columns of the projection basis V . No extra storage for
the converged eigenvectors is necessary. Moreover, restarting is simplified (as seen in
step 8f) by the indexing. The implementation does not require extra basis updates or
memory copies during the restart, since the updates in step 8g need to be performed
even when restart is not necessary. We note that putting restart at step 8f is better
than putting it at the end of the outer loop, because it saves operations in step 8g
when restarting is necessary.

We make a few comments on Algorithm 4.1. Comments (v)–(vii) are related to
the robust implementation of any Davidson-type methods.

(i) It is important that the bound upperb bounds all eigenvalues of A from above.
Otherwise the interval containing largest eigenvalues may also be magnified
through filtering, and this can drastically slow convergence or even lead to
wrong convergence. One inexpensive way for the bound estimation at step
5 is upperb =

∣∣∣∣A∣∣∣∣
1
; if A is available only through a matrix-vector-product

subroutine, then we can apply the upper-bound-estimator, Algorithm 4.1 in
[47], to get an upper bound.

(ii) The choice of the lower bound for the unwanted interval at each iteration is
one of the most critical ingredients of the method. The Chebyshev–Davidson
method allows quite flexible choices for this lower bound, without any extra
computations. Numerical results show that the choice at step 8l is remarkably
efficient. Other choices, such as the maximum of the current Ritz values, can
also be used as lowerb.

(iii) For the orthogonalization step 8b, we use the iterated Gram–Schmidt algorithm,
often referred to as the DGKS method [10].

(iv) The refinement at step 8g is performed at each step. One can avoid this step
until some eigenpair converges. But according to [23, p. 325], this refinement
is necessary in order to have faster convergence for the eigenvectors.

(v) The swap at step 8j may be performed by the following pseudocode:
set vtmp = V (:, kc);
For (i = kc − 1 : −1 : 1) Do

If (μ ≥ eval(i)), exit the For loop; End If
set eval(i+1) = eval(i), eval(i) = μ; set V (:, i+1) = V (:, i), V (:, i) = vtmp;

End For.
(Note that unnecessary memory copies in the above can be avoided with some
more involved programming.)

(vi) The noswap flag at steps 8i–k is used to improve robustness. This flag decreases
the possibility of counting converged unwanted eigenvalues as wanted ones.

(vii) At step 8j, a convergence test is performed only on the first Ritz pair among
the ksub− kc Ritz pairs available at each iteration. A simple loop can be added
to check the convergence of more than one Ritz pair. We note that for almost
all Davidson-type subspace methods, if all the ksub − kc Ritz pairs are checked
for convergence at each iteration step and no swap procedure is included, then
there is a high possibility of missing wanted eigenvalues.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 961

(viii) Algorithm 4.1 essentially contains a framework for Davidson-type methods
based on filtering. The Chebyshev filter at step 8a can be replaced by other
suitable filters. However, we mention that among the filters tried, including a
least square polynomial and a different implementation of Chebyshev polyno-
mials in [34], the filter as implemented in Algorithm 3.1 has the best numerical
behavior.

5. Analysis. The analysis given here serves to give a preliminary understand-
ing of the convergence for Algorithm 4.1. Therefore several simplifications of the
algorithm are made.

Assume that the eigenvalues of A are λ1 < λ2 ≤ · · · ≤ λn, and denote the
associated unit eigenvectors by q1, . . . , qn. According to (3.2) and the fact that the

Algorithm 4.1. Chebyshev–Davidson method.
(computing kwant number of smallest eigenpairs)
Input: x—initial vector; m—polynomial degree; kkeep—# of vectors to keep during
restart; dimmax—maximum subspace dimension; τ—convergence tolerance.
Output: converged eigenvalues eval(1 : kc) (in nonincreasing order) and their
corresponding eigenvectors V (:, 1 : kc), where kc denotes # of converged eigenpairs.
1. Start with the unit vector x, V = [x].
2. Compute W = [Ax], H = [μ], where μ = xTw.
3. Compute the residual vector: r = W (:, 1) − μx.
4. If

∣∣∣∣r∣∣∣∣ <= τ , set eval(1) = μ, kc = 1, H = []; Else, set kc = 0.
5. Estimate the upper bound (upperb) of eigenvalues.
6. Set lowerb = (upperb + μ)/2, a0 = lowerb.
7. Set ksub = 1 (ksub stores the current subspace dimension).
8. Outer Loop: Do while (iter ≤ itermax)

a. Call the Chebyshev polynomial filter:
[t] = Chebyshev filter(x,m, lowerb, upperb, a0).

b. Orthonormalize t against V (:, 1 : ksub) to get a unit vector V (:, ksub + 1);
set ksub ← ksub + 1; set kold ← ksub.

c. Compute W (:, ksub) = AV (:, ksub).
d. Compute the last column of the symmetric Rayleigh-quotient matrix H:

H(1 : ksub − kc, ksub − kc) = V (:, kc + 1 : ksub)
TW (:, ksub).

e. Compute the eigendecomposition of H: HY = Y D,
where diag(D) is in nonincreasing order. Set μ = D(1, 1).

f. If (ksub ≥ dimmax), then restart: set ksub = kc + kkeep.
g. Update basis: V (:, kc + 1 : ksub) ← V (:, kc + 1 : kold)Y (:, 1 : ksub − kc);

update W : W (:, kc + 1 : ksub) ← W (:, kc + 1 : kold)Y (:, 1 : ksub − kc).
h. Compute the residual vector: r = W (:, kc + 1) − μV (:, kc + 1).
i. Set noswap = 0, iter ← iter + 1.
j. Test for convergence: If

∣∣∣∣r∣∣∣∣ <= τ max(diag(D)), set kc = kc + 1,
set eval(kc) = μ; also swap eigenpairs if necessary (see comment (v))
so that converged eigenvalues are in nonincreasing order;
set noswap = 1 if any swap happens.

k. If (kc ≥ kwant and noswap == 0), Return eval(1 : kc) and V (:, 1 : kc) as
the converged wanted eigenpairs. Exit.

l. Update lower bounds: lowerb = median(diag(D));
If a0 > min(diag(D)), set a0 ← min(diag(D)).

m. Set the next Ritz vector for filtering: x = V (:, kc + 1).
n. Update H: H = D(kc + 1 : ksub, kc + 1 : ksub).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

962 YUNKAI ZHOU AND YOUSEF SAAD

interval of the eigenvalues to be dampened at each step is adaptively changing, we
see that the matrix applied at the jth step is

(5.1) p(j)
m (A) = C(j)

m ((A− cjI)/ej).

The first simplification assumes that the interval of the eigenvalues to be damp-
ened at each filtering step of Algorithm 4.1 is fixed. That is, the matrix involved is
fixed as pm(A) ≡ Cm((A− cI)/e). The second simplification assumes that no restart
is used in the algorithm.

We further assume that Algorithm 4.1 is a one-dimensional version. That is, in
step 8b we keep ksub ≡ 1 and set V (:, 1) = t/

∣∣∣∣t∣∣∣∣, and in step 8m we set x = V (:, 1).
Then the algorithm becomes a standard power method with the matrix pm(A). As a
result, the convergence will be governed by the ratio of the two dominant eigenvalues.
Note that the interval [a, b] of the eigenvalues to be dampened satisfies λ1 < a. The
(unique) dominant eigenvalue of the matrix pm(A) is Cm((λ1 − c)/e). So, in the one-
dimensional version of the algorithm, V (:, 1) converges to q1 with the convergence
factor

ρ =
maxj>1 |Cm((λj − c)/e)|

|Cm((λ1 − c)/e)| < 1.

Consider now the situation in which ksub can be increased. The simplified method
turns out to have a simple Krylov interpretation. Assume that we perform two steps
of the algorithm, i.e., that the dimension of the subspace is two. The first vector of
the basis is pm(A)x. The second is obtained as pm(A)x1, where x1 is an approximate
eigenvector from the one-dimensional space spanned by the first vector, which is
simply a multiple of pm(A)x. The subspace used in this case is

K2 = span{pm(A)x, pm(A)x1} = span{pm(A)x, p2
m(A)x} ,

which is the Krylov subspace of dimension two usually denoted by K2(pm(A), x).
Consider now the third step. The process will inject to the subspace a vector of the
form

pm(A)x2 with x2 ∈ K2 .

The vector x2 is a Ritz eigenvector computed from projecting A onto the subspace K2,
and it is a linear combination of vectors from K2, so we can write x2 = α1pm(A)x +
α2p

2
m(A)x. The new subspace K3 is again a Krylov subspace. Indeed,

K3 = span{pm(A)x, p2
m(A)x, pm(A)x2} ≡ span{pm(A)x, p2

m(A)x, p3
m(A)x} .

The result can be easily extended to an arbitrary step j for the simplified method.
Proposition 5.1. Assuming that the filtering interval is fixed and no restart is

applied, then step j of Algorithm 4.1 is mathematically equivalent to a Rayleigh–Ritz
process applied to A using the Krylov subspace

Kj (pm(A), x) .

In particular, this means that if one generated an orthogonal basis Vj of the Krylov
subspace Kj(pm(A), x) and computed the eigenvalues of V T

j AVj , these eigenvalues
would be identical with those of the simplified Algorithm 4.1. This is not quite a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 963

Krylov subspace method, because the projection uses A instead of the transformed
matrix pm(A). However, this simple result permits one to analyze the simplified
algorithm in a complete way by considering eigenvectors. Indeed, eigenvectors of A
and pm(A) are identical, and there are results which establish upper bounds for the
angle between the exact eigenvector and the Krylov subspace. This will be omitted,
and the reader is referred to [23] for details.

Although the simplified algorithm can be viewed from the angle of Krylov sub-
spaces, Algorithm 4.1 is not a Krylov method. There are a number of distinguishing
features, related to implementation and other practical aspects. In fact, Proposition
5.1 assumes that the polynomial is fixed, but the actual Chebyshev–Davidson method
adapts the filters by dynamically adjusting the bounds of the interval of eigenvalues
to be dampened at each iteration. This in practice leads to significantly more efficient
filters. The following presents a conservative analysis: Taking (5.1) into account, we
see that

K2 = span{p(1)
m (A)x, p(2)

m (A)p(1)
m (A)x},

K3 = span{p(1)
m (A)x, p

(2)
m (A)p

(1)
m (A)x, α1p

(3)
m (A)p

(1)
m (A)x + α2p

(3)
m (A)p

(2)
m (A)p

(1)
m (A)x},

where α2 �= 0 by the designed filtering (if the previous subspace can be augmented).
This list easily extends to Kj for any j. Letting

Φk(t) =

k∏
l=1

p(l)
m (t),(5.2)

then the last term in Kj contains Φj(A)x with a nonzero coefficient. The filtering
is designed such that the subspace contains a significant direction in Φj(A)x. Note
that Φj(A)x corresponds to an accelerated power method applied to x. Because of the
Rayleigh–Ritz refinement, there is a Ritz vector from Kj which converges to q1 at least

as fast as Φj(A)x does, where the convergence rate for Φj(A)x to q1 is
maxl>1 |Φj(λl)|

|Φj(λ1)|
under standard conditions [39, 16]. This rate can be considerably faster than the one
obtained using a fixed filtering interval. The convergence for the latter eigenvectors
follows from deflation; e.g., the second eigenvalue becomes dominant for the matrix
A restricted to the subspace orthogonal to q1.

6. Numerical results and discussion. We compare the Chebyshev–Davidson
method (denoted as ChebyD) with several other Davidson-type and Lanczos-type
methods.

The first part of the comparison is done using Matlab. We compare our algorithm
with the well-known JD method implemented in the publicly available Matlab code
JDQR [14]1 and JDCG [20].2 The JDCG code is for symmetric eigenproblems; the
linear solver used in JDCG is (preconditioned) CG. The JDQR code can solve both
symmetric and nonsymmetric problems; GMRES [28] is the default linear solver in
JDQR, and it is used for the numerical tests. Since we solve symmetric eigenproblems,
it is less costly to use MINRES [21] in the JD method. Moreover, since CG is usually
intended for positive definite problems, JDCG does not work as efficiently for indefinite
A as for positive definite A. So for further comparisons, we implemented the JD
method using the Matlab built-in MINRES as the linear solver. This code is denoted

1Code available at http://www.math.uu.nl/people/sleijpen/JD software/.
2Code available at http://mntek3.ulb.ac.be/pub/docs/jdcg/.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

964 YUNKAI ZHOU AND YOUSEF SAAD

Table 6.1

Silicon quantum dot model Si34H36, indefinite. dim = 97569, kwant = 100. For ChebyD
m = 20, kkeep = 60; for JDminres #max le solve = 20.

Method CPU (sec.) #iter. #mvp
∣
∣
∣
∣AV − V D

∣
∣
∣
∣/

∣
∣
∣
∣A

∣
∣
∣
∣
1

ChebyD 1204 706 14806 4.16e-11
JDminres 1968 536 12306 6.44e-11
JDQR 3734 2183(-) 11850 2.73e-13
JDCG 3597 927 37899 2.90e-12
LOBPCG 24190 5289 528900 2.98e-10

Table 6.2

bcsstk32 from the NIST Matrix Market, indefinite. dim = 44609, kwant = 100. For ChebyD
m = 20, kkeep = 60; for JDminres #max le solve = 20.

Method CPU (sec.) #iter. #mvp
∣
∣
∣
∣AV − V D

∣
∣
∣
∣/

∣
∣
∣
∣A

∣
∣
∣
∣
1

ChebyD 418 587 12307 2.38e-11
JDminres 850 577 10360 3.55e-11
JDQR 1186 1441(-) 7639 5.80e-14
JDCG 1250 695 29810 8.86e-13
LOBPCG 1974 686 68600 9.96e-11

Table 6.3

Silicon quantum dot model Si87H76, indefinite. dim = 240369. kwant = 80. For ChebyD
m = 20, kkeep = 80; for JDminres #max le solve = 20.

Method CPU (sec.) #iter. #mvp
∣
∣
∣
∣AV − V D

∣
∣
∣
∣/

∣
∣
∣
∣A

∣
∣
∣
∣
1

ChebyD 2915 493 10333 3.15e-11
JDminres 3725 497 11409 2.69e-11
JDQR 7879 2390(-) 13246 2.86e-13
JDCG 7220 720 37520 2.48e-12
LOBPCG 13850 667 53360 1.19e-10

as JDminres. JDminres is mainly based on Algorithm 4.1, except that step 8a is
replaced by a linear equation solve using MINRES. The LOBPCG [15] code3 is also
used for comparison because it is a representative preconditioned eigensolver. We also
compared with IRBL [2, 3], but noticed that the IRBL code becomes less competitive
than other codes when kwant becomes large. Here we report only comparisons with
JDQR, JDCG, JDminres, and LOBPCG.

For the test examples listed in Tables 6.1–6.3, we compute the kwant smallest
eigenvalues and eigenvectors. The maximum subspace dimension is fixed at 2 ∗ kwant

for all methods, except that for LOBPCG it is 3 ∗ kwant. The silicon quantum dot
models are available from the University of Florida Sparse Matrix Collection.4 Figure
6.1 shows the sparsity structure of two test matrices used in Tables 6.1 and 6.2.

The accuracy is reported as
∣∣∣∣AV −V D

∣∣∣∣/∣∣∣∣A∣∣∣∣
1
, where the diagonal of D contains

the kwant converged eigenvalues, and V contains the corresponding eigenvectors. The
relative convergence tolerance is set to 10−10 for all methods. For each test problem,
the computed eigenvalues are cross validated; i.e., we compute the maximum difference
of the eigenvalues computed by different methods. All the differences are found to be
less than order 10−10.

3Code available at http://www-math.cudenver.edu/˜aknyazev/software/CG/toward/lobpcg.m.
4http://www.cise.ufl.edu/research/sparse/matrices/.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 965

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

nz = 2014701

 dimension = 44609, density = 0.10124%

Fig. 6.1. Structure plots of two test matrices Si34H36 and bcsstk32.

Initial vector is set as ones(n, 1) for all methods, so that the initial direction is
not biased for a certain method. The LOBPCG requires additional kwant − 1 vectors
for the initial block, for which random vectors are used.

In each table, “#iter” counts the total number of the outer loop, “#mvp” is
the number of matrix-vector products, and “#max le solve” is the maximum inner
iteration number for the linear equation solve by MINRES in JDminres. For JDQR,
help jdqr indicates where #iter and #mvp are stored, but the observed output
values from history(:,2) for #iter seem incompatible with the expected values. It
is possible that history(:,2) stores both the outer iteration count as well as the inner
iteration count, since the resulting number is often much larger than that of JDminres
and JDCG. We report #iter for JDQR only for reference, and put a (-) sign to signal
the difference. The #mvp for LOBPCG is reported by #iter times the block size
(which is kwant in LOBPCG).

All the Matlab numerical experiments were performed on an AMD PC with dual
Opteron 2.6GHz CPU and 8GB RAM. One of the CPU was dedicated to the com-
putation. The OS used was Red Hat EL4 Linux with kernel version 2.6.9. We used
Matlab version 7.2 (R2006a) for the computations.

Note that JDCG and LOBPCG both have preconditioned CG solvers included.
However, for the symmetric indefinite problems in Tables 6.1–6.3 (and other test
problems not reported here), our experiments showed that both methods work better
than their “preconditioned” counterparts with a standard preconditioner such as the
incomplete LU. Moreover, for these indefinite problems, it is not clear what precondi-
tioners can be used to accelerate the preconditioned CG solves. Therefore we report
comparisons with JDCG and LOBPCG without preconditioned solves. The examples
show that in situations where preconditioners are hard to obtain, approaches not re-
lying on solving correction-equations have a clear advantage and can provide effective
alternatives.

We recall that the “preconditioning” concept for eigenproblems is quite different
from preconditioning for linear equations. The latter tries to reduce the eigenvalue
gaps to make the condition number close to 1, while the former tries to introduce
more favorable gaps for wanted eigenvalues. This is why in eigenvalue problems, the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

966 YUNKAI ZHOU AND YOUSEF SAAD

preconditioned linear solvers are often applied to correction equations, which leads to
techniques that exploit shift-and-invert. In essence, a natural “preconditioner” for an
eigenvalue problem is a filter that can transform the spectrum in a desired way so as
to increase eigenvalue gaps. This “preconditioning” may not need a preconditioned
linear solver. In the Chebyshev–Davidson method, we realize the “preconditioning”
by dynamically constructing Chebyshev filters to filter the spectrum so that gaps
among wanted eigenvalues are properly magnified.

The reported results of ChebyD are typical for the Chebyshev–Davidson method.
For all the test runs, it is rather straightforward to select the polynomial degree
m. The effect of a varying degree m is illustrated in Figure 6.2. As seen from
this figure, with m increasing (before it becomes unnecessarily large), the number of
iterations decreases, the number of matrix-vector products increases, and the CPU
time decreases. Note that the CPU time difference for m from 26 to 47 is not large.
The test matrices are the Si10H16 and Si34H36 silicon quantum dots, but we note that
similar behavior is observed for a large number of other test models. In Tables 6.1–6.3
we used m = 20 to see how the algorithm performs with a low degree polynomial.
A better CPU time for Chebyshev–Davidson can be obtained with a larger m. The
results in Tables 6.1–6.3 show that even without a fine-tuned m, the Chebyshev–
Davidson method outperforms other Davidson-type methods.

The numerical results in Tables 6.1–6.3 and Figure 6.2 also show that a smaller
#mvp count does not necessarily imply smaller CPU time. Eigenvalue algorithms
may require substantial amounts of work not related to matrix-vector products. For
example, in Figure 6.2, #mvp increases with m increasing, but because #iter de-
creases, there is less reorthogonalization cost involved; this explains why the CPU
time decreases as m increases. As pointed out in [30], for large sparse eigenprob-
lems where a large number of eigenpairs need to be computed, the total cost can be
dominated by the reorthogonalization cost.

Regarding global convergence, Figure 6.3 shows one example where convergence
of the Chebyshev–Davidson method is much faster than that of the standard JD ap-
proach. However, we would like to mention that for symmetric eigenproblems, a JD
method often has good global convergence. For the same example as in Figure 6.3, a
fine-tuned value of #max le solve for JDminres can make the global convergence of
ChebyD and JDminres become similar.

The Chebyshev–Davidson algorithm was also implemented in Fortran95; its par-
allel version has been integrated into an electronic structure calculation package called
PARSEC (pseudopotetial algorithm for real-space electronic calculations). PARSEC
uses real-space pseudopotential implementation of density functional theory methods.
The original ideas behind PARSEC date back to the early 1990s [8, 9]. Originally,
PARSEC had three diagonalization methods: a preconditioned Davidson method
[29, 35] called Diagla, the symmetric eigensolver from ARPACK [33, 17], and the thick-
restart Lanczos method (TRLan) [40, 42]. The Chebyshev–Davidson algorithm was
subsequently integrated into PARSEC (around October, 2005). Due to its efficiency
and robustness, it was quickly adopted as the default eigensolver by our collaborators
in material science. In the latest version of PARSEC, a true diagonalization is per-
formed only at the first step of the self-consistent loop, after which diagonalizations
are replaced by a nonlinear Chebyshev-filtered-subspace (CheFS) method [47, 46].
Nevertheless, the first diagonalization step can still be highly challenging. This is
because a relatively complex material system can contain several thousand atoms, in
which case the dimension of the discretized Hamiltonians can easily exceed several
millions. Even more challenging is the fact that the number of eigenpairs needed

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 967

10 15 20 25 30 35 40 45 50
60

80

100

120

140

160

180

200

220

polynomial degree m

C
PU

 s
ec

on
ds

CPU time changes with m

k

want
=60

k
want

=80

k
want

=100

10 15 20 25 30 35 40 45 50
500

600

700

800

900

1000

1100

1200

1300

1400

1500

polynomial degree m

C
PU

 s
ec

on
ds

CPU time changes with m

k

want
=60

k
want

=80

k
want

=100

10 15 20 25 30 35 40 45 50
100

200

300

400

500

600

700

800

900

polynomial degree m

of

 it
er

at
io

ns

of iter. changes with m

k

want
=60

k
want

=80

k
want

=100

10 15 20 25 30 35 40 45 50
100

200

300

400

500

600

700

800

900

1000

polynomial degree m

of

 it
er

at
io

ns

of iter. changes with m

k

want
=60

k
want

=80

k
want

=100

10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

polynomial degree m

of

 m
at

−
ve

c
pr

od
uc

ts

of mat−vec products changes with m

k

want
=60

k
want

=80

k
want

=100

10 15 20 25 30 35 40 45 50
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

4

polynomial degree m

of

 m
at

−
ve

c
pr

od
uc

ts

of mat−vec products changes with m

k

want
=60

k
want

=80

k
want

=100

Fig. 6.2. Changes in CPU time, number of iterations, and number of matrix-vector products
with a varying polynomial degree m. Figures on the left are for quantum dot Si10H16, with n =
17077. Figures on the right are for quantum dot Si34H36, with n = 97569. The m is varied as
m = 14 : 3 : 47 in Matlab notation. For each model, the same initial vector ones(n, 1) is used for
each m. The number of vectors to keep during restart is simply set as kkeep = 60 for all these tests.
Three cases where kwant = 60, 80, 100 are demonstrated.

is proportional to the number of valence electrons in the atoms, which commonly
exceed several thousand. In these cases, high memory demand is clearly a concern.
Moreover, eigenvalue algorithms that are efficient for exterior eigenvalues can have
problems converging for interior eigenvalues.

Table 6.4 shows the dimension of the discretized Hamiltonians and the number of
needed eigenpairs for four silicon nanocrystals and two metallic (iron) clusters. The

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

968 YUNKAI ZHOU AND YOUSEF SAAD

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

bcsstk33, nnz = 591904

 dimension = 8738, density = 0.77522%

0 10 20 30 40 50 60 70 80 90
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

bcsstk33, dim = 8738, m = 25, #max_le_solve = 25

ChebyD
JDminres

Fig. 6.3. The matrix bcsstk33 is from the NIST Matrix Market. Structure plot is on the
left. On the right is the residual norm plot for the first 10 smallest eigenvalues. This shows that
ChebyD can have much better global convergence than JDminres. Here m = 25 for ChebyD and
#max le solve = 25 for JDminres. The initial vector used is ones(n, 1) for both methods.

Table 6.4

The Chebyshev–Davidson method applied to compute kwant number of eigenvalues and eigen-
vectors. For the silicon nanocrystals, the polynomial degree is m = 17; for the iron clusters, m = 20.
The computations are performed on the SGI Altix cluster (1.6GHz per processor) at the Minnesota
Supercomputing Institute.

Material Matrix dimension n kwant # Processors CPU hours
Si2713H828 1074080 5843 16 7.83
Si4001H1012 1472440 8511 16 18.63
Si6047H1308 2144432 12751 32 45.11
Si9041H1860 2992832 19015 48 102.12

Fe326 2985992 3912 24 11.62
Fe360 3262312 4320 24 16.55

reported CPU time is what the Chebyshev–Davidson method used to finish the first
step diagonalization in the self-consistent loop.

Physical significance of the numerical results are discussed in [37, 38]. In [37] we
report the largest iron-cluster first principle DFT simulations that have been pub-
lished. The results are used to clarify a decade-old controversy regarding the depen-
dence of magnetic moment on the size of iron clusters. As to first principles DFT
calculations on silicon nanocrystals, previously reported results seem not have gone
beyond 2000 atoms; in contrast, we were able to do first principle calculations on a
sequence of silicon nanocrystals with up to 10,000 atoms [46, 7].

Although success in these challenging DFT calculations depends more on the non-
linear CheFS method, we must mention that the Chebyshev–Davidson method plays
a crucial role in the computations since it provides the CheFS method with a desired
initial subspace. A suitable initial subspace can substantially reduce the number of
iterations required for the CheFS method to reach self-consistency (convergence).

The other three eigensolvers (Diagla, ARPACK, and TRLan) in PARSEC were
also used for computing initial subspaces, but we noticed that they became impractical

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 969

for the largest material systems in Table 6.4, in terms of both memory requirement
and convergence speed. In comparison, Diagla is quite efficient when n and kwant

are moderate, but it becomes slower than ARPACK and TRLan when n and kwant

become large. TRLan is the fastest among these three solvers; it is observed in [47]
to be about twice as fast as ARPACK because of the reduced reorthogonalization.
But both TRLan and ARPACK require too much memory because of the requirement
that the maximum subspace dimension be around 2kwant.

To address the huge memory demand related to standard restart when n and
kwant are large, we introduced an inner-outer restart technique into the Chebyshev–
Davidson algorithm. The outer restart is the same as the standard restart, but the
inner restart corresponds to a standard restart restricted to an inner subspace with
dimension much smaller than kwant. This reduces the maximum dimension of the
outer subspace from 2kwant to kwant. Therefore the Chebyshev–Davidson algorithm
requires about half the memory required by a method with only standard restart. It
did not have a memory requirement problem for all the materials reported in Table
6.4. More details about the inner-outer restart may be found in [44].

As to CPU time, we compared the Chebyshev–Davidson method with TRLan on
the two smallest nanocrystals in Table 6.4. Using the same number of CPU nodes,
TRLan spent 8.65 CPU hours on Si2713H828 and 34.99 CPU hours on Si4001H1012

for the first step diagonalization. The comparison is not completely fair since we
employed an additional trick in the Chebyshev–Davidson routine, which corresponds
to a subspace filtering step so that the last few basis vectors are only approximate
eigenvectors. The number of these vectors not converged to full accuracy is bounded
above by the dimension of the inner subspace used for inner restart. It is rather
straightforward to add this subspace filtering step inside a Davidson-type iteration.
Both this trick and the inner-outer restart are due to the remarkable flexibility of a
Davidson-type method in adjusting basis vectors. A Lanczos-type method does not
have this flexibility because of the need to keep a Krylov structure. In TRLan all the
basis vectors are converged to the same full accuracy, which can be too costly since
high accuracy is often not necessary for the last few vectors in the subspace, especially
when the diagonalization is performed at the first step of the self-consistent loop to
provide an initial subspace.

We also mention that the adaptive Chebyshev filter (based on [26, 27]) and the
choice of bounds to achieve efficient filtering, as presented in this paper, are essential
to the development of the nonlinear CheFSI method in [47, 46].

7. Conclusion. A Chebyshev–Davidson algorithm has been presented for solv-
ing large symmetric eigenvalue problems. It essentially consists of filtering out the
unwanted portion of the spectrum by using adaptive Chebyshev polynomials of the
matrix. Comparisons with existing Davidson- and Lanczos-type methods show that
the Chebyshev–Davidson method is efficient and robust.

Advantages of the Chebyshev filtering approach include not requiring correction-
equations (hence no preconditioned linear solves are necessary), and robust global
convergence because of the intervalwise filtering. The Chebyshev filters are easily
controllable within the Davidson-type framework, and thus they can be conveniently
tuned to filter the full spectrum in the desired way to accelerate global convergence.

Acknowledgments. We thank Professor Calvetti for her constructive comments,
especially the suggestion on testing the effect of the polynomial degree in the Chebyshev–
Davidson algorithm, which improved our understanding of this parameter.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

970 YUNKAI ZHOU AND YOUSEF SAAD

REFERENCES

[1] P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S. Tuminara, A comparison of
eigensolvers for large-scale 3d model analysis using AMG-preconditioned iterative methods,
Int. J. Numer. Methods Engrg., 64 (2005), pp. 204–236.

[2] J. Baglama, D. Calvetti, and L. Reichel, IRBL: An implicitly restarted block-Lanczos
method for large-scale Hermitian eigenproblems, SIAM J. Sci. Comput., 24 (2003),
pp. 1650–1677.

[3] J. Baglama, D. Calvetti, and L. Reichel, irbleigs: A MATLAB program for computing a
few eigenpairs of a large sparse Hermitian matrix, ACM Trans. Math. Softw., 5 (2003),
pp. 337–348.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, Software Environ. Tools
11, SIAM, Philadelphia, PA, 2000.

[5] J. H. Brandts, Solving eigenproblems: From Arnoldi via Jacobi-Davidson to the Riccati
method, in Numerical Methods and Applications, Lecture Notes in Comput. Sci. 2542,
Comput. Sci., Springer, New York, 2003, pp. 167–173.

[6] J. Chelikowsky and Y. Saad, Electronic structure of clusters and nanocrystals, in Handbook
of Theoretical and Computational Nanotechnology, M. Rieth and W. Schommers, eds.,
American Scientific Publishers, Stevenson Ranch, CA, to appear.

[7] J. R. Chelikowsky, M. L. Tiago, Y. Saad, and Y. Zhou, Algorithms for the evolution of
electronic properties in nanocrystals, Comp. Phys. Comm., 177 (2007), pp. 1–5.

[8] J. R. Chelikowsky, N. Troullier, and Y. Saad, Finite-difference-pseudopotential method:
Electronic structure calculations without a basis, Phys. Rev. Lett., 72 (1994), pp. 1240–
1243.

[9] J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Higher-order finite-difference
pseudopotential method: An application to diatomic molecules, Phys. Rev. B, 50 (1994),
pp. 11355–11364.

[10] J. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonalization and stable
algorithms for updating the Gram–Schmidt QR factorization, Math. Comp., 30 (1976),
pp. 772–795.

[11] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding
eigenvectors of large real-symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87–94.

[12] R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quan-
tum Many-Body Problem, Springer-Verlag, Berlin, 1990.

[13] Y. T. Feng, An integrated multigrid and Davidson method for very large scale symmetric
eigenvalue problems, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 3543–3563.

[14] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Jacobi–Davidson style QR
and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1998),
pp. 94–125.

[15] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block precon-
ditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.

[16] R. B. Lehoucq, Implicitly restarted Arnoldi methods and subspace iteration, SIAM J. Matrix
Anal. Appl., 23 (2001), pp. 551–562.

[17] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User’s Guide: Solu-
tion of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods,
Software Environ. Tools 6, SIAM, Philadelphia, 1998; software available online at:
http://www.caam.rice.edu/software/ARPACK/.

[18] R. M. Martin, Electronic Structure : Basic Theory and Practical Methods, Cambridge Uni-
versity Press, Cambridge, UK, 2004.

[19] R. B. Morgan and D. S. Scott, Generalizations of Davidson’s method for computing eigen-
values of sparse symmetric matrices, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 817–825.

[20] Y. Notay, Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric
eigenproblem, Numer. Linear Algebra Appl., 9 (2002), pp. 21–44.

[21] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[22] B. N. Parlett, The Rayleigh quotient iteration and some generalizations for nonnormal ma-
trices, Math. Comp., 28 (1974), pp. 679–693.

[23] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics in Appl. Math. 20, SIAM,
Philadelphia, PA, 1997.

[24] H. Rutishauser, Computational aspects of F. L. Bauer’s simultaneous iteration method,
Numer. Math., 13 (1969), pp. 4–13.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 971

[25] H. Rutishauser, Simultaneous iteration method for symmetric matrices, in Handbook for
Automatic Computation (Linear Algebra), J. H. Wilkinson and C. Reinsh, eds., Springer-
Verlag, 1971, vol. II, pp. 284–302.

[26] Y. Saad, Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems,
Math. Comp., 42 (1984), pp. 567–588.

[27] Y. Saad, Numerical Methods for Large Eigenvalue Problems, John Wiley, New York, 1992.
[28] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[29] Y. Saad, A. Stathopoulos, J. Chelikowsky, K. Wu, and S. Öğüt, Solution of large eigen-

value problems in electronic structure calculations, BIT, 36 (1996), pp. 563–578.
[30] Y. Saad, Y. Zhou, C. Bekas, M. Tiago, and J. Chelikowsky, Diagonalization methods in

PARSEC, Phys. Status Solidi (B), 243 (2006), pp. 2188–2197.
[31] G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A. van der Vorst, Jacobi-

Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT,
36 (1996), pp. 595–633.

[32] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi–Davidson iteration method for linear
eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.

[33] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

[34] D. C. Sorensen and C. Yang, Accelerating the Lanczos Algorithm via Polynomial Spectral
Transformations, Technical Report TR97-29, Department of Computational and Applied
Mathematics, Rice University, Houston, TX, 1997.

[35] A. Stathopoulos, S. Öğüt, Y. Saad, J. Chelikowsky, and H. Kim, Parallel methods and
tools for predicting materials properties, Comput. Sci. Eng., 2 (2000), pp. 19–32.

[36] G. W. Stewart, A Krylov–Schur algorithm for large eigenproblems, SIAM J. Matrix Anal.
Appl., 23 (2001), pp. 601–614.

[37] M. L. Tiago, Y. Zhou, M. Alemany, Y. Saad, and J. R. Chelikowsky, Evolution of mag-
netism in iron from the atom to the bulk, Phys. Rev. Lett., 97 (2006), paper 147201.

[38] M. L. Tiago, Y. Zhou, Y. Saad, and J. R. Chelikowsky, Electronic Properties and En-
ergetics of Nanometer-size Silicon Nanocrystals, Technical report, ICES, University of
Texas/Austin, Austin, TX, in preparation.

[39] D. S. Watkins and L. Elsner, Convergence of algorithms of decomposition type for the eigen-
value problem, Linear Algebra Appl., 41 (1991), pp. 19–47.

[40] K. Wu, A. Canning, H. D. Simon, and L.-W. Wang, Thick-restart Lanczos method for
electronic structure calculations, J. Comput. Phys., 154 (1999), pp. 156–173.

[41] K. Wu, Y. Saad, and A. Stathopoulos, Inexact Newton preconditioning techniques for large
symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 7 (1998), pp. 202–214.

[42] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems,
SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616.

[43] Y. Zhou, Studies on Jacobi-Davidson, Rayleigh quotient iteration, inverse iteration generalized
Davidson and Newton updates, Numer. Linear Algebra Appl., 13 (2006), pp. 621–642.

[44] Y. Zhou, A Block Chebyshev–Davidson Method with Inner-Outer Restart for Large Eigenvalue
Problems, Technical report, Department of Mathematics, Southern Methodist University,
Dallas, TX, in preparation.

[45] Y. Zhou and Y. Saad, Block Krylov-Schur Method for Large Symmetric Eigenvalue Problems,
Technical report 2004/215, Minnesota Supercomputing Institute, University of Minnesota,
2004.

[46] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, Parallel self-consistent-field calcula-
tions using Chebyshev-filtered subspace acceleration, Phys. Rev. E, 74 (2006), paper 066704.

[47] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, Self-consistent-field calculation
using Chebyshev-filtered subspace iteration, J. Comput. Phys., 219 (2006), pp. 172–184.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 972–981

JOINT SINGULAR VALUE DISTRIBUTION OF TWO CORRELATED
RECTANGULAR GAUSSIAN MATRICES AND ITS APPLICATION∗

SHUANGQUAN WANG† AND ALI ABDI†

Abstract. Let H = (hij) and G = (gij) be two m×n, m ≤ n, rectangular random matrices, each
with independently and identically distributed complex zero-mean unit-variance Gaussian entries,
with correlation between any two elements given by E[hijg

�
pq] = ρ δipδjq such that |ρ| < 1, where

� denotes the complex conjugate and δij is the Kronecker delta. Assume {sk}mk=1 and {rl}ml=1 are
unordered singular values of H and G, respectively, and s and r are randomly selected from {sk}mk=1
and {rl}ml=1, respectively. In this paper, exact analytical closed-form expressions are derived for the
joint probability distribution function (PDF) of {sk}mk=1 and {rl}ml=1 using an Itzykson–Zuber-type
integral as well as the joint marginal PDF of s and r by a biorthogonal polynomial technique. These
PDFs are of interest in multiple-input multiple-output wireless communication channels and systems.

Key words. correlated complex random matrices, joint singular value distribution, biorthogonal
polynomials

AMS subject classifications. 15A52, 15A18, 62E15, 33C45

DOI. 10.1137/060652907

1. Introduction. Random singular values have found numerous applications
such as hypothesis testing and principal component analysis in statistics [14], nuclear
energy levels and level spacing in nuclear physics [12], quantum chromodynamics [20],
and calculation of the multiple-input multiple-output (MIMO) channel capacity in
wireless communications [18]. The singular value distribution of a single Gaussian
random matrix is given in [16]. For a single chiral random matrix, where a square
Gaussian random matrix and its Hermitian sit on the off diagonal, the result is re-
ported in [6]. However, the joint singular value distribution of correlated rectangular
Gaussian random matrices has received less attention so far, although it has important
applications in wireless MIMO communications, say, the second-order statistics of the
eigenchannels [22, Chap. 4] [25] and instantaneous mutual information [22, Chaps. 3
and 4] [23,24,26].

To the best of our knowledge, correlated square random matrices have been stud-
ied to some extent [4,12,13], where only Hermitian matrices were considered. Different
from [4,12,13], we consider the situation where the elements, with the same indices, of
the two rectangular complex Gaussian random matrices are correlated by a complex
number and derive exact analytical closed-form expressions for the joint probability
distribution function (PDF) of their singular values.

This paper is organized as follows. Section 2 introduces the two rectangular
complex Gaussian random matrices. The joint PDFs of singular values are studied in
section 3 using an Itzykson–Zuber-type integral. The joint marginal PDF of singular
values is derived in section 4, and its application to wireless MIMO communications
is presented in section 5. Finally, concluding remarks are summarized in section 6.

∗Received by the editors February 24, 2006; accepted for publication (in revised form) by H. J.
Werner May 25, 2007; published electronically October 5, 2007.

http://www.siam.org/journals/simax/29-3/65290.html
†Center for Wireless Communications and Signal Processing Research (CWCSPR), Department

of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102
(shuangquan.wang@njit.edu, shuangquan@nec-labs.com, ali.abdi@njit.edu). The current address for
the first author is NEC Laboratories America, Inc., Princeton, NJ 08540 .

972

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

JOINT SINGULAR VALUE DISTRIBUTION OF TWO MATRICES 973

Notation. ·† is reserved for matrix Hermitian, ·T for matrix transpose, ·� for
complex conjugate, tr[·] for the trace of a matrix, j for

√
−1, E[·] for mathematical

expectation, Im for the m × m identity matrix, ⊗ for the Kronecker product, and
�[·] and �[·] for the real and imaginary parts of a complex number, respectively. In
addition, diag(s) denotes a diagonal matrix with s on the main diagonal, t ∈ [m,n]
implies that t, m, and n are all integers such that m ≤ t ≤ n, with m ≤ n, and
det |xkl| is the determinant of the matrix, where xkl resides on the kth row and lth
column. Moreover, lowercase bold letters represent row vectors, whereas uppercase
bold letters are used for matrices. Finally CN means complex normal, and vec(·)
stacks all of the columns of its matrix argument into one tall column vector.

2. Problem description. There are two m×n random matrices H = (hij) and
G = (gij), i ∈ [1,m], j ∈ [1, n], each with independently and identically distributed
(i.i.d.) complex zero-mean unit-variance Gaussian entries, i.e., E[hij] = E[gij] =
0 ∀i, j, E[hijh

�
pq] = E[gijg

�
pq] = δipδjq, where the Kronecker symbol δij is 1 or 0

when i = j or i 	= j. Therefore H,G ∼ CN (0, Imn). Moreover, the correlation
between the two random matrices is given by

(2.1) E[hijg
�
pq] = ρ δipδjq ∀i, j, p, q,

where ρ = |ρ|ejθ is a complex number, with |ρ| < 1.
Without loss of generality, we assume m ≤ n and set ν = n − m. Based on

the singular value decomposition (SVD), H and G can be, respectively, diagonalized
as [8]

H = USV†,(2.2)

G = ŨRṼ†,(2.3)

where S =
[
diag(s) 0

]
and R =

[
diag(r) 0

]
, with s = [s1, s2, . . . , sm] and r =

[r1, r2, . . . , rm], respectively.
We assume that the singular values of G, r1, r2, . . . , rm, are unordered and the

singular values of H, s1, s2, . . . , sm, are also unordered. Now we would like to know
the joint PDF of {rl}ml=1 and {sl}ml=1. Moreover, with r randomly selected from
r1, r2, . . . , rm, and s randomly selected from s1, s2, . . . , sm, it is of interest to derive
the joint PDF of r and s as well. These two PDFs are derived in sections 3 and 4,
respectively.

3. Joint PDF of {sl}m
l=1 and {rl}m

l=1.
Lemma 3.1 (joint PDF of H and G). For two correlated rectangular complex

Gaussian random matrices, H,G ∼ CN (0, Imn), with the correlation between H and
G given by (2.1), and the joint PDF of H and G is given by

(3.1) p(H,G) =
1

π2mn (1 − |ρ|2)mn exp

[
−

tr
(
HH† + GG† − ρ�HG† − ρGH†)

1 − |ρ|2

]
.

Proof. We set h = vec(H), g = vec(G), and x = [hT gT]T . Based on H,G ∼

CN (0, Imn) and (2.1), we have the mean and covariance matrix of x as E[x] = 0 and

Σx = Στ ⊗ Imn, with Στ =
[

1 ρ
ρ� 1

]
, respectively. Therefore the PDF of x is given

by [11]

(3.2) p(x) =
1

π2mn det |Σx|
exp

(
−x†Σ−1

x x
)
,

where det |Σx| = (det |Στ |)mn
=
(
1 − |ρ|2

)mn
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

974 SHUANGQUAN WANG AND ALI ABDI

With Σ−1
τ = 1

1−|ρ|2

[
1 −ρ

−ρ� 1

]
, we obtain Σ−1

x = Σ−1
τ ⊗Imn = 1

1−|ρ|2

[
Imn −ρImn

−ρ�Imn Imn

]
.

Therefore x†Σ−1
x x in (3.2) can be rewritten as

x†Σ−1
x x = tr

(
Σ−1

x xx†) = tr

(
1

1 − |ρ|2
[

Imn −ρImn

−ρ�Imn Imn

] [
hh† hg†

gh† gg†

])
,

=
tr
(
hh† + gg† − ρ�hg† − ρgh†)

1 − |ρ|2 =
tr
(
HH† + GG† − ρ�HG† − ρGH†)

1 − |ρ|2 ,

(3.3)

where tr
(
AB†) = vec(B)† vec(A) = tr

[
vec(A) vec(B)†

]
[7] is used in the last “=” of

(3.3). Substitution of (3.3) into (3.2) leads to (3.1).
From (2.2), we know that the unitary matrix pair (U,V) parameterizes the coset

space U(m) × U(n)/ [U(1)]
m

, where U(p) is the unitary group of order p, and the
integration measure d[H] =

∏m
i=1

∏n
j=1 d [�hij] d [�hij] can be represented by [9]

(3.4) d[H] = ΩJ(s)d[s]dμ(U,V),

where J(s) =
2(s2)
∏m

k=1 s
2ν+1
k with the m-dimensional Vandermonde determinant

(s2) = det |s2(l−1)
k | =

∏
k>l(s

2
k − s2

l) and
2(·) = [
(·)]2, d[s] =
∏m

l=1 dsl, dμ(U,V)
is the Haar measure of U(m)×U(n)/ [U(1)]

m
[9], and the constant Ω is given by [9,15]

(3.5) Ω =
2mπmn∏m

j=1 j!(j + ν − 1)!
=

2mπmn

m!
∏m−1

j=0 j!(j + ν)!
.

Similarly, we have

(3.6) d[G] = ΩJ(r)d[r]dμ(Ũ, Ṽ),

where J(r) =
2(r2)
∏m

k=1 r
2ν+1
k with the m-dimensional Vandermonde determinant

(r2) = det |r2(l−1)
k | =

∏
k>l(r

2
k − r2

l) and d[r] =
∏m

l=1 drl.
In order to obtain the joint PDF of {rl}ml=1 and {sl}ml=1, we need the following

proposition.
Proposition 3.2 (an Itzykson–Zuber-type integral [9, equation (31)]).∫

dμ(U,V) exp

{
−

tr
[
(H − G)(H − G)†

]
t

}

=
2mπmntmn−m det

∣∣∣exp
(
− s2k+r2

l

t

)
Iν
(

2skrl
t

)∣∣∣
m!Ω
(s2)
(r2)

∏m
k=1(skrk)

ν
,

(3.7)

where Ω is given by (3.5) and Ik(z) = 1
π

∫ π

0
ez cos θ cos(kθ)dθ is the kth-order modified

Bessel function of the first kind.
Theorem 3.3. The joint PDF of the singular values of H and G is given by

(3.8) p(s, r) =

exp

(
−
∑m

k=1
s2k+r2

k

1−|ρ|2

)

(s2)
(r2)

∏m
k=1(skrk)

ν+1 det
∣∣∣Iν(2|ρ|skrl

1−|ρ|2

)∣∣∣
2−2mm!m!

∏m−1
j=0 j!(j + ν)!|ρ|mn−m(1 − |ρ|2)m

.

Proof. By combining (3.1) with (3.4) and (3.6), we obtain

(3.9) p(s, r) =
Ω2J(s)J(r)

π2mn(1 − |ρ|2)mn
Φ(s, r),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

JOINT SINGULAR VALUE DISTRIBUTION OF TWO MATRICES 975

where

Φ(s, r)=

∫
dμ(Ũ, Ṽ)

∫
dμ(U,V) exp

[
−

tr
(
HH†+GG†−ρ�HG†−ρGH†)

1 − |ρ|2

]

=

∫
dμ(Ũ, Ṽ)

∫
dμ(U,V) exp

{
−

tr
[
(H−ρG)(H−ρG)†

]
1 − |ρ|2 −tr(GG†)

}

=

∫
dμ(Ũ, Ṽ) e− tr(GG†)

∫
dμ(U,V) exp

{
−

tr
[
(H − ρG)(H − ρG)†

]
1 − |ρ|2

}

=

∫
dμ(Ũ, Ṽ)

e−
∑m

k=1
r2
k(1 − |ρ|2)mn−m det

∣∣∣∣∣e− s2
k
+|ρ|2r2

l
1−|ρ|2 Iν

(
2|ρ|skrl
1−|ρ|2

)∣∣∣∣∣
2−mm!π−mnΩ
(s2)
(|ρ|2r2)

∏m
k=1(|ρ|skrk)ν

=

(1 − |ρ|2)mn−m exp

(
−
∑m

k=1
s2k+r2

k

1−|ρ|2

)
det

∣∣∣Iν(2|ρ|skrl
1−|ρ|2

)∣∣∣
2−mm!π−mnΩ|ρ|mn−m
(s2)
(r2)

∏m
k=1(skrk)

ν
.

(3.10)

Derivation of the second and third lines of (3.10) are straightforward. The fourth line
comes from

(3.11) ρG = ÛR̂V̂†,

with R̂ = |ρ|R, and Proposition 3.2 with the replacements t → 1−|ρ|2 and G → ρG.

The last line is based on the convention that
∫
dμ(Ũ, Ṽ) = 1 [9]. Plugging (3.5) and

the last line of (3.10) into (3.9), we obtain (3.8).
By relating the eigenvalues of GG† to the singular values of G through αl = r2

l ,
l ∈ [1,m], and the eigenvalues of HH† to the singular values of H through βl = s2

l , l ∈
[1,m], we can derive the joint PDF of α = [α1, α2, . . . , αm] and β = [β1, β2, . . . , βm],
presented in the following corollary.

Corollary 3.4. The joint PDF of the unordered eigenvalues of HH† and GG†

is
(3.12)

p(β,α) =

exp

(
−
∑m

k=1
βk+αk

1−|ρ|2

)

(β)
(α)

∏m
k=1(

√
βkαk)

ν det

∣∣∣∣Iν(2|ρ|
√

βkαl

1−|ρ|2

)∣∣∣∣
m!m!

∏m−1
j=0 j!(j + ν)!|ρ|mn−m(1 − |ρ|2)m

,

where m-dimensional Vandermonde determinants are defined by
(β) = det
∣∣βl−1

k

∣∣ =∏
k>l(βk − βl) and
(α) = det

∣∣αl−1
k

∣∣ =
∏

k>l(αk − αl).
Proof. It is straightforward to obtain (3.12) from (3.8) by 2m one-to-one nonlinear

mappings.

4. Joint marginal PDF. In this section, with β = s2 and α = r2, we calculate
the joint marginal PDF of β and α, p(β, α), using the techniques and results presented
in [4, 13]. Then the joint PDF of s and r, p(s, r), is easily derived.

If the polynomials Pk(β) and Ql(α) satisfy
∫
w(β, α)Pk(β)Ql(α)dβdα = δkl, then

we call Pk(β) and Ql(α) biorthogonal polynomials, associated with the weight function
w(β, α) [12]. With this definition, we have the following lemma.

Lemma 4.1. There exist bipolynomials Pk(β) and Ql(α) and a weight function
w(β, α), which reduce (3.12) to the following form:

(4.1) p(β,α) = C1 det |Pk−1(βl)|det |w(βk, αl)|det |Qk−1(αl)|,
where C1 is a normalization constant.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

976 SHUANGQUAN WANG AND ALI ABDI

Proof. In this paper, ν is a nonnegative integer. Using the Hille–Hardy formula [2,
p. 185, equation (46)]

(4.2)

∞∑
k=0

k!zk

(k + ν)!
Lν
k(x)Lν

k(y) =
(xyz)−

ν
2

1 − z
exp

(
−z

x + y

1 − z

)
Iν

(
2
√
xyz

1 − z

)
, |z| < 1,

with Lν
k(x) = 1

k!e
xx−ν dk

dxk (e−xxk+ν) as the associated Laguerre polynomial, we can
rewrite (3.12) as

(4.3) p(β,α) =

(β)
(α) det

∣∣∣βν
ke

−βkαν
l e

−αl
∑∞

j=0

j!|ρ|2jLν
j (βk)Lν

j (αl)

(j+ν)!

∣∣∣
m!m!

∏m−1
j=0 j!(j + ν)!|ρ|m(m−1)

.

We set the weight function w(β, α) as

w(β, α) = βνανe−(β+α)
∞∑
j=0

j!|ρ|2jLν
j (β)Lν

j (α)

(j + ν)!

=

(βα)
ν
2 e

− β+α

1−|ρ|2 Iν

(
2|ρ|

√
βα

1−|ρ|2

)
(1 − |ρ|2)|ρ|ν .

(4.4)

It is easy to check that the corresponding biorthogonal polynomials are given by

Pk(β) =

√
k!

(k + ν)!
|ρ|−kLν

k(β),(4.5)

Ql(α) =

√
l!

(l + ν)!
|ρ|−lLν

l (α),(4.6)

using the following integral equality [2, p. 267, equation 7.414.3]

(4.7)

∫ ∞

0

e−xxνLν
k(x)Lν

l (x) =
(k + ν)!

k!
δkl.

Moreover, by the addition of multiples of rows of lower order which do not change
the determinant of the Vandermonde matrix, each of the rows can be expressed in
terms of orthogonal polynomials with respect to the weight function w(β, α). There-
fore two m-dimensional Vandermonde determinants,
(β) and
(α), can be repre-
sented as

(β) = det
∣∣βl−1

k

∣∣ = C2 det |Pk−1(βl)| ,(4.8)

(α) = det
∣∣αl−1

k

∣∣ = C3 det |Qk−1(αl)| ,(4.9)

where we use the fact that the matrix transpose does not change the determinant,
i.e., det |Pl−1(βk)| = det |Pk−1(βl)| and det |Ql−1(βk)| = det |Qk−1(βl)|.

The coefficient of xk in Lν
k(x) is (−1)k

k! , and the coefficient of xk in Pk(x) is

(−1)k|ρ|−k 1√
k!(k+ν)!

; therefore, we have C2 =
∏m−1

j=0 (−1)j |ρ|j
√
j!(j+ν)! = (−1)

m(m−1)
2

×
√
|ρ|m(m−1)

∏m−1
j=0 j!(j+ν)!, obtained by plugging (4.5) into (4.8). Similarly, substi-

tution of (4.6) into (4.9) gives C3 = C2. Now the product of (4.8) and (4.9) results

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

JOINT SINGULAR VALUE DISTRIBUTION OF TWO MATRICES 977

in

(4.10)
(β)
(α) = |ρ|m(m−1)
m−1∏
j=0

j!(j + ν)! det |Pk−1(βl)|det |Qk−1(αl)|.

Based on (4.4) and (4.10), one can see that (4.3) is equal to (4.1) with
C1 = 1

m!m! .
Theorem 4.2. The joint PDF of β and α is given by

(4.11) p(β, α) =

(βα)
ν
2 e

− β+α

1−|ρ|2 Iν

(
2|ρ|

√
βα

1−|ρ|2

)
m2(1 − |ρ|2)|ρ|ν

m−1∑
k=0

k!

(k + ν)!

Lν
k(β)Lν

k(α)

|ρ|2k

+
(βα)νe−(β+α)

m2

m−1∑
0≤k<l

{
k!l!

(k + ν)!(l + ν)!

{
[Lν

k(β)Lν
l (α)]

2
+ [Lν

l (β)Lν
k(α)]

2

−
[
|ρ|2(l−k) + |ρ|2(k−l)

]
Lν
k(β)Lν

l (β)Lν
k(α)Lν

l (α)
}}

.

Proof. Based on Lemma 4.1, and the results presented in [13, equation (3.7)] [4],
p(β, α) can be expressed as
(4.12)

m2 p(β, α) = w(β, α)

m−1∑
k=0

Pk(β)Qk(α) +

m−1∑
0≤k<l

det

∣∣∣∣Pk(β) P k(α)
Pl(β) P l(α)

∣∣∣∣det

∣∣∣∣Qk(β) Qk(α)
Ql(β) Ql(α)

∣∣∣∣ ,
where Pk(x) and Qk(x) are defined in (4.5) and (4.6), respectively, the weight function
is presented in (4.4), and P k(α) and Ql(β) are similarly defined as [13]

P k(α) =

∫
Pk(β)w(β, α)dβ =

√
k!

(k + ν)!
ανe−α|ρ|kLν

k(α),(4.13)

Ql(β) =

∫
Ql(α)w(β, α)dα =

√
l!

(l + ν)!
βνe−β |ρ|lLν

l (β).(4.14)

Plugging (4.4), (4.5), (4.6), (4.13), and (4.14) into (4.12), we arrive at (4.11).
It is straightforward to obtain the joint PDF of s and r from (4.11), according to

these one-to-one mappings s =
√
β and r =

√
α.

The joint PDF in (4.11) includes many existing PDFs as special cases.
• By integration over β, (4.11) reduces to the marginal PDF

(4.15) p(α) =
1

m

m−1∑
k=0

k!

(k + ν)!
[Lν

k(α)]
2
ανe−α,

which is the same as the PDF presented in [18]. When m = 1, (4.15) further
reduces to

(4.16) p(α) =
1

(n− 1)!
αn−1e−α,

which is the χ2 distribution with 2n degrees of freedom [17, equation (2.32)].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

978 SHUANGQUAN WANG AND ALI ABDI

• With m = 1, (4.11) reduces to [21]

(4.17) p(α, β) =

(αβ)
n−1

2 exp
(
− α+β

1−|ρ|2

)
In−1

(
2|ρ|

√
αβ

1−|ρ|2

)
(n− 1)! (1 − |ρ|2) |ρ|n−1

.

Furthermore, when n = 1, (4.17) simplifies to

(4.18) p(α, β) =
1

1 − |ρ|2 exp

(
− α + β

1 − |ρ|2

)
I0

(
2|ρ|

√
αβ

1 − |ρ|2

)
,

which is identical to [3, p. 163, equation (8-103)], after two one-to-one non-
linear transformations.

For the application discussed in section 5, we need the joint marginal PDF of φ
and ϕ, p(φ, ϕ), where φ and ϕ are randomly selected from {αk}mk=1, m ≥ 2. Using
the technique in [4, 13], we have the following theorem.

Theorem 4.3. If φ and ϕ are randomly selected from {αk}mk=1, their joint PDF
is given by
(4.19)

p(φ, ϕ)=
(φϕ)νe−(φ+ϕ)

m(m− 1)

m−1∑
k,l=0
k �=l

k!l!

(k + ν)!(l + ν)!

{
[Lν

k(φ)Lν
l (ϕ)]

2−Lν
k(φ)Lν

l (φ)Lν
k(ϕ)Lν

l (ϕ)
}
.

Proof. According to (1.6) and (2.14) in [13] we have

(4.20) p(φ, ϕ) =
1

m(m− 1)
det

∣∣∣∣K(φ, φ) K(φ, ϕ)
K(ϕ, φ) K(ϕ,ϕ)

∣∣∣∣ ,
where K(x1, x2) =

∑m−1
k=0 Pk(x1)Qk(x2). With Pk(x1) in (4.5) and Qk(x2) in (4.14),

we obtain (4.19) after some simple algebraic manipulations.

5. Application to wireless MIMO communication systems. For an NR ×
NT MIMO time-varying Rayleigh flat fading channel [19] with NT transmitters and
NR receivers, the channel impulse response at time instant t is given by

(5.1) H(t) =

⎡⎢⎣ h1,1(t) · · · h1,NT
(t)

...
. . .

...
hNR,1(t) · · · hNR,NT

(t)

⎤⎥⎦.
We assume all of the NRNT subchannels in the MIMO system {hi,j(t)}(NR,NT)

(i=1,j=1) are

i.i.d., with the same temporal correlation coefficient, i.e.,

(5.2) E[hij(t)h
�
pq(t− τ)] = δipδjqρh(τ),

where ρh(τ) = J0(2πfDτ) [10] in isotropic scattering environments,1 with J0(x) =
I0(−jx) [5, p. 961, equation 8.406.3], and fD is the maximum Doppler frequency shift.

1In the nonisotropic scattering environment, ρh(τ), in general, is a complex-value function [22,23],
and |ρh(τ)| indicates its amplitude at the time delay τ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

JOINT SINGULAR VALUE DISTRIBUTION OF TWO MATRICES 979

We set n = max(NR, NT) and m = min(NR, NT). According to (2.2), H(t) can be
diagonalized as

(5.3) H(t) = U(t)S(t)V†(t),

where S(t) =
[
diag(s(t)) 0

]
, with s(t) = [s1(t), s2(t), . . . , sm(t)], for NR ≤ NT , and

S(t) =

[
diag(s(t))

0

]
for NR > NT . Therefore the MIMO channel H(t) is decomposed

to m identically distributed eigenchannels λk(t) = s2
k(t), k ∈ [1,m], by SVD.

In wireless MIMO communication systems, we are interested in the correlation
coefficient between any two eigenchannels, which is defined by

(5.4) ρk,l(τ) =
E [λk(t)λl(t− τ)] − E [λk(t)] E [λl(t)]√

E [λ2
k(t)] − {E [λk(t)]}2

√
E [λ2

l (t)] − {E [λl(t)]}2
.

For simplicity, in this paper we consider only a 2×2 MIMO system,2 NR = NT = 2,
where the correlation coefficient ρk,l(τ) can be shown to be

(5.5) ρk,l(τ) =

{
1 − 3

2 (1 − δkl) , τ = 0,
|ρh(τ)|2

4 =
J2
0 (2πfDτ)

4 , τ 	= 0,
k, l = 1, 2,

with J2
0 (·) = [J0(·)]2. To derive (5.5), we note that, for τ = 0 and k = l, ρk,l(0) = 1 be-

cause of the definition of the correlation coefficient. Since m = 2, for any eigenchannel
at the time instant t, it is easy to show that the mean value of λk(t) is E [λk(t)] = 2 ∀k,
and the second moment of λk(t) is E

[
λ2
k(t)

]
= 8 ∀k, using the PDF in (4.15). For

τ = 0 and k 	= l, we obtain E [λk(t)λl(t)] = 2 by (4.19); hence, ρk,l(0) = − 1
2 ∀k 	= l.

For τ 	= 0 and ∀k, l, it is not difficult to get E [λk(t)λl(t− τ)] = 4 + |ρh(τ)|2 using
(4.11); therefore, we have the second line in (5.5).

Monte Carlo simulations are performed to verify the result in (5.5). In all simu-
lations,3 the maximum Doppler frequency fD is set to 1 Hz, and the sampling period
Ts is equal to 1

1000fD
. The simulation results are shown in Figure 5.1, where the upper

figure shows the channel correlation coefficient ρh(τ) = J0 (2πfDτ), Clarke’s correla-
tion model, whereas the lower figure presents the correlation coefficient between any
two eigenchannels or for any individual eigenchannel, (5.5). Since J0(2πfDτ) is an
even function of τ , the correlation coefficients are plotted for τ ≥ 0. In the figure,
“Simu.” indicates the curve is obtained by Monte Carlo simulations, whereas “Theo.”
means theoretical. From Figure 5.1 we can conclude that the new theoretical result
in (5.5) is confirmed by simulation very well.

6. Conclusion. In this paper, the joint distribution of singular values of two
correlated rectangular complex Gaussian random matrices is derived, as well as the
joint marginal distribution. The derived distributions play an important role in the
analysis and design of wireless MIMO communication systems. As an example, the
correlation coefficient of any two eigenchannels of a 2 × 2 MIMO system is obtained
and verified by the Monte Carlo simulations in this paper.

Acknowledgment. We thank the anonymous reviewers for bringing [6] and [20]
to our attention.

2The general NR ×NT MIMO system is considered in [22, Chap. 4].
3The spectral method [1] is used to generate the MIMO channels.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

980 SHUANGQUAN WANG AND ALI ABDI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1
Correlation Coefficient of Any Subchannel

fDτ

ρ h
(τ

)

Simu.
Theo.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1
Correlation Coefficient of Two Eigenchannels λk(t) and λl(t)

fDτ

ρ
l(
τ
)

Simu. (k = l)

Theo. (k = l)

Simu. (k = l)

Theo. (k = l)

Fig. 5.1. The channel correlation coefficient ρh(τ) and correlation coefficient of any two eigen-
channels ρk,l(τ) in a 2 × 2 MIMO system with Clarke’s correlation model. Note that the sampling

period Ts is 1
1000fD

in Monte Carlo simulations; therefore, the first nonzero τ is Ts, i.e., 1
1000fD

,

which corresponds to fDτ = 1
1000

in the horizontal axis.

REFERENCES

[1] K. Acolatse and A. Abdi, Efficient simulation of space-time correlated MIMO mobile fading
channels, in Proceedings of the IEEE Vehicle Technology Conference, Orlando, FL, 2003,
pp. 652–656.

[2] P. Beckmann, Orthogonal Polynomials for Engineers and Physicists, Golem Press, Boulder,
CO, 1973.

[3] W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and
Noise, Wiley, New York, 1987.

[4] B. Eynard and M. L. Mehta, Matrices coupled in a chain: I. Eigenvalue correlations, J.
Phys. A, 31 (1998), pp. 4449–4456.

[5] I. S. Gradshteyn, I. M. Ryzhik, and A. Jeffrey, eds., Table of Integrals, Series, and
Products, 5th ed., Academic, San Diego, CA, 1994.

[6] T. Guhr and T. Wettig, Universal spectral correlations of the Dirac operator at finite tem-
perature, Nuclear Phys. B, 506 (1997), pp. 589–611.

[7] A. K. Gupta and D. K. Nagar, Matrix Variate Distributions, Chapman & Hall/CRC, New
York, 1999.

[8] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical
Domain, American Mathematical Society, Providence, RI, 1963.

[9] A. D. Jackson, M. K. Şener, and J. J. M. Verbaarschot, Finite volume partition functions
and Itzykson-Zuber integrals, Phys. Lett. B, 387 (1996), pp. 355–360.

[10] W. C. Jakes, ed., Microwave Mobile Communications, IEEE Press, New York, 1994.
[11] A. T. James, Distributions of matrix variates and latent roots derived from normal samples,

Ann. Math. Statist., 35 (1964), pp. 475–501.
[12] M. L. Mehta, Random Matrices, Academic Press, Boston, MA, 2004.
[13] M. L. Mehta and P. Shukla, Two coupled matrices: Eigenvalue correlations and spacing

functions, J. Phys. A, 27 (1994), pp. 7793–7803.
[14] R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, 1982.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

JOINT SINGULAR VALUE DISTRIBUTION OF TWO MATRICES 981

[15] T. Nagao and M. Wadati, Correlation functions of random matrix ensembles related to
classical orthogonal polynomials, J. Phys. Soc. Japan, 60 (1991), pp. 3298–3322.

[16] J. Shen, On the singular values of Gaussian random matrices, Linear Algebra Appl., 326
(2001), pp. 1–14.

[17] M. K. Simon, Probability Distributions Involving Gaussian Random Variables: A Handbook
for Engineers and Scientists, Kluwer, Boston, MA, 2002.

[18] İ. E. Telatar, Capacity of multi-antenna Gaussian channels, European Trans. Telecommun.,
10 (1999), pp. 585–595.

[19] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University
Press, Cambridge, 2005.

[20] J. J. M. Verbaarschot and T. Wettig, Random matrix theory and chiral symmetry in QCD,
Annu. Rev. Nuclear Particle Sci., 50 (2000), pp. 343–410.

[21] S. Wang, Envelope correlation coefficient for logarithmic diversity receivers revisited, IEEE
Trans. Commun., to appear.

[22] S. Wang, MIMO Fading Channels: Models, Statistics, and Low-Complexity Estimators, Ph.D.
thesis, New Jersey Institute of Technology, Newark, NJ, 2006.

[23] S. Wang and A. Abdi, On the second-order statistics of the instantaneous mutual information
of time-varying fading channels, in Proceedings of the IEEE International Workshop Signal
Processing Advances in Wireless Communications, New York, 2005, pp. 405–409.

[24] S. Wang and A. Abdi, Correlation analysis of instantaneous mutual information in 2 × 2
MIMO systems, in Proceedings of the 40th Annual Conference on Information Science
Systems, Princeton, NJ, 2006, pp. 542–546.

[25] S. Wang and A. Abdi, Statistical characterization of eigen-channels in time-varying Rayleigh
flat fading MIMO systems, in Proceedings of the IEEE Global Telecommunications Con-
ference, San Francisco, CA, 2006.

[26] N. Zhang and B. Vojcic, Evaluating the temporal correlation of MIMO channel capacities,
in Proceedings of the IEEE Global Telecommunications Conference, St. Louis, MO, 2005,
pp. 2817–2821.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 982–1006

PROJECTED GENERALIZED DISCRETE-TIME PERIODIC
LYAPUNOV EQUATIONS AND BALANCED REALIZATION OF

PERIODIC DESCRIPTOR SYSTEMS∗

ERIC KING-WAH CHU† , HUNG-YUAN FAN‡ , AND WEN-WEI LIN§

Abstract. From the necessary and sufficient conditions for complete reachability and observabil-
ity of periodic descriptor systems with time-varying dimensions, the symmetric positive semidefinite
reachability/observability Gramians are defined. These Gramians can be shown to satisfy some
projected generalized discrete-time periodic Lyapunov equations. We propose a numerical method
for solving these projected Lyapunov equations, and give an illustrative numerical example. As an
application of our results, the balanced realization of periodic descriptor systems is discussed.

Key words. periodic systems, descriptor systems, reachability and observability Gramians,
Hankel singular values, balanced realization

AMS subject classifications. 15A24, 93B05, 93B07, 93C55

DOI. 10.1137/040606715

1. Introduction. In the second half of the last century, the development of
systems and control theory, together with the achievements of digital control and
signal processing, has set the stage for renewed interest in the study of periodic sys-
tems, both in continuous and discrete time; see, e.g., [11, 13, 16, 27, 42, 53] and
the survey papers [3, 4]. This has been amplified by specific application demands
in the aerospace realm [20, 21, 28], computer control of industrial processes [5], and
communication systems [11, 40, 41, 52]. The number of contributions on linear time-
varying discrete-time periodic systems has been increasing in recent times; see, e.g.,
[14, 19, 22, 43, 45, 47] and the references therein. This increasing interest in periodic
systems has also been motivated by the large variety of processes that can be modeled
through linear discrete-time periodic systems (e.g., multirate sampled-data systems,
chemical processes, periodically time-varying filters and networks, and seasonal phe-
nomena [2, 3, 6, 15, 26, 31, 51]).

We consider here a periodic descriptor system with time-varying dimensions:

(1.1) Ekxk+1 = Akxk + Bkuk, yk = Ckxk, k ∈ Z,

where the matrices Ek ∈ R
μk+1×nk+1 , Ak ∈ R

μk+1×nk , Bk ∈ R
μk+1×m, Ck ∈ R

p×nk are
periodic with period K ≥ 1, i.e., Ek = Ek+K , Ak = Ak+K , Bk = Bk+K , Ck = Ck+K ,
and all system matrices Ek and Ak are allowed to be rectangular for all k. Moreover,
the dimensions of matrices are also K-periodic, i.e., μk+K = μk and nk+K = nk for all

k. Assume that
∑K−1

k=0 μk =
∑K−1

k=0 nk ≡ N . Recently, this class of periodic descriptor
systems (1.1) has been discussed and studied extensively in the problem of solvability

∗Received by the editors April 14, 2004; accepted for publication (in revised form) by P. Van
Dooren February 20, 2007; published electronically October 17, 2007.

http://www.siam.org/journals/simax/29-3/60671.html
†School of Mathematical Sciences, Building 28, Monash University, VIC 3800, Australia (eric.

chu@sci.monash.edu.au).
‡Department of Applied Mathematics, Hsuan Chuang University, Hsinchu, 300, Taiwan (hyfan@

wmail.hcu.edu.tw). This author’s research was partly supported by the National Science Council in
Taiwan under grant NSC 94-2115-M-264-003.

§Department of Mathematics, National Tsing Hua University, Hsinchu, 300, Taiwan (wwlin@
math.nthu.edu.tw).

982

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 983

and conditionability [33], the computation of H∞-norm and system zeros [49, 50], and
the compensating and regularization problems for periodic descriptor systems [8, 23].

It is well known that the dynamics of the discrete-time periodic descriptor system
(1.1) depend critically on the regularity and the eigenstructure of the periodic matrix
pairs {(Ek, Ak)}K−1

k=0 , which satisfy the homogeneous systems of (1.1):

(1.2) Ekxk+1 = Akxk, k ∈ Z.

The set of matrix pairs {(Ek, Ak)}K−1
k=0 is said to be regular when det[C((αk, βk)

K−1
k=0)] �≡

0, where
(1.3)

C((αk, βk)
K−1
k=0) ≡

⎡⎢⎢⎢⎢⎢⎢⎣

α0E0 0 · · · 0 −β0A0

−β1A1 α1E1 0
. . .

. . .
...

. . .
. . . 0

0 0 −βK−1AK−1 αK−1EK−1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
N×N ,

in which αk, βk are complex variables for k = 0, . . . ,K−1. Note that we are consider-
ing the regularity of the set of matrix pairs {(Ek, Ak)}K−1

k=0 , rather than the regularity
of the individual matrix pairs (Ek, Ak).

Definition 1.1. Let {(Ek, Ak)}K−1
k=0 be a regular set of matrix pairs. If there

exist complex numbers α0, . . . , αK−1, β0, . . . , βK−1 which satisfy

(1.4) det[C((αk, βk)
K−1
k=0)] = 0,

(
K−1∏
k=0

αk,

K−1∏
k=0

βk

)
≡ (πα, πβ) �= (0, 0),

then (πα, πβ) is an eigenvalue pair of {(Ek, Ak)}K−1
k=0 .

Note that if (πα, πβ) is an eigenvalue pair of {(Ek, Ak)}K−1
k=0 , then (πα, πβ) and

(τπα, τπβ) represent the same eigenvalue for any nonzero τ . If πβ �= 0, then λ = πα/πβ

is a finite eigenvalue; otherwise (πα, 0) represents an infinite eigenvalue. We shall
assume throughout the paper that the set of periodic matrix pairs {(Ek, Ak)}K−1

k=0 is
regular, and use the notation σ(M) to denote the spectrum of a square matrix M .

For discrete-time descriptor systems, the concepts of reachability and observabil-
ity Gramians, causal and noncausal Hankel singular values, and balanced realization
are well established [1, 39]. Moreover, numerical methods have been proposed in
[10, 34] to solve the projected generalized Lyapunov equations for continuous-time
descriptor systems. However, to the best of our knowledge, similar results have not
been developed for periodic descriptor systems.

In summary, there are two main contributions in this paper. First, with the aid
of the fundamental matrices Ψi,j defined as in (2.15), the reachability/observability
Gramians and their corresponding projected generalized discrete-time periodic Lya-
punov equations (GDPLEs) are derived in terms of the original system matrices Ek,
Ak, Bk, and Ck, k = 0, 1, . . . ,K − 1, respectively. These fundamental matrices play
an important role here and are natural extensions of those defined for the descriptor
system with period K = 1 [34, 39]. Second, in sections 6 and 7, Hankel singular values
and balanced realization are discussed, for the first time, for completely reachable and
observable periodic descriptor systems. These concepts are likely to be crucial in the
model reduction problem of periodic descriptor systems.

This paper is organized as follows. Section 2 contains some notation and defini-
tions, as well as some preliminary results. In section 3 the necessary and sufficient

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

984 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

conditions for complete reachability and observability of periodic descriptor systems
are developed from similar results for systems with constant dimensions in [10]. With
these equivalent conditions, the periodic reachability and observability Gramians,
which satisfy some generalized periodic Lyapunov equations, are developed in sec-
tion 4. In section 5 we propose a numerical method for solving these equations under
the assumption of pd-stability. A numerical example is given to illustrate its feasibil-
ity and reliability. The concept of Hankel singular values is generalized to periodic
descriptor systems in section 6. The problem of balanced realization for the com-
pletely reachable and completely observable periodic descriptor systems is discussed
in section 7.

2. Preliminaries. For period K = 1 and a regular matrix pair (E,A), it is well
known that the discrete-time descriptor system (E,A,B,C) is asymptotically stable
if and only if all finite eigenvalues of (E,A) lie inside the unit circle [12, 35, 37].
Similarly, the stability of the periodic descriptor system (1.1) can be characterized in
terms of the spectrum of the periodic matrix pairs {(Ek, Ak)}K−1

k=0 .

Definition 2.1. Let {(Ek, Ak)}K−1
k=0 be a regular set of matrix pairs. The periodic

matrix pairs {(Ek, Ak)}K−1
k=0 are called pd-stable if the set of periodic matrix pairs

{(Ek, Ak)}K−1
k=0 is regular and all their finite eigenvalues lie inside the unit circle.

In a fashion similar to the Kronecker canonical form for a regular matrix pair,
we can transform a regular set of periodic matrix pairs into a periodic Kronecker
canonical form [48] (see also [32] for the history of the canonical form).

Lemma 2.1. Suppose that the set of periodic matrix pairs {(Ek, Ak)}K−1
k=0 in

system (1.1) is regular. Then for k = 0, . . . ,K − 1 there exist nonsingular matrices
Xk ∈ R

μk+1×μk+1 and Yk ∈ R
nk×nk such that

(2.1) XkEkYk+1 =

[
Inf

k+1
0

0 Eb
k

]
, XkAkYk =

[
Af

k 0
0 In∞

k

]
,

where YK ≡ Y0, Af
k+K−1A

f
k+K−2 · · ·A

f
k ≡ Jk is an nf

k × nf
k Jordan matrix corre-

sponding to the finite eigenvalues, Eb
kE

b
k+1 · · ·Eb

k+K−1 ≡ Nk is an n∞
k × n∞

k nilpo-

tent Jordan matrix corresponding to the infinite eigenvalues, nk = nf
k + n∞

k , and

μk+1 = nf
k+1 + n∞

k .

Proof. Since {(Ek, Ak)}K−1
k=0 are pd-stable, there exist orthogonal matrices Vk ∈

R
μk+1×μk+1 and Uk ∈ R

nk×nk , with UK ≡ U0 and for k = 0, 1, . . . ,K − 1, such that

(2.2) V T
k EkUk+1 =

[
Ek,1 Ek,3

0 Ek,2

]
, V T

k AkUk =

[
Ak,1 Ak,3

0 Ak,2

]
,

where the matrices Ek,1 ∈ R
nf
k+1×nf

k+1 and Ak,2 ∈ R
n∞
k ×n∞

k are nonsingular and

(Ak,2)
−1Ek,2(Ak+1,2)

−1Ek+1,2 · · · (Ak+K−1,2)
−1Ek+K−1,2

are nilpotent for k = 0, 1, . . . ,K − 1 [48]. All finite eigenvalues of the periodic matrix
pairs {(Ek,1, Ak,1)}K−1

k=0 lie inside the unit circle, and the spectrum of the periodic

matrix pairs {(Ek,2, Ak,2)}K−1
k=0 contains only infinite eigenvalues. We then construct[

E−1
k,1 0

0 A−1
k,2

] [
Ek,1 Ek,3

0 Ek,2

]
=

[
Inf

k+1
Êk,3

0 Ê∞
k

]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 985

and [
E−1

k,1 0

0 A−1
k,2

] [
Ak,1 Ak,3

0 Ak,2

]
=

[
Âf

k Âk,3

0 In∞
k

]
,

where Êk,3 ∈ R
nf
k+1×n∞

k+1 , Ê∞
k ∈ R

n∞
k ×n∞

k+1 , Âf
k ∈ R

nf
k+1×nf

k , and Âk,3 ∈ R
nf
k+1×n∞

k .

We shall prove that there exist periodic matrices Pk ∈ R
nf
k+1×n∞

k and Qk ∈
R

nf
k×n∞

k such that

(2.3)

[
Inf

k+1
Pk

0 In∞
k

][
Inf

k+1
Êk,3

0 Ê∞
k

][
Inf

k+1
Qk+1

0 In∞
k+1

]
=

[
Inf

k+1
0

0 Ê∞
k

]

and

(2.4)

[
Inf

k+1
Pk

0 In∞
k

] [
Âf

k Âk,3

0 In∞
k

] [
Inf

k
Qk

0 In∞
k

]
=

[
Âf

k 0
0 In∞

k

]
.

Comparing both sides of (2.3) and (2.4), we obtain, for all k,

(2.5) Qk+1 + PkÊ
∞
k + Êk,3 = 0

and

(2.6) Âf
kQk + Pk + Âk,3 = 0.

Eliminating Pk from (2.5) and (2.6), we arrive at, for all k,

(2.7) Qk+1 = Âf
kQkÊ

∞
k + Âk,3Ê

∞
k − Êk,3.

With QK = Q0, (2.7) in turn implies

(2.8) Q0 = (Âf
K−1Â

f
K−2 · · · Â

f
0)Q0(Ê

∞
0 Ê∞

1 · · · Ê∞
K−1) + D0,

where D0 is independent of any Qk. Since σ(Ê∞
0 Ê∞

1 · · · Ê∞
K−1) = {0}, we can uniquely

determine Q0 from (2.8), all the other Qk from (2.7), and all the Pk from (2.6).
Finally, by the well-known Jordan decomposition, there exist nonsingular K-

periodic matrices Gk ∈ R
nf
k×nf

k and Zk ∈ R
n∞
k ×n∞

k which produce the Jordan forms

Jk ≡ G−1
k (Âf

k+K−1Â
f
k+K−2 · · · Â

f
k)Gk,(2.9)

Nk ≡ Z−1
k (Ê∞

k Ê∞
k+1 · · · Ê∞

k+K−1)Zk.(2.10)

Define

Xk ≡
[
G−1

k+1 0

0 Z−1
k

][
Inf

k+1
Pk

0 In∞
k

] [
E−1

k,1 0

0 A−1
k,2

]
V T
k ,

Yk ≡ Uk

[
Inf

k
Qk

0 In∞
k

] [
Gk 0
0 Zk

]
and

Eb
k ≡ Z−1

k Ê∞
k Zk+1, Af

k ≡ G−1
k+1Â

f
kGk;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

986 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

then the proof is complete.
Remarks. (i) If νk is the nilpotency of the matrix Nk for k = 0, 1, . . . ,K − 1,

then these K values are defined as the indices of a regular set of periodic matrix pairs
{(Ek, Ak)}K−1

k=0 [23]. Hence we define the index of the periodic descriptor system (1.1)
as ν ≡ max{ν0, ν1, . . . , νK−1}. We say that the periodic descriptor system (1.1) is of
index at most 1 if ν ≤ 1, i.e., Ek are all nonsingular or Nk = 0 for all k.

(ii) The technique in proving the uniqueness of the solution for (2.5) and (2.6)
can be used later for similar equations in (4.7), (4.10), (5.3), (5.6), (5.11), (5.15),
(5.17), and (5.21). For the special case of periodic Lyapunov equations for systems
with constant dimensions, see [44].

For each k ∈ Z, we let

(2.11) xk = Yk

[
xf
k

xb
k

]
}nf

k

}n∞
k

, XkBk =

[
Bf

k

Bb
k

]
}nf

k+1

}n∞
k

, CkYk =
[
Cf

k

nf
k

Cb
k

n∞
k

]
,

and by using Lemma 2.1, we can decompose the original system (1.1) into forward
and backward periodic subsystems, respectively:

xf
k+1 = Af

kx
f
k + Bf

kuk, yfk = Cf
kx

f
k ,(2.12)

Eb
kx

b
k+1 = xb

k + Bb
kuk, ybk = Cb

kx
b
k,(2.13)

with yk = yfk + ybk, k ∈ Z.
Notice that the state transition matrix of the forward subsystem (2.12) equals

Φf (i, j) = Af
i−1A

f
i−2 · · ·A

f
j ∈ R

nf
i ×nf

j when i > j with Φf (i, i) := Inf
i
. The state

transition matrix of the backward subsystem (2.13) is Φb(i, j) = Eb
iE

b
i+1 · · ·Eb

j−1 ∈
R

n∞
i ×n∞

j when i < j with Φb(i, i) := In∞
i

. The state transition matrix over one
period Φf (τ +K, τ) is called the monodromy matrix of the forward subsystem (2.12)
at time τ .

For k = 0, 1, . . . ,K − 1, the matrices
(2.14)

Pr(k) = Yk

[
Inf

k
0

0 0

]
Y −1
k ∈ R

nk×nk , Pl(k) = X−1
k

[
Inf

k+1
0

0 0

]
Xk ∈ R

μk+1×μk+1 ,

are the spectral projections onto, respectively, the kth right and left deflating sub-
spaces of the periodic matrix pairs {(Ek, Ak)}K−1

k=0 corresponding to the finite eigen-
values. Moreover, the fundamental matrices Ψi,j (i, j ∈ Z) of the periodic descriptor
system (1.1) are defined by

(2.15) Ψi,j =

⎧⎪⎪⎨⎪⎪⎩
Yi

[
Φf (i, j + 1) 0

0 0

]
Xj if i > j,

Yi

[
0 0
0 −Φb(i, j)

]
Xj if i ≤ j.

These matrices play an essential role for the periodic discrete-time descriptor system
(1.1). For the discrete-time descriptor system with period K = 1, these fundamen-
tal matrices coincide with the coefficient matrices of the Laurent expansion of the
generalized resolvent (λE −A)−1 at infinity [25, 39].

Some of the results in this paper can be developed through the application of the
results of Stykel [37], after “lifting” the periodic system into a descriptor system of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 987

higher dimension [50]. This is implicitly how we obtained the results in Theorem 4.1.
However, various permutations will be involved when separating the lifted system
into its forward and backward parts, diluting the simplicity we hope for. Our present
approach of development without lifting is somewhat simpler and more convenient.

3. Complete reachability and observability. In this section, we shall give a
characterization of complete reachability and observability for the periodic discrete-
time descriptor systems (1.1). Proofs in [10], for similar results for systems of constant
dimensions, can easily be adapted for time-variant dimensions and are omitted.

Definition 3.1. (i) The periodic descriptor system (1.1) is reachable at time t
if for any state x̄ ∈ R

nt there exist two integers s, 	 with s < t < 	 and a set of control
inputs {ui}�i=s which carry xs = 0 into xt = x̄. The periodic descriptor system (1.1)
is called completely reachable if it is reachable at all times t.

(ii) The forward subsystem (2.12) is reachable at time t if for any state ξ̄1 ∈ R
nf
t

there exists an integer s with s < t and a set of control inputs {ui}t−1
i=s which carry

xf
s = 0 into xf

t = ξ̄1. The periodic subsystem (2.12) is called completely reachable if
it is reachable at all times t.

(iii) The backward subsystem (2.13) is reachable at time t if for any state ξ̄2 ∈ R
n∞
t

there exists an integer 	 with 	 > t and a set of control inputs {ui}�i=t such that xb
t = ξ̄2.

The periodic subsystem (2.13) is completely reachable if it is reachable at all times t.
Remark. It is easily seen from Definition 3.1 that the periodic discrete-time

descriptor system (1.1) is completely reachable if and only if both its forward and
backward subsystems are completely reachable.

Theorem 3.1 (forward reachability). The following statements are equivalent:
(a) The forward subsystem (2.12) is completely reachable.
(b) For t = 0, 1, 2, . . . ,K − 1, the matrices

Rf (t) ≡
[
Bf

t−1, A
f
t−1B

f
t−2, . . . ,Φf (t, t− nf

t K + 1)Bf

t−nf
t K

]
have full row rank .

(c) For t = 0, 1, 2, . . . ,K − 1 and

Bf
t ≡

[
Bf

t−1, A
f
t−1B

f
t−2, A

f
t−1A

f
t−2B

f
t−3, . . . ,Φf (t, t−K + 1)Bf

t−K

]
,

the matrices[
Bf
t , Φf (t, t−K)Bf

t , (Φf (t, t−K))2Bf
t , . . . , (Φf (t, t−K))n

f
t −1Bf

t

]
have full row rank.

(d) For
∏K−1

i=0 αi ∈ σ(Φf (K, 0)), the matrix Uf (α0, . . . , αK−1) ≡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0Inf
1

0 · · · 0 −Af
0 Bf

0

−Af
1 α1Inf

2

. . . 0 Bf
1

0 −Af
2

. . .
. . .

...
. . .

...
. . .

. . .
. . . 0

. . .

0 · · · 0 −Af
K−1 αK−1Inf

0
Bf

K−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
has full row rank.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

988 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

(e) For t = 0, 1, 2, . . . ,K − 1,

yTΦf (t + K, t) = λyT , yTΦf (t, j)Bf
j−1 = 0 for j = t−K + 1, . . . , t− 1, t

imply y = 0.
Theorem 3.2 (backward reachability). The following statements are equivalent:
(a) The backward subsystem (2.13) is completely reachable.
(b) For t = 0, 1, 2, . . . ,K − 1, the matrices

Rb(t) ≡
[
Bb

t , E
b
tB

b
t+1, . . . , Φb(t, t + νK − 1)Bb

t+νK−1

]
have full row rank.

(c) For t = 0, 1, 2, . . . ,K − 1 and

Bb
t ≡

[
Bb

t , E
b
tB

b
t+1, . . . , E

b
tE

b
t+1, . . . , E

b
t+K−2B

b
t+K−1

]
,

the matrices
[
Nt, Bb

t

]
have full row rank.

(d) The pair (Eb,Bb) is reachable, where
(3.1)

Eb ≡

⎡⎢⎢⎢⎢⎢⎢⎣

0 Eb
0

0 0 Eb
1

...
...

. . .
. . .

0 0
. . . Eb

K−2

Eb
K−1 0 · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ , Bb ≡

⎡⎢⎢⎢⎢⎢⎢⎣

Bb
0

Bb
1

. . .

. . .

Bb
K−1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Definition 3.2. (i) The periodic descriptor system (1.1) is observable at time
t if there exist two integers s, 	 with s < t < 	 such that any state at time t can
be determined from the knowledge of {yi}�i=s and {ui}�i=s. The periodic descriptor
system (1.1) is called completely observable if it is observable at all times t.

(ii) The forward subsystem (2.12) is observable at time t if there exists an integer
	 with 	 > t such that any state at time t can be determined from the knowledge of
{yi}�i=t and {ui}�i=t. The periodic subsystem (2.12) is called completely observable if
it is observable at all times t.

(iii) The backward subsystem (2.13) is observable at time t if there exists an integer
s with s < t such that any state at time t can be determined from the knowledge of
{yi}ti=s and {ui}ti=s. The periodic subsystem (2.13) is completely observable if it is
observable at all times t.

Remark. It is easily seen from Definition 3.2 that the periodic discrete-time
descriptor system (1.1) is completely observable if and only if both its forward and
backward subsystems are completely observable.

Theorem 3.3 (forward observability). The following statements are equivalent:
(a) The forward subsystem (2.12) is completely observable.
(b) For t = 0, 1, 2, . . . ,K − 1, the matrices

Of (t) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
Cf

t

Cf
t+1A

f
t

Cf
t+2A

f
t+1A

f
t

...

Cf

t+nf
t K−1

Φf (t + nf
t K − 1, t)

⎤⎥⎥⎥⎥⎥⎥⎦
have full column rank.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 989

(c) For t = 0, 1, 2, . . . ,K − 1 and

Cf
t ≡

[
(Cf

t)T , (Af
t)T (Cf

t+1)
T , . . . , Φf (t + K − 1, t)T (Cf

t+K−1)
T
]T

,

the matrices ⎡⎢⎢⎢⎢⎢⎢⎣
Cf
t

Cf
t Φf (t + K, t)

Cf
t (Φf (t + K, t))2

...

Cf
t (Φf (t + K, t))n

f
t −1

⎤⎥⎥⎥⎥⎥⎥⎦
have full row rank.

(d) For
∏K−1

i=0 αi ∈ σ(Φf (K, 0)), the matrix

V f (α0, . . . , αK−1) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0Inf
0

0 · · · 0 −Af
K−1

−Af
0 α1Inf

1

. . . 0

0 −Af
1

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 −Af
K−2 αK−1Inf

K−1

Cf
0

Cf
1

. . .

Cf
K−2

Cf
K−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
has full column rank.

(e) For t = 0, 1, 2, . . . ,K − 1,

Φf (t + K, t)x = λx and Cf
i Φf (i, t)x = 0 for i = t, t + 1, . . . , t + K − 1

imply x = 0.
Theorem 3.4 (backward observability). The following statements are equivalent:
(a) The backward subsystem (2.13) is completely observable.
(b) For t = 0, 1, 2, . . . ,K − 1, the matrices

Ob(t) ≡

⎡⎢⎢⎢⎢⎢⎣
Cb

t

Cb
t−1E

b
t−1

Cb
t−2E

b
t−2E

b
t−1

...
Cb

t−νK+1Φb(t− νK + 1, t)

⎤⎥⎥⎥⎥⎥⎦
have full column rank.

(c) For t = 0, 1, 2, . . . ,K − 1 and

Cb
t ≡

[
(Cb

t)
T , (Eb

t−1)
T (Cb

t−1)
T , . . . , Φb(t−K + 1, t)T (Cb

t−K+1)
T
]T

,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

990 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

the matrices ⎡⎢⎢⎢⎢⎢⎣
Cb
t

Cb
tNt

Cb
tN

2
t

...
Cb
tN

ν−1
t

⎤⎥⎥⎥⎥⎥⎦
have full column rank

(d) The pair (Eb, Cb) is observable, where Eb is defined in (3.1) and Cb ≡
diag(Cb

0, C
b
1, . . . , C

b
K−1).

4. Periodic reachability and observability Gramians. It is well known that
Gramians play an important role in many applications, such as the model reduction
problem [17, 29, 54]. In this section, the concepts of reachability and observability
Gramians are generalized to periodic discrete-time descriptor systems (1.1).

Consider the causal and noncausal reachability matrices given by

R+(t) ≡
[
Ψt,t−1Bt−1, Ψt,t−2Bt−2, . . . , Ψt,iBi, . . .

]
(t = 0, 1, . . . ,K − 1)

and

R−(t) ≡
[
Ψt,tBt, Ψt,t+1Bt+1, . . . , Ψt,t+νK−1Bt+νK−1

]
(t = 0, 1, . . . ,K − 1),

respectively, with Ψi,j (i, j ∈ Z) as defined in (2.15).
Definition 4.1 (reachability Gramians). Suppose that the periodic matrix pairs

{(Ek, Ak)}K−1
k=0 are pd-stable.

(i) The causal reachability Gramians of the periodic descriptor system (1.1) are
defined by

Gcr
k ≡ R+(k)R+(k)

T
=

k−1∑
i=−∞

Ψk,iBiB
T
i ΨT

k,i ∈ R
nk×nk , k = 0, 1, . . . ,K − 1.

(ii) The noncausal reachability Gramians of the periodic descriptor system (1.1)
are defined by

Gnr
k ≡ R−(k)R−(k)

T
=

k+νK−1∑
i=k

Ψk,iBiB
T
i ΨT

k,i ∈ R
nk×nk , k = 0, 1, . . . ,K − 1.

(iii) The reachability Gramians of the periodic descriptor system (1.1) are defined
via

Gr
k ≡ Gcr

k + Gnr
k , k = 0, 1, . . . ,K − 1.

The causal and noncausal observability matrices are respectively defined by

O+(t) ≡
[
ΨT

t,t−1C
T
t , ΨT

t+1,t−1C
T
t+1, . . . ,Ψ

T
i,t−1C

T
i , . . .

]T
(t = 0, 1, . . . ,K − 1)

and

O−(t) ≡
[
ΨT

t−νK,t−1C
T
t−νK , ΨT

t−νK+1,t−1C
T
t−νK+1, . . . , ΨT

t−1,t−1C
T
t−1

]T
(t = 0, 1, . . . ,K − 1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 991

Definition 4.2 (observability Gramians). Suppose that the periodic matrix pairs
{(Ek, Ak)}K−1

k=0 are pd-stable.
(i) The causal observability Gramians of the periodic descriptor system (1.1) are

defined by

Gco
k ≡ O+(k)

TO+(k) =

∞∑
i=k

ΨT
i,k−1C

T
i CiΨi,k−1 ∈ R

μk×μk , k = 0, 1, . . . ,K − 1.

(ii) The noncausal observability Gramians of the periodic descriptor system (1.1)
are defined by

Gno
k ≡ O−(k)

TO−(k) =

k−1∑
i=k−νK

ΨT
i,k−1C

T
i CiΨi,k−1 ∈ R

μk×μk , k = 0, 1, . . . ,K − 1.

(iii) The observability Gramians of the periodic descriptor system (1.1) are defined
by

Go
k ≡ Gco

k + Gno
k , k = 0, 1, . . . ,K − 1.

Remarks. (i) From Definitions 4.1 and 4.2, the causal Gramians Gcr
k and Gco

k can
be rewritten via (2.15) as

Gcr
k = Yk

(
k−1∑

i=−∞
Φf (k, i + 1)Bf

i (Bf
i)TΦf (k, i + 1)T

)
Y T
k ,

Gco
k = XT

k

(∞∑
i=k

Φf (i, k)T (Cf
i)TCf

i Φf (i, k)

)
Xk.

As mentioned in [45, 46], the infinite series in brackets above converge and are de-
fined as reachability and observability Gramians for an asymptotically stable periodic
system with Ek = Ink+1

. Therefore, infinite series that appeared in the definition of
Gramians Gcr

k and Gco
k converge because of the pd-stability of the periodic matrix

pairs {(Ek, Ak)}K−1
k=0 .

(ii) The Gramians Gcr
k , Gnr

k , Gco
k , and Gno

k are symmetric positive semidefinite
matrices for all time instants k.

(iii) Definitions 4.1 and 4.2 are natural generalizations of the Gramians defined
for descriptor systems with period K = 1; see, e.g., [1, 39].

(iv) In section 6, the reachability and observability Gramians Gr
k and Go

k will
be used to define the Hankel singular values, which are then utilized in section 7 for
balancing transformations in balanced realization.

The following theorem indicates that these Gramians of the periodic descriptor
system (1.1) satisfy some projected generalized discrete-time periodic Lyapunov equa-
tions with special right-hand sides.

Theorem 4.1. Consider the periodic discrete-time descriptor system (1.1), where
the periodic matrix pairs {(Ek, Ak)}K−1

k=0 are pd-stable.

(i) The causal and noncausal reachability Gramians {Gcr
k }K−1

k=0 and {Gnr
k }K−1

k=0

are the unique symmetric positive semidefinite solutions of the projected GDPLEs

EkG
cr
k+1E

T
k −AkG

cr
k AT

k = Pl(k)BkB
T
k Pl(k)

T
,

Gcr
k = Pr(k)Gcr

k Pr(k)T , k = 0, 1, 2, . . . ,K − 1,
(4.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

992 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

and

EkG
nr
k+1E

T
k −AkG

nr
k AT

k = −(Iμk+1
− Pl(k))BkB

T
k (Iμk+1

− Pl(k))T ,

Pr(k)Gnr
k = 0, k = 0, 1, 2, . . . ,K − 1,

(4.2)

respectively, where Gcr
K ≡ Gcr

0 and Gnr
K ≡ Gnr

0 .
(ii) The causal and noncausal observability Gramians {Gco

k }K−1
k=0 and {Gno

k }K−1
k=0

are the unique symmetric positive semidefinite solutions of the projected GDPLEs

ET
k−1G

co
k Ek−1 −AT

kG
co
k+1Ak = Pr(k)TCT

k CkPr(k),

Gco
k = Pl(k − 1)TGco

k Pl(k − 1), k = 0, 1, . . . ,K − 1,
(4.3)

and

ET
k−1G

no
k Ek−1 −AT

kG
no
k+1Ak = −(Ink

− Pr(k))TCT
k Ck(Ink

− Pr(k)),

Gno
k Pl(k − 1) = 0, k = 0, 1, 2, . . . ,K − 1,

(4.4)

respectively, where Gco
K ≡ Gco

0 , Gno
K ≡ Gno

0 , E−1 ≡ EK−1, and Pl(−1) ≡ Pl(K − 1).
(iii) The reachability and observability Gramians {Gr

k}K−1
k=0 and {Go

k}K−1
k=0 are the

unique symmetric positive semidefinite solutions of the projected GDPLEs

EkG
r
k+1E

T
k −AkG

r
kA

T
k = Pl(k)BkB

T
k Pl(k)

T − (Iμk+1
− Pl(k))BkB

T
k (Iμk+1

− Pl(k))T ,

Pr(k)Gr
k = Gr

kPr(k)
T
, k = 0, 1, 2, . . . ,K − 1,

(4.5)

and

ET
k−1G

o
kEk−1 −AT

kG
o
k+1Ak = Pr(k)

T
CT

k CkPr(k) − (Ink
− Pr(k))TCT

k Ck(Ink
− Pr(k)),

Pl(k − 1)
T
Go

k = Go
kPl(k − 1), k = 0, 1, 2, . . . ,K − 1,

(4.6)

respectively, where Gr
K ≡ Gr

0, Go
K ≡ Go

0, E−1 ≡ EK−1, and Pl(−1) ≡ Pl(K − 1).
Proof. We shall verify only (4.1) here, and the other cases can be treated similarly.

From (2.2) and (2.14), we can rewrite (4.1) into the following matrix equations:

Gk+1,11 −Af
kGk,11(A

f
k)T = Bf

k (Bf
k)T ,(4.7)

Gk+1,12(E
b
k)

T −Af
kGk,12 = 0,(4.8)

Eb
kGk+1,21 −Gk,21(A

f
k)T = 0,(4.9)

Eb
kGk+1,22(E

b
k)

T −Gk,22 = 0,(4.10)

where Y −1
k Gcr

k Y −T
k =

[
Gk,11 Gk,12

Gk,21 Gk,22

]
with Gk,11 ∈ R

nf
k×nf

k and Gk,22 ∈ R
n∞
k ×n∞

k .

Since {(Ek, Ak)} are pd-stable, the matrices Jk = Af
k+K−1A

f
k+K−2 · · ·A

f
k (k = 0,

1, 2, . . . ,K − 1) contain only eigenvalues lying inside the unit circle, and Nk =
Eb

kE
b
k+1 · · ·Eb

k+K−1 (k = 0, 1, 2, . . . ,K − 1) contain only zero eigenvalues. There-
fore, (4.7) and (4.10) have unique symmetric solutions Gk,11 and Gk,22, respectively
(see remark (ii) after Lemma 2.1). Equations (4.8) and (4.9) are solvable and have,
for example, trivial solutions. It follows from Gcr

k = Pr(k)Gcr
k Pr(k)T that

Gcr
k = Yk

[
Gk,11 Gk,12

Gk,21 Gk,22

]
Y T
k = Pr(k)Gcr

k Pr(k)T = Yk

[
Gk,11 0

0 0

]
Y T
k ;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 993

i.e., Gk,12 = Gk,21 = Gk,22 = 0. Thus, the matrices

Gcr
k = Yk

[
Gk,11 0

0 0

]
Y T
k

are the unique symmetric solutions of the projected GDPLEs (4.1) with Gcr
k =

Pr(k)Gcr
k Pr(k)T .

On the other hand, it can be shown that the causal reachability Gramians Gcr
k

satisfy the projected GDPLEs (4.1). Indeed, direct substitutions, using (2.1) and
(2.15), give

EkG
cr
k+1E

T
k −AkG

cr
k AT

k

= Ek

(
k∑

i=−∞
Ψk+1,iBiB

T
i ΨT

k+1,i

)
ET

k −Ak

(
k−1∑

i=−∞
Ψk,iBiB

T
i ΨT

k,i

)
AT

k

= EkYk+1

(
k∑

i=−∞

[
Φf (k + 1, i + 1) 0

0 0

]
XiBiB

T
i X

T
i

[
Φf (k + 1, i + 1)T 0

0 0

])
Y T
k+1E

T
k

− AkYk

(
k−1∑

i=−∞

[
Φf (k, i + 1) 0

0 0

]
XiBiB

T
i X

T
i

[
Φf (k, i + 1)T 0

0 0

])
Y T
k AT

k

= X−1
k

[∑k
−∞ Φf (k + 1, i + 1)Bf

i (Bf
i)TΦf (k + 1, i + 1)T 0

0 0

]
X−T

k

− X−1
k

[∑k−1
−∞ Φf (k + 1, i + 1)Bf

i (Bf
i)TΦf (k + 1, i + 1)T 0

0 0

]
X−T

k

= X−1
k

[
Bf

k (Bf
k)T 0

0 0

]
X−T

k = Pl(k)BkB
T
k Pl(k)T

and

Pr(k)Gcr
k Pr(k)T

= Yk

[
Inf

k
0

0 0

]
Y −1
k

(
k−1∑

i=−∞
Ψk,iBiB

T
i ΨT

k,i

)
Y T
k

[
Inf

k
0

0 0

]
Y T
k

= Yk

[∑k−1
i=−∞ Φf (k, i + 1)Bf

i (Bf
i)TΦf (k, i + 1)T 0

0 0

]
Y T
k = Gcr

k ,

for k = 0, 1, . . . ,K−1. Therefore, the causal reachability Gramians {Gcr
k }K−1

k=0 are the
unique symmetric positive semidefinite solutions of the projected GDPLEs (4.1).

The following theorem shows that complete reachability/observability of the pe-
riodic descriptor system (1.1) can be characterized via the reachability/observability
Gramians.

Theorem 4.2. Consider the periodic discrete-time descriptor system (1.1). As-
sume that the periodic matrix pairs {(Ek, Ak)}K−1

k=0 are pd-stable.

(i) The periodic descriptor system (1.1) is completely reachable if and only if the
reachability Gramians Gr

k are positive definite for k = 0, 1, 2, . . . ,K − 1.

(ii) The periodic descriptor system (1.1) is completely observable if and only if
the observability Gramians Go

k are positive definite for k = 0, 1, 2, . . . ,K − 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

994 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

Proof. Here we shall prove only statement (i); statement (ii) can be verified
similarly. For k = 0, 1, . . . ,K − 1, premultiply (4.5) by Xk and postmultiply (4.5) by
XT

k ; it follows that
(4.11)

XkEkYk+1Ĝ
r
k+1Y

T
k+1E

T
k X

T
k −XkAkYkĜ

r
kY

T
k AT

kX
T
k =

[
Bf

k (Bf
k)T 0

0 −Bb
k(B

b
k)

T

]
,

where Ĝr
k ≡ Y −1

k Gr
kY

−T
k .

From Definition 4.1 it is easily seen, for k = 0, 1, . . . ,K − 1, that

(4.12) Ĝr
k = Y −1

k Gr
kY

−T
k =

[
Ĝcr

k,1 0

0 Ĝnr
k,2

]
,

with

Ĝcr
k,1 ≡

k−1∑
i=−∞

Φf (k, i + 1)Bf
i (Bf

i)TΦf (k, i + 1)T ,

Ĝnr
k,2 ≡

k+νK−1∑
i=k

Φb(k, i)B
b
i (B

b
i)

TΦb(k, i)
T .

Then by (2.1) and (4.12), (4.11) is decomposed into two periodic Lyapunov equations,
for k = 0, 1, 2, . . . ,K − 1:

Ĝcr
k+1,1 −Af

kĜ
cr
k,1(A

f
k)T = Bf

k (Bf
k)T ,(4.13)

Ĝnr
k,2 − Eb

kĜ
nr
k+1,2(E

b
k)

T = Bb
k(B

b
k)

T .(4.14)

Rewrite (4.13) and (4.14) into two enlarged Lyapunov equations:

Gcr −AfGcrAT
f = BfBT

f ,(4.15)

Gnr − EbGnrET
b = BbBT

b ,(4.16)

where Gcr = diag(Ĝcr
k,1, . . . , Ĝ

cr
K−1,1, Ĝ

cr
0,1), Gnr = diag(Ĝnr

0,2, Ĝ
nr
1,2, . . . , Ĝ

nr
K−1,2), Eb, and

Bb are as defined in (3.1), and

Af =

⎡⎢⎢⎢⎣
Af

0

Af
1

. . .

Af
K−1

⎤⎥⎥⎥⎦ , Bf =

⎡⎢⎢⎢⎣
Bf

0

Bf
1

. . .

Bf
K−1

⎤⎥⎥⎥⎦ .

Since the periodic matrix pairs {(Ek, Ak)}K−1
k=0 are pd-stable and the matrix Eb

is nilpotent with index ν, the pairs (Af ,Bf) and (Eb,Bb) are reachable if and only
if the solutions Gcr and Gnr of Lyapunov equations (4.15) and (4.16) are symmetric
positive definite. Equivalently, following from (4.12), all reachability Gramians Gr

k

(k = 0, 1, . . . ,K − 1) are symmetric positive definite. Moreover, from Theorems
3.1–3.2 and the remark following Definition 3.1, we know that the periodic descriptor
system (1.1) is completely reachable if and only if the pairs (Af ,Bf) and (Eb,Bb) are
reachable. This completes the proof of statement (i).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 995

5. Numerical solutions of projected GDPLEs. In this section, a numerical
method is proposed for the symmetric positive semidefinite solutions of the projected
generalized discrete-time periodic Lyapunov equations (4.1) and (4.3), for pd-stable
{(Ek, Ak)}K−1

k=0 . We first consider the numerical solutions of the GDPLEs (4.3).

GDPLEs for observability Gramians Gco
k . As {(Ek, Ak)}K−1

k=0 are pd-stable,
there exist orthogonal matrices Vk ∈ R

μk+1×μk+1 and Uk ∈ R
nk×nk , with UK ≡ U0,

such that the decompositions (2.2) of system matrices Ek and Ak hold.
Notice that[

Inf
k+1

Zk

0 In∞
k

] [
Ek,1 Ek,3

0 Ek,2

][
Inf

k+1
−Wk+1

0 In∞
k+1

]
=

[
Ek,1 0

0 Ek,2

]
,(5.1) [

Inf
k+1

Zk

0 In∞
k

] [
Ak,1 Ak,3

0 Ak,2

] [
Inf

k
−Wk

0 In∞
k

]
=

[
Ak,1 0

0 Ak,2

]
(5.2)

if the matrices Zk ∈ R
nf
k+1×n∞

k and Wk ∈ R
nf
k×n∞

k , with WK ≡ W0 and for k =
0, 1, . . . ,K − 1, satisfy the generalized periodic Sylvester equations

Ek,1Wk+1 − ZkEk,2 = Ek,3,

Ak,1Wk − ZkAk,2 = Ak,3.
(5.3)

The generalized periodic Sylvester equations (5.3) have unique solutions Zk and Wk

(see Remark (ii) after Lemma 2.1). Therefore, the nonsingular matrices Xk, Yk in
(2.1) satisfy

Xk =

[
Inf

k+1
Zk

0 In∞
k

]
V T
k , Yk = Uk

[
Inf

k
−Wk

0 In∞
k

]
,

and the right and left spectral projections Pr(k), Pl(k) are given as

(5.4) Pl(k) = Vk

[
Inf

k+1
Zk

0 0

]
V T
k , Pr(k) = Uk

[
Inf

k
Wk

0 0

]
UT
k .

Let, for k = 0, 1, . . . ,K − 1,

(5.5) V T
k−1G

co
k Vk−1 =

[
Gco

k,1 Gco
k,3

(Gco
k,3)

T Gco
k,2

]
, CkUk =

[
Ck,1, Ck,2

]
.

Substituting (2.2), (5.4), and (5.5) into the projected GDPLEs (4.3), for k = 0, 1, . . . ,
K − 1, we have

ET
k−1,1G

co
k,1Ek−1,1 −AT

k,1G
co
k+1,1Ak,1 = CT

k,1Ck,1,(5.6)

ET
k−1,1G

co
k,1Ek−1,3 + ET

k−1,1G
co
k,3Ek−1,2 −AT

k,1G
co
k+1,1Ak,3 −AT

k,1G
co
k+1,3Ak,2(5.7)

= CT
k,1Ck,1Wk,

ET
k−1,3G

co
k,1Ek−1,3 + ET

k−1,3G
co
k,3Ek−1,2 + ET

k−1,2(G
co
k,3)

TEk−1,3(5.8)

+ET
k−1,2G

co
k,2Ek−1,2 −AT

k,3G
co
k+1,1Ak,3 −AT

k,3G
co
k+1,3Ak,2

−AT
k,2(G

co
k+1,3)

TAk,3 −AT
k,2G

co
k+1,2Ak,2 = WT

k CT
k,1Ck,1Wk.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

996 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

Again from the pd-stability of {(Ek,1, Ak,1)}K−1
k=0 , the generalized discrete-time peri-

odic Lyapunov equations (5.6) have unique symmetric positive semidefinite solutions
Gco

k,1. Furthermore, it follows from (5.3) that (5.7) can be rearranged as

(5.9) ET
k−1,1(G

co
k,3 −Gco

k,1Zk−1)Ek−1,2 −AT
k,1(G

co
k+1,3 −Gco

k+1,1Zk)Ak,2 = 0.

We deduce that

(5.10) Gco
k,3 = Gco

k,1Zk−1, k = 0, 1, . . . ,K − 1.

From (5.3), (5.6), and (5.10), now (5.8) can be rewritten as

(5.11) ET
k−1,2(G

co
k,2 − ZT

k−1G
co
k,1Zk−1)Ek−1,2 −AT

k,2(G
co
k+1,2 − ZT

k G
co
k+1,1Zk)Ak,2 = 0.

Since the periodic matrix pairs {(Ek,2, Ak,2)}K−1
k=0 have only infinite eigenvalues, we

then have

(5.12) Gco
k,2 = ZT

k−1G
co
k,1Zk−1, k = 0, 1, . . . ,K − 1.

Therefore, the solutions of the projected GDPLEs (4.3) have the form

(5.13) Gco
k = Vk−1

[
Gco

k,1 Gco
k,1Zk−1

ZT
k−1G

co
k,1 ZT

k−1G
co
k,1Zk−1

]
V T
k−1, k = 0, 1, . . . ,K − 1,

where the matrices Gco
k,1 are the unique symmetric positive semidefinite solutions of

the generalized periodic Lyapunov equations (5.6) (see Remark (ii) after Lemma 2.1).
Moreover, from (5.4) and (5.13), they also satisfy Pl(k − 1)TGco

k Pl(k − 1) = Gco
k .

In many applications it is necessary to have the Cholesky factors of the solutions
of the Lyapunov equations rather the solutions themselves [24]. In particular, these
full-rank factors are useful for numerically computing the Hankel singular values (see
the next section). If Lk,1 denotes a Cholesky factor of each matrix Gco

k,1, i.e., Gco
k,1 =

LT
k,1Lk,1, then we compute the QR factorization

Lk,1 = Qk,L

[
Tk,L

0

]
,

where Qk,L is orthogonal and Tk,L has full row rank, for k = 0, 1, . . . ,K − 1. The
full-rank factorizations of the solutions Gco

k , for k = 0, 1, . . . ,K − 1, are given by

Gco
k = Vk−1

[
LT
k,1

ZT
k−1L

T
k,1

] [
Lk,1, Lk,1Zk−1

]
V T
k−1

= Vk−1

[
TT
k,L

ZT
k−1T

T
k,L

] [
Tk,L, Tk,LZk−1

]
V T
k−1

≡ LT
k Lk,

where Lk ≡
[
Tk,L, Tk,LZk−1

]
V T
k−1 has full row rank.

GDPLEs for reachability Gramians Gcr
k . Similarly for the projected GDPLEs

(4.1), for k = 0, 1, . . . ,K − 1, we let

(5.14) UT
k Gcr

k Uk =

[
Gcr

k,1 Gcr
k,3

(Gcr
k,3)

T Gcr
k,2

]
, V T

k Bk =

[
Bk,1

Bk,2

]
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 997

Substituting (2.2), (5.4), and (5.14) into the projected GDPLEs (4.1), we then have

Ek,1G
cr
k+1,1E

T
k,1 −Ak,1G

cr
k,1A

T
k,1(5.15)

= −Ek,1G
cr
k+1,3E

T
k,3 − Ek,3(G

cr
k+1,3)

TET
k,1 − Ek,3G

cr
k+1,2E

T
k,3

+Ak,1G
cr
k,3A

T
k,3 + Ak,3(G

cr
k,3)

TAT
k,1 + Ak,3G

cr
k,2A

T
k,3

+ (Bk,1 + ZkBk,2)(Bk,1 + ZkBk,2)
T ,

Ek,1G
cr
k+1,3E

T
k,2 −Ak,1G

cr
k,3A

T
k,2 = −Ek,3G

cr
k+1,2E

T
k,2 + Ak,3G

cr
k,2A

T
k,2,(5.16)

Ek,2G
cr
k+1,2E

T
k,2 −Ak,2G

cr
k,2A

T
k,2 = 0, k = 0, 1, . . . ,K − 1.(5.17)

Since the periodic matrix pairs {(Ek,2, Ak,2)}K−1
k=0 have only infinite eigenvalues,

it follows from (5.17) that

(5.18) Gcr
k,2 = 0, k = 0, 1, . . . ,K − 1.

Furthermore, (5.16) can be simplified to

(5.19) Ek,1G
cr
k+1,3E

T
k,2 −Ak,1G

cr
k,3A

T
k,2 = 0.

We then have

(5.20) Gcr
k,3 = 0, k = 0, 1, . . . ,K − 1.

From (5.18) and (5.20), (5.15) can be rewritten as

(5.21) Ek,1G
cr
k+1,1E

T
k,1 −Ak,1G

cr
k,1A

T
k,1 = (Bk,1 + ZkBk,2)(Bk,1 + ZkBk,2)

T .

Therefore, the solutions of the projected GDPLEs (4.1) have the form

(5.22) Gcr
k = Uk

[
Gcr

k,1 0

0 0

]
UT
k , k = 0, 1, . . . ,K − 1,

where the matrices Gcr
k,1 are the unique symmetric positive semidefinite solutions of

the generalized periodic Lyapunov equations (5.21) (see Remark (ii) after Lemma 2.1).
Moreover, from (5.4) and (5.22), they also satisfy Pr(k)Gcr

k Pr(k)T = Gcr
k .

If Rk,1 denotes a Cholesky factor of each matrix Gcr
k,1, i.e., Gcr

k,1 = Rk,1R
T
k,1, then

we compute the QR factorization

RT
k,1 = Qk,R

[
TT
k,R

0

]
,

where Qk,R is orthogonal and Tk,R has full column rank. The full-rank factorizations
of the solutions Gcr

k are given by

Gcr
k = Uk

[
Rk,1

0

] [
RT

k,1, 0
]
UT
k

= Uk

[
Tk,R

0

] [
TT
k,R, 0

]
UT
k

≡ RkR
T
k ,

where RT
k ≡

[
TT
k,R, 0

]
UT
k has full row rank for k = 0, 1, . . . ,K − 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

998 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

Algorithm GDPLE. We now summarize the main steps for computing the full-
rank Cholesky factors of the causal Gramians, via the solution of the GDPLEs (4.1)
and (4.3). For simplicity in Algorithm 5.1, we shall ignore the obvious qualification
for k, i.e., k = 0, 1, . . . ,K − 1.

Algorithm 5.1 (GDPLE).

Input: System matrices (Ek, Ak, Bk, Ck), with {(Ek, Ak)}K−1
k=0 be-

ing pd-stable.
Output: Full-rank Cholesky factors Rk and Lk (k = 0, 1, . . . ,

K − 1), where Gcr
k = RkR

T
k and Gco

k = LT
k Lk.

Step 1. Use the algorithm [48] to compute orthogonal matrices Vk

and Uk, with UK ≡ U0, such that

V T
k EkUk+1 =

[
Ek,1 Ek,3

0 Ek,2

]
, V T

k AkUk =

[
Ak,1 Ak,3

0 Ak,2

]
,

where the matrices Ek,1 and Ak,2 are nonsingular, and

(Ak,2)
−1Ek,2(Ak+1,2)

−1Ek+1,2 · · · (Ak+K−1,2)
−1Ek+K−1,2

are nilpotent.
Step 2. Compute the solutions of the generalized periodic Sylvester

equations

Ek,1Wk+1 − ZkEk,2 = Ek,3,

Ak,1Wk − ZkAk,2 = Ak,3.

Step 3. Compute the matrices

V T
k Bk =

[
Bk,1

Bk,2

]
, CkUk =

[
Ck,1, Ck,2

]
.

Step 4. Compute the Cholesky factors Rk,1 and Lk,1 of the solu-
tions Gcr

k,1 = Rk,1R
T
k,1 and Gco

k,1 = LT
k,1Lk,1 of the generalized

discrete-time periodic Lyapunov equations

Ek,1G
cr
k+1,1E

T
k,1 −Ak,1G

cr
k,1A

T
k,1 = (Bk,1 + ZkBk,2)(Bk,1 + ZkBk,2)

T ,

ET
k−1,1G

co
k,1Ek−1,1 −AT

k,1G
co
k+1,1Ak,1 = CT

k,1Ck,1.

Step 5. Compute the QR factorizations

RT
k,1 = Qk,R

[
TT
k,R

0

]
, Lk,1 = Qk,L

[
Tk,L

0

]
.

Step 6. Compute the full-rank Cholesky factors

Rk = Uk

[
Tk,R

0

]
, Lk =

[
Tk,L, Tk,LZk−1

]
V T
k−1.

Remark. One can extend the techniques in [30], for the numerical solution of the
generalized Lyapunov equations, to solve the GDPLEs given in Step 4. A thorough er-
ror analysis and practical implementation details for the algorithm extended from [30]
are still under investigation. It may also be possible to generalize the Hammarling-like
method proposed in [36] to our periodic discrete-time case.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 999

For Step 2, the periodic Sylvester equations can always be solved as an expanded
linear equation using Kronecker products. Without such an expansion and for systems
of constant dimensions, a more efficient algorithm has been proposed in [9]. For
general systems of time-varying dimensions, the proof of Lemma 2.1 provides the
theoretical basis for the algorithm. The heart of the algorithm lies in the computation
of the Kronecker-like canonical form in [48]. The analysis and implementation of such
an algorithm will be an interesting future project.

A numerical example. We shall illustrate the feasibility and reliability of the
proposed algorithm with an example. All computations were performed in MATLAB/
version 6.5 on a PC with an Intel Pentium-III processor at 866 MHz, with 768 MB
RAM, using IEEE double-precision floating-point arithmetic. The machine precision
is approximately 2.22× 10−16. In our example, Ek and Ak are n×n square matrices,
where μk = nk = n for all k. Thus, instead of using the algorithm in [48] for periodic
systems of time-varying dimensions, we utilize the PQZ algorithm with eigenvalue
reordering strategy [7, 19] in Step 1 of the proposed algorithm GDPLE. The other
steps are the same as those for periodic systems of constant dimensions.

For approximate solutions X̃k of the projected GDPLEs (4.1) and (4.3), we com-
pute the relative residuals defined by

γcr
k =

‖EkX̃k+1E
T
k −AkX̃kA

T
k − Pl(k)BkB

T
k Pl(k)T ‖2

‖X̃k‖2

,

γco
k =

‖ET
k−1X̃kEk−1 −AT

k X̃k+1Ak − Pr(k)TCT
k CkPr(k)‖2

‖X̃k‖2

.

Example 1. We consider a periodic discrete-time descriptor system (1.1) with
n = 10, m = 2, p = 3 and period K = 3. For k = 0, 1, 2, we have

E
(0)
k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 1 0 c1 s1 0 0 0 0 0
0 0 1 −s1 c1 0 0 0 0 0
0 c1 s1 1 0 c2 s2 0 0 0
0 −s1 c1 0 1 −s2 c2 0 0 0
0 0 0 c2 s2 1 0 c3 s3 0
0 0 0 −s2 c2 0 1 −s3 c3 0
0 0 0 0 0 c3 s3 1 0 0
0 0 0 0 0 −s3 c3 0 1 0
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A
(0)
k = diag(1.01, A01, A02, A03, A04, 1.001), θk := 2πk/K,

BT
k =

[
4 −1 3 5 0 −2 0 8 1 0
1 1 s1 + 1 −2 1 0 0 −3 0 1

]
,

Ck =

⎡⎣0 0 1 0 0 1 0 0 0 0
2 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0.05 + c1 0 0

⎤⎦ ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1000 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

where

c1 = cos(θk), c2 = 0.2c1, c3 = 0.6c1,

s1 = sin(θk), s2 = 0.2s1, s3 = 0.6s1,

A01 =

[
r1 cos(π/3) r1 sin(π/3)
−r1 sin(π/3) r1 cos(π/3)

]
, A02 =

[
r2 cos(7π/5) r2 sin(7π/5)
−r2 sin(7π/5) r2 cos(7π/5)

]
,

A03 =

[
r3 cos(π/4) r3 sin(π/4)
−r3 sin(π/4) r3 cos(π/4)

]
, A04 =

[
r4 cos(π/10) r4 sin(π/10)
−r4 sin(π/10) r4 cos(π/10)

]
,

and

r1 = 0.5, r2 = 0.05, r3 = −0.02, r4 = 0.12.

We define a Householder transformation V = I−2uuT with u = [1, 1, . . . , 1, 1]T /
√

10 ∈
R

10, and the K-periodic system matrices (Ek, Ak, Bk, Ck) are given by

Ek ≡ V TE
(0)
k V, Ak ≡ V TA

(0)
k V, k = 0, 1, 2.

The computed open-loop spectrum of the periodic matrix pairs {(Ek, Ak)}K−1
k=0

consists of two infinite eigenvalues and four pairs of complex conjugate finite eigen-
values lying inside the unit circle. Thus, the periodic matrix pairs {(Ek, Ak)}K−1

k=0 are

pd-stable where nf
k = 8 and n∞

k = 2 for all k. Accurate numerical results, indicated
by small relative residuals, were produced by the proposed algorithm, as shown in
Table 5.1.

Table 5.1

Norms and relative residuals of causal Gramians.

k ‖Gcr
k ‖2 γcr

k ‖Gco
k ‖2 γco

k

0 8.30 × 104 2.17 × 10−16 1.14 × 103 1.39 × 10−16

1 7.11 × 103 3.11 × 10−16 9.70 × 100 4.17 × 10−15

2 5.82 × 102 6.73 × 10−16 9.74 × 101 9.18 × 10−15

6. Hankel singular values. Similar to standard state space systems [17] and
continuous-time descriptor systems [34, 38], the controllability and observability Gram-
ians can be used to define Hankel singular values for the periodic descriptor systems
(1.1), which are of great importance in the model reduction problem via the balanced
truncation method.

For the discrete-time descriptor systems, the causal and noncausal Hankel singular
values are defined via the nonnegative eigenvalues of the matrices GdccE

TGdcoE and
GdncA

TGdnoA. Here Gdcc, Gdnc, Gdco, and Gdno denote the causal/noncausal reacha-
bility Gramians and the causal/noncausal observability Gramians, respectively [39].

Lemma 6.1. Let the periodic matrix pairs {(Ek, Ak)}K−1
k=0 be pd-stable. Then

the nk × nk matrices Hc
k ≡ Gcr

k ET
k−1G

co
k Ek−1 and Hnc

k ≡ Gnr
k AT

kG
no
k+1Ak, k =

0, 1, 2, . . . ,K − 1, have real and nonnegative eigenvalues.

Proof. From Definitions 4.1 and 4.2 and (2.15), for k = 0, 1, 2, . . . ,K− 1, we have

Hc
k = Yk

[
Ĝcr

k,1Ĝ
co
k,1 0

0 0

]
Y −1
k ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 1001

where

Ĝcr
k,1 ≡

k−1∑
i=−∞

Φf (k, i + 1)Bf
i (Bf

i)TΦf (k, i + 1)T ,

Ĝco
k,1 ≡

∞∑
i=k

Φf (i, k)T (Cf
i)TCf

i Φf (i, k).

Since the nf
k × nf

k matrices Ĝcr
k,1 and Ĝco

k,1 are symmetric positive semidefinite, it
follows that all Hc

k have real and nonnegative eigenvalues. Similarly, it can be shown
that all Hnc

k also share the same property.

Notice that, in the proof of Lemma 6.1, Hc
k and Hnc

k have at least n∞
k and nf

k zero
eigenvalues, respectively. Hence, we have the following definition of Hankel singular
values for the periodic descriptor system (1.1).

Definition 6.1. Suppose that the periodic matrix pairs {(Ek, Ak)}K−1
k=0 are

pd-stable, and let nf
k , n∞

k be the dimensions of the periodic deflating subspaces of

{(Ek, Ak)}K−1
k=0 corresponding respectively to the finite and infinite eigenvalues.

(i) For k = 0, 1, . . . ,K − 1, the square roots of the largest nf
k eigenvalues of

the matrices Hc
k, denoted by ζk,j, are called the causal Hankel singular values of the

periodic descriptor system (1.1).
(ii) For k = 0, 1, . . . ,K − 1, the square roots of the largest n∞

k eigenvalues of the
matrices Hnc

k , denoted by θk,j, are called the noncausal Hankel singular values of the
periodic descriptor system (1.1).

Remarks. (i) When K = 1, the causal and noncausal Hankel singular values
defined in Definition 6.1 coincide with those for discrete-time descriptor systems (see
[39] and references therein). For Ek = I, the causal Hankel singular values are the
classical Hankel singular values of linear periodic discrete-time systems [46].

(ii) As in the case of descriptor systems, the causal and noncausal Hankel singular
values of the periodic descriptor system (1.1) are invariant under system equivalence
transformations.

From Theorem 4.2 and Lemma 6.1, we obtain the following result.
Corollary 6.2. Consider the periodic discrete-time descriptor system (1.1),

where the periodic matrix pairs {(Ek, Ak)}K−1
k=0 are pd-stable. The following statements

are equivalent:
(a) The periodic descriptor system (1.1) is completely reachable and completely

observable.
(b) For k = 0, 1, 2, . . . ,K − 1, we have

rank(Gcr
k) = rank(Gco

k) = rank(Hc
k) = nf

k ,

rank(Gnr
k) = rank(Gno

k) = rank(Hnc
k) = n∞

k .

(c) The causal and noncausal Hankel singular values of (1.1) are nonzero.
For pd-stable {(Ek, Ak)}K−1

k=0 , the causal and noncausal reachability and observ-
ability Gramians are symmetric and positive semidefinite. Thus, there exist full-rank
factorizations

Gcr
k = RkR

T
k , Gco

k = LT
k Lk,

Gnr
k = R̃kR̃

T
k , Gco

k = L̃T
k L̃k,

(6.1)

where the matrices Rk, L
T
k , R̃k, and L̃T

k are of full column rank.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1002 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

The connections between the causal/noncausal Hankel singular values and the sin-

gular values of the matrices LkEk−1Rk and L̃k+1AkR̃k are considered in the following
lemma.

Lemma 6.3. For the periodic descriptor system (1.1), where the periodic matrix
pairs {(Ek, Ak)}K−1

k=0 are pd-stable, suppose that the causal and noncausal Gramians
of (1.1) have full-rank factorizations as defined in (6.1). Then for k = 0, 1, 2, . . . ,
K − 1, the nonzero causal Hankel singular values are the nonzero singular values of
the matrices LkEk−1Rk, while the nonzero noncausal Hankel singular values are the

nonzero singular values of the matrices L̃k+1AkR̃k.

Proof. Notice that for k = 0, 1, . . . ,K − 1, we have

ζ2
k,j = λj(RkR

T
k E

T
k−1L

T
k LkEk−1) = λj(R

T
k E

T
k−1L

T
k LkEk−1Rk) = σ2

j (LkEk−1Rk),

θ2
k,j = λj(R̃kR̃

T
k A

T
k L̃

T
k+1L̃k+1Ak) = λj(R̃

T
k A

T
k L̃

T
k+1L̃k+1AkR̃k) = σ2

j (L̃k+1AkR̃k),

where λj(·) and σj(·) denote respectively the eigenvalues and singular values of the
corresponding matrices.

7. Balanced realization. It is well known [17] that for any minimal realization
(A,B,C) of a stable continuous-time or discrete-time system there exists a transfor-
mation such that the controllability and observability Gramians for the transformed
realization equal some diagonal matrix. Such a realization is called a(n) (internally)
balanced realization. Recently, the issues of balanced realization and model reduction
via the balanced truncation method have been discussed for continuous-time descrip-
tor systems [34, 38] and asymptotically stable linear discrete-time periodic systems
[45, 46]. In this section the problem of balanced realization is generalized for peri-
odic descriptor systems. We shall assume that the periodic descriptor system (1.1) is
completely reachable/observable, with {(Ek, Ak)}K−1

k=0 being pd-stable.

Definition 7.1. A realization (Ek, Ak, Bk, Ck) of the periodic descriptor system
(1.1) is called balanced if

Gcr
k = Gco

k =

[
Dk,1 0

0 0

]
and Gnr

k = Gno
k+1 =

[
0 0
0 Dk,2

]
,

where Dk,1 and Dk,2 are diagonal matrices for k = 0, 1, . . . ,K − 1.

We shall show that for a realization (Ek, Ak, Bk, Ck) of the periodic descriptor
system (1.1) there exist nonsingular periodic matrices Sk ∈ R

μk+1×μk+1 and Tk ∈
R

nk×nk (k = 0, 1, . . . ,K − 1) with TK ≡ T0, such that the transformed realization

(7.1) (Êk, Âk, B̂k, Ĉk) ≡ (ST
k EkTk+1, S

T
k AkTk, S

T
k Bk, CkTk)

is balanced.

Consider the full-rank factorizations (6.1) of the causal/noncausal reachability/
observability Gramians. For k = 0, 1, . . . ,K − 1, let

(7.2) LkEk−1Rk = UkΣkV
T
k , L̃k+1AkR̃k = ŨkΘkṼ

T
k

be singular value decompositions [18], where Uk, Vk, Ũk, Ṽk are orthogonal and Σk

and Θk are diagonal and nonsingular. From Corollary 6.2 and Lemma 6.3, we have
Σk = diag(ζk,1, . . . , ζk,nf

k
) > 0 and Θk = diag(θk,1, . . . , θk,n∞

k
) > 0. Furthermore, it is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 1003

easily seen from Theorem 4.1 and (2.14) that

Gcr
k = Pr(k)Gcr

k Pr(k)T , Gco
k = Pl(k − 1)TGco

k Pl(k − 1),

Pr(k)Gnr
k = 0, Gno

k Pl(k − 1) = 0,

Ek−1Pr(k) = Pl(k − 1)Ek−1, AkPr(k) = Pl(k)Ak.

Simple calculations then yield Gno
k Ek−1G

cr
k = Gco

k Ek−1G
nr
k = Gno

k+1AkG
cr
k =

Gco
k+1AkG

nr
k = 0. Hence, for k = 0, 1, . . . ,K − 1, we have

(7.3) L̃kEk−1Rk = LkEk−1R̃k = L̃k+1AkRk = Lk+1AkR̃k = 0.

Now for k = 0, 1, . . . ,K − 1, consider the μk+1 × μk+1 matrices

Sk =
[
LT
k+1Uk+1Σ

−1/2
k+1 , L̃T

k+1ŨkΘ
−1/2
k

]
,

Šk =
[
EkRk+1Vk+1Σ

−1/2
k+1 , AkR̃kṼkΘ

−1/2
k

]
;

it follows from (7.2) and (7.3) that

ST
k Šk =

[
Σ

−1/2
k+1 UT

k+1Lk+1EkRk+1Vk+1Σ
−1/2
k+1 Σ

−1/2
k+1 UT

k+1Lk+1AkR̃kṼkΘ
−1/2
k

Θ
−1/2
k ŨT

k L̃k+1EkRk+1Vk+1Σ
−1/2
k+1 Θ

−1/2
k ŨT

k L̃k+1AkR̃kṼkΘ
−1/2
k

]
= Iμk+1

,

i.e., the matrices Sk and Šk are nonsingular and S−1
k = ŠT

k . Similarly, it can be shown
that the nk × nk matrices

Tk =
[
RkVkΣ

−1/2
k , R̃kṼkΘ

−1/2
k

]
, Ťk =

[
ET

k−1L
T
k UkΣ

−1/2
k , AT

k L̃
T
k+1ŨkΘ

−1/2
k

]
are also nonsingular and T−1

k = ŤT
k . Therefore, with the transformation matrices Sk

and Tk defined above and (7.3), the causal reachability and observability Gramians
of the transformed periodic descriptor system (7.1) become

Ĝcr
k ≡ T−1

k Gcr
k T−T

k = ŤT
k Gcr

k Ťk

=

[
Σ

−1/2
k UT

k LkEk−1RkR
T
k E

T
k−1L

T
k UkΣ

−1/2
k Σ

−1/2
k UT

k LkEk−1RkR
T
k A

T
k L̃

T
k+1ŨkΘ

−1/2
k

Θ
−1/2
k ŨT

k L̃k+1AkRkR
T
k E

T
k−1L

T
k UkΣ

−1/2
k Θ

−1/2
k ŨT

k L̃k+1AkRkR
T
k A

T
k L̃

T
k+1ŨkΘ

−1/2
k

]

=

[
Σk 0
0 0

]
and

Ĝco
k ≡ S−1

k−1G
co
k S−T

k−1 = ŠT
k−1G

cr
k Šk−1

=

[
Σ

−1/2
k V T

k RT
k ET

k−1L
T
k LkEk−1RkVkΣ

−1/2
k Σ

−1/2
k V T

k RT
k ET

k−1L
T
k LkAk−1R̃k−1Ṽk−1Θ

−1/2
k−1

Θ
−1/2
k−1 Ṽ T

k−1R̃
T
k−1A

T
k−1L

T
k LkEk−1RkVkΣ

−1/2
k Θ

−1/2
k−1 Ṽ T

k−1R̃
T
k−1A

T
k−1L

T
k LkAk−1R̃k−1Ṽk−1Θ

−1/2
k−1

]

=

[
Σk 0
0 0

]
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1004 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

On the other hand, one can also show that the noncausal reachability and observability
Gramians of the transformed periodic descriptor system (7.1) satisfy

Ĝnr
k ≡ T−1

k Gnr
k T−T

k =

[
0 0
0 Θk

]
= S−1

k Gno
k+1S

−T
k ≡ Ĝno

k+1, k = 0, 1, . . . ,K − 1.

Consequently, Sk and Tk (k = 0, 1, . . . ,K − 1) are the desired balancing transforma-
tions such that the realization (7.1) is balanced. In summary, we have the following
theorem.

Theorem 7.1. For completely reachable and completely observable periodic dis-
crete-time descriptor system (1.1) with {(Ek, Ak)}K−1

k=0 being pd-stable, there exist
nonsingular periodic matrices Sk and Tk (k = 0, 1, . . . ,K−1) with TK ≡ T0 such that
the transformed realization (7.1) is balanced.

Remark. As in the cases of standard state space systems [17, 29] and descriptor
systems [34, 38], the balancing transformation matrices for periodic descriptor system
(1.1) are not unique. Indeed, if {(Sk, Tk)}K−1

k=0 denotes a set of balancing transforma-
tion pairs for the periodic descriptor system (1.1), then for any diagonal matrix D
with diagonal entries ±1, the set of matrix pairs {(SkD,TkD)}K−1

k=0 are also balancing
transformation matrices for the periodic descriptor system (1.1).

8. Concluding remarks. In Theorem 4.1, the reachability/observability Gram-
ians are shown to satisfy some projected GDPLEs and can be computed numeri-
cally by applying Algorithm 5.1. We have developed the concepts of reachability/
observability Gramians, Hankel singular values, and balanced realization for periodic
discrete-time descriptor systems, based on the necessary and sufficient conditions for
complete reachability and observability. These are useful in the model reduction prob-
lem via the balanced truncation method. A numerical example was given in section 5
to illustrate the feasibility and reliability of the proposed algorithm.

The theoretical development in the paper deals with general time-varying peri-
odic systems. Understandably, numerical algorithms are more developed for systems
of constant dimensions. Development of numerical algorithms (e.g., the solution of
periodic Sylvester and Lyapunov equations) needs to be investigated further.

Acknowledgment. We would like to thank the referees for their penetrating
questions, which improved the quality of the paper tremendously.

REFERENCES

[1] D. J. Bender, Lyapunov-like equations and reachability/observability Gramians for descriptor
systems, IEEE Trans. Automat. Control, 32 (1987), pp. 343–348.

[2] M. C. Berg, N. Amit, and J. D. Powell, Multirate digital control system design, IEEE Trans.
Automat. Control, 33 (1988), pp. 1139–1150.

[3] S. Bittanti, Deterministic and stochastic linear periodic systems, in Time Series and Linear
Systems, S. Bittanti, ed., Springer-Verlag, New York, 1986, pp. 141–182.

[4] S. Bittanti and P. Colaneri, Analysis of discrete-time linear periodic systems, in Control
and Dynamic Systems, Vol. 78, C. T. Leondes, ed., Academic Press, New York, 1996, pp.
313–339.

[5] S. Bittanti and P. Colaneri, Periodic control, in Wiley Encyclopedia of Electrical and Elec-
tronic Engineering, Vol. 16, J. G. Webster, ed., Wiley, New York, 1999, pp. 59–74.

[6] S. Bittanti, P. Colaneri, and G. D. Nicolao, The difference periodic Riccati equation for
the periodic prediction problem, IEEE Trans. Automat. Control, 33 (1988), pp. 706–712.

[7] A. Bojanczyk, G. H. Golub, and P. Van Dooren, The periodic Schur decomposition. Algo-
rithms and applications, in Proc. SPIE, 1770 (1992), pp. 31–42.

[8] R. Bru, C. Coll, and N. Thome, Compensating periodic descriptor systems, Systems Control
Lett., 43 (2001), pp. 133–139.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REALIZATION OF PERIODIC DESCRIPTOR SYSTEMS 1005

[9] R. Byers and N. Rhee, Cyclic Schur and Hessenberg Schur Numerical Methods for Solving
Periodic Lyapunov and Sylvester Equations, technical report, Department of Mathematics,
University of Missouri at Kansas City, Kansas City, MO, 1995.

[10] E. K.-W. Chu, H.-Y. Fan, and W.-W. Lin, Reachability and Observability of Periodic De-
scriptor Systems, Preprint 2005-1-009, NCTS, National Tsing Hua University, Hsinchu
300, Taiwan, 2005.

[11] R. E. Crochiere and L. R. Rabiner, Mutirate Digital Signal Processing, Prentice–Hall, En-
glewood Cliffs, NJ, 1993.

[12] L. Dai, Singular Control Systems, Springer-Verlag, Berlin, Heidelberg, 1989.
[13] A. Feuer and G. C. Goodwin, Sampling in Digital Signal Processing and Control, Birkhäuser,

Boston, 1996.
[14] D. S. Flamm, A new shift-invariant representation of periodic linear systems, Systems Control

Lett., 17 (1991), pp. 9–14.
[15] B. Francis and T. T. Georgiou, Stability theory for linear time-invariant plants with periodic

digital controllers, IEEE Trans. Automat. Control, 33 (1988), pp. 820–832.
[16] W. A. Gardner, ed., Cyclostationarity in Communications and Signal Processing, IEEE

Press, New York, 1994.
[17] K. Glover, All optimal Hankel norm approximations of linear multivariable systems and their

L∞ error bounds, Internat. J. Control, 39 (1984), pp. 1115–1193.
[18] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-

versity Press, Baltimore, MD, 1996.
[19] J. J. Hench and A. J. Laub, Numerical solution of the discrete-time periodic Riccati equation,

IEEE Trans. Automat. Control, 39 (1994), pp. 1197–1210.
[20] R. W. Isniewski and M. Blanke, Fully magnetic attitude control for spacecraft subject to

gravity gradient, Automatica, 35 (1999), pp. 1201–1214.
[21] W. Johnson, Helicopter Theory, Princeton University Press, Princeton, NJ, 1996.
[22] M. Kono, Eigenvalue assignment in linear discrete-time system, Internat. J. Control, 32 (1980),

pp. 149–158.
[23] Y.-C. Kuo, W.-W. Lin, and S.-F. Xu, Regularization of singular linear discrete-time periodic

descriptor systems by derivative and proportional state feedback, SIAM J. Matrix Anal.
Appl., 25 (2004), pp. 1046–1073.

[24] A. J. Laub, M. T. Heath, C. C. Paige, and R. C. Ward, Computation of system balancing
transformations and other applications of simultaneous diagonalization algorithms, IEEE
Trans. Automat. Control, 32 (1987), pp. 115–122.

[25] F. L. Lewis, Fundamental, reachability, and observability matrices for discrete descriptor sys-
tems, IEEE Trans. Automat. Control, 30 (1985), pp. 502–505.

[26] M.-L. Liou and Y.-L. Kuo, Exact analysis of switched capacitor circuits with arbitrary inputs,
IEEE Trans. Circuits Systems, 26 (1979), pp. 213–223.

[27] A. Marzollo, Periodic Optimization, Springer-Verlag, Berlin, 1972.
[28] R. McKillip, Periodic model following controller for the control-configured helicopter, J. Amer.

Helicopter Soc., 36 (1991), pp. 4–12.
[29] B. C. Moore, Principal component analysis in linear systems: Controllability, observability,

and model reduction, IEEE Trans. Automat. Control, 26 (1981), pp. 17–32.
[30] T. Penzl, Numerical solution of generalized Lyapunov equations, Adv. Comput. Math., 8

(1998), pp. 33–48.
[31] J. A. Richards, Analysis of Periodically Time-Varying Systems, Springer-Verlag, Berlin, 1983.
[32] V. V. Sergeichuk, Computation of canonical matrices for chains and cycles of linear map-

pings, Linear Algebra Appl., 376 (2004), pp. 235–263.
[33] J. Sreedhar and P. Van Dooren, Periodic descriptor systems: Solvability and conditionabil-

ity, IEEE Trans. Automat. Control, 44 (1999), pp. 310–313.
[34] T. Stykel, Model Reduction of Descriptor Systems, Technical Report 720-2001, Institut für

Mathematik, Technische Universität Berlin, Berlin, Germany, 2001.
[35] T. Stykel, Analysis and Numerical Solution of Generalized Lyapunov Equations, Ph.D. thesis,

Institut für Mathematik, Technische Universität Berlin, Berlin, Germany, 2002.
[36] T. Stykel, Numerical solution and perturbation theory for generalized Lyapunov equations,

Linear Algebra Appl., 349 (2002), pp. 155–185.
[37] T. Stykel, Stability and inertia theorems for generalized Lyapunov equations, Linear Algebra

Appl., 355 (2002), pp. 297–314.
[38] T. Stykel, Balanced Truncation Model Reduction for Semidiscretized Stokes Equation, Tech-

nical Report 04-2003, Institut für Mathematik, Technische Universität Berlin, Berlin, Ger-
many, 2003.

[39] T. Stykel, Input-Output Invariants for Descriptor Systems, Preprint PIMS-03-1, Pacific In-
stitute for the Mathematical Sciences, Vancouver, BC, Canada, 2003.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1006 ERIC KING-WAH CHU, HUNG-YUAN FAN, AND WEN-WEI LIN

[40] L. Tong, G. Xu, and T. Kailath, Blind identification and equalization based on second-order
statistics: A time domain approach, IEEE Trans. Inform. Theory, 40 (1994), pp. 340–349.

[41] P. P. Vaidyanathan, Multirate digital filters, filter banks, polyphase networks, and applica-
tions: A tutorial, Proc. IEEE, 78 (1990), pp. 56–93.

[42] P. P. Vaidyanathan, Mutirate Systems and Filter-Banks, Prentice–Hall, Englewood Cliffs,
NJ, 1993.

[43] P. Van Dooren and J. Sreedhar, When is a periodic discrete-time system equivalent to a
time invariant one?, Linear Algebra Appl., 212/213 (1994), pp. 131–151.

[44] A. Varga, Periodic Lyapunov equations: Some applications and new algorithms, Internat. J.
Control, 67 (1997), pp. 69–87.

[45] A. Varga, Balancing related methods for minimal realization of periodic systems, Systems
Control Lett., 36 (1999), pp. 339–349.

[46] A. Varga, Balanced truncation model reduction of periodic systems, in Proceedings of the IEEE
Conference on Decision and Control, Sydney, Australia, 2000, IEEE Press, Piscataway, NJ,
2000, pp. 2379–2384.

[47] A. Varga, Robust and minimum norm pole assignment with periodic state feedback, IEEE
Trans. Automat. Control, 45 (2000), pp. 1017–1022.

[48] A. Varga, Computation of Kronecker-like forms of periodic matrix pairs, in Proceedings of
the 16th International Symposium on the Mathematical Theory of Networks and Systems,
Leuven, Belgium, 2004, pp. 5–9.

[49] A. Varga, Computation of L∞-norm of linear discrete-time periodic systems, in Proceedings of
the 17th International Symposium on the Mathematical Theory of Networks and Systems
(MTNS’06), Kyoto, Japan, 2006.

[50] A. Varga and P. Van Dooren, Computing the zeros of periodic descriptor systems, Systems
Control Lett., 50 (2003), pp. 371–381.

[51] J. Vlach, K. Singhai, and M. Vlach, Computer oriented formulation of equations and anal-
ysis of switched-capacitor networks, IEEE Trans. Circuits Systems, 31 (1984), pp. 735–765.

[52] J. Xin, H. Kagiwada, A. Sano, H. Tsuj, and S. Yoshimoto, Regularization approach for
detection of cyclostationary signals in antenna array processing, in Proceedings of the
IFAC Symposium on System Identification, Vol. 2, 1997, pp. 529–534.

[53] V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic
Coefficients, Wiley, New York, 1975.

[54] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice–Hall, Upper
Saddle River, NJ, 1996.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 1007–1024

TOWARDS STABLE MIXED PIVOTING STRATEGIES FOR THE
SEQUENTIAL AND PARALLEL SOLUTION OF SPARSE

SYMMETRIC INDEFINITE SYSTEMS∗

IAIN S. DUFF† AND STÉPHANE PRALET‡

Abstract. We consider the direct solution of sparse symmetric indefinite matrices. We develop
new pivoting strategies that combine numerical pivoting and perturbation techniques. Then an
iterative refinement process uses our approximate factorization to compute a solution. We show that
our pivoting strategies are numerically robust, that few steps of iterative refinement are required, and
that the factorization is significantly faster than with previous methods. Furthermore, we propose
original approaches that are designed for parallel distributed factorization. A key point of our parallel
implementation is the cheap and reliable estimation of the growth factor. This estimation is based
on an approximation of the off-diagonal entries and does not require any supplementary messages.

Key words. direct solver for sparse symmetric indefinite matrices, Gaussian elimination, parallel
multifrontal methods, static pivoting, matrix perturbation

AMS subject classifications. 65F05, 65F50

DOI. 10.1137/050629598

1. Introduction. We study pivoting strategies for computing the LDLT fac-
torization of a symmetric indefinite matrix, where L is a lower triangular matrix and
D is a block diagonal matrix with 1×1 and 2×2 blocks. We consider direct methods
based on a multifrontal technique, although most of our comments and analysis apply
to other approaches for direct factorization.

Usually the factorization is computed in two phases. The analysis phase prepro-
cesses the system of equations and is often based purely on matrix structure. The
second phase performs the Gaussian elimination. If the numerical tests prevent the se-
lection of some pivots chosen by the analysis, then the factorization can still proceed,
but there will normally be an increase in both storage and work for the factorization
compared to that required if no pivots are delayed. This effect can be particularly
significant on augmented systems.

We would like to define “static pivoting” as any pivoting scheme that respects
the data structures obtained from the analysis (so that static data structures can be
used). However, this term is still a matter for debate within our community, so we
therefore use the term restricted pivoting in the body of this paper. Such a scheme
closely follows the pivot selection of the analysis to give generally lower fill-in and
factorization times at the potential cost of worse accuracy in the factorization. In
this paper we propose a new approach that is reliable in terms of numerical precision
and memory estimation. Our new approach also improves the factorization time
compared to approaches that perform usual numerical pivoting. The originality of
our approach is to combine numerical pivoting and perturbation techniques and to
propose a criterion for deciding between small 1×1 and small 2×2 pivots. When we

∗Received by the editors April 19, 2005; accepted for publication (in revised form) by R. Nabben
February 20, 2007; published electronically October 17, 2007.

http://www.siam.org/journals/simax/29-3/62959.html
†CERFACS, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France, and Atlas Centre,

Rutherford Appleton Laboratory, Oxon OX11 0QX, England (i.s.duff@rl.ac.uk).
‡CNRS-IRIT, ENSEEIHT, 2, rue Charles Camichel, BP 7122, F-31071 Toulouse Cedex 7, France

(Stephane.Pralet@enseeiht.fr).

1007

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1008 IAIN S. DUFF AND STÉPHANE PRALET

would select too small a pivot, we modify diagonal entries so that we compute the
LU factorization of a perturbed matrix:

LU = A + Δ + E,

where Δ is a diagonal matrix corresponding to the perturbed pivots and E corresponds
to the rounding errors. We then use iterative refinement with this approximation and
show that we almost always compute an accurate solution. We also find that delaying
pivots is dangerous in the context of an approximate factorization. Moreover, we
propose new pivoting strategies that are numerically robust on our representative test
set and do not adversely affect the scalability of a parallel distributed factorization.
They are based on estimations of growth factors and do not require any supplementary
messages.

In our recent work [12], we developed preprocessing techniques to be used with
sparse symmetric indefinite direct solvers which perform numerical pivoting:

• We showed how maximum weighted matching techniques can be used when
the matrix is symmetric to effect a symmetric scaling. We have found this very
beneficial over a wide range of problems. That is why we will systematically
use scaling in this paper, although in some of the analysis we do not assume
that the system will necessarily have been scaled.

• We also used symmetric weighted matching techniques to identify potential
2×2 pivots. A major benefit of our work is that the analysis phase gives a
better indication of the work and storage required by the subsequent factoriza-
tion. Nevertheless the influence of our pivot preselection on the performance
of the factorization depends very much on the nature of the matrix. It might
increase the fill-in in the factors and the factorization time, for example. That
is why we will not use this preprocessing in this paper (except in section 7,
where we want to evaluate the combination of the preprocessing of [12] with
the pivoting strategies presented in this paper).

Even if these preprocessing steps are sequential, they do not represent a significant
overhead compared to the total analysis time and are negligible compared to the
factorization time.

In section 2, we describe multifrontal solvers and parallel distributed multifrontal
solvers. We also briefly describe pivoting strategies implemented in SuperLU DIST

[22] and PARDISO [27] and the numerical pivoting strategies that are often used in
the context of sparse direct methods.

Section 3 presents our experimental environment. In section 4, we describe a new
pivoting strategy that combines numerical pivoting and perturbation techniques and
that is well designed for sequential factorization. We present experimental results for
this strategy. In section 5, we show that combining restricted pivoting and delayed
pivots severely affects the numerical quality of the factorization. Section 6 presents
pivoting strategies that are particularly suited for parallel distributed solvers. In
section 7, we study the influence of the preprocessings of [12] on our pivoting strategies.
We present our conclusions in section 8.

1.1. Notation. In the following, s will be the function for the sign of a real
number,

s(x) =

{
1 if x ≥ 0,

−1 if x < 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PIVOTING FOR SPARSE INDEFINITE PROBLEMS 1009

ε will denote the machine precision, || ||2 and || ||∞ will denote the submultiplicative
matrix norms, and ||A||M will denote the norm maxij |aij |.

For each matrix or submatrix A = (aij), |A| = (|aij |), n will denote the order of
A and nnz its number of nonzeros. 0 < u ≤ 1 and μ =

√
ε will denote real numbers

which will be used as thresholds in our pivoting strategies. In practice, we will use
u = 0.01. FSV and PSV will denote fully summed variables and partially summed
variables, respectively.

We summarize in Table 1.1 the main pivoting strategies that we develop in this
paper.

Table 1.1

Summary of our main pivoting strategies. The SEQ suffix means that the strategy is designed
for a sequential code. The PAR suffix means that the strategy is designed for a parallel code.

Name Pivoting strategy Section
numSEQ Numerical pivoting of Duff–Reid algorithm 2.2
mixSEQ Numerical pivoting combined with perturbation techniques 4.1

(restricted pivoting)
numBPAR Basic restriction of Duff–Reid algorithm 6.1
numEPAR Adaptation of Duff–Reid algorithm that uses estimations 6.2
mixEPAR Combination of numEPAR and mixSEQ 4.1 and 6.2

2. Symmetric indefinite multifrontal solvers and numerical pivoting.

2.1. Multifrontal approach. For an irreducible matrix, the elimination tree
[13, 23] represents the order in which the matrix can be factorized, that is, in which
the unknowns from the underlying linear system of equations can be chosen. (This
tree is in the most general case a forest, but we will assume in our discussions, for the
sake of clarity, that it is a connected tree. That is, the matrix is irreducible.) One
central concept of the multifrontal approach [13] is to group (or amalgamate) columns
with the same sparsity structure to create supervariables or supernodes [13, 24] in order
to make use of efficient dense matrix kernels. The amalgamated elimination tree is
called the assembly tree.

fully summed rows �

partially summed rows �

fully summed

columns

�

partially summed

columns

�[
F11 F12

F21 F22

]
Fig. 2.1. A frontal matrix.

When a node in the assembly tree is being processed, it assembles the contribution
blocks from all its child nodes into its frontal matrix (see Figure 2.1). In the symmetric
case, pivots are usually chosen from the diagonal as discussed in section 2.2, and
operations and storage are about half those of the general case. The pivotal variables
from the fully summed block, F11, are eliminated, and the Schur complement matrix,
F22−F21F

−1
11 F12, is computed. The contribution block is then sent to the parent node

to be assembled. If some variables are not eliminated because of numerical issues, they
are moved to the contribution block and sent to the parent node. The effect of this
is that the computation F ′

22 −F ′
21F

′
11

−1
F ′

12 is performed, where F ′
11 is a submatrix of

F11 of dimension the number of pivots selected at this stage. If this dimension is less
than the order of F11, then the difference represents the number of pivots delayed at

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1010 IAIN S. DUFF AND STÉPHANE PRALET

this stage. Delayed pivots have the effect of causing extra fill-in and thus increase the
memory and the number of operations for the factorization.

2.2. Numerical pivoting. In the unsymmetric case, at step k of Gaussian elim-
ination, the pivot (p, q) is selected from the fully summed rows and columns. To limit
the growth of the entries in the factors and thus to obtain a more accurate factoriza-
tion, a test on the magnitude of the pivot is commonly used. apq can be selected if
and only if

|apq| ≥ umax
j

|apj |,(2.1)

where u is a threshold parameter between 0 and 1. This criterion will ensure that the
growth factor is limited to 1 + 1/u.

In the symmetric indefinite case, we have to perform 1×1 and 2×2 pivoting if we
want to keep the symmetry while maintaining stability. Pivot selection can be done
using the Bunch–Parlett [6] or Bunch–Kaufman [5] algorithm, or a variation proposed
by [4] that uses rook pivoting. In the context of sparse matrices, the criterion of the
Duff–Reid algorithm that uses rook pivoting ([13], as modified in [14]) can be used to
ensure a growth factor of less than 1 + 1/u at each step of Gaussian elimination. A
1×1 diagonal pivot can be selected if and only if it satisfies the inequality (2.1). A
2×2 pivot P = (app

aqp

apq

aqq
) can be selected if and only if it satisfies

|P−1|
(

maxk �=p,q |apk|
maxk �=p,q |aqk|

)
≤

(
1/u
1/u

)
,(2.2)

where u is a threshold between 0 and 1
2 .

2.3. Numerical pivoting and perturbation techniques. Modifying the di-
agonal of the matrix instead of performing numerical pivoting was introduced by
Stewart in [28]. In his approach, the magnitude of the perturbations can be quite
large. Given a symmetric matrix A, not necessarily positive definite, approaches to
compute a modified Cholesky factorization of A+E with E as small as possible have
been developed in [7, 15, 16] (in a modified Cholesky ||E||2 ≥ −minλi(A)). The size
of this perturbation is larger than we want, so we do not use modified Cholesky ap-
proaches. Furthermore, the approach of [7] is not adapted for sparse matrices because
the pattern of E can be significantly different from the pattern of A.

Our restricted pivoting strategy means that in our code pivoting is restricted to
static data structures that have been predicted by the analysis phase. The factoriza-
tion does not necessarily follow the pivot selected by the ordering exactly, and some
slight variations are allowed. For example, in a multifrontal context, it is sufficient
that the factorization decisions be compatible with the assembly tree (numerical piv-
oting is restricted to fully summed variables within a front, and delayed pivots are not
allowed). A static approach was proposed by [21] in the context of LU factorization.
The pivot order decided during the analysis is strictly followed. During Gaussian elim-
ination when a forecast pivot is too small, “small perturbations” are added to limit
the growth of the factors in order to enhance the backward stability of the algorithm
(see, for example, Theorem 11.4 of [20], which gives an upper bound of the residual
after one iterative refinement). By “small perturbations” we mean that the perturbed
matrix is close enough to the original so that the factorization of the perturbed matrix
is close to the factorization of the original matrix. If this is the case, then we would
hope to have a cheap and sufficiently accurate solution using the computed factors.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PIVOTING FOR SPARSE INDEFINITE PROBLEMS 1011

SuperLU DIST [22] adds small perturbations δ to the diagonal entries when the pivot
aii is too small so that |aii + δ| ≥ μ ||A||M . Note that the forecast large entries are
permuted to the diagonal using maximum weighted matching techniques [11] and that
no pivoting is performed within the supernodes.

At the same time as we were working on our pivoting algorithms (based on Duff–
Reid pivoting), strategies based on the Bunch–Kaufman pivoting strategy using pos-
sible perturbations were developed in [27]. These developments are independent and
give rise to different performance characteristics. The approach in [27] may degrade
the precision of the solution and slow down the solution phase because of the increase
in the number of iterative refinement steps [17]. Moreover, contrary to our pivoting
strategies in section 6, the approach of [27] has not been designed explicitly for a par-
allel distributed environment. Finally, the approach in [27] does not use estimations
of the growth factor to control the accuracy of the factorization [20].

2.4. Parallel distributed approaches. This section discusses the parallelism
that is exploited by distributed multifrontal solvers, focusing on the MUMPS approach
and using the terminology from that work [1, 2].

A pair of nodes in the assembly tree, where neither is an ancestor of the other, can
be factorized independently from each other, in any order or in parallel. Consequently,
independent branches of the assembly tree can be processed in parallel, and we refer
to this as tree parallelism or type 1 parallelism. It is obvious that, in general, tree
parallelism can be exploited more efficiently in the lower part of the assembly tree than
near the root node. Additional parallelism is then created using distributed memory
versions of blocked algorithms to factorize the frontal matrices (see, for example,
[2, 9]).

The lower triangular part of the frontal matrix is partitioned, and each part of
it is assigned to a different process. The so-called master process is responsible for
the diagonal block of fully summed variables and also decides which processes (the
so-called slave processes) will be involved in the parallel activity associated with this
node. We refer to this as type 2 parallelism and call the nodes involved type 2 nodes.
After computing its part of the contribution block, a slave will communicate with the
master and the slaves of the parent node.

In order to have an efficient factorization, asynchronous schemes are used. There
is no synchronization between a master and its slaves (who may be involved in another
task or even be the master of another type 2 node). Hence the master has to select
pivots without the knowledge of the part of fully summed columns stored on its slaves.
This problem will be addressed by our pivoting strategies presented in section 6. An
alternative could be to overload the master process with the work associated with the
complete fully summed columns (diagonal plus off-diagonal part), but obviously this
would generate workload and memory imbalances and degrade the scalability of the
approach.

3. Experimental environment. Our experiments are conducted on one node
of a COMPAQ Alpha Server SC45 at CERFACS. There are four GBytes of memory
shared between four EV68 processors per node, and we disable three of the processors
so that we can use all the memory of the node with the remaining single processor. We
use the Fortran 90 compiler, f90 version 5.5 with the -O option. If the factorization
needs more than 4 GBytes or requires more than 30 minutes CPU time, we consider
that it is not successful.

We conduct our experiments on a number of challenging and sometimes badly
conditioned test problems. The matrices are available from ftp.numerical.rl.ac.uk/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1012 IAIN S. DUFF AND STÉPHANE PRALET

Table 3.1

Symmetric indefinite matrices. λ+ : number of positive eigenvalues. λ− : number of negative
eigenvalues.

Matrix n nnz λ+ λ− Origin
BRAINPC2 27607 96601 13807 13800 Biological model (CUTEr)
BRATU3D 27792 88627 15625 12167 3D Bratu problem on the unit cube (CUTEr)
CONT-201 80595 239596 40397 40198 KKT matrix–Convex QP (M2)
CONT-300 180895 562496 90597 90298 KKT matrix–Convex QP (M2)
crystk02 13965 491274 13964 1 Stiffness matrix–crystal free vibration (UF)
crystk03 24696 887937 24695 1 Stiffness matrix–crystal free vibration (UF)
cvxqp3 17500 62481 10000 7500 Convex QP (CUTEr)
mario001 38434 114643 23130 15304 Stokes equation (MA)
NCVXQP1 12111 40537 7111 5000 KKT matrix–nonconvex QP (CUTEr)
NCVXQP5 62500 237483 28534 33966 KKT matrix–nonconvex QP (CUTEr)
NCVXQP7 87500 312481 37500 50000 KKT matrix–nonconvex QP (CUTEr)
SIT100 10262 34094 7143 3119 Straz pod Ralskem mine model (MT)
stokes128 49666 295938 33281 16385 Stokes equation (MA)
stokes64 12546 74242 8449 4097 Stokes equation (AW)

pub/matrices/symmetric/indef/ and most of them (all except the cvxqp3 matrix) are
a subset of the matrices collected by [19] for testing symmetric sparse solvers. To
select our matrices we ran our pivoting strategies on the matrices from [19] and kept
the difficult matrices that illustrate the characteristics of our pivoting strategies. (We
use “difficult” in the sense that they often required iterative refinement steps to get
a small residual.)

Some of the matrices come from the Maros and Meszanos quadratic program-
ming collection (M2) [25], the CUTEr optimization test set (CUTEr) [18], and the
University of Florida collection (UF) [8]. Some problems were generated by Andy
Wathen (AW), Mario Arioli (MA), and Miroslav Tuma (MT). These problems are
described in Table 3.1. These test matrices correspond to augmented matrices of the
form

KH,A =

(
H A
AT 0

)
.

In all our experiments we use random right-hand sides. To perform an error
analysis of the solution we compute the sparse componentwise backward error using
the theory and measure developed by [3]. The scaled residual of the ith equation is

Δi =
|ri|

(|A||x| + |b|)i
,

where r = b − Ax and x is the computed solution, except if the denominator is too
small (in our code the threshold for this is 1000 × ε). In this case, we use

Δi =
|ri|

((|A||x|)i + ||Ai||∞||x||∞)i
,

where Ai represents the ith row of A. We apply iterative refinement in all our ap-
proaches. At each step k of the iterative refinement, we compute the current backward
error berr(k) = maxi Δi.

We also compute the normwise backward error

nberr = ||Ax − b||∞/(||A||∞||x||∞ + ||b||∞)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PIVOTING FOR SPARSE INDEFINITE PROBLEMS 1013

and display it in Table 4.1 below to show that our approach is competitive with that
presented in [27].

During our performance analysis, we will report the factorization time and the
solution time separately because the total time really depends on the application. For
example, if multiple solutions are required with the same matrix (as is often the case
in optimization), the solution time may become dominant.

We will use our pivoting strategies with a symmetric multifrontal code, MA57 Ver-
sion 3.0.0 [10], on a challenging test set (see section 3). Note that MA57 is one of the
best sparse symmetric indefinite sequential direct solvers [17], and thus the advances
presented here are advances on an already very competitive code. Unless otherwise
stated, we use the MeTiS nested-dissection ordering during the analysis, and we sym-
metrically scale the matrix with our symmetric scaling [12]. This makes all entries
smaller than 1 in magnitude, and the columns of the scaled matrix can be permuted
so that it has entries of magnitude 1 on the diagonal. Thus in our experiments and
in our criteria for selecting pivots we will have ||A||M = 1. Nevertheless, we will keep
this term because in practice the matrix may be differently scaled or not scaled at all
(this is an option for the user through the MA57 interface). In these cases we observed
that we obtain better solutions if we include the ||A||M term in our criteria.

Although MA57 is a sequential code, we will use it to simulate the parallel behavior
of a multifrontal solver like MUMPS [1, 2].

4. Mixing numerical pivoting and perturbation techniques.

4.1. Algorithm. In this section, we present an approach which combines nu-
merical checking for stability with perturbations. This approach will be referred to
as restricted pivoting. We decided to use only 1×1 perturbations because they are
easier to implement, and we want to clearly identify the impact of this mixed ap-
proach. Some promising experiments with 2×2 perturbations can be found in [26],
but they were applied in a different context; the analysis fixes the 1×1 and 2×2 pivots,
and appropriate perturbations were applied during the factorization. In this present
paper, the pivots are dynamically chosen, and we have found that the use of 2×2
perturbations does not give a significant improvement. In our algorithm, we perturb
the original entries only in extreme cases where pivots are very small in magnitude.
That is why the additional use of 2×2 perturbations does not affect the precision of
the solution.

Let us consider a frontal matrix from the elimination tree. It contains two kinds
of variables, the FSV , which correspond to the pivot block that we want to eliminate,
and the PSV , on which the Schur complement will be computed.

Our mixed approach is based on two phases. In the first phase, we perform
numerical pivoting in the block of fully summed variables until no remaining variables
satisfy the numerical criterion. In the second phase, we eliminate the remaining fully
summed variables, adding 1×1 perturbations if necessary.

Our pivot selection is more precisely defined as follows. Using (2.1) and (2.2), we
define

g1(i) =
maxk �=i |aik|

|aii|
,(4.1)

and

g2(i, j) =

∣∣∣∣∣∣∣∣|P−1|
(

maxk �=i,j |aik|
maxk �=i,j |ajk|

)∣∣∣∣∣∣∣∣
∞

.(4.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1014 IAIN S. DUFF AND STÉPHANE PRALET

During the first phase of Algorithm 1 (the usual Duff–Reid algorithm), a 1×1
pivot aii is considered to be stable if and only if

g1(i) ≤ 1/u,(4.3)

and a 2×2 pivot P is considered to be stable if and only if

g2(i, j) ≤ 1/u.(4.4)

Algorithm 1 Numerical pivot selection combined with perturbation techniques.
Phase 1: Eliminate as many 1×1 and 2×2 pivots as possible which satisfy inequalities (4.3)
and (4.4), respectively, using the Duff–Reid algorithm with threshold u.
Phase 2:
while FSV �= ∅ do

Let i ∈ FSV .
if #FSV = 1 then

if |aii| < μ ||A||M then aii = s(aii)μ ||A||M
Perform elimination using i as a 1×1 pivot.
return

end if
Let j = arg maxk∈FSV \{i} |aik| and P be the 2×2 block associated with i and j.
Choose between 1×1 or 2×2 pivoting:
if min{g1(i), g2(i, j)} < 1/μ then /* Case 1: growth factor comparison */

if g2 < g1 then
Perform elimination using (i, j) as a 2×2 pivot.

else
Perform elimination using i as a 1×1 pivot.

end if
else if min{1/|aii|, ||P−1||∞} < 1/(μ ||A||M) then /* Case 2: pivot size comparison */

if 1/|aii| > ||P−1||∞ then
Perform elimination using (i, j) as a 2×2 pivot.

else
Perform elimination using i as a 1×1 pivot.

end if
else /* Case 3: diagonal 1×1 perturbation */

aii = s(aii)μ ||A||M
Perform elimination using i as a 1×1 pivot.

end if
end while

During the second phase we use the threshold μ. We perturb the diagonal of the
matrix if the pivot is too small with respect to the initial values in A (smaller than
μ ||A||M). We tried different thresholds for μ in [26] and compared the precision of
the solution after applying iterative refinement. We remark that choosing 10−7 ≤
μ ≤ 10−10 seems to be a good compromise between small perturbations and small
growth factors (larger μ values would give a more stable factorization but at the cost
of obtaining the factorization of a matrix further from the original). Moreover, we
observed that different values of μ in the range [10−7, 10−10] lead to similar behavior
in terms of number of iterations and precision of the solution. In our experiments μ
is fixed at

√
ε ≈ 10−8.

The choice between a 1×1 and a 2×2 pivot is done in three stages. First (Case 1
of Algorithm 1), if we can eliminate a pivot and ensure a growth factor lower than
1 + 1/μ, then we select the one with the lower growth factor. Second (Case 2 of
Algorithm 1), if we cannot ensure a growth factor lower than 1+1/μ, then we compare
the quantities 1/|aii| and ||P−1||∞. This second comparison is guided by the growth
factor that would appear if we suppose that the largest off-diagonal entry is bounded
by ||A||M . Finally, if no pivot can be chosen, a perturbed 1×1 pivot is selected (Case 3
of Algorithm 1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PIVOTING FOR SPARSE INDEFINITE PROBLEMS 1015

Table 4.1

Componentwise and normwise (columns nberr) backward error and number of tiny pivots.

Matrix numSEQ pivoting strategy mixSEQ pivoting strategy
it. 0 it. 1 nberr it. 0 it. 1 it. 2 nberr Tiny

BRAINPC2 8.1e-14 2.2e-16 2.7e-16 2.9e-06 3.2e-12 2.0e-15 1.2e-15 12932
BRATU3D 1.6e-09 2.9e-16 1.5e-16 1.6e-05 6.9e-12 2.9e-16 1.5e-16 8429
CONT-201 1.2e-10 2.6e-16 1.1e-16 2.7e-05 4.0e-08 3.2e-08 2.3e-09 27470
CONT-300 1.4e-10 2.3e-16 1.4e-16 6.4e-05 8.6e-08 8.6e-08 2.2e-09 67864
crystk02 5.0e-16 4.3e-16 1.1e-16 5.0e-16 4.2e-16 4.3e-16 1.1e-16 0
crystk03 7.7e-16 4.3e-16 1.7e-16 7.7e-16 3.9e-16 4.3e-16 1.7e-16 0
cvxqp3 3.2e-10 3.9e-16 1.4e-16 1.3e-03 4.4e-12 4.4e-16 1.4e-16 6277
mario001 3.0e-14 2.5e-16 6.6e-17 1.6e-07 4.8e-12 3.3e-16 6.6e-17 10305
NCVXQP1 1.8e-03 2.2e-16 2.6e-17 9.9e-01 1.1e-04 1.8e-11 3.7e-17 3619
NCVXQP5 6.3e-10 3.1e-16 1.1e-16 5.7e-05 1.6e-08 5.3e-12 1.4e-14 8402
NCVXQP7 4.6e-09 3.5e-16 1.8e-16 2.0e-02 1.5e-10 8.4e-16 1.8e-16 31043
SIT100 1.0e-14 1.5e-15 1.6e-15 3.0e-07 6.7e-14 2.1e-16 1.1e-16 1388
stokes128 3.8e-14 3.4e-15 1.3e-15 6.0e-07 3.0e-12 4.0e-15 6.0e-16 12738
stokes64 9.2e-15 6.5e-15 8.1e-15 4.4e-07 1.2e-12 7.9e-15 1.1e-15 3106

We also tried to smooth the transition between the first and the second phase.
Before the second phase, we performed numerical pivoting with smaller values of u.
More precisely we defined a parameter umin. While u is larger than umin, we decrease
the u value (for example, u = u/10) and restart phase 1. We did not observe gains
from such an approach and thus prefer to focus on the simple version of our pivoting
strategies (Algorithm 1) and to keep u fixed at 0.01.

4.2. Experimental results. In this section, we discuss the influence of the
pivoting scheme described in section 4.1. It will be referred to as the mixSEQ algorithm
because checking the stability over the partially summed rows is not well designed for
existing parallel implementations (see section 2.4).

In the rest of the paper, numSEQ will refer to numerical pivoting strategy of Duff
and Reid [13]. When we perturb a 1×1 pivot (Case 3 of Algorithm 1) this pivot is
called a tiny pivot.

Table 4.1 compares the precision of the solution for an LDLT factorization with
numerical pivoting and an LDLT factorization with the mixSEQ pivoting strategy.
Because of numerical pivoting, no iterative refinement is needed for a backward er-
ror smaller than

√
ε, whereas with mixSEQ the backward error without any iterative

refinement is often larger than
√
ε. Thus we advise performing one or two steps of

iterative refinement when using the mixSEQ strategy. This slight degradation of pre-
cision is due to the tiny pivots. On average, the mixSEQ strategy needs one iteration
more to get the same precision as the numSEQ strategy.

Although the number of tiny pivots can be very large (see last column of Ta-
ble 4.1), our mixSEQ approach generally succeeds in reducing the backward error. The
CONT-* matrices are the only ones for which iterative refinement does not converge
to the machine precision, even with several iterations.

Columns nberr of Table 4.1 show that our approach is competitive with and some-
times better than the approach presented in [27] (for example, on crystk* matrices
the PARDISO normwise backward error is between 10−13 and 10−12, and on stokes*
matrices it is between 10−12 and 10−10). In the rest of the paper we will concentrate
on sparse componentwise backward errors since they give us more information about
the quality of the solution [3].

Table 4.2 shows the main advantage of using restricted pivoting: the mixSEQ

factorization is always faster. Delaying pivots increases the number of operations

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1016 IAIN S. DUFF AND STÉPHANE PRALET

Table 4.2

Factorization and solution time (in seconds), number of delayed pivots, and size of the factors
(in thousands of reals). numSEQ: Duff–Reid pivoting strategy. mixSEQ: combination of numerical
pivoting and perturbation techniques. ∗ means that the mixSEQ numerical quality is not similar to the
numSEQ quality. Number delayed: number of delayed pivots. MV time: matrix-vector multiplication
time (in seconds).

Number Factorization time Time for forward and MV Size of
delayed backward substitution time the factors

Matrix numSEQ numSEQ mixSEQ numSEQ mixSEQ numSEQ mixSEQ

BRAINPC2 14267 0.18 0.11 0.018 0.014 0.003 656 322
BRATU3D 90052 34.2 9.24 0.255 0.125 0.003 11484 5569
CONT-201 71296 5.51 1.94∗ 0.195 0.127∗ 0.008 8820 4304
CONT-300 183306 21.1 6.08∗ 0.547 0.306∗ 0.033 23838 10714
cvxqp3 30519 9.73 3.08 0.099 0.048 0.002 4740 2301
mario001 15463 0.28 0.23 0.024 0.022 0.008 817 575
NCVXQP1 12463 2.69 1.29 0.039 0.024 0.001 2235 1327
NCVXQP5 16703 25.7 23.0 0.326 0.279 0.015 13365 11205
NCVXQP7 195973 195. 71.6 0.874 0.498 0.021 37683 19367
SIT100 2710 0.13 0.11 0.007 0.004 0.001 483 417
stokes128 18056 1.14 1.06 0.096 0.076 0.016 3437 2753
stokes64 4292 0.33 0.29 0.012 0.013 0.002 736 577

and thus tends to slow down the factorization phase. As mixSEQ generates sparser
factors, it decreases the time for backward and forward substitution. Nevertheless
the solution phase is often more costly with the mixSEQ strategy because it requires
more iterative refinement steps and thus more backward and forward substitutions
and matrix-vector multiplications.

5. Combination of mixSEQ and delayed pivots. A quite natural idea to im-
prove the precision of the solution is to allow some delayed pivots up to a certain
predetermined limit. This criterion could be based, for example, on the memory
increase. We developed an approach that proceeds as follows:

• first performs pivoting using the Duff–Reid algorithm with a threshold u until
α×n pivots have been delayed, where α is a real parameter (each time a pivot
is delayed to its parent, one is added to the count for delayed pivots, and so
there may be more than n delayed pivots), and

• second uses Algorithm 1.
We show in Figure 5.1 the precision of the solution while increasing the number

of delayed pivots allowed. The approach with α = 0 is equivalent to the mixSEQ

strategy, and α = ∞ (Inf in Figure 5.1) corresponds to the numSEQ strategy. We see
that combining delayed pivots and mixSEQ pivoting may be dangerous: this combina-
tion often requires more steps of iterative refinement to obtain a small residual. We
think that the poor convergence of the iterative refinement process and sometimes the
degradation in the precision is due to the accumulation of both rounding errors and
perturbations. When delayed pivots are not allowed, the diagonal perturbations and
their influence on rounding errors are localized to the contribution blocks predicted
by the analysis. If we allow delayed pivots, some pivots can be postponed, and it is
possible that they remain unacceptable in ancestor nodes until we switch to mixSEQ

mode. In that case when a delayed pivot (possibly postponed over several generations)
is still small, it is perturbed. This elimination then contaminates a larger contribution
block than if it had been eliminated at an earlier node.

Figure 5.1 also illustrates that it is difficult to predict the behavior of the precision.
For example, there is a small window, 10 ≤ 100α ≤ 40, in which our algorithm does

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PIVOTING FOR SPARSE INDEFINITE PROBLEMS 1017

0 0.1 0.5 1 10 20 30 40 100 200 Inf

10
−15

10
−10

10
−5

10
0

100 × α

co
m

po
ne

nt
−

w
is

e
ba

ck
w

ar
d

er
ro

r

iteration 0
iteration 1
iteration 2
iteration 3

(a) cvxqp3

0 0.1 0.5 1 10 20 30 40 100 200 Inf

10
−15

10
−10

10
−5

10
0

100 × α

co
m

po
ne

nt
−

w
is

e
ba

ck
w

ar
d

er
ro

r

iteration 0
iteration 1
iteration 2
iteration 3

(b) CONT-201

Fig. 5.1. Influence of the number of delayed pivots on the precision of the solution.

not return an accurate solution for cvxqp3. The failure window is completely different
for CONT-201, 0.1 ≤ 100α ≤ 100.

Finally, let us mention that we tried more sophisticated rules (based on the topol-
ogy of the assembly tree, the characteristics of the parent node, etc.) to decide how
to delay the elimination of a variable, and we note that all these strategies were very
unstable.

6. Pivoting strategies in parallel distributed environments.

6.1. Limiting the areas for pivot checking. The diagonal block of the fully
summed part of a type 2 node is stored on a single processor, the master (see sec-
tion 2.4). Furthermore, the master does not have local access to the other rows of the
front, which are sent directly from the slaves of its child nodes to its own slaves. To
avoid extra communications and, even worse, synchronizations we modify the quan-
tities g1 and g2 of (4.1) and (4.2). Moreover, because we do not have access to all of
the fully summed columns, we always suppose that the largest off-diagonal entry is
greater than μ||A||M . Thus, for every type 2 node we define

g1(i) =
max{maxk∈FSV \{i} |aik|, μ ||A||M}

|aii|
,(6.1)

and

g2(i, j) =

∣∣∣∣∣∣∣∣|P−1|
(

max{maxk∈FSV \{i,j} |aik|, μ ||A||M}
max{maxk∈FSV \{i,j} |ajk|, μ ||A||M}

)∣∣∣∣∣∣∣∣
∞

.(6.2)

These quantities are then used to select pivots in type 2 nodes in both the Duff–Reid
algorithm and in Algorithm 1. This Basic PARallel strategy will be referred to as
BPAR. When it is used with the Duff–Reid algorithm it will be denoted by numBPAR.

The numBPAR strategy is more friendly than numSEQ for the parallel distributed
implementation of MUMPS [1] and more generally for other distributed solvers, for
example, SuperLU DIST [22]. Note that a similar strategy is already used in the
symmetric indefinite code of MUMPS.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1018 IAIN S. DUFF AND STÉPHANE PRALET

6.2. Cheap estimation of growth factors. We will see in section 6.3 that the
numBPAR approach is not robust. In this section, we propose a better approximation
of the off-diagonal information that does not limit the scalability and that will sig-
nificantly improve the numerical robustness of the factorization. The main principle
of our approach is to send information from the slaves of a node to the master of its
parent when they send information related to their contribution block.

Let c be a child node and p be its parent. Let i be a fully summed variable of node
p. For each slave s of node c, we define mi(s) the maximum entry (in magnitude) in
row/column i that is stored in the contribution block of process s. s will send to the
master of p the quantities mi(s) for each fully summed variable of the node p. The
master of node p will approximate the maximum entry in each fully summed column
using the maximum quantity that it has received from the slaves of its child nodes.
It is only an approximation because the child contributions are not summed by the
master of p, and no account is taken of numerical growth as the eliminations at node
p are performed. Hence, while receiving information about the maximum off-diagonal
entries, mi(s), the master of the parent computes the quantities Mi:

Mi = max

{
max

c child of p

{
max

s slave of c
{mi(s)}

}
, max
k∈PSV

|a(0)
ik |

}
,(6.3)

where a(0) denotes the original entries of A that are assembled at the parent node
and that can be easily predicted before the factorization.

For each pivoting strategy (numerical pivoting or restricted pivoting), the g1 and
g2 quantities of (6.1) and (6.2) are modified. For each type 2 node we define

g1(i) =
max{maxk∈FSV |aik|,Mi, μ ||A||M}

|aii|
(6.4)

and

g2(i, j) =

∣∣∣∣∣∣∣∣|P−1|
(

max{maxk∈FSV |aik|,Mi, μ ||A||M}
max{maxk∈FSV |aik|,Mj , μ ||A||M}

)∣∣∣∣∣∣∣∣
∞

.(6.5)

These quantities are then used to adapt either the Duff–Reid algorithm or Algo-
rithm 1 on type 2 nodes to parallel distributed environments. These Estimations of
off-diagonal entries in a PARallel framework will be referred to as EPAR. The adap-
tation of Duff–Reid NUMerical pivoting strategy will be referred to as numEPAR, and
the adaptation of the MIXted approach of Algorithm 1 will be referred to as mixEPAR.

The areas checked for the computation of the mi(s) quantities are illustrated in
Figure 6.1. Each slave accesses the shaded areas to compute its mi quantities for each
fully summed variable of the parent node. Then it communicates them to the father
while sending the black blocks of its contributions. The other parts of the contribution
blocks (shaded and blank) are sent directly to the slaves of the parent node.

6.3. Experimental results. The precision of the solution with our parallel
approaches will be affected by the choice of the type 2 nodes because of the issues
discussed in section 2.4. In MUMPS it depends on the characteristics of the nodes in the
assembly tree (front size, number of fully summed variables) and the number of MPI
processes. Indeed, the number of type 2 nodes increases with the number of processes
in order to have more parallelism in the upper part of the assembly tree. In our
simulations, we consider that a node is a type 2 node if it is large enough (in practice,
if #PSV > 400) and if it is neither a leaf node nor the root node. We remark that
with this choice we simulate the behavior of MUMPS on hundreds of processes.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PIVOTING FOR SPARSE INDEFINITE PROBLEMS 1019

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

��
��
��

��
��
��

����

M1

S1

S2

S3

M2CB and m i

fully summed rows/columns of the parent

blocks sent to the master of the parent

Fig. 6.1. Illustration of the areas accessed to estimate the mi(s) quantities and of the blocks
that are sent from a slave of a child to the master of the parent.

Table 6.1

Componentwise backward error of strategies with numerical pivoting. numSEQ: sequential ap-
proach. numBPAR: basic parallel approach. numEPAR: parallel approach using estimations.

Iteration 0 Iteration 1
Matrix numSEQ numBPAR numEPAR numSEQ numBPAR numEPAR

BRAINPC2 8.1e-14 8.1e-14 8.1e-14 2.2e-16 6.1e-16 6.1e-16
BRATU3D 1.6e-09 1.0e+00 1.3e-08 2.9e-16 1.0e+00 2.6e-16
CONT-201 1.2e-10 1.0e+00 1.6e-10 2.6e-16 9.9e-01 2.1e-16
CONT-300 1.4e-10 1.0e+00 1.5e-10 2.3e-16 1.0e+00 2.8e-16
cvxqp3 3.2e-10 1.0e+00 4.2e-10 3.9e-16 1.0e+00 4.2e-16
mario001 3.0e-14 3.0e-14 3.0e-14 2.5e-16 2.0e-16 2.0e-16
NCVXQP1 1.8e-03 1.0e+00 9.9e-04 2.2e-16 1.0e+00 2.3e-16
NCVXQP5 6.3e-10 1.0e+00 4.1e-09 3.1e-16 1.0e+00 3.3e-16
NCVXQP7 4.6e-09 1.0e+00 3.2e-09 3.5e-16 1.0e+00 3.7e-16
SIT100 1.0e-14 1.0e-14 1.0e-14 1.5e-15 1.7e-14 1.7e-14
stokes128 3.8e-14 3.8e-14 3.8e-14 3.4e-15 8.0e-15 8.0e-15
stokes64 9.2e-15 9.2e-15 9.2e-15 6.5e-15 1.2e-14 1.2e-14

6.3.1. Parallel adaptation of Duff–Reid algorithm. Table 6.1 shows that
the basic parallel adaptation of the Duff–Reid algorithm, numBPAR, is not robust.
We observe numerical failures on the CONT-201, CONT-300, and BRATU3D ma-
trices. Note that we also observe these failures with MUMPS with more than four
processes. Furthermore, there is a significant degradation of the precision compared
to the numSEQ approach. In contrast, numEPAR is robust (no numerical failures), and
it returns backward errors similar to the numSEQ strategy.

Table 6.2 compares the size of the factors and the number of delayed pivots
between the numSEQ, numBPAR, and numEPAR pivoting strategies. We focus on the
BRATU3D and CONT-* matrices because they reveal the weaknesses of the numBPAR
strategy.

First we observe that numSEQ and numEPAR have a similar number of entries
in the factors and number of delayed pivots. This supports the idea that the numEPAR

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1020 IAIN S. DUFF AND STÉPHANE PRALET

Table 6.2

Size of the factors and number of delayed pivots with different numerical pivoting strategies.

Size of the factors Number of delayed pivots
Matrix numSEQ numBPAR numEPAR numSEQ numBPAR numEPAR

BRATU3D 11484379 9672751 11249260 90052 49205 87167
CONT-201 8820367 8918700 8829464 71296 71415 71389
CONT-300 23838606 23595744 23928663 183306 182422 183641

0 0.5 1 1.5 2 2.5 3 3.5
x 10

4

10
0

10
4

10
8

10
12

10
16

node

gr
ow

th
 fa

ct
or

(a) Growth factor on CONT-201 using
numSEQ pivoting strategy.

0 0.5 1 1.5 2 2.5 3 3.5
x 10

4

0

50

100

150

200

250

300

node

nu
m

be
r

of
 d

el
ay

ed

(b) Number of delayed pivots on CONT-
201 using numSEQ pivoting strategy.

0 0.5 1 1.5 2 2.5 3 3.5
x 10

4

10
0

10
4

10
8

10
12

10
16

node

gr
ow

th
 fa

ct
or

(c) Growth factor on CONT-201 using
numBPAR pivoting strategy.

0 0.5 1 1.5 2 2.5 3 3.5
x 10

4

0

50

100

150

200

250

300

node

nu
m

be
r

of
 d

el
ay

ed

(d) Number of delayed pivots on CONT-
201 using numBPAR pivoting strategy.

0 0.5 1 1.5 2 2.5 3 3.5
x 10

4

10
0

10
4

10
8

10
12

10
16

node

gr
ow

th
 fa

ct
or

(e) Growth factor on CONT-201 using
numEPAR pivoting strategy.

0 0.5 1 1.5 2 2.5 3 3.5
x 10

4

0

50

100

150

200

250

300

node

nu
m

be
r

of
 d

el
ay

ed

(f) Number of delayed pivots on CONT-
201 using numEPAR pivoting strategy.

Fig. 6.2. Influence of the pivoting strategy on the growth factor and the number of delayed
pivots on CONT-201.

strategy takes a good numerical decision even if it has only an approximate view of
the off-diagonal entries. For each node of the assembly tree, Figure 6.2 represents the
number of pivots that are delayed (right-hand side) and the maximum of the quantities

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PIVOTING FOR SPARSE INDEFINITE PROBLEMS 1021

Table 6.3

Componentwise backward error of strategies with combination of numerical pivoting and per-
turbation techniques. mixSEQ: sequential approach. mixEPAR: a parallel approach using estimations
of (6.3) and pivoting Algorithm 1.

Iteration 0 Iteration 1 Iteration 2
Matrix mixSEQ mixEPAR mixSEQ mixEPAR mixSEQ mixEPAR

BRAINPC2 2.9e-06 2.9e-06 3.2e-12 3.2e-12 2.0e-15 2.0e-15
BRATU3D 1.6e-05 8.2e-06 6.9e-12 4.9e-11 2.9e-16 3.8e-16
CONT-201 2.7e-05 2.1e-05 4.0e-08 4.0e-08 3.2e-08 3.2e-08
CONT-300 6.4e-05 2.6e-05 8.6e-08 8.6e-08 8.6e-08 1.7e-07
cvxqp3 1.3e-03 1.4e-03 4.4e-12 8.8e-12 4.4e-16 3.5e-16
mario001 1.6e-07 1.6e-07 4.8e-12 4.8e-12 3.3e-16 3.3e-16
NCVXQP1 9.9e-01 9.9e-01 1.1e-04 6.8e-05 1.8e-11 1.7e-11
NCVXQP5 5.7e-05 5.9e-05 1.6e-08 1.7e-08 5.3e-12 7.7e-12
NCVXQP7 2.0e-02 1.3e-02 1.5e-10 2.0e-11 8.4e-16 3.4e-16
SIT100 3.0e-07 3.0e-07 6.7e-14 6.7e-14 2.1e-16 2.1e-16
stokes128 6.0e-07 6.0e-07 3.0e-12 3.0e-12 4.0e-15 4.0e-15
stokes64 4.4e-07 4.4e-07 1.2e-12 1.2e-12 7.9e-15 7.9e-15

g1 and g2 of (4.1) and (4.2) on the CONT-201 matrix. Thus the left-hand figures show
the real growth factors, while the pivoting strategy may take its decision according to
a different estimation. With the numSEQ strategy the estimation and the actual values
are exactly the same. That is why we always have the actual growth factors smaller
than 102. With numBPAR and numEPAR, the actual value may be underestimated.
That is why we observe growth factors greater than 102. Figure 6.2 confirms that the
numSEQ and numEPAR strategies have similar behavior in the sense that they postpone
approximately the same number of pivots at each node. Furthermore the numEPAR

strategy succeeds in bounding the growth factor by 4 × 103 at each step of Gaussian
elimination on CONT-201.

The behavior of the numBPAR strategy is significantly different. We see, in Ta-
ble 6.2, that the number of delayed pivots decreases significantly on the BRATU3D
matrix. Consequences of this are a decrease in the number of nonzeros in the factors
(9.7×106 for numBPAR versus 11.5×106 for numSEQ) and a degradation of the precision,
as seen in Table 6.1.

For the CONT-201 and CONT-300 matrices, numBPAR delays approximately the
same number of variables and computes factors with a similar number of nonzeros.
Figure 6.2 shows that numBPAR does not guarantee a reasonable growth factor on
CONT-201 (growth factors nearly equal to 1/ε for some nodes of the assembly tree).
We see also that the number of delayed pivots is significantly different between the
numBPAR strategy and the two other strategies, numSEQ and numEPAR, for some nodes
of the tree.

6.3.2. Parallel approaches combining numerical pivoting and perturba-
tion techniques. Table 6.3 shows that there are no significant differences between
the sequential and the parallel versions of our Algorithm 1. We still need two iterations
to converge to the machine precision on most of the matrices.

7. Influence of preprocessing. In [12] we presented preprocessing techniques
to improve the quality of preselected pivots. Our preprocessing uses symmetric
weighted matching and sparsity ordering techniques. Of the techniques presented,
we saw that MeTiS combined with the MC64SYM scaling was the best ordering on sym-
metric indefinite matrices in terms of CPU factorization time, but that it sometimes
caused many pivots to be delayed. We also proposed an ordering based on MeTiS that
increases the number of nonzeros in the factors slightly but that clearly improves the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1022 IAIN S. DUFF AND STÉPHANE PRALET

Table 7.1

Influence of the preprocessing on the component-wise backward error and on the number of
perturbed pivots. MeTiS: mixSEQ with MeTiS ordering. CMP: mixSEQ with a preprocessing based on
symmetric weighted matching and on MeTiS.

Iteration 0 Iteration 1 Iteration 2 Tiny pivots
Matrix MeTiS CMP MeTiS CMP MeTiS MeTiS CMP

BRAINPC2 2.9e-06 1.7e-11 3.2e-12 1.7e-15 2.0e-15 12932 0
BRATU3D 1.6e-05 1.2e-07 6.9e-12 1.2e-15 2.9e-16 8429 284
CONT-201 2.7e-05 8.3e-14 4.0e-08 2.2e-16 3.2e-08 27470 0
CONT-300 6.4e-05 3.5e-13 8.6e-08 2.5e-16 8.6e-08 67864 0
cvxqp3 1.3e-03 1.1e-04 4.4e-12 2.2e-13 4.4e-16 6277 30
mario001 1.6e-07 1.4e-07 4.8e-12 1.0e-14 3.3e-16 10305 29
NCVXQP1 9.9e-01 9.8e-01 1.1e-04 3.9e-06 1.8e-11 3619 10
NCVXQP5 5.7e-05 2.9e-10 1.6e-08 3.2e-16 5.3e-12 8402 0
NCVXQP7 2.0e-02 2.8e-06 1.5e-10 6.5e-14 8.4e-16 31043 46
SIT100 3.0e-07 8.5e-07 6.7e-14 5.2e-14 2.1e-16 1388 6
stokes128 6.0e-07 1.8e-07 3.0e-12 9.4e-13 4.0e-15 12738 27
stokes64 4.4e-07 2.1e-07 1.2e-12 5.1e-13 7.9e-15 3106 5

Table 7.2

Influence of the preprocessing on the factorization, the solution time (in seconds), and the
memory required by the factorization. MeTiS: mixSEQ with MeTiS ordering. CMP: mixSEQ with a
preprocessing based on symmetric weighted matching and on MeTiS. (x) indicates that the method
requires x steps of iterative refinement to get a componentwise backward error smaller than 10−10.
(-) indicates that this level of precision is not reached.

Factorization time Time for forward and Memory required
backward substitution in MBytes

Matrix MeTiS CMP MeTiS CMP MeTiS CMP

BRAINPC2 0.11 0.11 0.014 (1) 0.015 (0) 5.2 5.2
BRATU3D 9.24 8.56 0.125 (1) 0.124 (1) 35.6 35.3
CONT-201 1.94 1.44 0.127 (-) 0.121 (0) 27.9 27.3
CONT-300 6.08 4.38 0.306 (-) 0.294 (0) 67.3 65.6
cvxqp3 3.08 9.46 0.048 (1) 0.110 (1) 17.3 32.5
mario001 0.23 0.31 0.022 (1) 0.029 (1) 6.8 8.6
NCVXQP1 1.29 5.44 0.024 (2) 0.055 (2) 10.6 20.7
NCVXQP5 23.0 39.8 0.279 (2) 0.425 (0) 68.2 102.1
NCVXQP7 71.6 199. 0.498 (1) 0.988 (1) 124.9 250.3
SIT100 0.11 0.13 0.004 (1) 0.005 (1) 3.0 3.4
stokes128 1.06 1.63 0.076 (1) 0.111 (1) 20.4 27.4
stokes64 0.29 0.38 0.013 (1) 0.017 (1) 4.7 6.1

numerical stability for the preselected pivots. In this section, we study the influence
of this preprocessing in the context of our new pivoting strategies. We use these two
orderings for the present experiments: the MeTiS ordering and an ordering that we
call MeTiS on the compressed graph (denoted by CMP; see [12] for more details).

Table 7.1 compares our restricted pivoting when using the above two orderings.
We see that the preselection of 2×2 pivots using a symmetric weighted matching
significantly decreases the number of tiny pivots and improves the precision of the
solution. This influence of pivot preselection using maximum weighted matching
techniques has also been observed in the context of SuperLU DIST [22]. We see that,
in most of the cases, the approach with an ordering on the compressed graph needs
one iteration fewer than an approach based on the MeTiS ordering.

Generally the approach on the compressed graph increases the number of op-
erations, the fill-in in the factors, and the memory needed. It also increases the
factorization time (see Table 7.2). Note that the compressed approach is better on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PIVOTING FOR SPARSE INDEFINITE PROBLEMS 1023

CONT-201 and CONT-300 in terms of fill-in in the factors and factorization time,
because the compression detects cliques and then improves the quality of the fill-in
reducing phase (MeTiS).

We also compare the solution times in Table 7.2. Generally the CMP strategy
increases the size of the factors and thus increases the time for backward and forward
substitution. Nevertheless this effect is compensated by the decrease in the number
of iterative refinement steps: on average, the CMP strategy requires one backward
and forward substitution and one matrix-vector multiplication fewer than the MeTiS

strategy to converge to a certain level of precision.
We also studied the influence of the preprocessing on parallel approaches. As in

the sequential case, our preprocessing improves the numerical robustness, and we get
small backward errors after one or two iterative refinement steps.

8. Conclusions. We have presented different pivoting strategies that combine
traditional sparse pivoting strategies and perturbation techniques and have identified
their main characteristics. We have implemented these within the MA57 code. Our
new pivoting strategies seem to address a large class of challenging problems and to
be significantly faster than approaches with standard numerical pivoting.

We recommend checking the backward error of the computed solution. If it is too
large, then one or two iterative refinement steps are enough to converge to an accurate
solution. Note also that the target may not be the machine precision. For example, if
we consider Newton iterations, an approximate solution of the linear system may be
sufficient at the beginning. For classes of problems on which the mixEPAR or mixSEQ
strategies do not compute a precise enough solution, we have proposed alternatives:

• preprocessing the matrix using a compressed graph and a maximum weighted
matching,

• and/or using the numerical pivoting strategies, numEPAR or numSEQ.
Our parallel approaches can easily be generalized to the unsymmetric case. Re-

stricted pivoting within SuperLU DIST would improve its precision. Concerning the
unsymmetric version of MUMPS it would also allow 2-dimensional partitioning of type 2
nodes (in particular, a 2-dimensional partitioning of the master task) and improve the
scalability of MUMPS.

Even if the precision of the solution is good, further improvements can be ob-
tained. First, there are still problems on which restricted pivoting is less accurate
than approaches that perform standard threshold pivoting. Second, the number of
iterative refinement steps can be decreased on some problems. This problem becomes
all the more critical when we have many right-hand sides. As a much higher value
for μ would result in a far more stable factorization but perhaps with a modified
matrix further from the original, we intend to study the trade-off whose optimal value
might well be quite different if iterative methods more sophisticated than iterative
refinement (for example, MINRES, GMRES) were used.

Acknowledgments. We would like to thank John Reid and Jennifer Scott of
the Rutherford Appleton Laboratory for their comments on a draft version of this
manuscript. We are also very grateful to Serge Gratton for discussions on various
aspects of this work, and to the anonymous referees for their helpful comments.

REFERENCES

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multi-
frontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001),
pp. 15–41.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1024 IAIN S. DUFF AND STÉPHANE PRALET

[2] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, Multifrontal parallel distributed symmet-
ric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg., 184 (2000), pp. 501–
520.

[3] M. Arioli, J. W. Demmel, and I. S. Duff, Solving sparse linear systems with sparse backward
error, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165–190.

[4] C. Ashcraft, R. G. Grimes, and J. G. Lewis, Accurate symmetric indefinite linear equation
solvers, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 513–561.

[5] J. R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving sym-
metric linear systems, Math. Comput., 31 (1977), pp. 162–179.

[6] J. R. Bunch and B. N. Parlett, Direct methods for solving symmetric indefinite systems of
linear equations, SIAM J. Numer. Anal., 8 (1971), pp. 639–655.

[7] S. H. Cheng and N. J. Higham, A modified Cholesky algorithm based on a symmetric indefinite
factorization, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 1097–1110.

[8] T. A. Davis, University of Florida Sparse Matrix Collection, 2002, http://www.cise.ufl.edu/
research/sparse/matrices.

[9] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Numerical Linear
Algebra on High-Performance Computers, Software Environ. Tools 7, SIAM, Philadelphia,
1998.

[10] I. S. Duff, MA57—A code for the solution of sparse symmetric indefinite systems, ACM
Trans. Math. Software, 30 (2004), pp. 118–144.

[11] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a
sparse matrix, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973–996.

[12] I. S. Duff and S. Pralet, Strategies for scaling and pivoting for sparse symmetric indefinite
problems, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 313–340.

[13] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
systems, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[14] I. S. Duff and J. K. Reid, Exploiting zeros on the diagonal in the direct solution of indefinite
sparse symmetric linear systems, ACM Trans. Math. Software, 22 (1996), pp. 227–257.

[15] E. Eskow and R. B. Schnabel, Algorithm 695: Software for a new modified Cholesky factor-
ization, ACM Trans. Math. Software, 17 (1991), pp. 306–312.

[16] P. E. Gill and W. Murray, Newton-type methods for unconstrained and linearly constrained
optimization, Math. Programming, 28 (1974), pp. 311–350.

[17] N. I. M. Gould, J. A. Scott, and Y. Hu, A numerical evaluation of sparse direct solvers
for the solution of large sparse symmetric linear systems of equations, ACM Trans. Math.
Softw., 33 (2007).

[18] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr (and SifDec), A Constrained and
Unconstrained Testing Environment, Revisited, Technical Report 2002-009, Rutherford
Appleton Laboratory, Oxon, UK, 2002.

[19] N. I. M. Gould and J. A. Scott, A numerical evaluation of HSL packages for the direct solu-
tion of large sparse, symmetric linear systems of equations, ACM Trans. Math. Software,
30 (2004), pp. 300–325.

[20] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,
2002.

[21] X. S. Li and J. W. Demmel, Making sparse Gaussian elimination scalable by static pivoting,
in Proceedings of Supercomputing, San Jose, CA, 1998, IEEE Computer Society Press,
Washington, DC, 1998, pp. 1–17.

[22] X. S. Li and J. W. Demmel, SuperLU DIST: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems, ACM Trans. Math. Software, 29 (2003).

[23] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134–172.

[24] J. W. H. Liu, E. G. Ng, and B. W. Peyton, On finding supernodes for sparse matrix com-
putations, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 242–252.

[25] I. Maros and C. Meszaros, A repository of convex quadratic programming problems, Optim.
Methods Softw., 11–12 (1999), pp. 671–681.

[26] S. Pralet, Constrained Orderings and Scheduling for Parallel Sparse Linear Algebra, Ph.D
thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2004; also available
as CERFACS Technical Report TH/PA/04/105.

[27] O. Schenk and K. Gärtner, On Fast Factorization Pivoting Methods for Sparse Symmetric
Indefinite Systems, Technical Report CS-2004-004, Computer Science Department, Uni-
versity of Basel, Basel, Switzerland, 2004.

[28] G. W. Stewart, Modifying pivot elements in Gaussian elimination, Math. Comput., 28 (1974),
pp. 537–542.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 1025–1049

ON THE CONVERGENCE OF A CLASS OF MULTILEVEL
METHODS FOR LARGE SPARSE MARKOV CHAINS∗

PETER BUCHHOLZ† AND TUǦRUL DAYAR‡

Abstract. This paper investigates the theory behind the steady state analysis of large sparse
Markov chains with a recently proposed class of multilevel methods using concepts from algebraic
multigrid and iterative aggregation-disaggregation. The motivation is to better understand the con-
vergence characteristics of the class of multilevel methods and to have a clearer formulation that will
aid their implementation. In doing this, restriction (or aggregation) and prolongation (or disaggrega-
tion) operators of multigrid are used, and the Kronecker-based approach for hierarchical Markovian
models is employed, since it suggests a natural and compact definition of grids (or levels). However,
the formalism used to describe the class of multilevel methods for large sparse Markov chains has no
influence on the theoretical results derived.

Key words. Markov chains, multigrid, aggregation-disaggregation, Kronecker-based numerical
techniques, multilevel methods

AMS subject classifications. 60J27, 65F50, 65F10, 65B99, 65F15, 65F05, 15A72

DOI. 10.1137/060651161

1. Introduction. Markov chains (MCs) are a popular mathematical tool to
model systems from various application areas like engineering, computer science, bi-
ology, or economics. For system analysis often one needs the steady state distribution
of the MC to compute result measures for the modeled system. The problem in the
continuous-time case is then to solve

(1.1) πQ = 0 subject to πe = 1 and π ≥ 0,

where Q is the infinitesimal generator or generator matrix of the continuous-time
Markov chain (CTMC) underlying the modeled system, π is its (row) stationary
probability vector, and e is the column vector of ones of appropriate length. We
assume that the state space is finite and contains n states numbered starting from
0; Q is irreducible, implying π > 0; and π is also the steady state vector. The
nonnegative off-diagonal elements of Q represent exponential transition rates between
different states, and its diagonal elements are negated row sums of its off-diagonal
elements. Hence, Q has row sums of zero (i.e., Qe = 0) and is a singular matrix of rank
(n− 1), and (1.1) represents a homogeneous linear system subject to a normalization
condition, so that its solution vector π can be uniquely determined [29, Chap. 1]. At
this level, states of the CTMC are numbered by consecutive integers. However, in
almost all applications CTMCs result from some high level model like a stochastic
automata network, a queueing network, or a stochastic Petri net. In all these cases,
the state space is multidimensional and is mapped for solution onto a set of consecutive

∗Received by the editors January 30, 2006; accepted for publication (in revised form) by D. A.
Bini March 13, 2007; published electronically October 31, 2007. Part of this work has been carried
out through a grant from the Alexander von Humboldt Foundation at Dortmund University and
grant TÜBA-GEBİP from the Turkish Academy of Sciences.

http://www.siam.org/journals/simax/29-3/65116.html
†Informatik IV, Universität Dortmund, D-44221 Dortmund, Germany (peter.bucholz@cs.uni-

dortmund.de).
‡Department of Computer Engineering, Bilkent University, TR-06800 Bilkent, Ankara, Turkey

(tugrul@cs.bilkent.edu.tr.).

1025

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1026 P. BUCHHOLZ AND T. DAYAR

integers. The multidimensional structure can be exploited in a compact representation
of Q and can also be exploited to develop fast solvers for the computation of π.

Practical problems arise due to the state space size of MCs resulting from ap-
plications, which often grows exponentially with the number of components in the
specification. A popular way of dealing with this so-called state space explosion prob-
lem is to employ Kronecker- (or tensor)-based representations of Q, which remain
compact even for considerably large state spaces. In the Kronecker-based approach,
the system of interest is modeled so that it is formed of smaller interacting compo-
nents, and its larger underlying generator matrix is neither generated nor stored but
rather represented using Kronecker products of the smaller component matrices. This
introduces significant storage savings at the expense of some overhead in the solution
phase. In order to analyze large structured Markovian models efficiently, various
algorithms for vector-Kronecker product multiplication are devised [14, 16, 17] and
used as kernels in iterative solution methods. The most effective solvers known for
Kronecker representations of dimension four or larger are multilevel (ML) methods
[11] and block successive over relaxation (BSOR) preconditioned projection methods
[12] as recently shown empirically by comparing different solvers on a large number of
hierarchical Markovian models (HMMs). Unfortunately, solvers using BSOR [10, 31]
are sensitive to the ordering of components, the block partitionings chosen, and the
amount of fill-in in the factorized diagonal blocks, so that a robust implementation
for arbitrary models is difficult to achieve.

In this paper, we investigate the theory behind the steady state analysis of large
sparse MCs with the class of ML methods proposed in [11] using concepts from al-
gebraic multigrid (AMG) [6, Chap. 8], [24] and iterative aggregation-disaggregation
(IAD) [29, Chap. 6]. Our motivation is to better understand the convergence char-
acteristics of the class of ML methods and to have a clearer formulation that will
aid their implementation. Convergence analysis of a two-level IAD method for MCs
and its equivalence to AMG is provided in [20]. Another paper that investigates the
convergence of a two-level IAD method for MCs using concepts from multigrid is [21].
Here we consider more than two levels, different types of smoothers, different types
of cycles, and different orders of aggregation. In doing this, we use restriction (or
aggregation) and prolongation (or disaggregation) operators of multigrid, and employ
the Kronecker-based approach for HMMs in [11]. This is for three reasons. First,
the hierarchy present in the HMM description suggests a natural definition of grids
(or levels). This simplifies the description of the class of ML methods. Second, with
the HMM description, one can store the aggregated MC at each level during imple-
mentation compactly in Kronecker form. It is not clear how the same effect can be
achieved with an MC in sparse format (see [19]). Third, Kronecker operations to
define large MCs underlying structured representations are natural for many appli-
cation areas since complex systems are usually composed of interacting components.
Almost all MCs resulting from applications can be represented as HMMs [15], and this
representation can be derived from the specification using an appropriate modeling
tool [1]. Otherwise, the HMM formalism used in this paper to describe the class of
ML methods for large sparse MCs has no influence on the theoretical results derived.
In general, our approach can be applied for any irreducible MC with a set of nested
partitions defined on its state space.

The next section introduces the Kronecker-based description of CTMCs under-
lying HMMs on a small example. The third section presents the proposed class of
ML methods for HMMs with multiple macrostates and discusses how they work. The

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1027

fourth section provides results on the convergence of ML methods. The fifth sec-
tion illustrates the convergence behavior of the class of ML methods on two larger
problems. The sixth section concludes the paper.

In what follows, calligraphic uppercase letters denote sets and lists, uppercase
letters denote matrices, sets are defined using curly brackets, lists are defined using
square brackets, matrices (and vectors) are defined using brackets, | · | denotes the
cardinality of a set (list) when its argument is a set (list), ∅ denotes the empty set,
|| · || denotes the norm of a vector, ·T denotes the transpose operator, and diag(·)
represents a diagonal matrix having its vector argument along its diagonal.

2. Hierarchical Markovian models. HMMs are defined using the operations
of Kronecker product and Kronecker sum [32]. First we introduce these operations.

Definition 2.1. The Kronecker product of two matrices X ∈ R
rX×cX and Y ∈

R
rY ×cY is written as X⊗Y and yields a block matrix Z with rX×cX blocks each of size

rY ×cY , where the (i, j)th block equals x(i, j)Y for i = 0, . . . , rX−1, j = 0, . . . , cX−1.
The Kronecker sum of two square matrices U ∈ R

rU×rU and V ∈ R
rV ×rV is

written as U ⊕V and yields the matrix W ∈ R
rUrV ×rUrV , which is defined in terms of

two Kronecker products as W = U ⊗ IrV + IrU ⊗V . Here IrU and IrV denote identity
matrices of orders rU and rV , respectively.

Both Kronecker product and Kronecker sum are associative and defined for more
than two matrices. For further properties of Kronecker operations, see [29].

HMMs consist of multiple low level models (LLMs) which can be perceived as
components, and a high level model (HLM) that defines how LLMs interact. The HLM
is characterized by a single matrix, whereas each LLM is characterized by multiple
matrices that define its interaction with other LLMs. The order of each LLM matrix is
equal to the number of states of the particular component to which the matrix belongs.
A formal definition of HMMs can be found in [8, pp. 387–390]. Here we extend the
definition from [12] and introduce HMMs on an example. An HMM describes a CTMC
and its generator matrix Q. Since we consider the steady state analysis of irreducible
finite CTMCs, Q is sufficient to characterize the CTMC. We name the states of the
HLM as macrostates, those of Q as microstates, and remark that macrostates define
a partition of the microstates.

Definition 2.2. In a given HMM, let K be the number of LLMs, S(k) =
{0, 1, . . . , |S(k)| − 1} be the state space of LLM k for k = 1, 2 . . . ,K, S(K+1) =

{0, 1, . . . , |S(K+1)| − 1} be the state space of the HLM, S(k)
j be the partition of states

of LLM k mapped to macrostate j ∈ S(K+1) so that ∪jS(k)
j = S(k) and S(k)

i ∩S(k)
j = ∅

when i 	= j, t0 be a local transition (one per LLM), Ti,j be the set of LLM nonlocal
transitions in element (i, j) of the HLM matrix, and Dj be the diagonal correction
matrix that sums the rows of Q corresponding to macrostate j to zero. Then the di-
agonal block (j, j) of Q corresponding to element (j, j) of the HLM matrix is given
by

(2.1) Q(j, j) =
K⊕

k=1

Q
(k)
t0 (S(k)

j ,S(k)
j) +

∑
te∈Tj,j

K⊗
k=1

Q
(k)
te (S(k)

j ,S(k)
j) + Dj ,

and, when there are multiple macrostates, the off-diagonal block (i, j) of Q correspond-
ing to element (i, j) of the HLM matrix is given by

(2.2) Q(i, j) =
∑

te∈Ti,j

K⊗
k=1

Q
(k)
te (S(k)

i ,S(k)
j),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1028 P. BUCHHOLZ AND T. DAYAR

where Q
(k)
te (S(k)

i ,S(k)
j) is a submatrix of order (|S(k)

i |×|S(k)
j |) including all transitions1

between states from S(k)
i and S(k)

j for LLM k under te.
We remark that Dj can be expressed as a sum of Kronecker products, as follows.
Proposition 2.3. If Dj is the diagonal correction matrix that sums the rows of

Q corresponding to macrostate j to zero, then

Dj = −
K⊕

k=1

diag(Q
(k)
t0 (S(k)

j ,S(k)
j)e)

−
∑

i∈S(K+1)

∑
te∈Tj,i

K⊗
k=1

diag(Q
(k)
te (S(k)

j ,S(k)
i)e) for j ∈ S(K+1).

In order to enable the efficient implementation of numerical solvers, most of the
time Dj is precomputed and stored explicitly as a vector. However, the off-diagonal
part of Q is never stored explicitly, but is represented in memory through Definition
2.2 as sums of Kronecker products of small matrices, which are generally very sparse
and therefore held in row sparse format [29, pp. 80–81].

For a definition of mapping used in the next proposition, see, for instance, [30,
pp. 192–197].

Proposition 2.4. When the multidimensional states of Q are identified by the
tuple (s(1), s(2), . . . , s(K), j), where s(k) ∈ S(k) is the state of LLM k for k = 1, 2, . . . ,K
and j ∈ S(K+1) is the corresponding macrostate, the Kronecker product operation
orders the state space of Q lexicographically, where each state is linearized through the
one-to-one onto mapping

(s(1), s(2), . . . , s(K), j) ←→
K∑

k=1

s(k)
K∏

l=k+1

|S(l)
j | +

j−1∑
i=0

K∏
k=1

|S(k)
i | ∈ {0, 1, . . . , n− 1},

where n =
∑|S(K+1)|−1

j=0

∏K
k=1 |S

(k)
j |.

The microstates corresponding to each macrostate result from the Cartesian (or
cross) product [30, pp. 123–124] of the state space partitions of LLMs that are mapped
to that particular macrostate. In contrast to other representations of CTMCs using
Kronecker operators (e.g., [29, Chap. 9]), HMMs are generated in such a way that only
reachable states are considered [7, 8]. Note that each macrostate in an HLM may have
a different number of microstates if LLMs have partitioned state spaces. When there
are multiple macrostates, Q is effectively a block matrix having as many blocks in
each dimension as |S(K+1)|. The diagonal and off-diagonal blocks of this partitioning
are respectively the Qj,j and Qi,j matrices defined by (2.1) and (2.2). Due to the
Kronecker structure suggested by Definitions 2.1 and 2.2, each of the blocks defined
by the HLM matrix is also formed of blocks, and hence HMMs have nested block
partitionings [10, 31].

Now, let us consider a small example HMM which gives rise to a (5× 5) CTMC.
In [13, sec. 5], we step through the ML method on this example, which is chosen
deliberately to be very small. After this small example, we briefly present two larger
examples which will be used in section 5 to show the convergence behavior of the class
of ML methods.

1In this section, the concept of transition is used to refer to those that take place at the HMM
level, except for this case, where it is used to refer to nonzeros in a matrix at the state level.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1029

Table 2.1

Mapping between LLM states and HLM states in Example 1.

LLM 1 LLM 2 HLM # of microstates
{0,1} {0,1} {0} 2 . 2 = 4
{2} {2} {1} 1 . 1 = 1

Example 1. The HLM of two states describes the interaction among two LLMs
(i.e., K = 2), each of which has three states. All states are numbered starting from 0.
The mapping between LLM states and HLM states and the number of microstates are
given in Table 2.1. In this example, Q has the following states in its rows and columns:
{0, 1}×{0, 1}×{0} ∪ {2}×{2}×{1} = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (2, 2, 1)}.
One can think of these five states written in the given order as corresponding to the
integers 0 through 4.

The values of the nonzeros in Q are determined by the rates of the transitions
and their associated matrices. In Example 1, two transitions denoted by t0 and t1
take place and affect the LLMs. Transition t0 covers all local transitions inside the
LLMs, whereas transition t1 is captured by the following (2 × 2) HLM matrix:

0 1

(2.3)
0
1

(
t1

t1

)
.

To each transition in the HLM matrix corresponds a Kronecker product of two
(i.e., number of LLMs, K) LLM matrices. The matrices associated with those LLMs
that do not participate in a transition are identity. LLM 1 participates in t1 with the

matrix Q
(1)
t1 , and LLM 2 participates in t1 with the matrix Q

(2)
t1 . In this example, the

transition t1 affects exactly two LLMs.
Other than Kronecker products due to the transitions in (2.3), there is a Kro-

necker sum implicitly associated with each diagonal element of the HLM matrix. Each
Kronecker sum is formed of two (i.e., K) LLM matrices corresponding to local tran-
sition t0. In the HLM matrix of (2.3), there does not exist any nonlocal transition
along the diagonal. In general, this need not be so, as can be seen from Definition
2.2.

In our example, the second term in (2.1) is missing, and the matrices associated
with t0 and t1 are given by

Q
(1)
t0 =

⎛⎝ 0 1 0
1 0 0
0 0 0

⎞⎠ , Q
(1)
t1 =

⎛⎝ 0 0 2
0 0 1
1 0 0

⎞⎠ , Q
(2)
t0 =

⎛⎝ 0 1 0
1 0 0
0 0 0

⎞⎠ ,

Q
(2)
t1 =

⎛⎝ 0 0 1
0 0 0
1 0 0

⎞⎠ .

Then the CTMC underlying the HMM can be obtained from
(2.4)

Q =

(
Q

(1)
t0

({0, 1}, {0, 1})
⊕

Q
(2)
t0

({0, 1}, {0, 1}) Q
(1)
t1

({0, 1}, {2})
⊗

Q
(2)
t1

({0, 1}, {2})

Q
(1)
t1

({2}, {0, 1})
⊗

Q
(2)
t1

({2}, {0, 1}) Q
(1)
t0

({2}, {2})
⊕

Q
(2)
t0

({2}, {2})

)
+D,

where D is the diagonal correction matrix that sums the rows of Q to zero; hence,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1030 P. BUCHHOLZ AND T. DAYAR

written explicitly, we have

(2.5) Q =

⎛⎜⎜⎜⎜⎝
−4 1 1 0 2

1 −2 0 1 0
1 0 −3 1 1
0 1 1 −2 0
1 0 0 0 −1

⎞⎟⎟⎟⎟⎠ .

If we neglect the diagonal of Q, which is handled separately, from Definition 2.2 it
follows that each nonzero element of the HLM matrix is essentially a sum of Kronecker
products, since Kronecker sums can be expressed as sums of Kronecker products. This
has a very nice implication for the choice of grids in the proposed ML method when
LLM aggregation is used in forming the coarse grids. LLMs 1 through K and the
HLM define the least coarse (in other words, the finest) grid. This grid is Q and in
our example has five states. Regarding the intermediate grids, let us assume that
LLMs are aggregated starting from 1 up to K. Thus LLMs 2 through K and the
HLM define the first coarser grid when LLM 1 is aggregated. In our example, this
grid has the states in {(0, 0), (1, 0), (2, 1)}, where the first state in each tuple is an
LLM 2 state and the second state in each tuple is the corresponding HLM state. The
HLM and LLMs 3 through K define the second coarser grid when LLMs 1 and 2 are
aggregated. In our example, this grid is the coarsest grid corresponding to the HLM
and has the states {(0), (1)}. There are no other LLMs left to be aggregated in our
example; otherwise aggregation continues with the next LLM.

Now, let us concentrate on the sizes of the grids defined by the LLMs and the
HLM for the assumed order in which LLMs are aggregated. In Example 1, the grids
defined in this way by LLMs 1–2 and the HLM, by LLM 2 and the HLM, and by the
HLM alone have respectively the sizes (5×5), (3×3), (2×2) (see Table 2.1 and (2.1)–
(2.2)). Clearly, we are not limited to aggregating LLMs in the order 1 through K,
and can consider other orderings. The number of possible orderings of LLMs equals
K!.

Example 2. The second example we consider is a polling system. Two servers
serve customers from K finite capacity queues, which are visited by the servers in
cyclic order. We assume that each queue has a capacity of 3, and customers arrive
according to a Poisson process with rate 1.5 and are distributed with queue specific
probabilities among the queues. If a server visits a nonempty queue, it serves one
customer and then moves to the next queue. A server arriving at an empty queue
immediately travels to the next queue. Service and traveling times are exponentially
distributed with rates 1 and 10, respectively. Each LLM describes one queue, and
macrostates for this model are defined according to the number of servers serving
customers at a queue or traveling to the next queue. For each LLM we obtain 20
states partitioned into three subsets. The complete model has

(
K+1
K−1

)
macrostates.

Table 2.2 contains the number of microstates for different values of K.
Example 3. The third example describes an availability model with K LLMs.

Each LLM consists of two active components and a cold spare which becomes active
when a component fails. Time to failure is exponentially distributed with mean 10k

for the components of the kth LLM. With 90% probability a failure is local, requiring
a local repair with an exponential duration and mean 10−k+1 for the kth component.
With a probability of 10%, a failure has to be repaired by a global repair unit; repair
times are identical to the local case. The system has one global repair unit which
repairs failed components with preemptive priority such that components from the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1031

Table 2.2

Number of macrostates and state space sizes versus number of LLMs in Examples 2 and 3.

Polling example Availability example

K |S(K+1)| n |S(K+1)| n
2 – – 1 100
3 6 1,020 1 1,000
4 10 7,008 1 10,000
5 15 42,880 1 100,000
6 21 243,456 1 1,000,000
7 28 1,311,744 1 10,000,000

first LLM get the highest priority and components from the Kth LLM obtain the
least priority. As can be seen in Table 2.2, the system contains one macrostate and
10K microstates. Note that this is an example in which different time scales occur
and is therefore expected to be harder to solve by classical iterative methods.

In the next section, we introduce the class of ML methods with the grid choices
suggested by the Kronecker structure of HMMs and remark that, just like Q, none of
the grids except the coarsest is explicitly generated.

3. A class of ML methods. The class of ML methods presented in this section
are related to IAD for the analysis of MCs [29, sec. 6.3] and AMG for general systems
of equations [24]. IAD is applied in the context of MCs to coefficient matrices with
a two-level block structure, where blocks are loosely coupled. Different variants of
the method exist; all combine the solution of an aggregated system, whose elements
correspond to blocks in the two-level block partitioning, with iteration steps or so-
lutions of systems of equations at the block level. The solution of the aggregated
system distributes the steady state probability mass over the loosely coupled subsets
of states, whereas at the block level the probability mass is distributed inside the
subsets. AMG solves a system of equations by performing iterations on systems of
equations of decreasing size. Our approach can be interpreted as a specific form of
AMG for singular M-matrices, a class of matrices which will be defined in the next
section. However, like in geometric multigrid, our grids have a physical meaning,
since they are defined according to subsets of LLMs. Furthermore, the grids may
change from one ML iteration to the next by varying the order in which LLMs are
aggregated. Like in geometric multigrid, the goal is to achieve convergence that is
independent of the size of the original problem. This means that the number of ML
iterations to reach a predefined tolerance should be more or less independent of the
number of LLMs for a given model structure. The proposed class of ML methods are
related to IAD, since aggregation-disaggregation steps are used to realize the map-
ping between different levels. However, in contrast to IAD, varying and possibly more
than two levels are defined, and the Kronecker structure is exploited to represent the
aggregated matrix at each level. This implies that the class of ML methods are also
expected to be efficient for large models where LLMs are tightly coupled.

3.1. Algorithms. One iteration of AMG over a system of linear equations is re-
ferred to as a cycle. Throughout the text, we use ML iteration and cycle interchange-
ably. The order in which the smaller aggregated systems are visited during each AMG
iteration gives rise to different cycle types. Within an AMG cycle, the iterative method
used to improve the solution of each aggregated system is called a smoother, since it is
perceived to smooth the error in the solution at that level. The class of ML methods
for HMMs with multiple macrostates have the capability of using (V, W, F) cycles

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1032 P. BUCHHOLZ AND T. DAYAR

[33], (power, Jacobi over relaxation (JOR), successive over relaxation (SOR)) methods
as smoothers, and (fixed, circular, dynamic) orders in which LLMs can be aggregated
in an ML iteration. These parameters are respectively denoted by C for cycle type,
S for smoother type, and O for order of aggregating LLMs. Hence, C ∈ {V,W,F},
S ∈ {POWER, JOR, SOR}, and O ∈ {FIXED,CIRCULAR,DY NAMIC}. In a
particular ML solver, C, S, and O are fixed at the beginning and do not change.

Algorithm 1 is the driver of the ML solver. It starts executing at the finest grid
involving the LLMs and the HLM, and then invokes the recursive ML function in
Algorithm 2 with the order in which LLMs are to be aggregated in the list C. Each
pass through the body of the repeat-until loop in Algorithm 1 corresponds to one
ML iteration (i.e., cycle). Observe that steps 3 through 8 in Algorithm 2 are almost
identical to the statements between steps 3 and 4 in Algorithm 1.

Algorithm 1. ML driver.
main()
D = [1, 2, . . . ,K + 1]; Q̃D = Q; xD = initial approximation; it = 0; stop = FALSE;
(step 1)
if (C == W or C == F) then (step 2)

γ = 2;
else

γ = 1;
repeat (step 3)

x
′

D = S(Q̃D, xD, w, ν1);
remove D1 from D by aggregation to give C;
Q̃C = Px

′
D
Q̃DRD; xC = x

′

DRD;

if (γ == 1) then
yC = ML(Q̃C , xC , C, γ);

else
yC = ML(Q̃C , xC , C, γ);
yC = ML(Q̃C , yC , C, γ);

yD = yCPx
′
D
;

y
′

D = S(Q̃D, yD, w, ν2);
if (C == F) then (step 4)

γ = 2;
xD = y

′

D; it = it + 1; (step 5)
xD = xD/(xDe); r = −xDQ̃D; (step 6)
if (it ≥ MAX IT or time ≥ MAX TIME or ‖r‖ ≤ STOP TOL) then (step 7)

stop = TRUE;
else if (O == DYNAMIC) then (step 8)

sort LLM indices D1,D2, . . . ,DK into increasing order of ‖rk‖,
where rk is the residual associated with LLM k and is computed from r;

else if (O == CIRCULAR) then
Dk = D

(k mod K)+1
for k = 1, 2, . . . ,K;

until(stop);
take xD as the steady state vector π of the HMM;

Algorithm 2. Recursive ML function on LLMs in D.
function ML(Q̃D, xD,D, γ)
if (|D| == 1) then

y
′

D = solve(Q̃D, xD) subject to y
′

De = 1; (step 1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1033

if (C == F) then (step 2)
γ = 1;

else
x

′

D = S(Q̃D, xD, w, ν1); (step 3)
remove D1 from D by aggregation to give C; (step 4)
Q̃C = Px

′
D
Q̃DRD; xC = x

′

DRD; (step 5)

if (γ == 1) then (step 6)
yC = ML(Q̃C , xC , C, γ);

else
yC = ML(Q̃C , xC , C, γ);
yC = ML(Q̃C , yC , C, γ);

yD = yCPx
′
D
; (step 7)

y
′

D = S(Q̃D, yD, w, ν2); (step 8)

return(y
′

D);

The variable γ in the two algorithms determines the number of recursive calls to
the ML function. It is initialized to 2 for a W- or an F-cycle and to 1 for a V-cycle
before ML starts executing for the first time. After this point, there are two places
where the value of γ changes, and these happen only for an F-cycle. Hence, for a
V-cycle γ remains 1, and for a W-cycle it remains 2, meaning for V- and W-cycles 1
and 2 recursive calls, respectively, are made to the ML function on the next coarser
grid. On the other hand, for an F-cycle γ is set to 1 at the boundary case of the
recursion (see step 2 in Algorithm 2). Hence, an F-cycle can be seen as a recursive
call to a W-cycle followed by a recursive call to a V-cycle. After the F-cycle is over,
γ is reset to 2 in step 4 of Algorithm 1 so as to be ready for a new ML iteration [33,
pp. 174–175].

Each ML iteration starts and ends with some number of iterations using the
smoother S. See respectively the two statements after step 3 and before step 4 in
Algorithm 1. The same is true for each execution of the recursive ML function at
intermediate grids, as can be seen in steps 3 and 8 of Algorithm 2. The first two
arguments of the call to S in both algorithms represent the grid to be used in the
smoothing process and the vector to be smoothed. The parameter ω in the call to S
is the relaxation parameter for JOR and SOR. Although the user can be given the
flexibility to change the numbers of pre- and postsmoothings in the two algorithms,
depending on the residual norms (see Algorithms 1 and 2 in [13]), we consider ν1

pre- and ν2 postsmoothings at each level in order to simplify the description of the
algorithms in this presentation.

The order of aggregating LLMs in each ML iteration is determined by the list
D defined in Algorithm 1. The elements of D from its head to its tail are denoted
respectively by D1,D2, . . . ,DK+1. The subscripts of these elements indicate their
positions in D. In each ML iteration, the HLM is always the last model to be handled
due to its special position in the hierarchy. Hence, DK+1 is given the value (K + 1)
and is associated with the HLM; the tail of D always has this value and does not
change. Initially, LLM k is associated with element Dk, which has the value k for
k = 1, 2, . . . ,K (see step 1 of Algorithm 1). In each ML iteration, LLMs are aggregated
according to these values starting from the element at the head of the list (see the
second statement in the repeat-until loop of Algorithm 1). Hence, LLM D1 is the first
LLM to be aggregated.

In the FIXED order of aggregating LLMs, the initial assignment of values to the
elements of D does not change after the ML method starts executing; this is the default

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1034 P. BUCHHOLZ AND T. DAYAR

order. In the CIRCULAR order, at the end of each ML iteration a circular shift of
elements D1 through DK in the list is performed; this ensures some kind of fairness
in aggregating LLMs in the next ML iteration. On the other hand, the DYNAMIC
order sorts the elements D1 through DK according to the residual norms mapped (or
restricted) to the corresponding LLM at the end of the ML iteration, and aggregates
the LLMs in this sorted order in the next ML iteration (see step 8 of Algorithm 1).
This ensures that LLMs which have smaller residual norms are aggregated earlier at
finer grids. We expect small residual norms to be indicative of good approximations
in those LLMs. Note that at each intermediate grid the recursive ML function is
invoked for the next coarser grid with the list of LLMs in C, which is formed by
removing the LLM at the head of the incoming list D (i.e., D1) by aggregation (see
step 4 in Algorithm 2). Once the list of LLMs is exhausted, that is (K + 1) is the
only value remaining in list D, backtracking from recursion starts by solving a linear
system as large as the HLM matrix (see step 1 in Algorithm 2). This is indicated by
the call to the function solve, which takes the coarsest grid Q̃D as input and produces
the solution y

′

D up to machine precision directly (i.e., by Gaussian elimination) if
|S(K+1)| is relatively small, else iteratively using the smoother S and the current
approximation xD as the starting vector.

The ML solver starts with xD, which is usually set to the uniform distribution, and
r as the corresponding residual vector. The repeat-until loop increments the number
of ML iterations denoted by it and continues until it reaches the maximum number of
iterations in MAX IT , solution time reaches MAX TIME, or the residual r reaches
the user-defined STOP TOL. We remark that the smoothers of choice require two
vectors of length n and two vectors (three in SOR) as long as the maximum number
of microstates per macrostate in the HMM. One of the vectors of length n in SOR
is required for the computation of residuals in the implementation of DYNAMIC
ordering of LLMs for aggregation. Furthermore, if one turns off the call(s) in Algo-
rithm 1 to Algorithm 2, Algorithm 1 reduces to an iterative solver in which (ν1 + ν2)
iterations are performed on Q with the iterative method S at each ML cycle. This is
a useful feature for debugging.

3.2. Operators and implementation. Before we discuss the operation that
computes the next coarser grid Q̃C from the grid Q̃D using the smoothed vector x

′

D
(see step 5 in Algorithm 2), let us define the state spaces of the grids used in the ML
method for large sparse MCs in terms of a mapping [30, pp. 192–197].

Definition 3.1. Let SD and SC respectively denote the state spaces of Q̃D and
Q̃C. Then the mapping fD : SD −→ SC represents the transformation of states in SD
to states in SC.

The mapping fD is surjective (i.e., onto); it satisfies

∃sD ∈ SD, fD(sD) = sC for each sC ∈ SC

and |SC | ≤ |SD|. When |SC | = |SD|, the mapping becomes bijective (i.e., one-to-one
onto). From Definition 3.1 and [30, p. 179], we have the next proposition.

Proposition 3.2. If f̃D denotes the converse of fD, then f̃D is a relation from
SC to SD and will not be a mapping unless |SC | = |SD| (i.e., fD is bijective).

Proposition 3.2 says that, if there is at least one state in SC to which multiple
states from SD are mapped under fD (i.e., |SC | < |SD|), then the converse of fD
cannot be a function; it is just a relation.

For HMMs, the Kronecker structure (see Definition 2.2 and Proposition 2.4) and
the order of component aggregation determine SD and SC as in the next proposition.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1035

Proposition 3.3. In Algorithms 1 and 2, the components in D and C, respec-
tively, define SD and SC for HMMs, and

SD =
⋃

j∈S(K+1)

×|D|
k=1S

(Dk)
j and SC =

⋃
j∈S(K+1)

×|C|
k=1S

(Ck)
j ,

where × is the Cartesian product operator. Furthermore,

|SD| =

|S(K+1)|−1∑
j=0

|D|∏
k=1

|S(Dk)
j | and |SC | =

|S(K+1)|−1∑
j=0

|C|∏
k=1

|S(Ck)
j |.

At the finest level in Algorithm 1, |SD| = n.
Observe from Definition 2.2 that SD and SC for HMMs given in Proposition 3.3

satisfy the mapping fD : SD −→ SC in Definition 3.1.
Now we return to the computation of the coarser grid and the coarser approx-

imation. For each state sC ∈ SC , the columns of the grid Q̃D corresponding to the
states in SD that get mapped to the same state sC are summed. The aggregation
on the columns of Q̃D is also performed on the columns of the smoothed row vector
x

′

D yielding the vector xC in step 5 of Algorithm 2. These are achieved by using the
restriction [25] (or aggregation) operator defined next.

Definition 3.4. The (|SD| × |SC |) restriction operator RD for the mapping
fD : SD −→ SC has its (sD, sC)th element given by

rD(sD, sC) =

{
1 if fD(sD) = sC ,
0 otherwise,

for sD ∈ SD and sC ∈ SC .

Proposition 3.5. The restriction operator RD is nonnegative, has only a single
nonzero with the value 1 in each row, and therefore row sums of 1. Furthermore,
since there is at least one nonzero in each column of RD, it is also the case that
rank(RD) = |SC |. Thus the product Q̃DRD yields a column aggregated grid whose row
sums are zero if Q̃D has row sums of zero.

For each state sC ∈ SC , the rows of Q̃DRD corresponding to the states in SD that
are mapped to the same state sC are multiplied with the corresponding normalized
elements of the smoothed row vector x

′

D and summed. This is achieved by using the
prolongation [25] (or disaggregation) operator defined next.

Definition 3.6. The (|SC | × |SD|) prolongation operator Px
′
D

for the mapping

fD : SD −→ SC has its (sC , sD)th element given by

px′
D
(sC , sD) =

{
x

′

D(sD)/
∑

sD∈SD,fD(sD)=sC
x

′

D(sD) if fD(sD) = sC ,

0 otherwise,

for sD ∈ SD and sC ∈ SC .

Proposition 3.7. If x
′

D > 0, the prolongation operator Px
′
D

is nonnegative, has

the same nonzero structure as the transpose of RD, a single nonzero in each column,
and at least one nonzero in each row, implying rank(Px

′
D
) = |SC |. Furthermore, when

x
′

D > 0, each row of Px
′
D

is a probability vector, implying that Px
′
D

has row sums of 1

just like RD. Thus premultiplying Q̃DRD by Px
′
D

yields the (|SC | × |SC |) square grid

Q̃C, which has row sums of zero regardless of the norm of x
′

D.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1036 P. BUCHHOLZ AND T. DAYAR

The prolongation operator depends not only on SD and SC , but also on the
smoothed vector x

′

D, which is indicated by using the subscript x
′

D rather than D.

This implies that the elements of Q̃C depend on x
′

D and will be different in each
iteration of the ML solver.

Lemma 3.8. If x
′

D > 0, then Px
′
D
RD = IC, where IC is the identity matrix of

order |SC |.
Proof. The identity follows from Propositions 3.5 and 3.7 by the facts that Px

′
D
≥

0, RD ≥ 0, Px
′
D

has the same nonzero structure as RT
D, Px

′
D
e = e, and eTRT

D =

eT .
When x

′

D > 0, we can state the next corollary [23, p. 387] using RD(Px
′
D
RD)Px

′
D

=

RD(IC)Px
′
D

= RDPx
′
D

from Lemma 3.8, RD ≥ 0, RDe = e and Px
′
D

≥ 0, Px
′
D
e = e

from Propositions 3.5 and 3.7, respectively.
Corollary 3.9. When x

′

D > 0, the (|SD| × |SD|) matrix

Hx
′
D

= RDPx
′
D

defines a nonnegative projector (i.e., Hx
′
D

≥ 0 and H2
x
′
D

= Hx
′
D

) which satisfies

Hx
′
D
e = e.

Lemma 3.10. If x
′

D > 0, then x
′

DHx
′
D

= x
′

D.

Proof. The identity follows from the definitions of restriction and prolongation
operations (see Definitions 3.4 and 3.6) and the fact that the restricted and then
prolonged row vector is x

′

D.
The analysis in section 4 is based on showing that the coarser grid Q̃C is an

irreducible CTMC and xC > 0 if the finer grid Q̃D is an irreducible CTMC and
x

′

D > 0. This has been done for HMMs with one macrostate in [9, p. 348]. In section
4, we show the results for the mapping f : SD −→ SC in Definition 3.1.

Step 7 in Algorithm 2 corresponds to the opposite of what is done on x
′

D in step
5; that is, it performs disaggregation using the newly computed vector yC and the
prolongation operator Px

′
D

(which is based on the smoothed vector x
′

D) to obtain the

vector yD. The next result follows from Proposition 3.7
Proposition 3.11. If yC > 0 and x

′

D > 0, then yD = yCPx
′
D

> 0, since

eTPx
′
D
> 0.

Similar aggregation and disaggregation operations are performed in Algorithm 1
at the finest grid Q.

The Kronecker representation of Q̃C for an HMM with one macrostate is given
in [9, p. 347]. Here we extend it to multiple macrostates and show that Q̃C can be
expressed as a sum of Kronecker products as in Definition 2.2 using

∑
i,j∈S(K+1) |Ti,j |

vectors each of length at most maxj∈S(K+1)(
∏|C|

k=2 |S
(Ck)
j |) and the matrices corre-

sponding to the components in C excluding (K + 1), which denotes the HLM (see
Proposition 3.3). More specifically, we have the next definition.

Definition 3.12. If h = D1 is the index of the aggregated component, then
the sCth element of the vector corresponding to the teth term in block (i, j) of the
aggregated CTMC Q̃C is defined as

a(C,te),(i,j)(sC) =

(∑
sD∈SD,fD(sD)=sC

x
′

D(sD) a(D,te),(i,j)(sD) (eTsD(h)Q
(h)
te (S(h)

i ,S(h)
j)e)

)
xC(sC)

for sC ∈ SC , te ∈ Ti,j , and i, j ∈ S(K+1),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1037

where a(D,te),(i,j) = e if D corresponds to the finest level, sD(h) ∈ S(h), and esD(h) is

the sD(h)th column of the identity matrix of order |S(h)
i |.

With this definition, blocks of the matrix Q̃C become

Q̃C(j, j) =

|C|−1⊕
k=1

Q
(Ck)
t0 (S(Ck)

j ,S(Ck)
j) +

∑
te∈Tj,j

|C|−1⊗
k=1

diag(a(C,te),(j,j))Q
(Ck)
te (S(Ck)

j ,S(Ck)
j)

−
|C|−1⊕
k=1

diag(Q
(Ck)
t0 (S(Ck)

j ,S(Ck)
j)e)

−
∑

i∈S(K+1)

∑
te∈Tj,i

|C|−1⊗
k=1

diag(a(C,te),(j,i)) diag(Q
(Ck)
te (S(Ck)

j ,S(Ck)
i)e)

for j ∈ S(K+1),

Q̃C(i, j) =
∑

te∈Ti,j

|C|−1⊗
k=1

diag(a(C,te),(i,j))Q
(Ck)
te (S(Ck)

i ,S(Ck)
j) for i, j ∈ S(K+1), i 	= j.

Observe from Proposition 2.3 that the last two terms of Q̃C(j, j) return a diagonal
matrix which sums the rows of Q̃C(j, j) to zero. Furthermore, the vectors a(D,te),(i,j)

for te ∈ Ti,j and i, j ∈ S(K+1) at the finest level consist of all 1’s, and therefore need not

be stored. When the recursion ends at the HLM, Q̃C is a (|S(K+1)|×|S(K+1)|) CTMC,
and therefore is generated and stored explicitly in sparse format so that it can be solved
either directly or iteratively, as we discussed. We remark that a(C,te),(i,j) = e for those

te which have all Q
(Ck)
te (S(Ck)

i ,S(Ck)
j) as diagonal matrices of size (|S(Ck)

i |×|S(Ck)
j |) with

1’s along their diagonal for k = 1, 2, . . . , |C| − 1 and i, j ∈ S(K+1). Since component
matrices forming Q̃C(i, j) for i, j ∈ S(K+1), i 	= j, can very well be rectangular, we
refrain from using I, and remark that such vectors need not be stored either.

The next section presents results on the convergence of the proposed class of ML
methods for large sparse MCs.

4. Convergence of ML methods. Convergence analysis of AMG with a post-
smoother of the Richardson relaxation type (see [26, p. 412]) and a two-level grid for
symmetric positive definite linear systems arising from finite element approximations
to a particular differential operator appears in [18]. Therein, it is shown that the con-
vergence rate of the method is independent of the problem size when the relaxation
parameter of the smoother is chosen appropriately [18, p. 480]. On the other hand,
[27] casts AMG as a special case of multi-iterative methods for positive definite linear
systems in which two or more iterative techniques are successively used in each iter-
ation to improve the error in different subspaces. When the method is AMG, one of
these multi-iterative methods has an iteration matrix associated with the coarse grid
correction. A convergence analysis for a two-level grid with a Richardson iteration as
the presmoother and a prolongation operator with (block) antidiagonal structure is
provided. Using information about the eigenvalues of the coefficient matrix together
with the particular smoother, it is shown that the AMG method possesses a con-
vergence rate independent of the problem size for banded (block) Toeplitz matrices.
Although the POWER smoother used by the proposed class of ML methods is also
a Richardson relaxation, as will be shown in this section, the methods are geared
towards CTMCs, which have different characteristics. Recently, in [22] the results in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1038 P. BUCHHOLZ AND T. DAYAR

[21] are improved, and an asymptotic convergence result is provided for a two-level
IAD method which uses postsmoothings of the POWER type. However, fast conver-
gence cannot be guaranteed in a general setting even when there are only two levels
[22, p. 340]. Hence, the results in the next subsections should be received as a step
towards improving the formulation and understanding the convergence behavior of
the proposed class of ML methods.

Let D represent the current level and C represent the next coarser level in the
ML iteration, as in Algorithms 1 and 2. Let SD and SC denote respectively the state
spaces of Q̃D and Q̃C , and assume that the mapping of states from SD to the states in
SC is onto and satisfies |SC | ≤ |SD| as in Definition 3.1. The results that are presented
in this section for Algorithms 1 and 2 are general in that the Kronecker representation
of the grids particular to HMMs is not utilized.

4.1. Irreducibility of the coarser grids. Recall that RD ≥ 0, RDe = e,
eTRD > 0 from Proposition 3.5, and if x

′

D > 0, then Px
′
D
≥ 0, Px

′
D
e = e, eTPx

′
D
> 0

from Proposition 3.7. Now, consider the definition of irreducibility given in [23, p.
209] and [29, p. 13]. Then the following lemma, which will be used to discuss the
convergence of the ML method, can be proved.

Lemma 4.1. The coarser grid Q̃C = Px
′
D
Q̃DRD is an irreducible CTMC and

xC = x
′

DRD > 0 if the finer grid Q̃D is an irreducible CTMC and x
′

D > 0.
Proof. First, we show that Q̃C = Px

′
D
Q̃DRD is an irreducible CTMC. Without

losing generality, consider the pair of different states sD, s
′
D ∈ SD. Through f :

SD −→ SC in Definition 3.1, this pair of states are mapped respectively to the states
sC , s

′
C ∈ SC (i.e., f(sD) = sC and f(s′D) = s′C). Since Q̃D is irreducible, there exists a

path of transitions from sD to s′D in SD in the form sD = s1, s2, . . . , sm = s′D, where
m ≤ |SD|, sk ∈ SD, and q̃D(sk, sk+1) > 0 for k ∈ {1, 2, . . . ,m−1}. Mapping this path
onto SC yields the path sC = t1, t2, . . . , tm = s′C , where f(sk) = tk ∈ SC . Now, let etk
denote the tkth column of IC . Then, in the mapped path, we either have tk = tk+1

or q̃C(tk, tk+1) > 0, where the latter follows from

q̃C(tk, tk+1) = eTtkQ̃Cetk+1

= (eTtkPx
′
D
)Q̃D(RDetk+1

) ≥ px′
D
(tk, sk)q̃D(sk, sk+1)rD(sk+1, tk+1),

since xD(sk) > 0 (implying px′
D
(tk, sk) > 0 from Definition 3.6), q̃D(sk, sk+1) > 0, and

f(sk+1) = tk+1 (implying rD(sk+1, tk+1) = 1 from Definition 3.4). Thus we conclude
that s′C is reachable from sC .

We have effectively shown that each state in Q̃C is reachable from every other
state. The question that arises at this point is whether a row of Q̃C can become
zero after the restriction. The answer is no, as long as SC has multiple states (i.e.,
|SC | > 1), since all states in SD that are mapped to a particular state in SC cannot
have all their transitions among themselves. This would imply that Q̃D is reducible,
which is a contradiction. Furthermore, since the row sums of Q̃C are zero (i.e., Q̃Ce =
(Px

′
D
Q̃DRD)e = Px

′
D
Q̃D(RDe) = Px

′
D
Q̃De = 0 because Q̃D is a CTMC and Q̃De = 0),

its diagonal must be equal to its negated off-diagonal row sums. Hence, Q̃C is an
irreducible CTMC.

Now we show that xC > 0. Since xC = x
′

DRD, x
′

D = eTdiag(x
′

D), where

diag(x
′

D) is the diagonal matrix with x
′

D along its diagonal, diag(x
′

D)RD has the same

nonzero structure as RD, and eTRD > 0, we have xC = x
′

DRD = (eTdiag(x
′

D))RD =

eT (diag(x
′

D)RD) > 0 when x
′

D > 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1039

Corollary 4.2. If Q̃D is an irreducible CTMC, x
′

D > 0, and x
′

DQ̃D = 0, then

xCQ̃C = 0, where Q̃C = Px
′
D
Q̃DRD and xC = x

′

DRD.

Proof. We have xCQ̃C = (x
′

DRD)(Px
′
D
Q̃DRD) = (x

′

DRDPx
′
D
)Q̃DRD = (x

′

DHx
′
D
)

Q̃DRD = (x
′

D)Q̃DRD = (x
′

DQ̃D)RD = 0, since x
′

DHx
′
D

= x
′

D from Lemma 3.10 and

x
′

DQ̃D = 0 by assumption.
Proposition 4.3. If πD = π > 0 denotes the steady state vector of the irre-

ducible grid QD = Q at the finest level D, then the irreducible grid obtained by exact
aggregation at the next coarser level C is QC = PπDQDRD and has the steady state
vector πC = πDRD > 0. The result extends to all adjacent pairs of levels D and C
as long as level D has the exact irreducible grid QD and its steady state vector πD is
used to compute the irreducible grid QC at the next coarser level C.

The proposition follows from πCQC = (πDRD)(PπDQDRD) = (πDRDPπD)
QDRD = (πDHπD)QDRD = (πD)QDRD = (πDQD)RD = 0 since πDHπD = πD
from Lemma 3.10 and πDQD = 0 by assumption.

The next subsection specifies sufficient conditions for a converging smoother to
provide improved solutions at each level.

4.2. Convergence of the smoothers. By definition at the finest level in Algo-
rithm 1 and by construction at the coarser levels in Algorithm 2, the matrix Q̃D is an
irreducible CTMC when x

′

D > 0 (see Lemma 4.1). Now, consider the nontransposed
homogeneous singular linear system in the next definition (cf. (1.1)).

Definition 4.4. The problem at level D in the ML method is to solve

π̃DQ̃D = 0 subject to π̃De = 1,

where π̃D > 0 is the steady state vector of the irreducible CTMC Q̃D.
Proposition 4.5. At the finest level D, the steady state vector of the irreducible

CTMC Q̃D satisfies π̃D = π since Q̃D = Q.
Now, consider the splitting of Q̃D in the next definition.
Definition 4.6. Let Q̃D be split as

Q̃D = DD − UD − LD = MD −ND,

where DD, UD, and LD are respectively the diagonal, negated strictly upper-triangular,
and negated strictly lower-triangular parts of Q̃D, and MD is nonsingular (i.e., M−1

D
exists).

Proposition 4.7. If Q̃D is an irreducible CTMC, each of the terms DD, UD,
and LD in the splitting of Q̃D is nonpositive; furthermore, q̃D(sD, sD) 	= 0 for all
sD ∈ SD, implying that D−1

D and (DD − UD)−1 exist.
The next definition involving the iteration matrices of the POWER, JOR, and

SOR smoothers follows from [29, Chap. 3].
Proposition 4.8. If Q̃D is an irreducible CTMC, then the POWER, JOR, and

SOR smoothers are based on different splittings of Q̃D, where each yields an iteration
matrix of the form

TD = NDM
−1
D

and the sequence of approximations

x
(m+1)
D = x

(m)
D TD for m = 0, 1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1040 P. BUCHHOLZ AND T. DAYAR

The particular splittings corresponding to the three smoothers are

MPOWER
D = −αDID, NPOWER

D = −αD(ID + Q̃D/αD),

MJOR
D = DD/ω, NJOR

D = (1 − ω)DD/ω + LD + UD,

MSOR
D = DD/ω − UD, NSOR

D = (1 − ω)DD/ω + LD,

where αD ∈ [maxsD∈SD |q̃D(sD, sD)|,∞) is the uniformization parameter of POWER
and ω ∈ (0, 2) is the relaxation parameter of JOR and SOR. The JOR and SOR
splittings reduce to Jacobi and Gauss–Seidel (GS) splittings for ω = 1. Hence, the
iteration matrices corresponding to the three splittings are

TPOWER
D = ID + Q̃D/αD,

T JOR
D = (1 − ω)ID + ω(LD + UD)D−1

D ,

TSOR
D = ((1 − ω)DD/ω + LD)(DD/ω − UD)−1.

Since Q̃D is the generator matrix of an irreducible CTMC, the relation π̃DT
S
D =

π̃D holds for S ∈ {POWER,SOR, JOR} [29].
Before we state another lemma, we recall the definitions of primitivity and M-

matrix from [29, pp. 352, 170] and remark that detailed information concerning M-
matrices may be found in [4].

Definition 4.9. Let σ(A) denote the set of eigenvalues (or spectrum) of the
square matrix A, and let ρ(A) be the spectral radius of A (i.e., ρ(A) = {max |λ| | λ ∈
σ(A)}). A nonnegative irreducible matrix B is said to be primitive if it has a single
eigenvalue with magnitude ρ(B).

Definition 4.10. Any square matrix A of the form A = βI −B with β > 0 and
B ≥ 0 for which β ≥ ρ(B) is called an M-matrix.

Hence, the negated CTMC −Q̃D is a singular M-matrix. The next proposition
follows from [23, p. 640] and [29, p. 118].

Proposition 4.11. For the irreducible CTMC Q̃D, the matrix eπ̃D has the steady
vector of Q̃D in each of its rows, and therefore is a positive, stochastic matrix of rank
1.

Corollary 4.12. When Q̃D has a single state (i.e., |SD| = 1), Q̃D = 0 and
π̃D = 1.

For HMMs, Corollary 4.12 applies at the coarsest level when the HLM has one
macrostate.

Now we are in a position to state and prove a lemma, which is essential in char-
acterizing the convergence of the three smoothers.

Lemma 4.13. If the smoother S ∈ {POWER, JOR, SOR} satisfies αD ∈
(maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1), then the iteration matrix TD associ-
ated with the irreducible CTMC Q̃D is nonnegative, irreducible, primitive, and has
a spectral radius and an eigenvalue of 1; furthermore, TD = WDBDW

−1
D , where BD

is a stochastic matrix and WD is a nonnegative diagonal matrix having the right
eigenvector of TD corresponding to one along its diagonal, implying limm→∞ Tm

D =
(WDe)π̃D/(π̃DWDe) > 0 and is of rank 1. When POWER is the smoother, WD = ID
and TD is a stochastic matrix, implying limm→∞ Tm

D = eπ̃D > 0.
Proof. The proof follows from Theorem 17 of [29].
Using Lemma 4.13, the next proposition expresses the pre- and postsmoothings

at level D concisely.
Proposition 4.14. Given the generator matrix Q̃D of an irreducible CTMC and

a vector xD > 0, after ν > 0 iterations of pre- or postsmoothings at level D with the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1041

smoother S satisfying Lemma 4.13, the smoothed vector becomes

x
′

D = xDT
ν
D > 0.

The next proposition follows from Theorem 4.4 in [28, pp. 45–46] and is introduced
to aid the characterization of the nonasymptotic convergence behavior of smoothings.

Proposition 4.15. Let AD ∈ R
|SD|×|SD| be nonsingular (i.e., A−1

D exists). Then
the function defined as

‖w‖AD = ‖wAD‖1 for w ∈ R
1×|SD|

is a vector norm.2

The next theorem characterizes the nonasymptotic convergence behavior of the
smoothings through a lemma for positive stochastic matrices based on the discussion
in [2, pp. 270–271] and proved in [13, appendix], and two results on nonnegative
irreducible matrices similar to positive matrices [5, pp. 371 and 375]. We remark that
a similar theorem may be stated for the initial approximation yD.

Theorem 4.16. Given the initial approximation x
(0)
D = xD > 0 for the irreducible

CTMC Q̃D and the smoother S ∈ {POWER, JOR, SOR} with iteration matrix TD
such that xT

D 	∈ Range(ID − TT
D) if T ν1

D is nonnegative, irreducible, and satisfies any
of the three conditions

(i) T ν1

D is positive,
(ii) T ν1

D has a positive row iD or a positive column jD,
(iii) T ν1

D has a zero element in position (iD, jD),
(a) all other elements in row iD are positive and eTiDT

ν1

D eiD > eTjDT
ν1

D ejD ,
or

(b) all other elements in column jD are positive and eTiDT
ν1

D eiD < eTjDT
ν1

D ejD ,
then

‖cDx
′

D − π̃D‖AD ≤
(

1 − min
iD,jD∈SD

gD(iD, jD)

)
‖cDxD − π̃D‖AD ,

where x
′

D = xDT
ν1

D , GD is a positive stochastic matrix defined as GD = A−1
D T ν1

D AD
for some AD ≥ 0 such that 0 < miniD,jD∈SD gD(iD, jD) ≤ 1/|SD|, π̃D is the steady

state vector of Q̃D, and cD = (π̃DADe)/(xDADe).
Proof. From Corollary 3 and Theorem 4 in [5], if T ν1

D is nonnegative, is irreducible,
and satisfies either of the conditions (ii) or (iii), then it is similar to a positive matrix;
that is, X−1

D T ν1

D XD = HD > 0 for some (|SD|× |SD|) nonnegative matrix XD. Condi-
tion (i) is a special case for which XD = ID. Since these imply σ(HD) = σ(T ν1

D) and
we have ρ(T ν1

D) = 1 from Lemma 4.13, HD > 0 must be similar to a positive stochastic
matrix GD as in Y −1

D HDYD = GD > 0, where YD is a nonnegative diagonal matrix
having the positive right eigenvector of HD along its diagonal. Now, let AD = XDYD
to obtain T ν1

D = ADGDA
−1
D , where AD ≥ 0, GD > 0, and GDe = e.

For a sequence of converging approximations, one needs to ensure for the initial
approximation that xT

D 	∈ Range(ID − TT
D) [3, pp. 26–28]; otherwise, there will be

no improvement. Furthermore, since π̃D is the unique positive fixed point of T ν1

D
such that π̃De = 1, the unique positive fixed point of GD with unit 1-norm must
be ψD = (π̃DAD)/(π̃DADe). Now, rewrite x

′

D = xDT
ν1

D using T ν1

D = ADGDA
−1
D

2This norm should not be confused with the elliptical norm [23, p. 288] defined as ‖w‖AD =
‖wAD‖2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1042 P. BUCHHOLZ AND T. DAYAR

to obtain x
′

DAD = xDAD(GD). Since xD > 0, AD ≥ 0, and AD has full rank, we

have x
′

D > 0. Furthermore, note that x
′

DADe = xDAD(GDe) = xDADe. Letting

x
′

D = (x
′

DAD)/(xDADe) and xD = (xDAD)/(xDADe), we have from Lemma A.1 in
[13, appendix]

‖x′

D − ψD‖1 ≤
(

1 − min
iD,jD∈SD

gD(iD, jD)

)
‖xD − ψD‖1.

The result follows by taking each of (x
′

D − ψD) and (xD − ψD) into AD parentheses,
multiplying both sides of the inequality by π̃DADe, letting cD = (π̃DADe)/(xDADe),
and using Proposition 4.15.

Theorem 4.16 indicates that the normalized solution vector, cDxD, improves
with ν1 presmoothings if T ν1

D is positive or has a(n almost) positive row or column.
Now, observe that the ordering of grids suggested by O ∈ {FIXED,CIRCULAR,
DY NAMIC} has no effect on the assumptions of Theorem 4.16. Note also from
Lemma 4.13 that as ν1 increases, T ν1

D converges to a positive rank 1 matrix. Hence,
there is a value of ν1 > 0 for which the assumptions of Theorem 4.16 hold. We re-
mark that Q̃D is almost always sparse, and the iteration matrices associated with the
POWER and JOR smoothers have the same off-diagonal nonzero structure as that
of Q̃D. Hence, compared to POWER and JOR, the SOR smoother has a higher
chance of satisfying the conditions of Theorem 4.16 for a smaller value of ν1, since
its iteration matrix is likely to have a larger number of nonzeros, as suggested in the
proof of Lemma 4.17 in [13]. Similar arguments are valid for postsmoothings. These
results can be perceived as an extension of the local convergence result available in
[22, sec. 2] to include the JOR and SOR smoothers and another sufficient condition
(i.e., Theorem 4.16(iii)). In summary, the smoothings can always be enforced to yield
improved positive approximations at each level.

4.3. Convergence of the ML solver. Using the results in the previous subsec-
tions, we show that under certain conditions the devised class of ML methods provide
converging iterations for different choices of the cycle parameter C ∈ {V,W,F}.

First, we define the ML iteration matrix at level D in Algorithms 1 and 2 using
Propositions 3.5, 3.7, 4.11, and 4.14. Note that when there are only two levels, the
W- and F-cycles are not defined, and the V-cycle yields a two-level IAD solver. In
order not to complicate the notation further, we refrain from introducing an index for
the cycle number to the matrices and vectors at this point.

Definition 4.17. Let TML
D denote the ML iteration matrix that operates at

level D on xD > 0 to give y
′

D > 0 at a particular cycle using the smoother S ∈
{POWER, JOR, SOR} with iteration matrix TD for the irreducible CTMC Q̃D, where
αD ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1), the restriction operator RD, and
the prolongation operator Px

′
D

. Similarly let TML
C and TML

B denote the ML iteration

matrices that operate at the next two coarser levels C and B, respectively. Then

y
′

D = xDT
ML
D ,

where

TML
D =

⎧⎪⎨⎪⎩
T ν1

D RDT
ML
C Px

′
D
T ν2

D if C = V,

T ν1

D RD(TML
C)2Px

′
D
T ν2

D if C = W,

T ν1

D RDT
ML
C TML′

C Px
′
D
T ν2

D if C = F,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1043

TML′

C = T ν1

C RCT
ML′

B Px
′
C
T ν2

C , x
′

D = xDT
ν1

D ,

and when Q̃C is the coarsest grid and solved exactly, TML
C = TML′

C = (ey
′

C)/(xCe) > 0,

where y
′

C = π̃C.
Corollary 4.18. When POWER is the smoother and xD > 0 satisfies xDe = 1,

the ML iteration matrix TML
D for C ∈ {V,W,F} is a positive stochastic matrix and

therefore has a spectral radius of 1.
Proof. For the POWER smoother, at the coarsest level C we have TML

C = TML′

C =
eπ̃C from Definition 4.17 when xDe = 1, implying a positive stochastic matrix, which
has a spectral radius and an eigenvalue value of 1. This forms the base case. Now,
let us assume that the result is true for all levels from the coarsest up to an arbitrary
level C; this is the inductive hypothesis. We show that the result must be true for the
next finer level D. Noting that RDe = e from Proposition 3.5, (TML

C)e = e from the
inductive hypothesis, Px

′
D
e = e from Proposition 3.7, and TDe = e from Lemma 4.13,

we have TML
D e = T ν1

D RDT
ML
C Px

′
D
T ν2

D e = T ν1

D RDT
ML
C (Px

′
D
e) = T ν1

D RD(TML
C e) =

T ν1

D (RDe) = T ν1

D e = e for the V-cycle. The result follows similarly for W- and F-
cycles.

The interpretation of TML
D for V- and W-cycles is as follows. If the recursive

call(s) to level C are turned off, then only (ν1 + ν2) iterations are performed on xD
with the smoother S. Otherwise, the smoothed solution vector is restricted to level C
(i.e., xDT

ν1

D is the smoothed solution vector and xDT
ν1

D RD is the restricted solution
vector), the restricted solution vector is improved respectively one or two times with
the iteration matrix TML

C , and the improved solution vector is projected back to level
D and smoothed. The interpretation of TML

D for an F-cycle is similar to that for V-
and W-cycles with the difference that the restricted solution vector is improved with
the iteration matrix TML

D once followed by the iteration matrix of the V-cycle. This
is exactly what is meant with a W-cycle followed by a V-cycle at each level.

The next lemma follows from Lemma 4.1, Lemma 4.13, and Definition 4.17.
Lemma 4.19. If Q̃D is an irreducible CTMC, xD > 0, and the smoother S ∈

{POWER, JOR, SOR} satisfies αD ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1),
then the ML iteration matrix TML

D for C ∈ {V,W,F} is positive.

Proof. The proof is by induction. At the coarsest level C, we have TML
C = TML′

C >

0 from Definition 4.17. This is the base case and implies (TML
C)2 = TML

C TML′

C > 0.
Now, let us assume that the statement is true for all levels from the coarsest up to
an arbitrary level C. This is the inductive hypothesis. We show that the statement
must be true for the next finer level D. Since Px

′
D

≥ 0 and each column of Px
′
D

has one nonzero element from Proposition 3.7, the (|SC | × |SD|) matrices TML
C Px

′
D
,

(TML
C)2Px

′
D
, and TML

C TML′

C Px
′
D

are positive. Furthermore, since RD ≥ 0 and each

row of RD has one nonzero element from Proposition 3.5, the (|SD| × |SD|) matrices
RDT

ML
C Px

′
D
, RD(TML

C)2Px
′
D
, and RDT

ML
C TML′

C Px
′
D

are also positive. Then the result

follows from Lemma 4.13 by the fact that the iteration matrix associated with the
smoother is nonnegative and irreducible, implying at least one nonzero in each row
and column of TD which pre- and postmultiplies the positive matrices RDT

ML
C Px

′
D
,

RD(TML
C)2Px

′
D
, and RDT

ML
C TML′

C Px
′
D
.

The next result follows from Lemma 4.19 in that the positivity of TML
D implies

its irreducibility and a positive diagonal, and hence its primitivity [4, p. 47].
Corollary 4.20. If Q̃D is an irreducible CTMC, xD > 0, and the smoother S ∈

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1044 P. BUCHHOLZ AND T. DAYAR

{POWER, JOR, SOR} satisfies αD ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1),
then the ML iteration matrix TML

D for C ∈ {V,W,F} is irreducible and primitive.
The next lemma shows that the steady state vector, πD, of the exactly aggregated

grid, QD, is the unique, positive, unit 1-norm fixed point of the ML iteration matrix,
TML
D , at level D upon convergence.

Lemma 4.21. If Q̃D is an irreducible CTMC and equal to QD, xD = πD, and the
smoother S ∈ {POWER, JOR, SOR} satisfies αD ∈ (maxsD∈SD |q̃D(sD, sD)|,∞)
and ω ∈ (0, 1), then the ML iteration matrix TML

D for C ∈ {V,W,F} has the
unique positive fixed point πD (i.e., πDT

ML
D = πD) such that πDe = 1; furthermore,

ρ(TML
D) = 1 and y

′

D = πD.
Proof. The proof is by induction. At the coarsest level C, we have Q̃C = QC

and xC = πC > 0, implying TML
C = TML′

C = eπC > 0 from Definition 4.17. This
positive matrix is stochastic and has the unique positive fixed point πC such that
πCe = 1. Furthermore, it has a spectral radius of 1 and y

′

C = xCT
ML
C = πC(eπC) =

(πCe)πC = πC . This is the base case and yields (TML
C)2 = TML

C TML′

C = (eπC)(eπC) =
e(πCe)πC = eπC > 0. Now, let us assume that the statement is true for all levels from
the coarsest up to an arbitrary level C. This is the inductive hypothesis. We show
that the statement must be true for the next finer level D.

Since xD = πD > 0 is the fixed point of TD, πDRD = πC from Definition
3.4, πCT

ML
C = πC by the inductive hypothesis, and πCPπD = πD from Definition

3.6, the result follows from Definition 4.17 for the V-cycle as y
′

D = πDT
D
ML =

(πDT
ν1

D)RDT
ML
C PπDT

ν2

D = (πDRD)TML
C PπDT

ν2

D = (πCT
ML
C)PπDT

ν2

D = (πCPπD)T ν2

D =
πDT

ν2

D = πD. The result follows similarly for W- and F-cycles after interchanging TML
C

respectively with (TML
C)2 and TML

C TML′

C . The uniqueness and positivity of the fixed
point of TML

D follows from Lemma 4.19 by the fact that TML
D is positive [23, p. 666].

Clearly the spectral radius of TML
D is 1.

The next theorem characterizes the nonasymptotic convergence behavior of the
ML solver with the initial approximation xD by defining a unique, positive, unit
1-norm fixed point for the particular cycle.

Theorem 4.22. If TML
D is the ML iteration matrix that operates at level D on

xD > 0, such that xT
D 	∈ Range(ID − TT

D), to give y
′

D > 0 at a particular cycle us-
ing the smoother S ∈ {POWER, JOR, SOR} associated with the irreducible CTMC
Q̃D, where αD ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1), then TML

D /ρ(TML
D)

has a spectral radius of 1, and a vector φD as its unique positive fixed point (i.e.,
φD(TML

D /ρ(TML
D)) = φD) such that φDe = 1. Furthermore, TML

D /ρ(TML
D) =

ZDHDZ
−1
D , where HD is a positive stochastic matrix and ZD is a nonnegative di-

agonal matrix having the positive right eigenvector of TML
D /ρ(TML

D) along its diago-
nal. The unique positive fixed point of HD is given by ψD = (φDZD)/(φDZDe) (i.e.,
ψDHD = ψD) such that ψDe = 1. Finally,

‖(bD/ρ(TML
D))y

′

D − φD‖ZD ≤
(

1 − min
iD,jD∈SD

hD(iD, jD)

)
‖bDxD − φD‖ZD ,

where bD = (φDZDe)/(xDZDe) and 0 < miniD,jD∈SD hD(iD, jD) ≤ 1/|SD|. At the

coarsest level, ‖(bD/ρ(TML
D))y

′

D − φD‖ZD = 0 if the system is solved directly. When
POWER is the smoother, ZD = ID, HD = TML

D , ρ(TML
D) = 1, ψD = φD, and

bD = 1.
Proof. Recall from Lemma 4.19 that TML

D > 0. Since ρ(TML
D) > 0 for TML

D 	= 0,
the matrix TML

D /ρ(TML
D) is also positive, satisfies σ(TML

D /ρ(TML
D)) = {λ/ρ(TML

D) |
λ ∈ σ(TML

D)}, and therefore has a spectral radius of 1. The uniqueness and positivity

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1045

of the fixed point φD follow from Corollary 4.20. The row vector φD > 0 is assumed
to be normalized so as to have unit 1-norm (i.e., φDe = 1).

To prove the second part, recall Corollary 4.20 and the result in [4, p. 49], which
is also used in the proof of Lemma 4.13. These imply that TML

D /ρ(TML
D) must have

a positive right eigenvector ζD for which

TML
D /ρ(TML

D) = ZDHDZ
−1
D ,

where ZD = diag(ζD), HD > 0, and HDe = e. In other words,

HD = Z−1
D (TML

D /ρ(TML
D))ZD

is a stochastic matrix similar to TML
D /ρ(TML

D), and its positivity follows from
TML
D /ρ(TML

D) > 0 and ζD > 0. Note that it does not matter whether ζD is nor-
malized or not, since HD is defined in terms of ZD and Z−1

D . The uniqueness and
positivity of the fixed point ψD follows from HD > 0. The row vector φD > 0 is
assumed to be normalized so as to have unit 1-norm (i.e., φDe = 1), and it is given by
ψD = φDZD since HD and TML

D /ρ(TML
D) are related by a similarity transformation,

where the transformation matrix is ZD.
To prove the last part, rewrite

y
′

D = ρ(TML
D)xD(TML

D /ρ(TML
D))

using TML
D /ρ(TML

D) = ZDHDZ
−1
D > 0 as

(y
′

DZD)/(ρ(TML
D)xDZDe) = (xDZD)HD/(xDZDe),

which is equivalent to y
′

D = xDHD. Since xD > 0, y
′

D > 0, ρ(TML
D) > 0, and

ζD > 0, we have xD = (xDZD)/(xDZDe) > 0, implying xDe = 1, and y
′

D =
(y

′

DZD)/(ρ(TML
D)xDZDe) > 0. Furthermore, since HD > 0, HDe = e, and xDe = 1,

we obtain y
′

De = 1. Then, from Lemma A.1 in [13, appendix] we have

‖y′

D − ψD‖1 ≤
(

1 − min
iD,jD∈SD

hD(iD, jD)

)
‖xD − ψD‖1.

The result follows by taking each of (y
′

D − ψD) and (xD − ψD) into ZD parentheses,
multiplying both sides of the inequality by φDZDe, letting bD = (φDZDe)/(xDZDe),
and using Proposition 4.15. The part for the coarsest level follows from Defini-
tion 4.17 by the fact that TML

D = (ey
′

D)/(xDe) and ρ(TML
D) = 1/(xDe), implying

TML
D /ρ(TML

D) = HD = ey
′

D and ZD = ID. For the POWER smoother, Corollary
4.18 implies ZD = diag(e) = ID, and therefore, the respective results.

The ML iteration matrix, TML
D , changes at each cycle due to the dependence of

Px
′
D

on x
′

D, and therefore the ML iteration is nonstationary. At the end of each ML

iteration, the solution vector at the finest level D, y
′

D, is normalized to be unit 1-norm

and then assigned to xD so as to start the next ML iteration. As long as x
′

D 	= πD, the
aggregated CTMC Q̃C at the next coarser level can be only approximative. Theorem
4.22 indicates that the normalized solution vector, bDxD, improves with respect to
the fixed point φD with a converging smoother as long as xD > 0 is not in the range
of (I − TML

D)T . For the solution to improve with respect to steady state vector π̃D
at each level, one requires sufficient conditions on the smoother, as in Theorem 4.16.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1046 P. BUCHHOLZ AND T. DAYAR

Then xD at the finest level will improve from one ML iteration to the next, implying
an improvement in the aggregated CTMC at each level and thus an improved solution
at each level. Then, recalling from Lemma 4.21 that Q̃D = QD and ρ(TML

D) = 1 upon
convergence, ρ(TML

D) and φD must be approaching 1 and πD, respectively, while the
subdominant eigenvalue of TML

D in magnitude is approaching zero with an increasing
number of ML iterations.

In [11], extensive numerical experiments have been conducted with the ML solver
on HMMs. Therein, the values chosen for the parameters of the POWER, JOR, and
SOR smoothers are αD = maxsD∈SD |q̃D(sD, sD)|/0.999 and ω = 1, and the initial
approximation is the uniform distribution. Furthermore, at least one pre- and one
postsmoothing is performed at each level, and the coarsest system is solved using
Gaussian elimination. Hence, POWER is enforced to yield a converging smoother,
and the JOR and SOR iteration matrices are nonnegative. Although ω = 1 does not
guarantee converging JOR and SOR smoothers (see Lemma 4.8), the results indicate
that convergence may still be achieved. Hence, we conclude that the conditions stated
in Theorem 4.16 for the smoothers are sufficient for convergence, but not necessary.

5. Experimental results. In [13, sec. 5], we step through the ML method on
Example 1 in section 2. Here we consider the number of iterations and the time in
seconds required to reach ‖r‖∞ < 10−8 (see Algorithm 1) for Examples 2 and 3.
We compare SOR and ML methods with (C, S,O) ∈ {(V, SOR,FIXED), (W,SOR,
CIRCULAR), (F, SOR,DY NAMIC)}. In all cases, the relaxation parameter of
SOR is set to 1. All experiments are performed on PCs with AMD opteron 2.3 GHz
CPU and 1 GBytes of main memory.

Table 5.1

Number of iterations and solution times for Example 2.

SOR ML
(V, SOR,FIXED) (W,SOR,CIRCULAR) (F, SOR,DY NAMIC)

K it time it time it time it time
3 180 0 90 0 44 0 46 0
4 260 0 106 0 40 0 42 0
5 290 2 92 1 34 1 36 1
6 360 42 104 8 30 3 36 4
7 420 123 114 57 30 19 32 20

Table 5.1 contains the results for Example 2. For the solution we choose SOR
and three variants of ML methods. For the latter we choose ν1 = ν2 = 1 in all cases.
It can be seen that the number of iterations of SOR increases with an increasing
number of LLMs. For the ML solver with FIXED aggregation of LLMs, a small
increase in the number of iterations can also be observed. For the other two ML
solvers with CIRCULAR and DYNAMIC order of aggregating LLMs, the number
of ML iterations does not increase, even becomes smaller with an increasing number
of LLMs, and is much smaller than that of the corresponding FIXED order. This
behavior can be observed for all cycle types; it depends on the order of aggregation
and shows the importance of modifying the order for this example. Hence, although
convergence does not depend on the order of aggregating LLMs, rate of convergence
does. It should be mentioned that this example is not particularly hard to solve with
SOR since LLMs are strongly coupled and the number of iterations is fairly small.
Nevertheless, the use of ML steps increases convergence speed significantly, reducing
the solution times for the larger configurations by almost an order of magnitude.

The third example is much harder to solve with SOR or other classical iterative

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1047

Table 5.2

Number of iterations and solution times for Example 3.

SOR ML
(V, SOR,FIXED) (V, SOR,FIXED) (W,SOR,CIRCULAR)
(ν1 = 1, ν2 = 1) (ν1 = 1, ν2 = 5) (ν1 = 1, ν2 = 1)

K it time it time it time it time
2 60 0 12 0 12 0 12 0
3 400 0 12 0 12 0 14 0
4 3,200 21 12 0 12 0 18 0
5 26,560 3,310 12 2 12 3 20 4
6 >10,000 18 45 12 42 14 38
7 16 492 12 554 14 529

methods. With the addition of a new LLM a new time scale is introduced in the
model. It is known that such models are difficult to solve. Results for Example 3
are shown in Table 5.2. The results for SOR therein indicate that with an increasing
number of LLMs the number of iterations grows drastically, and the system becomes
practically unsolvable for K > 5. In the ML methods with fixed order of aggregation,
at every aggregation step the fastest time scale is removed, and the system is mainly
solved for the fastest remaining time scale. This implies that during a cycle each time
scale is considered. Thus, we can expect fast convergence, which is confirmed by the
results in Table 5.2. The number of iterations is almost independent of the number
of LLMs, and even the largest configuration with 10, 000, 000 states can be solved
in less than 10 minutes, whereas SOR requires almost an hour to solve the system
with only 10, 000 states. Since the ordering of LLMs is optimal according to the time
scales, CIRCULAR or DYNAMIC ordering of aggregation do not help. The last
two columns contain results for CIRCULAR ordering and a W -cycle; results are
similar to the FIXED ordering. DYNAMIC ordering gives worse results since the
projected residuals which we use as a heuristic for choosing LLMs to be aggregated
depend on the transition rates such that LLMs with small rates are aggregated first,
resulting in a poor convergence in this example.

6. Conclusion. In this paper, the convergence of a class of multilevel (ML)
methods for large sparse Markov chains (MCs) has been investigated. The particu-
lar class of ML methods is inspired by algebraic multigrid and iterative aggregation-
disaggregation, and has the capability of using (V, W, F) cycles, (power, Jacobi
over relaxation (JOR), successive over relaxation (SOR)) methods as smoothers, and
(fixed, circular, dynamic) orders in which coarser MCs can be formed by aggregation
in a cycle. The conditions sufficient for convergence are an irreducible MC, a positive
initial approximation from an appropriate subspace, an onto mapping of states from
a finer MC to a coarser MC at each level, a uniformization parameter larger than the
minimum magnitude of the diagonal elements for the power method, a relaxation pa-
rameter less than 1 for JOR and SOR, a sufficient number of pre- and postsmoothings
at each level so as to ensure a smoothing matrix which is positive or has a(n almost)
positive row/column, and the accurate solution of the coarsest system at each cycle.
The asymptotic convergence rate of the class of ML methods across multiple levels is
yet to be investigated.

Acknowledgments. We thank the anonymous referees for their constructive
remarks and suggesting some of the references.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1048 P. BUCHHOLZ AND T. DAYAR

REFERENCES

[1] F. Bause, P. Buchholz, and P. Kemper, A toolbox for functional and quantitative analy-
sis of DEDS, in Quantitative Evaluation of Computing and Communication Systems, R.
Puigjaner, N. N. Savino, and B. Serra, eds., Lecture Notes in Comput. Sci. 1469, Springer-
Verlag, Heidelberg, Germany, 1998, pp. 356–359.

[2] R. Bellman, Introduction to Matrix Analysis, 2nd ed., Classics in Appl. Math. 19, SIAM,
Philadelphia, PA, 1997.

[3] M. Benzi and T. Dayar, The arithmetic mean method for finding the stationary vector of
Markov chains, Parallel Algorithms and Appl., 6 (1995), pp. 25–37.

[4] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics
in Appl. Math. 9, SIAM, Philadelphia, PA, 1994.

[5] A. Borobia and J. Moro, On nonnegative matrices similar to positive matrices, Linear Al-
gebra Appl., 266 (1997), pp. 365–379.

[6] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, 2nd ed., SIAM,
Philadelphia, PA, 2000.

[7] P. Buchholz, Hierarchical structuring of superposed GSPNs, IEEE Trans. Softw. Engrg., 25
(1999), pp. 166–181.

[8] P. Buchholz, Structured analysis approaches for large Markov chains, Appl. Numer. Math.,
31 (1999), pp. 375–404.

[9] P. Buchholz, Multilevel solutions for structured Markov chains, SIAM J. Matrix Anal. Appl.,
22 (2000), pp. 342–357.

[10] P. Buchholz and T. Dayar, Block SOR for Kronecker structured Markovian representations,
Linear Algebra Appl., 386 (2004), pp. 83–109.

[11] P. Buchholz and T. Dayar, Comparison of multilevel methods for Kronecker structured
Markovian representations, Computing, 73 (2004), pp. 349–371.

[12] P. Buchholz and T. Dayar, Block SOR preconditioned projection methods for Kronecker
structured Markovian representations, SIAM J. Sci. Comput., 26 (2005), pp. 1289–1313.

[13] P. Buchholz and T. Dayar, On the Convergence of a Class of Multilevel Methods for
Large, Sparse Markov Chains, Technical Report BU-CE-0601, Department of Com-
puter Engineering, Bilkent University, Ankara, Turkey, 2006; available online from
http://www.cs.bilkent.edu.tr/tech-reports/2006/BU-CE-0601.pdf.

[14] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper, Complexity of memory-efficient
Kronecker operations with applications to the solution of Markov models, INFORMS J.
Comput., 12 (2000), pp. 203–222.

[15] P. Buchholz and P. Kemper, On generating a hierarchy for GSPN analysis, Performance
Eval. Rev., 26 (1998), pp. 5–14.

[16] P. Fernandes, B. Plateau, and W. J. Stewart, Efficient descriptor-vector multiplications
in stochastic automata networks, J. ACM, 45 (1998), pp. 381–414.

[17] P. Fernandes, B. Plateau, and W. J. Stewart, Optimizing tensor product computations in
stochastic automata networks, RAIRO Oper. Res., 32 (1998), pp. 325–351.

[18] A. Greenbaum, Analysis of a multigrid method as an iterative technique for solving linear
systems, SIAM J. Numer. Anal., 21 (1984), pp. 473–485.

[19] G. Horton and S. Leutenegger, A multi-level solution algorithm for steady state Markov
chains, Performance Eval. Rev., 22 (1994), pp. 191–200.

[20] U. Krieger, Numerical solution of large finite Markov chains by algebraic multigrid techniques,
in Computations with Markov Chains, W. J. Stewart, ed., Kluwer Academic Publishers,
Boston, MA, 1995, pp. 403–424.

[21] I. Marek and P. Mayer, Convergence analysis of an iterative aggregation/disaggregation
method for computing stationary probability vectors of stochastic matrices, Numer. Linear
Algebra Appl., 5 (1998), pp. 253–274.

[22] I. Marek and I. Pultarova, A note on local and global convergence analysis of iterative
aggregation-disaggregation methods, Linear Algebra Appl., 413 (2006), pp. 327–341.

[23] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, PA, 2000.
[24] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, S. F. McCormick, ed.,

Frontiers in Appl. Math. 3, SIAM, Philadelphia, PA, 1987, pp. 73–130.
[25] U. Rüde, The Multigrid Workbench, http://www.mgnet.org/mgnet/tutorials/xwb.html.
[26] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, PA, 2003.
[27] S. Serra, Multi-iterative methods, Comput. Math. Appl., 26 (1993), pp. 65–87.
[28] G. W. Stewart, Matrix Algorithms, Vol. I: Basic Decompositions, SIAM, Philadelphia, PA,

1998.
[29] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton Univer-

sity Press, Princeton, NJ, 1994.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTILEVEL METHODS FOR MARKOV CHAINS 1049

[30] J.-P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to
Computer Science, McGraw–Hill, New York, 1975.

[31] E. Uysal and T. Dayar, Iterative methods based on splittings for stochastic automata net-
works, European J. Oper. Res., 110 (1998), pp. 166–186.

[32] C. F. Van Loan, The ubiquitous Kronecker product, J. Comput. Appl. Math., 123 (2000), pp.
85–100.

[33] P. Wesseling, An Introduction to Multigrid Methods, John Wiley & Sons, Chichester, New
York, 1992.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1051–1064

APPROXIMATE DIAGONALIZATION∗

E. B. DAVIES†

Abstract. We describe a new method of computing functions of highly nonnormal matrices by
using the concept of approximate diagonalization. We formulate a conjecture about its efficiency and
provide both theoretical and numerical evidence in support of the conjecture. We apply the method
to compute arbitrary real powers of highly nonnormal matrices.

Key words. Jordan matrices, ill-posedness, regularization, fractional powers, functional calcu-
lus, spectral theory

AMS subject classifications. 65F22, 65F15, 15A60, 15A42, 47A52, 47A60

DOI. 10.1137/060659909

1. Introduction. Let A be a nonnormal n × n matrix and suppose that one
wants to evaluate x = f(A)b or solve f(A)x = b for a large number of different
analytic functions f rapidly, without caring too much about high accuracy. If A
is diagonalizable, i.e., A := SDS−1, where D is diagonal, then one can solve the
first problem by writing x := Sf(D)S−1b, where f(D) is evaluated by applying the
function f to the diagonal entries of D, which coincide with the eigenvalues of A. The
second problem may be solved in a similar manner.

This procedure may not be appropriate if A is highly nonnormal, because the
eigenvalues of A can be highly unstable under small perturbations, such as those
associated with rounding errors in computation, and the matrix S may have an ex-
tremely large condition number κ(S) := ‖S‖ ‖S−1‖. In the most extreme case, when
A has a nontrivial Jordan form, the method breaks down entirely.

In this paper we describe an approach which involves using an approximate di-
agonalization of A. We emphasize that this does not mean that it is close to a true
diagonalization, but rather that it has many of the features of a true diagonaliza-
tion, and the amount of error associated with using it can be estimated. We start
by describing the idea and formulate a conjecture about its efficiency. Much of the
remainder of this paper is devoted to providing theoretical and numerical evidence in
support of the conjecture.

In section 5 we use the ideas developed to throw some light on the difficulties of
computing fractional powers of matrices that are close to singular.

2. Definitions. Throughout this paper we assume that f is an analytic function
defined on a neighborhood of Spec(A) and that f(A) is defined by means of the
holomorphic functional calculus as in [1, section 1.5]. In order to be able to define
f(A) stably for highly nonnormal A one has to impose some conditions on the analytic
function f . If f(z) = (z−a)−1, where a is not close to Spec(A), one may nevertheless

have a ∈ Spec(Ã), where ‖A − Ã‖ is very small. In such situations f(A) cannot be
defined stably for reasons discussed in [11].

∗Received by the editors May 15, 2006; accepted for publication (in revised form) by N. J. Higham
March 20, 2007; published electronically November 2, 2007. This work was supported under EPSRC
grant GR/R81756.

http://www.siam.org/journals/simax/29-4/65990.html
†Department of Mathematics, King’s College of London, Strand, London, WC2R 2LS, UK (E.

Brian.Davies@kcl.ac.uk).

1051

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1052 E. B. DAVIES

We assume henceforth that γ is a simple closed curve with length |γ| and that
Spec(A) ⊆ U , where U is the region inside γ. We also assume that f ∈ A, where A is
the space of functions that are analytic on γ ∪ U . We write ‖f‖∞ for the maximum
value of |f(z)| for z ∈ γ, or equivalently for z ∈ (γ ∪ U).

Lemma 2.1. Suppose, in addition to the above assumptions, that the resolvent
operators R(z,A) := (zI − A)−1 satisfy ‖R(z,A)‖ ≤ c for all z ∈ γ and that f ∈ A.
Then

‖f(A)‖ ≤ c

2π
|γ| ‖f‖∞.

If ‖A− Ã‖ ≤ 1/(2c) and f̃ ∈ A, then

‖f(A) − f̃(Ã)‖ ≤ c2π−1|γ| ‖f‖∞ ‖A− Ã‖ + cπ−1|γ| ‖f − f̃‖∞.

Proof. The first bound depends on a routine estimate of the formula

f(A) =
1

2πi

∫
γ

f(z)R(z,A) dz.

We next assume that z ∈ γ and use the bound

‖R(z, Ã)‖ =

∥∥∥∥R(z,A)
(
I − (Ã−A)R(z,A)

)−1
∥∥∥∥

≤ ‖R(z,A)‖
1 − ‖(A− Ã)R(z,A)‖

≤ 2c

to derive

‖R(z, Ã) −R(z,A)‖ = ‖R(z, Ã)(Ã−A)R(z,A)‖
≤ 2c2‖A− Ã‖.

The second formula now follows by a routine estimate of the identity

f(A) − f̃(Ã) =
1

2πi

∫
γ

f(z)
(
R(z,A) −R(z, Ã)

)
dz

+
1

2πi

∫
γ

(f(z) − f̃(z))R(z, Ã) dz.

Example 2.2. There are two obvious ways of ensuring that the resolvent bound
of Lemma 2.1 is satisfied. The first uses the stability of the numerical range Num(A)
under small perturbations. If Num(A) ⊆ U and dist(γ,Num(A)) ≥ 1/c, then the
bound ‖R(z,A)‖ ≤ c is valid for all z ∈ γ by [11, Chapter 17] or [1, section 9.3].

Alternatively, given c > 0 one may define γ to be the pseudospectral contour
{z : ‖R(z,A)‖ = c}. The shape of the contour, which may have several components,
can be determined numerically by using the Eigtool software; see [12].

We say that three matrices S,D,B provide an approximate diagonalization of A
if D is diagonal, S is invertible, B is small, and A = SDS−1 + B; we assume that
‖A‖ ≤ 1 whenever necessary for reasons stated below. We say that S,B is a permitted

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DIAGONALIZATION 1053

pair for A if S is invertible and D := S−1(A− B)S is diagonal. The accuracy of the
approximate diagonalization is measured by the quantity

σ(A,S,B, ε) := κ(S)ε + ‖B‖,

where ε ∈ (0, 1) is a preassigned degree of accuracy of the computations, for example,
ε := 10−16. Note that 1 = ‖SS−1‖ ≤ ‖S‖ ‖S−1‖ = κ(S) for all S. The term κ(S)ε
measures errors associated with the condition number of S and would vanish if the
computations could have infinite precision, i.e., if ε = 0. The term ‖B‖ represents
the amount that A has been perturbed with the intention of reducing the first type
of error. By adding the two errors and then minimizing over all permitted pairs, one
obtains the smallest overall error that is possible when diagonalizing A approximately,
namely

σ(A, ε) := inf
B,S

σ(A,S,B, ε).

The nonzero entries of D are the eigenvalues of A − B and are of order 1 in all the
cases considered below.

After choosing the perturbation B the matrix D is uniquely determined up to a
permutation of its diagonal entries. However, one may replace S by SE where E is any
invertible matrix that commutes with D, for example, any invertible diagonal matrix.
Different choices of S may have very different condition numbers. Fortunately, the
MATLAB algorithm [S,D]=eig(A) is known to choose a matrix S whose condition
number is within a factor

√
n of the best (i.e., smallest) value possible [9, section 7.3],

[10]; for the derogatory case, however, see [4].
Many of our theorems below can be viewed as providing support for the following

conjecture.
Conjecture. For every positive integer n there exists cn such that

σ(A, ε) ≤ cnε
1/2

for every n× n matrix A such that ‖A‖ ≤ 1 and for every ε ∈ (0, 1).
Since one can only evaluate σ(A, ε) exactly in simple cases, we attempt to obtain a

fairly sharp upper bound on it by choosing B,S appropriately. The rate of convergence
of σ(A, ε) to 0 as ε → 0 depends on whether A is diagonalizable or not. Note that
one obtains an approximate diagonalization for another matrix Ã from that for A by
keeping the same S,D and putting B̃ := B + (Ã−A). Therefore

|σ(A, ε) − σ(Ã, ε)| ≤ ‖A− Ã‖

and our definition is computationally stable. Further computational questions can be
asked, for example, about the errors arising when evaluating S−1 for a choice of S
that is close to singular, but the methods described here allow one to replace S−1 by
T provided

‖T − S−1‖
‖S−1‖ = O(ε).

We observe that

(2.1) σ(V AV −1, ε) ≤ κ(V)σ(A, ε)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1054 E. B. DAVIES

for all invertible matrices V ; thus the order of magnitude of σ(A, ε) is not changed if
one passes from A to V AV −1, where κ(V) is of order 1. If A is normal, then one may
diagonalize it exactly with S unitary and B = 0, so σ(A, ε) = ε.

A feature of our definitions of σ and σ is that they do not scale under the map
A → λA when λ is large. As λ increases, Spec(λA) and Num(λA) expand, so the
contour γ and the algebra A must be changed. We therefore impose the condition
‖A‖ ≤ 1 whenever necessary.

The function σ(A, ε) is closely related to μ(A, δ) defined for all δ > 0 by

μ(A, δ) := inf{κ(S) : A = SDS−1 + B, where D is diagonal and ‖B‖ ≤ δ}.

A simple compactness argument implies that the infimum is actually attained.
Lemma 2.3. If c > 0, α > 0, and μ(A, δ) ≤ cδ−α for all δ ∈ (0, 1), then

σ(A, ε) ≤ 2(cε)1/(α+1)

for all ε ∈ (0, 1/c).
Proof. If the infimum in the definition of μ(A, δ) is attained for A,S,D,B, then

σ(A, ε) ≤ σ(A,S,B, ε) ≤ μ(A, δ)ε + δ ≤ cεδ−α + δ

for all δ > 0. The lemma follows by applying the following general fact: If f (resp., g)
is a nonnegative, monotonically decreasing (resp., increasing) function on (a, b) and
f(ξ) = g(ξ) for some ξ ∈ (a, b), then

f(ξ) ≤ inf{f(x) + g(x) : x ∈ (a, b)} ≤ 2f(ξ).

Theorem 2.4. Suppose that ‖A‖ ≤ 1 and f(z) is analytic on {z : |z| ≤ r} for
some r > 1. If σ(A, ε) < (r − 1)/2, then

σ(f(A), ε) < σ(A, ε) max

{
1,

2r‖f‖r,∞
(r − 1)2

}
,

where

‖f‖r,∞ := max{|f(z)| : |z| ≤ r}.

Proof. If Ã := SDS−1, then ‖A− Ã‖ = ‖B‖ ≤ σ(A,S,B, ε) and we can define B̃
by

f(A) = f(Ã) + B̃ = Sf(D)S−1 + B̃.

If r > 1 and γ is the circle {z : |z| = r}, then ‖R(z,A)‖ ≤ (r − 1)−1 for all z ∈ γ.
Lemma 2.1 implies that if σ(A,S,B, ε) < (r − 1)/2, then

‖B̃‖ ≤ ‖B‖ 2r‖f‖r,∞
(r − 1)2

.

Therefore

σ(f(A), S, B̃, ε) = κ(S)ε + ‖B̃‖ ≤ σ(A,S,B, ε) max

{
1,

2r‖f‖r,∞
(r − 1)2

}
.

The theorem now follows by taking the infimum over all permitted S,B.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DIAGONALIZATION 1055

We next establish a close connection between the above ideas and the existence
of a suitable basis of (column) pseudo-eigenvectors. The results obtained are only of
interest when ‖B‖ and all ‖rj‖ are very small.

Theorem 2.5. Let A = SDS−1 + B, where D is diagonal with diagonal entries
λ1, . . . , λn, and suppose that the jth column φj of S has unit norm for every j. Then

(2.2) Aφj = λjφj + rj ,

where

‖rj‖ ≤ ‖B‖

for all j.
Proof. Applying the identity AS = SD + BS to the standard basis elements

{e1, . . . , en} of Cn yields (2.2) with rj := Bφj . The bound follows immediately.
The above theorem has the following partial converse.
Theorem 2.6. Let {φ1, . . . , φn} be a linearly independent set in Cn such that

‖φj‖ = 1 and

(2.3) Aφj = λjφj + rj

for all j ∈ {1, . . . , n}, where λj ∈ C and rj ∈ Cn. Let R,S be the n × n matrices
R := [r1 . . . rn] and S := [φ1 . . . φn]. Then A = SDS−1 + B, where B := RS−1 and
D is the diagonal matrix with entries λ1, . . . , λn. Moreover

1 ≤ ‖S‖ ≤
√
n

and

‖B‖ ≤ ‖S−1‖

⎧⎨⎩
n∑

j=1

‖rj‖2

⎫⎬⎭
1/2

.

Proof. Equation (2.3) may be rewritten in the form AS = SD + R by concate-
nating the columns. This implies B = RS−1. We also have

1 ≤ ‖S‖ ≤ ‖S‖HS =
√
n,

where ‖ · ‖HS is the Hilbert–Schmidt, or Frobenius, norm. Similarly,

‖B‖ ≤ ‖S−1‖ ‖R‖ ≤ ‖S−1‖ ‖R‖HS = ‖S−1‖

⎧⎨⎩
n∑

j=1

‖rj‖2

⎫⎬⎭
1/2

.

3. Evidence supporting the conjecture. We start by proving our conjecture
for Jordan matrices.

Lemma 3.1. Let J denote the n× n Jordan matrix

(3.1) Jr,s :=

{
1 if s = r + 1,
0 otherwise.

Then

(3.2) 1 ≤ μ(J, δ) ≤ δ−1+1/n ≤ δ−1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1056 E. B. DAVIES

for all δ ∈ (0, 1) and

(3.3) 0 ≤ σ(J, ε) ≤ 2εn/(2n−1) ≤ 2ε1/2

for all ε ∈ (0, 1).
Proof. We define B by

Br,s :=

{
−δ if r = n and s = 1,
0 otherwise,

and T by

(3.4) Tr,s :=

{
δ−r/n if r = s,
0 otherwise.

A direct calculation shows that

T (J −B)T−1 = δ1/nU,

where U is the circulant and unitary matrix with entries

Ur,s :=

⎧⎨⎩
1 if s = r + 1,
1 if r = n and s = 1,
0 otherwise.

If F is the finite Fourier transform whose matrix

Fr,s := n−1/2e2πirs/n

is unitary, then

FUF−1 = D,

where D is the diagonal matrix with entries λr = e2πir/n, for 1 ≤ r ≤ n. Putting
S := FT we finally obtain

J = S−1(δ1/nD)S + B.

Since ‖T‖ = δ−1 and ‖T−1‖ = δ1/n we deduce that κ(S) = δ−1+1/n. This implies
(3.2). The corresponding upper bound on σ is obtained by applying Lemma 2.3.

Example 3.2. We compare the above theoretical result with what can be obtained
numerically. We defined J by (3.1) with n = 25 and evaluated f(δ) := δ1−1/nκ(S)
for 200 randomly generated matrices B with norms equal to δ for a range of val-
ues of δ. The matrices S and D were defined by using the MATLAB command
[S,D]=eig(A-B). In Table 3.1, min(f(δ)) is the minimum value of f(δ) obtained and
med(f(δ)) is the median value. We also took a sample of 2000 such matrices B and
found that all the values of min(f(δ)) remained larger than 2. The similarity of the
numerical results to what was proved in Lemma 3.1 suggests that both are close to
the optimal bound.

The following corollary does not prove the conjecture because the constant ob-
tained depends on the matrix involved, not just on the dimension. It is known that
finding the Jordan canonical form is an inherently unstable problem [6, p. 390], [7].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DIAGONALIZATION 1057

Table 3.1

Computation of condition numbers in Example 3.2.

δ min(f(δ)) med(f(δ))

10−1 3.67 17.91
10−2 4.15 22.09
10−3 3.29 22.25
10−4 3.78 25.57
10−5 3.88 25.95
10−6 3.32 24.04
10−7 3.83 20.51
10−8 3.72 24.99

Corollary 3.3. For every n× n matrix A there exists a constant cA such that

σ(A, ε) ≤ cAε
1/2

for all ε ∈ (0, 1).
Proof. If A = V J̃V −1, where J̃ is a Jordan canonical form for A, then (2.1)

implies that

σ(A, ε) ≤ κ(V)σ(J̃ , ε).

By applying the method of Lemma 3.1 to each Jordan block of J̃ , we obtain the
corollary.

We next prove the conjecture for triangular Toeplitz matrices.
Theorem 3.4. Given complex constants α0, α1, . . . , αn−1 such that

∑n−1
r=0 |αr| ≤

1, let A denote the n× n triangular Toeplitz matrix

Ar,s :=

{
αs−r if s ≥ r,
0 otherwise.

Then

σ(A, ε) ≤ 2εn/(2n−1) ≤ 2ε1/2

for all ε ∈ (0, 1).
Proof. If we define B by

Br,s :=

{
−δαs−r+n if s < r,
0 otherwise,

where δ ∈ (0, 1) is to be determined, then ‖B‖ ≤ δ. If we define T by (3.4), then a
direct calculation shows that

C := T (A−B)T−1

is the circulant matrix with entries

Cr,s := αs−rδ
(s−r)/n,

where we replace s − r by s − r + n if the former expression is negative. If F is the
finite Fourier transform, then

D := FCF−1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1058 E. B. DAVIES

is a diagonal matrix. Putting S := FT as before we obtain κ(S) = δ−1+1/n and

A = S−1DS + B.

Putting δ := εn/(2n−1) we obtain

σ(A, ε) < 2εn/(2n−1).

We have not been able to prove the conjecture for general n × n matrices; The-
orem 3.9 below is the closest that we have got to it. We originally proved it under
the assumption that the eigenvalues of A were collinear. The general case depends on
the following theorem of Friedland [5]. Its proof depends on using the degree mod 2
of a smooth map between manifolds of equal dimension, and it would be valuable to
obtain a constructive version. This may not be easy, because the number of normal
“extensions” N of Q varies from 1 to ∞ (inclusive) depending on Q.

Theorem 3.5 (see Friedland [5]). For every upper triangular n × n matrix Q
there exists a strictly lower triangular matrix L such that N := Q + L is normal.

Example 3.6. A direct construction of the matrix L in the theorem is not ele-
mentary even in the case of 3× 3 matrices. If the eigenvalues of the upper triangular
matrix Q are collinear, then we may construct L as follows. We first write Q in the
form Q = cI + eiθ(D + U), where c ∈ C, θ ∈ R, D is a real diagonal matrix, and U
is strictly upper triangular. If we define L := eiθU∗, then Q + L = cI + eiθH, where
H is self-adjoint, and this implies that Q + L is normal.

Lemma 3.7. If N := Q + L is normal, where Q and L are upper triangular and
strictly lower triangular, respectively, then ν(Q) = ν(L), where

ν(A) :=
∑
r,s

|r − s||Ar,s|2.

Proof. We have

ν(Q) − ν(L) =
∑
r,s

(s− r)|Nr,s|2

= tr[N∗EN] − tr[N∗NE]

= tr[(NN∗ −N∗N)E]

= 0,

where

Er,s :=

{
r if r = s,
0 otherwise.

Further comparisons between the size of Q and L can be obtained by replacing
E by

Er,s :=

{
f(r) if r = s,
0 otherwise,

where f is any monotonic function on {1, . . . , n}.
Lemma 3.8. The inequality ν(A) ≤ n2‖A‖2 holds for all n × n matrices A. If

the diagonal entries of A all vanish, then ‖A‖2 ≤ ν(A).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DIAGONALIZATION 1059

Proof. We have

ν(A) ≤ n
∑
r,s

|Ar,s|2 = n

n∑
s=1

‖Aes‖2 ≤ n2‖A‖2,

where {es}ns=1 is the standard basis of Cn.
If the diagonal entries of A vanish, then the second inequality follows from

‖A‖2 ≤ ‖A‖2
HS ≤ ν(A).

Theorem 3.9. If A is an n× n matrix satisfying ‖A‖ ≤ 1, then

σ(A, ε) ≤ (1 + n)ε2/(n+1)

for all ε ∈ (0, 1). In particular, the conjecture holds with

σ(A, ε) < 4ε1/2

for every 3 × 3 matrix A satisfying ‖A‖ ≤ 1.
Proof. By the Schur decomposition there exists a unitary matrix U such that

P := U−1AU is upper triangular. If 0 < δ < 1 and

Vr,s :=

{
δr if r = s,
0 otherwise,

then Q := V −1PV is upper triangular and

ν(Q) ≤ δ2ν(P) ≤ δ2n2‖P‖2 ≤ δ2n2.

By Friedland’s theorem there exists a strictly lower triangular matrix L such that
Q + L is normal and ν(L) = ν(Q). A direct calculation establishes that

‖V LV −1‖2 ≤ ν(V LV −1) ≤ δ2ν(L) = δ2ν(Q) ≤ δ4n2.

Therefore B := −UV LV −1U−1 satisfies ‖B‖ ≤ δ2n. Hence

V −1U−1(A−B)UV = Q + L = WDW−1,

where D is diagonal and W is unitary. Putting S := UVW we obtain A = SDS−1+B,
where κ(S) = κ(V) = δ1−n. Therefore

σ(A, ε) ≤ δ1−nε + nδ2.

The result now follows by putting δ := ε1/(n+1).

4. Random perturbations. The above methods of constructing B and S are
too simple to prove the conjecture for n > 3. In this section we describe a randomized
approximate diagonalization method (RADM), suggested to us by L. N. Trefethen,
which provides numerical evidence in support of the conjecture. Numerically it is
remarkably effective.

If the n × n matrix A cannot be diagonalized or can only be diagonalized by
means of a matrix S whose condition number is extremely large, then one can instead
diagonalize the matrix A − B, where B is a small random perturbation. We found
experimentally that for a variety of strictly upper triangular n×n matrices A (none of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1060 E. B. DAVIES

which can be diagonalized) with n = 100 and ε := 10−16 one has σ(A, ε) ≤ 3 × 10−7.
In each case we minimized over 100 randomly chosen B such that ‖B‖ = 10−8. On
the other hand, for a series of 100 matrices of the form A=rand(n) with n = 100 and
B = 0 we found that 50 ≤ κ(S) ≤ 1000 in every case; our methods are not necessary
for such matrices. In the computations that follow the random perturbation was of
the form B=s*randn(n), where s is a small constant. However, we got the same results
with small random perturbations B=s*randn(n,1)*randn(1,n) of rank one.

One can use RADM to evaluate Aα and other similar functions of A. Our con-
clusion from a range of such problems, some described below, is that RADM is less
accurate than standard MATLAB algorithms when the matrix A is quite close to
being normal. If A is far from normal and has a small eigenvalue, then the two meth-
ods have comparable accuracy. For many functions one cannot apply the MATLAB
algorithm funm, described in [2], but RADM still yields a result whose accuracy can
be confirmed by repeating the computation with another choice of the random per-
turbation.

Example 4.1. We consider the n× n matrix

(4.1) Ar,s :=

{
r/n if s = r + 1,
0 otherwise.

We put n := 100 and defined
B1=randn(n)

B=10^(-u)*B1/norm(B1)

[S,D] = eig(A-B)

in the notation of MATLAB. We computed σ(A,S,B, ε) and log10(κ(S)) for ε = 10−16

and 1 ≤ u ≤ 15. Table 4.1 shows that σ(A,S,B, ε) took its minimum value for
‖B‖ ∼ 10−7 but that the condition number of S increased steadily as u increased.
The minimum value of σ is of order ε1/2.

We also carried out a computation in which the entries r/n in (4.1) were replaced
by randomly chosen numbers. The conclusions were similar.

Table 4.1

Computation of condition numbers in Example 4.1.

u σ(A,S,B, ε) log10(κ(S))
1 0.1 2.2784
2 0.01 3.723
3 0.001 4.3007
4 0.0001 5.3355
5 1e− 005 6.169
6 1.0016e− 006 7.1996
7 1.2316e− 007 8.3647
8 2.0592e− 007 9.2921
9 1.7551e− 006 10.244
10 2.0103e− 005 11.303
11 0.00015367 12.187
12 0.0015981 13.204
13 0.019479 14.29
14 0.19699 15.294
15 1.7837 16.251

5. Fractional powers. The definition of the square root of an n × n matrix
A is not as straightforward as it appears. If A has n distinct nonzero eigenvalues,
then it has exactly 2n square roots, which commute pairwise. On the other hand,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DIAGONALIZATION 1061

the matrices 0 and 1 have a continuum of noncommuting square roots. If An = 0
but An−1 �= 0, then A has no square root, but A2 has a continuum of commuting
square roots, namely A + cAn−1 for any choice of c. If A has n distinct nonzero
eigenvalues but two (or more) of these are approximately equal, then it may have a
large number of pairwise noncommuting approximate square roots. One may avoid
these ambiguities by using the holomorphic functional calculus to define A1/2 and
choosing the branch of z1/2 that has a cut along the negative real axis.

Example 5.1. Let A be the n× n matrix

(5.1) (A)r,s :=

⎧⎨⎩
r/n if s = r + 1,
c if s = r,
0 otherwise,

where 0 < c < 1. All such matrices satisfy ‖A‖ ≤ 2 rather than ‖A‖ ≤ 1 so a
slight adjustment of the theory is needed. We computed A1/2 for various values of c
when n := 20 by two methods and presented the results in Table 5.1. We compared
‖E2 − A‖, where E is the square root computed by using RADM, with ‖F 2 − A‖,
where F=sqrtm(A) in the notation of MATLAB.

If one only looks at the third column of Table 5.1 one sees that the algorithm
sqrtm is not accurate for c < 0.1. The situation for RADM is not as straightforward.
Column 2 wrongly suggests that RADM is reasonably accurate for all values of c
investigated. However, column 4 shows that ‖E‖ increases rapidly as c decreases,
while column 5 presents the ratio of two values of ‖E‖ computed with two different
random perturbations Bi, both satisfying ‖Bi‖ = 10−8. One sees that the two values
of ‖E‖ obtained are quite different if c < 0.2, even though ‖E2 − A‖ = O(10−8) in
both cases. This is possible because the map A → A1/2 varies very rapidly for small
values of c in spite of Lemma 2.1. If one only wants an approximate square root
of A, then RADM works well for all c investigated, but it does not produce a good
approximation to the exact square root of A for c < 0.2.

Our intention above was to illuminate the problems involved in computing square
roots rather than to advocate the use of a particular method, but if one wishes to
use RADM it is recommended that one should check that two successive applications
with different random perturbations yield the same answer to within O(10−8).

Table 5.1

Computation of square roots in Example 5.1.

RADM sqrtm

c ‖E2 −A‖ ‖F 2 −A‖ ‖E‖ ‖E1‖/‖E2‖
0.8 3.0453e− 008 1.8228e− 016 1.2743 1
0.6 5.5242e− 008 1.9563e− 016 1.1984 1
0.4 1.5797e− 008 5.6362e− 016 5.3628 1
0.3 6.2193e− 008 1.3148e− 014 103.7 1.0001
0.2 2.6138e− 008 3.2596e− 012 2.0706e + 004 0.97515
0.1 2.0012e− 008 6.3565e− 008 3.3292e + 006 0.50668

0.05 2.8685e− 008 0.0074873 3.0604e + 006 0.55402
0.02 2.2364e− 008 93768 9.1859e + 006 0.71102
0.01 1.453e− 008 5.5561e + 008 2.2661e + 007 0.89547

Let A be an n× n matrix whose numerical range is contained in {z : Re(z) ≥ 0}
and contains some points very close to 0. Suppose that one wishes to compute At for
0 ≤ t ≤ 1. The formula

At = et log(A)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1062 E. B. DAVIES

is not recommended because log(A) may have a very large norm, and it is undefined
if 0 is an eigenvalue of A. An accuracy of 10−8 is more than sufficient for plotting the
graph of f(t) := ‖At‖, and RADM provides a way of doing this with a minimum of
effort. Many other applications of a similar character can easily be devised.

There are four other possible methods of evaluating At. If A = I − B, where
‖B‖ ≤ 1, then

Spec(A) ⊆ Num(A) ⊆ {z : |z − 1| ≤ 1}.

If s > 0, then one may define As by

As :=
1

2πi

∫
γ

zs(zI −A)−1 dz,

where γ is the boundary of the region

{reiθ : 0 < r < 5/2 and −3π/4 < θ < 3π/4}.

Every point on γ except 0 is outside the numerical range of A, so the resolvent norm
is of order 1 except near 0. The integral is norm convergent for all s > 0, but it may
develop a singularity at z = 0 as s → 0+, so it is not always useful for small s.

Alternatively, one might use the expansion

As = I −
∞∑
r=1

cr,sB
r,

where

cr,s := (−1)r+1s(s− 1) · · · (s− r + 1)/r!.

The series is norm convergent for all s ∈ (0, 1) because cr,s ≥ 0 and
∑∞

r=1 cr,s = 1.
However, the convergence of the series is very slow for small s > 0, so it is not
numerically useful for such s. Both of these problems are apparent if 1 is an eigenvalue
of B, but they also occur if the pseudospectra of B are significant near 1, even if B
has no spectrum near 1.

We finally mention that one may also evaluate As by using [8] if s = 1/n and by
the ODE method of [3].

Example 5.2. We used RADM to compute the rth root Cr of the matrix (5.1),
with c := 0.5, n = 20, and r = 1, . . . , 10. Other real powers may be treated in exactly
the same way. In the final column of Table 5.2, Cr,1 and Cr,2 are two independent
computations of Cr, both obtained using RADM. The small size of the entries in this
column indicates that the results are all reliable to O(10−8).

We finally remark that if greater accuracy is needed, then one may use the above
procedure to obtain the starting point for a Newton-type iteration.

We used RADM to compute ‖At‖ for the matrix (5.1) with n = 100 and c = 0.6.
We put t := 2−7r, where r is a positive integer, v1 := ‖At‖ computed using RADM,
and v2 := ‖Br‖, where B := A1/128 is computed by repeated applications of the
MATLAB operator sqrtm. The two methods give the same answer to within 0.04 for
all t ∈ (0, 2), i.e., a relative accuracy of 10−4. This may seem rather low, but it is
more than enough for graph-drawing needs. Both methods computed the norm of A
and A2 correctly. Most of the CPU time was used computing the matrix norms, but

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DIAGONALIZATION 1063

Table 5.2

Computation of rth roots in Example 5.2.

r ‖(Cr)r −A‖ ‖Cr‖ ‖Cr,1‖/‖Cr,2‖ − 1
1 3.4677e− 007 1.33558842 −2.1906e− 009
2 1.4319e− 007 1.35606917 8.9048e− 009
3 3.8861e− 008 1.57711707 4.0503e− 008
4 1.0367e− 007 1.59766857 4.9686e− 008
5 7.8846e− 008 1.55852362 8.1706e− 008
6 4.6441e− 008 1.50671663 2.3817e− 009
7 8.0153e− 008 1.45657560 5.0527e− 008
8 7.5740e− 008 1.41197706 −4.5141e− 008
9 2.2498e− 007 1.37341090 5.3190e− 008
10 7.8768e− 008 1.34032556 1.1992e− 007

0 0.5 1 1.5 2
0

50

100

150

200

250

300

350

400

450

500

Fig. 5.1. Graph of ‖At‖ for 0 < t < 2.

excluding that RADM is substantially faster because it involves one application of
eig as opposed to seven applications of sqrtm. For values of c much smaller than 0.6,
neither RADM nor sqrtm is accurate. One might also compute B directly using the
new algorithm of Guo and Higham [8]. Figure 5.1 shows the graph of the norm and
is typical of problems in which pseudospectral behavior is important.

Acknowledgments. We should like to thank N. J. Higham, S. Shkarin, E. Shar-
gorodsky, L. N. Trefethen, and the referee for helpful criticism and encouragement.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1064 E. B. DAVIES

REFERENCES

[1] E. B. Davies, Linear Operators and Their Spectra, Cambridge University Press, Cambridge,
UK, 2007.

[2] P. I. Davies and N. J. Higham, A Schur–Parlett algorithm for computing matrix functions,
SIAM J. Matrix Anal. Appl., 25 (2003), pp. 464–485.

[3] P. I. Davies and N. J. Higham, Computing f(A)b for matrix functions f , in QCD and Nu-
merical Analysis III, Lect. Notes Comput. Sci. Eng. 47, A. Boriçi, A. Frommer, B. Joó, A.
Kennedy, and B. Pendleton, eds., Springer-Verlag, Berlin, 2005, pp. 15–24.

[4] J. W. Demmel, The condition number of equivalence transformations that block diagonalize
matrix pencils, SIAM J. Numer. Anal., 20 (1983), pp. 599–610.

[5] S. Friedland, Normal matrices and the completion problem, SIAM J. Matrix Anal. Appl., 23
(2002), pp. 896–902.

[6] G. Golub and C. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University Press,
Baltimore, 1989.

[7] M. Gu, Finding well-conditioned similarities to block-diagonalize nonsymmetric matrices is
NP-hard, J. Complexity, 11 (1995), pp. 377–391.

[8] C.-H. Guo and N. J. Higham, A Schur–Newton method for the matrix pth root and its inverse,
SIAM J. Matrix Anal. Appl., 28 (2006), pp. 788–804.

[9] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,
2002.

[10] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math., 14 (1969),
pp. 14–23.

[11] L. N. Trefethen and M. Embree, Spectra and Pseudospectra, Princeton University Press,
Princeton, NJ, 2005.

[12] T. G. Wright, EigTool Software, available online at http://www.comlab.ox.ac.uk/
pseudospectra/eigtool.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1065–1082

ANALYSIS AND EXPLOITATION OF MATRIX STRUCTURE
ARISING IN LINEARIZED OPTICAL TOMOGRAPHIC IMAGING∗

DAMON HYDE† , MISHA KILMER‡ , DANA H. BROOKS† , AND ERIC MILLER§

Abstract. We present a novel method by which the large dense forward matrix A involved
in a linear inverse diffusion problem can be decomposed into a number of sparse easily computed
matrices. We begin by introducing an errorless decomposition which is applicable to a wide array
of such imaging problems. Next, we incorporate interpolation into the construction of the matrices
to reduce the computational complexity involved in the matrix-vector multiplications necessary to
obtain an inverse solution. Error and computational complexity analysis are provided to support
these developments. We then present numerical results that illustrate the gain in computational
efficiency when the approximation is used in the Tikhonov regularized inverse problem, and show
that the use of the approximation has virtually no negative effect on the quality of the reconstructed
images. Finally, we discuss applicability to other imaging problems.

Key words. structured matrix, matrix approximation, linearized inverse scattering, Tikhonov
regularization, image reconstruction

AMS subject classifications. 65F10, 65R32, 15A99

DOI. 10.1137/060657285

1. Introduction. In diffuse optical tomography (DOT), near-infrared light is
introduced to the body from an array of sources on the surface and collected at
a number of detectors as it exits [3, 7, 8, 12, 15, 17, 26, 27]. The imaging problem
consists of determining images of photon absorption and/or diffusion in the body from
this measured photon fluence. In this paper, we consider the problem of efficient image
reconstruction from diffuse optical data. Using a linearized model of the relationship
between the data and optical absorption coefficient, the specific problem we consider
is the efficient solution of the Tikhonov regularized problem:

(1.1) min
f

‖Af − g‖2
2 + λ‖Rf‖2

2,

where the real Ndata × Nvox matrix A is a discretization of a Born-type linearized
inverse scattering operator in three dimensions (i.e., the discretization of an integral
operator), f denotes the vectored form of the absorption image to be determined, and
g denotes the measured data vector. The regularization term λ‖Rf‖2

2 is necessary to
dampen the effects of noise on the quality of the reconstructions as well as to ensure
uniqueness of the solution. We employ iterative algorithms as a computationally at-
tractive means to solve (1.1). The nature of these methods is such that the matrix
A need be utilized only for multiplications of the form Ax and ATx for an arbitrary

∗Received by the editors April 14, 2006; accepted for publication (in revised form) by D. P.
O’Leary March 27, 2007; published electronically November 2, 2007. This work was funded in part
by NSF grants 0139968 and 0208548, and by the Center for Subsurface Sensing and Imaging Systems
(CENSSIS).

http://www.siam.org/journals/simax/29-4/65728.html
†Department of Electrical and Computer Engineering, Northeastern University, Boston, MA

02115 (dhyde@ece.neu.edu, brooks@ece.neu.edu).
‡Department of Mathematics, Tufts University, Medford, MA 02155 (misha.kilmer@tufts.edu).
§Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155

(elmiller@ece.tufts.edu).

1065

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1066 D. HYDE, M. KILMER, D. H. BROOKS, AND E. MILLER

vector x, and the problem can be solved efficiently for multiple values of λ simultane-
ously. This allows us to concentrate on optimizing for matrix-vector multiplications
rather than the more complicated matrix-matrix multiplications.

Though a number of different nonlinear algorithms are currently in use for DOT
[6, 7, 8, 29, 25, 27], the associated data sets are generally quite small (on the order
of several hundred data points). Technologically, however, sensor systems are rapidly
evolving to provide greater spatial density of sources and detectors as well as finer scale
sampling in time or frequency. Thus, the size of the data sets available for inversion is
increasing far beyond what is typically considered in the nonlinear inversion literature.
Scaling these algorithms to larger data sets, such as those considered in this paper,
drastically increases the required computational power and makes application of the
nonlinear inverse methods either completely infeasible or quite difficult—significant
effort and new research would be required in the implementation of these methods
on supercomputing-type platforms. Such efforts are indeed well beyond the capabili-
ties of many relevant research and industrial organizations (e.g., Advanced Research
Technologies (ART), who provided us with the phantom data used in this paper). In
such settings the linear solution is the only feasible approach to the problem. Thus,
though nonlinear methods for DOT are certainly under consideration, there remains
relevance to considering the linear form of the problem as well.

Toward this end, we point to recent research using linear methods for DOT and re-
lated areas where the results presented here may prove relevant [4, 9, 14, 16, 18, 19, 30].
Moreover, we emphasize that the methods we present in this paper are really only
loosely dependent upon the specific form of the Green’s functions. As long as (a) the
Green’s functions are smooth and display some level of spatial invariance and (b) the
data collection scheme is also regular, the methods detailed here will be usable. This
makes our work relevant to a wide range of problems, of which DOT is but a sin-
gle application. For example, the ideas here could be applicable to any large scale
diffusive-type inverse problem (where data set size and voxel dimensionality prevent
the use of nonlinear methods) such as diffusive-type electromagnetic induction imag-
ing arising in geophysical applications, photothermal/photoacoustic nondestructive
evaluation, bioluminescence tomography (BLT), and fluorescence molecular tomogra-
phy (FMT). As a specific example, take FMT [21, 20]. When imaging fluorescence,
the collected fluorescence data are approximately linearly related to the image, and
using methods such as the normalized Born ratio, it is possible to minimize the ef-
fects of inhomogeneities in the background optical parameters [28]. Moreover, for this
problem, the development of CCD detectors and tomographic data acquisition sys-
tems is leading to imaging problems even larger than those considered here. Thus we
would anticipate that large computational gains could be achieved using the method
in this paper.

The difficulty in practice with solving the Tikhonov problem is that the matrix A
is dense and extremely large, with Ndata and Nvox being on the order of 104–105. For
this work, we restricted ourselves to working with a system configuration consisting of
a slab transmission geometry using time domain data collection. In this configuration,
the region to be imaged is modeled as the volume contained between two parallel
infinite planes. The solution volume is then a compact finite section of this infinite
volume [12, 15]. Sources are located along one plane, directed into the volume, while
detectors are arrayed along the other plane to collect exiting light. At each source
location a picosecond laser is pulsed, and the time dependent intensity is recorded
at a number of detectors for time gates of several nanoseconds. Given that each
detector may collect hundreds or even thousands of time points for each source pulse,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX STRUCTURE IN LINEAR DOT IMAGING 1067

the total data set rapidly becomes extremely large. In systems of this sort, it is not
uncommon to see hundreds of thousands of data points collected in a single imaging
session. Thus, even with a very small number of voxels, the size of A rapidly becomes
prohibitive. Storing such a matrix in double precision can require gigabytes of storage
space and thereby renders useless any algorithm requiring the up-front computation
of A.

Therefore, our primary goal is to represent the full matrix A such that both the
time required for its computation and the necessary storage space are significantly
reduced. In particular, we look to exploit the structure of the matrix A so that re-
dundant matrix entries are not explicitly computed/stored. These redundancies arise
from a combination of the regularity in the data acquisition process and the structure
of the Green’s functions used to compute the matrix elements. As we will show, only
a relatively small amount of information is needed to implicitly represent every ma-
trix entry, so matrix-vector products can be performed on-the-fly simply by reference
to a particular source-detector pattern and the small amount of stored information.
However, even with a more compact representation, a significant amount of time is
still required to evaluate matrix-vector products involving these matrices. Given that
these products may need to be evaluated numerous times to obtain a solution, a sec-
ondary goal of this work was the reduction of the computational complexity involved
in executing matrix-vector products. To do this, we effectively replace the implicit
representation of A by an approximation that can be applied to vectors more quickly
without degradation of the reconstructed images.

To achieve the first goal, we take into account the spatial invariance of the integral
equation kernel from which A is derived. Using a change of variables, we are able to
exploit the matrix redundancies more readily. This allows us to represent A in terms
of the product of a single small matrix and a collection of sparse, easily computed
matrices. This decomposition is made possible by a regular sampling pattern and
planar shift invariance in the kernel.

To achieve the second goal, we introduce an interpolation approach, applied in
the aforementioned coordinate system, to further reduce the number of matrix com-
ponents that must be explicitly computed. The utility of the interpolation approach
arises from the smoothness of the kernel of the integral equation from which A is
derived. In turn, this suggests applicability to other diffusing imaging problems with
similarly smooth kernels. By choosing an interpolation method which is expressible
in matrix form, we are then able to achieve reduction in the amount of computation
required to implement the matrix vector products Ax and ATx. These gains are
shown to be directly proportional to the number of nodes used in the interpolation
scheme, allowing for a direct tradeoff between computation time and accuracy.

Applying these two steps to the overall problem at hand, we are able to obtain a
dramatic decrease in the amount of time required to obtain a solution to the problem
(1.1) using an iterative algorithm. We present several sets of numerical results, both
with and without the use of interpolation, to approximate A. Using phantom simu-
lations, we show that while the two solutions are not identical, visually they are very
similar, and mathematically they have effectively the same mean squared error with
respect to the true image.

This paper is organized as follows. In section 2, we provide an overview of the
physics and mathematics behind the construction of the matrix A. In section 3.1,
we show how to represent the matrix in compact form. Section 3.2 is devoted to
presenting an interpolation-based approximation to the matrix. Section 4 details the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1068 D. HYDE, M. KILMER, D. H. BROOKS, AND E. MILLER

precise reductions in computational complexity. Inversion results using the algorithm
in [13] on a simulated data set are presented in section 5 along with an analysis of the
error introduced by the interpolation. Finally, in section 6, we summarize our results
and outline potential further extensions.

2. Problem description. The diffusion approximation model arises as an ap-
proximation to the radiative transport equation [5], and takes the form [2](

∇ · γ2∇− μa −
1

v

∂

∂t

)
Φ(r, t) = −q(r, t),(2.1)

γ2 =
1

3[μa + (1 − p)μs]
.

Here, Φ(r, t) represents the photon density at a location r and time t. Sources are
represented by q(r, t). The two physical parameters of interest are μa and μs, the
absorption and scattering parameters, respectively. Additionally, v is the speed of
light in the medium, and p̄ is the mean cosine of the scattering angle.

The goal in this work is to recover μa, assuming that μs is constant, given knowl-
edge of the sources. Since it is clearly a nonlinear problem to recover μa from (2.1),
the equation is frequently linearized by assuming that the overall system is approxi-
mately homogeneous. One can then use Green’s functions for the homogeneous case
to reformulate the imaging problem as one of finding the perturbation about some
known background absorption level. Therefore, we let μa, μs denote the known back-
ground values of absorption and scattering, and we use η(r′) to denote the unknown
perturbations of absorption about the known background value.

Assuming that the source term q(r, t) is a delta function located at position r
and time t, a solution Φ in the form of a Green’s function can be derived. For the
slab transmission geometry that we consider in this paper, the two-point time domain
Green’s function is [1]

g
(Φ)
slab(r, r

′, t, t0) =
exp

{
−
[
μac(t− t0) + d2

4γ2(t−t0)

]}
[4πγ2(t− t0)]3/2

×
∞∑

n=−∞

[
exp

(
−(z − 2zdn− z0)

2

4γ2(t− t0)

)

− exp

(
−(z − 2zdn + z0)

2

4γ2(t− t0)

)]
,

d =
√
x2 + y2, where r − r′ = (x, y, z),

zo = [(1 − ρ̄)μs]
−1.

(2.2)

This equation models the transmission of light from point r, leaving at time t0, and
arriving at point r′ at time t. The constant zd represents the thickness of the slab
in question and is used to generate the multiple image sources needed to satisfy the
boundary conditions of the system [11, 24]. The placement of these image sources
results in the Green’s function taking a value of zero at the boundary of the diffusive
medium. Finally, the distance z0 represents the source depth; because we use a slab
geometry model, all sources are located at this height. It is presumed that all light
from the source travels a short distance into the medium before proceeding to scatter
randomly. This is modeled by assuming the sources to be isotropic and placing them
one mean scattering length into the medium.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX STRUCTURE IN LINEAR DOT IMAGING 1069

These Green’s functions are used in a model of the sensing system based on
the first order Born approximation [22]. This approximation assumes that the total
received signal is the sum of the signal for a homogeneous system and a perturbation
due to η(r′), the inhomogeneities in μa:

(2.3) Γtotal = Γhomog + ΔΓ(η(r′)).

Using the background optical properties, Γhomog can be computed and subtracted
from Γtotal, leaving ΔΓ. We now concentrate on obtaining a description of ΔΓ as a
linear function of η(r′).

Under the first order Born approximation, ΔΓ is dependent only on first order
scattering; thus by integrating across Ω, the volume to be imaged, an equation for Ω
can be written as

(2.4) ΔΓ(s,d, t, t0) ≈ −
∫

Ω

∫ ∞

−∞
[g

(Γ)
slab(s, r

′, t′, t0)η(r
′)g

(Φ)
slab(r

′,d, t− t′, t0)]dt
′dr′.

Here, �Γ(s,d, t, to), the change in the photon fluence measured at location d at time
t due to inhomogeneities in the background absorption for a source at location s, is
equal to the integral of all first order scattering throughout the volume. The Green’s

function g
(Γ)
slab(r, r

′, t, t0) is the spatial gradient of g
(Φ)
slab(r, r

′, t, t0) with respect to a

unit normal extending out of the solution volume. This gives g
(Γ)
slab(r, r

′, t, t0) the form

g
(Γ)
slab(r, r

′, t, t0) =
exp

{
−
[
μac(t− t0) + d2

4γ2(t−t0)

]}
[4πγ2(t− t0)]3/2

×
∞∑

n=−∞

[
−2 (z − 2zdn− z0)

4γ2(t− t0)
exp

(
−(z − 2zdn− z0)

2

4γ2(t− t0)

)

+
2(z − 2zdn + z0)

4γ2(t− t0)
exp

(
−(z − 2zdn + z0)

2

4γ2(t− t0)

)]
,

d =
√
x2 + y2, where r − r′ = (x, y, z),

zo = [(1 − ρ̄)μs]
−1.

(2.5)

This relationship is necessary, as the photon density is not a directly measurable
quantity. By taking the gradient of the photon density, we obtain the photon fluence,
the intensity of the light exiting from the boundary at the location of the detector.
This fluence is a quantity which we are capable of measuring with detectors placed
on the surface.

Because the system is causal, (2.2) is zero for t < t0. Additionally, presuming that
the timescale can be adjusted such that t0 = 0, the second integral in (2.4) will have
support only for t′ such that 0 ≤ t′ ≤ t, and the dependence upon t0 can be dropped
from (2.4). Discretizing (2.4) in piecewise constant fashion for each voxel converts the
spatial integration into a summation. Combining these modifications results in

(2.6) �Γ(s,d, t) ≈ −
Nvox∑
i=1

dVi

∫ t

0

[g
(Γ)
slab(s, r

′
i, t

′)g
(Φ)
slab(r

′
i,d, t− t′)η(r′i)]dt

′,

where dVi is the volume of the ith voxel and the r′i’s are locations of voxel centers.
For simplicity and maximum computational gain, we assume that dVi is constant for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1070 D. HYDE, M. KILMER, D. H. BROOKS, AND E. MILLER

all voxels and simply note it as dV . The above equation then serves as a basis from
which to construct the discrete linear model Af ≈ g, where f is the vector of unknown
absorption values at each of the voxels in the image. This equation is ill-posed in the
sense that a least-squares solution to the system would be hopelessly contaminated
by noise. Therefore, we solve instead the Tikhonov regularized problem (1.1).

From (2.6), we see that the entry in the matrix A associated with voxel (column)
i and row corresponding to source s and detector d at time t is

(2.7) J
(Γ)
i (s,d, t) ≈ −dV

⎛⎝ Tt∑
j=1

wj

[
g
(Γ)
slab

(
s, r′i, t

′
j

)
g
(Φ)
slab

(
r′i,d, t− t′j

)]⎞⎠ ,

where in this case the approximation notation conveys the fact that the integral was
evaluated numerically using the composite trapezoid rule on a regular grid, and the
wj denote the weights of the composite trapezoid rule.

As mentioned in the introduction, it is not feasible to naively construct and
store each entry in A. However, it is clear from the above Green’s functions that
in a slab geometry there is some degree of spatial invariance in the kernels. In the
following section, we describe how to utilize the invariance to store only a minimum
of information to represent every entry in A, and to utilize the stored information
to perform the matrix-vector products necessary to employ an iterative algorithm for
solving (1.1).

3. Exploiting matrix structure. There is a significant amount of redundancy
in the forward matrix. By eliminating the excesses involved in computing the same
value multiple times, we can reduce the time required to generate the matrix. We are
able to store each computed value only once and reuse it as needed. This reuse takes
the guise of a series of selection matrices: extremely sparse, easily formed matrices
consisting entirely of ones and zeros.

3.1. Change of coordinates. In (2.2), (2.5), and (2.7), the X-Y coordinates
of the source-voxel and detector-voxel differences enter into the equation only as ra-
dial distances

√
x2 + y2. Because of this, the absolute X-Y locations involved are

irrelevant to the computation, and it is possible to change from the original absolute
Cartesian coordinates to a different coordinate system based on these radial distances.
Equation (2.7) expresses each matrix component as the convolution of two Green’s
functions with respect to time. Given the convolution involved in obtaining the ma-
trix components, this new coordinate system can be seen as two joined cylindrical
coordinate systems, with the central axis of one lying upon the radial boundary of
the other. To see this, let (Xs, Ys, Zs) represent the absolute location of the source
and (Xr, Yr, Zr) and (Xv, Yv, Zv) represent the absolute locations for the detector and
voxel, respectively. Define the new variables:

D1 = ((Xv −Xs)
2 + (Yv − Ys)

2)1/2,

Z1 = Zv − Zs,

D2 = ((Xv −Xr)
2 + (Yv − Yr)

2)1/2,(3.1)

Z2 = Zr − Zv.

These four values are sufficient for computing the value of (2.7), regardless of the
absolute position of the three initial sets of (x, y, z) coordinates. Further, because we
are modeling a slab geometry, the z-coordinates for the sources are fixed and known,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX STRUCTURE IN LINEAR DOT IMAGING 1071

Fig. 3.1. Dual cylindrical coordinate system. This illustration depicts visually the spatial
invariance of (2.7), which expresses the matrix values as the numerical convolution of two Green’s
functions. Here, the source is located at Rs, the center of the top of the larger cylinder; the voxel
under consideration is at Rv, the top center of the smaller cylinder; and the detector is located at
Rd, a point on the lower rim of the cylinder. Given this arrangement, the radial location of the small
cylinder with respect to the larger, and the radial location of the detector with respect to the small
cylinder, can both be changed arbitrarily without affecting the resulting value of (2.7). Additionally,
given a slab geometry of fixed thickness Zd, the entire system is shift invariant to changes along the
X-Y plane.

as are the z-coordinates for the detectors. Therefore, the only time that Z1 and
Z2 change is when Zv changes, and thus only one of Z1, Z2, Zv is needed in order to
compute the other two. As the locations of the source, detector, and voxel are allowed
to vary, these changes will be reflected in changes to the triple (D1, D2, Zv). This dual
cylindrical coordinate system is shown in Figure 3.1. Note that the two radial angles
θ1 and θ2 do not appear in (3.1). Clearly, (2.7) is independent of θ1 and θ2 and is
therefore invariant to changes in the angles. Therefore, given fixed t, for each source-
voxel/detector-voxel pairing in XYZ space which maps to the same (D1, D2, Zv) triple,
the corresponding matrix entry will be the same. Note that this means that all sets
of three points with the same voxel height and the same length x-y projections of the
source-voxel and voxel-detector distances require identical computations.

Using this new coordinate system, we now return to the original problem, with
all of the source and detector positions, and examine those positions within this dual-
cylindrical system. In practice, many source-detector configurations fall into one of
two categories: fixed array or raster scanned. For the fixed array case, two grids
are defined, one for the sources and one for the detectors. For each source location,
data are collected at all of the detectors. In a raster scanned system, a source grid
is defined, along with a number of detector locations, fixed relative to the source. In
both cases, high levels of redundancy in the (D1, D2, Z) triplets will be present. This
means that a large number of repeated operations are performed if each component
of the matrix A is explicitly computed. Table 1 shows redundancy levels for several
common source-detector configurations based on a raster scan and two uniform grids

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1072 D. HYDE, M. KILMER, D. H. BROOKS, AND E. MILLER

Table 1

Computational/storage improvements for a variety of source-detector configurations. This table
reflects the amount of redundancy present for three examples of common source-detector geometries.
The reduction is presented as the ratio of total to unique number of matrix elements. Thus, for the
second example given, explicitly computing every matrix element results in each unique computation
being done an average of 690 times. By eliminating these excess computations and simply computing
each unique element once, we are able to significantly reduce the amount of time required to compute
the forward matrix.

SD configuration Computational/storage reduction
7 × 7 Raster scanned 49×
5 × 5 Sources over
5 × 5 Detectors 690×

10 × 10 × 10 Voxels
10 × 10 Sources over
10 × 10 Detectors 3844×

10 × 10 × 10 Voxels

Table 2

Summary of index notation. Note that Npts ≤ NvoxNDNS .

Symbol Meaning
Nz No. grid pts in z-direction

Nvox No. of voxels
Npts No. of unique (D1, D2, Z) triples
NS No. of sources
ND No. of detectors
Nt No. of time pts

Ncomp No. of interp. nodes in 3-space

of sources and detectors.
Now we are ready to consider taking advantage of this redundancy to represent

the matrix A (see Table 2 for definitions of the dimension notation). The matrix A
has NtNDNS rows and Nvox columns. We order the rows of A such that the inner
loop is over time, then detectors, then sources. It will be convenient to consider the
structure of AT instead of A. Using Aij to denote the Nvox ×Nt submatrix holding
the entries given by (2.7) for the ith source and the jth detector, the matrix AT has
the block structure

(3.2) AT = [A11 . . . A1ND
A21 . . . ANSND

].

However, given the redundancy noted above, explicit computation of each Aij is
unnecessary. Let us assume that there are Npts unique (D1, D2, Z) coordinate triplets,
given all source-voxel-detector combinations. Clearly, Npts ≤ NvoxNDNS . Each of
these triplets is encountered again at each time step, for a total of NptsNt unique
evaluations of (2.7). Let As denote the Npts × Nt matrix containing these values.
Thus instead of computing and storing all NvoxNDNSNt entries in A, we will only
need to evaluate and store the NptsNt ≤ NvoxNDNSNt unique entries of As.

We can represent A in terms of As using a series of selection matrices of size
Nvox ×Npts, where each row consists of all zeros, except for a single “1” to select the
appropriate row from As. Placing these selection matrices into the previous expression
for A results in

(3.3) AT = [S11As . . . S1ND
As S21As . . . SNSND

As].

It is possible to rewrite (3.3) in a form which exploits the underlying Kronecker

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX STRUCTURE IN LINEAR DOT IMAGING 1073

structure of the matrix:

(3.4) AT = [S11 . . . S1ND
S21 . . . SNSND

][INS∗ND
⊗ As].

We now have a compact representation of the matrix A that may be used inside the
iterative solver to produce the necessary matrix-vector products Ax or ATx. All
entries of the matrix A need not be explicitly formed.

Furthermore, there is structure present within the selection matrices themselves.
If As is arranged such that it has block structure,

(3.5) As =

⎡⎢⎢⎢⎣
Z1

Z2

...
ZNz

⎤⎥⎥⎥⎦ ,

where each block corresponds to the set of (D1, D2, Z) triplets sharing a particular Z
value, the selection matrices themselves have a Kronecker structure. This is because,
assuming a uniform grid for the voxels, the same set of (D1, D2) values will be required
from each Z-slice. Thus we have

(3.6) Sij = INz
⊗ S̃ij ,

where the matrix S̃ij is the selection matrix required to extract the appropriate rows
from any of the Zk matrices.

3.2. Interpolation. While this change-of-coordinates representation provides a
significant reduction in the amount of overhead required to compute and store the
matrix A, it does not provide any gains when that matrix is used in matrix-vector
multiplications. While operations on A can be done block by block, the overall size of
A is still exceedingly large. When used in an iterative scheme where multiple matrix-
vector products are required for each iteration, the time involved in each product
becomes a limiting factor. The desire to accelerate these products, as well as further
reduce the required initial computation, motivates the next step in our method.

Recall that even though we have reduced the number of distinct entries that need
to be computed to represent A, each of these distinct entries requires the evaluation of
the expression (2.7). These are clearly expensive to compute because of the numerous
evaluations of the Green’s functions and multiple summations. It is this function
evaluation whose explicit calculation we hope to minimize. Therefore, we propose to
use interpolation to aid in the function evaluation. Not only does this reduce the
overall amount of initial computation required to approximate each matrix entry, but
as we will illustrate shortly, it has the added benefit of speeding up matrix-vector
products.

We utilized interpolation expressible in the linear form

(3.7) As ≈ QV.

Here, Q is of size Npts×Ncomp and is the interpolation matrix, while V is Ncomp×Nt,
consisting of the smaller set of values which must be explicitly computed. Ncomp is the
number of nodes to be computed for use in the interpolation scheme and is chosen to
be significantly smaller than Npts. While all further results, including computational
complexities, will be shown with respect to the specific linear interpolation scheme

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1074 D. HYDE, M. KILMER, D. H. BROOKS, AND E. MILLER

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Fig. 3.2. Graphical description of the sampling technique used with the interpolation. The sets
of red and blue points (asterisks and squares, respectively) show the two grids which were used to
sample D1 − D2 slices of the sample space. For each Z-value, one of the two grids was selected,
alternating as the Z-value was stepped from one value to the next.

we chose to use, this process could be used with any interpolation method that can
be expressed in matrix format.

Evaluation of the function in (2.7) will occur at a set of Ncomp interpolation nodes
in (D1, D2, Z) space at each of the Nt values {t1, . . . , tNt

}. The linear interpolation
we use is based on a Delaunay tessellation of the (D1, D2, Z) space. This tessellation
uses the interpolation nodes as vertices of a tetrahedral mesh. To determine the value
at each point on the more dense grid to which we interpolate, we first determine
inside which tetrahedron the point lies. Barycentric coordinates of the desired point
are then computed with respect to the vertices of the enclosing tetrahedron, and
those coordinates are used as the weights of the interpolation. For example, if the
coordinates of the four interpolation nodes comprising the encircling tetrahedron are

given by (D
(i)
1 , D

(i)
2 , Z(i)), i = [1, . . . , 4], with corresponding function values given by

vi, i = [1, . . . , 4], then the barycentric coordinates of the desired point (D1, D2, Z)
can be determined as

(3.8)

⎡⎢⎢⎣
a1

a2

a3

a4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
D

(1)
1 D

(2)
1 D

(3)
1 D

(4)
1

D
(1)
2 D

(2)
2 D

(3)
2 D

(4)
2

Z(1) Z(2) Z(3) Z(4)

1 1 1 1

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

D1

D2

Z
1

⎤⎥⎥⎦ .

These barycentric coordinates become the weights of the interpolation, to give an
approximate value v at the point (D1, D2, Z) of

(3.9) v = a1v1 + a2v2 + a3v3 + a4v4.

Arranging the weights in Q and the coarse grid values in V, the Npts × Ncomp

matrix Q will be sparse with only four nonzero entries per row, while V will be dense.
It remains to decide how to choose the position of the interpolation nodes.

Looking again at (2.2), there is an exponential relationship between the calcu-
lated value and the values of D1 and D2. Because of this, a linear sampling method is
unlikely to give acceptable results when combined with a linear interpolation method.
This is especially true when D1 and D2 are close to zero, where the value of (2.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX STRUCTURE IN LINEAR DOT IMAGING 1075

Table 3

Number of floating point operations for various matrix-vector products. This assumes that
multiplication by 1 can be done at no cost. The vector w is the component of v corresponding to
the data points from a single source-detector pair. Note that the use of As alone does not provide
computational gains when computing matrix-vector products. It is the combination of the selection
and interpolation matrices (the SijQ product) and the initial V w multiplication that provide the
reduction in total required computation.

Product Flops (in big-Oh)

AT v, A dense O(NDNSNtNvox)
Asw O(Npts ×Nt)

AT v = S(INDNS
⊗As)v O(NDNSNtNvox)

(SijQ)(V w) O(4Nvox + NcompNt)
Approx. A using Asw ≈ QV w O(NDNS(4Nvox + NcompNt))

is changing very rapidly. Initial experimentation confirmed that this held true in
practice. As an alternative sampling method, a grid with exponential spacing in D1

and D2 was developed, as illustrated in Figure 3.2. By clustering a larger number of
sample points near the origin, it was possible to achieve significantly better interpo-
lation results for the same values of Npts, with acceptable error levels in terms of the
quality of the resulting reconstructions. To efficiently sample the space, two grids,
red and blue, were established, with the nodes of one grid centered between the nodes
of the other. We alternated between the two grids as we stepped down the Z-axis, as
indicated by the red and blue grids in Figure 3.2. In order to ensure that the grid
covered all of the necessary space, the final slice always used the blue grid, even if
this meant that two adjacent slices utilized the same grid.

4. Computational complexity. To this point, we have been primarily con-
cerned with the up-front costs in terms of storage and computation time for repre-
senting the matrix. We decreased the storage for the matrix by exploiting redundancy.
With the interpolation approximation, we also reduced the initial time needed to rep-
resent entries in the (approximate) matrix, and the storage requirement for As has
decreased from NptsNt to 4Npts + NcompNt double values stored in memory. Fur-
ther, the addition of the interpolation step adds the potential to decrease the overall
computational complexity of executing each matrix-vector product involved in solving
the minimization problem. Because the computations in the matrix-vector product
that correspond to individual source-detector pairs are independent, we will simply
examine the computation required for a single source-detector pair.

As a benchmark, the number of floating point operations (i.e., multiplications
and additions) required for matrix-vector products using the dense formulation and
also the formulation in section 3.1 are given in Table 3. Note that the flop count
is not reduced over the dense formulation when using the sparse representation in
section 3.1. (Note: multiplication by the selection matrix requires no flops.)

The situation changes when utilizing interpolation. At each source-detector pair,
the equation to be evaluated is

(4.1) SijQVx.

Here, the first step is to combine the selection and interpolation matrices. Again, the
product of these two matrices can be computed at no cost. The reason for taking this
“product” first is that in general Nvox < Npts, and thus the resulting sparse matrix
will have only 4Nvox nonzeros as opposed to the 4Npts nonzeros that are in Q.

Therefore, we compute SijQV w in three steps:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1076 D. HYDE, M. KILMER, D. H. BROOKS, AND E. MILLER

Table 4

The various matrices used in our approximate forward model, their sizes, and their number of
nonzero values. As is the small version of the forward matrix containing only the unique matrix
elements. Sij are the selection matrices used to retrieve the blocks of the full matrix from As. A is
the full weight matrix. Q is the matrix responsible for implementing the linear interpolation, and V
is a small dense matrix of unique values such that As � QV . For descriptions of other variables
used, see Table 2.

Matrix Dimensions Nonzeros
As Npts ×Nt NptsNt

Sij = INz ⊗ S̃ij Nvox ×Npts Nvox

A NDNSNt ×Nvox (Sparse rep.) NDNSNvox + NptsNt

Q Npts ×Ncomp 4Npts

V Ncomp ×Nt NcompNt

Approx. A NDNSNvox + 4Npts + NcompNt

• Form the product Wij = SijQ.
• Compute the matrix-vector product V w.
• Compute the matrix-vector product Wij(V w).

The first step is “free.” The second step requires O(NcompNt) flops. Since Wij

is Nvox × Ncomp but has only four nonzero entries per row, the product Wij(V w)
requires an additional O(4Nvox) flops. Thus, the cost of the product SijQV w is
O(4Nvox +NcompNt) flops. There is one such product for every source-detector pair,
and therefore products with the approximation to A formed by using As ≈ QV
cost O(NDNS(4Nvox + NcompNt)) flops. Comparing this to the total number of
flops required for the dense formulation, we can see that the reduction in required
computation is dependent upon the number of interpolation nodes Ncomp and the
total number of voxels Nvox. The computational costs and storage requirements for
the various steps are detailed in Tables 3 and 4.

5. Simulation results. For the regularization matrix R, a first order approxi-
mation to the gradient was utilized, generated as

(5.1) R =

⎡⎣Rx

Ry

Rz

⎤⎦ ,

where each of the three submatrices are discrete approximations to the first order
derivative along the associated axis.

Rather than simply run an iterative algorithm such as LSQR [23] with an aug-
mented matrix once for each trial value of λ in (1.1), we used the algorithm in [13]
so that the results could be run simultaneously on an array of λ’s. The number of
iterations was fixed at fifty, chosen by first running the algorithm without any regular-
ization and performing an L-curve analysis [10] across the iterations. It is reasonable
to presume that a given regularized system should have sufficiently converged by sev-
eral iterations past the corner of the L-curve for the unregularized problem. For the
regularized problem, selection of the appropriate regularization parameter was done
through the use of an L-curve analysis at the final iteration.

After some experimentation, it was found that for our first data set, where the
ground truth was known, the minimum error solution was consistently at a point
which would be considered underregularized according to the L-curve. Visual analysis
of a second data set, provided by ART, suggested that a similar situation existed
with that data. As such, the results shown for the known phantom are those at the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX STRUCTURE IN LINEAR DOT IMAGING 1077

Table 5

Interpolation levels, with corresponding number of computed nodes and the resulting error in-

duced in the solution for data set 1. Error is computed as ‖Computed−Actual‖2
‖Actual‖2

. The interpolation

level noted in column 1 denotes the initial number of interpolation nodes along each dimension of
the space. To eliminate unnecessary evaluations of (2.7), only those nodes needed to approximate
As were computed.

Interpolation Number of Induced
level computed points error
None 11760 0.7336

(40,40,40) 7188 0.7344
(30,30,30) 4659 0.7352
(20,20,20) 2109 0.7362
(15,15,15) 1098 0.7409
(10,10,15) 578 0.7294
(10,10,10) 402 0.7404

minimum error point, while those shown for the second data set were chosen to be
“underregularized” by a similar order of magnitude.

Of course, critical to determining the utility of the interpolation is evaluation of
the error introduced into the reconstructions. Interpolation levels are denoted in what
follows as a triplet (a,b,c), where the values define the number of grid points along each
of the (D1, D2, Z) axes, respectively. However, the rectangular grid computed using
the values will contain some nodes which will not be needed during the interpolation
step. Rather than compute their values and not use them, we simply eliminate these
nodes. The numbers in the second column of Table 5 give the number of nodes
remaining after this elimination.

We show results for two simulated data sets, each using a number of different
interpolation levels. For our first data set, where ground truth was known, we present
reconstruction images for two interpolation levels as well as the fully computed result.
Additionally, we report error levels for a further four interpolation levels. For our
second data set we present three reconstructions, two using interpolation and one
without, and give an analysis of relative error levels.

For each data set, relative error levels are computed with respect to the other
reconstructions and with respect to ground truth in the case it is known. All error
levels are computed as

(5.2) Efb(fa) =
‖fb − fa‖2

‖fb‖2
,

where Efb(fa) is the error in a reconstruction fa with respect to a reconstruction fb,
using the standard 2-norm.

5.1. Data set 1. In order to determine how the interpolation error affects the re-
sulting solutions, we first used a simulated data set generated using a known phantom.
The data was generated using the image in Figure 5.1(a) as freal to get g = Afreal,
with random noise added by the Matlab awgn() function at a signal-to-noise ratio of
10dB. Inversions were then run using six different interpolation levels with a number
of nodes ranging from 61% Npts down to 3.4% Npts. The specific interpolation levels,
and number of points computed, are shown in Table 5, along with the relative error
of each solution with respect to ground truth.

Images of reconstructions obtained using the (10,10,15) and (15,15,15) interpola-
tion levels, as well as the fully computed matrix, can be seen in Figures 5.1(b)–(d).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1078 D. HYDE, M. KILMER, D. H. BROOKS, AND E. MILLER

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Phantom

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Interpolation Level (10,10,15)

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) Interpolation Level (15,15,15)

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(d) Fully Computed

Fig. 5.1. Results for data set 1. A known phantom was used to generate simulated data with
10dB white Gaussian noise. Inverse results were obtained for a number of different interpolation
levels. (a) Phantom used to generate simulated data. (b) Result with (10,10,15) interpolation level
(578 explicitly computed points). Absolute error of 0.7295, error relative to (d) of 0.1128. (c) Result
with (15,15,15) interpolation level (1098 computed points). Absolute error of 0.7406, error relative
to (d) of 0.1035. (d) Result with fully computed matrix (11760 computed points). Absolute error
of 0.7336. Note that all three constructions are visually almost identical, and that while the relative
error between the fully computed and interpolated reconstructions is greater than 10, the absolute
error changes very little.

Visual comparison of the three images reveals little if any difference. Analytic com-
parison results in relative error in the (10,10,15) solution with respect to the fully
computed solution of 0.1128, while the (15,15,15) solution exhibits a relative error of
0.1035. Examining the errors with respect to ground truth, however, suggests that
despite their differences, the solutions using interpolation are of nearly the same qual-
ity as the fully computed solution. Decreasing the number of points computed from

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX STRUCTURE IN LINEAR DOT IMAGING 1079

11760 (the full number) to 1098 (the (15,15,15) interpolation level) results in the rel-
ative error with respect to ground truth changing only 0.0070 from 0.7336 to 0.7406.
Interestingly, the (10,10,15) case, with only 578 points computed, results in a relative
error of 0.7295, which is actually a lower error than for the fully computed case. This
suggests that, given the ill-posed nature of the problem and the regularization occur-
ring in the inversion, the error induced by the interpolation has little consistent effect
upon the absolute error in the solution.

5.2. Data set 2. The second data set was generated by ART using an undis-
closed forward solver (background μa and μs were provided) and a proprietary noise
model. Reconstruction images are shown in Figure 5.2 for the fully computed matrix,
as well as (10,10,15) and (15,15,15) interpolation levels.

The results for this data set are similar to those of data set 1. Visually, the
three inversion results are nearly identical. Because the ground truth is not known
in this case, absolute error values cannot be computed. However, comparing the
two interpolated solutions to the fully computed one yields relative differences with
respect to the fully computed solution of 0.0947 and 0.0857 for the (15,15,15) and
(10,10,15) solutions, respectively. These numbers are similar to those seen in the
case of the known phantom, where it was shown that absolute error levels were only
slightly perturbed by the use of the approximated As.

6. Conclusions and future work. We have presented a method by which
the forward matrix A associated with a certain linearized diffuse optical tomography
problem can be efficiently computed and then effectively approximated. Our first step
utilizes a change of variables to enable us to represent A as a core data matrix As

and a number of selection matrices Sij . While As is small and dense, the selection
matrices are extremely sparse, enabling the entire representation of A to be stored in
significantly less memory. This decomposition also allows for matrix-vector operations
upon A to be performed in a sequential manner, drastically reducing the amount of
memory required to perform such operations.

Our simulated results indicate that the use of interpolation to approximate As

and thus A gives accurate solutions. While the solutions using interpolation result in
relative errors with respect to the fully computed solution on the order of 0.10, our
results indicate that these differences do not significantly affect the error with respect
to ground truth.

A further test of this work would be the application of our method to exper-
imentally collected data. Given that the mathematical models presented here are
inherently an approximation of reality, there will be an increased mismatch between
the data and the model. As such, the model errors introduced by our interpolation
scheme should have even less of an effect than they did in the results presented here.

This method also has applications beyond diffuse optical tomography. Any system
with a similar invariance to radial angle could potentially be rewritten so as to use
our referencing scheme. This includes problems such as continuous wave diffusion
imaging, heat transfer in solids, and other problems using omnidirectional sources.

One specific area of application is fluorescence-based optical imaging. Linear
models are capable of accurately modeling such systems and have led to systems
currently in use for basic in vivo research [21, 20]. Because these systems are optically
based using lasers at similar wavelengths, the mathematical details of the diffusion
approximation and Green’s functions detailed here carry over almost unchanged.

The interpolation could also be applied to other systems, especially those which
are linearizations of nonlinear systems. Presuming a reasonably smooth kernel along

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1080 D. HYDE, M. KILMER, D. H. BROOKS, AND E. MILLER

−1500

−1000

−500

0

500

1000

1500

2000

(a) Interpolation Level (10,10,15)

−1000

−500

0

500

1000

1500

2000

(b) Interpolation Level (15,15,15)

−1500

−1000

−500

0

500

1000

1500

2000

(c) Fully Computed

Fig. 5.2. Results for data set 2. Data set provided by ART with known background optical
parameters, but unknown forward and noise models. The images compare results using different
interpolation levels. Note that absolute values for the reconstructions are significantly higher, owing
to a lack of information regarding source intensities. Thus the true quantitative values are all
multiplied by an unknown scaling factor. (a) Result with (10,10,15) interpolation level (578 explicitly
computed points). Error relative to (c) of 0.0857. (b) Result with (15,15,15) interpolation level
(1098 computed points). Error relative to (c) of 0.0947. (c) Result with fully computed matrix
(11760 computed points). Again, all three reconstructions are visually identical and exhibit similar
degrees of relative error. The change in absolute error is likely similar to that seen with data set 1.

some dimension, it is feasible that linear approximations of that kernel would result
in similarly small changes to the resulting solutions. When computation of individual
kernel values is prohibitively expensive, this could lead to significant reductions in
required computation. This interpolation could also be investigated to determine its
regularizing properties. While our results suggest empirically that any regularizing
effect is minimal, a study on the regularizing effects of interpolation-smoothed kernels

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX STRUCTURE IN LINEAR DOT IMAGING 1081

may be of value.

Finally, further work could seek to extend this type of optimization to the case
of systems with structured inhomogeneities. Layered media offer a straightforward
extension of our method, while media with more complex structure would require
correspondingly more effort. Both would enable our method to be used in a wider
range of systems and configurations.

REFERENCES

[1] S. R. Arridge, The theoretical basis for the determination of optical pathlengths in tissue,
Phys. Med. Bio., 37 (1992), pp. 1531–1560.

[2] S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C.

Hillman, H. Dehghani, and D. T. Delpy, A method for three-dimensional time-resolved
optical tomography, Int. J. Imaging Systems Technol., 11 (2000), pp. 2–11.

[3] D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette,

and Q. Zhang, Imaging the body with diffuse optical tomography, IEEE Signal Processing
Magazine, 18 (2001), pp. 57–75.

[4] D. A. Boas and A. M. Dale, Simulation study of magnetic resonance imaging-guided cortically
constrained diffuse optical tomography of human brain function, Appl. Optics, 44 (2005),
pp. 1957–1968.

[5] S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.
[6] A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hill-

man, and A. G. Yodh, Diffuse optical tomography with spectral constraints and wavelength
optimization, Appl. Optics, 44 (2005), pp. 2082–2093.

[7] A. P. Gibson, T. Austion, N. L. Everdell, M. Schweiger, S. R. Arridge, J. G. Meek,

J. S. Wyatt, D. T. Delpy, and J. C. Hebden, Three-dimensional whole-head optical
tomography of passive motor evoked responses in the neonate, Neuroimage, 30 (2006), pp.
521–528.

[8] A. P. Gibson, J. C. Hebden, and S. R. Arridge, Recent advances in diffuse optical imaging,
Phys. Med. Bio., 50 (2005), pp. R1–R43.

[9] H. L. Graber, Y. Pei, and R. L. Barbour, Imaging of spatiotemporal coincident states by
dc optical tomography, IEEE Trans. Med. Imag., 21 (2002), pp. 852–866.

[10] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear
Inversion, SIAM Monogr. Math. Model. Comput. 4, SIAM, Philadelphia, PA, 1997.

[11] R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J.

Tromberg, Boundary conditions for the diffusion equation in radiative transfer, J. Opt.
Soc. Amer. A, 11 (1994), pp. 2727–2741.

[12] J. C. Hebden and S. R. Arridge, Imaging through scattering media by the use of an analytical
model of perturbation amplitudes in the time domain, Appl. Optics, 35 (1996), pp. 6788–
6796.

[13] M. E. Kilmer, P. C. Hansen, and M. I. Español, A projection-based approach to general-form
Tikhonov regularization, SIAM J. Sci. Comput., 29 (2007), pp. 315–330.

[14] A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang,

E. M. C. Hillman, and D. A. Boas, Optimal linear inverse solution with multiple priors
in diffuse optical tomography, Appl. Optics, 44 (2005), pp. 1948–1956.

[15] C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, and S. Svanberg, Reconstruction
of diffuse photon-density wave interference in turbid media from time-resolved transmit-
tance measurements, Appl. Phys. Lett., 69 (1996), pp. 1674–1676.

[16] V. A. Markel, V. Mital, and J. C. Schotland, Inverse problem in optical diffusion tomog-
raphy. III. Inversion formulas and singular value decomposition, J. Opt. Soc. Amer. A, 20
(2003), pp. 890–902.

[17] V. A. Markel and J. C. Schotland, Scanning paraxial optical tomography, Optics Lett., 27
(2002), pp. 1123–1125.

[18] V. A. Markel and J. C. Schotland, Symmetries, inversion formulas, and image reconstruc-
tion for optical tomography, Phys. Rev. E (3), 70 (2004).

[19] V. A. Markel and J. C. Schotland, Multiple projection optical diffusion tomography with
plane wave illumination, Phys. Med. Bio., 50 (2005), pp. 2351–2364.

[20] V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, Jr., A.

Bogdanov, L. Josephson, and R. Weissleder, Visualization of antitumor treatment
by means of fluorescence molecular tomography with an annexin v-cy5.5 conjugate, Proc.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1082 D. HYDE, M. KILMER, D. H. BROOKS, AND E. MILLER

Natl. Acad. Sci. USA, 101 (2004), pp. 12294–12299.
[21] V. Ntziachristos and R. Weissleder, Experimental three-dimensional fluorescence recon-

struction of diffuse media by use of the normalized Born approximation, Optics Lett., 26
(2001), pp. 893–895.

[22] M. A. O’Leary, Imaging with Diffuse Photon Density Waves, Ph.D. thesis, Physics Depart-
ment, University of Pennsylvania, Philadelphia, PA, 1996.

[23] C. Paige and M. Saunders, LSQR: An algorithm for sparse linear equations and sparse least
squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71.

[24] M. S. Patterson, B. Chance, and B. C. Wilson, Time resolved reflectance and transmittance
for the noninvasive measurement of tissue optical properties, Appl. Optics, 28 (1989), p.
2331 ff.

[25] C. H. Schmitz, H. L. Graber, Y. Pei, M. Farber, M. Stewart, R. D. Levina, M. B. Levin,

Y. Xu, and R. L. Barbour, Dynamic studies of small animals with a four-color diffuse
optical tomography imager, Rev. Sci. Inst., 76 (2005).

[26] J. C. Schotland, Continuous-wave diffusion imaging, J. Opt. Soc. Amer. A, 14 (1997), pp.
275–279.

[27] M. Schweiger, S. R. Arridge, and I. Nissila, Gauss–Newton method for image reconstruc-
tion in diffuse optical tomography, Phys. Med. Bio., 50 (2005), pp. 2365–2386.

[28] A. Soubret, J. Ripoll, and V. Ntziachristos, Accuracy of fluorescent tomography in the
presence of heterogeneities: Study of the normalized born ratio, IEEE Trans. Med. Imag.,
24 (2005), pp. 1377–1386.

[29] S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P.

Poplack, and K. D. Paulsen, Near-infrared characterization of breast tumors in vivo
using spectrally-constrained reconstruction, Tech. Cancer Res. Treatment, 4 (2005), pp.
513–526.

[30] Z.-M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, Experimental demon-
stration of an analytic method for image reconstruction in optical diffusion tomography
with large data sets, Optics Lett., 30 (2005), pp. 3338–3340.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1083–1100

ON THE DOUBLING ALGORITHM FOR A (SHIFTED)
NONSYMMETRIC ALGEBRAIC RICCATI EQUATION∗

CHUN-HUA GUO† , BRUNO IANNAZZO‡ , AND BEATRICE MEINI‡

Abstract. Nonsymmetric algebraic Riccati equations for which the four coefficient matrices form
an irreducible M -matrix M are considered. The emphasis is on the case where M is an irreducible
singular M -matrix, which arises in the study of Markov models. The doubling algorithm is considered
for finding the minimal nonnegative solution, the one of practical interest. The algorithm has been
recently studied by others for the case where M is a nonsingular M -matrix. A shift technique
is proposed to transform the original Riccati equation into a new Riccati equation for which the
four coefficient matrices form a nonsingular matrix. The convergence of the doubling algorithm is
accelerated when it is applied to the shifted Riccati equation.

Key words. nonsymmetric algebraic Riccati equation, minimal nonnegative solution, doubling
algorithm, convergence acceleration, shift technique

AMS subject classifications. 15A24, 15A48, 65F30, 65H10

DOI. 10.1137/060660837

1. Introduction. We consider the nonsymmetric algebraic Riccati equation (or
NARE)

(1.1) XCX −XD −AX + B = 0,

where A,B,C,D are real matrices of sizes m×m,m× n, n×m,n× n, respectively,
and we assume throughout that

(1.2) M =

[
D −C
−B A

]
is a nonsingular M -matrix or an irreducible singular M -matrix. As usual in algebraic
Riccati equations theory one associates with (1.1) the matrix

(1.3) H =

[
D −C
B −A

]
.

Some relevant definitions are given below.
For any matrices A,B ∈ R

m×n, we write A ≥ B(A > B) if aij ≥ bij(aij > bij)
for all i, j. A real square matrix A is called a Z-matrix if all its off-diagonal elements
are nonpositive. Any Z-matrix A can be written as sI −B with B ≥ 0. A Z-matrix
A is called an M -matrix if s ≥ ρ(B), where ρ(·) is the spectral radius; it is called
a singular M -matrix if s = ρ(B) and a nonsingular M -matrix if s > ρ(B). Given a
square matrix A, we will denote by σ(A) the set of the eigenvalues of A.

∗Received by the editors May 25, 2006; accepted for publication (in revised form) by L. Reichel
March 21, 2007; published electronically November 9, 2007.

http://www.siam.org/journals/simax/29-4/66083.html
†Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2, Canada

(chguo@math.uregina.ca). This author’s research was supported in part by a grant from the Natural
Sciences and Engineering Research Council of Canada.

‡Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy
(iannazzo@mail.dm.unipi.it, meini@dm.unipi.it).

1083

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1084 CHUN-HUA GUO, BRUNO IANNAZZO, AND BEATRICE MEINI

The NARE (1.1) has applications in transport theory and Markov models [18,
23, 24]. The solution of practical interest is the minimal nonnegative solution. The
equation has attracted much attention recently [2, 4, 6, 8, 9, 11, 13, 14, 15, 19, 20, 22].

Some properties of the NARE (1.1) are summarized below. See [8] and [9] for
more details.

Theorem 1.1. The equation (1.1) has a minimal nonnegative solution X. If M
is irreducible, then X > 0 and A−XC and D−CX are irreducible M -matrices. If M
is a nonsingular M -matrix, then A−XC and D−CX are nonsingular M -matrices.

We will also need the dual equation of (1.1)

(1.4) Y BY − Y A−DY + C = 0.

This equation has the same type as (1.1): the matrix[
A −B
−C D

]
is a nonsingular M -matrix or an irreducible singular M -matrix if and only if the
matrix M is so. The minimal nonnegative solution of (1.4) is denoted by Y .

A number of numerical methods have been studied for finding the minimal solu-
tion X. Recently, a doubling algorithm is studied in [15] and is shown to be efficient.
The doubling algorithm itself is not new; it was studied in [1], for example. However,
the presentation in [15] provides some new information about the algorithm, which
makes its analysis easier for the NARE (1.1).

In [15], the discussion is limited to the case where M is a nonsingular M -matrix.
In the application of the NARE in Markov chains, however, the most important case
is the one where M is an irreducible singular M -matrix with zero row sums. So in this
paper, we will assume that M is an irreducible (singular or nonsingular) M -matrix,
with the emphasis on the singular case.

We show the applicability and convergence properties of the structure preserv-
ing doubling algorithm of [15] when M is singular. In particular, we show that the
algorithm has quadratic convergence when 0 is a simple eigenvalue of H. From the
numerical experiments performed so far, the doubling algorithm shows a linear con-
vergence of rate 1/2 if 0 has algebraic multiplicity equal to 2.

We introduce an alternative approach to treat the singular case based on a shift
technique. The shift consists in performing a rank-one correction of the matrix H
which moves one zero eigenvalue to a suitable nonzero real number. We construct a
new Riccati equation associated with the shifted H, which has the same solution X of
the original one, while the coefficients of the new Riccati equation form a nonsingular
matrix if 0 is a simple eigenvalue of H.

We analyze the structure preserving doubling algorithm for the new Riccati equa-
tion and show that its convergence is faster (when no breakdown is encountered) than
the convergence of the same algorithm applied to the original equation. In particu-
lar, when 0 is a double eigenvalue of H, the doubling algorithm applied to the new
equation is shown to have quadratic convergence.

Numerical results show the effectiveness of the shift technique.
The paper is organized as follows. In section 2 we recall some properties of the

Riccati equations and nonnegative matrices. In sections 3 and 4 we show that the
structure preserving doubling algorithm of [15] can also be applied to the case where
M is irreducible singular, and we show convergence results. In section 5 we present
the shift technique. In section 6 we analyze the doubling algorithm applied to the
new Riccati equation. In section 7 we show some numerical experiments.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 1085

2. Preliminaries. When M is an irreducible singular M -matrix, by the Perron–
Frobenius theory 0 is a simple eigenvalue and there are positive vectors u and v such
that

(2.1) uTM = 0, Mv = 0,

and the vectors u and v are each unique up to a scalar multiple.
For any solution S of the Riccati equation (1.1), the matrix H of (1.3) satisfies

H

[
I
S

]
=

[
I
S

]
R,

where R = D − CS. The eigenvalues of the matrix R are a subset of the eigenvalues
of H.

Since H = JM , where J =
[
In 0
0 −Im

]
, then H has a one-dimensional kernel, and

uTJ and v are the left and right eigenvectors corresponding to the eigenvalue 0.
Writing uT =

(
uT

1 , u
T
2

)
and vT =

(
vT1 , v

T
2

)
, with u1, v1 ∈ R

n and u2, v2 ∈ R
m,

one can define μ = uT
1 v1 − uT

2 v2.
The number μ determines some properties of the equation. Depending on the

sign of μ and following a Markov chain terminology, one can classify the Riccati
equations associated with an irreducible singular M -matrix in three categories: a
Riccati equation will be called

(a) positive recurrent if μ > 0;
(b) null recurrent if μ = 0;
(c) transient if μ < 0.
The close to null recurrent case, i.e., the case μ ≈ 0, deserves particular attention,

since it corresponds to an ill-conditioned zero eigenvalue for the matrix H. In fact if u
and v are normalized such that ‖u‖2 = ‖v‖2 = 1, then 1/|μ| is the condition number
of the zero eigenvalue for the matrix H (see [7]).

In fluid queues problems, v coincides with the vector of ones, which will be denoted
by e. In general, v and u can be computed by performing an LU factorization of the
matrix M and solving two triangular linear systems.

The next results concern μ and are proved or follow easily from results shown in
[8, 9, 12].

Theorem 2.1. Let M be an irreducible singular M -matrix, and let X and Y be
the minimal nonnegative solutions of (1.1) and (1.4), respectively. Then the following
properties hold:

(a) if μ > 0, then Xv1 = v2 and Y v2 < v1;
(b) if μ = 0, then Xv1 = v2 and Y v2 = v1;
(c) if μ < 0, then Xv1 < v2 and Y v2 = v1.
Theorem 2.2. Let M be an irreducible M -matrix, and let λ1, . . . , λm+n be the

eigenvalues of H = diag(In,−Im)M ordered by nonincreasing real part. Then λn and
λn+1 are real and

Reλn+m ≤ · · · ≤ Reλn+2 < λn+1 ≤ 0 ≤ λn < Reλn−1 ≤ · · · ≤ Reλ1.

The minimal nonnegative solution X of (1.1) and Y of the dual equation (1.4)
are such that the σ(D − CX) = {λ1, . . . , λn} and σ(A − XC) = σ(A − BY) =
{−λn+1, . . . ,−λn+m}.

When M is singular, if μ > 0, then λn = 0, λn+1 < 0; if μ = 0, then λn = λn+1 =
0 and there exists only one linearly independent eigenvector for the eigenvalue 0; if
μ < 0, then λn > 0, λn+1 = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1086 CHUN-HUA GUO, BRUNO IANNAZZO, AND BEATRICE MEINI

In what follows, we will need some basic results about M -matrices. The first
result can be found in [3], for example.

Theorem 2.3. For a Z-matrix A, the following are equivalent:
(a) A is a nonsingular M -matrix.
(b) A−1 ≥ 0.
(c) Av > 0 for some vector v > 0.
(d) All eigenvalues of A have positive real parts.
The equivalence of (a) and (c) in Theorem 2.3 implies the next result.
Lemma 2.4. Let A be a nonsingular M -matrix. If B ≥ A is a Z-matrix, then B

is also a nonsingular M -matrix.
Most of the statements in the following result are also well known.
Lemma 2.5. Let M be a nonsingular M -matrix or an irreducible singular M -

matrix, with partition M as

M =

[
M11 M12

M21 M22

]
,

where M11 and M22 are square matrices. Then M11 and M22 are nonsingular M -
matrices. The Schur complement of M11 (or M22) in M is also an M -matrix (singular
or nonsingular according to M). Moreover, the Schur complement is irreducible if M
is irreducible.

Remark 2.6. The last statement in Lemma 2.5 follows from Theorem 2.3 of [21],
where the irreducibility of the Schur complement is proved for any irreducible singular
M -matrix of the form I − P with P stochastic. For a general irreducible M -matrix
M , we have M = s(I − B) for some scalar s > 0 and some irreducible B ≥ 0 with
ρ(B) ≤ 1. Note that if we replace B with a stochastic matrix with the same nonzero
pattern, there will be no change of the nonzero pattern in the Schur complement. In
other words, the irreducibility will not change.

3. The doubling algorithm. In this section we review the structure preserving
doubling algorithm (SDA) for the NARE (1.1) and show that the algorithm is well
defined when M is an irreducible singular M -matrix. When M is a nonsingular M -
matrix, the algorithm has already been shown to be well defined in [15], although the
selection of a parameter in the algorithm is slightly more restrictive in [15].

For the minimal nonnegative solution X of the NARE (1.1), we have

(3.1) H

[
I
X

]
=

[
I
X

]
R,

where H is defined in (1.3) and R = D − CX.
Using the Cayley transform

(3.2) Cγ : z → z − γ

z + γ
,

where γ > 0 is a positive scalar, we can transform (3.1) into

(3.3) (H − γI)

[
I
X

]
= (H + γI)

[
I
X

]
Rγ ,

where

Rγ = Cγ(R) = (R + γI)−1(R− γI).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 1087

Note that R + γI is nonsingular since R is an M -matrix by Theorem 1.1. For any
γ > 0, the matrix Mγ = M + γI is a nonsingular M -matrix. So

Aγ = A + γI, Dγ = D + γI

are nonsingular M -matrices. Let

(3.4) Wγ = Aγ −BD−1
γ C, Vγ = Dγ − CA−1

γ B

be the Schur complements of Dγ and Aγ , respectively, in Mγ . They are both non-
singular M -matrices by Lemma 2.5. It is shown in [15] that (3.3) can be reduced
to

(3.5) K

[
I
X

]
= L

[
I
X

]
Rγ ,

by premultiplying both sides of (3.3) with a proper nonsingular matrix, where

K =

[
Eγ 0
−Hγ I

]
, L =

[
I −Gγ

0 Fγ

]
,

with

Eγ = I − 2γV −1
γ , Fγ = I − 2γW−1

γ ,

Gγ = 2γD−1
γ CW−1

γ , Hγ = 2γW−1
γ BD−1

γ .
(3.6)

Similarly, for the minimal nonnegative solution Y of the NARE (1.4), we have

(3.7) (H − γI)

[
Y
I

]
Sγ = (H + γI)

[
Y
I

]
and then

(3.8) K

[
Y
I

]
Sγ = L

[
Y
I

]
,

where Sγ = (S + γI)−1(S − γI) with S = A−BY being an M -matrix.
The doubling algorithm presented in [15] is the following, where the sequences

{Hk} and {Gk} are going to approximate X and Y , respectively.
Algorithm 3.1.

E0 = Eγ , F0 = Fγ , G0 = Gγ , H0 = Hγ ,

Ek+1 = Ek(I −GkHk)
−1Ek,

Fk+1 = Fk(I −HkGk)
−1Fk,

Gk+1 = Gk + Ek(I −GkHk)
−1GkFk,

Hk+1 = Hk + Fk(I −HkGk)
−1HkEk.

In this section we show that the algorithm is well defined. The convergence
behavior of the algorithm will be studied in the next section.

Theorem 3.2. Let M be an irreducible M -matrix and

γ ≥ max

{
max

1≤i≤m
aii, max

1≤i≤n
dii

}
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1088 CHUN-HUA GUO, BRUNO IANNAZZO, AND BEATRICE MEINI

where aii and dii are the diagonal elements of A and D, respectively. Then Eγ , Fγ ,
Rγ , Sγ < 0. Moreover, 0 ≤ Gγ < Y, 0 ≤ Hγ < X,Gγ , Hγ �= 0, I − GγHγ , and
I −HγGγ are nonsingular M -matrices.

Proof. We have

Eγ = I − 2γV −1
γ = V −1

γ (Vγ − 2γI).

Since Vγ is the Schur complement of Aγ in the irreducible nonsingular M -matrix Mγ ,
it is also an irreducible nonsingular M -matrix by Lemma 2.5. So V −1

γ > 0 (see [3]).
Since γ ≥ max1≤i≤n dii, then Vγ − 2γI = −γI + D − CA−1

γ B ≤ 0. Since Vγ − 2γI is
irreducible, it has no zero columns, whence Eγ < 0.

Since R = D − CX is an irreducible M -matrix by Theorem 1.1, R + γI is an
irreducible nonsingular M -matrix and (R + γI)−1 > 0, for any γ > 0. For γ ≥
max1≤i≤n dii, one has R − γI = D − γI − CX ≤ 0. Since R − γI is irreducible and
thus has no zero columns, then it follows that Rγ = (R + γI)−1(R− γI) < 0.

Similarly, using γ ≥ max1≤i≤m aii, we can prove that Fγ < 0, Sγ < 0.
It is clear that Gγ , Hγ ≥ 0. Since M is irreducible, then B,C �= 0, whence it

follows that Hγ , Gγ �= 0. It is shown in [15] that X−Hγ = FγXRγ . Since FγXRγ > 0,
we have 0 ≤ Hγ < X. Similarly, we have 0 ≤ Gγ < Y , so that 0 ≤ GγHγ < YX.
By Theorem 2.1 we have Y Xv1 ≤ v1. Thus ρ(GγHγ) < ρ(Y X) ≤ 1 by the Perron–
Frobenius theory. Therefore, I − GγHγ is a nonsingular M -matrix by Theorem 2.3.
Similarly, I −HγGγ is a nonsingular M -matrix.

Theorem 3.3. Let M be an irreducible M -matrix. Then for k ≥ 1, Ek, Fk > 0,
Hk−1 < Hk < X, Gk−1 < Gk < Y , and I − HkGk, I − GkHk are nonsingular
M -matrices.

Proof. For any nonnegative matrices U, V,W such that UVW is defined, if U,W >
0 and V �= 0, then UVW > 0. Since E0, F0 < 0 and I − G0H0, I − H0G0 are
nonsingular M -matrices, we have

E1, F1 > 0, H1 > H0, G1 > G0.

For the doubling algorithm, it is shown in [15] that

X −H1 = F1XR2
γ , Y −G1 = E1Y S2

γ .

Thus, H1 < X and G1 < Y . Then, as in the proof of Theorem 3.2, I − G1H1 and
I −H1G1 are nonsingular M -matrices. The statements in the theorem are now easily
proved by induction.

4. Convergence of the doubling algorithm. For the doubling algorithm, we
have (see [15])

X −Hk = FkXR2k

γ , Y −Gk = EkY S2k

γ ,

(4.1) Ek = (I −GkX)R2k

γ ≤ R2k

γ , Fk = (I −HkY)S2k

γ ≤ S2k

γ

for each k ≥ 1. So

X −Hk = (I −HkY)S2k

γ XR2k

γ ≤ S2k

γ XR2k

γ ,(4.2)

Y −Gk = (I −GkX)R2k

γ Y S2k

γ ≤ R2k

γ Y S2k

γ .(4.3)

When M is an irreducible nonsingular M -matrix, we have ρ(Rγ) < 1 and ρ(Sγ) <
1. It follows that {Hk} converges to X, {Gk} converges to Y , {Ek} and {Fk} converge

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 1089

to 0, all quadratically. This result is shown in [15] under the assumption that γ >
max{max aii,max dii}, but without the irreducibility assumption. Here we would like
to allow γ = max{max aii,max dii}, since this γ will be shown to be optimal in some
sense. From (4.2) and (4.3), we also have

(4.4) lim sup
k→∞

2k
√
‖Hk −X‖ ≤ ρ(Rγ)ρ(Sγ),

(4.5) lim sup
k→∞

2k
√
‖Gk − Y ‖ ≤ ρ(Rγ)ρ(Sγ).

Theorem 4.1. Let M be an irreducible singular M -matrix.
(a) If μ > 0, then {Hk} ({Gk}) converges to X (Y) quadratically with

lim sup
k→∞

2k
√
‖Hk −X‖ ≤ ρ(Sγ) < 1, lim sup

k→∞

2k
√
‖Gk − Y ‖ ≤ ρ(Sγ),

{Fk} converges to 0 quadratically with

lim sup
k→∞

2k
√
‖Fk‖ ≤ ρ(Sγ),

and {Ek} is bounded.
(b) If μ < 0, then {Hk} ({Gk}) converges to X (Y) quadratically with

lim sup
k→∞

2k
√
‖Hk −X‖ ≤ ρ(Rγ) < 1, lim sup

k→∞

2k
√
‖Gk − Y ‖ ≤ ρ(Rγ),

{Ek} converges to 0 quadratically with

lim sup
k→∞

2k
√
‖Ek‖ ≤ ρ(Rγ),

and {Fk} is bounded.
(c) If μ = 0, then {Hk} converges to X, {Gk} converges to Y , and {Ek}, {Fk}

are bounded.
Proof. When μ > 0, one has ρ(Sγ) < 1 and ρ(Rγ) = 1. Moreover, −1 is a simple

eigenvalue of Rγ and there are no other eigenvalues on the unit circle. When μ < 0,
one has ρ(Rγ) < 1 and ρ(Sγ) = 1. Moreover, −1 is a simple eigenvalue of Sγ and
there are no other eigenvalues on the unit circle. The statements in (a) and (b) are
then valid in view of (4.1), (4.2), and (4.3).

When μ = 0, one has ρ(Rγ) = 1. Moreover, −1 is a simple eigenvalue of Rγ

and there are no other eigenvalues on the unit circle. Also, ρ(Sγ) = 1, −1 is a
simple eigenvalue of Sγ and there are no other eigenvalues on the unit circle. The
boundedness of {Ek} and {Fk} then follows immediately. However, from (4.2) and
(4.3), we cannot see the convergence of {Hk} and {Gk} to X and Y , respectively. So
we will take a different approach.

For the minimal solution X of (1.1), we have from (3.5)

(4.6) Eγ = (I −GγX)Rγ , X −Hγ = FγXRγ .

Since 0 ≤ GγX < YX, I−GγX is a nonsingular M -matrix as in the proof of Theorem
3.2. Eliminating Rγ in (4.6) gives

(4.7) X = FγX(I −GγX)−1Eγ + Hγ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1090 CHUN-HUA GUO, BRUNO IANNAZZO, AND BEATRICE MEINI

We now consider the basic fixed-point iteration for (4.7):

(4.8) Xk+1 = FγXk(I −GγXk)
−1Eγ + Hγ , X0 = 0.

It is easily proved by induction that I −GγXk is a nonsingular M -matrix and Xk ≤
Xk+1 ≤ X for all k ≥ 0. Therefore, limXk = X̂ with 0 ≤ X̂ ≤ X. Since I −GγX is

a nonsingular M -matrix, so is I −GγX̂. Thus we have

(4.9) X̂ = FγX̂(I −GγX̂)−1Eγ + Hγ .

We are going to show that X̂ = X. Let R̂γ = (I −GγX̂)−1Eγ , then

Eγ = (I −GγX̂)R̂γ , X̂ −Hγ = FγX̂R̂γ .

So instead of (3.5) we have

(4.10) K

[
I

X̂

]
= L

[
I

X̂

]
R̂γ ,

which can be transformed back to

(4.11) (H − γI)

[
I

X̂

]
= (H + γI)

[
I

X̂

]
R̂γ .

If GγX̂ = GγX, then R̂γ = Rγ and I − R̂γ is nonsingular. If GγX̂ �= GγX, then

we have 0 < (I − GγX̂)−1(−Eγ) ≤ (I − GγX)−1(−Eγ) and (I − GγX̂)−1(−Eγ) �=
(I − GγX)−1(−Eγ) since Eγ < 0. It follows from the Perron–Frobenius theory that

ρ((I−GγX̂)−1(−Eγ)) < ρ((I−GγX)−1(−Eγ)). Thus ρ(R̂γ) < ρ(Rγ) = 1, and again

I − R̂γ is nonsingular. Now (4.11) can be rewritten as

(4.12) H

[
I

X̂

]
=

[
I

X̂

]
γ(I + R̂γ)(I − R̂γ)−1.

Thus X̂ is also a nonnegative solution of (1.1). Since X is minimal we have X̂ = X
and so limXk = X. Now, the sequence {Hk} produced by the doubling algorithm
is such that Hk = X2k (see [1]). Therefore, limHk = X, as required. The proof of
limGk = Y is similar.

Remark 4.2. When μ = 0, the convergence of the doubling algorithm is not
quadratic in general since the convergence of {Xk} in (4.8) is sublinear in general.
But the relation Hk = X2k itself says that the convergence of the doubling algorithm
is much faster than the basic fixed point iteration. The convergence in this case has
been observed to be linear with rate 1/2.

Remark 4.3. We thank one referee for pointing out that the convergence of the
doubling algorithm for the case μ = 0 has recently been proved in [5] to be at least
linear with rate 1/2.

In the doubling algorithm, we have the freedom to choose the parameter γ. In
view of (4.4) and (4.5), the next result says that γ = max{max aii,max dii} is optimal,
in some sense, for the doubling algorithm.

Theorem 4.4. For γ ≥ max{max aii,max dii}, ρ(Rγ) and ρ(Sγ) are nondecreas-
ing functions of γ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 1091

Proof. Since R = D − CX is an irreducible M -matrix, it can be written in
the form sI − N , where N ≥ 0 is irreducible. It follows from the Perron–Frobenius
theorem that there is a positive vector v such that Rv = λnv. Now

−Rγv = (γI + R)−1(γI −R)v = (γ + λn)−1(γ − λn)v.

Since −Rγ > 0, it follows from the Perron–Frobenius theory that ρ(Rγ) = ρ(−Rγ) =
(γ + λn)−1(γ − λn), which is a nondecreasing function of γ. Similarly, ρ(Sγ) is a
nondecreasing function of γ.

5. A shift technique. In this section we assume that M is an irreducible sin-
gular M -matrix. The vectors u and v are as in (2.1), and we have three cases:
μ > 0, μ = 0, and μ < 0. The next result shows that the case μ < 0 is easily reduced
to the case μ > 0.

Lemma 5.1. The matrix X is the minimal nonnegative solution of (1.1) if and
only if Z = XT is the minimal nonnegative solution of

(5.1) ZCTZ − ZAT −DTZ + BT = 0.

Equation (1.1) is transient if and only if (5.1) is positive recurrent.
Proof. The first statement is easily shown by transposing on both sides of the

equation. The M -matrix corresponding to (5.1) is

Mt =

[
AT −CT

−BT DT

]
.

Since [
vT2 vT1

]
Mt = 0, Mt

[
u2

u1

]
= 0,

the second statement follows readily.
Remark 5.2. When μ ≤ 0, from the above proof and Theorem 2.1 we know that

the minimal nonnegative solution X of (1.1) is such that XTu2 = u1, or in other
words, uT

2 X = uT
1 .

From now on, we assume that μ ≥ 0.
Our shift technique will be based on the following result (see also [17]).
Lemma 5.3. Let T be an n × n singular matrix and let Tw = 0 for a nonzero

vector w. Assume that r is a vector with rTw = 1 and η is a scalar. Then the
eigenvalues of the matrix

T̂ = T + ηwrT

are those of T except that one zero eigenvalue of T is replaced by η.
Proof. We may easily verify that (T̂ − λI)λI = (T − λI)(λI − ηwrT) for any

complex number λ. Taking determinants, one has that

λn det(T̂ − λI) = λn−1(λ− η) det(T − λI),

from which the proof follows.
We now construct a rank-one modification of the matrix H in (1.3):

(5.2) Ĥ = H + ηvpT ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1092 CHUN-HUA GUO, BRUNO IANNAZZO, AND BEATRICE MEINI

where η > 0 is a scalar and p ≥ 0 is a vector with pT v = 1. Since H is a singular
matrix with Hv = 0, we know from Lemma 5.3 that the eigenvalues of Ĥ are those
of H except that one zero eigenvalue of H is replaced by η.

We write pT =
(
pT1 , p

T
2

)
and

Ĥ =

[
D̂ −Ĉ

B̂ −Â

]
, M̂ =

[
D̂ −Ĉ

−B̂ Â

]
,

where

D̂ = D + ηv1p
T
1 , Ĉ = C − ηv1p

T
2 ,

B̂ = B + ηv2p
T
1 , Â = A− ηv2p

T
2 .

Corresponding to M̂ we define the new NARE

(5.3) ZĈZ − ZD̂ − ÂZ + B̂ = 0.

We have the following important property about the NARE (5.3).
Theorem 5.4. If μ ≥ 0, then Z = X is a solution of the NARE (5.3) and

σ(D̂ − ĈX) = {λ1, . . . , λn−1, η}, where X is the minimal nonnegative solution of the
original NARE (1.1).

Proof. Observe that

XĈX −XD̂ − ÂX + B̂ = XCX −XD −AX + B − η(Xv1 − v2)(p
T
2 X + pT1).

Since X is a solution of (1.1) and Xv1 = v2 by Theorem 2.1, X is also a solution of

the shifted equation (5.3). We have D̂ − ĈX = D − CX + ηv1(p
T
1 + pT2 X). Since

(D − CX)v1 = Dv1 − Cv2 = 0 and (pT1 + pT2 X)v1 = pT v = 1, the eigenvalues of

D̂ − ĈX are λ1, . . . , λn−1, η by Theorem 2.2 and Lemma 5.3.
In what follows we will show that the dual equation of (5.3) has a solution

Ŷ such that the eigenvalues of −(Â − B̂Ŷ) are the remaining eigenvalues of Ĥ:
λn+1, . . . , λn+m.

Lemma 5.5. The eigenvalues of the matrix

W =

[
ηpT1 (v1 − Y v2) η(pT1 Y + pT2)

(B + ηv2p
T
1)(v1 − Y v2) −(A−BY − ηv2(p

T
1 Y + pT2))

]
are η, λn+1, . . . , λn+m.

Proof. We have

W = W0 + η

[
1
v2

] [
pT1 (v1 − Y v2) pT1 Y + pT2

]
,

where

W0 =

[
0 0

B(v1 − Y v2) −(A−BY)

]
.

The eigenvalues of W0 are 0, λn+1, . . . , λn+m by Theorem 2.2. Since

W0

[
1
v2

]
= 0,

[
pT1 (v1 − Y v2) pT1 Y + pT2

] [1
v2

]
= pT v = 1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 1093

the eigenvalues of W are η, λn+1, . . . , λn+m by Lemma 5.3.
Lemma 5.6. If μ > 0, then there is a positive vector f such that (1, fT) is a left

eigenvector of W corresponding to the eigenvalue η.
Proof. When μ > 0, we have Y v2 < v1 by Theorem 2.1. Since A − BY is an

irreducible M -matrix, A − BY − ηv2(p
T
1 Y + pT2) is an irreducible Z-matrix. Since

η(pT1 Y + pT2) �= 0 and (B + ηv2p
T
1)(v1 − Y v2) �= 0, the matrix W is irreducible by

a simple graph argument. It is clear that W can be written in the form N − sI,
where N ≥ 0 is irreducible. The result then follows from the Perron–Frobenius
theorem.

Lemma 5.7. If μ > 0, then the matrix Ŷ = Y +(Y v2 − v1)f
T is a solution of the

dual equation of (5.3).

Proof. Let R(Z) = ZBZ − ZA −DZ + C and R̂(Z) = ZB̂Z − ZÂ − D̂Z + Ĉ.

We are to show R̂(Ŷ) = 0. Since R(Y) = 0, we have

R̂(Ŷ) = (R̂(Ŷ) −R(Ŷ)) + (R(Ŷ) −R(Y)).

A straightforward computation shows that

R̂(Ŷ) −R(Ŷ) = η(Ŷ v2 − v1)(p
T
1 Ŷ + pT2)

= η(Y v2 − v1)(1 + fT v2)(p
T
1 Y + pT2 + pT1 (Y v2 − v1)f

T).

Also, we have

R(Ŷ) −R(Y) = (Y v2 − v1)(f
TB(Y v2 − v1)f

T − fT (A−BY)),

where we have used the fact that

(D − Y B)(Y v2 − v1) = −Dv1 + Y Bv1 + (DY − Y BY)v2

= −Dv1 + Y Bv1 + (C − Y A)v2 = 0.

Thus, to show R̂(Ŷ) = 0, we need only check

fT (B + ηv2p
T
1)(Y v2 − v1)f

T + ηpT1 (Y v2 − v1)f
T

−fT (A−BY − ηv2(p
T
1 Y + pT2)) + η(pT1 Y + pT2) = 0,

which is true by the choice of f in Lemma 5.6.
We now show that the solution Ŷ has the desired spectral property.
Theorem 5.8. If μ > 0, then the solution Ŷ of the dual equation of (5.3) given

in Lemma 5.7 is such that σ(Â− B̂Ŷ) = {−λn+1, . . . ,−λn+m}.
Proof. Notice that

Â− B̂Ŷ = A−BY − ηv2(p
T
1 Y + pT2) − (B + ηv2p

T
1)(Y v2 − v1)f

T .

For the matrix W =
[
W11 W12

W21 W22

]
in Lemma 5.5, we have[

1 fT

0 I

]
W

[
1 fT

0 I

]−1

=

[
1 fT

0 I

]
W

[
1 −fT

0 I

]
=

[
η 0

W21 −(Â− B̂Ŷ)

]
,

where we have used Lemma 5.6. Therefore, the eigenvalues of Â − B̂Ŷ are −λn+1,
. . . , −λn+m by Lemma 5.5.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1094 CHUN-HUA GUO, BRUNO IANNAZZO, AND BEATRICE MEINI

The case μ = 0 has to be treated separately. Since Y v2 = v1, the matrix W
in Lemma 5.5 does not have a left eigenvector of the form (1, fT) corresponding to
the eigenvalue η. In this case, we need to assume p1 > 0. Actually, it is advisable
in general to use a vector p with p1 > 0 also in the case μ > 0, since this choice
of p guarantees that the matrix Ŷ is bounded independently of the nearness to null
recurrence (as can be seen in the proof of the following theorem). In the next section,
however, we will use a vector p without this assumption for a special class of the NARE
(1.1). There, the boundedness of Ŷ independent of the nearness to null recurrence
will be guaranteed in another way.

Theorem 5.9. If μ = 0 and p1 > 0, then the dual equation of (5.3) has a solution

Ŷ such that σ(Â− B̂Ŷ) = {−λn+1, . . . ,−λn+m}.
Proof. We use a continuity argument similar to the one used in [10] when a shift

technique in [16] is used for null recurrent quasi-birth-death problems. We introduce
the irreducible singular M -matrix

M(k) =

[
D(k) −C(k)
−B(k) A(k)

]
=

[
D −C

−(1 + 1
k)B (1 + 1

k)A

]
(k = 1, 2, . . .). The left and right eigenvectors of M(k) corresponding to the zero
eigenvalue are given by

u1(k) = u1, u2(k) =

(
1 +

1

k

)−1

u2, v1(k) = v1, v2(k) = v2.

Thus, the NARE corresponding to M(k)

(5.4) ZCZ − ZD −A(k)Z + B(k) = 0

is positive recurrent since u1(k)T v1(k) > u2(k)T v2(k). Let Y (k) be the minimal non-
negative solution of the dual equation of (5.4). Then Y (k)v2 < v1 and in particular the
sequence {Y (k)} is bounded. When M is replaced by M(k), we have a matrix W (k)
corresponding to the matrix W in Lemma 5.5. Let (1, f(k)T) be the left eigenvector

of W (k) corresponding to the eigenvalue η. Now, Ŷ (k) = Y (k) + (Y (k)v2 − v1)f(k)T

is a solution of the dual equation of

ZĈZ − ZD̂ − Â(k)Z + B̂(k) = 0,

where Â(k) = A(k)− ηv2p
T
2 and B̂(k) = B(k)+ ηv2p

T
1 , and the eigenvalues of Â(k)−

B̂(k)Ŷ (k) are those of A(k)−B(k)Y (k). We need to show that the sequence {Ŷ (k)}
is bounded. Since (1, f(k)T)W (k) = η(1, f(k)T), we have

η = ηpT1 (v1 − Y (k)v2) + f(k)T (B(k) + ηv2p
T
1)(v1 − Y (k)v2)

≥ f(k)T (ηv2p
T
1)(v1 − Y (k)v2)

and thus

f(k)T (v2p
T
1)(v1 − Y (k)v2) = pT1 (v1 − Y (k)v2)f(k)T v2 ≤ 1.

Since p1, v2 > 0, {(v1 − Y (k)v2)f(k)T } is bounded and thus {Ŷ (k)} is bounded. Let

Ŷ be any limit point of the sequence {Ŷ (k)}. Then the eigenvalues of Â − B̂Ŷ are
those of A−BY since limY (k) = Y by Theorem 3.3 of [12].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 1095

When μ = 0, the matrix H has two zero eigenvalues. The above shift technique
moves one zero eigenvalue to a positive number. We may use a double-shift to move
the other zero eigenvalue to a negative number. Recall that Hv = 0, where v = [v1

v2
],

and wTH = 0, where w = [u1
−u2

]. We define the matrix

(5.5) H = H + ηvpT + ξqwT ,

where η > 0, ξ < 0, p and q are such that pT v = qTw = 1. Since v and w are
orthogonal vectors, the double-shift moves one zero eigenvalue to η and the other to
ξ. Indeed, the eigenvalues of H̃ = H + ξqwT are those of H̃T = HT + ξwqT , which
are the eigenvalues of H except that one zero eigenvalue is replaced by ξ, by Lemma
5.3. Also, the eigenvalues of H = H̃ + ηvpT are the eigenvalues of H̃ except that the
remaining zero eigenvalue is replaced by η, again by Lemma 5.3.

From H we may define a new Riccati equation

(5.6) ZCZ − ZD −AZ + B = 0.

As before, the minimal nonnegative solution X of (1.1) is a solution of (5.6) such
that σ(D − CX) = {η, λ1, . . . , λn−1}. However, it seems very difficult to determine
the existence of a solution Y of the dual equation of (5.6) such that σ(A − B Y) =
{−ξ,−λn+2, . . . ,−λn+m}. We will not investigate the double-shift any further in this
paper.

6. The doubling algorithm applied to the shifted equation. In this section
we assume that M is an irreducible singular M -matrix and μ ≥ 0. We will show that
the doubling algorithm applied to (5.3) converges faster (if no breakdown occurs)
than the doubling algorithm applied to (1.1). The applicability of the SDA algorithm
to the shifted equation (5.3) is still a work in progress, but we will prove that no

breakdown occurs under suitable assumptions on the matrix M̂ .

6.1. Convergence properties. By Theorems 5.4, 5.8, and 5.9, the matrices X
and Ŷ are such that

(6.1) Ĥ

[
I
X

]
=

[
I
X

]
(D̂ − ĈX), Ĥ

[
Ŷ
I

]
=

[
Ŷ
I

]
(−(Â− B̂Ŷ)),

where σ(D̂ − ĈX) = {λ1, . . . , λn−1, η}, σ(Â − B̂Ŷ) = {−λn+1 . . . ,−λn+m}. Recall
that we need to assume p1 > 0 for the vector p used in the shift technique when μ = 0,
to get the second equation in (6.1).

We apply the Cayley transform with γ > 0 to each of the equations in (6.1), thus
obtaining

(Ĥ − γI)

[
I
X

]
= (Ĥ + γI)

[
I
X

]
Cγ(D̂ − ĈX),

(Ĥ − γI)

[
Ŷ
I

]
Cγ(Â− B̂Ŷ) = (Ĥ + γI)

[
Ŷ
I

]
.

(6.2)

We then proceed as in section 3, with (3.3) and (3.7) replaced by the equations
in (6.2). Assuming that no breakdown occurs, the doubling algorithm generates the

sequences of matrices {Êk}, {F̂k}, {Ĝk}, {Ĥk}. We prove the following convergence
result.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1096 CHUN-HUA GUO, BRUNO IANNAZZO, AND BEATRICE MEINI

Theorem 6.1. Let M be an irreducible singular M -matrix and assume that
μ ≥ 0. Let {Êk}, {F̂k}, {Ĝk}, {Ĥk} be the sequences generated by the doubling algo-
rithm applied to the shifted equation (5.3), assuming that no breakdown occurs. Then

{Ĥk} ({Ĝk}) converges to X (Ŷ) quadratically with

lim sup
k→∞

2k
√
‖Ĥk −X‖ ≤ ρ(Cγ(D̂ − ĈX))ρ(Cγ(Â− B̂Ŷ)),(6.3)

lim sup
k→∞

2k
√
‖Ĝk − Ŷ ‖ ≤ ρ(Cγ(D̂ − ĈX))ρ(Cγ(Â− B̂Ŷ)).(6.4)

Proof. As in section 4, we have

X − Ĥk = (I − ĤkŶ)(Cγ(Â− B̂Ŷ))2
k

X(Cγ(D̂ − ĈX))2
k

,(6.5)

Ŷ − Ĝk = (I − ĜkX)(Cγ(D̂ − ĈX))2
k

Ŷ (Cγ(Â− B̂Ŷ))2
k

.(6.6)

We prove (6.3). The proof of (6.4) is similar. By writing the Ĥk on the right-hand

side of (6.5) as X − (X − Ĥk), we find

(X − Ĥk)
(
I − Ŷ (Cγ(Â− B̂Ŷ))2

k

X(Cγ(D̂ − ĈX))2
k
)

(6.7)

= (I −XŶ)(Cγ(Â− B̂Ŷ))2
k

X(Cγ(D̂ − ĈX))2
k

.

Note that

σ(Cγ(D̂ − ĈX)) = {Cγ(λ1), . . . , Cγ(λn−1), Cγ(η)},
σ(Cγ(D − CX)) = {Cγ(λ1), . . . , Cγ(λn−1), Cγ(0)},
σ(Cγ(Â− B̂Ŷ)) = σ(Cγ(A−BY)) = {Cγ(−λn+1), . . . , Cγ(−λm+n)}.

By Theorem 2.2 and the property of the Cayley transform, we have

(6.8) ρ(Cγ(D̂−ĈX)) < ρ(Cγ(D−CX)) = 1, ρ(Cγ(Â−B̂Ŷ)) = ρ(Cγ(A−BY)) ≤ 1.

Thus I− Ŷ (Cγ(Â−B̂Ŷ))2
k

X(Cγ(D̂−ĈX))2
k

converges to I in (6.7), and (6.3) follows
immediately.

Recall that the sequence {Hk} generated in section 3 is such that

lim sup
k→∞

2k
√
‖Hk −X‖ ≤ ρ(Cγ(D − CX))ρ(Cγ(A−BY)).

In view of (6.8), the convergence of the doubling algorithm applied to the shifted
equation is faster than the convergence of the same algorithm applied to the orig-
inal equation. As we will show in the numerical experiments, the number of steps
necessary for convergence can decrease dramatically by using the shift technique. In
particular, when μ = 0, the SDA algorithm applied to the shifted equation still has
quadratic convergence. According to the results in [12], the shift equation is also
better conditioned than the original equation.

At this point it must be specified which is the best choice for the parameter η in
terms of the speed of convergence. In fact, the fastest convergence is expected when
ρ(Cγ(D̂ − ĈX)) is minimal, i.e., when |Cγ(η)| ≤ max{|Cγ(λi)|, i = 1, . . . , n− 1}. This
happens, for instance, if η = γ (i.e., Cγ(η) = 0).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 1097

6.2. Applicability for a special class of NARE. We can prove the applica-
bility of the SDA algorithm to the shifted equation for a special class of the NARE
(1.1) and for proper choices of η, p, and γ.

The special class consists of equations for which either C has at least one positive
column or D has at least one column with no zero entries.

For ease of notation, we assume without loss of generality [12] that v = e, the
vector of ones. We define r1 ∈ R

n and r2 ∈ R
m by

(r1)j = min
1≤i≤n,i �=j

|dij |, j = 1, . . . , n, (r2)j = min
1≤i≤n

cij , j = 1, . . . ,m,

and define r ≥ 0 by rT = (rT1 , r
T
2). We have r �= 0 for each equation in the special

class, and we use the shift (5.2) with η = rT e and p = r/rT e.

Clearly, the matrix M̂ is a Z-matrix. It is interesting to note that M̂ is also an
M -matrix. This follows from the fact that(

uT
1 , u

T
2

)
M̂ = η

(
μpT1 , μp

T
2

)
= μ

(
rT1 , r

T
2

)
≥ 0.

Recall that M̂ is nonsingular when μ > 0 and is singular when μ = 0. It should be
noted that M̂ may be a reducible singular M -matrix. As a simple example, we have
M̂ =

[
2 0
−2 0

]
when M =

[
1 −1
−1 1

]
.

In view of the results in [15], the doubling algorithm can be applied to the NARE

corresponding to M̂ with γ > max{max(aii−(r2)i),max(dii+(r1)i)}, and the matrices
to be inverted in the algorithm are all nonsingular M -matrices. The results in [15] are
stated for nonsingular M -matrices, but are easily seen to be true also for singular M -
matrices. By Theorem 3.2 we can also take γ = max{max(aii−(r2)i),max(dii+(r1)i)}
when M̂ is irreducible.

For the convergence analysis of the doubling algorithm applied to the matrix M̂ ,
we need to prove the existence of Ŷ with the property in (6.1). By our definition
of the vector p, we no longer have p1 > 0 unless all off-diagonal elements of D are
negative. Therefore, we need a different proof for the existence of Ŷ with the property
in (6.1), for the case μ = 0 (see Theorem 5.9).

For the proof, we need to assume that the M -matrix M̂ is such that I ⊗ Â +
D̂T ⊗ I is a nonsingular M -matrix, where ⊗ is the Kronecker product. This is an
additional assumption only when μ = 0 and M̂ is reducible, and it is guaranteed by
the assumption in the next result.

Lemma 6.2. For the special class of the NARE (1.1), assume that either A is

irreducible or B has no zero rows. Then I ⊗ Â+ D̂T ⊗ I is a nonsingular M -matrix.
Proof. Note that

(D − rT2 eI)e− (C − erT2)e = De− Ce = 0.

So D − rT2 eI is an M -matrix. Now,

I ⊗ Â + D̂T ⊗ I ≥ I ⊗ (A− erT2) + (D − rT2 eI)
T ⊗ I + rT2 eI ⊗ I

= I ⊗ (A− erT2 + rT2 eI) + (D − rT2 eI)
T ⊗ I.

Note that (A − erT2 + rT2 eI)e = Ae = Be ≥ 0 and that Be �= 0. If A is irreducible,
then A − erT2 + rT2 eI is irreducible. If B has no zero rows, then Be > 0. In either

case, A− erT2 + rT2 eI is a nonsingular M -matrix. Therefore, I ⊗ Â+ D̂T ⊗ I is also a
nonsingular M -matrix.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1098 CHUN-HUA GUO, BRUNO IANNAZZO, AND BEATRICE MEINI

We now prove the existence of Ŷ with the property in (6.1), assuming that I ⊗
Â+ D̂T ⊗ I is a nonsingular M -matrix for the special class of the NARE (1.1). First,
we note that

Y B̂Y − Y Â− D̂Y + Ĉ = η(Y e− e)(pT1 Y + pT2) ≤ 0.

By Theorem 2.3 of [8], there is a minimal Ŷ , 0 ≤ Ŷ ≤ Y , such that

Ŷ B̂Ŷ − Ŷ Â− D̂Ŷ + Ĉ = 0.

Note that

Ĥ

[
I Ŷ
X I

]
=

[
I Ŷ
X I

][
D̂ − ĈX 0

0 −(Â− B̂Ŷ)

]
.

When μ > 0, we have Xe = e and Ŷ e < e and the matrix[
I Ŷ
X I

]
is nonsingular. So the eigenvalues of Â− B̂Ŷ are −λn+1, . . . ,−λn+m. By a continuity

argument, the eigenvalues of Â− B̂Ŷ are also −λn+1, . . . ,−λn+m when μ = 0.

7. Numerical experiments. We compare the numerical behavior of the SDA
algorithm applied to (1.1) and to the shifted equation (5.3), when μ ≥ 0. Recall that
the case μ < 0 is easily reduced to the case μ > 0 through Lemma 5.1.

The numerical experiments are performed by using MATLAB; the stopping con-
dition is min{‖Ek‖1, ‖Fk‖1} < 10−15.

We take γ = max{max aii,max dii} for the Cayley transform, as suggested by
Theorem 4.4. For the shift technique, we take η = γ and p = e/vT e, where e is the
vector (of suitable size) with all components equal to 1.

Test 7.1 (see [8]). Random choice of a singular M -matrix with Me = 0. To
construct M , we generate R, a 100×100 random matrix, and define M = diag(Re)−R.
The matrices A,B,C, and D are 50 × 50.

We generate 5 different matrices M in this way, each with μ > 0. In Table 7.1 we
report the number of iterations and the relative residual, defined as

res =
‖XCX −XD −AX + B‖1

‖XCX‖1 + ‖XD‖1 + ‖AX‖1 + ‖B‖1
.

As one can see, the number of steps applied to the shifted equation is smaller, while
the residual error remains roughly the same (u ≈ 2.2 × 10−16 is the unit roundoff).

Table 7.1

SDA applied to original and shifted NARE.

SDA SDA applied to shifted NARE
iter res/err iter res/err

Test 1 12–13 res=1.1u–2.1u 5 res=1.2u–1.7u
Test 2 33 err=1.6 × 10−9 5 err=2.2 × 10−16

Test 3 18 err=3.5 × 10−13 4 err=2.3 × 10−13

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATION 1099

Test 7.2 (see [2, Example 1]). A null recurrent case. Let

M =

⎡⎢⎢⎣
0.003 −0.001 −0.001 −0.001
−0.001 0.003 −0.001 −0.001
−0.001 −0.001 0.003 −0.001
−0.001 −0.001 −0.001 0.003

⎤⎥⎥⎦ ,

where D is a 2 × 2 matrix. The minimal positive solution is X = 1
2E2,2, where Em,n

is the m× n matrix having all entries equal to 1.
In this case the SDA algorithm shows linear convergence while the SDA applied

to the shifted equation has quadratic convergence. Indeed, as reported in Table 7.1
the number of steps decreases dramatically. Since the solution is explicitly known,
we have compared the absolute error, defined as the 1-norm of the difference between
the exact and the computed solution, obtained with both methods. Observe that the
solution computed without performing the shift is much less accurate than the one
obtained by applying the shift. This phenomenon is to be expected in view of the
theoretical results in [12].

Test 7.3 (see [2, Example 3]). A positive recurrent Markov chain with nonsquare
coefficients. In this example A = diag(0.018E2,1), D = diag(180.002E18,1)−10E18,18,
B = 0.001E2,18, and C = BT . The solution is known to be 1

18E2,18. The results are
shown in Table 7.1; the reduction of the number of iterations for the shifted equation
is significant.

In all our experiments, the approximations to X obtained by the SDA algorithm
with the shift technique are more accurate than those obtained without the shift
technique, for the same number of iterations. The approximations obtained by the
shift technique converge to the positive solution X. However, when X has very small
positive elements, it is possible that at the time of termination of the algorithm the
approximation obtained has some very small negative elements. We have not yet
encountered such situations, but if those situations do occur, we can simply reset
those small negative numbers to 0, indicating that the actual values are very small
positive numbers.

REFERENCES

[1] B. D. O. Anderson, Second-order convergent algorithms for the steady-state Riccati equation,
Internat. J. Control, 28 (1978), pp. 295–306.

[2] N. G. Bean, M. M. O’Reilly, and P. G. Taylor, Algorithms for return probabilities for
stochastic fluid flows, Stoch. Models, 21 (2005), pp. 149–184.

[3] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM,
Philadelphia, PA, 1994.

[4] D. A. Bini, B. Iannazzo, G. Latouche, and B. Meini, On the solution of algebraic Riccati
equations arising in fluid queues, Linear Algebra Appl., 413 (2006), pp. 474–494.

[5] C.-Y. Chiang and W.-W. Lin, A Structured Doubling Algorithm for Nonsymmetric Al-
gebraic Riccati Equations (A Singular Case), Technical report, NCTS, National Tai-
wan University, Taiwan, available online at http://math.cts.nthu.edu.tw/Mathematics/
preprints/prep2006-7-001.pdf.

[6] S. Fital and C.-H. Guo, Convergence of the solution of a nonsymmetric matrix Riccati dif-
ferential equation to its stable equilibrium solution, J. Math. Anal. Appl., 318 (2006), pp.
648–657.

[7] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University
Press, Baltimore, MD, 1989.

[8] C.-H. Guo, Nonsymmetric algebraic Riccati equations and Wiener–Hopf factorization for M-
matrices, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 225–242.

[9] C.-H. Guo, A note on the minimal nonnegative solution of a nonsymmetric algebraic Riccati
equation, Linear Algebra Appl., 357 (2002), pp. 299–302.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1100 CHUN-HUA GUO, BRUNO IANNAZZO, AND BEATRICE MEINI

[10] C.-H. Guo, Comments on a shifted cyclic reduction algorithm for quasi-birth-death problems,
SIAM J. Matrix Anal. Appl., 24 (2003), pp. 1161–1166.

[11] C.-H. Guo, Efficient methods for solving a nonsymmetric algebraic Riccati equation arising in
stochastic fluid models, J. Comput. Appl. Math., 192 (2006), pp. 353–373.

[12] C.-H. Guo and N. J. Higham, Iterative solution of a nonsymmetric algebraic Riccati equation,
SIAM J. Matrix Anal. Appl., 29 (2007), pp. 396–412.

[13] C.-H. Guo and A. J. Laub, On the iterative solution of a class of nonsymmetric algebraic
Riccati equations, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 376–391.

[14] X.-X. Guo and Z.-Z. Bai, On the minimal nonnegative solution of nonsymmetric algebraic
Riccati equation, J. Comput. Math., 23 (2005), pp. 305–320.

[15] X.-X. Guo, W.-W. Lin, and S.-F. Xu, A structure-preserving doubling algorithm for nonsym-
metric algebraic Riccati equation, Numer. Math., 103 (2006), pp. 393–412.

[16] C. He, B. Meini, and N. H. Rhee, A shifted cyclic reduction algorithm for quasi-birth-death
problems, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 673–691.

[17] R. A. Horn and S. Serra-Capizzano, Canonical and Standard Forms for Certain Rank One
Perturbations and an Application to the (Complex) Google Pageranking Problem, Internet
Math., to appear.

[18] J. Juang, Existence of algebraic matrix Riccati equations arising in transport theory, Linear
Algebra Appl., 230 (1995), pp. 89–100.

[19] J. Juang and W.-W. Lin, Nonsymmetric algebraic Riccati equations and Hamiltonian-like
matrices, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 228–243.

[20] L.-Z. Lu, Solution form and simple iteration of a nonsymmetric algebraic Riccati equation
arising in transport theory, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 679–685.

[21] C. D. Meyer, Stochastic complementation, uncoupling Markov chains, and the theory of nearly
reducible systems, SIAM Rev., 31 (1989), pp. 240–272.

[22] V. Ramaswami, Matrix analytic methods for stochastic fluid flows, in Proceedings of the Six-
teenth International Teletraffic Congress, New York, Elsevier Science B. V., Edinburgh,
1999, pp. 1019–1030.

[23] L. C. G. Rogers, Fluid models in queueing theory and Wiener–Hopf factorization of Markov
chains, Ann. Appl. Probab., 4 (1994), pp. 390–413.

[24] L. C. G. Rogers and Z. Shi, Computing the invariant law of a fluid model, J. Appl. Probab.,
31 (1994), pp. 885–896.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1101–1119

BLOCK DIAGONAL AND SCHUR COMPLEMENT
PRECONDITIONERS FOR BLOCK-TOEPLITZ SYSTEMS WITH

SMALL SIZE BLOCKS∗

WAI-KI CHING† , MICHAEL K. NG‡ , AND YOU-WEI WEN§

Abstract. In this paper we consider the solution of Hermitian positive definite block-Toeplitz
systems with small size blocks. We propose and study block diagonal and Schur complement pre-
conditioners for such block-Toeplitz matrices. We show that for some block-Toeplitz matrices, the
spectra of the preconditioned matrices are uniformly bounded except for a fixed number of outliers
where this fixed number depends only on the size of the block. Hence, conjugate gradient type meth-
ods, when applied to solving these preconditioned block-Toeplitz systems with small size blocks,
converge very fast. Recursive computation of such block diagonal and Schur complement precon-
ditioners is considered by using the nice matrix representation of the inverse of a block-Toeplitz
matrix. Applications to block-Toeplitz systems arising from least squares filtering problems and
queueing networks are presented. Numerical examples are given to demonstrate the effectiveness of
the proposed method.

Key words. block-Toeplitz matrix, block diagonal, Schur complement, preconditioners, recur-
sion

AMS subject classifications. 65F10, 65N20

DOI. 10.1137/S0895479803428230

1. Introduction. In this paper we consider the solution of a Hermitian positive
definite block-Toeplitz (BT) system with small size blocks

(1.1) An,mX = B,

where X and B are mn-by-m matrices and

An,m =

⎛⎜⎜⎜⎜⎝
A0 A−1 · · · A1−n

A1 A0
. . .

...
...

. . .
. . . A−1

An−1 · · · A1 A0

⎞⎟⎟⎟⎟⎠ ,

where each Aj is an m-by-m matrix with Aj = A∗
−j and m is much smaller than

n. Here “∗” denotes the conjugate transpose. This kind of linear system arises from
many applications such as the multichannel least squares filtering in time series [26],
signal and image processing [20], and queueing system [11]. We will discuss these

∗Received by the editors December 12, 2003; accepted for publication (in revised form) by P. C.
Hansen April 17, 2007; published electronically November 9, 2007.

http://www.siam.org/journals/simax/29-4/42823.html
†Advanced Modeling and Applied Computing Laboratory and Department of Mathematics, The

University of Hong Kong, Pokfulam Road, Hong Kong (wkc@maths.hku.hk). The research of this
author was supported in part by Hong Kong Research Grants Council grant HKU 7126/02P, HKU
CRCG grants 10204436 and 10205105, Hung Hing Ying Physical Sciences Research Fund, and HKU
Strategic Research Theme Fund on Computational Physics and Numerical Methods.

‡Corresponding author. Department of Mathematics, Hong Kong Baptist University, Kowloon
Tong, Hong Kong (mng@math.hkbu.edu.hk). The research of this author was supported in part by
Hong Kong Research Grants Council grants 7035/04P, 7035/05P, and HKBU FRGs.

§Faculty of Science, South China Agricultural University, Wushan, Guangzhou, P. R. China
(wenyouwei@gmail.com).

1101

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1102 WAI-KI CHING, MICHAEL K. NG, AND YOU-WEI WEN

applications, in particular the least squares filtering problems and queueing networks,
in section 5.

Recent research on using the preconditioned conjugate gradient method as an it-
erative method for solving n-by-n Toeplitz systems has received much attention.One
of the more important results of this methodology is that the complexity of solving
a large class of Toeplitz systems can be reduced to O(n log n) operations provided
that a suitable preconditioner is chosen under certain conditions on the Toeplitz ma-
trix [7]. Circulant preconditioners [3, 4, 8, 9, 10, 17, 25, 30, 33], banded-Toeplitz
preconditioners [5], and multigrid methods [6, 12] have been proposed and analyzed.
In these papers, the diagonals of the Toeplitz matrix are assumed to be the Fourier
coefficients of a certain generating function.

In the literature, there are some papers [18, 21, 22, 27, 28, 29, 31] which dis-
cuss iterative BT solvers. In [21, 28, 29], the authors considered n-by-n BT matri-
ces with m-by-m blocks generated by a Hermitianmatrix-valued generating function
and analyzed the associated problem of preconditioning using preconditioners which
generated nonnegative definite,not essentially singular, matrix-valued functions. In
[18, 22, 27], the authors considered block-Toeplitz–Toeplitz-block matrices and stud-
ied block band-Toeplitz preconditioners. In [31], multigrid methods were applied to
solving block-Toeplitz–Toeplitz-block systems. In the above methods, the underlying
generating functions are assumed to be known in order to construct the precondition-
ers.

In this paper, we also consider BT matrices An,m generated by a matrix-valued
function

Fm(θ) = [fu,v(θ)]1≤u,v≤m,

where fu,v(θ) are 2π-periodic functions. Under this assumption, the block Aj of An,m

is given by

Aj =
1

2π

∫ π

−π

Fm(θ)e−ijθdθ.

When Fm(θ) is nonnegative definite and not essentially singular, the associated BT
matrix An,m is positive definite [21, 28]. For such BT matrices, Serra [28] has inves-
tigated BT preconditioners and studied the spectral property of these preconditioned
matrices. He proved that if the BT preconditioner is generated by Gm(θ), the gener-
alized Rayleigh quotient, related to matrix functions Fm(θ) and Gm(θ), is contained
in a set of the form (c1, c2) with 0 < c1 and c2 < ∞, then the preconditioned conju-
gate gradient (PCG) method requires only a constant number of iterations in order
to solve, within a preassigned accuracy, the given BT system.

In [24], Ng, Sun, and Jin proposed to using recursive-based PCG methods for
solving Toeplitz systems. The idea is to use a principal submatrix of a Toeplitz
matrix as a preconditioner. The inverse of the preconditioner can be constructed
recursively by using the Gohberg–Semencul formula. They have shown that this
method is competitive with the method of circulant preconditioners. Based on this
idea, the main aim of this paper is to study block diagonal and Schur complement
preconditioners for BT systems. We note that there is a natural partitioning of the
BT matrix in 2-by-2 blocks as follows:

(1.2) An,m =

(
A(1,1) A(1,2)

A(2,1) A(2,2)

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRECONDITIONERS FOR BLOCK-TOEPLITZ SYSTEMS 1103

Here A(1,1) and A(2,2) are the principal submatrices of An,m. They are also BT
matrices generated by the same generating function of An,m. Therefore it is natural
and important to examine if the corresponding system

(1.3)

(
A(1,1) A(1,2)

A(2,1) A(2,2)

)(
X1

X2

)
=

(
B1

B2

)
can be solved efficiently by exploiting this partitioning. Here we consider precondi-
tioning An,m by a block diagonal matrix

Bn,m =

(
A(1,1) 0

0 A(2,2)

)
.

Since both A(1,1) and A(2,2) are BT matrices generated by the same generating func-
tion Fm(θ), we particularly consider Bn,m in the following form:

(1.4) Bn,m =

(
An/2,m 0

0 An/2,m

)
.

Here, without loss of generality, we may assume n is even. We note that if An,m

is positive definite, then Bn,m is also positive definite and the eigenvalues of the
preconditioned matrix B−1

n,mAn,m lie in the interval (0, 2).
On the other hand, the Schur complement arises when we use a block factorization

of (1.2). The linear system (1.3) becomes(
I 0

A(2,1)(A(1,1))−1 I

)(
A(1,1) A(1,2)

0 Sn,m

)(
X1

X2

)
=

(
B1

B2

)
,

where

Sn,m = A(2,2) −A(2,1)(A(1,1))−1A(1,2).

We see that the method requires the formation of the Schur complement matrix.
Therefore we consider approximating Sn,m by A(2,2) = An/2,m and study the precon-
ditioner of the form

Cn,m =

(
I 0

A(2,1)(A(1,1))−1 I

)(
A(1,1) A(1,2)

0 A(2,2)

)
=

(
A(1,1) A(1,2)

A(2,1) A(2,2) + A(2,1)(A(1,1))−1A(1,2)

)
.(1.5)

We note that if An,m is positive definite, then Cn,m is also positive definite and
the eigenvalues of the preconditioned matrix C−1

n,mAn,m are inside of the interval
(0, 1]. In particular, there are at least mn/2 eigenvalues of the preconditioned matrix
being equal to one. Our experimental results also show that the Schur-complement
preconditioner is better than the block diagonal preconditioner. We remark that the
main reason for discussing the block diagonal preconditioner is that it is needed for
deriving the theory for the Schur-complement preconditioner.

The main result of this paper is that if the generating function Fm(θ) is Hermitian
positive definite, and is spectrally equivalent to

Gm(θ) = [gu,v]1≤u,v≤m,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1104 WAI-KI CHING, MICHAEL K. NG, AND YOU-WEI WEN

where gu,v are trigonometric polynomials, then the spectra of the preconditioned
matrices B−1

n,mAn,m and C−1
n,mAn,m are uniformly bounded except for a fixed number

of outliers where the number of outliers depends only on m. Hence the conjugate
gradient type methods, when applied to solving these preconditioned BT systems,
converge very quickly, especially when m is small.

The goal of this paper is to construct preconditioners that do not require matrix
generating functions. We note that the construction of our preconditioners does not
require the underlying matrix generating functions, while the preconditioners from [21,
28] require matrix generating functions. In the construction of our preconditioners,
the inverse of BT matrix A(1,1) is required. Using the same idea in [24], we employ the
Gohberg–Semencul formula to represent the form of the inverse of A(1,1) and apply
a recursive method to construct the inverse of A(1,1). It is important to note that
we do not directly use the Gohberg–Semencul formula to generate the solution of the
original BT system.

We remark that the solution results are not accurate when the BT matrices are
ill-conditioned. Indeed, we use the Gohberg–Semencul formula to generate an approx-
imate inverse preconditioner and then use the PCG method with this preconditioner
to compute the solution of the original system iteratively. Our numerical results indi-
cate that the accuracy of the computed solutions using the proposed preconditioners
is quite acceptable.

The outline of this paper is as follows. In section 2, we analyze the spectra of
the preconditioned matrices. In section 3, we describe the recursive algorithms for
block diagonal and Schur complement preconditioners. Numerical results are given in
section 4 to illustrate the effectiveness of our approach. Finally, concluding remarks
are given in section 5.

2. Analysis of preconditioners. In this section, we analyze the spectra of the
preconditioned matrices B−1

m,nAn,m and C−1
n,mAn,m.

We first note that since An,m is positive definite, we have the following results,
which are given in [1, pp. 374–377].

Lemma 2.1. Let x and y be mn/2-vectors. Define

γ = sup
x,y

x∗A
(1)
n/2,my√

x∗An/2,mx · y∗An/2,my
.

If An,m is Hermitian and positive definite, then γ < 1. In particular, we have

γ2 = sup
y

y∗A2,1
n/2,mA−1

n/2,mA1,2
n/2,my

y∗An/2,my
.

Using Lemma 2.1 and the assumption that An,m is Hermitian and positive defi-
nite, we have the following results:

• The eigenvalues of the preconditioned matrix B−1
n,mAn,m lie inside the interval

(0, 2). Also if μ is an eigenvalue of B−1
n,mAn,m, then 2−μ is also an eigenvalue

of B−1
n,mAn,m.

• The eigenvalues of C−1
n,mAn,m are inside the interval (0, 1]. Moreover, at least

mn/2 eigenvalues of C−1
n,mAn,m are equal to 1.

We then show that the eigenvalues of B−1
n,mAn,m and C−1

n,mAn,m are uniformly
bounded except for a fixed number of outliers for some generation functions Fm(θ).
We first let

En(θ) = [eu,v(θ)]1≤u,v≤n, where eu,v(θ) = e−i(u−v)θ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRECONDITIONERS FOR BLOCK-TOEPLITZ SYSTEMS 1105

The BT matrix An,m can be expressed in terms of its generating function:

(2.1) An,m =
1

2π

∫ π

−π

En(θ) ⊗ Fm(θ)dθ.

Similarly, the block diagonal preconditioner can be expressed as follows:

(2.2) Bn,m =
1

2π

∫ π

−π

(
En/2(θ) 0

0 En/2(θ)

)
⊗ Fm(θ)dθ.

We note that there exists a permutation matrix Pn,m such that

P ∗
n,mAn,mPn,m = Ãn,m =

1

2π

∫ π

−π

Fm(θ) ⊗ En(θ)dθ

and

P ∗
n,mBn,mPn,m = B̃n,m =

1

2π

∫ π

−π

Fm(θ) ⊗
(

En/2(θ) 0
0 En/2(θ)

)
dθ.

It is clear that Ãn,m and B̃n,m are Toeplitz-block (TB) matrices, and the spectra of

An,m and Ãn,m, and Bn,m and B̃n,m are the same. Since the spectra of B−1
n,mAn,m

and B̃−1
n,mÃn,m are the same, it suffices to study the spectral properties of B̃−1

n,mÃn,m.
We give the following two lemmas.
Lemma 2.2. Let A = [ai,j]1≤i,j≤m and B = [bi,j]1≤i,j≤n. Then for any n-by-m

matrices X = (x1,x2, . . . ,xm) and Y = (y1,y2, . . . ,ym), we have

(2.3) vec(X)∗(A⊗B)vec(Y) =

m∑
u=1

m∑
v=1

au,vx
∗
uByv

with vec(X) =

⎛⎜⎜⎜⎝
x1

x2

...
xm

⎞⎟⎟⎟⎠ and vec(Y) =

⎛⎜⎜⎜⎝
y1

y2

...
ym

⎞⎟⎟⎟⎠.

Lemma 2.3. Let x =

⎛⎜⎜⎜⎝
x1

x2

...
xm

⎞⎟⎟⎟⎠ with xl =

⎛⎜⎜⎜⎝
x(l−1)n+1

x(l−1)n+2

...
xln

⎞⎟⎟⎟⎠ (1 ≤ l ≤ m), p1(θ) =

⎛⎜⎜⎜⎝
p̌11(θ)
p̌21(θ)

...
p̌m1(θ)

⎞⎟⎟⎟⎠ with p̌j1(θ) =
∑n′

l=1 x(j−1)n+le
−i(l−1)θ, and p2(θ) =

⎛⎜⎜⎜⎝
p̌12(θ)
p̌22(θ)

...
p̌m2(θ)

⎞⎟⎟⎟⎠ with

p̌j2(θ) = e−in′θ
∑n−n′

l=1 x(j−1)n+n′+le
−i(l−1)θ. If An,m is generated by Fm(θ), then we

have

(2.4) x∗B̃n,mx =
1

2π

∫ π

−π

[
p1(θ)

∗Fm(θ)p1(θ) + p2(θ)
∗Fm(θ)p2(θ)

]
dθ

and

(2.5) x∗Ãn,mx = x∗B̃n,mx +
1

2π

∫ π

−π

[
p1(θ)

∗Fm(θ)p2(θ) + p2(θ)
∗Fm(θ)p1(θ)

]
dθ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1106 WAI-KI CHING, MICHAEL K. NG, AND YOU-WEI WEN

Proof. We construct X = (x1,x2, . . . ,xm), i.e., x = vec(X). Using Lemma 2.2,
we obtain

(2.6) vec(X)∗Ãn,mvec(X) =
1

2π

∫ π

−π

m∑
u=1

m∑
v=1

fu,v(θ)x
∗
uEn(θ)xvdθ

and

(2.7) vec(X)∗B̃n,mvec(X) =
1

2π

∫ π

−π

m∑
u=1

m∑
v=1

fu,v(θ)x
∗
u

(
En/2(θ) 0

0 En/2(θ)

)
xvdθ.

We note that

x∗
u

(
En/2(θ) 0

0 En/2(θ)

)
xv

=

n/2∑
j=1

x(u−1)n+j

n/2∑
l=1

x(v−1)n+lejl(θ) +

n∑
j=n/2+1

x(u−1)n+j

n∑
l=n/2+1

x(v−1)n+lejl(θ)

=

n/2∑
j=1

x(u−1)n+je
−i(j−1)

n/2∑
l=1

x(v−1)n+le
i(l−1)

+

n∑
j=n/2+1

x(u−1)n+je
−i(j−1)

n∑
l=n/2+1

x(v−1)n+le
i(l−1)

= p̌u1(θ)p̌v1(θ) + p̌u2(θ)p̌v2(θ).

By using (2.7), one can obtain (2.4) directly. Similarly by using (2.6), (2.5) can also
be derived.

Next, we show that the eigenvalues of B−1
n,mAn,m are uniformly bounded except for

a fixed number of outliers when Fm(θ) is Hermitian positive definite and is spectrally
equivalent to Gm(θ) = [gu,v]1≤u,v≤m, where gu,v are trigonometric polynomials. We
remark that the fixed number of outliers depends on m.

Theorem 2.4. Let Fm(θ) be Hermitian positive definite. Suppose Fm(θ) is spec-
trally equivalent to Gm(θ) = [gu,v]1≤u,v≤m, where gu,v are trigonometric polynomials
and s is the largest degree of the polynomials in Gm(θ). Then there exist two positive
numbers α and β (α < β) independent of n such that for all n > 2s′ (s′ = �s/2�), at
most 2ms′ eigenvalues of B̃−1

n,mÃn,m (or B−1
n,mAn,m) are outside the interval [α, β].

Proof. We note that there exist positive numbers γ1 and γ2 such that

(2.8) 0 < γ1 ≤ y∗Fm(θ)y

y∗Gm(θ)y
≤ γ2 ∀y ∈ R

m, ∀θ ∈ [0, 2π].

We define the two sets Υ and Ω as follows:

Υ = {r : r = jn+n/2−s′, jn+n/2−s′+1, . . . , jn+n/2+s′−1 for j = 0, 1, . . . ,m−1}

and Ω =

⎧⎪⎪⎪⎨⎪⎪⎪⎩z =

⎛⎜⎜⎜⎝
z1

z2

...
zmn

⎞⎟⎟⎟⎠ | zk = 0 for k ∈ Υ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . We note that Ω is an (mn − 2ms′)-

dimensional subspace in R
mn. It follows that for x ∈ Ω and pu(θ) (u = 1, 2) defined

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRECONDITIONERS FOR BLOCK-TOEPLITZ SYSTEMS 1107

in Lemma 2.3, we have∫ π

−π

p1(θ)
∗Gm(θ)p2(θ)dθ =

∫ π

−π

m∑
u=1

m∑
v=1

p̌u1(θ)fu,v(θ)p̌v2(θ)dθ

=

∫ π

−π

m∑
u=1

m∑
v=1

fu,v(θ)e
in/2θ

n/2∑
j=1

x(u−1)n+je
−i(j−1)θ

n/2∑
j=1

x(v−1)n+n/2+je
i(j−1)θdθ

=
m∑

u=1

m∑
v=1

∫ π

−π

fu,v(θ)e
i(2s′+1)θ

n/2−s′∑
j=1

x(u−1)n+je
−ijθ

·
n/2−s′∑
j=1

x(v−1)n+j+s′e
i(n/2−s′−1+j)θdθ = 0(2.9)

and ∫ π

−π

p2(θ)
∗Gm(θ)p1(θ)dθ =

∫ π

−π

m∑
u=1

m∑
v=1

p̌u2(θ)(θ)fu,v(θ)p̌v1(θ)(θ)dθ

=

∫ π

−π

m∑
u=1

m∑
v=1

fu,v(θ)e
−n/2θ

n/2∑
j=1

x(u−1)n+n/2+je
−i(j−1)θ

n/2∑
l=1

x(v−1)n+le
i(l−1)θdθ

=
m∑

u=1

m∑
v=1

∫ π

−π

fu,v(θ)e
−i(2s′+1)θ

n/2−s′∑
j=1

x(u−1)n+n/2+s′+je
−i(n/2−s′−1+j)θ

·
n/2−s′∑
l=1

x(v−1)n+le
ijθdθ = 0.(2.10)

Since Fm(θ) − γ1Gm(θ) is positive semidefinite, we have∫ π

−π

p1(θ)
∗[Fm − γ1Gm(θ)](θ)p1(θ) + p2(θ)

∗[Fm(θ) − γ1Gm(θ)]p2(θ)dθ

≥
∫ π

−π

p1(θ)
∗[Fm − γ1Gm(θ)](θ)p2(θ) + p2(θ)

∗[Fm(θ) − γ1Gm(θ)]p1(θ)dθ.(2.11)

By using Lemma 2.3, (2.9), (2.10), and (2.11), we get∣∣∣∣∣x∗T̃n,mx − x∗B̃n,mx

x∗B̃n,mx

∣∣∣∣∣ =

∣∣∣∫ π

−π
(p1(θ)Fm(θ)p2(θ) + p2(θ))Fm(θ)(p1(θ))dθ

∣∣∣∣∣∣∫ π

−π
(p1(θ)Fm(θ)p1(θ) + p2(θ))Fm(θ)(p2(θ))dθ

∣∣∣
=

∣∣∣∫ π

−π
p1(θ)[Fm(θ) − γ1Gm(θ)]p2(θ) + p2(θ)[Fm(θ) − γ1Gm(θ)]p1(θ)dθ

∣∣∣∣∣∣∫ π

−π
p1(θ)Fm(θ)p1(θ) + p2(θ)Fm(θ)p2(θ)dθ

∣∣∣ .

≤

∣∣∣∫ π

−π
p1(θ)[Fm(θ) − γ1Gm(θ)]p1(θ) + p2(θ)[Fm(θ) − γ1Gm(θ)]p2(θ)dθ

∣∣∣∣∣∣∫ π

−π
p1(θ)Fm(θ)p1(θ) + p2(θ)Fm(θ)p2(θ)dθ

∣∣∣
≤ 1 − γ1

γ2
∀x ∈ Ω.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1108 WAI-KI CHING, MICHAEL K. NG, AND YOU-WEI WEN

Therefore, we have

α ≡ γ1

γ2
≤ x∗Ãn,mx

x∗B̃n,mx
≤ 2 − γ1

γ2
≡ β ∀x ∈ Ω.

It implies that there are at most 2ms′ eigenvalues of B̃−1
n,mÃn,m outside the interval

[α, β].
In [28], Serra explicitly constructed Gm(θ) by using eigendecomposition of Fm(θ):

Fm(θ) = Q(θ)∗Λ(θ)Q(θ),

where Λ(θ) is a diagonal matrix containing the eigenvalues λj(Fm(θ)) (j = 1, . . . ,m)
of Fm(θ). Suppose λj(Fm(θ)) has a zero at θj of even order νj . Then Gm(θ) is
constructed in the following way:

Gm(θ) =

m∑
j=1

Q(θj)
∗Γ(θ)Q(θj),

where Γ(θ) is a diagonal matrix with

[Γ(θ)]kk =

{
(2 − 2 cos(θ))νj/2, k = j,
1 otherwise.

It is clear that each entry of Gm(θ) is a polynomial. The largest degree of the poly-
nomials in Gm(θ) depends on the orders of the zeros of the eigenvalues of Fm(θ). It
has been shown that Fm(θ) is spectrally equivalent to Gm(θ); see, for instance, [28].

Similarly, we show that the eigenvalues of C−1
n,mAn,m are uniformly bounded ex-

cept for a fixed number of outliers, where this fixed number depends on m.
Theorem 2.5. Let Fm(θ) be Hermitian positive definite. Suppose Fm(θ) is spec-

trally equivalent to Gm(θ) = [gu,v]1≤u,v≤m, where gu,v are trigonometric polynomials
and s is the largest degree of the polynomials in Gm(θ). There exist two positive num-
bers α and β (α < β) independent of n such that for all n > 2s′ (s′ = �s/2�), at most
ms′ eigenvalues of C̃−1

n,mÃn,m (or C−1
n,mAn,m) are outside the interval [α, β].

Proof. We note from (1.4) and (1.5) that

det[B−1
n,m(An,m −Bn,m) − λI] = det

(
−λI A−1

n/2,mA1,2
n,m

A−1
n/2,mA2,1

n,m −λI

)
= 0

and

det[C−1
n,m(An,m − Cn,m) − λI] = det(−λI) det(A−1

n/2,mA2,1
n,mA−1

n/2,mA1,2
n,m − λI) = 0.

Therefore, when the eigenvalues of B−1
n,mAn,m are equal to 1 − λ, the eigenvalues of

C−1
n,mAn,m are given by 1−λ2. Using Theorem 2.4, we can find two positive numbers

α = (γ1/γ2)
2 and β = 1 such that the result holds.

3. Recursive computation of B−1
n,m and C−1

n,m. In the previous section, we
have shown that both Bn,m and Cn,m are good preconditioners for An,m. However,
the inverses of Bn,m and Cn,m involve the inverse of An/2,m. The computational cost
is still expensive. In this section, we present a recursive method to construct the
preconditioners Bn,m and Cn,m efficiently.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRECONDITIONERS FOR BLOCK-TOEPLITZ SYSTEMS 1109

We remark that the inverse of a Toeplitz matrix can be reconstructed by a low
number of columns. Gohberg and Semencul [13] and Trench [32] showed that if the
(1, 1)st entry of the inverse of a Toeplitz matrix is nonzero, then the first and last
columns of the inverse of the Toeplitz matrix are sufficient for this purpose. A nice
matrix representation of the inverse, well known as the Gohberg–Semencul formula,
was presented. In [16], an inversion formula was exhibited which works for every
nonsingular Toeplitz matrix and uses the solutions of two equations (the so-called
fundamental equations), where the right-hand side of one of them is a shifted column
of the Toeplitz matrix. Later Ben-Artzi and Shalom [2], Labahn and Shalom [19], Ng,
Rost, and Wen [23], and Heinig [15] studied the representation when the (1,1)st entry
of the inverse of a Toeplitz matrix is zero. In [24], Ng, Sun, and Jin used the matrix
representation of the inverse of a Toeplitz matrix to construct effective preconditioners
for Toeplitz matrices.

For BT matrices, Gohberg and Heinig [14] also extended the Gohberg–Semencul
formula to handle this case. It was shown that if An,m is nonsingular, then the
following equations are solvable:

(3.1) An,mU (n) = E(n) and An,mV (n) = F (n)

with

U (n) =

⎛⎜⎜⎜⎜⎝
U

(n)
1

U
(n)
2
...

U
(n)
n

⎞⎟⎟⎟⎟⎠ , V (n) =

⎛⎜⎜⎜⎜⎝
V

(n)
1

V
(n)
2
...

V
(n)
n

⎞⎟⎟⎟⎟⎠ , E(n) =

⎛⎜⎜⎜⎝
Im
0
...
0

⎞⎟⎟⎟⎠ , F (n) =

⎛⎜⎜⎜⎝
0
...
0
Im

⎞⎟⎟⎟⎠ .

Here U
(n)
j and V

(n)
j are m-by-m matrices and Im is the identity matrix. Assuming

that U
(n)
1 and V

(n)
n are nonsingular, the inverse of An,m can be expressed as follows:

(3.2) A−1
n,m = Ψn,mWn,mΨ∗

n,m − Φn,mZn,mΦ∗
n,m,

where Ψn,m and Φn,m are mn-by-mn lower triangular BT matrices given, respectively,
by

Ψn,m =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

U
(n)
1 0 · · · 0 0

U
(n)
2 U

(n)
1 0 0

... U
(n)
2 U

(n)
1 0

...

U
(n)
n−1

. . .
. . . 0

U
(n)
n U

(n)
n−1 · · · U

(n)
2 U

(n)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

Φn,m =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0

V
(n)
1 0 0 0
... V

(n)
1 0 0

...

V
(n)
n−2

. . .
. . . 0

V
(n)
n−1 V

(n)
n−2 · · · V

(n)
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1110 WAI-KI CHING, MICHAEL K. NG, AND YOU-WEI WEN

Moreover, Wn,m and Zn,m are block diagonal matrices:

Wn,m =

⎛⎜⎜⎜⎜⎝
(U

(n)
1)−1 0

(U
(n)
1)−1

. . .

0 (U
(n)
1)−1

⎞⎟⎟⎟⎟⎠ ,

Zn,m =

⎛⎜⎜⎜⎜⎝
(V

(n)
n)−1 0

(V
(n)
n)−1

. . .

0 (V
(n)
n)−1

⎞⎟⎟⎟⎟⎠ .

For the preconditioners B−1
n,m and C−1

n,m, the inverse of An/2,m can be represented
by the formula in (3.2). This formula can be obtained by solving the following two
linear systems:

An/2,mU (n/2) = E(n/2) and An/2,mV (n/2) = F (n/2).

These two systems can be solved efficiently by using the PCG method with Bn/2,m

or Cn/2,m as preconditioners. The inverse of An/4,m involved in the preconditioners
Bn/2,m and Cn/2,m can be recursively generated by using (3.2) until the size of the
linear system is sufficiently small. The procedures of recursive computation of Bn,m

and Cn,m are described as follows:
Procedure Input(An,m, n) Output(U (n), V (n))

If k ≤ N , then
solve two linear systems

Ak,mU (k) = E(k) and Ak,mV (k) = F (k)

exactly by direct methods;
else

compute U (k/2) and V (k/2) by calling the procedure with the input matrix
Ak/2,m and the integer k/2; construct A−1

k/2,m by using the output U (k/2)

and V (k/2) via the formula in (3.2);
solve the two linear systems

Ak,mU (k) = E(k) and Ak,mV (k) = F (k)

by using the PCG method with Bk,m (or Ck,m) as the preconditioner.
We remark that if each block of the BT matrix An,m is Hermitian, then we only

need to solve one linear system An,mU (n) = E(n) in order to represent the inverse of
the BT matrix. In this case, the solution V (n) can be obtained by using U (n):

V (n) =

⎛⎜⎜⎜⎜⎝
U

(n)
n

U
(n)
n−1
...

U
(n)
1

⎞⎟⎟⎟⎟⎠ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRECONDITIONERS FOR BLOCK-TOEPLITZ SYSTEMS 1111

3.1. Computational cost. The main computational cost of the method comes
from the matrix-vector multiplications An,mX, B−1

n,mX (or C−1
n,mX) in each PCG

iteration, where X is an mn-by-m vector. We note that An,mX can be computed in
2m 2n-length fast Fourier transforms (FFTs) by first embedding An,m into a 2mn-
by-2mn block-circulant matrix and then carrying out the multiplication by using the
decomposition of the block-circulant matrix. Letting Sn,m be the circulant matrix
with an m-by-m matrix block element, one can find a permutation matrix Pn,m such
that

Sn,m = (Si,j)m×m = P ∗
n,mWn,mPn,m

is a circulant-block matrix, where Si,j is an n-by-n circulant matrix. Let Si,j(:, 1)
denote the first column of the matrix Si,j ; it is known that Si,j can be diagonalized
into an n log n length FFT, i.e., Si,j = F ∗Λi,jF , where F and F ∗ are the Fourier
transform matrix and the inverse Fourier transform matrix, respectively, and Λi,j =
diag(F · Si,j(:, 1)). Thus we obtain

Sn,m = (I ⊗ F ∗)

⎛⎜⎜⎜⎝
Λ11 Λ11 · · · Λ1m

Λ21 Λ22 · · · Λ2m

...
...

...
...

Λm1 Λm2 · · · Λmm

⎞⎟⎟⎟⎠ (I ⊗ F)

= (I ⊗ F ∗)P ∗DP (I ⊗ F),

where D = diag(D1, D2, . . . , Dn) is a block diagonal matrix, and [Dk]ij = [Λij]kk,
i.e., the (i, j)th entry of Dk is equal to the (k, k)th entry of Λij . Therefore, the
block-circulant matrix-vector multiplication can be obtained by

Sn,mX = P (I ⊗ F ∗)P ∗DP (I ⊗ F)P ∗X.

We note that it requires O(m2n log n) operations to compute the block diagonal ma-
trix D, and that the block diagonal matrix-vector multiplication requires O(m3n)
operations. Thus the overall multiplication requires O(m2n log n + m3n). For the
preconditioner Bn,m or Cn,m, we need to compute matrix-vector products A−1

n/2,mY ,

where Y is an mn/2-by-m vector. According to (3.2), the inverse of a BT matrix can
be written as the product of lower-triangular BT matrices. Therefore, the matrix-
vector multiplication A−1

n/2,mY can be computed by using FFTs by embedding such

lower-triangular BT matrices into block-circulant matrices. Such matrix-vector mul-
tiplication requires O(m2n log n + m3n) operations.

Now we estimate the total cost of recursive computation for solving two linear
systems

An,mU (n) = E(n) and An,mV (n) = F (n).

For simplicity, we assume n = 2�. Suppose the number of iterations required for
convergence in solving the two mnj-by-mnj linear systems

Anj ,mU (nj) = E(nj) and Anj ,mV (nj) = F (nj), where nj = 2ν−j+1,

is given by cj for j = 1, . . . , L. We note that the smallest size of the system is equal
to N = n/2ν−L. Therefore the total cost of the recursive computations of Bn,m (or

Cn,m) is about
∑L

j=1 cjfj , where fj denotes the cost of each PCG iteration where the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1112 WAI-KI CHING, MICHAEL K. NG, AND YOU-WEI WEN

size of the system is nj . Since the cost of an nj-length FFT is roughly twice the cost of
an njm/2-length FFT, and the cost of each PCG iteration is O(m2nj log nj +m3nj)
operations, hence the total cost of the recursive computation is roughly bounded by
O(maxj{cj(m2n log n + m3n)}).

Next, we compute the operations required for the circulant preconditioners. For
the block-circulant matrix Sn,m, the solution of Sn,mZ = B can be obtained by

Z = S−1
n,mB = P (I ⊗ F ∗)P ∗D−1P (I ⊗ F)P ∗B.

In order to compute the inverse of D, O(m2n log n + m3n) operations are required.
Moreover, the matrix-vector multiplication requires O(m3n) operations, and thus
S−1
n,mB can be computed in O(m2n log n + m3n) operations, which is the same com-

plexity of our proposed method. In the next section, we show that our proposed
method is competitive with circulant preconditioners.

4. Numerical results. In this section, we test our proposed method. The initial
guess is the zero vector. The stopping criterion is

‖rq‖2/‖r0‖2 ≤ 1 × 10−7,

where rq is the residual vector at the qth iteration of the PCG method. We use
MATLAB 6.1 to conduct the numerical tests. We remark that our preconditioners
are constructed recursively. For instance, when we solve A256,mU (256) = E(256), the
preconditioners are constructed by solving A128,mU (128) = E(128) and A64,mU (64) =
E(64) using the PCG method with the stopping criterion being equal to 10−7 and
using the direct solver for A32,mU (32) = E(32). In all of the tests, the coarsest level is
set to be n = 32.

In the first test, we consider the following example of a generating function [28]:(
20 sin2(θ/2) |θ|5/2

|θ|5/2 20 sin2(θ/2)

)
.

Table 4.1 shows the corresponding numbers of iterations required for the conver-
gence using our proposed preconditioners B and C. As a comparison, the number
of iterations from using the preconditioner M studied in [28] is also listed. Our pro-
posed preconditioners are competitive with the preconditioner studied in [28]. We
also remark that the construction of our proposed preconditioners does not require
the knowledge of the underlying matrix generating function of BT matrices.

Table 4.1

Number of iterations required for convergence.

n B C M
128 9 4 10
256 9 5 10
512 10 5 10

In the second test, we consider the following four examples.
Example 1.

F3(θ) =

⎛⎝ 2θ4 + 1 |θ|3 θ4

|θ|3 3θ4 + 1 |θ|
θ4 |θ| 2θ4 + 1

⎞⎠ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRECONDITIONERS FOR BLOCK-TOEPLITZ SYSTEMS 1113

Table 4.2

Number of iterations required for convergence in Example 1.

n I B C S T K4 K6 K8

64 111 13 6 13 12 12 12 12
128 124 12 6 13 12 12 13 13
256 133 9 4 13 12 13 13 13
512 135 8 4 13 13 12 13 12
1024 138 5 2 13 13 13 13 13
2048 139 2 1 13 13 13 13 13
4096 140 2 1 13 13 13 13 13

Table 4.3

Number of iterations required for convergence in Example 2.

n I B C S T K4 K6 K8

64 114 12 6 11 11 11 12 12
128 172 12 6 12 12 11 12 12
256 256 12 6 12 13 11 12 13
512 371 13 6 12 13 12 13 13
1024 526 13 6 12 14 12 13 14
2048 740 13 6 12 15 12 13 14
4096 > 1000 13 7 12 15 12 12 14

Table 4.4

Number of iterations required for convergence in Example 3.

n I B C S T K4 K6 K8

64 165 9 4 10 23 13 14 16
128 354 9 5 10 30 12 13 15
256 742 10 5 11 40 12 12 13
512 > 1000 10 5 11 54 12 12 13
1024 > 1000 10 5 11 > 1000 12 12 13
2048 > 1000 10 5 11 > 1000 12 12 13
4096 > 1000 10 6 11 > 1000 13 13 15

Example 2.

F3(θ) =

⎛⎝ θ4 + 1 |θ|3 |θ|
|θ|3 2θ4 + 1 θ2

|θ| θ2 5|θ|

⎞⎠ .

Example 3.

F2(θ) =

(
8θ2 (sin θ)4

(sin θ)4 8θ2

)
.

Example 4.

F3(θ) =

⎛⎝ |θ| (sin θ)4 0
(sin θ)4 θ2 (sin θ)8

0 (sin θ)8 θ4

⎞⎠ .

These generating functions are Hermitian matrix-valued functions. Also the gen-
erated BT matrices are positive definite. In Example 1, the generated BT matrices
are well-conditioned. For Examples 2–4, the generating functions are singular at some
points and therefore the corresponding BT matrices are ill-conditioned.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1114 WAI-KI CHING, MICHAEL K. NG, AND YOU-WEI WEN

Table 4.5

Number of iterations required for convergence in Example 4.

n I B C S T K4 K6 K8

64 585 19 9 46 > 1000 22 > 1000 27
128 > 1000 20 10 > 1000 > 1000 > 1000 > 1000 > 1000
256 > 1000 24 11 > 1000 > 1000 > 1000 > 1000 > 1000
512 > 1000 30 13 > 1000 > 1000 > 1000 > 1000 > 1000
1024 > 1000 36 16 > 1000 > 1000 > 1000 > 1000 > 1000
2048 > 1000 39 25 > 1000 > 1000 > 1000 > 1000 > 1000
4096 > 1000 43 23 > 1000 > 1000 > 1000 > 1000 > 1000

In Tables 4.2–4.5, we give the number of iterations required for convergence by
using Bn,m and Cn,m as the preconditioners. Here we set the maximum number of
iterations to be 1000. If the method does not converge within 1000 iterations, we
specify “> 1000” in the tables. According to Tables 4.2–4.5, we see that the number
of iterations for the nonpreconditioned systems (the column “I”) increases when the
size n increases. However, the number of iterations for the preconditioned systems
(the columns “B” and “C”) decreases or almost remains constant when the size n
increases in Examples 1–3. The performance of Schur complement preconditioner C
is generally better than that of block diagonal preconditioner B. We also compare
our preconditioners with block-circulant preconditioners; the columns “S” and “T”
are the number of iterations required for the Strang and the T. Chan block-circulant
preconditioners, respectively. We note that the Strang block-circulant preconditioner
may not be positive definite for the ill-conditioned matrix. Indeed, there are sev-
eral negative eigenvalues of the Strang block-circulant preconditioners in Examples
3 and 4. Even when the Strang circulant preconditioned system converges, the so-
lution may not be correct. We also see from Tables 4.4 and 4.5 that the T. Chan
block-circulant preconditioner does not work.

Chan, Ng, and Yip [8, 9] have constructed “best” circulant preconditioners by
approximating the generating function with the convolution product that matches the
zeros of the generating function. They showed that these circulant preconditioners
are effective for ill-conditioned Toeplitz matrices. Here we also construct such “best”
block-circulant preconditioners (in the column “Ki” and i refers to the order of the
kernel that we used) and test their performance. We note from Tables 4.2–4.5 that
our proposed preconditioners perform quite well. For Example 4, the method with
“best” block-circulant preconditioners does not converge within 1000 iterations.

We remark that for the ill-conditioned systems, a small residual does not neces-
sarily imply an accurate solution. For instance, the systems in Example 4 are very
ill-conditioned. We check the accuracy of the solution1 computed by using the pro-
posed preconditioners and find that the relative errors increase from 10−11 (n = 64)
to 10−4 (n = 4096). However, we reiterate that even the other preconditioners do not
work.

Also we report the computational times required for convergence in Examples
1–4 in Tables 4.6–4.9, respectively. If the number of iterations is more than 1000, we
specify “∗∗” in the tables. We see that the computational times required by the block
diagonal preconditioner and the Schur complement preconditioner are less than those
of the block-circulant preconditioners, especially when n is large. We also note from
the tables that the performance of the Schur complement preconditioner is better

1We set the known solution and compute the corresponding right-hand side for the computation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRECONDITIONERS FOR BLOCK-TOEPLITZ SYSTEMS 1115

Table 4.6

Computational times required for convergence in Example 1.

n I B C S T K4 K6 K8

64 0.51 0.28 0.38 0.21 0.20 0.20 0.20 0.20
128 0.70 0.50 0.38 0.28 0.26 0.26 0.28 0.28
256 1.13 0.78 0.49 0.59 0.54 0.59 0.59 0.59
512 2.15 1.31 0.99 1.21 1.21 1.11 1.21 1.11
1024 4.72 2.19 0.99 3.05 3.05 3.05 3.05 3.05
2048 11.63 4.79 1.18 10.94 10.94 10.94 10.94 10.94
4096 29.04 5.23 3.21 27.37 27.37 27.37 27.37 27.37

Table 4.7

Computational times required for convergence in Example 2.

n I B C S T K4 K6 K8

64 0.52 0.26 0.21 0.18 0.18 0.18 0.20 0.20
128 0.97 0.50 0.38 0.26 0.26 0.24 0.26 0.26
256 2.18 1.04 0.73 0.54 0.59 0.50 0.54 0.60
512 5.92 2.13 1.49 1.11 1.21 1.11 1.20 1.21
1024 17.98 5.70 2.94 2.82 3.29 2.82 3.05 3.29
2048 61.94 11.64 7.08 10.10 12.63 10.10 10.94 11.78
4096 ** 34.02 22.50 25.27 31.58 25.27 25.27 29.48

Table 4.8

Computational times required for convergence in Example 3.

n I B C S T K4 K6 K8

64 0.75 0.20 0.14 0.16 0.38 0.21 0.23 0.26
128 1.99 0.38 0.32 0.22 0.65 0.26 0.28 0.33
256 6.04 0.87 0.61 0.50 1.81 0.54 0.54 0.59
512 ** 1.64 1.24 1.02 5.01 1.11 1.11 1.21
1024 ** 4.39 2.45 2.58 ** 2.82 2.82 3.05
2048 ** 8.95 5.90 9.25 ** 10.10 10.10 10.94
4096 ** 26.17 19.29 23.16 ** 27.37 27.37 31.58

Table 4.9

Computational times required for convergence in Example 4.

n I B C S T K4 K6 K8

64 2.67 0.41 0.31 0.75 ** 0.36 ** 0.44
128 ** 0.83 0.64 ** ** ** ** **
256 ** 2.08 1.34 ** ** ** ** **
512 ** 4.92 3.22 ** ** ** ** **
1024 ** 15.79 7.83 ** ** ** ** **
2048 ** 34.91 29.50 ** ** ** ** **
4096 ** 112.53 73.93 ** ** ** ** **

than that of the block diagonal preconditioner.
To illustrate the fast convergence of the proposed method, in Table 4.10, we

calculate the number of eigenvalues within the small interval for n = 128 in Examples
1–4. We find that the spectra of the preconditioned matrices C−1

n,mAn,m and B−1
n,mAn,m

are closer to 1 than those of circulant preconditioners and no preconditioner.
Finally, we report that the numbers of iterations are about the same even when

the stopping criteria τ of the PCG method at each level in the recursive calculation
of the proposed preconditioners is 1× 10−3, 1× 10−4, and 1× 10−7 for the proposed
preconditioners.

Next, we consider an application of our algorithm to BT systems arising from

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1116 WAI-KI CHING, MICHAEL K. NG, AND YOU-WEI WEN

Table 4.10

The percentages of the number of eigenvalues within the interval of [0.99, 1.01] for n = 128.

I B C S T K4 K6 K8

Example 1 2.60% 94.27% 98.44% 77.34% 30.99% 93.23% 87.76% 77.08%
Example 2 4.43% 94.79% 98.44% 84.90% 46.62% 94.27% 94.01% 85.16%
Example 3 0.00% 95.31% 99.22% 89.84% 56.64% 84.38% 81.64% 78.91%
Example 4 0.52% 93.23% 98.18% 81.77% 51.30% 79.95% 73.44% 70.05%

multichannel least squares filtering. Another application to queueing networks can be
found in the full report at ftp://ftp.math.hkbu.edu.hk/pub/techreport/math431.pdf.

Application I: Multichannel least squares filtering is a data processing method
that makes use of the signals from each of the m channels. We represent this mul-
tichannel data by xt, where xt is a column vector whose elements are the signals
from each channel. Since we are interested in digital processing methods, we sup-
pose that the signals are sampled at discrete, equally spaced time points which are
represented by the time index t. Without loss of generality, we require that t take
on successive integer values. If we let xit represents the signal coming from the ith

channel (i = 1, 2, . . . ,m), the multichannel signal can be written as xt =

⎛⎜⎜⎜⎝
x1,t

x2,t

...
xm,t

⎞⎟⎟⎟⎠.

The filter is represented by the coefficients S1, S2, . . . , Sn, where each coefficient Sk

(k = 1, 2, . . . , n) is an n-by-m matrix. The multichannel signal xt received by the
array system represents the input to the filter and the resulting output of the filter

is a multichannel signal, which we denote by the column vector yt =

⎛⎜⎜⎜⎝
y1,t

y2,t

...
ym,t

⎞⎟⎟⎟⎠.

The relationship between input xt and output yt is given by the convolution formula
yt = S1xt + S2xt−1 + · · · + Snxt−n+1. The determination of the filter coefficients is

based on the concept of a desired output denoted by a column vector zt =

⎛⎜⎜⎜⎝
z1,t

z2,t

...
zm,t

⎞⎟⎟⎟⎠.

On each channel (i = 1, 2, . . . ,m), there will be an error between the desired output zt
and the actual output yt. The mean square value of this error is given by E [(zt−yt)

2].
The sum of the mean square errors for all the channels is

∑m
i=1 E [(zt − yt)

2]. The
least squares determination of the filter coefficients requires that this sum be mini-
mum. This minimization leads to a set of linear equations

(4.1)

⎛⎜⎜⎜⎝
R0 R1 · · · Rn−1

R1 R0 · · · Rn−2

...
...

. . .
...

Rn−1 Rn−2 · · · R0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

S1

S2

...
Sn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
G1

G2

...
Gn

⎞⎟⎟⎟⎠ ,

where

Rj = E [xtx
∗
t−j] and Gj = E [ztx

∗
t−j+1].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRECONDITIONERS FOR BLOCK-TOEPLITZ SYSTEMS 1117

Here Rj is an m-by-m matrix and is the autocorrelation coefficients of the input signal
xt, and Gj is an n-by-m matrix and is the cross-correlation coefficients between the
desired output zt and the input signal xt.

.

.

.

x

x

x

x1

2

128

x

. . . .

. . . .

. . . .

.

x 256

130

129 x

x

x

257

258

384

.

.

.

.

.

Fig. 4.1. Color image and data vectors.

In the test, a 128-by-128 color image is used to generate the data points. We
consider the pixel value of the color image to be xt (t = 1, 2, . . . , 1282); see Figure 4.1.
We remark that color can be regarded as a set of three images in their primary color
components: red, green, and blue. In the least squares filtering, there are three
channels, i.e., m = 3. Our task is to generate the multichannel least squares filters
such that the sum of the mean square errors for all the channels

m∑
i=1

E{xt+1 − [S1xt + S2xt−1 + · · · + Snxt−n+1]
2}

is minimum. Such least squares filters have been commonly used in color image
processing for coding and enhancement [20]. Table 4.11 shows the number of iterations
required for convergence. Table 4.12 shows the number of iterations required for
convergence when more synthetic multichannel data sets are generated to test. The
stopping criteria are the same as those for Tables 4.2–4.5. Notice that the generating
function of the BT matrices are unknown in this case. However, the construction of
the proposed preconditioners only requires the entries of An,m and does not require
the explicit knowledge of the generating function Fm(θ) of An,m. We find that the
generated BT matrices are very ill-conditioned. Therefore, the number of iterations
required for convergence without preconditioning is very large, but the performance
of the preconditioners Bn,m and Cn,m is very good. We also check the accuracy of the
solution2 computed by using the proposed preconditioners and find that the relative
errors are about 10−9. These results show that our proposed preconditioner performs
quite well.

We also generate more synthetic multichannel data sets to test the performance of
our proposed method for larger m. Table 4.12 shows the number of iterations required
for convergence. The stopping criteria are the same as those for Tables 4.2–4.5. The
results show that our proposed preconditioner performs quite well.

2We set the known solution and compute the corresponding right-hand side for the computation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1118 WAI-KI CHING, MICHAEL K. NG, AND YOU-WEI WEN

Table 4.11

Number of iterations required for convergence.

n m I B C S T K4 K6 K8

16 3 166 18 9 168 22 36 39 50
32 3 725 26 13 >1000 21 32 36 43
64 3 725 26 13 >1000 15 29 31 37
128 3 >1000 60 30 >1000 42 >1000 >1000 >1000
256 3 >1000 85 40 > 1000 > 1000 >1000 >1000 >1000
512 3 > 1000 95 44 > 1000 > 1000 >1000 >1000 >1000
1024 3 > 1000 101 51 > 1000 > 1000 >1000 >1000 >1000

Table 4.12

Number of iterations required for convergence.

n m I B C S T K4 K6 K8

16 6 473 26 13 503 23 45 52 66
32 6 958 30 15 > 1000 28 42 43 56
64 6 > 1000 39 18 > 1000 28 39 41 50
128 6 > 1000 50 25 > 1000 44 > 1000 > 1000 > 1000
16 9 731 38 18 945 31 58 62 81
32 9 > 1000 42 21 > 1000 35 55 58 72
64 9 > 1000 53 25 > 1000 35 59 65 75
128 9 > 1000 70 35 > 1000 68 > 1000 > 1000 > 1000
16 12 989 44 22 > 1000 36 65 71 94
32 12 > 1000 50 25 > 1000 40 63 66 87
64 12 > 1000 64 31 > 1000 42 75 81 > 1000
128 12 > 1000 103 47 > 1000 > 1000 > 1000 > 1000 > 1000

5. Concluding remarks. In this paper, we proposed block diagonal and Schur
complement preconditioners for BT matrices. We have proved that for some BT co-
efficient matrices, the spectra of the preconditioned matrices are uniformly bounded
except for a fixed number of outliers, where the number of outliers depends on m.
Therefore the conjugate gradient method will converge very quickly when applied to
solving the preconditioned systems, especially when m is small. Our experimental re-
sults show that the Schur-complement preconditioner is always better than the block
diagonal preconditioner. Applications to BT systems arising from least squares filter-
ing problems and queueing networks were discussed. The method can also be applied
to solve other nonsymmetric problems that arise in other queueing systems [11].

Acknowledgments. The authors are very much indebted to Prof. Per Christian
Hansen and the referees for their valuable comments and suggestions which greatly
improved this paper.

REFERENCES

[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.
[2] A. Ben-Artzi and T. Shalom, On inversion of Toeplitz and close to Toeplitz matrices, Linear

Algebra Appl., 75 (1986), pp. 173–192.
[3] F. Di Benedetto and S. Serra Capizzano, A unifying approach to abstract matrix algebra

preconditioning, Numer. Math., 82 (1999), pp. 57–90.
[4] R. Chan, Circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Matrix Anal.

Appl., 10 (1989), pp. 542–550.
[5] R. Chan, Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions,

IMA J. Numer. Anal., 11 (1991), pp. 333–345.
[6] R. Chan, Q. Chang, and H.-N. Sun, Multigrid method for ill-conditioned symmetric Toeplitz

systems, SIAM J. Sci. Comput., 19 (1998), pp. 516–529.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRECONDITIONERS FOR BLOCK-TOEPLITZ SYSTEMS 1119

[7] R. Chan and M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996),
pp. 427–482.

[8] R. Chan, M. Ng, and A. Yip, The best circulant preconditioners for Hermitian Toeplitz
systems II: The multiple-zero case, Numer. Math., 92 (2002), pp. 17–40.

[9] R. Chan, A. Yip, and M. Ng, The best circulant preconditioners for Hermitian Toeplitz
systems, SIAM J. Numer. Anal., 38 (2001), pp. 876–896.

[10] T. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Com-
put., 9 (1988), pp. 766–771.

[11] W. Ching, Iterative Methods for Queuing and Manufacturing Systems, Springer Monographs
in Mathematics 1, Springer-Verlag, London, 2001.

[12] G. Fiorentino and S. Serra, Multigrid methods for symmetric positive definite block Toeplitz
matrices with nonnegative generating functions, SIAM J. Sci. Comput., 17 (1996), pp.
1068–1081.

[13] I. Gohberg and A. Semencul, The inversion of finite Toeplitz matrices and their continuous
analogs, Mat. Issled., 7 (1972), pp. 201–223.

[14] I. Gohberg and G. Heinig, Inversion of finite-section Toeplitz matrices consisting of elements
of noncommutative algebra, Rev. Roumaine Math. Pures Appl., 19 (1974), pp. 623–663.

[15] G. Heinig, On the reconstruction of Toeplitz matrix inverses from columns, Linear Algebra
Appl., 350 (2002), pp. 199–212.

[16] G. Heinig and L. Rost, Algebraic Methods for Toeplitz-Like Matrices and Operators, Birk-
häuser Verlag, Basel, 1984.

[17] T. Huckle, Circulant and skewcirculant matrices for solving Toeplitz matrix problems, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 767–777.

[18] X. Jin, Band Toeplitz preconditioners for block Toeplitz systems, J. Comput. Appl. Math., 70
(1996), pp. 225–230.

[19] G. Labahn and T. Shalom, Inversion of Toeplitz matrices with only two standard equations,
Linear Algebra Appl., 175 (1992), pp. 143–158.

[20] J. Lim, Two-Dimensional Signal and Image Processing, Prentice-Hall, Englewood Cliffs, NJ,
1990.

[21] M. Miranda and P. Tilli, Asymptotic spectra of Hermitian block Toeplitz matrices and pre-
conditioning results, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 867–881.

[22] M.K. Ng, Band preconditioners for block-Toeplitz–Toeplitz-block systems, Linear Algebra
Appl., 259 (1997), pp. 307–327.

[23] M.K. Ng, K. Rost, and Y.-W. Wen, On inversion of Toeplitz matrices, Linear Algebra Appl.,
348 (2002), pp. 145–151.

[24] M.K. Ng, H. Sun, and X. Jin, Recursive-based PCG methods for Toeplitz systems with non-
negative generating functions, SIAM J. Sci. Comput., 24 (2003), pp. 1507–1529.

[25] D. Potts and G. Steidl, Preconditioners for ill-conditioned Toeplitz systems constructed from
positive kernels, SIAM J. Sci. Comput., 22 (2000), pp. 1741–1761.

[26] M. Priestley, Spectral Analysis and Time Series, Vol. 1, Academic Press, London–New York,
1981.

[27] S. Serra, Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems,
BIT, 34 (1994), pp. 579–594.

[28] S. Serra, Spectral and computational analysis of block Toeplitz matrices having nonnegative
definite matrix-valued generating functions, BIT, 39 (1999), pp. 152–175.

[29] S. Serra, Asymptotic results on the spectra of block Toeplitz preconditioned matrices, SIAM
J. Matrix Anal. Appl., 20 (1998), pp. 31–44.

[30] G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74 (1986), pp.
171–176.

[31] H.-W. Sun, X. Jin, and Q. Chang, Convergence of the multigrid method for ill-conditioned
block Toeplitz systems, BIT, 41 (2001), pp. 179–190.

[32] W. Trench, An algorithm for the inversion of finite Toeplitz matrices, J. Soc. Indust. Appl.
Math., 12 (1964), pp. 515–522.

[33] E. Tyrtyshnikov, Optimal and superoptimal circulant preconditioners, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 459–473.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1120–1146

MATRIX NEARNESS PROBLEMS WITH BREGMAN
DIVERGENCES∗

INDERJIT S. DHILLON† AND JOEL A. TROPP‡

Abstract. This paper discusses a new class of matrix nearness problems that measure approx-
imation error using a directed distance measure called a Bregman divergence. Bregman divergences
offer an important generalization of the squared Frobenius norm and relative entropy, and they all
share fundamental geometric properties. In addition, these divergences are intimately connected
with exponential families of probability distributions. Therefore, it is natural to study matrix ap-
proximation problems with respect to Bregman divergences. This article proposes a framework for
studying these problems, discusses some specific matrix nearness problems, and provides algorithms
for solving them numerically. These algorithms apply to many classical and novel problems, and
they admit a striking geometric interpretation.

Key words. matrix nearness problems, Bregman divergences, squared Euclidean distance,
relative entropy, alternating projections

AMS subject classifications. 15A99, 65F30, 90C25

DOI. 10.1137/060649021

1. Introduction. A recurring problem in matrix theory is to find a structured
matrix that best approximates a given matrix with respect to some distance measure.
For example, it may be known a priori that a certain constraint ought to hold, and
yet it fails on account of measurement errors or numerical roundoff. An attractive
remedy is to replace the tainted matrix by the nearest matrix that does satisfy the
constraint. Matrix approximation problems typically measure the distance between
matrices with a norm. The Frobenius and spectral norms are pervasive choices because
they are so analytically tractable. Nevertheless, these norms are not always defensible
in applications, where it may be wiser to tailor the distance measure to the context.

In this paper, we discuss a new class of matrix nearness problems that use a
directed distance measure called a Bregman divergence. Given a differentiable, strictly
convex function ϕ that maps matrices to the extended real numbers, we define the
Bregman divergence of the matrix X from the matrix Y as

Dϕ(X;Y)
def
= ϕ(X) − ϕ(Y) − 〈∇ϕ(Y),X − Y 〉 ,

where the inner product 〈X,Y 〉 = Re TrXY ∗. The two principal examples of Breg-
man divergences deserve immediate mention. When ϕ(X) = 1

2‖X‖2
F , the associated

divergence is the squared Frobenius norm 1
2‖X − Y ‖2

F . When ϕ is the negative
Shannon entropy, we obtain the Kullback–Leibler divergence, which is also known as
relative entropy. But these two cases are just the tip of the iceberg.

Bregman divergences are well suited for nearness problems because they share
many geometric properties with the squared Frobenius norm. They also exhibit an

∗Received by the editors January 4, 2006; accepted for publication (in revised form) by N. J.
Higham March 20, 2007; published electronically November 21, 2007.

http://www.siam.org/journals/simax/29-4/64902.html
†Department of Computer Sciences, University of Texas, Austin, TX 78712-1188 (inderjit@

cs.utexas.edu). This author’s research was supported by NSF grant CCF-0431257, NSF career award
ACI-0093404, and NSF-ITR award IIS-0325116.

‡Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA
91125-5000 (jtropp@acm.caltech.edu). This author’s research was supported by an NSF graduate
fellowship.

1120

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1121

intimate relationship with exponential families of probability distributions, which rec-
ommends them for solving problems that arise in the statistical analysis of data. We
will elaborate on these connections in what follows.

Let us begin with a formal statement of the Bregman nearness problem. Suppose
that Dϕ is a Bregman divergence, and suppose that {Ck} is a finite collection of
closed, convex sets whose intersection is nonempty. Given an input matrix Y , our
goal is to produce a matrix X in the intersection that diverges the least from Y , i.e.,
to solve

(1.1) min
X

Dϕ(X;Y) subject to X ∈
⋂

k
Ck.

Under mild conditions, the solution to (1.1) is unique, and it has a variational char-
acterization analogous with the characterization of an orthogonal projection onto a
convex set [10]. Minimization with respect to the second argument of the divergence
enjoys rather less structure, so we refer the reader to [5] for more details. A major
advantage of our problem formulation is that it admits a natural algorithm. If one
possesses a method for minimizing the divergence over each of the constraint sets,
then it is possible to solve (1.1) by minimizing over each constraint in turn while in-
troducing a series of simple corrections. Several classical algorithms from the matrix
literature fit into this geometric framework, but it also provides an approach to many
novel problems.

We view this paper as an expository work with two central goals. First, it in-
troduces Bregman divergences to the matrix theory literature, and it argues that
they provide an important and natural class of distance measures for matrix nearness
problems. Moreover, the article unifies a large class of problems into a geometrical
framework, and it shows that these problems can be solved with a set of classical
algorithms. Second, the paper provides specific examples of nearness problems with
respect to Bregman divergences. One example is the familiar problem of producing
the nearest contingency table with fixed marginals. Novel examples include comput-
ing matrix approximations using the minimum Bregman information (MBI) principle,
identifying the metric graph nearest to an arbitrary graph, and determining the near-
est correlation and kernel matrix with respect to matrix divergences, such as the von
Neumann divergence. These applications show how Bregman divergences can be used
to preserve and exploit additional structure that appears in a problem.

We must warn the reader that, in spite of the availability of some general purpose
algorithms for working with Bregman divergences, they may require a substantial
amount of computational effort. One basic reason is that nearness problems with
respect to the Frobenius norm usually remain within the domain of linear algebra,
which is a developed technology. Bregman divergences, on the other hand, transport
us to the world of convex optimization, which is a rougher frontier. As outlined in
section 8, there remain many unresolved research issues on the computational aspects
of Bregman divergences.

Here is a brief outline of the article. Section 2 introduces Bregman divergences and
Bregman projections along with their connection to exponential families of probability
distributions. Matrix Bregman divergences that depend on the spectral properties
of a matrix are covered in subsection 2.6. Section 3 discusses numerical methods
for the basic problem of minimizing a Bregman divergence over a hyperplane. In
section 4, we develop the successive projection algorithm for solving the Bregman
nearness problem subject to affine constraints. Section 5 gives several examples of
these problems: finding the nearest contingency table with fixed marginals, computing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1122 INDERJIT S. DHILLON AND JOEL A. TROPP

matrix approximations for data analysis, and determining the nearest correlation
matrix with respect to the von Neumann divergence. Section 6 presents the successive
projection–correction algorithm for solving the Bregman nearness problem subject to
a polyhedral constraint. In section 7 we discuss two matrix nearness problems with
nonaffine constraints: finding the nearest metric graph and learning a kernel matrix
for data mining and machine learning applications.

2. Bregman divergences and Bregman projections. This section develops
the directed distance functions that were first studied by Bregman [8]. Our primary
source is the superb article of Bauschke and Borwein [4], which studies a subclass
of Bregman divergences that exhibits many desirable properties in connection with
nearness problems like (1.1).

2.1. Convex analysis. The literature on Bregman divergences involves a sig-
nificant amount of convex analysis. Some standard references for this material are
[35, 20]. We review some of these ideas in an effort to make this article accessible to
readers who are less familiar with this field.

We will work in a finite-dimensional, real inner-product space X . The real-linear
inner product is denoted by 〈·, ·〉 and the induced norm by ‖·‖2. In general, the
elements of X will be expressed with lowercase bold italic letters such as x and y.
We will switch to capitals, such as X and Y , when it is important to view the elements
of X as matrices.

A convex set is a subset C of X that exhibits the property

sx + (1 − s)y ∈ C for all s ∈ (0, 1) and x,y ∈ C.

In words, the line segment connecting each pair of points in a convex set falls within
the set. The relative interior of a convex set, abbreviated ri, is the interior of that
set considered as a subset of the lowest-dimensional affine space that contains it.

In convex analysis, functions are defined on all of X , and they take values in the
extended real numbers, R ∪ {±∞}. The (effective) domain of a function f is the set

dom f
def
= {x ∈ X : f(x) < +∞}.

A function f is convex if its domain is convex and it verifies the inequality

f(sx + (1 − s)y) ≤ s f(x) + (1 − s) f(y) for all s ∈ (0, 1) and x,y ∈ dom f .

If the inequality is strict, then f is strictly convex. In words, the chord connecting
each pair of points on the graph of a (strictly) convex function lies (strictly) above the
graph. A convex function is proper if it takes at least one finite value and never takes
the value −∞. A convex function f is closed if its lower level set {x : f(x) ≤ α} is
closed for each real α. In particular, a convex function is closed whenever its domain
is closed (but not conversely).

For completeness, we also introduce some technical definitions that the casual
reader may prefer to glide through. A proper convex function f is called essentially
smooth if it is everywhere differentiable on the (nonempty) interior of its domain and
if ‖∇f(xt)‖ tends to infinity for every sequence {xt} from ri(dom f) that converges to
a point on the boundary of dom f . Roughly speaking, an essentially smooth function
cannot be extended to a convex function with a larger domain. The function f(x) =
− log(x) with domain (0,+∞) is an example of an essentially smooth function. In
what follows, we will focus on convex functions of Legendre type. A Legendre function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1123

is a closed, proper, convex function that is essentially smooth and also strictly convex
on the relative interior of its domain.

Every convex function has a dual representation in terms of its supporting hyper-
planes. This idea is formalized in the Fenchel conjugate, which is defined as

f∗(θ)
def
= supx

{
〈x,θ〉 − f(x)

}
.

No confusion should arise from our usage of the symbol ∗ for complex-conjugate
transposition as well as Fenchel conjugation. The following facts are valuable. The
conjugate of a convex function is always closed and convex. If f is a closed, convex
function, then (f∗)∗ = f . A convex function has Legendre type if and only if its
conjugate has Legendre type.

Finally, we say that a convex function f is cofinite when

lim
ξ→∞

f(ξ x)/ξ = +∞ for all nonzero x in X .

This definition means that a cofinite function grows superlinearly in every direction.
For example, the function ‖·‖2

2 is cofinite, but the function exp(·) is not. It can be
shown that a closed, proper, convex function f is cofinite if and only if dom f∗ = X .

2.2. Divergences. Suppose that ϕ is a convex function of Legendre type. From
every such seed function, we may construct a Bregman divergence1

Dϕ : domϕ× ri(domϕ) → [0,+∞)

via the rule

Dϕ(x;y)
def
= ϕ(x) − ϕ(y) − 〈∇ϕ(y),x− y〉 .

Geometrically, the divergence calculates how much the supporting hyperplane to ϕ at
y underestimates the value of ϕ(x). For an illustration, see Figure 2.1. A Bregman
divergence equals zero whenever x = y, and it is positive otherwise. It is strictly
convex in its first argument, and it is jointly continuous in both arguments.

As a first example, consider the seed function ϕ(x) = 1
2 ‖x‖

2
2, which is a Legendre

function on all of X . The associated divergence is

Dϕ(x;y) = 1
2 ‖x− y‖2

2 .

We will refer to this function as the Euclidean divergence. Observe that it is symmetric
in its two arguments, but it does not satisfy the triangle inequality.

Another basic example arises from the negative Shannon entropy,

ϕ(x) =
∑

n
xn log xn − xn,

where we place the convention that 0 log 0 = 0. This entropy is a Legendre function
on the nonnegative orthant, and it yields the divergence

(2.1) Dϕ(x;y) =
∑

n

[
xn log

xn

yn
− xn + yn

]
,

1It is also possible to define Bregman divergences with respect to any differentiable, strictly
convex function. These divergences are not necessarily well behaved.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1124 INDERJIT S. DHILLON AND JOEL A. TROPP

y x

ϕ(z)= 1
2 zT z

h(z)

Dϕ(x,y)= 1
2‖x−y‖2

Fig. 2.1. An example of a Bregman divergence is the squared Euclidean distance. The Bregman
divergence Dϕ(x; y) calculates how much the supporting hyperplane to ϕ at y underestimates the
value of ϕ(x).

which is variously called the relative entropy, the information divergence, or the gen-
eralized Kullback–Leibler divergence. This divergence is not symmetric, and it does
not satisfy the triangle inequality.

Bregman divergences are often referred to as Bregman distances, but this termi-
nology is misleading. A Bregman divergence should not be viewed as a generalization
of a metric but rather as a generalization of the preceding two examples. Like a met-
ric, every Bregman divergence is positive except when its arguments coincide. On the
other hand, divergences do not generally satisfy the triangle inequality, and they are
symmetric only when the seed function ϕ is quadratic. In compensation, divergences
exhibit other structural properties. For every three points in the interior of domϕ,
we have the relation

Dϕ(x;z) = Dϕ(x;y) + Dϕ(y;z) − 〈∇ϕ(z) −∇ϕ(y),x− y〉 .

When Dϕ is the Euclidean divergence, one may identify this formula as the law of
cosines. Later, we will also encounter a Pythagorean theorem.

We also note another expression for the divergence, which emphasizes that it is a
sort of locally quadratic distance measure,

Dϕ(x;y) = (x− y)∗
{
∇2ϕ(ξ)

}
(x− y),

where ξ is an unknown vector that depends on x and y. This formula can be obtained
from the Taylor expansion of the seed function with an exact remainder term.

2.3. Exponential families. Suppose that ψ is a Legendre function. A (full)
regular exponential family is a parameterized family of probability distributions on
X with density function (with respect to the Lebesgue measure on X) of the form

pψ(x |θ) = exp{〈x,θ〉 − ψ(θ) − h(x)},

where the parameter θ is drawn from the open set domψ [3]. The function ψ is called
the cumulant function of the exponential family, and it completely determines the
function h. The expectation of the distribution pψ(· |θ) is the vector

μ(θ)
def
=

∫
X

x pψ(x |θ) dx,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1125

where dx denotes the Lebesgue measure on X . Many common probability distribu-
tions belong to exponential families. Prominent examples include Gaussian, Poisson,
Bernoulli, and gamma distributions.

It has recently been established that there is a unique Bregman divergence that
corresponds to every regular exponential family.

Theorem 1 (Banerjee et al. [2]). Suppose that ϕ and ψ are conjugate Legendre
functions. Let Dϕ be the Bregman divergence associated with ϕ, and let pψ(· |θ) be a
member of the regular exponential family with cumulant function ψ. Then

pψ(x |θ) = exp{−Dϕ(x;μ(θ))} gϕ(x),

where gϕ is a function uniquely determined by ϕ.
The spherical Gaussian distribution provides an especially interesting example of

this relationship [2]. Suppose that μ is an arbitrary vector in X , and let σ2 be a fixed
positive number. The spherical Gaussian distributions with mean μ and variance
σ2 form an exponential family with parameter θ = μ/σ2 and cumulant function

ψ(θ) = σ2

2 ‖θ‖2
2. The Fenchel conjugate of the cumulant function is ϕ(x) = 1

2σ2 ‖x‖2
2,

and so the Bregman divergence that appears in the bijection theorem is

Dϕ(x;μ) =
1

2σ2
‖x− μ‖2

2 .

We see that the density of the distribution at a point x depends essentially on the
Bregman divergence of x from the mean vector μ. This observation reinforces the in-
tuition that the squared Euclidean norm enjoys a profound relationship with Gaussian
random variables.

2.4. Bregman projections. Suppose that ϕ is a convex function of Legendre
type, and let C be a closed, convex set that intersects ri(domϕ). Given a point y
from ri(domϕ), we may pose the minimization problem

(2.2) min
x

Dϕ(x;y) subject to x ∈ C ∩ ri(domϕ).

Since Dϕ(· ;y) is strictly convex, it follows from a standard argument that there exists
at most one minimizer. It can be shown that, when ϕ is a Legendre function, there
exists at least one minimizer [4, Theorem 3.12]. Therefore, the problem (2.2) has a
single solution, which is called the Bregman projection of y onto C with respect to
the divergence Dϕ. Denote this solution by PC(y), and observe that we have defined
a map

PC : ri(domϕ) → C ∩ ri(domϕ).

It is evident that PC acts as the identity on C ∩ ri(domϕ), and it can be shown that
PC is continuous.

There is also a variational characterization of the Bregman projection of a point
y from ri(domϕ) onto the set C,

(2.3) Dϕ(x;y) ≥ Dϕ(x;PC(y)) + Dϕ(PC(y);y) for every x ∈ C ∩ domϕ.

Conversely, suppose we replace PC(y) with an arbitrary point z from C ∩ ri(domϕ)
that verifies the inequality. Then z must indeed be the Bregman projection of y onto

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1126 INDERJIT S. DHILLON AND JOEL A. TROPP

C. When the constraint C is an affine space (i.e., a translated subspace), then the
Bregman projection of y onto C has a formally stronger characterization,

(2.4) Dϕ(x;y) = Dϕ(x;PC(y)) + Dϕ(PC(y);y) for every x ∈ C ∩ domϕ.

When the Bregman divergence is the Euclidean divergence, formula (2.3) reduces to
the criterion for identifying the orthogonal projection onto a convex set [14, Chap-
ter 4], while formula (2.4) is usually referred to as the Pythagorean theorem. These
facts justify the assertion that Bregman projections generalize orthogonal projections.

When the constraint set C and the Bregman divergence are simple enough, it may
be possible to determine the Bregman projection onto C analytically. For example,
let us define the hyperplane C = {x : 〈a,x〉 = α}. When ‖a‖2 = 1, the projection of
y onto C with respect to the Euclidean divergence is

(2.5) PC(y) = y − (〈a,y〉 − α)a.

As a second example, suppose that C contains a strictly positive vector and that y is
strictly positive. Using Lagrange multipliers, we check that the projection of y onto
C with respect to the relative entropy has components

(2.6) (PC(y))n = yn exp{ξ an}, where ξ is chosen so that PC(y) ∈ C.

In the case when all the components of a are identical (to one, without loss of gener-
ality), then ξ = logα− log

∑
n yn.

It is uncommon that a Bregman projection can be explicitly determined. In sec-
tion 3, we describe numerical methods for computing the Bregman projection onto
a hyperplane, which is the foundation for producing Bregman projections onto more
complicated sets. For another example of a projection that can be computed analyt-
ically, turn to the end of subsection 3.3.

2.5. A cornucopia of divergences. In this subsection, we will present some
important Bregman divergences. The separable divergences form the most fundamen-
tal class. A separable divergence arises from a seed function of the form

ϕ(x) =
∑

n
wn ϕn(xn) for positive weights wn.

If each ϕn is Legendre, then the weighted sum is also Legendre. In the most common
situation, the weights are constant and all the ϕn are identical. In Table 2.1 we
list some important Legendre functions on R that may be used to build separable
divergences. These examples are adapted from [4] and [2]. Several of the divergences
in Table 2.1 have names. We have already discussed the Euclidean divergence and
the relative entropy. The bit entropy leads to a type of logistic loss, and the Burg
entropy leads to the Itakura–Saito divergence.

Many of these univariate divergences are connected with well-known exponential
families of probability distributions on R. See Table 2.2 for some key examples drawn
from [2].

One fundamental divergence is genuinely multidimensional. Suppose that Q is a
positive-definite operator that acts on X . We may construct a quadratic divergence
on X from the seed function ϕ(x) = 1

2 〈Qx,x〉, resulting in

Dϕ(x;y) = 1
2 〈Q (x− y),x− y〉 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1127

T
a
b
l
e

2
.
1

C
o
m

m
o
n

se
ed

fu
n
ct

io
n
s

a
n
d

th
e

co
rr

es
po

n
d
in

g
d
iv

er
ge

n
ce

s.

F
u
n
ct

io
n

n
a
m

e
ϕ
(x

)
d
o
m

ϕ
D

ϕ
(x

;y
)

S
q
u
a
re

d
n
o
rm

1 2
x
2

(−
∞

,+
∞

)
1 2
(x

−
y
)2

S
h
a
n
n
o
n

en
tr

o
p
y

x
lo

g
x
−

x
[0
,+

∞
)

x
lo

g
x y
−

x
+

y

B
it

en
tr

o
p
y

x
lo

g
x

+
(1

−
x
)
lo

g
(1

−
x
)

[0
,1

]
x

lo
g

x y
+

(1
−

x
)
lo

g
1
−
x

1
−
y

B
u
rg

en
tr

o
p
y

−
lo

g
x

(0
,+

∞
)

x y
−

lo
g

x y
−

1

H
el

li
n
g
er

−
√

1
−

x
2

[−
1
,1

]
(1

−
x
y
)(

1
−

y
2
)−

1
/
2
−

(1
−

x
2
)1

/
2

� p
q
u
a
si

-n
o
rm

−
x
p

(0
<

p
<

1
)

[0
,+

∞
)

−
x
p

+
p
x
y
p
−

1
−

(p
−

1
)
y
p

� p
n
o
rm

|x
|p

(1
<

p
<

∞
)

(−
∞

,+
∞

)
|x
|p

−
p
x

sg
n
y
|y
|p

−
1

+
(p

−
1
)
|y
|p

E
x
p
o
n
en

ti
a
l

ex
p
x

(−
∞

,+
∞

)
ex

p
x
−

(x
−

y
+

1
)
ex

p
y

In
v
er

se
1
/
x

(0
,+

∞
)

1
/
x

+
x
/
y
2
−

2
/
y

T
a
b
l
e

2
.
2

C
o
m

m
o
n

ex
po

n
en

ti
a
l
fa

m
il
ie

s
a
n
d

th
e

co
rr

es
po

n
d
in

g
d
iv

er
ge

n
ce

s.

E
x
p
o
n
en

ti
a
l
fa

m
il
y

ψ
(θ

)
d
o
m

ψ
μ
(θ

)
ϕ
(x

)
D

iv
er

g
en

ce

G
a
u
ss

ia
n

(σ
2

fi
x
ed

)
1 2
σ

2
θ
2

(−
∞

,+
∞

)
σ

2
θ

1
2
σ
2
x
2

E
u
cl

id
ea

n

P
o
is

so
n

ex
p
θ

(−
∞

,+
∞

)
ex

p
θ

x
lo

g
x
−

x
R

el
a
ti
v
e

en
tr

o
p
y

B
er

n
o
u
ll
i

lo
g
(1

+
ex

p
θ
)

(−
∞

,+
∞

)
e
x
p
θ

1
+

e
x
p
θ

x
lo

g
x

+
(1

−
x
)
lo

g
(1

−
x
)

L
o
g
is

ti
c

lo
ss

G
a
m

m
a

(α
fi
x
ed

)
−
α

lo
g
(−

θ
)

(−
∞

,0
)

−
α
/
θ

−
α

lo
g
x

+
α

lo
g
α
−

α
It

a
k
u
ra

–
S
a
it
o

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1128 INDERJIT S. DHILLON AND JOEL A. TROPP

This divergence is connected to the exponential family of multivariate Gaussian dis-
tributions with covariance matrix Q−1. In the latter context, the square root of this
divergence is often referred to as the Mahalanobis distance in statistics [29]. Other
multidimensional examples arise when we compose the Euclidean norm with another

function. For instance, one might consider the convex function ϕ(x) = −
√

1 − ‖x‖2
2

defined on the Euclidean unit ball. It yields the Hellinger-like divergence

Dϕ(x;y) =
1 − 〈x,y〉√

1 − ‖y‖2
2

−
√

1 − ‖x‖2
2.

2.6. Matrix divergences. Hermitian matrices admit a rich variety of diver-
gences that were first studied in [4] using the methods of Lewis [27]. Let H be
the space of N × N Hermitian matrices equipped with the real-linear inner product
〈X,Y 〉 = Re TrXY ∗. Define the function λ : H → R

N that maps a Hermitian ma-
trix to the vector listing its eigenvalues in algebraically decreasing order. Let ϕ be a
closed, proper, convex function on R

N that is invariant under coordinate permutation.
That is, ϕ(x) = ϕ(Px) for every permutation matrix P .

By composing ϕ with the eigenvalue map, we induce a real-valued function on
Hermitian matrices. As the following theorem elaborates, the induced map has the
same convexity properties as the function ϕ. Therefore, the induced map can be
used as a seed function to define a Bregman divergence on the space of Hermitian
matrices.

Theorem 2 (Lewis [27, 26]). The induced map ϕ◦λ has the following properties:

1. If ϕ is closed and convex, then the induced map is closed and convex.
2. The domain of ϕ ◦ λ is the inverse image under λ of domϕ.
3. The conjugate of the induced map satisfies the relation (ϕ ◦ λ)∗ = ϕ∗ ◦ λ.
4. The induced map is differentiable at X if and only if ϕ is differentiable at

λ(X). If X has eigenvalue decomposition U {diagλ(X)}U∗, then

∇(ϕ ◦ λ)(X) = U {diag∇ϕ(λ(X))}U∗.

In fact, this formula holds even if ϕ is not convex.
5. The induced map is Legendre if and only if ϕ is Legendre.

Related results hold for the singular value map, provided that ϕ is also absolutely
invariant. That is, ϕ(x) = ϕ(|x|) for all x in R

N , where |·| is the componentwise
absolute value.

Unitarily invariant matrix norms provide the most basic examples of induced
maps. Indeed, item 3 of the last theorem generalizes von Neumann’s famous result
about dual norms of unitarily invariant prenorms [21, 438ff.].

An exquisite example of a matrix divergence arises from ϕ(x) = −
∑

n log xn.
The induced map is (ϕ ◦ λ)(X) = − log detX, whose domain is the positive-definite
cone. Since ∇(ϕ ◦ λ)(X) = −X−1, the resulting divergence is

(2.7) D�d(X;Y) =
〈
X,Y −1

〉
− log detXY −1 −N.

Intriguingly, certain projections with respect to this divergence can be computed
analytically. See subsection 3.3 for details.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1129

Another important example arises from the negative Shannon entropy ϕ(x) =∑
n xn log xn − xn. The induced map is (ϕ ◦ λ)(X) = Tr (X logX − X), whose

domain is the positive-semidefinite cone. This matrix function arises in quantum
mechanics, where it is referred to as the von Neumann entropy [31]. It yields the
divergence

(2.8) DvN(X;Y) = Tr [X(logX − logY) −X + Y],

which we will call the von Neumann divergence. In the quantum mechanics literature,
this divergence is referred to as the quantum relative entropy [31]. This formula does
not literally hold if either matrix is singular, but a limit argument shows that the
divergence is finite precisely when the null space of X contains the null space of Y .

When the seed function ϕ is separable, matrix divergences can be expressed in
a way that emphasizes the distinct roles of the eigenvalues and eigenvectors. In
particular, take ϕ(x) =

∑
n ϕ(xn) and assume that X has eigenpairs (um, μm) and

that Y has eigenpairs (vn, νn). Then

Dϕ◦λ(X;Y) =
∑

m,n
|〈um,vn〉|2 [ϕ(μm) − ϕ(νn) − ϕ′(νn)(μm − νn)]

=
∑

m,n
|〈um,vn〉|2Dϕ(μm; νn).

In words, the matrix divergence adds up the scalar divergences between pairs of
eigenvalues, weighted by the squared cosine of the angle between the corresponding
eigenvectors.

3. Computing Bregman projections. It is not straightforward to compute
the Bregman projection onto a general convex set. Unless additional structure is
present, the best approach may be to apply standard convex optimization techniques.
In this section, we discuss how to develop numerical methods for the basic problem
of projecting onto a hyperplane or a halfspace. As we will see in sections 4 and 6, the
projection onto an intersection of convex sets can be broken down into a sequence of
projections onto the individual sets. Combining the two techniques, we can find the
projection onto any affine space or polyhedral convex set.

3.1. Projection onto a hyperplane. There is an efficient way to compute
the Bregman projection onto a hyperplane. The key idea is to dualize the Bregman
projection problem to obtain a nice one-dimensional problem. This approach can also
be extended to produce the projection onto a halfspace because the convexity of the
divergence implies that the projection lies on the boundary whenever the initial point
is outside the halfspace.

We must solve the following convex program:

(3.1) min
x

Dϕ(x;y) subject to 〈a,x〉 = α.

To ensure that this problem is well posed, we assume that ri(domϕ) contains a feasible
point. A necessary and sufficient condition on the solution x� of (3.1) is that the
equation

∇xDϕ(x;y) = ξ∇x (〈a,x〉 − α)

hold for a (unique) Lagrange multiplier ξ ∈ R. The gradient of the divergence is
∇ϕ(x) −∇ϕ(y), resulting in the equation

∇ϕ(x�) = ξa + ∇ϕ(y).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1130 INDERJIT S. DHILLON AND JOEL A. TROPP

The gradient of a Legendre function ϕ is a bijection from domϕ to domϕ∗, and its
inverse is the gradient of the conjugate [35, Thm. 26.5]. Thus we obtain an explicit
expression for the Bregman projection as a function of the unknown multiplier:

(3.2) x� = ∇ϕ∗(ξa + ∇ϕ(y)).

Form the inner product with a and enforce the constraint to reach

(3.3) 〈∇ϕ∗(ξa + ∇ϕ(y)),a〉 − α = 0.

Now, the left-hand side of this equation is the derivative of the strictly convex, uni-
variate function

(3.4) J(ξ) = ϕ∗(ξa + ∇ϕ(y)) − αξ.

There is an implicit constraint that the argument of ϕ∗ must lie within its domain. In
view of (3.3), it becomes clear that the Lagrange multiplier is the unique minimizer
of J . That is,

ξ� = arg minξ J(ξ).

Once we have determined the Lagrange multiplier, we introduce it into (3.2) to obtain
the Bregman projection.

The best numerical method for minimizing J depends strongly on the choice of
the seed function ϕ. In some cases, the derivative(s) of J may be difficult to evaluate.
The second derivative may even fail to exist. To that end, we offer several observations
that may be valuable.

1. The domain of J contains a neighborhood of zero since J(0) = 〈y,∇ϕ(y)〉 −
ϕ(y).

2. Since ϕ∗ is a Legendre function, the first derivative of J always exists. As
shown in (3.3),

J ′(ξ) = 〈∇ϕ∗(ξa + ∇ϕ(y)),a〉 − α.

3. When the Hessian of ϕ∗ exists, we have

J ′′(ξ) = a∗ {∇2ϕ∗(ξa + ∇ϕ(y))
}
a.

4. When the seed function ϕ is separable, the Hessian ∇2ϕ∗ is diagonal.
The next two subsections provide examples that illustrate some of the issues involved
in optimizing J .

3.2. Example: Relative entropy. Suppose that we wish to produce the Breg-
man projection of a nonnegative vector y onto the hyperplane C = {x : 〈a,x〉 = α}
with respect to the relative entropy. This divergence arises from the seed function
ϕ(x) =

∑
n xn log xn − xn, whose conjugate is ϕ∗(θ) =

∑
n exp(θn). To identify the

Lagrange multiplier, we must minimize

J(ξ) =
∑

n
yn exp(ξan) − αξ,

whose derivatives are

J ′(ξ) =
∑

n
anyn exp(ξan) − α,

J ′′(ξ) =
∑

n
a2
nyn exp(ξan).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1131

These functions are all simple to evaluate, so it is best to use the Newton method
preceded by a bracketing phase [32]. Once we have found the minimizer ξ�, the
Bregman projection is

PC(y) = y · exp(ξ�a),

where · represents the Hadamard product and the exponential is performed compo-
nentwise.

3.3. Example: Log-determinant divergence. Here is a more sophisticated
example that involves the log-determinant divergence. The divergence arises from
the seed function ϕ(X) = − log det(X), whose domain is the positive-definite cone
and whose gradient is ∇ϕ(X) = −X−1. The conjugate function ϕ∗(Θ) = N −
log det(−Θ), whose domain is the negative-definite cone and whose gradient satisfies
∇ϕ∗(Θ) = −Θ−1.

Suppose we need to project the positive-definite matrix Y onto the hyperplane

C = {X : 〈A,X〉 = α}, where A = A∗.

We must minimize

J(ξ) = N − log det(Y −1 − ξA) − αξ,

while ensuring that Y −1 − ξA is positive definite.
Let Y = LL∗, and abbreviate W = L∗AL, which is singular whenever A is rank

deficient. Then the derivatives of J can be expressed as

J ′(ξ) = Tr (W (I − ξW)−1) − α,

J ′′(ξ) = Tr (
(
W (I − ξW)−1

)2
).

In general, J and its derivatives are all costly. It appears that the most efficient way
to calculate them for multiple values of the scalar ξ is to preprocess W to extract its
eigenvalues {λn}. It follows that

J ′(ξ) =

(∑
n

λn

1 − λnξ

)
− α,

J ′′(ξ) =
∑

n

(
λn

1 − λnξ

)2

.

It is worth cautioning that domJ = {ξ : ξ < 1/maxn λn} since the matrix I − ξW
must remain positive definite.

Once again, we see that a guarded or damped Newton method is the best way to
optimize J . Given the solution ξ�, the Bregman projection is

PC(Y) = L(I − ξ�W)−1L∗.

We can reuse the eigenvalue decomposition to accelerate this final computation.
As shown in [25], these calculations simplify massively when the constraint matrix

has rank one: A = aa∗. In this case, we can find the zero of J ′ analytically because
a∗Y a is the only nonzero eigenvalue of W . Then the Sherman–Morrison formula
delivers an explicit expression for the projection:

PC(Y) = Y +
a∗Y a− α

(a∗Y a)2
(Y a)(Y a)∗.

The cost of performing the projection totals O(N2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1132 INDERJIT S. DHILLON AND JOEL A. TROPP

4. The successive projection algorithm for affine constraints. Now we
describe an algorithm for solving (1.1) in the special case that the constraint sets are
all affine spaces. In the next section, we will present some concrete problems to which
this algorithm applies. The case of general convex constraint sets will be addressed
afterward. We frame the following hypotheses.

Assumption A.1

The divergence: ϕ is a convex function of Legendre type

domϕ∗ is an open set

The constraints: C1, C2, . . . , CK are affine spaces with intersection C

Constraint qualification: C ∩ ri(domϕ) is nonempty

Note that, by the results of subsection 2.3, all Bregman divergences that arise
from regular exponential families satisfy Assumption A.1.

Given an input y0 from ri(domϕ), we seek the Bregman projection of y0 onto
the intersection C of the affine constraints. In general, it may be difficult to produce
PC(y0). Nevertheless, if the basic sets C1, . . . , CK are chosen well, it may be relatively
straightforward to calculate the Bregman projection onto each basic set. This heuristic
suggests an algorithm: Project successively onto each basic set in the hope that the
sequence of iterates will converge to the Bregman projection onto the intersection.
To make this approach work in general, it is clear that we must choose every set
an infinite number of times, so we add one more requirement to Assumption A.1 as
follows.

Assumption A.2

The control mapping: r : N → {1, . . . ,K} is a sequence that takes each
output value an infinite number of times

Together, Assumptions A.1 and A.2 will be referred to as Assumption A. Here is a
formal statement of the algorithm.

Algorithm A (successive projection). Suppose that Assumption A is in force.
Choose an input vector y0 from ri(domϕ), and form a sequence of iterates via suc-
cessive Bregman projection:

yt = PCr(t)
(yt−1).

Then the sequence of iterates {yt} converges in norm to PC(y0).
We present a short proof that this algorithm is correct. We refer to the article [4]

for the argument that the sequence converges, and we extend the elegant proof from
[12] to show that the limit of the sequence yields the Bregman projection.

Proof. Suppose that a is an arbitrary point in C ∩domϕ. Since the seed function
ϕ is Legendre, Bregman projections with respect to the divergence fall in the relative
interior of domϕ. In particular, each iterate yt belongs to ri(domϕ). Therefore, we
may apply the Pythagorean theorem (2.4) to see that

Dϕ(a;yt−1) = Dϕ(a;yt) + Dϕ(yt;yt−1).

Observe that this equation defines a recurrence, which we may solve to obtain

Dϕ(a;y0) = Dϕ(a;yt) +
∑t

i=1
D(yi;yi−1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1133

Under Assumption A, Theorem 8.1 of [4] shows that the sequence of iterates generated
by Algorithm A converges to a point y in C ∩ ri(domϕ). Since the divergence is
continuous in its second argument, we may take limits to reach

Dϕ(a;y0) = Dϕ(a;y) +
∑∞

i=1
Dϕ(yi;yi−1).

We chose a arbitrarily from C ∩ domϕ, so we may replace a by y to see that the
infinite sum equals Dϕ(y;y0). It follows that

Dϕ(a;y0) = Dϕ(a;y) + Dϕ(y;y0).

This equation holds for each point a in C ∩ domϕ, so we see that y meets the
variational characterization (2.4) of PC(y0). Therefore, y is the Bregman projection
of y0 onto C.

If the sets {Ck} are not affine, then Algorithm A will generally fail to produce the
Bregman projection of y0 onto the intersection C. In section 6, we will discuss a more
sophisticated iterative algorithm for solving this problem. Nevertheless, for general
closed, convex constraint sets, the sequence of iterates generated by the successive
projection algorithm still converges to a point in C ∩ ri(domϕ) [4, Theorem 8.1].

To obtain the convergence guarantee for Algorithm A, it may be necessary to
work in an affine subspace of the ambient inner-product space. This point becomes
important when computing the projections of nonnegative (as opposed to positive)
vectors with respect to the relative entropy. It arises again when studying projections
of rank-deficient matrices with respect to the von Neumann divergence. We will touch
on this issue in subsections 5.1 and 5.3.

5. Examples with affine constraints. This section presents three matrix
nearness problems with affine constraints. The first requests the nearest contingency
table with fixed marginals. A special case is to produce the nearest doubly stochastic
matrix with respect to relative entropy. For this problem, the successive projection
algorithm is identical to Kruithof’s famous diagonal scaling algorithm [24, 13].

The second problem centers on a matrix nearness problem from data analysis,
namely, that of finding matrix approximations based on the MBI principle, which is
a generalization of Jaynes’ maximum entropy principle [23].

The third problem shows how to construct the correlation matrix closest to a given
positive-semidefinite matrix with respect to some matrix divergences. For reference,
a correlation matrix is a positive-semidefinite matrix with a unit diagonal.

5.1. Contingency tables with fixed marginals. A contingency table is an ar-
ray that exhibits the joint probability mass function of a collection of discrete random
variables. A nonnegative rectangular matrix may be viewed as the contingency table
for two discrete random variables. We will focus on this case since higher-dimensional
contingency tables essentially are no more complicated.

Suppose that pAB is the joint probability mass function of two random variables
A and B with sample spaces {1, 2, . . . ,M} and {1, 2, . . . , N}. We use X to denote
the M ×N contingency table whose entries are

xmn = pAB(A = m and B = n).

A marginal of pAB is a linear function of X. The most important marginals of
pAB are the vector of row sums X e, which gives the distribution of A, and the vector
of column sums eT X, which gives the distribution of B. Here, e is a conformal vector

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1134 INDERJIT S. DHILLON AND JOEL A. TROPP

of ones. The distribution of A conditioned on B = n is given by the nth column of
X, and the distribution of B conditioned on A = m is given by the mth row of X.

However, we consider the more general case of arbitrary nonnegative matrices—we
treat X as a member of the collection of M×N real matrices equipped with the inner
product 〈X,Y 〉 = TrXY T . Note that, for the above probabilistic interpretation, X
must be scaled so that its entries sum to 1.

A common problem is to use an initial estimate to produce a contingency table
that has fixed marginals. In this setting, nearness is typically measured with relative
entropy

D(X;Y) =
∑

m,n

[
xmn log

xmn

ymn
− xmn + ymn

]
.

An important special case is to find the doubly stochastic matrix nearest to a non-
negative square matrix Y0. In this case, we have two constraint sets

C1 = {X : X e = e} and C2 = {X : eT X = eT }.

It is clear that the intersection C = C1 ∩ C2 contains the set of doubly stochastic
matrices. In fact, every nonnegative matrix in C is doubly stochastic. Using (2.6),
it is easy to see that Bregman projection of a matrix onto C1 with respect to the
relative entropy is accomplished by rescaling the rows so that each row sums to one.
Likewise, Bregman projection of a matrix onto C2 is accomplished by rescaling the
columns. Beginning with Y0, the successive projection algorithm alternately rescales
the rows and columns. This procedure, of course, is the diagonal scaling algorithm of
Kruithof [24, 13], sometimes called Sinkhorn’s algorithm [36]. Our approach yields a
geometric interpretation of the algorithm as a method for solving a matrix nearness
problem by alternating Bregman projections. It is interesting that the nonnegativity
constraint is implicitly enforced by the domain of the relative entropy. This viewpoint
can be traced to the work of Ireland and Kullback [22].

There is still a subtlety that requires attention. Assumption A apparently requires
that C contain a matrix with strictly positive entries and that the input matrix Y0 be
strictly positive. In fact, we may relax these premises. A nonnegative matrix whose
zero pattern does not cover the zero pattern of Y0 has an infinite divergence from
Y0. Therefore, we may as well restrict our attention to the linear space of matrices
whose zero pattern covers that of Y0. Now we see that the constraint qualification in
Assumption A requires that C contain a matrix with exactly the same zero pattern
as Y0. If it does, the algorithm will still converge to the Bregman projection of Y0

onto the doubly stochastic matrices. Determining whether the constraint qualification
holds will generally involve a separate investigation [30].

It is also worth noting that Algorithm A encompasses other iterative methods for
scaling to doubly stochastic form. At each step, for example, one might rescale only
the row or column whose sum is most inaccurate. Parlett and Landis have considered
algorithms of this sort [33]. The problem of scaling to have other row and column
sums also fits neatly into our framework, and it has the same geometric interpretation.

5.2. MBI and matrix approximation. This section discusses a novel matrix
nearness problem that arises in data analysis. Given a collection of vectors X =
{x1,x2, . . . ,xN} ⊂ domϕ, the Bregman information [2] of the collection is defined to
be

(5.1) Iϕ(X) =
∑N

j=1
wj Dϕ(xj ;μ),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1135

where w1, w2, . . . , wN are nonnegative weights that sum to one, and μ is the (weighted)
arithmetic mean of the collection, i.e., μ =

∑
j wj xj . Bregman information gener-

alizes the notion of the variance, σ2 = N−1
∑

j ‖xj − μ‖2
2, of a Gaussian random

variable (where each wj = N−1). When Dϕ is the relative entropy, the Bregman
information that arises with an appropriate choice of weights is called mutual infor-
mation, a fundamental quantity in information theory [11].

Bregman information exhibits an interesting connection with Jensen’s inequality
for a convex function ϕ: ∑

j
wj ϕ(xj) ≥ ϕ

(∑
j
wj xj

)
.

Substituting μ =
∑

j wj xj , we see that the difference between the two sides of the
foregoing relation satisfies∑

j
wj ϕ(xj) − ϕ(μ) =

∑
j
wj ϕ(xj) − ϕ(μ) −

〈
∇ϕ(μ),

∑
j
wjxj − μ

〉
=
∑

j
wj

[
ϕ(xj) − ϕ(μ) − 〈∇ϕ(μ),xj − μ〉

]
= Iϕ(X).(5.2)

In words, the Bregman information is the disparity between the two sides of Jensen’s
inequality. Equation (5.2) can also be viewed as a generalization of the relationship
between the variance and the arithmetic mean,

σ2 = N−1
∑

j
‖xj‖2

2 − ‖μ‖2
2 .

Let us describe an application of Bregman information in data analysis. In this
field, matrix approximations play a central role. Unfortunately, many common ap-
proximations destroy essential structure in the data matrix. For example, consider
the k-truncated singular value decomposition (TSVD), which provides the best rank-
k Frobenius-norm approximation of a matrix. In information retrieval applications,
however, the matrix that describes the co-occurrence of words and documents is both
sparse and nonnegative. The TSVD ruins both of these properties. In this setting,
the Frobenius norm is meaningless; relative entropy is the correct divergence measure
according to the unigram or multinomial language model.

We may also desire that the matrix approximation satisfy some additional con-
straints. For instance, it may be valuable for the approximation to preserve marginals
(i.e., linear functions) of the matrix entries. Let us formalize this idea. Suppose that

Y is an M×N data matrix. We seek an approximation X̃ that satisfies the constraints

Ck = {X : 〈X,Ak〉 = 〈Y ,Ak〉} k = 1, . . . ,K,

where each Ak is a fixed constraint matrix. We will write C =
⋂

k Ck. As an example,
X can be required to preserve the row and/or column sums of Y .

Many different matrices, including the original matrix Y , may satisfy these con-
straints. Clearly, a good matrix approximation should involve some reduction in the
number of parameters used to represent the matrix. The key question is to decide how
to produce the right approximation from C. One rational approach invokes the princi-
ple of minimum Bregman information (MBI) [1], which states that the approximation
should be the (unique) solution of the problem

(5.3) min
X∈C

Iϕ(X) = min
X∈C

∑
m,n

wmn Dϕ(xmn, μ),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1136 INDERJIT S. DHILLON AND JOEL A. TROPP

where wmn are prespecified weights and μ =
∑

m,n wmnxmn. If the weights wmn and
the matrix entries xmn are both sets of nonnegative numbers that sum to one, and
if the Bregman divergence is the relative entropy, then the MBI principle reduces to
Jaynes’ maximum entropy principle [23]. Thus, the MBI principle tries to obtain as
uniform an approximation as possible subject to the specified constraints. Note that
problem (5.3) can be readily solved by the successive projection algorithm.

Next, we consider an important and natural source of constraints. Clustering is
the problem of partitioning a set of objects into clusters, where each cluster contains
“similar” objects. Data matrices often capture the relationships between two sets of
objects, such as word–document matrices in information retrieval and gene-expression
matrices in bioinformatics. In such applications, it is often desirable to solve the co-
clustering problem, i.e., to simultaneously cluster the rows and columns of a data
matrix. Formally, a co-clustering (ρ, γ) is a partition of the rows into I row clusters
ρ1, . . . , ρI and the columns into J column clusters γ1, . . . , γJ , i.e.,⋃I

i=1
ρi = {1, 2, . . . ,M}, where ρi ∩ ρ� = ∅ for i �= �,

⋃J

j=1
γj = {1, 2, . . . , N}, where γj ∩ γ� = ∅ for j �= �.

Given a coclustering, the rows belonging to row cluster ρ1 can be arranged first,
followed by rows belonging to row cluster ρ2, etc. Similarly the columns can be re-
ordered. This re-ordering has the effect of dividing the matrix into I · J subblocks,
each of which is called a cocluster.

The coclustering problem is to search for the “best” possible row and column
clusters. One way to measure the quality of a coclustering is to associate it with
its MBI matrix approximation. A natural constraint set C(ρ,γ) for the coclustering
problem contains matrices that preserve marginals of all the I · J coclusters (local
information) in addition to row and column marginals (global information). With
this constraint set, a formal objective for the coclustering problem is to find (ρ, γ),
which corresponds to the best possible MBI approximation:

(5.4) min
ρ,γ

Dϕ(Y ;X(ρ,γ)), where X(ρ,γ) = arg min
X∈C(ρ,γ)

Iϕ(X).

This formulation yields an optimal coclustering as well as its associated MBI matrix
approximation. The quality of such matrix approximations is a topic for further study.
Note that problem (5.4) requires a combinatorial search, and it is known to be NP-
complete. The most familiar clustering formulation, namely, the k-means problem, is
the special case of (5.4) obtained from the Euclidean divergence, the choice J = N ,
and the condition of preserving cocluster sums.

As an example, consider the nonnegative matrix

Y =

⎡⎢⎢⎢⎢⎢⎢⎣
5 5 5 0 0 0
5 5 5 0 0 0
0 0 0 5 5 5
0 0 0 5 5 5
4 4 0 4 4 4
4 4 4 0 4 4

⎤⎥⎥⎥⎥⎥⎥⎦ .

On using coclustering (three row clusters and two column clusters), preserving row
sums, column sums, and cocluster sums, the MBI principle (with relative entropy as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1137

the Bregman divergence) yields the matrix approximation

X1 =

⎡⎢⎢⎢⎢⎢⎢⎣
5.4 5.4 4.2 0 0 0
5.4 5.4 4.2 0 0 0

0 0 0 4.2 5.4 5.4
0 0 0 4.2 5.4 5.4

3.6 3.6 2.8 2.8 3.6 3.6
3.6 3.6 2.8 2.8 3.6 3.6

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that this approximation has rank two and preserves nonnegativity as well as
most of the nonzero structure of Y . It can be verified that all the cocluster sums,
row sums, and column sums of X1 match those of Y . In contrast, the rank-two SVD
approximation

X2 =

⎡⎢⎢⎢⎢⎢⎢⎣
5.09 5.09 4.66 −0.69 0.29 0.29
5.09 5.09 4.66 −0.69 0.29 0.29
0.29 0.29 −0.69 4.66 5.09 5.09
0.29 0.29 −0.69 4.66 5.09 5.09
3.04 3.04 1.98 3.51 4.41 4.41
4.41 4.41 3.51 1.98 3.04 3.04

⎤⎥⎥⎥⎥⎥⎥⎦
preserves neither the nonnegativity, the nonzero structure, nor the marginals of Y .

5.3. The nearest correlation matrix. A correlation matrix is a (real) positive-
semidefinite matrix with a unit diagonal. Correlation matrices arise in statistics and
applications such as finance, where they display the normalized second-order statis-
tics (i.e., pairwise correlation coefficients) of a collection of random variables. In the
deterministic setting, a correlation matrix may be viewed as the Gram matrix of a
collection of unit vectors.

Higham has recently studied the nearest correlation matrix problem measuring
distances using a type of weighted Frobenius norm [19]. Higham solves the prob-
lem by means of the Dykstra–Han algorithm given in section 6, alternating between
the positive-semidefinite cone and the set of matrices with unit diagonal. We have
observed that the nearest correlation matrix problem can be posed with Bregman
divergences and, in particular, with matrix divergences.

Let us consider the problem of producing the correlation matrix closest to a given
positive-semidefinite matrix with respect to the von Neumann divergence

DvN(X;Y) = Tr [X(logX − logY) −X + Y].

In case Y is singular, we must restrict our attention to the linear space of matrices
whose null space contains the null space of Y . After taking this step, one must
interpret the formulae with care. These remarks signal our reason for employing the
von Neumann divergence to measure the disparity between correlation matrices. A
matrix X has an infinite divergence from Y unless the null space of X contains the
null space of Y . In particular, the rank of the Bregman projection of Y onto the
correlation matrices cannot exceed the rank of Y . See also the examples at the end
of this subsection.

The correlation matrices can be viewed as the intersection of the set of unit-
diagonal matrices with the positive-semidefinite cone. This cone is also the domain
of the von Neumann divergence, so we do not need to explicitly enforce the positive-
semidefinite constraint. In fact, we need only project onto the set C of matrices whose

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1138 INDERJIT S. DHILLON AND JOEL A. TROPP

diagonal entries all equal one. It is natural to view C as the intersection of the affine
constraint sets

Ck = {X : xkk = 1}.

There is no explicit formula for the projection of a matrix Y onto the set Ck, but
the discussion in section 3 shows that we can solve the problem by minimizing the
function (3.4), which, in this example, reads

(5.5) J(ξ) = Tr exp{logY + ξ eke
T
k } − ξ,

where ek is the kth canonical basis vector. Given the minimizer ξ�, the projection of
Y onto Ck is

(5.6) PCk
(Y) = exp{logY + ξ� eke

T
k }.

Beware that one cannot read these formulae literally when Y is rank deficient! In
any case, the numerical calculations are not trivial to perform. In order to apply the
Newton method, the second derivative of J is needed, which is more involved due to
the noncommutativity of matrix multiplication.

Unfortunately, treating these issues in detail is beyond the scope of this paper.

There is an interesting special case that can be treated without optimization:
the von Neumann projection of a matrix with constant diagonal onto the correlation
matrices can always be obtained by rescaling. In particular, the projection preserves
the zero pattern of the matrix and the eigenvalue distribution. To verify this point,
suppose the diagonal entries of Y equal α, and set X = α−1Y . According to the
Karush–Kuhn–Tucker conditions, X is the Bregman projection of Y onto the set C
provided that ∇XDvN(X;Y) is diagonal. The latter gradient equals logX−logY +I,
and a short calculation completes the argument. In contrast, the Frobenius norm
projection of a matrix with constant diagonal does not preserve its nonzero structure
or eigenvalue distribution. As an example, let Y be the 4 × 4 symmetric tridiagonal
Toeplitz matrix with 2’s on the diagonal and −1’s on the off-diagonal. The nearest
correlation matrix to it, in the Frobenius norm, equals (to the figures shown)

⎡⎢⎢⎣
1.0000 −0.8084 0.1916 0.1068

−0.8084 1.0000 −0.6562 0.1916
0.1916 −0.6562 1.0000 −0.8084
0.1068 0.1916 −0.8084 1.0000

⎤⎥⎥⎦ .

As a second example, draw a random orthogonal matrix Q and form the rank-
deficient matrix Y = Q diag (1, 10−3, 10−6, 0)QT . For instance,

Y =

⎡⎢⎢⎣
.18335 −.15180 .08258 −.34620

−.15180 .12606 −.06887 .28655
.08258 −.06887 .03786 −.15582

−.34620 .28655 −.15582 .65373

⎤⎥⎥⎦ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1139

The correlation matrix nearest to Y in the Frobenius norm is obtained by simply
shifting the diagonal:

X1 =

⎡⎢⎢⎣
1.0000 −.15180 .08258 −.34620

−.15180 1.0000 −.06887 .28655
.08258 −.06887 1.0000 −.15582

−.34620 .28655 −.15582 1.0000

⎤⎥⎥⎦ .
Meanwhile, the nearest correlation matrix with respect to the von Neumann diver-
gence has the same range space as Y and thus is also of rank 3:

X2 =

⎡⎢⎢⎣
1.0000 −.77271 .59020 −.99995

−.77271 1.0000 −.96847 .77080
.59020 −.96847 1.0000 −.58778

−.99995 .77080 −.58778 1.0000

⎤⎥⎥⎦ .
Note that due to space limitations, all of the above matrices are shown only to five
digits of accuracy. The eigenvalues of X1 are 0.611, 0.851, 0.951, and 1.588, while
the nonzero eigenvalues of X2 are 0.457× 10−6, 0.650× 10−2, and 3.350. Thus we see
that the Frobenius norm solution does not preserve the small eigenvalues, while the
von Neumann divergence solution preserves the rank and also tries to preserve the
eigenvalue distribution.

The recent literature contains a substantial amount of work on numerical meth-
ods for calculating nearest correlation matrices with respect to the Frobenius norm.
Higham describes an alternating projection method, as well as an approach via
semidefinite programming [19]. Malick [28] and Boyd and Xiao [7] study efficient
algorithms for solving the dual of a more general projection problem, while Qi and
Sun [34] develop a generalized Newton method for the nearest correlation matrix
problem.

In contrast, the problem of finding nearest correlation matrices with respect
to a Bregman divergence is virtually unstudied. The main motivation for study-
ing this problem is that it leads to correlation matrices that have a very different
character, which may be more appropriate in applications. For example, as shown
above, the method for solving the von Neumann nearness problem may yield low-
rank correlation matrices. This type of solution has immense practical value be-
cause it explains the data using a small number of factors [17]. In contrast, the
Frobenius norm solution may increase the rank of the matrix. Unfortunately, to
apply our technique, the initial matrix must lie in the domain of the von Neu-
mann divergence, i.e., the positive-semidefinite cone. One remedy is to prepro-
cess the matrix by performing a Frobenius projection onto the positive-semidefinite
cone.

The broad scope of the present article limits the amount of detail we can provide,
so we have been only able to sketch one algorithm for solving the nearest correlation
matrix problem. It would be valuable to devise more powerful algorithms by invoking
ideas from the papers cited above.

6. The successive projection–correction algorithm for convex con-
straints. This section describes an algorithm for solving the Bregman nearness prob-
lem (1.1) in the case where the constraints are closed, convex sets. In the succeeding
section, we will present some nearness problems to which this algorithm applies. We
frame the following hypotheses:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1140 INDERJIT S. DHILLON AND JOEL A. TROPP

Assumption B

The divergence: ϕ is a convex function of Legendre type

ϕ is cofinite, i.e., domϕ∗ = X

The constraints: C1, . . . , CK are closed, convex sets with intersection C

Constraint qualification: ri(C1) ∩ · · · ∩ ri(CK) ∩ ri(domϕ) is nonempty

The control mapping: r : N → {1, 2, . . . ,K} is a sequence that takes each
output value at least once during each T consecutive
input values

Given an input y0 from ri(domϕ), we seek the Bregman projection of y0 onto
C with respect to the divergence Dϕ. As before, the algorithm projects successively
onto each constraint set. Since the sets are no longer affine, it is also necessary to
introduce a correction term to guide the algorithm toward the Bregman projection.
This algorithm generalizes a method for the Euclidean divergence that was developed
independently by Dykstra [16] and Han [18].

Algorithm B (successive projection–correction). Suppose that Assumption B
is in force, and let y0 ∈ ri(domϕ). The algorithm performs the following steps:

1. Initialize the correction variables: qk = 0 for each k = 1, . . . ,K.
2. Construct the next iterate via the rule

yt+1 ← PCr(t)

(
∇ϕ∗

(
∇ϕ(yt) + qr(t)

))
.

3. Update the correction term

qr(t) ← qr(t) + ∇ϕ(yt) −∇ϕ(yt+1).

4. Return to step 2.
Then the sequence of iterates converges in norm to the Bregman projection of y0 onto
C with respect to Dϕ,

PC(y0) = lim
t→∞

yt.

The proof that this algorithm succeeds is quite burdensome, and none of the
arguments in the literature are especially intuitive. The correctness of the algorithm
that we have presented here follows from Tseng’s general framework [37]. His paper
contains only the development for the Euclidean divergence; see [6, 9] for comments on
the extension. The literature contains several other proofs with somewhat different
hypotheses [6, 9]. We feel that the above version offers the best tradeoff between
applicability and accessibility.

The following connections may help the reader understand the algorithm some-
what better. It is possible to identify this procedure as a generalization of Bregman’s
algorithm for minimizing strictly convex functions [10, 9]. Bregman’s algorithm is a
primal-dual method that maximizes with respect to one dual variable (the qk) at a
time, while maintaining the Karush–Kuhn–Tucker conditions on the primal problem.
It is also possible to view the algorithm as a coordinate ascent algorithm for an op-
timization problem that is dual to the projection problem [37]. It is for this reason
that the update in step 2 closely resembles the dual function J obtained in section 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1141

6.1. Comparing the algorithms. Let us take a moment to weigh the succes-
sive projection–correction algorithm (Algorithm B) against the successive projection
algorithm (Algorithm A). It is most important to note that Algorithm A applies only
to the case where the constraints are affine, while Algorithm B succeeds for general
closed, convex constraints. It can be shown that the corrections in Algorithm B are
unnecessary when the constraints are affine, so it reduces to Algorithm A [9].

Although it may appear that Algorithm A has a weaker constraint qualification,
the difference here is purely formal. We remark that the constraint qualification in
Algorithm B can be weakened when some of the constraint sets are polyhedral, i.e.,
can be written as a finite intersection of halfspaces. In that case, we may remove the
relative interior from the polyhedral constraint sets in the constraint qualification.

The methods also place different hypotheses on the divergence; Algorithm B
asks more from the seed function ϕ than Algorithm A. The former requires that
domϕ∗ = X while the latter needs only domϕ∗ to be open. For example, the Burg
entropy ϕ(x) = − log(x) is admissible for Algorithm A but not for Algorithm B.

Finally, the control mapping for Algorithm B is more restrictive than the control
mapping for Algorithm A. The former requires that the projections be performed
in almost cyclic order, while the latter requires only that each constraint set should
appear an infinite number of times.

7. Examples with convex constraints. This section discusses two matrix
nearness problems that involve nonaffine constraints. First, we discuss the metric
nearness problem, which elicits the closest metric graph to a given weighted graph.
We have already studied this problem with respect to norms in [15]. Here, we expand
our treatment to Bregman divergences.

Second, we study an important problem in data analysis, namely learning a so-
called “kernel” or similarity matrix that satisfies constraints that arise from knowledge
of the underlying application domain.

7.1. The metric nearness problem. We recently encountered a striking new
matrix nearness problem [15] while studying an application in computational biology.
In this article, we extend the problem to Bregman divergences and show that it can
be solved using the successive projection–correction algorithm (Algorithm B).

Suppose that X is the adjacency matrix of an undirected, weighted graph on N
vertices. That is, xmn registers the weight of the edge between vertices m and n.
Since the graph is undirected, X is a symmetric matrix. We will also assume that
X is hollow (i.e., has a zero diagonal). If one interprets the weights as distances, it
is natural to ask whether the graph can be embedded in a metric space. Indeed, the
embedding is possible if and only if the triangle inequalities hold, i.e.,

(7.1) xmn ≤ xm� + x�n for each triple of distinct vertices (�,m, n).

Note that the condition (7.1) implies that the weights are nonnegative, provided that
X is symmetric. We will refer to any hollow, symmetric matrix that satisfies (7.1) as
a metric adjacency matrix.

The metric nearness problem is to find the metric adjacency matrix closest to
a given adjacency matrix. We view this nearness problem as an agnostic method
for learning a metric from noisy distance measurements. It is entirely distinct from
multidimensional scaling, which requests an ensemble of points in a specified metric
space (usually Euclidean) that realizes a given set of distances. In our first report on
this problem [15], we used weighted matrix norms to measure the distance between

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1142 INDERJIT S. DHILLON AND JOEL A. TROPP

adjacency matrices. In this article, we will use Bregman divergences. Note that the
divergence is unrelated to the metric encoded in the entries of the adjacency matrix;
the divergence is used to determine how much one adjacency matrix (i.e., graph)
differs from another.

By this point, it should be clear how we propose to solve the metric nearness
problem. We will work in the space of hollow, symmetric matrices. It is evident
that the metric adjacency matrices from a closed, convex cone C. Clearly, C is the
intersection of

(
N
3

)
halfspaces:

C�mn = {X : xmn − xm� − x�n ≤ 0},

where �, m, and n index distinct vertices. Therefore, we may apply Algorithm B.
To be concrete, we will consider Bregman projections with respect to the relative

entropy. For reference, the seed function is

ϕ(X) =
∑

mn
[xmn log xmn − xmn] ,

which has Fenchel conjugate

ϕ∗(Y) =
∑

mn
exp ymn.

The divergence is

Dϕ(X;Y) =
∑

mn

[
xmn log

xmn

ymn
− xmn + ymn

]
.

This divergence has an interesting advantage over the Frobenius norm. If the original
adjacency matrix does not contain zero distances, then the projection on the metric
adjacency matrices will not contain any zero distances. This fact ensures that the
final matrix defines a genuine metric, rather than a pseudometric.

Algorithm B requires that we compute the Bregman projection of a matrix that
has the form X = ∇ϕ∗(∇ϕ(Yt) + Q�mn), where Q�mn is a dual variable. It is easy
to check that this expression reduces to

X = Yt · exp ·(Q�mn),

where · is the Hadamard (i.e., componentwise) product and exp · is the Hadamard
exponential. We will see that the dual variable Q�mn has at most six nonzero entries.
Therefore, the matrix X differs from Yt in at most six places.

It is straightforward to calculate the Bregman projection Yt+1 of the matrix X
onto the constraint C�mn. If X already falls in the constraint set, then the projection
Yt+1 = X. Otherwise, set δ =

√
(xm� + x�n)/xmn. The entries of the projection

Yt+1 are identical to those of X except for the following six:

ymn = δ xmn ynm = ymn

ym� = xm�/δ y�m = ym�

y�n = x�n/δ yn� = y�n.

In words, the projection determines how much the triangle inequality is violated, and
it distributes the deficit multiplicatively among the three edges.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1143

Finally, the algorithm updates the dual variable Q�mn associated with the con-
straint using the formula

Q�mn ← Q�mn + log ·(Yt) − log ·(Yt+1)

where log · is the Hadamard logarithm. This update affects only six entries of Q�mn.
In practice, we would store only the upper triangle of the adjacency matrices, so the
update touches only three entries.

Consider the following adjacency matrix, which fails to be a metric graph,

Y =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 1 1 1
1 0 10000 1 1 1
1 10000 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The nearest metric adjacency matrix in relative entropy is found to be

X1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 5.49 5.49 1.00 1.00 1.00

5.49 0 10.99 5.49 5.49 5.49
5.49 10.99 0 5.49 5.49 5.49
1.00 5.49 5.49 0 1.00 1.00
1.00 5.49 5.49 1.00 0 1.00
1.00 5.49 5.49 1.00 1.00 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that the effect of the outlier edge has dissipated, and the resulting metric graph
does not have very large edge weights. On the other hand, the outlier edge leads to
a significant change in edge weights when the Euclidean divergence is used:

X2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1667.33 1667.33 1.00 1.00 1.00

1667.33 0 3334.67 1667.33 1667.33 1667.33
1667.33 3334.67 0 1667.33 1667.33 1667.33

1.00 1667.33 1667.33 0 1.00 1.00
1.00 1667.33 1667.33 1.00 0 1.00
1.00 1667.33 1667.33 1.00 1.00 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

7.2. Learning a kernel matrix. In data mining and machine learning appli-
cations, linear separators or hyperplanes are often used to cluster or classify data.
However, linear separators are inadequate when the data is not linearly separable.
To overcome this problem, the data can first be mapped (nonlinearly) to a higher-
dimensional feature space, after which linear separators can be used in the transformed
feature space.

Suppose the data belong to the set Ω, and f : Ω → X maps the data to an inner-
product space X , called the feature space. Given data objects {u1, u2, . . . , uN} ⊂ Ω,
the Gram matrix X is the N × N matrix of inner products in the feature space,
xmn = 〈f(um), f(un)〉 = g(um, un). This Gram matrix is also called the kernel matrix,
and it captures the similarity between the objects um and un. When the data space Ω
is an inner-product space, common kernels include the polynomial kernel g(um,un) =

〈um,un〉d and the Gaussian kernel g(um,un) = exp
{
− 1

2 ‖um − un‖2
2 /σ

2
}

. These

kernels are both positive definite. Conversely, any positive-definite matrix can be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1144 INDERJIT S. DHILLON AND JOEL A. TROPP

thought of as a kernel matrix [38]. In general, the set Ω can be arbitrary. For
example, Ω might contain nucleotide sequences of varying lengths or phylogenetic
trees or arbitrary graphs.

In many such situations, the choice of the kernel matrix is unclear. There is often
an approximate kernel matrix Y0 that we wish to modify based on our information
about the underlying data objects. This information may take various forms:

• known values for kernel entries (xmn = α),
• known distances between objects in the feature space (xmm+xnn−2xmn = β),

or
• known bounds on kernel entries (xmn ≤ xrs) or distances (xmm + xnn −

2xmn ≤ γ).
Such constraints are typically obtained from the application domain, such as infor-
mation about whether a pair of genes or proteins is functionally more similar than
another pair.

Suppose that we are given an approximate kernel matrix Y0. Our problem is
to find the nearest positive-definite matrix to Y0 that satisfies linear equality and
inequality constraints. The von Neumann divergence can be used as the nearness
measure:

DvN(X;Y) = Tr [X(logX − logY) −X + Y].

Using the von Neumann divergence appears to be advantageous when the initial kernel
matrix Y0 is of low rank and it is desired that its null space be preserved [25]. Recall
that, in the low-rank case, the von Neumann divergence DvN(X;Y0) is finite only
when the null space of X contains the null space of Y0. Hence, both the null space
constraint and positive semidefiniteness are automatically enforced by the successive
projection–correction algorithm.

8. Open problems and conclusions. The Bregman nearness problem is rel-
atively unstudied, so it opens a rich vein of new questions. Here are some specific
challenges that deserve attention.

1. The matrix divergences described in subsection 2.6 offer an intriguing way
to compute distances between Hermitian matrices. It would be valuable to
characterize different types of projections onto important sets of matrices,
such as the positive-semidefinite cone, the nonnegative cone, or the set of
diagonal matrices. This could lead to more efficient numerical methods for
key problems.

2. The algorithms described in this paper apply only to projections onto poly-
hedral convex sets. Some important constraint sets—such as the positive-
semidefinite cone—are not so simple. In this work, we avoided trouble by in-
corporating the positive-semidefinite constraint into the divergence, but this
approach is not always warranted. For more general problems, a different
approach is necessary.

3. A more serious problem with the successive projection approach is that it
offers only linear convergence. For applications, it may be critical to develop
algorithms with superlinear convergence.

4. The matrix functions that arise from the study of matrix divergences lead to
another challenge. We are not aware of a sophisticated approach to calcu-
lating a function such as exp(logY + A) other than to work with the cor-
responding eigendecompositions. Expressions of this form frequently arise
in Bregman nearness problems, and we would like to have more robust,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX NEARNESS WITH BREGMAN DIVERGENCES 1145

efficient techniques for their computation. Moreover, the numerical stabil-
ity of various techniques needs to be studied.

5. In applications, it is most important to determine what divergence is appro-
priate. This choice is likely to depend on domain expertise, coupled with a
nuanced understanding of the properties of different divergences.

6. One can also imagine the problem of learning a divergence from data. This
method would be the ultimate way to match the distance measure with the
application. The connection between divergences and exponential families
even provides a theoretical justification for this approach.

In conclusion, we have offered evidence that Bregman divergences provide a pow-
erful way to measure the distance between matrices. They can react to structure in
the matrix in a way that the Frobenius norm does not. This property makes them
extremely valuable for applications, although it may take some effort to determine
what divergence is appropriate. Moreover, the numerical methods for computing
Bregman projections are still in their infancy. These challenges must be faced before
divergences can occupy their potential role in data analysis.

Acknowledgments. We would like to thank Nick Higham and two anonymous
referees for a thorough reading and helpful suggestions.

REFERENCES

[1] A. Banerjee, I. S. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha, A general-
ized maximum entropy approach to Bregman co-clustering and matrix approximation, J.
Mach. Learn. Res., 8 (2007), pp. 1919–1986. Available online at http://jmlr.csail.mit.edu/
papers/volume8/banerjee07a/banerjee07a.pdf.

[2] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh, Clustering with Bregman divergences,
J. Mach. Learn. Res., 6 (2005), pp. 1705–1749.

[3] O. Barndorff-Nielsen, Information and Exponential Families in Statistical Theory, John
Wiley, New York, 1978.

[4] H. H. Bauschke and J. M. Borwein, Legendre functions and the method of random Bregman
projections, J. Convex Anal., 4 (1997), pp. 27–67.

[5] H. H. Bauschke and P. L. Combettes, Iterating Bregman retractions, SIAM J. Optim., 13
(2003), pp. 1159–1173.

[6] H. H. Bauschke and A. S. Lewis, Dykstra’s algorithm with Bregman projections: A conver-
gence proof, Optimization, 48 (2000), pp. 409–427.

[7] S. Boyd and L. Xiao, Least-squares covariance matrix adjustment, SIAM J. Matrix Anal.
Appl., 27 (2005), pp. 532–546.

[8] L. M. Bregman, The relaxation method of finding the common point of convex sets and its
application to the solution of problems in convex programming, USSR Comput. Math.
Math. Phys., 7 (1967), pp. 200–217.

[9] L. M. Bregman, Y. Censor, and S. Reich, Dykstra’s algorithm as the nonlinear extension
of Bregman’s optimization method, J. Convex Anal., 6 (1999), pp. 319–333.

[10] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms, and Applications,
Numer. Math. Sci. Comput., Oxford University Press, Oxford, UK, 1997.

[11] T. Cover and J. Thomas, Elements of Information Theory, John Wiley, New York, 1991.
[12] I. Csiszár, I-divergence geometry of probability distributions and minimization problems, Ann.

Probab., 3 (1975), pp. 146–158.
[13] W. E. Deming and F. F. Stephan, On a least squares adjustment of a sampled frequency table

when the expected marginal totals are known, Ann. Math. Statist., 11 (1943), pp. 427–444.
[14] F. Deutsch, Best Approximation in Inner Product Spaces, Springer-Verlag, New York, 2001.
[15] I. S. Dhillon, S. Sra, and J. A. Tropp, Triangle fixing algorithms for the metric near-

ness problem, in Proceedings of the Eighteenth Annual Conference on Neural Information
Processing Systems (NIPS), MIT Press, Cambridge, MA, 2005, pp. 361–368.

[16] R. L. Dykstra, An algorithm for restricted least squares regression, J. Amer. Statist. Assoc.,
78 (1983), pp. 837–842.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1146 INDERJIT S. DHILLON AND JOEL A. TROPP

[17] I. Grubǐsić and R. Pietersz, Efficient rank reduction of correlation matrices, Linear Algebra
Appl., 422 (2007), pp. 629–653.

[18] S.-P. Han, A successive projection method, Math. Programming, 40 (1988), pp. 1–14.
[19] N. J. Higham, Computing the nearest correlation matrix—a problem from finance, IMA J.

Numer. Anal., 22 (2002), pp. 329–343.
[20] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer,

Berlin, 2001.
[21] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,

UK, 1985.
[22] C. T. Ireland and S. Kullback, Contingency tables with given marginals, Biometrika, 55

(1968), pp. 179–188.
[23] E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev., 106 (1957), pp. 620–

630.
[24] R. Kruithof, Telefoonverkeersrekening, De Ingenieur, 52 (1937), pp. E15–E25.
[25] B. Kulis, M. Sustik, and I. S. Dhillon, Learning low-rank kernel matrices, in Proceed-

ings of the Twenty-Third International Conference on Machine Learning (ICML), Morgan
Kaufmann, San Francisco, 2006, pp. 505–512.

[26] A. S. Lewis, The convex analysis of unitarily invariant matrix functions, J. Convex Anal., 2
(1995), pp. 173–183.

[27] A. S. Lewis, Convex analysis on the Hermitian matrices, SIAM J. Optim., 6 (1996), pp. 164–
177.

[28] J. Malick, A dual approach to semidefinite least-squares problems, SIAM J. Matrix Anal.
Appl., 26 (2004), pp. 272–284.

[29] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis, Academic Press, London,
1979.

[30] M. V. Menon, Reduction of a matrix with positive elements to a doubly stochastic matrix,
Proc. Amer. Math. Soc., (1967), pp. 244–247.

[31] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cam-
bridge University Press, Cambridge, UK, 2000.

[32] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer, New York, 2006.
[33] B. N. Parlett and T. L. Landis, Methods for scaling to doubly stochastic form, Linear Algebra

Appl., 48 (1982), pp. 53–79.
[34] H. Qi and D. Sun, A quadratically convergent Newton method for computing the nearest

correlation matrix, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 360–385.
[35] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[36] R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices,

Ann. Math. Statist, 35 (1964), pp. 876–879.
[37] P. Tseng, Dual coordinate ascent methods for non-strictly convex minimization, Math. Pro-

gramming, 59 (1993), pp. 231–247.
[38] V. N. Vapnik, Statistical Learning Theory, John Wiley, New York, 1998.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1147–1170

A GIVENS-WEIGHT REPRESENTATION FOR RANK
STRUCTURED MATRICES∗

STEVEN DELVAUX† AND MARC VAN BAREL†

Abstract. In this paper we introduce a Givens-weight representation for rank structured matri-
ces, where the rank structure is defined by certain submatrices starting from the bottom left or upper
right matrix corner being of low rank. We proceed in two steps. First, we introduce a unitary-weight
representation. This representation will be compared to the (block) quasiseparable representations
introduced by P. Dewilde and A.-J. van der Veen [Time-varying Systems and Computations, Kluwer
Academic Publishers, Boston, 1998]. More specifically, we show that our unitary-weight represen-
tations are theoretically equivalent to the so-called block quasiseparable representations in input or
output normal form introduced by Dewilde and van der Veen [Time varying Systems and Compu-
tations, Kluwer Academic Publishers, Boston, 1998]. Next, we move from the unitary-weight to the
Givens-weight representation. We then provide some basic algorithms for the unitary/Givens-weight
representation, showing how to obtain such a representation for a dense matrix by means of numer-
ical approximation. We also show how to “swap” the representation and how to reduce the number
of parameters of the representation, whenever appropriate. As such, these results will become the
basis for algorithms on unitary/Givens-weight representations to be described in subsequent papers.

Key words. rank structured matrix, representation, elementary unitary operation, Givens
transformation, numerical approximation

AMS subject classifications. 65F, 65F30, 15A03

DOI. 10.1137/060654967

1. Introduction. In this paper we describe a way to obtain compact representa-
tions for rank structured matrices. More specifically, these will be the unitary-weight
and Givens-weight representations, in increasing order of specification. The basic
idea of our representations is a generalization from the so-called Givens-vector rep-
resentation introduced in [17], which we generalize to the case of an arbitrary rank
structure.

First, we must define the class of matrices for which our representations will be
appropriate.

Definition 1 (see [3]). We define a pure rank structure R on C
m×n as a col-

lection of so-called pure structure blocks R = {Bk}k. Each pure structure block Bk is
characterized as a 3-tuple

Bk = (ik, jk, rk),

∗Received by the editors March 23, 2006; accepted for publication (in revised form) by N. Mas-
tronardi April 20, 2007; published electronically November 21, 2007. This research was partially
supported by the Research Council K.U. Leuven, project OT/05/40 (Large rank structured ma-
trix computations), Center of Excellence: Optimization in Engineering, by the Fund for Scientific
Research–Flanders (Belgium), G.0455.0 (RHPH: Riemann-Hilbert problems, random matrices and
Padé-Hermite approximation), G.0423.05 (RAM: Rational modelling: optimal conditioning and sta-
ble algorithms), and by the Belgian Programme on Interuniversity Poles of Attraction, initiated by
the Belgian State, Prime Minister’s Office for Science, Technology and Culture, project IUAP V-22
(Dynamical Systems and Control: Computation, Identification & Modelling). The scientific respon-
sibility rests with the authors.

http://www.siam.org/journals/simax/29-4/65496.html
†Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-

3001 Leuven (Heverlee), Belgium (Steven.Delvaux@cs.kuleuven.ac.be, Marc.VanBarel@cs.kuleuven.
ac.be).

1147

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1148 STEVEN DELVAUX AND MARC VAN BAREL

where ik is the row index, jk the column index, and rk the rank upper bound. We say
a matrix A ∈ C

m×n will satisfy the pure rank structure R if for each k

RankA(ik : m, 1 : jk) ≤ rk.

The above definition uses the word pure to distinguish from the more general
rank structures that were handled in [3]. Since these more general structures do not
occur in the present paper, we will simplify notation by just dropping the word pure
everywhere from the notation.

Note that by definition, all structure blocks have to start from the lower left
matrix corner. An example of a rank structure is shown in Figure 1.1.

Rk 3

Rk 1

Fig. 1.1. Example of a rank structure with two structure blocks B1 and B2. The notation
“Rk r” denotes that the structure block is of rank at most r.

In practice, it often happens that also the block upper triangular part is rank
structured, i.e., that also the matrix AT satisfies rank structure in the sense of Defi-
nition 1. By abuse of notation, we will indiscriminately use the term rank structure
also in this case.

It is easy to see that each structure block induces certain relations between the
elements of the matrix. Hence it should be possible to represent a rank structured
matrix using only a small number of parameters. Although one can devise several
ways to obtain such a representation, there seem to be two classes of representations
frequently used in the literature, which we call here uv-representations and block
quasiseparable representations. Let us give a brief survey.

The class of uv-representations was historically the first; see, e.g., [12]. We men-
tion that this type of representation is possible only under certain conditions.

The different and more flexible class of block quasiseparable representations has
been introduced in [7]. Starting from this book, many algorithms for these represen-
tations have been developed in the literature and appear in the work of Dewilde and
van der Veen; see, e.g., [7, 8]. They were then used by Eidelman and Gohberg, who
also introduced the name (block) “quasiseparable representation”; see, e.g., [9, 10, 11].
More recently, these matrices appear under the name of “sequentially semiseparable
representations” in the work of Chandrasekaran, Gu et al.; see, e.g., [1]. Finally, we
note that rank structured matrices appear also in a purely theoretical context in the
work of Tyrtyshnikov [14], under the name of “weakly semiseparable matrices.”

We are not intending to give here a complete overview of all the existing algorithms
for block quasiseparable representations: this would be a task even more complicated
by the sometimes varying conditions under which these algorithms are derived, most
notably the fact that the underlying structure blocks must be situated just below
the main diagonal, are equidistant, and so on, with the precise conditions depending

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GIVENS-WEIGHT REPRESENTATION 1149

sometimes from paper to paper. Instead, we will compare our own algorithms with
those in the literature at the appropriate places in the remainder of this and following
papers. We refer also to section 4 for a more detailed comparison with uv- and block
quasiseparable representations.

For the special case of semiseparable matrices of semiseparability rank one, the
latter defined by a collection of structure blocks Bk = (k, k, 1), k = 1, . . . , n on
C

n×n, an alternative representation, the so-called Givens-vector representation, has
been introduced in [17]. A first step in the generalization to higher semiseparability
ranks was taken in [15]. In this paper, we will carry this scheme one step further, by
generalizing the idea of the Givens-vector representation to be able to represent any
rank structure.

Our generalization of [17] contains two layers of complication. First, we introduce
the unitary-weight representation. We show how these are theoretically equivalent to
the so-called block quasiseparable representations in input or output normal form
introduced by Dewilde and van der Veen [7]. Next, we specify our representation to
obtain the Givens-weight representation. We will specify various types of such Givens-
weight representations (e.g., those of type 1 and type 2), and we present several tools
to deal with these representations in an efficient and stable way.

Briefly, it could be said that the present paper extends the earlier concept of the
Givens-vector representation for semiseparable matrices of semiseparability rank one
[17] to its natural framework, thereby significantly extending and illuminating these
earlier concepts. For example, in our future work [4, 6] we use easily understandable
operations like “extending and regressing the action radius” (the latter being a concept
introduced in the present paper) instead of the seemingly ad hoc formulas used in
[17, 16]. These methods are both stable and work under the condition of general rank
structures.

One feature of our representations is that they can be used to obtain the (asymp-
totically) minimal number of parameters to represent the rank structured matrix
part. More precisely, we show that (i) the Givens-weight representation can lead to
a representation consisting of O(rn) parameters, where n is the matrix size and r is
a measure for the average rank index of the rank structure, and this for any rank
structure; (ii) the unitary-weight representation (or by the same means, the block
quasiseparable representations) can lead to such an O(rn) representation provided the
structure blocks are chosen in an appropriate way. The latter observation doesn’t
seem to be well known in the literature, in the sense that, e.g., many papers use a
representation consisting of O(r2n) parameters; see, e.g., [9], as well as many other
papers by these same authors.

This paper is organized as follows. Section 2 introduces the basic ideas of the
unitary-weight and Givens-weight representations. Section 3 considers the opera-
tions of approximating and reducing the representation. Section 4 contains a detailed
comparison of the unitary/Givens-weight representation with the other kinds of rep-
resentations in the literature. Finally, some conclusions are provided in section 5.

2. Givens-weight representation. In this section, we will describe the basic
ideas enabling one to obtain a compact representation for rank structured matrices.
The representation will generalize the Givens-vector representation for semiseparable
matrices of semiseparability rank one, which was introduced in [17].

The Givens-weight representation will be an internal representation, which works
strictly inside the area spanned by the structure blocks and considers the “outside
world” to be inaccessible.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1150 STEVEN DELVAUX AND MARC VAN BAREL

This section is organized as follows. In the first two subsections, we introduce
the concepts of unitary-weight and Givens-weight representations, first on a special
case in subsection 2.1, and later for general rank structures in subsection 2.2. In the
last two subsections, we further complete the description of the representation, by
specifying two directions in which it can be extended: we describe representations
that are based on column instead of row operations in subsection 2.3, and for the
upper instead of the lower triangular matrix part in subsection 2.4.

2.1. Example. In the present subsection we will try to indicate the underlying
ideas of unitary-weight representations. To this end we will take the structure in
Figure 2.1 as a didactical example. First, it may be noted that this figure does not
show the surrounding matrix box anymore: this reflects a fact mentioned before,
namely that only the area spanned by the structure blocks will be relevant for the
representation and that the “outside world” will be inaccessible.

Rk 1

Rk 2

Rk 1

Fig. 2.1. Example of a rank structure with three structure blocks B1,B2, and B3. We will
use this example to explain the mechanism of the unitary-weight and Givens-weight representation
during the following paragraphs. From now on the surrounding matrix box, as in Figure 1.1, will
not be shown anymore.

In what follows, we will often work with elementary unitary operations. These
are defined as unitary matrices having a block diagonal form U = Ia ⊕Q⊕ Ib, where
Ia, Ib denote identity matrices of suitable sizes. When such a unitary operation U
acts on the rows of a given matrix, we will represent it in a pictorial way by a vertical
line segment, placed on the position of the rows on which it acts. Sometimes we will
actually denote it as a vertical arrow, instead of a line segment, as an auxiliary means
for visualizing the algorithm flow; see below.

The unitary-weight representation is obtained by reducing the structure blocks
into blocks of zeros, by the use of elementary unitary row transformations. First, we
apply an (elementary) unitary transformation to transform the bottom Rk 1 block
into a block of zeros, with one row less; see Figure 2.2.

Note that this unitary transformation acts only on the columns on the left of
the vertical line which is indicated in boldface in the figure, in the present case rows
1, 2, . . . , 9. We say that this vertical line borders the action radius of the unitary
transformation. Thus the action radius of the current unitary transformation is equal
to 9.

Having applied this operation, note that in columns 7, 8, and 9 that we have
already reached the “top” of the structure. Therefore, this is now the right moment
to consider the top elements of these columns, and to store them. These elements will
be called weights, and they are visualized on a grey background in Figure 2.2.

From now on we consider columns 7, 8, and 9 as finished, and we restrict our

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GIVENS-WEIGHT REPRESENTATION 1151

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

=

Rk 1

Rk 1

Rk 2 Rk 2

Rk 1

Fig. 2.2. We apply a unitary transformation to transform the bottom two rows of the structure
into zeros. This transformation acts only on the columns on the left of the vertical line which is
indicated in boldface in the figure: this line borders the action radius of the unitary transformation.
Having performed this unitary transformation, the elements indicated on a grey background are
stored; they are called weights.

perspective to the previous columns. We can then apply a unitary transformation
to transform the middle Rk 2 block into a block of zeros, with two rows less; see
Figure 2.3.

Note that again, this unitary operation acts only on the columns on the left of the
vertical line indicated in boldface in the figure. Thus the action radius of the current
unitary transformation is equal to 6.

Having applied this operation, note that also in columns 4, 5, and 6 we have
reached the top of the structure. Therefore, this is now the right moment to consider
the top elements of these columns and to store them. This yields us a second block
of weights, which is again visualized on a grey background in Figure 2.3.

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

=
Rk 2

Rk 1 Rk 1

Fig. 2.3. We apply the next unitary transformation and store the new block of weights.

From now on we drop columns 4, 5, and 6 from our perspective. We can then
apply a unitary transformation to transform the top Rk 1 block into a block of zeros,
with one row less; see Figure 2.4. We conclude by storing the final block of weights.

The weights can now be collected into a single matrix, which we call the weight
matrix. Together with the computed unitary transformations, this matrix yields us
the complete unitary-weight representation of the given matrix; see Figure 2.5.

Of course, to be a useful representation, the unitary-weight representation should
allow the possibility to restore the original matrix from which we started. This can
be done by “reversing” the previous steps.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1152 STEVEN DELVAUX AND MARC VAN BAREL

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

=

Rk 1

Fig. 2.4. We apply the final unitary transformation and store the new block of weights.

Fig. 2.5. Schematic picture of the unitary-weight representation for the rank structure in
Figure 2.1.

This reversal process will be called spreading out the unitary-weight representa-
tion and is shown in Figure 2.6. First, we start by spreading out the top block of
weights, i.e., we multiply them with the inverse of the top unitary transformation of
the unitary-weight representation; see Figure 2.6(a).

As a result of this spreading-out, the weight matrix will start to get filled-in.
Moreover, since we are now at the point of entering the structure in columns 4, 5,
and 6, this is now the right moment to also bring the middle block of weights into our
perspective. Then we spread out all of these elements; see Figure 2.6(b).

As a result of this spreading-out, the weight matrix will get filled-in more and
more. Moreover, since we are now at the point of entering the structure in columns
7, 8, and 9, this is now the right moment to also bring the last block of weights into
our perspective. Then we spread out all of these elements; see Figure 2.6(c).

Finally, we then retrieve the original, full matrix which we started from; see Figure
2.6(d).

The reader will have noticed that we used a grey/white color code in Figure 2.6,
as well as in the previous figures. Let us explain the meaning of this code. The grey
elements are used to denote the weights, i.e., the elements that contain “condensed”
information about the full matrix. Thus in order to see the real meaning of these
elements, they first have to be spread out by the next unitary transformations of the
unitary-weight representation. On the other hand, the white elements denote the
real-size elements, i.e., the elements that will not be further influenced by the next
unitary transformations. These are actual elements of the full matrix.

This grey/white code turns out to be quite handy; therefore, it will be frequently
used in what follows.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GIVENS-WEIGHT REPRESENTATION 1153

(a) Consider the first block of
weights and spread out.

(b) Consider also the second
block of weights and spread out.

(c) Consider also the third block
of weights and spread out.

(d) We now retrieve the full ma-
trix.

Fig. 2.6. Spreading out the unitary-weight representation.

2.2. General definitions. Now we are ready to handle the unitary-weight and
Givens-weight representations in the general case. We will do this for a matrix A
satisfying some general rank structure R = {Bk}. Just as in the example of the
previous subsection, we will have to assume that the structure blocks are ordered in a
sequential way, i.e., that there is no pair of structure blocks for which the first one is
completely contained in the second one. If this condition is not satisfied yet, then we
first have to remove from the structure all such structure blocks which are completely
contained in another structure block. (Actually, these nested structure blocks are not
completely useless, in the sense that they lead to an additional sparsity pattern in the
Givens-weight representation. But we will not be concerned about this here.)

Thus we can now assume that the rank structure does not contain any nested
structure blocks anymore. We can then order the remaining structure blocks in a
sequential way, going from the top left to the bottom right corner of the matrix.
Stated in another way, the structure blocks are ordered in such a way that both
the row and column indices ik and jk of the structure blocks increase in a strictly
monotonic way.

Then we can come to the general definition of unitary-weight representations.

Definition 2 (index sets). Let R = {Bk}Kk=1 be a rank structure, where the
structure blocks are ordered such that i1 < · · · < iK and j1 < · · · < jK . Then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1154 STEVEN DELVAUX AND MARC VAN BAREL

we define index sets Ik = {ik, . . . , ik+1 − 1}, Ik,top = {ik, . . . , ik + rk − 1}, and
Jk = {jk−1+1, . . . , jk}, for k = 1, . . . ,K. Here the extremal values of row and column
indices are defined as iK+1 := N + 1 and j0 := 0, and we also define rK+1 := 0.

Definition 3 (unitary-weight representation). Let A ∈ C
m×n be a matrix satis-

fying a rank structure R = {Bk}Kk=1, where the structure blocks are ordered such that
i1 < · · · < iK and j1 < · · · < jK . A unitary-weight representation of the matrix A
according to the structure R consists of a pair ({Uk}Kk=1,W). Each Uk is a unitary

transformation, acting on the rows and columns indexed by Ik ∪ Ik+1,top and
⋃k

l=1 Jl,
respectively, and intended to create zeros in all of these rows, except those of Ik,top.
These unitary transformations Uk should be applied subsequently for k = K, . . . , 1.
On the other hand, the matrix W ∈ C

m×n is called the weight matrix, and it contains
all of the blocks of elements obtained in the rows and columns indexed by Ik,top and
Jk, respectively, at the moment just after applying Uk. See Figure 2.7.

Rk 3

Rk 3

Rk 2

(a) (b)

Fig. 2.7. For the rank structure in the left picture, the right figure shows a schematic picture
of the unitary-weight representation.

If a unitary-weight representation of a matrix is given, then we can restore the
full matrix by spreading out the representation, which we explained in the previous
subsection.

Now we will add some extra constraints to the above definition of unitary-weight
representation, by additionally splitting each unitary transformation Uk into a prod-
uct of Givens tranformations. This will lead us to the description of Givens-weight
representations.

In what follows, we will use the term Givens transformation to denote a unitary
operation which differs from the identity matrix in only two subsequent rows i and
i + 1. This transformation will be sometimes denoted as Gi,i+1, and the index i will
be called the row index of the Givens transformation. Similarly to our notation for
elementary unitary operations, we will graphically denote the Givens transformation
Gi,i+1 by means of a vertical line segment, with the height at which this line segment
is standing in the figure determined by the row index i (see below).

First, rather than individual Givens transformations, it will be useful to work
with Givens arrows: these are defined as products of the form Gi+k,i+k+1 . . . Gi,i+1,
for some k ≥ 0. Graphically, this can be considered as a collection of Givens trans-
formations where each Givens transformation is situated precisely one position below
the previous one; see Figure 2.8.

The number of Givens tranformations of which a Givens arrow consists will be
called the width of the Givens arrow. Moreover, we define the head and the tail

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GIVENS-WEIGHT REPRESENTATION 1155

=

Fig. 2.8. A Givens arrow Gi+2,i+3Gi+1,i+2Gi,i+1 consisting of three Givens transformations.
Concerning this figure, we recall that we consider each Givens transformation as “acting” on the
rows of an (invisible) matrix standing on the right of it, and hence that the Givens transformations
in the figure should be evaluated from right to left, thereby explaining the downward direction of the
Givens arrow.

of the Givens arrow to be the largest and the smallest row index of the Givens
transformations of which the Givens arrow consists, respectively. These notions have
an obvious graphical interpretation.

Having introduced all of these notions, we can now move from unitary-weight to
Givens-weight representations.

Definition 4 (Givens-weight representation). Let A ∈ C
m×n be a matrix sat-

isfying a rank structure R = {Bk}, where the structure blocks are ordered such that
i1 < · · · < iK and j1 < · · · < jK . A Givens-weight representation of A according
to the structure R is a unitary-weight representation, where additionally each unitary
component Uk is decomposed into a product of Givens arrows, such that

• each of the Givens arrows has width at most rk,
• both the heads and the tails of the subsequent Givens arrows of each Uk are

monotonically proceeding upwards. For the tails, we assume that this mono-
tonicity is strict.

See Figure 2.9.

== =

Fig. 2.9. Suppose that the current structure block is Rk 3 and that the corresponding uni-
tary transformation Uk spans over six rows. Then we assume for this unitary transformation a
decomposition into a product of Givens arrows of width at most 3.

Let us comment on Figure 2.9. The left part of the figure denotes a unitary
component Uk of the Givens-weight representation. The middle and rightmost part
of the figure then show the required decomposition of this unitary component Uk into
a product of Givens transformations. In particular, the equivalence between the two
rightmost pictures in Figure 2.9 follows by repeatedly inserting Figure 2.8. On the
other hand, the equivalence between the two middle pictures in Figure 2.9 is purely
aesthetic: these are two different ways for visualizing the same product of Givens
transformations.

We should still explain why the assumption is made that each Givens arrow in
the decomposition of Uk has width at most rk. To this end, recall that the unitary
transformation Uk serves to create zeros in a certain Rk(rk) submatrix, except for its
top rk rows. This effect can always be realized by a succession of Givens arrows as
prescribed; see section 3 for more details.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1156 STEVEN DELVAUX AND MARC VAN BAREL

It turns out that by decomposing each unitary transformation Uk as specified in
Definition 4, we formally obtain a decomposition into a product of too many Givens
transformations, in the sense that the beginning and trailing Givens transformations
of two subsequent unitary transformations Uk may overlap. This overlap may be
especially severe when the structure is dense, i.e., when the vertical gaps between
two subsequent structure blocks are small compared to their rank upper bounds; see
Figure 2.11.

Let us comment on Figure 2.11. The figure shows a product of three subsequent
unitary components U1U2U3 of the Givens-weight representation, together with its
decomposition as a product of Givens transformations. This leads to a total of 3 ×
6 = 18 Givens transformations. However, it can be shown theoretically that the
compression process for which U1, U2, and U3 are intended can be performed using
only 12 Givens transformations. More precisely, the 6 Givens transformations which
are encircled in Figure 2.11 are, in principle, redundant for this compression process.

In practical situations we would like to avoid such a superfluous amount of Givens
transformations. We will now describe some extreme cases where this is achieved.

Definition 5 (Givens-weight representations of type 1 and 2). Under the same
conditions as in Definition 4, let there be a Givens-weight representation such that,
when stacking the Givens arrows of all the subsequent Uk together, the tails are strictly
monotonically proceeding upwards. Then the Givens-weight representation is said to
be of type 1. If the same condition holds with the word “tails” replaced by “heads,”
then the representation is said to be of type 2.1

It turns out that any Givens-weight representation can be brought into each of the
forms of the above definition. This reduction can be achieved by means of so-called
“pull-through techniques.” The following lemma is pivotal in this respect.

Lemma 6 (pull-through lemma). Given a unitary 3 by 3 matrix Q which is
factorized as

Q = G′
1,2G2,3G1,2,

then there exists a refactorization

Q = G̃′
2,3G̃1,2G̃2,3.

See Figure 2.10.

=

Fig. 2.10. Pull-through lemma applied in the downward direction. One could imagine that the
leftmost Givens transformation is really “pulled through” the two rightmost Givens transformations,
as indicated by the bold right downward pointing arrow.

The above version of the pull-through lemma was formulated in the downward
direction. In a similar way there exists a pull-through lemma in the upward direction,
but we will not be concerned about this here.

1We may point out that under some additional conditions, the Givens-weight representations
of type 1 and 2 have an interpretation in terms of “zero-creating” and “rank-decreasing” Givens
patterns, respectively, as discussed in [6]. We should mention that the zero-creating Givens pattern
has also been discussed in [5], although it was done there in a more theoretical context.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GIVENS-WEIGHT REPRESENTATION 1157

As an example, let us repeatedly apply the pull-through lemma in order to reduce
the number of parameters of the representation in Figure 2.11. The resulting situation
is then shown in Figure 2.12. Note that the superfluous Givens transformations have
been removed by the pull-through process, and that the representation has become
of type 1. Also the representation of type 2 can be obtained in this way, namely by
repeatedly applying the pull-through lemma in the upward direction.

= =

Fig. 2.11. The leftmost picture shows a product of three subsequent unitary components U1U2U3

in case of a dense rank structure R. The two rightmost pictures then show the decomposition
of this unitary matrix as a product of individual Givens transformations. The redundant Givens
transformations are encircled.

= =

Fig. 2.12. After removal of the superfluous Givens transformations in Figure 2.11 by, for
example, repeatedly applying the pull-through lemma, we end up with a Givens-weight representation
of type 1.

Note that for efficiency reasons, the pull-through operations should be grouped
in such a way that we move only one time from the top to bottom of the matrix.
Moreover, each time we should “enlarge the action radius” of the Givens transforma-
tions which will be pulled-through, in order to give them the same action radius as
the next unitary operation Uk; we refer to [6] for details.

In a certain sense, the representations of Definition 5 represent two extreme cases
having a small amount of Givens transformations. For practical computations we can
afford to work with a more general class of Givens-weight representations, which we
call efficient.

Definition 7 (efficient Givens-weight representation). Under the same condi-
tions as in Definition 4, let there be a Givens-weight representation for A ∈ C

m×n

according to the rank structure R. This representation is said to be efficient if its
number of Givens transformations exceeds the number of Givens transformations oc-
curring in the Givens-weight representation of type 1 (say) by at most a certain fixed
percentage. For practical choices of the underlying rank structure R, i.e., when m ≈ n
and the unstructured lower triangular part is small compared to the structured lower
triangular part, this means that the number of Givens transformations should be ap-
proximately equal to rn, where r is a measure for the average semiseparability rank.

This definition says that a Givens-weight representation can be efficient only if
the number of superfluous Givens transformations is not too high w.r.t. the “optimal”
value. As an illustrative example, the reader could keep in mind the difference between
Figures 2.11 and 2.12.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1158 STEVEN DELVAUX AND MARC VAN BAREL

Summarizing, we have now completely described the Givens-weight representation
induced by a rank structure R and some of its practical variants. For the remainder
of this section, we will indicate how this entire terminology can be reformulated in
two other situations.

2.3. Row versus column operations: swapping the representation. The
unitary-weight and Givens-weight representations described previously have the fea-
ture that the elementary unitary operations Uk are considered as row operations.
In a completely analogous way, one could build a representation based on column
operations.

We are not intending to reproduce all of the previous definitions and examples
to the column case. Instead, we will focus here on an efficient swapping algorithm to
change from a row to a column representation or vice versa, hereby generalizing the
swapping algorithm for semiseparable matrices of semiseparability rank 1 introduced
in [16].

The swapping algorithm will be fairly simple and, together with its generaliza-
tion to “generalized swapping” described in [4, 6], it will form a key ingredient for
manipulating Givens-weight representations. Moreover, in section 3 we will come to a
possible application of the swapping algorithm by showing that it can be used to per-
form an additional compression of the representation, i.e., to approximate the matrix
by one having smaller ranks in its underlying rank structure, whenever appropriate.

The swapping process is illustrated in Figure 2.13.
Let us comment on this figure. Figure 2.13(a) shows the initial weight matrix, in

which we have started to spread out the Givens transformations belonging to the first
unitary transformation. We would then like to go on by also spreading out the next
unitary operations, so that we can finally obtain the full version of the given rank
structured matrix.

Before spreading out further, however, we apply an auxiliary column operation
in order to bring the weights as much as possible to the right; see Figure 2.13(b).
This auxiliary column operation serves to prevent the matrix from getting completely
filled-in by the spreading-out process. It is applied only to the rows lying between the
thick horizontal lines shown in Figure 2.13(b); in the present case rows 3, 4.

Having done this, we can now go on to further spread out the rank structured
matrix, while each time applying a unitary column operation to bring the weights as
much as possible to the right. Figures 2.13(c), 2.13(d), 2.13(e), and 2.13(f) show the
next steps in this swapping process.

In these figures, we used the following graphical code. The “active” unitary
operation which is currently being applied to the rows or columns of the matrix is
always shown in boldface. This may be both a unitary operation belonging already
to the unitary-weight representation (for those acting on the rows), or a new unitary
operation coming from outside (for those acting on the columns). On the other hand,
unitary operations belonging to the unitary-weight representation, but which are not
active in the current step of the algorithm, are always shown by thin arrows.

The final situation in Figure 2.13(f) shows how we have completely spread out
the weight matrix by annihilating the action of the original row operations, and where
at the same time the weight matrix has again been compressed by the use of auxiliary
column operations. In other words, we have now completely switched from a row-
based to a column-based unitary-weight representation.

Note that also the weight blocks of the column representation can easily be read
off during the swapping algorithm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GIVENS-WEIGHT REPRESENTATION 1159

(a) Spread out the first
unitary row operation.

(b) Apply a unitary col-
umn operation to bring
the weights to the right.

(c) Spread out the sec-
ond unitary row opera-
tion.

(d) Apply a unitary col-
umn operation to bring
the weights to the right.

(e) Spread out the third
unitary row operation.

(f) We now obtain the
column-based Givens-
weight representation.

Fig. 2.13. Swapping the unitary-weight representation.

For this algorithm, as well as for many other algorithms to be described, the
algorithm was illustrated for a unitary-weight rather than a Givens-weight represen-
tation. But this is only for clarity reasons; in reality the above algorithm is capable
of both exploiting and preserving the sparsity pattern satisfied by the Givens trans-
formations. The main observation for this purpose is that by definition, the Givens
transformations are organized in Givens arrows, each of them pointing in the opposite
direction w.r.t. the algorithm flow; see Definition 4. This will guarantee that there
is no superfluous fill-in during the algorithm in the sense that, loosely speaking, each
Givens transformation will cause only one weight element to get filled in. The latter
fact will then guarantee that the number of swapped Givens transformations is of the
same order as the number of original Givens transformations; see Figure 2.14.

Let us consider the numerical complexity of the swapping algorithm. To this end
we can first note that each Givens transformation on both rows and columns acts on
a number of approximately r weight elements, where r is a measure for the average
semiseparability rank of the rank structure R. In particular, if the Givens-weight
representation is efficient in the sense of Definition 7, and assuming that we work
with a practical choice of rank structure, it follows that the complexity reduces to
O(r2n).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1160 STEVEN DELVAUX AND MARC VAN BAREL

(a) Starting situation.
The top weight block,
resulting from earlier
swapping operations,
will now be spread
out by means of the
inverses of the next
Givens arrows (to be
evaluated from left to
right).

(b) We apply two

Givens arrows (to be
evaluated from top
to bottom) to the
columns to bring the
weights to the right.

(c) We could now go
on to spread out by
means of the inverses
of the next Givens ar-
rows (to be evaluated
from left to right) on
the rows, and so on.

Fig. 2.14. The figure shows a more detailed illustration of the swapping operation, in terms
of individual Givens arrows. Note that the sparsity of the weight block in Figure 2.14(a) has been
preserved during the algorithm, in the sense that the weight block in Figure 2.14(c) satisfies the same
sparsity. Moreover, this sparsity allows the number of swapped Givens transformations determined
in Figure 2.14(b) to be of the same order as the number of original Givens transformations.

2.4. Representation for the upper triangular part. We will now focus on
a second way to extend the definition of Givens-weight representation. Until now we
have considered only rank structures in the lower triangular part. But it is not difficult
to generalize these notions to a Givens-weight representation for the structured upper
triangular part. Formally speaking, we define a rank structure in the block upper
triangular part2 as a collection RT of structure blocks satisfied by the transpose matrix
AT . It is then straightforward to generalize the notion of Givens-weight representation
to this case.

Note that if the matrix satisfies rank structure in both its block lower and block
upper triangular part, we will obtain in this way a representation for the full matrix,
as we describe now.

Definition 8. Let A ∈ C
m×n be a matrix having rank structure both in its block

lower and in its block upper triangular part, and suppose that the structure blocks of
the lower and upper triangular parts do not overlap with each other. Let there be given

• a Givens-weight representation for the structured lower triangular part of A,
• a Givens-weight representation for the structured upper triangular part of A,

and
• a few real-size elements to represent the unstructured matrix part.

This collection will be briefly denoted as a Givens-weight representation for the matrix
A. In the same way, let us consider the matrix obtained by gluing together the weight
matrices of the representations for the lower and the upper triangular part and the

2The precise meaning of the term “block upper triangular part” or its synonym “structured
upper triangular part” depends of course on the underlying distribution of the structure blocks. In
particular, the structure blocks are allowed to go beyond the main diagonal. The same remarks hold
of course for the block lower triangular part.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GIVENS-WEIGHT REPRESENTATION 1161

Fig. 2.15. Schematic picture of a Givens-weight representation for a matrix A having rank
structure both in its structured lower and in its structured upper triangular part. The figure shows
the weight matrix as well as the unitary transformations of the representation. Note that the matrix
is assumed here to be symmetric, and that the lower and upper triangular representations are based
on row and column operations, respectively.

sparse matrix containing the unstructured matrix elements around the main diagonal.
This matrix will be denoted as the weight matrix of the representation; see Figure
2.15.

Note that both the upper and the lower triangular part could be represented by
either a row-based or a column-based Givens-weight representation, or even “hybrid”
versions of this, leading to a total of at least 2×2 = 4 different ways of representing the
matrix A. The example in Figure 2.15 shows just one example of such an assignment.

Summarizing, we have now described the basic concepts of unitary/Givens-weight
representations for rank structured matrices. In the remainder of this paper, as well
as in the papers [4, 6], we will move to the development of practical algorithms for
this representation.

3. Approximating and building the representation. In this section we
show how a unitary/Givens-weight representation can be built to approximate a dense
matrix, and how a unitary/Givens-weight representation can be approximated to have
lower ranks in its underlying rank structure. It will suffice to describe these operations
for a representation of the block lower triangular part; the block upper triangular part
can then be handled in a similar way.

This section is organized as follows. Subsections 3.1 and 3.2 describe how to
approximate a dense matrix by a rank structured one, and how to approximate a
rank structured matrix by one with smaller ranks, whenever appropriate. Subsection
3.3 discusses the complexity of the algorithms. Some comparisons with the literature
are provided in subsection 3.4.

3.1. Approximating a dense matrix. We start by building a unitary/Givens-
weight representation to approximate the block lower triangular part of a dense ma-
trix. The basic ideas of this process have already been given in section 2, where it
was explained how the representation requires at the kth step the determination of
an elementary unitary transformation Uk that compresses a certain Rk(rk) matrix,
except for its top rk rows, k = K, . . . , 2, 1. Moreover, it was explained there how
the concept of Givens-weight representation requires this unitary operation Uk to be
decomposed in a certain way into a product of Givens arrows of width at most rk; see
Figure 2.9.

To achieve this in a practical way, we will first consider the case where the re-
quired Rk(rk) matrix has been decomposed in the form of a truncated singular value
decomposition, or more generally any rank-revealing factorization GHH with G and
H both having precisely rk columns. The required unitary transformation Uk can then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1162 STEVEN DELVAUX AND MARC VAN BAREL

be determined by simply applying Givens arrows to perform a QR-factorization of the
generator G; in this way the decomposition into Givens arrows will have precisely the
form required in Figure 2.9.

We may mention that this scheme can be improved to obtain a more compact
form for the Givens arrows. To this end we first apply an auxiliary unitary column
operation C ∈ C

rk×rk to the generator G in order to bring its bottom square submatrix
into upper triangular form. Having done this, the number of Givens arrows required
to perform the QR-factorization of the new generator GC can be considerably lower.
Having performed this QR-factorization, we can again remove the influence of the
auxiliary column operation C by multiplying with its inverse to the columns; the
resulting generator G will then still be zero except for its top rk rows, as required.
We could then go on with the next structure block.

It can be shown that with a proper implementation of this scheme, each of the
applied Givens arrows will definitively eliminate a row, which will then not be touched
anymore by any of the following operations. In other words, this means that the heads
of the subsequent Givens arrows will be strictly monotonically proceeding upwards,
and hence that we will have obtained a Givens-weight representation of type 2.

Consider now the case where the given Rk(rk) matrix is compressed by means
of a rank-revealing QR-factorization [13]. We recall that this procedure consists of
searching for the column with largest norm and bringing it in upper triangular form.
The latter operation can be achieved, e.g., by means of a sequence of Givens trans-
formations constituting an upward pointing Givens arrow. We can then remove the
top row from our perspective and apply the same procedure to the remaining matrix.
This procedure is then repeated until the remaining matrix is numerically zero, which
will be the case after at most rk steps. The remaining numerically zero elements are
simply truncated to zero.

Now it is straightforward to see that the truncated rank-revealing QR-factorization
will lead to a compression of the given Rk(rk) matrix except for its top rk rows. The
required elementary unitary transformation Uk achieving this is simply the product
of the applied upward pointing Givens arrows of the rank-revealing QR-factorization;
more precisely, it is obtained by rearranging these Givens transformations into down-
ward pointing Givens arrows of width rk; see the second transition in Figure 2.9.

Just as in the previous paragraphs, it is possible to improve this scheme in order
to obtain a more compact representation. This follows by remarking that the rank-
revealing QR-factorization induces in a natural way a factorization GHH , where HH

contains the top rk rows of the compressed Rk(rk) matrix, and the matrix G contains
the first rk columns of the (inverse of the) applied elementary unitary operation Uk.
We can then proceed as described in the previous paragraphs to obtain a Givens-
weight representation of type 2.

Remark 9.

1. The above discussion assumes that the exact ranks of the full matrix were
known. Nevertheless, all the tools that we describe allow one to determine
these ranks in a dynamical way as the algorithm proceeds, depending on
some numerical error threshold ε. Hence we can really approximate the given
matrix by a rank structured one.

2. Clearly, one can apply similar techniques to obtain a unitary-weight instead
of a Givens-weight representation.

3.2. Approximating a compressed matrix. We will now show how to ap-
proximate a matrix with available unitary/Givens-weight representation by one with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GIVENS-WEIGHT REPRESENTATION 1163

(a) Starting situation.
The top weight block,
resulting from earlier
swapping operations,
will now be spread
out by means of the
inverse of the next
unitary row operation
Uk.

(b) Apply a unitary
operation to compress
the weights. Since
the numerical rank is
equal to two, we can
compress until there
are only two numeri-
cally nonzero columns
left.

(c) We could now go
on to spread out by
means of the inverse of
the next unitary row
operation Uk+1, and
so on.

Fig. 3.1. Specification of Figure 2.14 in case the numerical ranks of the structure blocks are
equal to two. We will then be able to additionally compress the representation.

lower ranks in its underlying rank structure. Thus let us assume that the unitary/Givens-
weight representation has led to an overestimation of the numerical ranks of the under-
lying structure blocks, at least up to some numerical error threshold ε. This fact will
then be revealed during the swapping process, where now an additional compressing
of the weight matrix can be performed; see Figure 3.1.

As can be seen, the above reduction algorithm follows by an easy application of
the swapping procedure.

Let us describe here yet another closely related application of the swapping pro-
cedure, namely, the process of going from a “coarse” to a “fine” rank structure, in the
sense of Figure 3.2. The corresponding algorithm is shown in Figure 3.3.

Rk2

Rk2

Rk2

Rk2

Rk2

Fig. 3.2. Going from a coarse to a fine rank structure. It is assumed here that the “interme-
diate” structure block is known to be numerically of rank at most two.

It is easy to see that the process in Figure 3.3 can be extended to deal with several
intermediate structure blocks, at least when these intermediate structure blocks are
treated from top left to bottom right, corresponding to the flow direction of the
swapping process.

3.3. Complexity issues. We will now describe some complexity issues for the
approximation algorithms described in the previous subsections. First, note that the
illustrations in Figures 3.1 and 3.3 have been expressed in terms of a unitary-weight
instead of a Givens-weight representation. We already mentioned that this is done

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1164 STEVEN DELVAUX AND MARC VAN BAREL

(a) Starting situation.
We assume that the
swapping process has
been performed up to
the indicated unitary
row operation Uk.

(b) Compress the
indicated submatrix,
which is known to
be numerically of
rank at most two, by
an auxiliary column
operation.

(c) We could now go
on with the swapping
process, by applying
the next auxiliary col-
umn operation. After
that, we spread out by
means of the inverse
of the row operation
Uk, and so on.

Fig. 3.3. Going from a coarse to a fine rank structure in terms of the unitary/Givens-weight
representation, for the example in Figure 3.2. The algorithm performs a swapping procedure, during
which the intermediate structure blocks are absorbed into the structure. Although the figure shows
the case of a single intermediate structure block, the situation is similar to the case of several
intermediate structure blocks.

mainly for clarity reasons, but in the present case there is also a more fundamental
reason, as we explain now.

The reader should recall that for the swapping algorithm of section 2, the par-
ticular sparsity pattern of the Givens-weight representation allowed for an additional
benefit, in the sense that the swapped Givens arrows could be immediately read
off in terms of the original Givens transformations. This fact was reflected by the
Hessenberg-like shapes of the grey weight matrices in Figure 2.14.

In contrast, these observations are not true anymore for the algorithms in the
previous subsections. The reason is that we are dealing here with approximation
algorithms, and that the additional compression of the weight blocks should be per-
formed by means of a numerically stable method such as a truncated singular value
decomposition, a pivoted QR-factorization, or a similar routine. But to the best of
our knowledge, such routines are unable to exploit the given shape of the matrix, in
the sense that, denoting with r a number such that the number of rows, the number
of columns, the original ranks, and the numerical ranks are all of order r, then the
complexity is O(r3), even if the original matrix was given in a Hessenberg-like form.

Of course, one can always use the techniques described in subsection 3.1 (but now
with the role of rows and columns reversed) in order to obtain a reduced representa-
tion of type 2 (in the sense of Definition 5).3 Alternatively, the superfluous Givens
transformations could be removed afterwards by means of the pull-through lemma.
But the point that we want to make here is that these techniques cannot improve
on the O(r3) complexity per step. Thus in the case of a dense rank structure, i.e.,
when the gaps between the subsequent structure blocks are very small, the reduction

3It suffices to apply each time an auxiliary row operation to bring the left square submatrix of
the generator HH in upper traingular form, and only then determine the required Givens arrows on
the columns as explained in subsection 3.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GIVENS-WEIGHT REPRESENTATION 1165

process will be of total complexity O(r3n), which is rather inefficient.
A solution may be to work with only O(nr) structure blocks, i.e., to choose the

gaps between the structure blocks to be of order r. At the rate of an O(r3) complexity
per step, the total complexity reduces then to O(r2n). This type of solution was also
sometimes observed in the literature; see, e.g., [2, page 13].

Finally, we recall once more that the complexity problems described previously
are really inherent to the approximation problems occurring in the current section. In
contrast, most other algorithms to be described in this and further papers [4, 6] will be
exact and therefore able to both exploit and preserve the sparsity of the Givens-weight
representation, disregarding the underlying distribution of structure blocks.

3.4. Comparison to the literature. We close this section with some references
to similar algorithms in the literature. Approximation algorithms were already given
in [7, Chapters 3 and 5] in a more general operator-theoretical context. In particular,
algorithms were provided there to obtain a block quasiseparable representation in
input or output normal form, which are the theoretical equivalents of unitary-weight
(but not Givens-weight) representations; see section 5. A more recent reference about
approximation algorithms can be found in [2, section 11]. See also [11].

4. Comparison with other representations. In this section, the unitary/Gi-
vens-weight representation will be compared with two other representations frequently
encountered in the literature: block quasiseparable representations and uv-represen-
tations. For both representations we describe an easy algorithm to transform the
representation into the unitary/Givens-weight form. Moreover, it will be shown that
especially the class of block quasiseparable representations is tightly connected to the
unitary-weight format, and the similarities and differences between these two types
of representation will be emphasized.

4.1. Quasiseparable representations. First, we will focus on block quasisep-
arable representations. The idea for these representations has essentially been intro-
duced in the book [7]. In this paper, we will follow the terminology of Eidelman and
Gohberg by calling these matrices block quasiseparable [9], but the reader should be
aware that they also appear under other names in the literature, such as sequentially
semiseparable matrices, matrices with low Hankel rank, and so on.

We will start with the most general definition of block quasiseparable matrices. A
matrix is called block quasiseparable w.r.t. a given block partition if it can be divided
as a block matrix w.r.t. this partition, with (i, j)th block element given by⎧⎨⎩

Ai,j = PiTi−1Ti−2 . . . Tj+1Qj , i ≥ j + 1,
Ai,j = Di, i = j,
Ai,j = GiSi+1Si+2 . . . Sj−1Hj , i ≤ j − 1

for i, j = 0, . . . ,K. Here an empty product denotes the identity matrix. The sizes of
all auxiliary matrices occurring in these formulas must be chosen to be compatible
with each other. In the literature, these matrices must sometimes satisfy some ad-
ditional size restrictions, such as the fact that the Di are scalar (these lead then to
the usual, i.e., scalar quasiseparable matrices, occurring in many papers by Eidelman
and Gohberg), the fact that the Di are square, and so on. These conditions vary
sometimes from paper to paper.

We will refer to the matrices Tk and Sk as transition matrices, although this
terminology is somewhat nonstandard. Moreover, we will refer to the Pi, Gi and Qj ,
Hj as row and column shaft generators, respectively.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1166 STEVEN DELVAUX AND MARC VAN BAREL

The block partition corresponding to a given block quasiseparable representation
immediately reveals the shape of the underlying structure blocks Bk. In what follows,
we will assume that these structure blocks Bk, k = 1, . . . ,K are labeled from top left
to bottom right. Note also that the block quasiseparable formulae imply a certain
limitation about the relative positions of the structure blocks in the block lower versus
the block upper triangular part, but this restriction is not essential.

Figure 4.1 shows the block quasiseparable representation in a schematic way.

kT

kT Tk+1

Q Qk Qk+1

P

Pk+2

k+1

Pk

Fig. 4.1. Schematic picture of a block quasiseparable representation. In order to obtain the
(i, j)th block element, we should multiply the corresponding row shaft generator Pi and the corre-
sponding column shaft generator Qj , with in between the product of all transition matrices Tk that
are needed to go from Pi to Qj in the picture.

Now we consider the problem of transforming a given block quasiseparable repre-
sentation into the Givens-weight format. We will restrict ourselves to the structured
lower triangular part: the Givens transformations constituting the first unitary trans-
formation UK can be derived from the QR-factorization of PK . Then denoting by
XK the square top part of the resulting R-factor, the Givens transformations con-
stituting the next unitary operations Uk can be derived from the QR-factorization

of

[
Pk

Xk+1Tk

]
, for k = K − 1, . . . , 1. Here we define each time the new Xk to be

the square top part of the resulting R-factor. During this process, the corresponding
weight blocks can also be computed each time as XkQk−1; see Figure 4.2.

Concerning the complexity of this algorithm, it is easy to see that the algorithm
has a complexity of O(r3n) operations in case of “dense” rank structures, and O(r2n)
operations in case the gaps between the structure blocks are of the same order as the
corresponding rank indices. In fact, this should not come as a surprise, in the sense
that the algorithm in Figure 4.2 has many resemblances to the process of swapping
a unitary-weight representation as described in Figure 2.13. Still pursuing this sim-
ilarity, note that one can use the same techniques as described in subsection 3.1 to
obtain a Givens-weight representation of type 2.

Conversely, suppose now that we have given a Givens-weight representation, or
more generally a unitary-weight representation, and that we want to find a quasisepa-
rable representation for it. The reader should then revisit Definition 3: denoting with
Wk ∈ C

rk×|Jk| the kth weight block and with Uk the kth unitary transformation of
the Givens-weight representation, we recall that the spreading-out process starts by
forming

UH
k

[
Wk

0

]
.

Subsequently, the bottommost rk+1 = |Ik+1,top| rows are further spread out by the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GIVENS-WEIGHT REPRESENTATION 1167

Xk+1
Tk

Q
kQ

(a) Starting sit-
uation. We are
going to take into
account the next
transition matrix
Tk.

X

P

kTk+1

k

kU

Q
kQ

(b) Compute a QR-
factorization of the
matrix formed by
Pk and Xk+1Tk.

Xk

QQ k

(c) The next auxil-
iary matrix Xk can
now be read-off,
and we can form
the next weight
block XkQk−1.

Fig. 4.2. Transition from a block quasiseparable to a Givens-weight representation.

next unitary transformations UH
k+1,. . . . This suggests that we may obtain the qua-

siseparable parameters by subdividing

UH
k =

[
Pk X
Tk X

]
,

where the blocks Pk and Tk have |Ik| and |Ik+1,top| = rk+1 rows, respectively, and
rk columns. The quasiseparable generators Qk are chosen each time as Qk := Wk+1,
k = 0, . . . ,K.

The dynamics of this algorithm are illustrated in Figure 4.3.

Tk+1 Tk+1

QPk

kT

k+1

Pk+2

P Qk

Qk+1

Fig. 4.3. Schematic picture of a block quasiseparable representation constructed in a “dual”
way w.r.t. Figure 4.1.

Still concerning the algorithm to go from a unitary/Givens-weight to a block
quasiseparable representation, note that the above discussion revealed that unitary-

weight representations are theoretically equivalent with the matrices

[
Pk

Tk

]
of the

quasiseparable representation having orthonormal columns, for each k. Thus we see
that unitary-weight representations theoretically correspond to the quasiseparable
representations in input normal form, following the terminology of [7].

In fact there also exists the notion of output normal form in [7], meaning that all
matrices

[
Tk Qk

]
must have orthonormal rows for each k. It can then be argued as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1168 STEVEN DELVAUX AND MARC VAN BAREL

before that this notion corresponds to unitary-weight representations that are based
on column, rather than row operations.

Thus we see that in a certain sense, the unitary/Givens-weight representation
“breaks the symmetry” of block quasiseparable representations by assigning a prefer-
ence to either row or column operations. This may seem awkward, but as we already
observed, this will not prohibit the unitary-weight format from being very convenient
for the development of algorithms. Moreover, by the fact that the representation is
based on unitary operations, which are well known to be optimally conditioned w.r.t.
the matrix 2-norm, it can be expected that an appropriate use of unitary-weight
representations should lead to numerically stable algorithms.

Concerning the differences between block quasiseparable and Givens-weight rep-
resentations, we should stress that

• The above discussion showed a comparison between block quasiseparable and
unitary-weight representations. However, the reader should not forget that
we are primarily concerned with Givens-weight representations, where each
unitary transformation Uk has an additional factorization as a sparse product
of Givens transformations.4 Although it may be observed that the Givens-
weight representation may deviate by a factor of at most 4 from optimality
(since the multiplication of a Givens transformation with a vector of length
2 requires essentially a number of 4 multiplications), it has the advantage
that it can always be used in an efficient way. Notable exceptions where the
performance of the Givens-weight representation is also sensible to the distri-
bution of the structure blocks are the approximation algorithms described in
section 3.

4.2. uv-representations. In this subsection we briefly consider uv-representa-
tions for rank structured matrices.5 Such representations sometimes occur in solution
methods for differential and integral equations. Historically, the term “semiseparable
matrix” was even introduced in the context of uv-representations; see, e.g., [12].

First of all, we must stress that in contrast to Givens-weight and block qua-
siseparable representations, uv-representations do not exist for every rank structured
matrix, but instead only for a subclass which we call the class of uv-representable ma-
trices. When implementing the QR-algorithm for semiseparable matrices of semisepa-
rability rank 1 using the uv-representation for such matrices, for example, this can be
considered a severe weakness since the subsequent QR-iterates then converge to a lim-
iting matrix in block upper triangular form, which in general is not uv-representable
of rank one anymore; see [17].

Let us now give a formal definition of uv-representability.
Definition 10. Let R be a rank structure with a global rank upper bound rk =: r

for each k. We say A ∈ C
m×n is uv-representable w.r.t. R if there exists a factor-

ization

(4.1) A = uv + Acompletion,

4This sparsity property constitutes an essential difference between Givens-weight and block qua-
siseparable representations. However, for completeness, we note that some sparse factorizations in
terms of individual Givens transformations were also described in [7, Chapter 14]. But the latter dis-
cussion concerns unitary rank structured matrices, and we were not able to find there any indication
in terms of nonunitary rank structured matrices or algorithmic exploitation.

5The matrices allowing such a representation are sometimes called “generator representable ma-
trices” instead of uv-representable matrices [17], but we will not use this terminology here since the
word “generator” could be confused with, e.g., the quasiseparable generators.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GIVENS-WEIGHT REPRESENTATION 1169

where u ∈ C
m×r, v ∈ C

r×n and where Acompletion is a “completion” matrix having
the property that its restriction to each of the structure blocks of R is zero. The
factorization (4.1) is called a uv-representation of A.

The above definition states that for a matrix to be uv-representable, the low rank
generators of the different structure blocks of R should be “compatible” in the sense
that they can be completed to a global matrix uv of rank at most r.

Now let us give an algorithm to transform a uv-representation into a Givens-
weight representation. Such an algorithm is trivial and based on the QR-factorization
of the matrix u in (4.1). Let us partition u and v as block matrices according to the
given distribution of the structure blocks, with block elements uk and vk, for k =
0, . . . ,K. Moreover, let us assume that in the process of forming the QR-factorization

of u, the bottom submatrix

⎡⎢⎣ uk

...
uK

⎤⎥⎦ has just been made upper triangular. Then

denoting with Xk the square top block of this upper triangular matrix, the kth weight
block will be simply Xkvk−1. Repeating this process for k = K, . . . , 1, at the end we
will have obtained a Givens-weight representation for the structured lower triangular
part of A. Moreover, assuming that the given matrix is square of size n, then it
is easy to check that (i) the algorithm always leads to an efficient Givens-weight
representation consisting of not more than O(rn) Givens transformations, and (ii)
the algorithm has complexity O(r2n), irrespective of the precise distribution of the
structure blocks. These properties should be contrasted with the reduction process
for quasiseparable representations in subsection 4.1.

5. Conclusion. In this paper we have introduced the notions of unitary-weight
and Givens-weight representations for rank structured matrices. It was described,
e.g., how the representation can be swapped and how it can be reduced to a lower
complexity representation. These results provide a basis for several algorithms using
unitary/Givens-weight representations such as QR-factorization, solution of linear
systems [4], Hessenberg reduction [6], as well as matrix inversion, explicit and implicit
QR-iteration, and so on, to be described in our future work.

REFERENCES

[1] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A.-J. van der Veen, Fast stable
solver for sequentially semi-separable linear systems of equations, Lecture Notes Comput.
Sci., 2552 (2002), pp. 545–554.

[2] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A.-J. van der Veen, Fast Stable
Solvers for Sequentially Semi-separable Linear Systems of Equations, Technical report,
Department of Mathematics, University of California-Berkeley, Berkeley, CA, 2003.

[3] S. Delvaux and M. Van Barel, Structures preserved by the QR-algorithm, J. Comput. Appl.
Math., 187 (2006), pp. 29–40.

[4] S. Delvaux and M. Van Barel, A QR-Based Solver for Rank Structured Matrices, Technical
report TW454, Katholieke Universiteit Leuven, Leuven (Heverlee), Belgium, 2006.

[5] S. Delvaux and M. Van Barel, Rank structures preserved by the QR-algorithm: The singular
case, J. Comput. Appl. Math., 189 (2006), pp. 157–178.

[6] S. Delvaux and M. Van Barel, A Hessenberg reduction algorithm for rank structured matri-
ces, SIAM J. Matrix Anal. Appl., accepted 2007.

[7] P. Dewilde and A.-J. van der Veen, Time-Varying Systems and Computations, Kluwer
Academic Publishers, Boston, 1998.

[8] P. Dewilde and A.-J. van der Veen, Inner-outer factorization and the inversion of locally
finite systems of equations, Linear Algebra Appl., 313 (2000), pp. 53–100.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1170 STEVEN DELVAUX AND MARC VAN BAREL

[9] Y. Eidelman and I. C. Gohberg, On a new class of structured matrices, Integral Equations
Operator Theory, 34 (1999), pp. 293–324.

[10] Y. Eidelman and I. C. Gohberg, A modification of the Dewilde-van der Veen method
for inversion of finite structured matrices, Linear Algebra Appl., 343/344 (2002),
pp. 419–450.

[11] Y. Eidelman and I. C. Gohberg, On generators of quasiseparable finite block matrices, Cal-
colo, 42 (2005), pp. 187–214.

[12] I. C. Gohberg, T. Kailath, and I. Koltracht, Linear complexity algorithms for semisepa-
rable matrices, Integral Equations Operator Theory, 8 (1985), pp. 780–804.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, 1996.

[14] E. E. Tyrtyshnikov, Mosaic ranks for weakly semiseparable matrices, Large-Scale Scientific
Computations of Engineering and Environmental Problems, II, M. Griebel, S. Margenov,
and P. Y. Yalamov, eds., Notes Numer. Fluid Mech., 73, Vieweg, Braunschweig, Germany,
2000, pp. 36–41.

[15] M. Van Barel, E. Van Camp, and N. Mastronardi, Orthogonal similarity transformation
into block-semiseparable matrices of semiseparability rank k, Numer. Linear Algebra Appl.,
12 (2005), pp. 981–1000.

[16] R. Vandebril, M. Van Barel, and N. Mastronardi, An implicit QR algorithm for symmetric
semiseparable matrices, Numer. Linear Algebra Appl., 12 (2005), pp. 625–658.

[17] R. Vandebril, M. Van Barel, and N. Mastronardi, A note on the representation
and definition of semiseparable matrices, Numer. Linear Algebra Appl., 12 (2005),
pp. 839–858.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1171–1180

WHEN IS THE ADJOINT OF A MATRIX A LOW DEGREE
RATIONAL FUNCTION IN THE MATRIX?∗

JÖRG LIESEN†

Abstract. We show that the adjoint A+ of a matrix A with respect to a given inner product is
a rational function in A, if and only if A is normal with respect to the inner product. We consider
such matrices and analyze the McMillan degrees of the rational functions r such that A+ = r(A).
We introduce the McMillan degree of A as the smallest among these degrees, characterize this degree
in terms of the number and distribution of the eigenvalues of A, and compare the McMillan degree
with the normal degree of A, which is defined as the smallest degree of a polynomial p for which
A+ = p(A). We show that unless the eigenvalues of A lie on a single circle in the complex plane, the
ratio of the normal degree and the McMillan degree of A is bounded by a small constant that depends
neither on the number nor on the distribution of the eigenvalues of A. Our analysis is motivated by
applications in the area of short recurrence Krylov subspace methods.

Key words. normal matrices, representation of matrix adjoints, rational interpolation, Krylov
subspace methods, short recurrences

AMS subject classifications. 15A21, 30C15, 65F10

DOI. 10.1137/060675538

1. Introduction. Consider a unitary matrix A with n ≥ 2 distinct eigenvalues.
Since A is normal, its adjoint A∗ is a polynomial in A [9, condition 17],

(1.1) A∗ = p(A) .

It has been observed in several publications, e.g., [4, pp. 774–775], that for a unitary
matrix A, (1.1) does not hold for a polynomial p of “small” degree. In this paper we
strengthen this observation by showing that the smallest degree of such polynomial is
equal to n−1. On the other hand, the McMillan degree of a rational function r = p/q,
where p and q are relatively prime polynomials (i.e., their only common divisor is the
constant polynomial 1), is defined as

(1.2) deg r = max {deg p, deg q} .

Hence

(1.3) A∗ = r(A) ,

where, since A is unitary, r(z) = 1/z is a rational function of McMillan degree one.
In summary, the adjoint of a unitary matrix A is a large degree polynomial and a
small (McMillan) degree rational function in A. The observation that the adjoint of a
normal matrix may be represented as a polynomial as well as a rational function in the
matrix, and that the degrees of these representations may vastly differ, is more than
a curiosity. In fact, it is of great importance for the construction of short recurrence
Krylov subspace methods.

∗Received by the editors November 21, 2006; accepted for publication (in revised form) by
D. B. Szyld April 11, 2007; published electronically December 7, 2007. This work was supported by
the Emmy Noether-Programm of the Deutsche Forschungsgemeinschaft.

http://www.siam.org/journals/simax/29-4/67553.html
†Institute of Mathematics, Technical University of Berlin, Straße des 17. Juni 136, 10623 Berlin,

Germany (liesen@math.tu-berlin.de).

1171

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1172 JÖRG LIESEN

On the one hand, the fundamental theorem of Faber and Manteuffel [6] shows that
if (1.1) holds for a matrix A and a polynomial of degree s, then orthogonal Krylov
subspace bases for A can be generated by an (s + 2)-term Arnoldi recurrence (this
condition is not only sufficient but also necessary; see [6] or [14] for more details).
For a unitary matrix A with n distinct eigenvalues, A∗ = p(A) with the smallest
possible degree of p being n− 1. Thus, generating orthogonal Krylov subspace bases
for unitary matrices via the Arnoldi process requires a full recurrence.

On the other hand, as shown by Barth and Manteuffel [3, 4], if (1.3) holds for a
matrix A and a rational function r = p/q, where p and q are relatively prime poly-
nomials of respective degrees � and m, then orthogonal Krylov subspace bases for A
can be generated by a recurrence containing � + m + 2 terms. The generic type of
this recurrence is displayed in [4, equation (4.1)], from which it is easily seen that this
recurrence is not of Arnoldi-type (partial necessary conditions for the existence of this
recurrence are given in the unpublished report [5]). For stability reasons this (single)
recurrence should be implemented in the form of coupled, or multiple recurrences
(see [4] for details), but the actual implementation is not important for us here. The
important point here is that when � and m are small, an orthogonal Krylov subspace
basis can be generated by a short recurrence. For a unitary matrix A, r(z) = 1/z,
hence � = 0 and m = 1, so that the length of this recurrence is three. In practical
applications one uses coupled two-term recurrences instead of the numerically unsta-
ble three-term version. The resulting algorithm, which originally was discovered by
Gragg in the context of orthogonal polynomials on the unit circle [8], is called the
isometric Arnoldi algorithm. This algorithm has been used for solving unitary eigen-
value problems (see [17] for a survey) as well as for constructing a minimal residual
method for solving linear systems with shifted unitary matrices [11].

For efficiency reasons we would like to use the shortest possible recurrence, and
thus we would like to characterize, for a given matrix A, the smallest degrees of p
and r (if any) such that (1.1) and (1.3), respectively, hold. While the smallest degree
of the representation (1.1) has been characterized in the literature (we give here
new proofs of some results), comparably little has been done to characterize (1.3).
The only related work we are aware of is in the aforementioned papers of Barth and
Manteuffel. There, for a given Hermitian positive definite (HPD) matrix B, a matrix A
is called B-normal(�,m), if A is normal with respect to the inner product generated
by B, and if its adjoint A+ with respect to this inner product satisfies A+ = r(A),
where r = p/q for relatively prime polynomials of respective degrees � and m, cf. [4,
Definition 3.1]. For a given representation A+ = r(A) with known degrees � and m,
Barth and Manteuffel derive bounds on the maximal number of distinct eigenvalues
of A in terms of � and m, cf. [4, Theorem 3.1], or [3, Theorem 4.1]. However, they
provide no characterization of how small or large � and m may be for a given matrix A,
which is the question of interest in this paper (see Remarks 2.4 and 3.7 for further
comments on the B-normal(�,m) matrices).

To allow a rigorous characterization of (1.3), we introduce here the concept of the
McMillan degree of A, which we define as the smallest McMillan degree of a rational
function r such that A+ = r(A) (section 2). In section 3 we then completely answer
the question raised in the title, which, as outlined above, has direct applications in the
area of short recurrence Krylov subspace methods. Moreover, we show that unless the
eigenvalues of A lie on a single circle in the complex plane, the ratio of the smallest
degree of a polynomial representation of A+ (called the normal degree of A) and the
McMillan degree of A is bounded from above by a small constant (less than five), that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RATIONAL REPRESENTATION OF THE MATRIX ADJOINT 1173

depends neither on the number nor on the distribution of the eigenvalues of A. In
our derivations we apply results from rational interpolation theory, which apparently
have not been used in this context before.

2. B-normal matrices. Suppose that A is a square matrix and B is an HPD
matrix. Throughout the paper we will assume that these matrices are of the same
size. The matrix B generates an inner product, 〈x, y〉B = y∗Bx, and the adjoint of A
with respect to this inner product, or, shortly, the B-adjoint of A, is A+ = B−1A∗B.
If A+ is a polynomial in A, then A is said to be B-normal. This is a straightforward
generalization of the common concept of normal matrices, which we here call I-normal.
Of particular interest is the degree of the polynomial representation of the adjoint.

Definition 2.1. Let A be a square matrix and let B be an HPD matrix. If

(2.1) A+ = p(A) ,

where p is a polynomial of the smallest possible degree s having this property, then A
is called normal of degree s with respect to B, or, shortly, B-normal(s).

The property that A is B-normal(s) is completely characterized in the following
result [14, Theorem 3.1].

Theorem 2.2. Let A be a square matrix and let B be an HPD matrix. Then the
following two assertions are equivalent:

1. A is B-normal(s).
2. (a) A is diagonalizable with the eigendecomposition A = WΛW−1 (without

loss of generality we consider the eigenvalues and eigenvectors of A ordered
so that equal eigenvalues form a single diagonal block in Λ),

and

(b) using the eigenvector matrix W of A, the matrix B−1 has the decompo-
sition B−1 = WDW ∗, where D is an HPD block diagonal matrix with block
sizes corresponding to those of Λ,

and

(c) there exists a polynomial p of degree s such that p(Λ) = Λ∗, and s is
the smallest degree of all polynomials with this property. The polynomial p is
uniquely determined.

In [14] this result is stated only for nonsingular matrices A, which is due to the
focus of the work in that paper. It is easy to see, however, that the assertion is true
also for singular matrices A. Using Theorem 2.2, we can characterize all A and B for
which A+ = r(A), where r is a rational function.

Lemma 2.3. Let A be a square matrix and let B be an HPD matrix. If there
exists a rational function r such that A+ = r(A), then r(λ) = λ for all eigenvalues
λ of A, and, moreover, A is B-normal(s), where s is the degree of the (uniquely
determined) interpolation polynomial p of smallest degree that satisfies p(λ) = λ for
all eigenvalues λ of A.

Proof. We adopt the strategy of the proof of [6, Lemma 2]. Let (λ, x) be an
eigenpair of A, Ax = λx. Then A+x = r(A)x = r(λ)x, so that

r(λ) 〈x, x〉B = 〈r(λ)x, x〉B = 〈A+x, x〉B = 〈x,Ax〉B = 〈x, λx〉B = λ 〈x, x〉B ,

from which we receive r(λ) = λ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1174 JÖRG LIESEN

Now suppose that there is a nontrivial Jordan block associated with λ. Then
there exists a nonzero vector y such that (A− λI)y = x. But then

〈Ay, x〉B = 〈λy + x, x〉B = λ 〈y, x〉B + 〈x, x〉B ,

〈Ay, x〉B = 〈y,A+x〉B = 〈y, λx〉B = λ 〈y, x〉B ,

which means that 〈x, x〉B = 0. This contradiction shows that A is diagonalizable, i.e.,
that (2a) of Theorem 2.2 holds.

If (η, y) is another eigenpair of A with η �= λ, then

λ 〈x, y〉B = 〈λx, y〉B = 〈Ax, y〉B = 〈x,A+y〉B = 〈x, ηy〉B = η 〈x, y〉B .

Since λ �= η we must have 〈x, y〉B = 0, which shows that the eigenvectors of A
form a complete B-orthogonal set. In particular, when we consider the diagonalizable
matrix A as in (2a) of Theorem 2.2, then W ∗BW = D, where D is HPD and block
diagonal, showing that B is as stated in (2b) of Theorem 2.2.

Finally, the polynomial p in (2c) of Theorem 2.2 is the uniquely determined
interpolation polynomial of smallest degree that satisfies p(λ) = λ for all eigenvalues
λ of A.

Remark 2.4. According to Lemma 2.3, the existence of a representation of the
form A+ = r(A), where r is a rational function, implies that A is B-normal(s).
Therefore the assumption that A be B-normal in the definition of the B-normal(�,m)
matrices of Barth and Manteuffel, cf. [3, Definition 4.2] or [4, Definition 3.1], is re-
dundant.

The converse of Lemma 2.3 is obviously true as well: If A is B-normal(s), then
there exists a rational function, namely r = p from (2c) in Theorem 2.2, such that
A+ = r(A). We therefore have the following corollary.

Corollary 2.5. For a square matrix A there exists an HPD matrix B such that
A+ is a rational function in A, if and only if A is diagonalizable.

If A is diagonalizable, A = WΛW−1, then the HPD matrices B for which A+ is a
rational function in A are completely characterized in (2b) of Theorem 2.2. Moreover,
if B is any such matrix, then A+ = r(A) holds for a rational function r, if and only
if r(Λ) = Λ∗.

Proof. Only the necessity part in the last sentence remains to be shown. Let B
be any matrix as characterized in (2b) of Theorem 2.2, i.e., B = W−∗DW−1. Then

A+ = B−1A∗B = (WD−1W ∗)(W−∗Λ∗W ∗)(W−∗DW−1) = WΛ∗W−1 = r(A) ,

where in the last equation we have used that r(Λ) = Λ∗.
By Corollary 2.5, for a nondiagonalizable matrix A there exists no HPD matrix B

such that the corresponding A+ is a rational function in A. We therefore can restrict
our attention to diagonalizable matrices. The last part of the corollary shows that
if, for some HPD matrix B, A+ is a rational function in A, A+ = r(A), then r is
completely determined by the eigenvalues of A. We use the following concepts in our
further development.

Definition 2.6. Let A be a diagonalizable matrix.
1. The (uniquely determined) smallest degree of a polynomial p that satisfies

p(λ) = λ for all eigenvalues λ of A is called the normal degree of A, and is
denoted by dp(A).

2. The (uniquely determined) smallest McMillan degree of a rational function r
that satisfies r(λ) = λ for all eigenvalues λ of A is called the McMillan degree
of A, and is denoted by dr(A).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RATIONAL REPRESENTATION OF THE MATRIX ADJOINT 1175

We immediately observe that dr(A) ≤ dp(A) ≤ n − 1, where n is the number of
distinct eigenvalues of A.

Let us put the degrees dp(A) and dr(A) into the picture of short recurrence Krylov
subspace methods that is described in the introduction: On the one hand, if A is
normal with respect to an HPD matrix B and dp(A) = s, then B-orthogonal Krylov
subspace bases for A can be generated with an (s + 2)-term Arnoldi recurrence [6].
On the other hand, if for an HPD matrix B the B-adjoint of A satisfies A+ = r(A),
where r = p/q for relatively prime polynomials p and q of respective degrees � and m,
so that dr(A) = deg r = max{�,m}, then B-orthogonal Krylov subspace bases for A
can be generated using a nonstandard recurrence containing � + m + 2 ≤ 2dr(A) + 2
terms [4]. If dr(A) � dp(A), then the nonstandard recurrence is significantly more
efficient than the standard Arnoldi recurrence. It is therefore of great practical interest
to characterize the (diagonalizable) matrices A for which dr(A) � dp(A).

3. Characterization of the McMillan degree of A. We will study the
McMillan degree of a diagonalizable matrix A using results from rational interpo-
lation theory. The results we employ were originally developed by Antoulas and
Anderson [2] and are summarized in Antoulas’ book [1, Chapter 4.5].

Let λ1, . . . , λn be the distinct eigenvalues of A. We want to determine a rational
function r = p/q, where p and q are relatively prime polynomials, such that r(λj) = λj ,
j = 1, . . . , n. We assume n ≥ 2, as otherwise the problem is trivial. If there exists such
a rational function of McMillan degree m, then m is called an admissible McMillan
degree. By definition, the smallest admissible McMillan degree is equal to dr(A).

Consider the array P containing the interpolation points (λj , λj), j = 1, . . . , n,

(3.1) P = {(λj , λj) : j = 1, . . . , n} .

We choose an integer n1, 1 ≤ n1 < n, and partition P into two disjoint subarrays J

and I,

J = {(λj , λj) : j = 1, . . . , n1} , I = {(λj , λj) : j = n1 + 1, . . . , n} .

For notational convenience, we now write μj ≡ λj+n1 for j = 1, . . . , n− n1. Then the
Löwner matrix L corresponding to the arrays J and I is defined by

(3.2) L = [li,j]i=1,...,n−n1, j=1,...,n1
, where li,j =

μi − λj

μi − λj
.

Note that L is of size (n− n1) × n1. Moreover, the rank of the array P is defined as

(3.3) rank P = max
L

{ rank L } ,

where the maximum is taken over all possible Löwner matrices, which can be formed
from P by partitioning into two subarrays as described above, cf. [1, Definition 4.51].

A similar construction can be made for any subarray of interpolation points. More
precisely, we may take any Q ⊂ P containing at least two points, partition Q into two
disjoint subarrays, and form the corresponding Löwner matrix according to (3.2). In
this way we can form Löwner matrices from P that are of size k1×k2 with k1+k2 < n.

Theorem 3.1 (cf. [1, Theorem 4.55 and Corollary 4.56]). Suppose that the rank
of the array P in (3.1) is equal to m.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1176 JÖRG LIESEN

(1) If 2m < n, and all m × m Löwner matrices that can be formed from P are
nonsingular, then there exists a uniquely determined rational function r = p/q
(with p and q relatively prime) of McMillan degree m with r(λj) = λj, j =
1, . . . , n. Moreover, the admissible McMillan degrees are m and all integers
greater than or equal to n−m.

(2) Otherwise, the admissible McMillan degrees are all integers greater than or
equal to n − m, and there exists no uniquely determined rational function
r = p/q (with p and q relatively prime) of McMillan degree n − m with
r(λj) = λj, j = 1, . . . , n.

The following is a straightforward consequence.
Corollary 3.2. For any diagonalizable matrix A with n distinct eigenvalues,

dr(A) ≤
n/2�. In particular, if n ∈ {2, 3}, then dr(A) = 1.
Having characterized the cases n = 2 and n = 3, we will now focus on matrices

with at least four distinct eigenvalues.
Lemma 3.3. Let λ1, . . . , λ4 be any four distinct complex numbers, and consider

the corresponding array P of the form (3.1). Then rank P = 1, if and only if λ1, . . . , λ4

are either collinear (i.e., they lie on a single line in the complex plane) or concyclic
(i.e., they lie on a single circle in the complex plane).

Proof. We partition P into two subarrays J and I containing two interpolation
points each. The corresponding Löwner matrix is

L =

[
μi − λj

μi − λj

]
i,j=1,2

,

giving

detL =
μ1 − λ1

μ1 − λ1

μ2 − λ2

μ2 − λ2
− μ2 − λ1

μ2 − λ1

μ1 − λ2

μ1 − λ2
.

Hence detL = 0, if and only if

(3.4)
(μ1 − λ1) (μ2 − λ2)

(μ1 − λ2) (μ2 − λ1)
∈ R .

We denote by Ĉ the extended complex plane. Recall that a circle in Ĉ is either a true
circle in the complex plane or a line in the complex plane with the point at infinity
adjoined. In (3.4) we replace μ2 by a variable z, and consider the function

f(z) =
(μ1 − λ1) (z − λ2)

(μ1 − λ2) (z − λ1)
.

The function f(z) is the unique Moebius transformation satisfying

f(λ1) = ∞ , f(λ2) = 0 , f(μ1) = 1 .

Now realize that through the points λ1, λ2, μ1 passes one and only one circle C in Ĉ.
Since the Moebius transformation f conformally maps circles in Ĉ onto circles in Ĉ,
we see that f(C) = R ∪ {∞}, and, in particular, f(μ2) ∈ R, if and only if μ2 ∈ C
(see, e.g., [15, Chapter 3] for more on Moebius transformations). Consequently, L

is singular if and only if λ1, λ2, μ1, μ2 lie on the same circle in Ĉ, i.e., if and only if
these points in the complex plane are either collinear or concyclic, which completes
the proof.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RATIONAL REPRESENTATION OF THE MATRIX ADJOINT 1177

Using this lemma we can characterize the diagonalizable matrices of McMillan
degree one. To do so, we recall that a matrix has rank k if and only if it has a
nonsingular k×k submatrix and all its (k+1)× (k+1) submatrices are singular (see,
e.g., [10, pp. 12–13]).

Lemma 3.4. Let A be a diagonalizable matrix with at least four distinct eigen-
values. Then dr(A) = 1 if and only if the eigenvalues of A are either collinear or
concyclic.

Proof. Let L be any Löwner matrix with at least two rows and columns formed
from the array P corresponding to the n ≥ 4 distinct eigenvalues of A. Clearly,
rankL ≥ 1.

If the eigenvalues of A are either collinear or concyclic, then Lemma 3.3 shows
that every 2 × 2 submatrix of L is singular. Therefore, rankL = 1, which shows that
rank P = 1. Since 2 < n, and every 1 × 1 Löwner matrix that can be formed from P

is nonsingular, case (1) in Theorem 3.1 applies, showing that dr(A) = 1.
On the other hand, if the eigenvalues of A are neither collinear nor concyclic,

then by Lemma 3.3 there exists a 2 × 2 submatrix of L that is nonsingular. Hence
rankL ≥ 2, which implies that rank P ≥ 2, and hence dr(A) ≥ 2.

If A is any diagonalizable matrix with n ≥ 2 distinct eigenvalues that all are
collinear, then Corollary 3.2 and Lemma 3.4 show that dr(A) = 1. These matrices
are also known to be B-normal(1) for some HPD matrix B (cf. [14, Theorem 3.3] and
the references given there), and thus they satisfy dp(A) = 1.

More interesting is the class of the diagonalizable matrices with n ≥ 3 distinct
eigenvalues that all are concyclic. For such matrices A, Corollary 3.2 and Lemma 3.4
show that dr(A) = 1. Moreover, case (1) in Theorem 3.1 shows that the rational
function r of McMillan degree one that satisfies r(λ) = λ for all eigenvalues λ is
uniquely determined. In fact, this function can be easily computed. Suppose that the
eigenvalues of A are given by

λj = ρeiϕj + ζ , j = 1, . . . , n ,

where ρ ∈ R \ {0} and ζ ∈ C do not depend on j, while ϕj ∈ [0, 2π). Then

r(z) =
ζz + (ρ2 − |ζ|2)

z − ζ

satisfies r(λj) = λj , j = 1, . . . , n. Clearly, r is not a polynomial. Case (1) in The-
orem 3.1 also shows that the next smallest admissible McMillan degree is n − 1.
Apparently, a corresponding rational function is the uniquely determined (Lagrange)
interpolation polynomial p that satisfies p(λ) = λ for all eigenvalues λ. This means
that dp(A) = n− 1.

It is easy to see that, for a diagonalizable matrix A, dr(A) is equal to the smallest
possible McMillan degree of a rational function r such that the eigenvalues of A are
zeros of the function r(z) − z. When n ≥ 4 and the eigenvalues of A are neither
collinear nor concyclic, Lemma 3.4 implies that dr(A) ≥ 2. Hence in this case we
search for a rational function r of (smallest possible) deg r ≥ 2, such that the eigen-
values of A are zeros of r(z) − z. The following result summarizes what is known
about the zeros of such functions.

Theorem 3.5.

(1) A function of the form p(z)− z, where p is a polynomial of degree s ≥ 2, has
at most 3s − 2 zeros. For any s ≥ 2 there exists a polynomial p of degree s,
such that p(z) − z has 3s− 2 zeros.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1178 JÖRG LIESEN

(2) A function of the form r(z) − z, where r is a rational function of McMillan
degree s ≥ 2, has at most 5s− 5 zeros. For any s ≥ 2 there exists a rational
function r of McMillan degree s, such that r(z) − z has 5s− 5 zeros.

The bounds in (1) and (2) have been shown in [13] and [12], respectively. The
corresponding sharpness results have been shown in [7] and [16]. Using these bounds
we can prove the following result.

Theorem 3.6. Let A be a diagonalizable matrix with n ≥ 4 distinct eigenvalues.
(1) If the eigenvalues are collinear, then dr(A) = dp(A) = 1.
(2) If the eigenvalues are concyclic, then dr(A) = 1 and dp(A) = n− 1.
(3) In all other cases, dr(A) ≥ �n/5 + 1�, dp(A) ≥ �(n + 2)/3�, and

(3.5) 1 ≤ dp(A)

dr(A)
≤ 5

n− 1

n + 5
< 5 .

Proof. Cases (1) and (2) were shown above, so only case (3) needs to be proven.
Here the eigenvalues are neither collinear nor concyclic, and thus by Lemma 3.4 we
must have dr(A) ≥ 2. From case (2) in Theorem 3.5 we know that any function of the
form r(z)−z, where r is a rational function of deg r ≥ 2, may have at most 5 deg r−5
zeros. Since any function for which the McMillan degree of A is attained must have
(at least) n distinct zeros, we must have n ≤ 5dr(A)− 5, and thus dr(A) ≥ �n/5+1�.
The lower bound on dp(A) follows in a similar way from case (1) in Theorem 3.5.
Finally, the leftmost and rightmost inequalities in (3.5) are straightforward, while
the middle inequality follows from the lower bound on dr(A) and from noting that
dp(A) ≤ n− 1.

Using Theorem 2.2, Corollary 3.2, and Theorem 3.6 we can derive the following
well-known result: There exists an HPD matrix B with respect to which a matrix A,
with at least two distinct eigenvalues is normal of degree one, if and only if A is
diagonalizable and has collinear eigenvalues (cf. [14, Theorem 3.3] and the references
given there). Here we have given a new proof of this result using rational interpolation
theory and conformal mappings.

A surprising fact shown by Theorem 3.6 is that the ratio dp(A)/dr(A) is bounded
from above by five, unless the eigenvalues of A are concyclic, in which case the ratio
is equal to n− 1. In this sense, the diagonalizable matrices with concyclic eigenvalues
form a very special class.

Theorem 3.6 also shows that if the eigenvalues of a diagonalizable matrix A are
neither collinear nor concyclic, then dr(A) is small, if and only if A has only a small
number (at most 5dr(A) − 5) of distinct eigenvalues.

Remark 3.7. A related observation is made after the statement of [4, Theo-
rem 3.1], but it is not fully justified from the theory presented there. According to
Barth and Manteuffel, their result “says that if A is B-normal(�,m) and either � or m
greater than 1, then A has a relatively small number of distinct eigenvalues” [4, p. 775].
However, in terms of [4, Definition 3.1], any unitary matrix A with n ≥ 3 distinct
eigenvalues is I-normal(0,1) and I-normal(n − 1,0). Hence, for � = n − 1 > 1 and
m = 0, A is B-normal(�,m), but A may have arbitrarily many distinct eigenvalues.
The confusion is caused by the lack of uniqueness of the “smallest degrees” � and m.
In general, there exist no “simultaneously smallest” � and m for which A+ = r(A)
with r = p/q for relatively prime polynomials of respective degrees � and m.

We next show by examples that the two weak inequalities in (3.5) cannot be
improved in general. First, consider the lower bound on dp(A)/dr(A). This bound is
attained if and only if a rational function r of smallest possible McMillan degree, which
satisfies r(λ) = λ for all eigenvalues λ of A, is a polynomial (this always holds when the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RATIONAL REPRESENTATION OF THE MATRIX ADJOINT 1179

eigenvalues of A are collinear, cf. case (1) in Theorem 3.6, where dr(A) = dp(A) = 1).
Consider a diagonalizable matrix A with n = 4 distinct eigenvalues given by

λ1 = 1 +
√

1/2, λ2 = 1 −
√

1/2, λ3 = i
√

1/2, λ4 = −i
√

1/2.

The polynomial

p(z) = z2 − z +
1

2

is the unique polynomial of smallest possible degree that satisfies p(λj) = λj , j =
1, . . . , 4, so that dp(A) = 2. On the other hand, dr(A) ≤ 2 by Corollary 3.2, and
since the four eigenvalues are neither collinear nor concyclic, Lemma 3.4 implies that
dr(A) = 2, showing that the lower bound in (3.5) is attained.

To give an example that the upper bound is attained, consider any diagonalizable
matrix A with n = 5 distinct eigenvalues that are neither collinear nor concyclic.
By Corollary 3.2, dr(A) ≤
5/2� = 2, and by Lemma 3.4, dr(A) > 1, showing that
dr(A) = 2. Suppose that the five eigenvalues are

λ1 = 0, λ2 = 1, λ3 = 2, λ4 = i, λ5 = −i.

Obviously, these are neither collinear nor concyclic. An elementary computation
(that may be performed by any computer algebra package) shows that the unique
polynomial p of smallest possible degree that satisfies p(λj) = λj , j = 1, . . . , 5, is
given by

p(z) =
3

5
z − 3

5
z2 +

8

5
z3 − 3

5
z4 ,

so that dp(A) = 4. Therefore, dp(A)/dr(A) = 2, showing that the weak upper bound
in (3.5) is attained.

Finally, we remark that it may be possible to extend our approach to give an
alternative proof of the sharpness of the bound of [12] on the maximal number of
zeros of r(z) − z, where r is rational with deg r ≥ 2 (cf. case (2) in Theorem 3.5).
For example, let five distinct complex numbers be given, such that any four of them
are neither collinear nor concyclic. Then, by case (1) in Theorem 3.1, there exists a
unique rational function r of deg r = 2, so that the five complex numbers are zeros of
r(z)−z. This function r can be explicitly computed along the lines of [1, pp. 105–107],
and it attains the bound of [12].

Acknowledgments. Thanks to Jurjen Duintjer Tebbens, Daniel Szyld, and Petr
Tichý for comments that helped to improve the presentation of this paper.

REFERENCES

[1] A. C. Antoulas, Approximation of large-scale dynamical systems, with a foreword by Jan
C. Willems, Advances in Design and Control 6, SIAM, Philadelphia, 2005.

[2] A. C. Antoulas and B. D. O. Anderson, On the scalar rational interpolation problem, IMA
J. Math. Control Info., 3 (1986), pp. 61–88.

[3] T. L. Barth and T. A. Manteuffel, Conjugate gradient algorithms using multiple recursions,
in Proceedings of the AMS-IMS-SIAM Summer Research Conference, Seattle, 1995, L.
Adams and J. L. Nazareth, eds., SIAM, Philadelphia, 1996, pp. 107–123.

[4] T. Barth and T. Manteuffel, Multiple recursion conjugate gradient algorithms. I. Sufficient
conditions, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 768–796.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1180 JÖRG LIESEN

[5] T. Barth and T. Manteuffel, Multiple Recursion Conjugate Gradient Algorithms. II. Nec-
essary Conditions, unpublished manuscript, 2000.

[6] V. Faber and T. Manteuffel, Necessary and sufficient conditions for the existence of a
conjugate gradient method, SIAM J. Numer. Anal., 21 (1984), pp. 352–362.

[7] L. Geyer, Sharp Bounds for the Valence of Certain Harmonic Polynomials, in Pro-
ceedings of the American Mathematical Society, accepted; also available online at
arXiv:math.CV/0510539, 2005.

[8] W. B. Gragg, Positive definite Toeplitz matrices, the Arnoldi process for isometric opera-
tors, and Gaussian quadrature on the unit circle, J. Comput. Appl. Math., 46 (1993),
pp. 183–198.

[9] R. Grone, C. R. Johnson, E. M. de Sá, and H. Wolkowicz, Normal matrices, Linear
Algebra Appl., 87 (1987), pp. 213–225.

[10] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

[11] C. F. Jagels and L. Reichel, A fast minimal residual algorithm for shifted unitary matrices,
Numer. Linear Algebra Appl., 1 (1994), pp. 555–570.

[12] D. Khavinson and G. Neumann, On the number of zeros of certain rational harmonic func-
tions, Proc. Amer. Math. Soc., 134 (2006), pp. 1077–1085.

[13] D. Khavinson and G. Świa̧tek, On the number of zeros of certain harmonic polynomials,
Proc. Amer. Math. Soc., 131 (2003), pp. 409–414.

[14] J. Liesen and Z. Strakoš, On Optimal Short Recurrences for Generating Orthogonal Krylov
Subspace Bases, SIAM Rev., accepted.

[15] T. Needham, Visual Complex Analysis, The Clarendon Press, Oxford University Press, New
York, 1997.

[16] S. H. Rhie, n-point Gravitational Lenses with 5(n − 1) Images, Technical report, available
online at arXiv:astro-ph/0305166, 2003.

[17] D. S. Watkins, Some perspectives on the eigenvalue problem, SIAM Rev., 35 (1993),
pp. 430–471.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1181–1190

ON THE INDEX OF CONDITIONAL STABILITY OF STABLE
INVARIANT LAGRANGIAN SUBSPACES∗

ANDRÉ C. M. RAN† AND LEIBA RODMAN‡

Abstract. Given a nondegenerate sesquilinear inner product on a finite dimensional complex
vector space, or a nondegenerate symmetric or skewsymmetric inner product on finite dimensional
real vector space, subspaces that are simultaneously Lagrangian and invariant for a selfadjoint or
a skewadjoint matrix with respect to the inner product are considered. The rate of conditional
stability of such subspaces is studied, under small perturbations of both the inner product and the
matrix. The concept of conditional stability (in contrast with unconditional stability) presupposes
that one considers only those perturbed matrix and inner product for which the existence of invariant
Lagrangian subspaces can be guaranteed a priori. Open problems regarding the index (= exact rate)
of conditional stability are stated. Several inaccurate statements in the authors’ previous works
concerning the index are made precise. Finally, an application is given to conditional stability of
hermitian solutions of continuous type algebraic Riccati equations.

Key words. invariant subspaces, Lagrangian subspaces, indefinite inner product, stability

AMS subject classifications. Primary, 15A63; Secondary, 47A15, 47A55

DOI. 10.1137/060678531

1. Introduction. Let F denote either the field of complex numbers C or the
field of real numbers R and let H ∈ F

m×m be a hermitian (symmetric in the real
case) invertible matrix. Then a matrix A ∈ F

m×m is called H-selfadjoint if HA is
hermitian, i.e., HA = A∗H, or HA = ATH in the real case, where the superscript T ,
resp., ∗, denotes the transposed, resp., conjugate transposed, matrix or vector. We
consider also H-skewadjoint matrices A, i.e., such that HA is skewadjoint. (Note that
only in the real case the H-skewadjoint matrices form an essentially different class,
because in the complex case A is H-skewadjoint if and only if iA is H-selfadjoint.)
In the real case it is of interest to study the classes of matrices A ∈ R

m×m with the
properties that HA = ±ATH, where H ∈ R

m×m is a given invertible skewsymmetric
matrix (m must be even for such H to exist); if HA = ATH, the matrix A is said
to be H-selfadjoint, and if HA = −ATH, the matrix A is said to be H-skewadjoint.
(In the literature the terms H-Hamiltonian and H-skew-Hamiltonian are used as
well.) The theory and applications of these classes of matrices is a well studied area
of linear algebra, see, for example, books [13], [6], [7], [10], and recent expository
papers [11], [12].

From now on we assume that m = 2n is even, and let H ∈ F
m×m be an invertible

hermitian matrix (in the complex case) or invertible symmetric or skewsymmetric
matrix (in the real case). We say that a subspace M ⊆ F

2n is H-Lagrangian if
dimM = n and

y∗Hx = 0 (yTHx = 0 in the real case) for all x, y ∈ M.

∗Received by the editors December 25, 2006; accepted for publication (in revised form) by P. Ben-
ner April 24, 2007; published electronically December 7, 2007.

http://www.siam.org/journals/simax/29-4/67853.html
†Afdeling Wiskunde, Faculteit der Exacte Wetenschappen, Vrije Universiteit Amsterdam, De

Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands (ran@cs.vu.nl).
‡Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, VA

23187-8795 (lxrodm@math.wm.edu). The research of this author was partially supported by NSF
grant DMS-0456625 and by Summer Grant from the College of William and Mary.

1181

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1182 ANDRÉ C. M. RAN AND LEIBA RODMAN

If A is H-selfadjoint or H-skewadjoint, then A-invariant H-Lagrangian subspaces are
of particular interest in many applications. Note that such subspaces do not exist for
every H-selfadjoint or H-skewadjoint matrix need. Denote by IL(A,H) the (possibly
empty) set of all A-invariant H-Lagrangian subspaces.

We now give a key definition of conditional α-stability, a concept that was intro-
duced and studied in various guises in [25], [22], [24], [21], [23]. A well-known notion
of the gap (M,N) between two subspaces M,N ⊆ F

2n will be used:

gap (M,N) := ‖PM − PN ‖,

where PM, resp., PN , is the orthogonal projection on M, resp., N , and the operator
norm (= the largest singular value) ‖ · ‖ is used throughout. See, for example, [8] for
more information on the gap function.

Fix α ≥ 1, and let A ∈ F
2n×2n be an H-selfadjoint or H-skewadjoint matrix. A

subspace M ∈ IL(A,H) is called conditionally α-stable if there exist δ > 0 and K > 0
with the following properties: If H ′ ∈ F

2n×2n is hermitian and A′ is H ′-selfadjoint or
H ′-skewadjoint as the case may be, and

‖A−A′‖ + ‖H −H ′‖ < δ,

and if IL(A′, H ′) �= ∅, then there exists M′ ∈ IL(A′, H ′) such that

gap (M,M′) ≤ K (‖A−A′‖ + ‖H −H ′‖)1/α .

If in the above definition H is kept fixed, i.e., the additional restriction H ′ = H is
imposed, then the definition of a conditionally H-α-stable subspace M ∈ IL(A,H)
is obtained. One can show (we omit details) that the concept of conditional H-
α-stability, although formally weaker than that of conditional α-stability, is in fact
equivalent to it (compare [16], [17]). Note also that if M is conditionally α-stable,
then M is conditionally β-stable for every β > α.

The concept of conditional α-stability is one of many related notions of stabil-
ity that have been studied in the literature starting with [4], [1], [2]. Although on
the face of it the conditional α-stability seems to be a rather contrived notion, it
does play a role in important applications, for example, classical H∞ control. In
this application, a solution to the control problem involves certain A(γ)-invariant H-
Lagrangian subspaces, where A(γ) is a real H-skewadjoint matrix parameterized by
a positive parameter γ, and where H ∈ R

2n×2n is a fixed invertible skewsymmetric
matrix. In some situations, the optimal solution corresponds to the minimal value
γ0 of γ for which A(γ)-invariant H-Lagrangian subspaces exist (this approach to H∞
control was developed in [5] in the context of solutions of certain algebraic Riccati
equations; see also [10, Chapter 20] for more details). Clearly, conditional stability is
an appropriate tool for perturbation analysis in the vicinity of the optimal solution,
since IL(A(γ), H) = ∅ for γ < γ0.

In the present paper we continue the investigation of conditional α-stability initi-
ated in [22], see also [23]. As it turns out, there are inaccuracies in several statements
in [20], [22], [23] (all of them can be traced to the same source). We correct the state-
ments, add a few additional results and applications, and formulate open problems.
This theme will be further developed in [14] in the context of symplectic matrices.

2. Conditional α-stability: Complex case. We state and prove here the main
result on conditional α-stability of invariant Lagrangian subspaces for H-selfadjoint

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INDEX OF CONDITIONAL STABILITY 1183

matrices in the complex case. As before, H ∈ C
2n×2n is a fixed invertible hermitian

matrix. Denote by Rλ(A) = Ker (A−λI)2n the root subspace of a matrix A ∈ C
2n×2n

corresponding to its eigenvalue λ.
Theorem 2.1. Let A ∈ C

2n×2n be H-selfadjoint. Assume that the geometric
multiplicity of every real eigenvalue of A (if any) is equal to one and its algebraic
multiplicity is even. Define

α+ = max{m1, . . . ,mr},

where m1, . . . ,mr are the algebraic multiplicities of real eigenvalues of A, or α+ = 1
if A has no real eigenvalues;

α− = max{2,m1 − 1, . . . ,mr − 1}

or α− = 1 if A has no real eigenvalues. Then we have the following.
(I) There exist conditionally α+-stable A-invariant H-Lagrangian subspaces M.

Such subspaces M are characterized by the following property:
If

{0} �= M∩Rλ(A) �= Rλ(A)

for some nonreal eigenvalue λ of A, then the geometric multiplicity of λ is equal to 1,
and one of the following two conditions hold:

(1) the algebraic multiplicity of λ is smaller than or equal to α+;
(2) the algebraic multiplicity of λ is equal to α+ + 1, and, letting

k := dim (M∩Rλ(A)) ,

there exists a set of k distinct (α+ + 1)th roots of unity whose sum is zero.
(II) There do not exist conditionally β-stable A-invariant H-Lagrangian subspaces

for any β such that 1 ≤ β < α−.
Note that we always have α− ≤ α+. Note also that the hypothesis that the

geometric multiplicities of A corresponding to real eigenvalues are all equal to 1 is not
necessary for existence of conditionally stable A-invariant H-Lagrangian subspaces;
see [17] for more information.

A particular case of Theorem 2.1 deserves special attention, namely the A-invariant
H-Lagrangian subspace M0 with the property that the spectrum of the restriction of
A to M0 is in the closed upper half plane. Note that this subspace is unique under
the hypotheses of Theorem 2.1.

Corollary 2.2. Under the hypotheses and the notation of Theorem 2.1, the
subspace M0 is conditionally α+-stable, and it is not conditionally β-stable for any
1 ≤ β < α−.

An analogous corollary holds for the A-invariant H-Lagrangian subspace with the
spectrum of the restriction of A to the subspace being in the closed lower half plane.

It has been claimed in [20], [22, Theorem 6.5], [23, Theorem 3.14] (in the context
of α-stability of solutions of algebraic Riccati equations) that there exist conditionally
α−-stable A-invariant H-Lagrangian subspaces, under the hypotheses of Theorem 2.1.
However, the proof given in [22], [23] falls short of proving this claim (but see Theo-
rem 2.3). Therefore, we can state an open problem.

Problem 1. Determine whether or not there exist conditionally α−-stable A-
invariant H-Lagrangian subspaces, under the hypotheses of Theorem 2.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1184 ANDRÉ C. M. RAN AND LEIBA RODMAN

Proof of Theorem 2.1. The proof of part (II) follows from [22, Lemma 6.8], using
the criterion for β-stability of invariant subspaces of general complex matrices (see
[24] for details).

For part (I), we first use the localization principle (see [17], [16]). Note that in [16]
the localization principle is stated for the stability property of invariant Lagrangian
subspaces; the same considerations yield the localization principle also in our context
of conditional α-stability. Thus, we need only to consider two cases: (a) A has no real
eigenvalues; (b) A has only one real eigenvalue, perhaps of large multiplicity. In the
case (a), we have α+ = α− = 1, and the spectral A-invariant subspace corresponding
to the eigenvalues in the open upper half place (or open lower half plane) is H-
Lagrangian and conditionally 1-stable. In the case (b), note that there is a unique
A-invariant H-Lagrangian subspace M, and its dimension is n. The result of [25]
implies that there exist δ > 0 and K > 0 such that every complex matrix B with
‖B − A‖ < δ has the property that every n-dimensional B-invariant subspace N
satisfies the inequality

gap (M,N) ≤ ‖B −A‖1/α+ .

In particular, if B is also H ′-selfadjoint and IL(B,H ′) �= ∅, then one such n-
dimensional B-invariant subspace will be H ′-Lagrangian, and conditional α+-stability
of M follows.

Let A be as in Theorem 2.1, and let M be an A-invariant H-Lagrangian subspace.
We say that α0 ≥ 1 is the index of conditional stability of M if M is conditionally
α0-stable but is not conditionally α-stable for any α with 1 ≤ α < α0. The index
is obviously unique, but its existence is not obvious even when M is conditionally
α-stable for some α ≥ 1. Indeed, a priori it is not clear that such M is conditionally
α0-stable, where α0 is the greatest lower bound of the (nonempty) set of all α’s with
the property that M is conditionally α-stable (see Problem 2 below).

Note that generally speaking Theorem 2.1 does not provide the index of condi-
tional stability. One particular case when the index can be obtained using the theorem
is presented in the next result. It will be convenient to introduce the following nota-
tion: For a positive integer m, and any integer k, 0 ≤ k ≤ m, define

αC(m, k) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if k = 0 or k = m,

m− 1 if 1 ≤ k ≤ m− 1 and ∃ k distinct mth roots of unity

whose sum is 0,

m in all other cases.

Theorem 2.3. Let A ∈ C
2n×2n be H-selfadjoint. Assume that the geometric

multiplicity of every real eigenvalue of A (if any) is equal to one and its algebraic
multiplicity is equal to two, and denote α0 = 1 if A has no real eigenvalues and
α0 = 2 otherwise.

Let M be an A-invariant H-Lagrangian subspace. Then M is conditionally α-
stable for some α if and only if the following condition holds:

If

{0} �= M∩Rλ(A) �= Rλ(A)

for some nonreal eigenvalue λ of A, then the geometric multiplicity of λ is equal to 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INDEX OF CONDITIONAL STABILITY 1185

In this case, the index of conditional stability of M is equal to the maximum
between α0 and

(2.1) max
j=1,2,...,r

{αC (dimRλ(A),dim (Rλ(A) ∩M))} ,

where λ1, . . . , λr are all distinct nonreal eigenvalues of A of geometric multiplicity one,
and the maximum over an empty set in (2.1) is interpreted as 1. In (2.1), λ1, . . . , λr

may be replaced by the set of all distinct eigenvalues of A of geometric multiplicity
one and having positive imaginary parts.

Proof. Note that α0 = α+ = α−, where α± are taken from Theorem 2.1. By using
the localization principle again, two cases need to be considered: (a) A has only one
real eigenvalue, perhaps of large multiplicity; (b) A has no real eigenvalues. In case
(b), we complete the proof by using a result proved in [17] (see also [23, Theorem 3.5]).
The result says that (assuming the H-selfadjoint matrix A has no real eigenvalues)
an A-invariant H-Lagrangian subspace M is conditionally stable if and only if the
intersection of M with the spectral invariant subspace R+(A) of A corresponding
to the eigenvalues in the open upper half plane is stable as an A-invariant subspace.
Moreover, the index of conditional stability of M coincides with the index of stability
of M∩R+(A), and the latter was computed in [24] leading to formula (2.1). In case
(a), just use Theorem 2.1.

It follows from Theorem 2.3 that the index of conditional stability of the A-
invariant H-Lagrangian subspace with spectrum in the closed upper half (resp. lower
half) plane is α0 under the hypotheses and the notation of Theorem 2.3.

In view of Theorem 2.3, the following open problem (a part of which is in fact a
particular case of a very general and seemingly intractable problem [23, Problem 3.6])
is suggested.

Problem 2. Let A be as in Theorem 2.1. Let M be an A-invariant H-Lagrangian
subspace with the property that if

{0} �= M∩Rλ(A) �= Rλ(A)

for some nonreal eigenvalue λ of A, then the geometric multiplicity of λ is equal to 1.
(a) Prove or disprove that there exists an index of conditional stability for M.
(b) Assuming the index exists, find a formula for the index.

3. Conditional α-stability: Real case. In this section, H is an invertible real
symmetric or skewsymmetric 2n× 2n matrix. Invariant Lagrangian subspaces of real
H-selfadjoint and H-skewadjoint matrices and their various stability properties had
been studied in [18], [19]. However, not much is known about conditional α-stability,
except the facts that can be derived from results on other types of stability in [18],
[19]. Thus we have the following problem.

Problem 3. Let A be a real H-selfadjoint or H-skewadjoint matrix such that
there exist A-invariant H-Lagrangian subspaces. For a given α ≥ 1 describe all con-
ditionally α-stable A-invariant H-Lagrangian subspaces.

In this formulation, the problem is probably intractable. We present certain ana-
logues of Theorems 2.1 and 2.3 for H-skewadjoint matrices, under the basic hypothesis
that pure imaginary and zero eigenvalues of A have geometric multiplicity one, and
state a (hopefully more tractable) particular case of Problem 3.

We need some additional notation. A finite set of complex numbers {ζ1, . . . , ζm}
will be called zero sum selfconjugate if ζ1 + · · · + ζm = 0, and the nonreal elements
of the set can be arranged in pairs of complex conjugate numbers. For two integers k

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1186 ANDRÉ C. M. RAN AND LEIBA RODMAN

and m, with 0 ≤ k ≤ m, m > 0, we define αR(m, k) as follows: αR(m, k) = m in the
following three cases: (i) 0 < k < m, m is odd and there is no zero sum selfconjugate
set of k distinct mth roots of 1, (ii) m is even and k is odd, (iii) m is even and divisible
by 4, k is also even but not divisible by 4, and there is no zero sum selfconjugate set
of k distinct mth roots of −1. We define αR(m, k) = 1 if k = 0 or k = m. In all other
cases we define αR(m, k) = m− 1.

Denote by Ra±ib(A) the root subspace corresponding to a pair of nonreal complex
conjugate eigenvalues a± ib, a ∈ R, b ∈ R \ {0}, of a real m×m matrix A:

Ra±ib(A) := Ker (A2 − 2aA + (a2 + b2)I)m ⊆ R
m.

Theorem 3.1. Let A ∈ R
2n×2n be H-skewadjoint, where H ∈ R

2n×2n is in-
vertible and skewsymmetric. Assume that the geometric multiplicity of every pure
imaginary eigenvalue (including zero, if A is singular) of A (if any) is equal to one
and its algebraic multiplicity is even. Define

α+ = max{m1, . . . ,mr},

where m1, . . . ,mr are the algebraic multiplicities of the distinct pure imaginary and
zero eigenvalues of A, or α+ = 1 if A has no such eigenvalues;

α− = max{2,m1 − 1, . . . ,mr − 1}

or α− = 1 if A has no pure imaginary or zero eigenvalues. Then we have the following.
(I) There exist conditionally α+-stable A-invariant H-Lagrangian subspaces M.

Such subspaces M are characterized by the following properties (X) and (Y):
(X) If

{0} �= M∩Rλ(A) �= Rλ(A)

for some nonzero real eigenvalue λ of A, then the geometric multiplicity of λ is equal
to 1, one of the following two conditions holds:

(1) the algebraic multiplicity m of λ is smaller than or equal to α+;
(2) the algebraic multiplicity m of λ is equal to α+ + 1 and, letting

k := dim (M∩Rλ(A)) ,

we have α+ = αR(m, k);
and in addition, if m is even, then so is k.

(Y) If for a pair of complex conjugate nonreal nonpure imaginary eigenvalues
a± ib (a, b ∈ R \ {0}) of A, the inequalities

{0} �= Ra±ib(A) ∩M �= Ra±ib(A),

hold, then necessarily the geometric multiplicity of each eigenvalue a+ ib and a− ib is
equal to one, and the algebraic multiplicity m of each of these two eigenvalues satisfies
one of the following two conditions:

(3) m ≤ α+;

(4) m = α+ + 1 and α+ = αC

(
m, dimRa±ib(A)∩M

2

)
.

(II) There do not exist conditionally β-stable A-invariant H-Lagrangian subspaces
for any β such that 1 ≤ β < α−.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INDEX OF CONDITIONAL STABILITY 1187

The proof is parallel to that of Theorem 2.1. We need a criterion for β-stability
of real invariant subspaces of real matrices (without symmetries). Such a criterion
was established in [21].

Analogously to Corollary 2.2 we can derive the conditional stability result for the
A-invariant H-Lagrangian subspace M� with the property that the spectrum of the
restriction of A to M� is in the closed left half plane. Note that this subspace is
unique under the hypotheses of Theorem 3.1.

Corollary 3.2. Under the hypotheses and the notation of Theorem 3.1, the
subspace M� is conditionally α+-stable, and it is not conditionally β-stable for any
1 ≤ β < α−.

Under the additional hypothesis that m1 = · · · = mr = 2, an analogue of Theo-
rem 2.3 may be obtained. We leave the formulation of this analogue to the interested
reader.

We state an open problem analogous to Problem 2.
Problem 4. Let A be as in Theorem 3.1. Let M ⊆ R

2n be an A-invariant
H-Lagrangian subspace with the properties that if

{0} �= M∩Rλ(A) �= Rλ(A)

for some nonzero real eigenvalue λ of A, then the geometric multiplicity of λ is equal
to 1, and if

{0} �= Ra±ib(A) ∩M �= Ra±ib(A)

for some pair of complex conjugate nonreal nonpure imaginary eigenvalues a ± ib of
A, then the geometric multiplicity of a± ib is equal to 1.

Prove or disprove that there exists an index of conditional stability for M, and
assuming the index exists, find a formula for the index.

4. Applications: Algebraic Riccati equations. Theorems 2.1 and 3.1 have
many important well-known applications, several of them studied in [22], [23].

We give a detailed statement for the algebraic Riccati equations application. The
literature on this topic is voluminous; we mention only books [3], [10], [15], [9], where
more information, applications, and references are found.

We start with the complex case. Consider the algebraic Riccati equation

(4.1) XDX −XA−A∗X − C = 0,

where A, D = D∗, C = C∗ are given n × n complex matrices, and X = X∗ is to be
found. The Hamiltonian matrix

(4.2) M := i

[
A −D

−C −A∗

]

of the Riccati equation plays a key role in the theory.
For a given α ≥ 1, a (hermitian) solution X of (4.1) is called conditionally α-stable

if there exist ε > 0, K > 0 such that every equation with coefficients in C
n×n

(4.3) XD̃X −XÃ− Ã∗X − C̃ = 0,

with D̃ = D̃∗, C̃ = C̃∗, and

‖D − D̃‖ + ‖A− Ã‖ + ‖C − C̃‖ < ε

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1188 ANDRÉ C. M. RAN AND LEIBA RODMAN

has a (hermitian) solution Y ∈ C
n×n such that

‖X − Y ‖ ≤ K(‖D − D̃‖ + ‖A− Ã‖ + ‖C − C̃‖) 1
α ,

provided (4.3) has (hermitian) solutions at all.
Theorem 4.1. Assume that D is positive semidefinite, and that the pair (A,D)

is sign controllable, i.e., for every eigenvalue λ of A at least one of the root subspaces
Rλ(A) and R−λ(A) is contained in the controllable subspace

Range [D,AD, . . . , An−1D]

of (A,D). Suppose further that the distinct real eigenvalues λ1, . . . , λr of M (if any)
have geometric multiplicity one and even algebraic multiplicities m1, . . . ,mr, respec-
tively. Let

α+ = max{m1, . . . ,mr},

or α+ = 1 if M has no real eigenvalues;

α− = max{2,m1 − 1, . . . ,mr − 1}

or α− = 1 if M has no real eigenvalues. Then we have the following.
(I) There exist conditionally α+-stable solutions X of (4.1). They are character-

ized by the properties as in Theorem 2.1, with A replaced by M and with

M := Range

[
I

X

]
.

(II) There do not exist conditionally β-stable solutions of (4.1) for any β such
that 1 ≤ β < α−.

(III) In particular, the solutions X0 and X ′
0 for which the restrictions of M to

the ranges of [I
X0

] and of [I
X′

0
] have spectra in the closed upper and closed lower half

planes, respectively, are conditionally α+-stable.
The result of Theorem 4.1 follows immediately from Theorem 2.1 and Corol-

lary 2.2, using the well-known fact (see [10], for example) that under the hypotheses
of Theorem 4.1, the (hermitian) solutions X of are in one-to-one correspondence with
M -invariant i[0 I

−I 0]-Lagrangian subspaces.
Problem 5. Under the hypotheses of Theorem 4.1, does there exist conditionally

α−-stable solutions X of (4.1)?
We introduce the index of conditional stability analogously to the index for in-

variant Lagrangian subspaces. Namely, we say that α0 ≥ 1 is the index of conditional
stability of a solution X if X is conditionally α0-stable but is not conditionally α-stable
for any α with 1 ≤ α < α0. Again, we have the analogue of Theorem 2.3.

Theorem 4.2. Assume the hypotheses of Theorem 4.1, and assume in addition
that the algebraic multiplicity of every real eigenvalue of M (if any) is equal to two.
Denote α0 = 1 if M has no real eigenvalues and α0 = 2 otherwise.

Let X be a solution of (4.1). Then X is conditionally α-stable for some α ≥ 1 if
and only if the following condition holds.

If

{0} �=
(

Range

[
I

X

])
∩Rλ(M) �= Rλ(M)

for some nonreal eigenvalue λ of M , then the geometric multiplicity of λ is equal to 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INDEX OF CONDITIONAL STABILITY 1189

In this case, the index of conditional stability of M is equal to the maximum
between α0 and

(4.4) max
j=1,2,...,r

{
αC

(
dimRλ(M),dim

(
Rλ(M) ∩

(
Range

[
I

X

])))}
,

where λ1, . . . , λr are all distinct nonreal eigenvalues of M of geometric multiplicity
one, and the maximum over an empty set in (4.4) is interpreted as 1.

We remark that analogously to Theorems 4.1 and 4.2, the corresponding results
for the real case can be obtained from Theorem 3.1 and the real analogue of Theo-
rem 2.3 (under the additional hypothesis that m1 = · · · = mr = 2). In the real case,
one uses the matrices [A D

C −AT] and [0 I
−I 0] instead of M (given by (4.2)) and i

[
0 I
−I 0

]
,

respectively. We omit the details.
Finally, we indicate corrections that should be made in [22, Theorems 6.5 and 7.4],

[23, Theorem 3.14]. Namely, in part (i) of these theorems α0 should be replaced with
max{m1, . . . ,mr} if M has real eigenvalues (or if T has unimodular eigenvalues in
[22, Theorem 7.4]). Also, in [22, Theorem 6.9] in the statement “there exist condi-
tionally α0-stable real hermitian solutions” the number α0 should be replaced with
max{m1, . . . ,mr} if Mr has pure imaginary or zero eigenvalues; an analogous correc-
tion should be made in [20]. In the minimal factorization result of [23, Theorem 3.31],
in the statement “there exists a conditionally α0-stable symmetric factorization of
W” the number α0 should be replaced with max{m1, . . . ,mr, n1, . . . , ns} provided W
has real poles or zeros (or both).

Acknowledgment. We thank C. Mehl and V. Mehrmann for useful discussions
concerning the subject matter of this paper. L. Rodman gratefully acknowledges
hospitality and support during his visit at the Vrije Universiteit in Amsterdam.

REFERENCES

[1] H. Bart, I. Gohberg, and M. Kaashoek, Stable factorizations of monic matrix polynomials
and stable invariant subspaces, Integral Equations Operator Theory, 1 (1978), pp. 496–517.

[2] H. Bart, I. Gohberg, and M. Kaashoek, Minimal factorization of matrix and operator
functions, Operator Theory: Advances and Applications, Vol. 1, Birkhäuser Verlag, Basel,
1979.

[3] S. Bittanti, A. J. Laub, and J. C. Willems, eds., The Riccati Equation, Communications
and Control Engineering Series, Springer-Verlag, Berlin, 1991.

[4] S. Campbell and J. Daughtry, The stable solutions of quadratic matrix equations, Proc.
Amer. Math. Soc., 74 (1979), pp. 19–23.

[5] J. C. Doyle, K. Glover, P. P. Khargonekar, and F. Francis, State-space solutions
to standard H2 and H∞ control problems, IEEE Trans. Automat. Control, 34 (1989),
pp. 831–847.

[6] I. Gohberg, P. Lancaster, and L. Rodman, Matrices and Indefinite Scalar Products, Oper-
ator Theory: Advances Appl. Vol. 8, Birkhäuser Verlag, Basel, 1983.

[7] I. Gohberg, P. Lancaster, and L. Rodman, Indefinite Linear Algebra and Applications,
Birkhäuser, Basel, 2005.

[8] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Matrices with Applica-
tions, John Wiley and Sons, New York, 1986; republished in Classics Appl. Math., SIAM,
Philadelphia, 2006.

[9] V. Ionescu. C. Oară, and M. Weiss, Generalized Riccati Theory and Robust Control. A
Popov Function Approach, John Wiley and Sons, Chichester, UK, 1999.

[10] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Clarendon, Oxford, UK, 1995.
[11] P. Lancaster and L. Rodman, Canonical forms for Hermitian matrix pairs under strict

equivalence and congruence, SIAM Rev., 47 (2005), pp. 407–443.
[12] P. Lancaster and L. Rodman, Canonical forms for symmetric/skew-symmetric real matrix

pairs under strict equivalence and congruence, Linear Algebra Appl., 406 (2005), pp. 1–76.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1190 ANDRÉ C. M. RAN AND LEIBA RODMAN

[13] A. I. Mal’cev, Foundations of Linear Algebra, W. H. Freeman, San Francisco, 1963 (translation
from Russian).

[14] C. Mehl, V. Mehrmann, A. C. M. Ran, and L. Rodman, Perturbation Analysis of Lagrangian
Invariant Subspaces of Symplectic Matrices, to appear in Linear and Multilinear Algebra.

[15] V. L. Mehrmann, The Autonomous Linear Quadratic Control Problem. Theory and Numerical
Solution, Lecture Notes in Control and Inform. Sci. 163, Springer-Verlag, Berlin, 1991.

[16] A. C. M. Ran and L. Rodman, Stability of neutral invariant subspaces and stable symmetric
factorizations, Integral Equations Operator Theory, 6 (1983), pp. 536–571.

[17] A. C. M. Ran and L. Rodman, Stability of invariant maximal semidefinite subspaces, I, Linear
Algebra Appl., 62 (1984), pp. 51–86.

[18] A. C. M. Ran and L. Rodman, Stability of invariant Lagrangian subspaces, I, in Topics in
Operator Theory, I. Gohberg, ed., Oper. Theory Adv. Appl. 32, Birkhäuser, Basel, 1988,
pp. 181–218.

[19] A. C. M. Ran and L. Rodman, Stability of invariant Lagrangian subspaces, II, in The Go-
hberg Anniversary Collection Vol. I, Oper. Theory Adv. Appl. 40, Birkhäuser, Basel, 1989,
pp. 391–425.

[20] A. C. M. Ran and L. Rodman, Rate of stability of hermitian solutions of algebraic Riccati
equations, in Proceedings of the 5th SIAM Conference on Applied Linear Algebra, Snow-
bird, UT, J. G. Lewis, ed., SIAM, Philadelphia, 1994, pp. 3–6.

[21] A. C. M. Ran and L. Rodman, The rate of convergence of real invariant subspaces, Linear
Algebra Appl., 207 (1994), pp. 197–224.

[22] A. C. M. Ran and L. Rodman, Rate of stability of solutions of matrix polynomial and quadratic
equations, Integral Equations Operator Theory, 27 (1997), pp. 71–102.

[23] A. C. M. Ran and L. Rodman, A class of robustness problems in matrix analysis, in In-
terpolation Theory, Systems Theory and Related Topics, Oper. Theory Adv. Appl. 134,
Birkhauser, Basel, 2002, pp. 337–383.

[24] A. C. M. Ran, L. Rodman, and A. L. Rubin, Stability index of invariant subspaces of matrices,
Linear and Multilinear Algebra, 36 (1993), pp. 27–39.

[25] A. C. M. Ran and L. Roozemond, On strong α-stability of invariant subspaces of matrices,
in The Gohberg Anniversary Collection Vol. I, Oper. Theory Adv. Appl. 40, Birkhäuser,
Basel, 1989, pp. 427–435.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1191–1217

RECURSIVE SOLUTION OF CERTAIN STRUCTURED
LINEAR SYSTEMS∗

ANDRÉ KLEIN† AND PETER SPREIJ‡

Abstract. We provide explicit representations of the null space S of adjoints of companion-
related matrices and of certain rectangular generalized Vandermonde matrices of block Toeplitz type
which are encountered in the Fisher information matrix of time series processes. A formula for the
right-inverse of this class of matrices A is provided which allows one to express the solution of the
system Ax = b as x = A−b+ S. The formulas can be easily turned into solution algorithms.

Key words. linear systems, coefficient matrix, null space, generalized Vandermonde matrix,
Toeplitz matrix

AMS subject classification. 15A06

DOI. 10.1137/060656115

1. Introduction. The subject of this paper is concerned with a recursive solu-
tion of new linear systems of equations. The following two linear systems of equations
are investigated:

(1.1) Kν(σ)X = E

and

(1.2) Mτ (ρ)Y = R.

The coefficient matrices in (1.1) and (1.2) have the form

Kν(σ) =

(
dν

dzν
(
uq(z)u

∗�
q (z)

)
,
dν−1

dzν−1

(
uq(z)u

∗�
q (z)

)
, . . . , uq(z)u

∗�
q (z)

)
z=σ

and

Mτ (ρ) =

(
dτ

dzτ
(adj (zI − Cp)) ,

dτ−1

dzτ−1
(adj (zI − Cp)) , . . . , adj (zI − Cp)

)
z=ρ

,

where Kν(σ) ∈ R
q×q(ν+1) and Mτ (ρ) ∈ R

p×p(τ+1). The companion matrix Cp ∈ R
p×p

is given by

(1.3) Cp =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
... 0 1

...
...

. . .
. . . 0

0 0 1
−cp −c2 −c1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∗Received by the editors April 3, 2006; accepted for publication (in revised form) by D. A. Bini
May 3, 2007; published electronically December 7, 2007.

http://www.siam.org/journals/simax/29-4/65611.html
†Department of Quantitative Economics, University of Amsterdam, Roetersstraat 11, 1018 WB

Amsterdam, The Netherlands (aklein@fee.uva.nl).
‡Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Plantage Muidergracht

24, 1018 TV Amsterdam, The Netherlands (spreij@science.uva.nl).

1191

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1192 ANDRÉ KLEIN AND PETER SPREIJ

where ρ is an eigenvalue of Cp with algebraic multiplicity τ + 1, � denotes the
transpose, adj(X) denotes the adjoint of matrix X, σ, q, and ν are arbitrary scalar
values. Further, we have

(1.4) uq(z) = (1, z, . . . , zq−1)� and u∗
q(z) = (zq−1, . . . , 1)�.

Here X and Y are matrices of size q (ν + 1) × � and p (τ + 1) × h, respectively, while
E and R have size q × � and p × h, respectively. The coefficient matrices in (1.1)
are rectangular generalized Vandermonde matrices of block Toeplitz type and in (1.2)
they are adjoints of companion-related matrices. The linear equations studied in this
paper are extracted from [5], where the Fisher information matrix of a stationary time
series process is interconnected with a solution to a Stein equation. The matrix E is
the Fisher information matrix of a stationary time series process, whereas matrix R
is a solution to a Stein equation for an extended version of Mτ (ρ). The matrices X
and Y are equal and this enables the interconnections to be successfully implemented.
In this paper, stationary processes do not play any role, contrary to [5]. However,
it is worth noticing that the interconnection between Toeplitz forms and stationary
processes has been extensively studied in [3].

In [5], q is the degree of a polynomial dq(z) in z ∈ C, σ is a root of polynomial
dq(z) with algebraic multiplicity ν +1. In other words, q, σ, and ν are interconnected
through polynomial dq(z), whereas in this paper q, σ, and ν are arbitrary scalar
values with no link to a common polynomial and q, ν > 0. The algorithm derived
in [5] constructs a vector belonging to the null space of Kν(σ), which requires matrix
multiplications.

A property proved in [6] is used in [5] to derive an algorithm for the kernel of
Mτ (ρ), it concerns an interconnection between adj(zI − Cp) and the basis vector
up(z), this holds for p = q, σ = ρ, ν = τ and when ρ is an eigenvalue of Cp. The
vectors y ∈ Ker (Mτ (ρ)) and x ∈ Ker (Kτ (ρ)), where Ker(X) is the kernel of the
matrix X, are then interconnected. Consequently, the algorithm of the null space
of Mτ (ρ) given by vector y is based on the algorithm of the null space of Kτ (ρ)
expressed by vector x. The computation of the vector y involves an inversion of
a lower triangular and Toeplitz matrix. However, this is combined with pτ matrix
multiplications of the inverted matrix with the corresponding vector x ∈ Ker (Kτ (ρ)).
This is in agreement with the dimension of the null space of Mτ (ρ).

In this paper the approach is different, (1.1) and (1.2) are two different linear
systems of equations without a common matrix, and we develop a new algorithm for
the null space of the coefficient matrices Kν(σ) and Mτ (ρ) independently.

A solution of the linear systems of (1.1) and (1.2) is considered when q = ν+1 and
p = τ + 1. In this case, the newly developed algorithms for the null spaces and right-
inverses are equivalent for both coefficient matrices. The appropriate right-inverse
is expressed in terms of a generalized Vandermonde matrix. A new algorithm is also
developed for the kernel of Kν(σ) for the case q > ν + 1. The newly displayed algo-
rithms for the null space do not require matrix multiplications and matrix inversions.
The main computational exercise consists of evaluating factorials and binomial coef-
ficients, the latter can be computed by applying the Pascal triangle, combined with
recursions that consist of addition of two vectors. However, the problem set forth in
this paper is algebraical. The purpose is to write a solution of new linear systems of
equations as a function of z and the problem studied is therefore not numerical. For
that purpose one will subsequently consider the coefficient matrix Kν(z). When we
consider the coefficient matrix Mτ (z), for technical reasons that shall be specified in
section 4, we will then consider the case z = ρ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1193

When q = ν + 1 and p = τ + 1, the representation of the null space Ker(Mτ (ρ))
is obtained by simply transposing certain matrices in the representation of the null
space Ker (Kν(σ)). This means that when the algorithm of Ker (Mτ (ρ)) needs to
be evaluated one can use the algorithm for the null space Ker (Kν(σ)). Contrary to
the corresponding algorithm displayed in [5], where a matrix inversion and matrix
multiplications are involved, there is no need for a computational exercise of any kind
when the algorithm set forth in this paper is applied.

Another fundamental difference with the approach in [5] is that the algorithms
developed in this paper cover the entire span of the null spaces of Kν(σ) and Mτ (ρ)
and not just a vector as in [5].

Consequently, we may apply these results to provide explicit expressions of the
solutions to the systems (1.1) and (1.2); more specifically, for q = ν +1 and p = τ +1
we have

X = (Kν(σ))
− E + W(σ) with W(σ)∈ Ker (Kν(σ)) ,(1.5)

Y = (Mτ (ρ))
− R + L(ρ) with L(ρ)∈ Ker (Mτ (ρ)) .(1.6)

The similarity of the null spaces of the coefficient matrices in (1.1) and (1.2) is inter-
esting. It implies a connection between adjoints of companion-related matrices and
rectangular generalized Vandermonde matrices of the block Toeplitz type.

Solutions of linear systems of equations are also presented in, e.g., [1], [2], and
[4], where the coefficient matrices are Toeplitz, Hankel, Hilbert-type, Cauchy, and
Vandermonde-type matrices.

The paper is organized as follows. In section 2, a right-inverse representation
of the coefficient matrices Kν(z) and Mτ (ρ) is introduced. In sections 3 and 4, a
corresponding algorithm for the kernel of the coefficient matrices Kν(z) and Mτ (ρ)
is developed for the case q = ν + 1, respectively, p = τ + 1. The main conclusions
are formulated in section 5. An algorithm for the kernel of Kν(z), when q > ν + 1, is
displayed in section 6.

2. A right-inverse: Case q = ν + 1. A right-inverse of Kν(z) is given for
q = ν + 1, which is a special form of the right-inverse presented in [5]. We introduce
the q × q generalized Vandermonde matrix T q

ν (z) where

T q
ν (z) =

(
T (ν)
ν (z), T (ν−1)

ν (z), . . . , T (0)
ν (z)

)
and

T (ν−k)
ν (z) =

∂ν−k

∂zν−k
uq(z), k = 0, 1, . . . , ν.

The following lemma can now be formulated.
Lemma 2.1. When q = ν + 1 the relations

Kν(z) (Iq ⊗ eq) = T q
ν (z),

Kν(z)
(
(T q

ν (z))
−1 ⊗ eq

)
= Iq

hold true. Clearly, an appropriate right-inverse is then (Kν(z))
−
R = (T q

ν (z))
−1 ⊗ eq,

where eq is the last standard basis vector in R
q.

Proof. Straightforward computation confirms the property.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1194 ANDRÉ KLEIN AND PETER SPREIJ

Consider the matrices A and B of size m × n and p × q, respectively; then the
mp× nq Kronecker product of the two matrices is defined as A⊗ B = (aij)B for all
i and j.

A choice for an appropriate right-inverse of Mτ (ρ) when p = τ +1 is given in the
following corollary.

Corollary 2.2. When p = τ + 1 a right-inverse of Mτ (ρ) is given by

(T p
τ (ρ))

−1 ⊗ ep,

where ep is the last standard basis vector in R
p. We then have

Mτ (ρ)
(
(T p

τ (ρ))
−1 ⊗ ep

)
= Ip.

Proof. We have the property that the last column of adj(zI − Cp) is up(z); this
can be shown by equality (4.4), and this coincides with the last column of the matrix
up(z)u

∗�
p (z). This implies equality of the last column of the blocks composing Kν(z)

and Mτ (z). Since the construction of the right-inverse displayed in Lemma 2.1
is based on the last column of the blocks in Kν(z), the right-inverse set forth in
Lemma 2.1 then also holds for Mτ (z).

In the next section an algorithm for the null space Ker (Kν(z)) is displayed.

3. Ker (Kν(z)) for the case ν + 1 = q. We shall specify the dimension of
the null space Ker (Kν(z)) in the next proposition.

Proposition 3.1. The null space Ker(Kν(z)) has dimension equal to qν and the
rank of the coefficient matrix Kν(z) is q, when ν + 1 = q.

Proof. In Lemma 2.1, a right-inverse of the coefficient matrix Kν(z) is set forth.
This implies that the q× q(ν +1) coefficient matrix Kν(z) is surjective or has full row
rank; its rank is then q. By virtue of the dimension rule it can be concluded that dim
Ker (Kν(z)) = qν.

We are going to prove that a basis of the null space Ker(Kν(z)) is formed by the
columns of the matrix

(3.1) N =

(
U(z)
Jqν

)
,

where Jqν is the qν rotation matrix⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎠ ,

and where the q × qν matrix U(z) will be specified later on.
Observe that N has full rank qν since Jqν is a nonsingular submatrix of N .

Therefore the columns of N form a basis of Ker(Kν(z)).
The matrix U(z) is represented in the following form:

(3.2) U(z) =
1

ν!
(U0(z),U1(z),U2(z), . . . ,Uν−1(z)) .

The submatrices constituting (3.2) shall be specified in the next sections.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1195

3.1. A representation of U0(z). In Lemma 3.2 we prove that a column of the
matrix U0(z) which has the form

(3.3) U0(z) = (ξ � uq(z)) ⊗ u�
q (z)),

and where the vector ξ is given by

(3.4) ξ = (ξi) , ξi =

(
(−1)i

(
ν

i− 1

))
i=1,...,ν+1

,

belongs to the null space Ker(Kν(z)). The Hadamard product � is defined by A�B =
(aijbij) for A = (aij) and B = (bij) which are matrices of the same size.

Recall that the mth row of Kν(z) is given by

(3.5)
dν

dzν
(
zq−2+m, zq−3+m, . . . , zm−1

)
=

⎛⎝zq+m−i−ν−1
v∏

j=1

(n− i− j)

⎞⎠
i=1,...,q

.

We have the following lemma.
Lemma 3.2. The q (ν + 1) column vector composed of an arbitrary column of

U0(z) and the corresponding standard basis vector in R
qν belongs to the null space of

the coefficient matrix Kν(z).
Proof. The kth column of U0(z) has elements

(3.6)
1

ν!

(
(−1)izk+i−2

(
ν

i− 1

))
, i = 1, . . . , q.

The scalar product of (3.5) and (3.6) provides a monomial in zn−ν+k−3, where n =
q + m, whose coefficient is given by

1

ν!

ν∑
i=0

(−1)i+1

(
ν
i

)
(n− 2 − i)(n− 3 − i) · · · (n− ν − 1 − i)(3.7)

=
1

ν!

{
dν

dxν

ν∑
i=0

(−1)i+1

(
ν
i

)
xn−2−i

}
x=1

= − 1

ν!

{
dν

dxν

(
xn−2−ν(x− 1)ν

)}
x=1

.

The application of the Leibnitz rule to ν-fold differentiation of a product of two func-
tions yields the value − 1

ν!{xn−2−νν!}x=1 = −1. Consequently, the scalar product of
(3.5) and (3.6) is −zn−ν+k−3. This should be added to the product of the appropri-
ate z-variable in the coefficient matrix Kν(z) by the nonzero element of the standard
basis vector in the rotation matrix Jqν which is zn−ν+k−3, so the sum is null. This
completes the proof.

3.1.1. Summary of the construction of U0(z). Step 1. Introduce the vector
ξ according to (3.4).

Step 2. Define the columns of U0(σ) according to (3.3).

3.2. A representation of Uj(z) when j = 1, 2, . . . , ν − 1. We shall now
describe the form of the matrices U1(z),U2(z), . . . ,Uν−1(z) that consist of the following
structural representation:

Uj(σ) =
(
U (1)
j (z) U (2)

j (z)
)

,

for j = 1, 2, . . . , ν − 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1196 ANDRÉ KLEIN AND PETER SPREIJ

3.2.1. A representation of U(1)
j (z). In this section the matrix U (1)

j (z) is dis-
played. It is Hankel type with the following configuration:

(3.8) U (1)
j (z) =

(
δ1
j (z)δ

2
j (z) · · · δ

j+1
j (z)

)
,

where the (ν + 1) basis column vector δ�+1
j (z) has components

(3.9)
[
δ�+1
j (z)

]
i
=

{
0 for i ≤ j − � or ν + 1 − i ≤ �

−j!(−z)i+�−j−1
(

ν−j
i+�−j−1

)
otherwise

for � = 0, 1, . . . , j. The following lemma is proved.
Lemma 3.3. The q (ν + 1) column vector composed of any arbitrary column of

U (1)
j (z) and the corresponding standard basis vector in R

qν belongs to the null space
of the coefficient matrix Kν(z).

Proof. Set j = p and � = g in (3.9). As can be seen from (3.5), the appropriate
nonzero elements of the scalar product of (3.9) with (3.5) provide a monomial in
zf−p−2−ν , where f = q + m + g. Its coefficient is given by

(3.10)

p!

ν!

ν−p∑
i=0

(−1)i+1

(
ν − p
i

)
(f − p− 2 − i) (f − p− 3 − i) · · · (f − p− 1 − i− ν)

=
p!

ν!

{
dν

dxν

ν−p∑
i=0

(−1)i+1

(
ν − p
i

)
xf−p−2−i

}
x=1

= −p!

ν!

{
dν

dxν

[
xf−2−ν

ν−p∑
i=0

(−1)i
(
ν − p
i

)
xν−p−i

]}
x=1

= −p!

ν!

{
dν

dxν
xf−2−ν(x− 1)ν−p

}
x=1

= −p!

ν!

{
0 + 0 + · · · +

(
ν

ν − p

)
dp

dxp
xf−2−ν dν−p

dxν−p
(x− 1)ν−p + 0 + · · · + 0

}
x=1

= − (f − 2 − ν) (f − 3 − ν) · · · (f − p− 1 − ν) .

The scalar product is then given by −(f−2−ν)(f−3−ν) · · · (f−p−1−ν)zf−p−2−ν .
The appropriate element of the mth row of the coefficient matrix Kν(z) that is multi-
plied by the nonzero element of the corresponding standard basis vector in the rotation
matrix Jqν is zq−w+m−1, where w = ν − g + 1, and the appropriate derivative is p.
We therefore have

(3.11) (dp/dzp) zf−ν−2 = (f − 2 − ν) (f − 3 − ν) · · · (f − p− 1 − ν) zf−p−2−ν .

Adding (3.10) to (3.11) confirms that the q (ν + 1) column vector composed of δ�+1
j (z)

given in (3.9) and the corresponding standard basis vector in the rotation matrix
Jqν belongs to the null space of the coefficient matrix Kν(z). This completes the
proof.

3.2.2. Summary of construction of the matrix U(1)
j (z). Step 1. Define

vector δ�+1
j (z) according to (3.9) for � = 0, 1, . . . , j.

Step 2. Derive the columns of matrix U (1)
j (z) according to (3.8).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1197

3.2.3. A representation of U(2)
j (z). For j = 1, 2, 3, . . . , ν − 1, the submatrix

U (2)
j (z) admits the structure

(3.12) U (2)
j (z) =

(
κ1
j (z)κ

2
j (z) · · ·κ

ν−j
j (z)

)
.

To specify the basis vectors κ1
j (z) κ2

j (z) . . . κ
ν−j
j (z), we first compute recursively for

j = 1 and k = 2, 3, . . . , ν − j the appropriate column vectors according to

(3.13) κk
1 = κk−1

1 + ξ,

where ξ is given in (3.4). A solution to recursion (3.13) in terms of the initial vector
κ1
j whose form shall be introduced below is

(3.14) κk
1 = κ1

1 + (k − 1)ξ.

We can now compute recursively for j = 2, 3, . . . , ν − 1, according to

(3.15) κk
j = κk−1

j + jκk
j−1.

In the next proposition, an explicit solution to recursion equations (3.15) and (3.13)
shall be displayed for j = 1, 2, 3, . . . , ν − 1.

Proposition 3.4. An explicit solution to the recursion equations (3.15) and
(3.13), expressed in terms of the initial vectors κ1

j , κ
1
j−1, . . . , κ

1
2, κ

1
1 and the known

vector ξ, is given by

(3.16) κk
j =

j−1∑
i=0

i!

(
j
i

)(
k − 2 + i

k − 2

)
κ1
j−i + j!

(
k + j − 2

k − 2

)
ξ.

Proof. The proof consists of using the recursion equations (3.15) and (3.14). Take
j = 2, a combination of (3.15) and (3.14) yields for k = 2, 3, 4, . . .

κ2
2 = κ1

2 + 2κ1
1 + 2ξ

κ3
2 = κ1

2 + 4κ1
1 + 6ξ

κ4
2 = κ1

2 + 6κ1
1 + 12ξ

...

κk
2 = κ1

2 + 2(k − 1)κ1
1 + k(k − 1)ξ.(3.17)

Similarily when j = 3, 4, the recursion exercise yields for the kth column

κk
3 = κ1

3 + 3(k − 1)κ1
2 + 3k(k − 1)κ1

1 + k(k2 − 1)ξ,(3.18)

κk
4 = κ1

4 + 4(k − 1)κ1
3 + 6k(k − 1)κ1

2 + 4k(k2 − 1)κ1
1 + k(k2 − 1) (k + 2) ξ.(3.19)

From (3.17), (3.18), and (3.19) can be concluded that for all values of j, the solution
is then given by (3.16), where the case j = 1 is also included. When j = 1, (3.16)
becomes (3.14).

The columns κk
j for k = 1, 2, . . . , ν − j and j = 1, 2, 3, . . . , ν − 1 are essential for

displaying the corresponding columns of the submatrix U (2)
j (z) set forth in (3.12) and

to obtain

(3.20) κk
j (z) = κk

j � zkuν+1(z).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1198 ANDRÉ KLEIN AND PETER SPREIJ

In order to start the recursions, the (ν + 1) initial column vector κ1
j shall be introduced.

For j = 1, 2, . . . , ν − 1, the components of the vector κ1
j are given by

(3.21)

⎧⎨⎩
[
κ1
j

]
1

= (j + 1)!,
[
κ1
j

]
2

= ((j + 1)!/2) (2ν − j) ,[
κ1
j

]
i
= j!

(
ν+1
i

)
− si, i = 3, . . . , ν − j,[

κ1
j

]
i
= j!

(
ν+1
i

)
, i = ν − j + 1, . . . , ν + 1,

where the terms s�, encountered if ν ≥ 5, are defined by

(3.22) s� =

⎧⎨⎩j!

(
ν − j
�

)
, � = 3, 4, . . . , ν − j for j = 1, 2, . . . , ν − 3,

0, α > ν − 3 for κ1
α.

From (3.22) it can be concluded that when j = ν − 2 and j = ν − 1, s� = 0 for

the corresponding initial vectors κ1
ν−2 and κ1

ν−1 of the submatrices U (2)
j=ν−2(z) and

U (2)
j=ν−1(z), respectively. For the case q ≤ 5, the initial vectors κ1

j do not contain the

terms s� so the elements of κ1
j to be considered are the two first elements and then

pursuing the reading upwards, starting from the last term at the bottom.
The first part of the right-hand side of (3.16) is displayed in order to better

understand the development of the proof of Lemma 3.6 by setting ϑ =
∑j−1

i=0

(
k−2+i
k−2

)
,

(3.23) j!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑j−1
i=0

(
k−2+i
k−2

)
(j − i + 1)∑j−1

i=0

(
k−2+i
k−2

)
((j − i + 1)/2) (2ν − j + i)

ϑ
(
ν+1
3

)
−
∑j−1

i=0

(
k−2+i
k−2

)(
ν−j+i

3

)
ϑ
(
ν+1
4

)
−
∑j−1

i=0

(
k−2+i
k−2

)(
ν−j+i

4

)
...

ϑ
(
ν+1
ν−j

)
−
∑j−1

i=0

(
k−2+i
k−2

)(
ν−j+i
ν−j

)
ϑ
(

ν+1
ν−j+1

)
...

ϑ
(
ν+1
ν+1

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The sign pattern of the elements in each column of U (2)
j (z) is given by (−1)

�
with

� = 1, 2, . . . , ν + 1.
First some results which shall be used in the proof of Lemma 3.6 are set forth.
Proposition 3.5. The following equalities hold true:

j−1∑
i=0

(
k − 2 + i

k − 2

)
=

(
k − 2 + j

k − 1

)
,(3.24)

j−1∑
i=1

(
k − 2 + i

k − 2

)
i =

j(j − 1)

k

(
k − 2 + j

k − 2

)
,(3.25)

j−1∑
i=1

(
k − 2 + i

k − 2

)
i2 =

j(j − 1)(1 + (j − 1)k)

k(k + 1)

(
k − 2 + j

k − 2

)
.(3.26)

Proof. We shall prove the equalities (3.24), (3.25), and (3.26) by applying math-
ematical induction.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1199

It is straightforward to see that the left-hand side of equality (3.24) yields the
right-hand side when j = 1.

Assume for j = p that

p−1∑
i=0

(
k − 2 + i
k − 2

)
=

(
k − 2 + p
k − 1

)
.

This implies that for j = p + 1,

p∑
i=0

(
k − 2 + i
k − 2

)
=

p−1∑
i=0

(
k − 2 + i
k − 2

)
+

(
k − 2 + p
k − 2

)
=

(
k − 2 + p
k − 1

)
+

(
k − 2 + p
k − 2

)
=

(
k − 1 + p
k − 1

)
.

The last equality is based on the elementary identity for integers n and j:

(3.27)

(
n
j

)
+

(
n

j + 1

)
=

(
n + 1
j + 1

)
.

The proof of (3.24) is completed. When j = 2, the left-hand side of equality (3.25)
is
(
k−1
k−2

)
and equals the right-hand side which becomes 2

k

(
k
k−2

)
Assume that (3.25) is

true for j = p. Then

p−1∑
i=0

(
k − 2 + i
k − 2

)
i =

p(p− 1)

k

(
k − 2 + p
k − 2

)
,

for j = p + 1,

p∑
i=0

(
k − 2 + i
k − 2

)
i =

p−1∑
i=0

(
k − 2 + i
k − 2

)
i + p

(
k − 2 + p
k − 2

)
=

p(p− 1)

k

(
k − 2 + p
k − 2

)
+ p

(
k − 2 + p
k − 2

)
=

(k + p− 1)!

(k − 2)!(p− 1)!k
=

p(p + 1)

k

(
k − 1 + p
k − 2

)
.

This confirms (3.25). Finally we prove (3.26). When j = 2, the left-hand side of
equality (3.26) is

(
k−1
k−2

)
and equals the right-hand side which becomes 2

k

(
k
k−2

)
Assume

for j = p that

p−1∑
i=0

(
k − 2 + i
k − 2

)
i2 =

p(p− 1)(1 + (p− 1)k)

k(k + 1)

(
k − 2 + p
k − 2

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1200 ANDRÉ KLEIN AND PETER SPREIJ

This implies that for j = p + 1,

p∑
i=0

(
k − 2 + i
k − 2

)
i2 =

p−1∑
i=0

(
k − 2 + i
k − 2

)
i2 + p2

(
k − 2 + p
k − 2

)
=

p(p− 1)(1 + (p− 1)k)

k(k + 1)

(
k − 2 + p
k − 2

)
+ p2

(
k − 2 + p
k − 2

)
=

(1 + pk) (k + p− 1)(k + p− 2)!

(k − 2)! (p− 1)!k(k + 1)

=
p(p + 1)(1 + pk)

k(k + 1)

(
k − 1 + p
k − 2

)
.

This completes the proof.
We shall now continue with the following lemma.
Lemma 3.6. The q (ν + 1) column vector composed of κk

j (z), described in (3.16)
and (3.20), and the corresponding standard basis vector in R

qν belongs to the null
space of the coefficient matrix Kν(z).

Proof. The scalar product of (3.20) and (3.5) provides a monomial in zn+k−ν−2.
The z-variables will be reintroduced at a later stage for typographical brevity. The
scalar product is first computed for the last ν− 1 entries of the first column of (3.23),
then sets j = p in (3.16) and takes (3.24) into consideration yielding

(3.28)

p!

ν!

(
k − 2 + p
k − 1

) ν−2∑
i=0

(−1)i+1

(
ν + 1
3 + i

)
(n− 4 − i)(n− 5 − i) · · · (n− ν − 3 − i)

=
p!

ν!

(
k − 2 + p
k − 1

){
dν

dxν

ν−2∑
i=0

(−1)i+1

(
ν + 1
3 + i

)
xn−4−i

}
x=1

= −p!

ν!

(
k − 2 + p
k − 1

){
dν

dxν

[
xn−2−ν

ν−2∑
i=0

(−1)i
(
ν + 1
3 + i

)
xν−2−i

]}
x=1

.

Then set j = 3 + i

(3.29) =
p!

ν!

(
k − 2 + p
k − 1

)⎧⎨⎩ dν

dxν

⎡⎣xn−2−ν

⎛⎝ν+1∑
j=3

(−1)j
(
ν + 1
j

)
xν+1−j

⎞⎠⎤⎦⎫⎬⎭
x=1

.

The following holds:

ν+1∑
j=3

(−1)j
(
ν + 1
j

)
xν+1−j =

ν+1∑
j=0

(−1)j
(
ν + 1
j

)
xν+1−j −

2∑
j=0

(−1)j
(
ν + 1
j

)
xν+1−j .

Equation (3.29) becomes

(3.30)

p!

ν!

(
k − 2 + p
k − 1

)
dν

dxν

{
xn−2−ν

(
(x− 1)ν+1 − xν+1 + (ν + 1)xν − ν(ν + 1)

2
xν−1

)}
x=1

=
p!

ν!

(
k − 2 + p
k − 1

)⎧⎪⎨⎪⎩
−(n− 1)(n− 2) · · · (n− ν)

+(ν + 1)(n− 2)(n− 3) · · · (n− ν − 1)

−ν(ν + 1)

2
(n− 3)(n− 4) · · · (n− ν − 2)

⎫⎪⎬⎪⎭ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1201

We shall now focus on the part of (3.23) that contains s�. For that purpose an explicit
representation is displayed,

p!

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
k − 2
k − 2

)⎛⎜⎜⎜⎝
(
ν−p

3

)(
ν−p

4

)
...(

ν−p
ν−p

)
⎞⎟⎟⎟⎠+

(
k − 1
k − 2

)⎛⎜⎜⎜⎝
(
ν−p+1

3

)(
ν−p+1

4

)
...(

ν−p+1
ν−p+1

)
⎞⎟⎟⎟⎠

+ · · · +
(
k + p− 3
k − 2

)⎛⎜⎜⎜⎝
(
ν−1
3

)(
ν−1
4

)
...(

ν−1
ν−1

)
⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

The scalar product of (3.5) with each of the columns above can be expressed as
follows, consider the index � = 0, 1, 2, . . . , p− 1, to obtain

p!

ν!

(
k + �− 2
k − 2

) ν−p+�−3∑
i=0

(−1)i
(
ν − p + �

3 + i

)
(n− 4 − i)(n− 5 − i) · · · (n− ν − 3 − i)

=
p!

ν!

(
k + �− 2
k − 2

){
dν

dxν

ν−p+�−3∑
i=0

(−1)i
(
ν − p + �

3 + i

)
xn−4−i

}
x=1

.

Set j = 3 + i; it then yields

p!

ν!

(
k + �− 2
k − 2

)⎧⎨⎩ dν

dxν

ν−p+�∑
j=3

(−1)j−3

(
ν − p + �

j

)
xn−j−1

⎫⎬⎭
x=1

= −p!

ν!

(
k + �− 2
k − 2

)⎧⎨⎩ dν

dxν
xn−ν+p−�−1

⎛⎝ν−p+�∑
j=3

(−1)j
(
ν − p + �

j

)
xν−p+�−j

⎞⎠⎫⎬⎭
x=1

= −p!

ν!

(
k + �− 2
k − 2

)⎧⎨⎩ dν

dxν
xn−ν+p−�−1

⎛⎝ν−p+�∑
j=0

(−1)j
(
ν − p + �

j

)
xν−p+�−j

−
2∑

j=0

(−1)j
(
ν − p + �

j

)
xν−p+�−j

⎞⎠⎫⎬⎭
x=1

= −p!

ν!

(
k + �− 2
k − 2

){
dν

dxν

(
xn−ν+p−�−1(x− 1)ν−p+� − xn−1 + (ν − p + �)xn−2

− (ν − p + �− 1) (ν − p + �)

2
xn−3

)}
x=1

.

The first term can be expanded according to Leibnitz rule for ν-fold differentiation of
a product of two functions,{

0 + 0 + · · · +
(

ν
ν − p + �

)
dp−�

dxp−�
xn−ν+p−�−1 dν−p+�

dxν−p+�
(x− 1)ν−p+� + 0 + · · · + 0

}
x=1

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1202 ANDRÉ KLEIN AND PETER SPREIJ

The result is then

(3.31)

p!

ν!

(
k + �− 2
k − 2

)⎧⎪⎨⎪⎩
(n− 1)(n− 2) · · · (n− ν)

−(ν − p + �)(n− 2)(n− 3) · · · (n− ν − 1)

+
(ν − p + �− 1) (ν − p + �)

2
(n− 3)(n− 4) · · · (n− ν − 2)

⎫⎪⎬⎪⎭
− p!

(p− �)!

(
k + �− 2
k − 2

)
(n− ν + p− �− 1)(n− ν + p− �− 2) · · · (n− ν).(3.32)

Since q = ν + 1, the terms (n− ν), (n− ν − 1), and (n− ν − 2) in (3.31) are positive
and (n− ν − 2) ≥ 0.

The terms involving p!
ν! (n − 1)(n − 2) · · · (n − ν) appearing in (3.30) and (3.31),

the latter for � = 0, 1, 2, . . . , p− 1, when added yield

−
(
k − 2 + p
k − 1

)
+

p−1∑
i=0

(
k − 2 + i
k − 2

)
= −

(
k − 2 + p
k − 1

)
+

(
k − 2 + p
k − 1

)
= 0.

The last equality is established by virtue of (3.24). A more explicit expression for the
first term in (3.23) is now considered, with the corresponding minus sign. By virtue
of (3.24) and (3.25) it can be seen that

−p!

ν!

p−1∑
i=0

(
k − 2 + i
k − 2

)
(p− i + 1) = −p!

ν!

{
(p + 1)

(
k − 2 + p
k − 1

)
−p(p− 1)

k

(
k − 2 + p
k − 2

)}
.

In the scalar product, the first term of (3.23) is multiplied by (n−2)(n−3) · · · (n−ν−1).
Summing up all of the terms involving this product, which also appears in (3.30) and
(3.31), yields{

−(p + 1)

(
k − 2 + p
k − 1

)
+

p(p− 1)

k

(
k − 2 + p
k − 2

)
+

(
k + p− 2
k − 1

)
(ν + 1)

−
p−1∑
i=0

(
k − 2 + i
k − 2

)
(ν − p + i)

}

= −(p + 1)

(
k − 2 + p
k − 1

)
+

p(p− 1)

k

(
k − 2 + p
k − 2

)
+

(
k + p− 2
k − 1

)
(ν + 1)

−(ν − p)

(
k + p− 2
k − 1

)
− p(p− 1)

k

(
k − 2 + p
k − 2

)
= 0.

The last equality is established by virtue of (3.24) and (3.25).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1203

We focus now on an explicit form of the second term of (3.23). By virtue of (3.24),
(3.25), and (3.26) we obtain

(3.33)

p!

2

p−1∑
i=0

(
k − 2 + i
k − 2

)
(p− i + 1) (2ν − p + i)

=
p!

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(p + 1) (2ν − p)

(
k − 2 + p
k − 1

)
+ (2p− 2ν + 1)

p(p− 1)

k

(
k − 2 + p
k − 2

)
−p(p− 1)(1 + (p− 1)k)

k(k + 1)

(
k − 2 + p
k − 2

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

In the scalar product, the term (3.33) is multiplied by (n−3)(n−4) · · · (n−ν− 2). Sum-
ming up all of the terms involving this product, without (p!/ν!), which also appears
in (3.30) and (3.31), yields next to (3.33),

(3.34)

{
−
(
k − 2 + p
k − 1

)
ν(ν + 1)

2
+

1

2

p−1∑
i=0

(
k − 2 + i
k − 2

)
(ν − p + i− 1) (ν − p + i)

}
.

We now collect all of the terms involved to obtain

(p + 1) (2ν − p)

2

(
k − 2 + p
k − 1

)
+ (2p− 2ν + 1)

p(p− 1)

2k

(
k − 2 + p
k − 2

)

− p(p− 1)(1 + (p− 1)k)

2k(k + 1)

(
k − 2 + p
k − 2

)
− ν(ν + 1)

2

(
k − 2 + p
k − 1

)

+
(ν − p− 1) (ν − p)

2

(
k − 2 + p
k − 1

)
+ (2ν − 2p− 1)

p(p− 1)

2k

(
k − 2 + p
k − 2

)

+
p(p− 1)(1 + (p− 1)k)

2k(k + 1)

(
k − 2 + p
k − 2

)
= 0;

as in the other cases, this result is obtained by using (3.24), (3.25), and (3.26).
Consequently, the remaining terms are now collected—it concerns the term

involving ξ in (3.16), the appropriate scalar product is by virtue of (3.7) −p!
(
k−2+p
k−2

)
,

and the terms derived from (3.32), for � = 0, 1, 2, . . . , p− 1, to obtain

−
p−1∑
i=0

p!

(p− i)!

(
k + i− 2
k − 2

)
(n− ν + p− i− 1)(n− ν + p− i− 2) · · · (n− ν).

The remaining terms can be summarized according to

(3.35) −p!

p−1∑
i=0

(
k + i− 2
k − 2

)(
n− ν + p− i− 1

n− ν − 1

)
− p!

(
k − 2 + p
k − 2

)
.

Concerning (3.35), the following property will be proved:

(3.36)

p∑
i=0

(
k + i− 2
k − 2

)(
n− ν + p− i− 1

n− ν − 1

)
=

(
n− ν + k + p− 2
n− ν + k − 2

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1204 ANDRÉ KLEIN AND PETER SPREIJ

For proving (3.36), we consider, for all nonnegative integers l, p and n ≥ p,

(3.37)

(
n + l + 1

p

)
=

p∑
i=0

(
l + i

i

)(
n− i

p− i

)
.

The proof is based on (3.27), which we rewrite as

(3.38)

(
m
j

)
+

(
m

j + 1

)
=

(
m + 1
j + 1

)
.

First we prove the formula for n = p. In this case the identity (3.37) reduces to(
l + p + 1

p

)
=

p∑
i=0

(
l + i

i

)
.

We use induction w.r.t. the variable p. The case p = 0 is a triviality. Assume
that (3.37) holds true for a certain value of p. Then

p+1∑
i=0

(
l + i

i

)
=

p∑
i=0

(
l + i

i

)
+

(
l + p + 1

p + 1

)
.

The first term on the right-hand side is equal to
(
l+p+1

p

)
by hypothesis. Then adding

the second term gives
(
l+p+2
p+1

)
by virtue of (3.38).

The rest of the proof is by induction w.r.t. the variable n, n ≥ p, since we
have settled the case n = p. Consider the right-hand side of (3.37) with n + 1
instead of n and compute using the induction hypothesis two times and repeatedly
the identity (3.38),

p∑
i=0

(
l + i

i

)(
n + 1 − i

p− i

)
=

p∑
i=0

(
l + i

i

)(
n− i

p− i

)
+

p−1∑
i=0

(
l + i

i

)(
n− i

p− 1 − i

)
=

(
n + l + 1

p

)
+

(
n + l + 1

p− 1

)
=

(
n + l + 2

p

)
.

From (3.35) and (3.36) it can be concluded that the scalar product is equal to

(3.39) −(n− ν + k + p− 2)(n− ν + k + p− 3) · · · (n− ν + k − 1)zn+k−ν−2.

The corresponding nonzero element of the standard basis vector in the rotation matrix
Jqν is multiplied by zn−w−1 for w = ν − p + 1 − k, and the appropriate derivative is
(3.40)
(dp/dzp) zn−ν+k+p−2 = (n−ν+k+p−2)(n−ν+k+p−3) · · · (n−ν+k−1)zn+k−ν−2.

Adding (3.39) to (3.40) confirms that the q (ν + 1) column vector composed of vector
κk
j (z), described in (3.16) and (3.20), and the corresponding standard basis vector in

the rotation matrix Jqν belongs to the null space of the coefficient matrix Kν(z) when
s� �= 0 in (3.21).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1205

We now proceed with the proof when s� = 0 in (3.21), the cases j = ν − 1 and
j = ν − 2 are therefore considered. The initial vector (3.21) for the former case is

(3.41) κ1
ν−1 = (ν − 1)!

(
ν,

(
ν + 1

2

)
,

(
ν + 1

3

)
, . . . ,

(
ν + 1
ν + 1

))�
.

The scalar product involving the first ν+1 elements is displayed, and the last ν entries
of (3.41) are first considered to obtain

(ν − 1)!

ν!

ν−1∑
i=0

(−1)i
(
ν + 1
2 + i

)
(n− 3 − i)(n− 4 − i) · · · (n− ν − 2 − i).

The same approach as we used to derive (3.29) yields

(ν − 1)!

ν!

{
−(n− 1)(n− 2) · · · (n− ν)

+ (ν + 1) (n− 2)(n− 3) · · · (n− ν − 1)

}
.

Adding the scalar product involving the first element of (3.41) and (3.5) yields⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(n− 2)(n− 3) · · · (n− ν − 1)

+
(ν − 1)! (ν + 1)

ν!
(n− 2)(n− 3) · · · (n− ν − 1)

− (ν − 1)!

ν!
(n− 1)(n− 2) · · · (n− ν)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= −(n− 2)(n− 3) · · · (n− ν).

This result is obtained through straightforward calculation. It can now be concluded
that the scalar product is

(3.42) −(n− 2)(n− 3) · · · (n− ν)zn−ν−1.

Note for the case under study, k = 1 (it concerns the initial vector κ1
ν−1). The

corresponding nonzero element of the standard basis vector in the rotation matrix
Jqν is multiplied by zn−w−1 for w = 2− k, w = ν− p+ 1− k in the general case. The
appropriate derivative is then

(3.43)
(
dν−1/dzν−1

)
zn−2 = (n− 2)(n− 3) · · · (n− ν)zn−ν−1.

Adding (3.42) to (3.43) confirms that when in (3.21) s� = 0 and j = ν−1, the q (ν + 1)
column vector, composed of vector κ1

ν−1, given in (3.41), and the corresponding stan-
dard basis vector in the rotation matrix Jqν , belongs to the null space of the coefficient
matrix Kν(z).

The case j = ν − 2 is considered next. The initial vector (3.21) is then

(3.44) κ1
ν−2 = (ν − 2)!

(
(ν − 1) , ((ν − 1) /2) (ν + 2) ,

(
ν + 1

3

)
, . . . ,

(
ν + 1
ν + 1

))�
.

The scalar product involving the first ν +1 elements is displayed, and the last (ν − 1)
entries of (3.44) are first considered to obtain

(ν − 2)!

ν!

ν−2∑
i=0

(−1)i+1

(
ν + 1
3 + i

)
(n− 4 − i)(n− 5 − i) · · · (n− ν − 3 − i).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1206 ANDRÉ KLEIN AND PETER SPREIJ

According to (3.28) we have

(ν − 2)!

ν!

⎧⎪⎪⎨⎪⎪⎩
−(n− 1)(n− 2) · · · (n− ν)

+(ν + 1)(n− 2)(n− 3) · · · (n− ν − 1)

−ν(ν + 1)

2
(n− 3)(n− 4) · · · (n− ν − 2)

⎫⎪⎪⎬⎪⎪⎭ .

The scalar product involving the first and second elements of (3.44) and (3.5) are

− (ν − 1)!

ν!
(n− 2)(n− 3) · · · (n− ν − 1)

and
((ν − 1)!/2) (ν + 2)

ν!
(n− 3)(n− 4) · · · (n− ν − 2),

respectively. Summing all of the terms yields⎧⎪⎪⎨⎪⎪⎩
(ν−2)!(ν+1)−(v−1)!

ν! (n− 2)(n− 3) · · · (n− ν − 1)

+ (ν−1)!(ν+2)−(ν−2)!ν(ν+1)
2(ν!) (n− 3)(n− 4) · · · (n− ν − 2)

− (ν−2)!
ν! (n− 1)(n− 2) · · · (n− ν)

⎫⎪⎪⎬⎪⎪⎭
= −(n− 3)(n− 4) · · · (n− ν).

This result is obtained through straightforward computation. It can now be concluded
that the scalar product is

(3.45) −(n− 3)(n− 4) · · · (n− ν)zn−ν−1.

Note for the case under study, k = 1 (it concerns the initial vector κ1
ν−2).

The corresponding nonzero element of the standard basis vector in the rotation
matrix Jqν is multiplied by zn−w−1 for w = 3−k and w = ν−p+1−k in the general
case. The appropriate derivative is then

(3.46)
(
dν−2/dzν−2

)
zn−3 = (n− 3)(n− 4) · · · (n− ν)zn−ν−1.

Adding (3.45) to (3.46) confirms that when in (3.21) s� = 0 and j = ν−2, the q (ν + 1)
column vector, composed of vector κ1

ν−2, given in (3.44), and the corresponding stan-
dard basis vector in the rotation matrix Jqν , belongs to the null space of the coefficient
matrix Kν(z).

It can be concluded that the q (ν + 1) column vector, composed of vector κk
j (z),

described in (3.16) and (3.20), and the corresponding standard basis vector in the
rotation matrix Jqν , belongs to the null space of the coefficient matrix Kν(z). The
proof of Lemma 3.6 is now complete.

3.2.4. Summary of the construction of matrix U(2)
j (z). Step 1. Define

the initial vectors κ1
j given in (3.21) for the values of j = 1, 2, 3, . . . , ν − 1.

Step 2. Expand (3.16) for the corresponding values of j = 1, 2, 3, . . . , ν − 1.

Step 3. Compute the columns of U (2)
j (z) according to (3.20) for the corresponding

values of j = 1, 2, 3, . . . , ν − 1.

In the next section an example will illustrate the results set forth in previous
sections.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1207

3.3. Example Ker (Kν(z)) for the case ν + 1 = 6. This case will be
illustrated for q = 6 and ν = 5. The first submatrix contained in the null space of
Kν(z) is then

U0(z) =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 − z − z2 − z3 − z4 − z5

5z 5z2 5z3 5z4 5z5 5z6

−10z2 −10z3 −10z4 −10z5 −10z6 −10z7

10z3 10z4 10z5 10z6 10 z7 10z8

−5z4 −5z5 −5z6 −5 z7 −5z8 −5z9

z5 z6 z7 z8 z9 z10

⎞⎟⎟⎟⎟⎟⎟⎠ .

This is followed by the second class of submatrices Uj(z) when j = 1, 2, 3, 4,

U (1)
j=1(z) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −1

−1 4z
4z −6z2

−6z2 4z3

4z3 −z4

−z4 0

⎞⎟⎟⎟⎟⎟⎟⎠ , U (1)
j=2(z) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 −2
0 −2 6z

−2 6z −6z2

6z −6z2 2z3

−6z2 2z3 0
2z3 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

U (1)
j=3(z) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 −6
0 0 −6 12z
0 −6 12z −6z2

−6 12z −6z2 0
12z −6z2 0 0

−6z2 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and

U (1)
j=4(z) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 −24
0 0 0 −24 24z
0 0 −24 24z 0
0 −24 24z 0 0

−24 24z 0 0 0
24z 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

This is then followed by a class of submatrices U (2)
j (z) when j = 1, 2, 3, 4,

U (2)
j=1(z) =

⎛⎜⎜⎜⎜⎜⎜⎝
−2z −3z2 −4z3 −5z4

9z2 14z3 19 z4 24z5

−16z3 −26z4 −36z5 − 46z6

14z4 24z5 34 z6 44z7

−6z5 −11z6 −16z7 −21z8

z6 2z7 3 z8 4z9

⎞⎟⎟⎟⎟⎟⎟⎠ ,

U (2)
j=2(z) =

⎛⎜⎜⎜⎜⎜⎜⎝
− 6z −12z2 −20z3

24z2 52z3 90z4

−38z3 −90z4 −162z5

30z4 78z5 146z6

−12z5 −34z6 −66z7

2z6 6z7 12z8

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1208 ANDRÉ KLEIN AND PETER SPREIJ

U (2)
j=3(z) =

⎛⎜⎜⎜⎜⎜⎜⎝
−24z −60z2

84z2 240z3

−120z3 −390z4

90z4 324z5

−36z5 −138z6

6z6 24z7

⎞⎟⎟⎟⎟⎟⎟⎠ , and

U (2)
j=4(z) =

⎛⎜⎜⎜⎜⎜⎜⎝
−120z
360z2

−480z3

360z4

−144z5

24z6

⎞⎟⎟⎟⎟⎟⎟⎠ .

Insertion of U0(z) and the matrices

U1(z) =
(
U (1)
j=1(z) U (2)

j=1(z)
)
,

U2(z) =
(
U (1)
j=2(z) U (2)

j=2(z)
)
,

U3(z) =
(
U (1)
j=3(z) U (2)

j=3(z)
)
,

U4(z) =
(
U (1)
j=4(z) U (2)

j=4(z)
)

,

in (3.2) yields the form

U(z) =
1

5!
(U0(z),U1(z),U2(z),U3(z),U4(z)) .

The columns that compose
(U(z)
J30

)
span Ker (Kν(z)) when q = 6 and ν = 5.

In the next section the null space of the coefficient matrix Mτ (ρ) is set forth.

4. A representation of Ker (Mτ (ρ)). In this section a representation of the
subspace Ker(Mτ (ρ)) is displayed for the case τ + 1 = p. The coefficient matrix
Mτ (z) is considered for z = ρ, and a motivation is formulated below. We shall first
focus on the dimension of the null space Ker(Mτ (ρ)) .

Proposition 4.1. The null space Ker(Mτ (ρ)) has dimension equal to pτ and
the rank of the coefficient matrix (Mτ (ρ)) is p, when τ + 1 = p.

Proof. By virtue of Corollary 2.2, a similar argument as in Proposition 3.1 holds
for the coefficient matrix Mτ (ρ); see also Lemma 2.4 in [5]. It can be concluded
that the p × p(τ + 1) coefficient matrix Mτ (ρ) is surjective or has full row rank;
its rank is then p. By virtue of the dimension rule, it can be concluded that dim
Ker(Kν(z)) = pτ .

We can essentially reduce the problem of computing the null space Ker(Mτ (ρ))
to the computation of the kernel of the matrix Kτ (ρ). The vectors contained in

(4.1) G =

(
Y(ρ)
Jpτ

)
span the null space of Mτ (ρ), where Jpτ is the pτ rotation matrix.

Observe that G has full rank pτ since Jpτ is a nonsingular submatrix of G.
Therefore the columns of G form a basis of Ker(Mτ (ρ)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1209

Write

(4.2) Y(ρ) =
1

τ !
(Y0(ρ),Y1(ρ),Y2(ρ), . . . ,Yτ−1(ρ)) ,

where

Y0(ρ) = U�
0 (ρ)

and

Yj(ρ) =

(
Y(1)
j (ρ)

Y(2)
j (ρ)

)
=

⎛⎜⎝
(
U (1)
j (ρ)

)�(
U (2)
j (ρ)

)�
⎞⎟⎠ = U�

j (ρ) for j = 1, 2, . . . , τ − 1.

The matrices U0(ρ), U (1)
j (ρ), and U (2)

j (ρ) are given in section 3.
In section 3.2 of [5], the vector y ∈ Ker (Mτ (ρ)) is computed according to

(4.3) y = (Iτ+1 ⊗ S(f))−1x,

where x ∈ Ker (Kτ (ρ)) and the p×p symmetrizer S(f) is associated with a polynomial
f(z) of degree p. Consider f(z) = zp + a1z

p−1 + a2z
p−2 + · · · + ap, then the p × p

matrix S(f) is

S(f) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

a1 1 0
...

...
. . .

. . . 0
... 1 0

ap−1 a1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Formula (4.3) is derived from an equality which connects the matrices adj(zI − Cp)
and up(z)u

∗�
p (z), where up(z) and u∗

p(z) are defined in (1.4). From [6], we take
Proposition 3.1 which gives the identity

(4.4) adj (zI − Cp) = up(z)a
� (z)Jp − π(z)

p−1∑
i=0

ziSi+1.

The vector a (z) is the p-vector (a0 (z) , . . . , ap−1 (z)), where ak (z) is the Hörner poly-
nomial defined by a0 (z) = 1 and ak (z) = zak−1 (z) + ak, and ak is an entry of Cp.
Note that ap (z) is the characteristic polynomial of Cp. We further have that the
rotation matrix Jp ∈ R

p×p, π(z) is the characteristic polynomial of Cp and S denotes
the shift matrix, so Sij = δi,j+1. Observe that the property a� (z)Jp = u∗

p(z)
�S(f)

is used in (4.4) to obtain (4.3).
If z = ρ, where ρ is an eigenvalue of the companion matrix Cp, then the second

term in the right-hand side of (4.4) vanishes. It is then possible to derive form (4.3)
(see [5]), and this is the reason why in this section one chooses working with z = ρ
instead of z.

A relation between the submatrices Y(ρ) in (4.2) and U(ρ) in (3.2) can now
be displayed through equality (4.3). For that purpose we denote the vectors v0(ρ),
v1(ρ), v2(ρ), . . . , vτ−1(ρ) as being the first columns of the submatrices U0(ρ), U1(ρ),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1210 ANDRÉ KLEIN AND PETER SPREIJ

U2(ρ), . . . ,Uτ−1(ρ), given in (3.2). Whereas the vectors w0(ρ), w1(ρ), w2(ρ), . . . ,
wτ−1(ρ) represent the first rows of the same submatrices. The following property
is now summarized in the lemma.

Lemma 4.2. By virtue of (4.3), the following equalities hold true for i = 0, 1, 2, . . . ,
τ − 1:

yi(ρ) = S−1(f)vi(ρ) = w�
i (ρ),

where y0(ρ), y1(ρ), y2(ρ), . . . , yτ−1(ρ) are the first columns of the submatrices Y0(ρ),
Y1(ρ),Y2(ρ), . . . ,Yτ−1(ρ) given in (4.2).

Proof. Straightforward matrix multiplications S−1(f)vi(ρ) confirm the prop-
erty.

This leads to the main result of this section.
Corollary 4.3. For the case τ + 1 = p, the span of the null space of Mτ (ρ) is(

Y(ρ)
Jpτ

)
,

where Y(ρ) is given by (4.2).
Proof. It can be verified through matrix multiplications that

Mτ (ρ)

(
Y(ρ)
Jpτ

)
= 0

holds. This is in agreement with the appropriate dimensions specified above.
It can be seen from (4.3) that for every vector y ∈ Ker (Mτ (ρ)) computed

according to the approach suggested in [5], the symmetrizer S(f), a lower trian-
gular and Toeplitz matrix has to be inverted once. However, this is combined with
pτ matrix multiplications by the corresponding vector x ∈ Ker (Kτ (ρ)). This is in
agreement with the dimension of the null space of Mτ (ρ). In this paper there are
neither matrix multiplications nor inversions involved in the construction of the span
of the null spaces of Kτ (ρ) and Mτ (ρ). The null space of Mτ (ρ) is obtained by trans-
posing the submatrices contained in the null space of Kτ (ρ). Consequently, when the
algorithm of the null space of Kτ (ρ) is available, the new approach does not require
any computational exercise for displaying the span of the null space of Mτ (ρ). In the
next section an example of the null space of Mτ (ρ) is set forth so that the property
emphasized in this section will be illustrated.

4.1. Example Ker (Mτ (ρ)) when τ + 1 = 7. This case will be illustrated
for p = 7 and τ = 6. The first matrix is then

Y0(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 6ρ −15ρ2 20ρ3 −15ρ4 6ρ5 −ρ6

−ρ 6ρ2 −15ρ3 20ρ4 −15ρ5 6ρ6 −ρ7

−ρ2 6ρ3 −15ρ4 20ρ5 −15ρ6 6ρ7 −ρ8

−ρ3 6ρ4 −15ρ5 20ρ6 −15ρ7 6ρ8 −ρ9

−ρ4 6ρ5 −15ρ6 20ρ7 −15ρ8 6ρ9 −ρ10

−ρ5 6ρ6 −15ρ7 20ρ8 −15ρ9 6ρ10 −ρ11

−ρ6 6ρ7 −15ρ8 20 ρ9 −15ρ10 6ρ11 −ρ12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The following class of matrices are for j = 1, 2, 3, 4, 5:

Y(1)
j=1(ρ) =

(
0 −1 5ρ −10ρ2 10ρ3 −5ρ4 ρ5

−1 5ρ −10ρ2 10ρ3 −5ρ4 ρ5 0

)
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1211

Y(1)
j=2(ρ) =

⎛⎝ 0 0 −2 8ρ −12ρ2 8ρ3 −2ρ4

0 −2 8ρ −12ρ2 8ρ3 −2 ρ4 0
−2 8ρ −12ρ2 8ρ3 −2ρ4 0 0

⎞⎠ ,

Y(1)
j=3(ρ) =

⎛⎜⎜⎝
0 0 0 −6 18ρ −18ρ2 6ρ3

0 0 −6 18ρ −18ρ2 6ρ3 0
0 −6 18ρ −18ρ2 6ρ3 0 0
−6 18ρ −18ρ2 6ρ3 0 0 0

⎞⎟⎟⎠ ,

Y(1)
j=4(ρ) =

⎛⎜⎜⎜⎜⎝
0 0 0 0 −24 48ρ −24ρ2

0 0 0 −24 48ρ −24ρ2 0
0 0 −24 48ρ −24ρ2 0 0
0 −24 48ρ −24ρ2 0 0 0

−24 48ρ −24ρ2 0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

Y(1)
j=5(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 −120 120ρ
0 0 0 0 −120 120ρ 0
0 0 0 −120 120ρ 0 0
0 0 −120 120ρ 0 0 0
0 −120 120ρ 0 0 0 0

−120 120ρ 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

The matrices Y(2)
j (ρ) with j = 1, 2, 3, 4, 5 are now displayed:

Y(2)
j=1(ρ) =

⎛⎜⎜⎜⎜⎝
−2ρ 11ρ2 −25ρ3 30ρ4 −20ρ5 7ρ6 −ρ7

−3ρ2 17ρ3 −40ρ4 50ρ5 −35ρ6 13ρ7 −2ρ8

−4ρ3 23ρ4 −55ρ5 70ρ6 −50ρ7 19ρ8 −3ρ9

−5ρ4 29ρ5 −70ρ6 90ρ7 −65ρ8 25ρ9 −4ρ10

−6ρ5 35ρ6 −85ρ7 110ρ8 −80ρ9 31ρ10 −5ρ11

⎞⎟⎟⎟⎟⎠ ,

Y(2)
j=2(ρ) =

⎛⎜⎜⎝
−6ρ 30ρ2 −62ρ3 68ρ4 −42ρ5 14ρ6 −2ρ7

−12ρ2 64ρ3 −142ρ4 168ρ5 −112ρ6 40ρ7 −6ρ8

−20ρ3 110ρ4 −252ρ5 308ρ6 −212ρ7 78 ρ8 −12ρ9

−30ρ4 168ρ5 −392ρ6 488ρ7 −342ρ8 128 ρ9 −20ρ10

⎞⎟⎟⎠ ,

Y(2)
j=3(ρ) =

⎛⎝ −24ρ 108ρ2 −204ρ3 210ρ4 −126ρ5 42ρ6 −6ρ7

−60ρ2 300ρ3 −630ρ4 714ρ5 −462ρ6 162 ρ7 −24 ρ8

−120ρ3 630ρ4 −1386ρ5 1638ρ6 −1098ρ7 396 ρ8 −60ρ9

⎞⎠ ,

Y(2)
j=4(ρ) =

(
−120ρ 480ρ2 −840ρ3 840ρ4 −504ρ5 168ρ6 −24ρ7

−360ρ2 1680ρ3 −3360ρ4 3696ρ5 −2352ρ6 816 ρ7 −120ρ8

)
,

Y(2)
j=5(ρ) =

(
−720ρ 2520ρ2 −4200ρ3 4200ρ4 −2520ρ5 840ρ6 −120ρ7

)
.

Insertion of the matrix Y0(ρ) in (4.2) followed by

Y1(ρ) =

(
Y(1)
j=1(ρ)

Y(2)
j=1(ρ)

)
, Y2(ρ) =

(
Y(1)
j=2(ρ)

Y(2)
j=2(ρ)

)
,

Y3(ρ) =

(
Y(1)
j=3(ρ)

Y(2)
j=3(ρ)

)
, Y4(ρ) =

(
Y(1)
j=4(ρ)

Y(2)
j=4(ρ)

)
, Y5(ρ) =

(
Y(1)
j=5(ρ)

Y(2)
j=5(ρ)

)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1212 ANDRÉ KLEIN AND PETER SPREIJ

yields the representation

Y(ρ) =
1

6!
(Y0(ρ),Y1(ρ),Y2(ρ),Y3(ρ),Y4(ρ),Y5(ρ)) .

The vectors contained in
(Y(ρ)
J42

)
span the null space of Mτ (ρ) when p = 7 and τ = 6.

It is straightforward to verify that when the matrices Y0(ρ), Y(1)
j (ρ), and Y(2)

j (ρ),
with j = 1, 2, 3, 4, 5, are transposed and inserted in (3.2) accordingly, one obtains the
null space of Kτ (ρ).

A summary of the results will be given in the next section.

5. Main conclusions. The results displayed in sections 2–4 allow us to present
an explicit representation of the solutions to the linear systems of equations introduced
in this paper. The solutions, (1.5) and (1.6), to the linear system of (1.1) and (1.2)
are given by

X = (Kν(z))
− E + W(z) with W(z)∈ Ker (Kν(z)) ,

Y = (Mτ (ρ))
− R + L(ρ) with L(ρ) ∈ Ker (Mτ (ρ)) .

An explicit expression for (Kν(z))
−

and W(z) has been developed in sections 2 and 3,
respectively, and a solution to the linear system of equations (1.1) is implementable.
Analogously for the expressions (Mτ (ρ))

− and L(ρ), constructed in sections 2 and 4,
respectively, a solution to the linear system of (1.2) is implementable.

In the next section an algorithm for the null space Ker(Kν(z)), for the case ν +
1 < q, is presented. It is a variant of the algorithm displayed in section 3.

6. Ker (Kν(z)) for the case ν + 1 < q. In this section the case ν + 1 < q
is considered for the null space Ker (Kν(z)). We then have rank(Kν(z)) = ν + 1 so
that dim Ker(Kν(z)) = (q − 1) (ν + 1). In this case the coefficient matrix Kν(z) is
not surjective, so a Moore–Penrose generalized inverse should be used when one is
interested in a solution of (1.1). This can be a subject for future research. Consider
the null space of the coefficient matrix Kν(z),

Ker Kν(z) = span

(
U(z)

J(q−1)(ν+1)

)
,

where J(q−1)(ν+1) is the (q − 1) (ν + 1) rotation matrix. An algorithm of the matrix
U(z) contained in Ker(Kν(z)) will be set forth to obtain

U(z) =
1

ν!
(U0(z),U1(z),U2(z), . . . ,Uν−1(z)) .

In this section no proofs are provided since they are similar to the proofs done in
section 3.

6.1. A representation for U0(z). An appropriate partition is U0(z) = (U (1)
0 (z)

U (2)
0 (z)). For evaluating U (1)

0 (z) we introduce the (ν + 1) × q matrix

(6.1) Ω = (ξ, ξ, . . . , ξ) ,

where the vector ξ is given in (3.4), and we put

(6.2) U (1)
0 (z) = Ω � z−(q−ν−1)

(
uν+1(z)u

�
q (z)

)
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1213

for ν = 1, 2, . . . , q − 2. The signs of the elements of each column vector of U (1)
0 (z)

follow the same pattern as for U0(z) in section 3. The second part of U0(z) is

(6.3) U (2)
0 (z) = χ� U∗

1,2(z),

where

U∗
1,2(z) =

{
U∗

1 (z) for ν = 2, 3, . . . , q − 2
U∗

2 (z) for ν = 1

and ⎧⎨⎩U∗
1 (z) = u∗�

q−ν−1(z
−1) ⊗

(
u∗

3(z
−1)

zuν−2(z)

)
for ν = 2, 3, . . . , q − 2

U∗
2 (z) = u∗�

q−ν−1(z
−1) ⊗ z−1u∗

2(z
−1) for ν = 1.

The matrix χ has the form χ = (χq−ν−1, χq−ν−2, . . . , χ2, χ1), where the columns are
computed recursively for k = 2, 3, . . . , q − ν − 1:

(6.4) χk = χk−1 + ξ.

The (ν + 1) column vector χ1 is for ν = 1, 2, . . . , q − 2

(6.5) χ1 =

⎛⎜⎜⎜⎜⎜⎜⎝

(
ν
0

)(
ν
1

)
+
(
ν−1
0

)(
ν
2

)
+
(
ν−1
1

)
...(

ν
ν

)
+
(
ν−1
ν−1

)

⎞⎟⎟⎟⎟⎟⎟⎠ .

The sign pattern of each column of U (2)
0 (z) is (−1)

�
with � = 0, 1, . . . , ν. In the next

section we shall summarize the construction of U0(z).

6.1.1. Summary of the construction of U0(z). Step 1. Introduce the vector
ξ according to (3.4).

Step 2. Define matrix Ω according to (6.1).

Step 3. Define the columns of U (1)
0 (z) according to (6.2).

Step 4. Introduce the vector χ1 given in (6.5).
Step 5. Compute the vectors χ2, χ3, . . . , χq−ν−1 by means of the recursions (6.4).

Step 6. Compute the columns of U (2)
0 (z) according to (6.3).

6.2. Example for U0(z) when q = 6, ν = 4. An example is chosen when

q = 6 and ν = 4 so the first matrices to consider are U (1)
0 (σ) and U (2)

0 (σ) to obtain

U (1)
0 (z) =

⎛⎜⎜⎜⎜⎝
− 1

z − 1 − z − z2 − z3 − z4

4 4z 4 z2 4z3 4 z4 4z5

−6z −6z2 −6z3 −6z4 −6 z5 −6z6

4z2 4z3 4z4 4z5 4 z6 4z7

−z3 −z4 −z5 −z6 −z7 −z8

⎞⎟⎟⎟⎟⎠
and

U (2)
0 (z) =

⎛⎜⎜⎜⎜⎜⎝
1
z2

− 5
z

9
−7z

2z2

⎞⎟⎟⎟⎟⎟⎠ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1214 ANDRÉ KLEIN AND PETER SPREIJ

6.3. A representation of Uj(z) when j = 1, 2, . . . , ν − 1. The matrices
U1(z),U2(z), . . . ,Uν−1(z) are now considered to obtain for j = 1, 2, . . . , ν − 1

Uj(z) =
(
U (1)
j (z) U (2)

j (z)U (3)
j (z)

)
.

Since the submatrices U (1)
j (z) and U (2)

j (z) have the same structure as the correspond-
ing submatrices in section 3, the case q = ν + 1, we therefore omit the description of

U (1)
j (z) and U (2)

j (z).

6.3.1. A representation of U(3)
j (z). We shall now focus on matrix U (3)

j (z)
and for that purpose the following matrix is considered for j = 1, 2, . . . , ν − 1:

(6.6) μj =
(
μq−ν−1
j μq−ν−2

j · · ·μ2
jμ

1
j

)
.

The first recursion to consider is when j = 1 and k = 2, 3, . . . , q − ν − 1, to obtain

(6.7) μk
1 = μk−1

1 + 2χk.

The vectors χ2, χ3, . . . , χq−ν−1 are obtained recursively for U (2)
0 (z); see (6.4). The

solution to (6.4) is

χk = χ1 + (k − 1)ξ,

where χ1 is given in (6.5). A solution to (6.7) is then given by

μk
1 = μ1

1 + 2(k − 1)χ1 + k(k − 1)ξ.

A generalization can now be given for j = 2, . . . , ν − 1 and k = 1, 2, 3, . . . , q − ν − 1.
The column vectors are computed recursively as follows:

(6.8) μk
j = μk−1

j + (j + 1)μk
j−1.

A solution to recursion (6.8) in terms of initial vectors μ1
j , μ

1
j−1, . . . , μ

1
2, μ

1
1, specified

in (6.10), and the known vectors χ1 and ξ, is given by

μk
j =

j−1∑
i=0

i!

(
j + 1
i

)(
k − 2 + i
k − 2

)
μ1
j−i(6.9)

+ (j + 1)!

(
k + j − 2
k − 2

)
χ1 + (j + 1)!

(
k + j − 1
k − 2

)
ξ.

The explicit solution (6.10) is derived in a similar manner as in Proposition 3.4.
For j = 1, 2, . . . , ν − 1, the components of the vector μ1

j are given by

(6.10)

⎧⎪⎨⎪⎩
[
μ1
j

]
i
= (j + 1)!

(
ν+1
i

)
, i = 0, 1, . . . , j + 1,[

μ1
j

]
i
= (j + 1)!

(
ν+1
i

)
− ri−j−2, i = j + 2, . . . , ν − 1,[

μ1
j

]
ν+1

= (j + 2)!,

where the terms r�, are defined by

r� =

⎧⎨⎩(j + 1)!

(
ν − j − 1

�

)
for � = 0, 1, . . . , ν − j − 3

0 for ν − j < 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1215

The submatrix U (3)
j (z) can now be given according to

(6.11) U (3)
j (z) = μj � z−jU∗

1 (z) for j = 1, 2, . . . , ν − 1.

The matrix U∗
1 (z) has also been used for specifying U (2)

0 (z). The sign pattern of the

elements of each column of U (3)
j (σ) follows the ordering (−1)�+j with � = 0, 1, . . . , ν.

6.3.2. Summary of the construction of matrix U(3)
j (σ). Step 1. Define the

initial vector μ1
j displayed in (6.10) for j = 1, 2, . . . , ν − 1.

Step 2. Compute the columns of matrix (6.6) by applying recursions (6.8) for the
corresponding values of j = 1, 2, . . . , ν − 1.

Step 3. Compute the columns of matrix U (3)
j (z) according to (6.11) for the corre-

sponding values of j = 1, 2, . . . , ν − 1.

6.4. Example Uj(z) when q = 6, ν = 4 and j = 1, 2, 3. The matrix

U (1)
j (z) = (δ1

j (z)δ
2
j (z) · · · δ

j+1
j (z)) will be illustrated for j = 1, 2, 3, to obtain

U (1)
j=1(z) =

⎛⎜⎜⎜⎜⎝
0 −1

−1 3z
3z −3z2

−3z2 z3

z3 0

⎞⎟⎟⎟⎟⎠ , U (1)
j=2(z) =

⎛⎜⎜⎜⎜⎝
0 0 −2
0 −2 4z

−2 4z −2z2

4z −2z2 0
−2z2 0 0

⎞⎟⎟⎟⎟⎠ ,

and

U (1)
j=3(z) =

⎛⎜⎜⎜⎜⎝
0 0 0 −6
0 0 −6 6z
0 −6 6z 0

−6 6z 0 0
6z 0 0 0

⎞⎟⎟⎟⎟⎠ .

The matrix U (2)
j (z) is, for j = 1, 2, 3,

U (2)
j=1(z) =

⎛⎜⎜⎜⎜⎝
−2z −3z2 −4z3

7z2 11z3 15z4

−9z3 −15z4 −21z5

5z4 9z5 13z6

−z5 −2z6 −3z7

⎞⎟⎟⎟⎟⎠ , U (2)
j=2(z) =

⎛⎜⎜⎜⎜⎝
−6z −12z2

18z2 40z3

−20z3 −50z4

10z4 28z5

−2z5 −6z6

⎞⎟⎟⎟⎟⎠ ,

U (2)
j=3() =

⎛⎜⎜⎜⎜⎝
−24z

60z2

−60z3

30z4

−6z5

⎞⎟⎟⎟⎟⎠ .

The matrix U (3)
j (z) is, for j = 1, 2, 3,

U (3)
j=1(z) =

⎛⎜⎜⎜⎜⎜⎜⎝

− 2
z3

10
z2

− 20
z

18

−6z

⎞⎟⎟⎟⎟⎟⎟⎠ , U (3)
j=2(z) =

⎛⎜⎜⎜⎜⎜⎜⎝

6
z4

− 30
z3

60
z2

− 60
z

24

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1216 ANDRÉ KLEIN AND PETER SPREIJ

and

U (3)
j=3(z) =

⎛⎜⎜⎜⎜⎜⎜⎝

− 24
z5

120
z4

− 240
z3

240
z2

− 120
z

⎞⎟⎟⎟⎟⎟⎟⎠ .

Insertion in (3.2) of the matrices U (1)
0 (z) and U (2)

0 (z), followed by the matrices

U1(z) =
(
U (1)
j=1(z) U (2)

j=1(z) U (3)
j=1(z)

)
,

U2(z) =
(
U (1)
j=2(z) U (2)

j=2(z) U (3)
j=2(z)

)
,

U3(z) =
(
U (1)
j=3(z) U (2)

j=3(z) U (3)
j=3(z)

)
,

results in the scheme

U(z) =
1

4!

(
U (1)

0 (z),U (2)
0 (z),U1(z),U2(z),U3(z)

)
.

The columns that compose the matrix
(U(z)
J25

)
span the null space of Kν(z) when q = 6

and ν = 4.

7. Conclusions. In this paper a solution to new linear systems of equations
is displayed. This is done when q = ν + 1 and p = τ + 1. The newly developed
algorithms for the null space and right-inverse are then equivalent for both coefficient
matrices. Explicit solutions to both linear system of equations can then be straight-
forwardly implemented by using the same algorithms. The algorithms for the null
space do not require matrix multiplications and matrix inversions. The main compu-
tational exercise consists of evaluating factorials and binomial coefficients combined
with recursions that consist of the addition of two vectors. The binomial coefficients
can be computed by applying the Pascal triangle.

A connection between adjoints of companion-related matrices and rectangular
generalized Vandermonde matrices of the block Toeplitz type is then confirmed through
the corresponding null spaces.

An algorithm for the null space for Kν(z) is also set forth when q > ν + 1. To
compute a solution to the linear systems of (1.1) and (1.2) under these conditions can
be considered for future research.

Acknowledgments. The authors would like to thank the associate editor Dario
Bini and one of the referees for their comments that have led to several impor-
tant improvements of this paper. The authors also thank Guy Mélard for valuable
suggestions.

REFERENCES

[1] I. Gohberg, T. Kailath, and I. Koltracht, Efficient solution of linear systems of equations
with recursive structure, Linear Algebra Appl., 80 (1986), pp. 81–113.

[2] I. Gohberg, T. Kailath, I. Koltracht, and P. Lancaster, Linear complexity parallel algo-
rithms for linear systems of equations with recursive structure, Linear Algebra Appl., 88
(1987), pp. 271–315.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1217

[3] U. Grenander and G. Szegő, Toeplitz Forms and their Applications, 2nd ed., Chelsea
Publishing Co., New York, 1984.

[4] G. Heinig and K. Rost, Recursive solution of Cauchy-Vandermonde systems of equations,
Linear Algebra Appl., 218 (1995), pp. 59–72.

[5] A. Klein and P. Spreij, On the solution of Stein’s equation and Fisher’s information matrix
of an ARMAX process, Linear Algebra Appl., 396 (2005), pp. 1–34.

[6] A. Klein and P. Spreij, Some results on Vandermonde matrices with an application to time
series analysis, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 213–223.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1218–1241

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS
SOLVED BY LINEARIZATION∗

NICHOLAS J. HIGHAM† , REN-CANG LI‡ , AND FRANÇOISE TISSEUR†

Abstract. The most widely used approach for solving the polynomial eigenvalue problem
P (λ)x =

(∑m
i=0 λ

iAi

)
x = 0 in n × n matrices Ai is to linearize to produce a larger order pencil

L(λ) = λX + Y , whose eigensystem is then found by any method for generalized eigenproblems.
For a given polynomial P , infinitely many linearizations L exist and approximate eigenpairs of P
computed via linearization can have widely varying backward errors. We show that if a certain
one-sided factorization relating L to P can be found then a simple formula permits recovery of right
eigenvectors of P from those of L, and the backward error of an approximate eigenpair of P can
be bounded in terms of the backward error for the corresponding approximate eigenpair of L. A
similar factorization has the same implications for left eigenvectors. We use this technique to derive
backward error bounds depending only on the norms of the Ai for the companion pencils and for
the vector space DL(P) of pencils recently identified by Mackey, Mackey, Mehl, and Mehrmann. In
all cases, sufficient conditions are identified for an optimal backward error for P . These results are
shown to be entirely consistent with those of Higham, Mackey, and Tisseur on the conditioning of
linearizations of P . Other contributions of this work are a block scaling of the companion pencils
that yields improved backward error bounds; a demonstration that the bounds are applicable to
certain structured linearizations of structured polynomials; and backward error bounds specialized
to the quadratic case, including analysis of the benefits of a scaling recently proposed by Fan, Lin,
and Van Dooren. The results herein make no assumptions on the stability of the method applied to
L or whether the method is direct or iterative.

Key words. backward error, scaling, eigenvector, matrix polynomial, matrix pencil, lineariza-
tion, companion form, quadratic eigenvalue problem, alternating, palindromic

AMS subject classifications. 65F15, 15A18

DOI. 10.1137/060663738

1. Introduction. The polynomial eigenvalue problem (PEP) is to find scalars
λ and nonzero vectors x and y satisfying P (λ)x = 0 and y∗P (λ) = 0, where

P (λ) =
m∑
i=0

λiAi, Ai ∈ C
n×n, Am �= 0(1.1)

is a matrix polynomial of degree m. Here, x and y are right and left eigenvectors
corresponding to the eigenvalue λ. We will assume throughout that P is regular, that
is, detP (λ) �≡ 0.

The standard way of solving this problem is to convert P into a linear polynomial

L(λ) = λX + Y, X, Y ∈ C
mn×mn

∗Received by the editors June 26, 2006; accepted for publication (in revised form) by P. Van
Dooren June 7, 2007; published electronically December 7, 2007.

http://www.siam.org/journals/simax/29-4/66373.html
†School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK (higham@ma.

man.ac.uk, http://www.ma.man.ac.uk/˜higham/, ftisseur@ma.man.ac.uk, http://www.ma.man.ac.
uk/˜ftisseur/). The work of the first author was supported by a Royal Society-Wolfson Research
Merit Award. The work of the first and third authors was supported by Engineering and Physical
Sciences Research Council grants GR/S31693 and EP/D079403.

‡Department of Mathematics, University of Texas at Arlington, P.O. Box 19408, Arlington, TX
76019 (rcli@uta.edu). The work of this author was supported in part by the National Science
Foundation CAREER award under grant CCR-9875201 and by the National Science Foundation
under grant DMS-0510664.

1218

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1219

with the same spectrum as P and solve the eigenproblem for L. This generalized
eigenproblem is usually solved with the QZ algorithm [20] for small to medium size
problems or a projection method for large sparse problems [1]. That L has the same
spectrum as P is assured if

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(m−1)n

]
(1.2)

for some unimodular E(λ) and F (λ). (A matrix polynomial E(λ) is unimodular
if its determinant is a nonzero constant, independent of λ.) Such an L is called a
linearization of P (λ) [5, sec. 7.2]. As an example, the pencil

C1(λ) = λ

⎡⎣A3 0 0
0 I 0
0 0 I

⎤⎦+

⎡⎣A2 A1 A0

−I 0 0
0 −I 0

⎤⎦(1.3)

can be shown to be a linearization for the cubic P (λ) = λ3A3 + λ2A2 + λA1 + A0; it
is known as the first companion linearization.

Among the infinitely many linearizations L of P we are interested in those whose
right and left eigenvectors permit easy recovery of the corresponding eigenvectors of
P . For example, if (x, y) and (z, w) denote pairs of right and left eigenvectors of the
cubic P (λ) and its companion linearization C1(λ), respectively, associated with the
simple, finite eigenvalue λ, then

(z, w) =

⎛⎝⎡⎣λ2x
λx
x

⎤⎦ ,

⎡⎣ y
(λ̄A∗

3 + A∗
2)y

(λ̄2A∗
3 + λ̄A∗

2 + A∗
1)y

⎤⎦⎞⎠ ,(1.4)

so that x can be recovered from one of the first two blocks (if λ �= 0) or the third
block of n components of z, and y can be recovered from the first n components of w.
This correspondence extends to all eigenvalues and arbitrary m, as we will explain in
section 3.

In practice, the eigenpairs of L are not computed exactly because of rounding
errors and, in the case of iterative methods, truncation errors. For a given approximate
eigenpair of L, it is important to know how good an approximate eigenpair of P will
be produced. Here, “good” can have various meanings; in particular, it can refer to
the relative error of the eigenvalue or the backward error of the eigenpair. The relative
error question has been investigated by Higham, Mackey, and Tisseur [7], by analyzing
the conditioning of both the polynomial P and the linearization L. The purpose of the
present work is to investigate the backward error for a wide variety of linearizations.
Two key aspects of this task can be seen by considering the companion pencil (1.3).
First, a small but arbitrary perturbation to C1, such as that introduced by the QZ
algorithm, does not respect the zero and identity blocks and so may not correspond to
a small perturbation of P . Second, the block from which the approximate eigenvector
is recovered will influence the backward error.

Our work builds on that of Tisseur [22], who shows that solving a quadratic
eigenvalue problem (QEP) by applying a numerically stable method to the companion
linearization can be backward unstable, but that stability is guaranteed if all the
coefficient matrices have unit norm.

In section 2.1 we define the backward error ηP of an approximate eigenpair and
eigentriple of P for the polynomial both in the λ-form (1.1) and in homogeneous (α, β)-
form. In section 2.2 we show that given appropriate one-sided factorizations relating

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1220 N. J. HIGHAM, R.-C. LI, AND F. TISSEUR

a linearization L to the original polynomial P , we can bound the backward error of
an approximate eigenpair of P in terms of the backward error of the approximate
eigenpair of L from which it was obtained. The bounds have the useful feature of
separating the dependence on L, P , and (α, β) from the dependence on how the
(right or left) eigenvector is recovered.

In section 3 we introduce the first and second companion linearizations and the
vector spaces L1 and L2 of pencils associated with P . As a by-product of our analysis
we obtain in section 3.1 new formulae for recovering a left (right) eigenvector of P
from one of a linearization in L1 (L2). In section 3.2 we obtain backward error bounds
for the companion pencils and deduce sufficient conditions for a small backward error
ηP . We show in section 3.3 that applying a block scaling to the companion pencils
yields smaller backward error bounds when maxi ‖Ai‖2 is much different from 1. The
vector space DL(P) = L1(P)∩L2(P) is then considered in section 3.4, where bounds
of the same form as for the block-scaled companion pencils are obtained. In section 3.5
we explain how the backward error results provide essentially the same guidance on
optimal choice of linearizations as the condition number bounds of Higham, Mackey,
and Tisseur [7]. In section 4 we show that the results of section 3 also apply to certain
structured linearizations of structured polynomials.

The special case of quadratic polynomials λ2A + λB + C is studied in detail in
section 5, concentrating on the companion linearization and the DL(P) basis pencils
L1 and Lm. Bounds for ηP are obtained and then specialized to exploit a scaling
procedure recently proposed by Fan, Lin, and Van Dooren [2]. The bounds involve a
growth factor ω that is shown to be bounded by 1+ τ , where τ = ‖B‖2/

√
‖A‖2‖C‖2.

Our analysis improves upon that in [2], which contains a growth term max(1 + τ, 1 +
τ−1). The bounds are particularly satisfactory for elliptic QEPs and, more generally,
QEPs that are not too heavily damped. Numerical experiments illustrating these and
other aspects of the theory are given in section 6.

Finally, we note that our results are of interest even in the case n = 1, although
we will not consider this case specifically here. The roots of a scalar polynomial, p,
are often found by computing the eigenvalues of a corresponding companion matrix,
C. Our analysis provides new bounds on the backward errors of the computed roots
of p in terms of the backward errors of the computed eigenvalues of C.

2. Backward errors.

2.1. Definition and notation. The normwise backward error of an approxi-
mate (right) eigenpair (x, λ) of P (λ), where λ is finite, is defined by

ηP (x, λ) = min{ ε : (P (λ) + ΔP (λ))x = 0, ‖ΔAi‖2 ≤ ε‖Ai‖2, i = 0:m },(2.1)

where ΔP (λ) =
∑m

i=0 λ
iΔAi. Tisseur [22, Thm. 1] obtained the explicit formula

ηP (x, λ) =
‖P (λ)x‖2

(
∑m

i=0 |λi|‖Ai‖2) ‖x‖2

.(2.2)

Similarly, for an approximate left eigenpair (y∗, λ), we have

ηP (y∗, λ) := min{ ε : y∗(P (λ) + ΔP (λ)) = 0, ‖ΔAi‖2 ≤ ε‖Ai‖2, i = 0:m }(2.3)

=
‖y∗P (λ)‖2

(
∑m

i=0 |λi|‖Ai‖2) ‖y‖2

.(2.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1221

Also of interest is the backward error of the approximate triplet (x, y, λ) [22, Thm. 4]:

ηP (x, y∗, λ) := min{ ε : (P (λ) + ΔP (λ))x = 0, y∗(P (λ) + ΔP (λ)) = 0,(2.5)

‖ΔAi‖2 ≤ ε‖Ai‖2, i = 0:m }
= max

(
ηP (x, λ), ηP (y∗, λ)

)
.(2.6)

We make two comments on notation. As an argument of η, a left eigenvector
is written as a row vector to distinguish it from a right eigenvector. Symbols such
as λ, x, and y will denote both exact and (more often) approximate quantities, with
the context making clear which usage is in effect. The alternative of using a tilde to
denote approximate quantities leads to rather cumbersome formulae.

In order to define backward errors valid for all λ, including ∞, we rewrite the
polynomial in the homogeneous form

P (α, β) =

m∑
i=0

αiβm−iAi

and identify λ with any pair (α, β) �= (0, 0) for which λ = α/β. The definitions (2.1),
(2.3), and (2.5) are trivially rewritten in terms of α and β. Using P (α, β) = βmP (α/β)
for β �= 0, we find that in place of (2.2), (2.4), and (2.6) we have

ηP (x, α, β) =
‖P (α, β)x‖2

(
∑m

i=0 |α|i|β|m−i‖Ai‖2) ‖x‖2

,(2.7)

ηP (y∗, α, β) =
‖y∗P (α, β)‖2

(
∑m

i=0 |α|i|β|m−i‖Ai‖2) ‖y‖2

,(2.8)

ηP (x, y∗, α, β) = max
(
ηP (x, α, β), ηP (y∗, α, β)

)
.(2.9)

Note that these expressions are independent of the choice of α and β representing
the eigenvalue; that is, a scaling α ← θα, β ← θβ with θ �= 0 leaves the expressions
unchanged.

2.2. Bounding the backward error for P relative to that for L. Let
L(λ) = λX + Y be a linearization of P (λ). For approximate right eigenvectors z of
L and x of P , both corresponding to an approximate eigenvalue(α, β), our aim is to
compare ηP (x, α, β) with

ηL(z, α, β) =
‖L(α, β)z‖2

(|α|‖X‖2 + |β|‖Y ‖2)‖z‖2
,(2.10)

which is obtained by applying (2.7) to L(α, β) = αX+βY . Of course, this comparison
is possible only if there is some well-defined relation between x and z. Such a relation,
and a means for bounding ηP , both follow from one key assumption: that we can find
an n× nm matrix polynomial G(α, β) such that

G(α, β)L(α, β) = gT ⊗ P (α, β)(2.11)

for some nonzero g ∈ C
m, where ⊗ denotes the Kronecker product [15, sec. 12.1].

Necessarily, G(α, β) will have degree m − 1. Note that this is a one-sided transfor-
mation as opposed to the two-sided transformation in the definition of linearization.
Then we have

G(α, β)L(α, β)z =
(
gT ⊗ P (α, β)

)
z = P (α, β)(gT ⊗ In)z,(2.12)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1222 N. J. HIGHAM, R.-C. LI, AND F. TISSEUR

where the latter equation relies on gT being a row vector. Thus if z is an eigenvector
of L then

x := (gT ⊗ In)z =

m∑
i=1

gizi, zi := z((i− 1)n + 1: in)(2.13)

is an eigenvector of P , provided that x is nonzero. This latter requirement is not
satisfied in general but will be proved for some important classes of linearizations. As
an example, for the first companion linearization C1(α, β) = β3C1(α/β) in (1.3), it is
easily checked that G(α, β) = [α2I −(β2A0 + αβA1) −αβA0] satisfies (2.11) with
g = e1, the first column of the identity matrix, and that if z is a right eigenvector of
C1 and α �= 0 then x = z1 = z(1:n) �= 0 is a right eigenvector for P (cf. (1.4)).

Suppose now that (2.11) is satisfied, an approximate right eigenvector z of L is
given, and x is given by (2.13). Then, by (2.7), (2.10), and (2.12),

ηP (x, α, β) ≤ ‖G(α, β)‖2‖L(α, β)z‖2

(
∑m

i=0 |α|i|β|m−i‖Ai‖2) ‖x‖2

(2.14)

≤ |α|‖X‖2 + |β|‖Y ‖2∑m
i=0 |α|i|β|m−i‖Ai‖2

· ‖G(α, β)‖2‖z‖2

‖x‖2
· ηL(z, α, β).

This bound largely separates the dependence on L, P , and (α, β) (in the first term)
from the dependence on G and z (in the second term).

For left eigenvectors the appropriate analogue of the assumption (2.11) is that
there exists an mn× n matrix polynomial H(α, β) such that

L(α, β)H(α, β) = h⊗ P (α, β)(2.15)

for some nonzero h ∈ C
m. We then have, for w ∈ C

mn,

w∗L(α, β)H(α, β) = w∗(h⊗ P (α, β)) = w∗(h⊗ In)P (α, β).(2.16)

Hence if w is a left eigenvector of L then

y := (h∗ ⊗ In)w =

m∑
i=1

hiwi, wi := w((i− 1)n + 1: in)(2.17)

is a left eigenvector of P , provided that it is nonzero. From (2.8) and (2.17) we obtain
for an approximate left eigenvector w of L the bound

ηP (y∗, α, β) ≤ |α|‖X‖2 + |β|‖Y ‖2∑m
i=0 |α|i|β|m−i‖Ai‖2

· ‖H(α, β)‖2‖w‖2

‖y‖2
· ηL(w∗, α, β).(2.18)

In the rest of this paper we show that one or both of assumptions (2.11) and
(2.15) are satisfied for a wide class of linearizations, and we study the upper bounds
(2.14) and (2.18).

3. Unstructured linearizations. We first concentrate on general, unstruc-
tured matrix polynomials, treating companion and DL(P) linearizations.

Associated with P are two companion pencils, C1(λ) = λX1 + Y1 and C2(λ) =
λX2 + Y2, called the first and second companion forms [15, sec. 14.1], respectively,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1223

where

X1 = X2 = diag(Am, In, . . . , In),

Y1 =

⎡⎢⎢⎣
Am−1 Am−2 . . . A0

−In 0 . . . 0
...

. . .
. . .

...
0 . . . −In 0

⎤⎥⎥⎦ , Y2 =

⎡⎢⎢⎢⎣
Am−1 −In . . . 0

Am−2 0
. . .

...
...

...
. . . −In

A0 0 . . . 0

⎤⎥⎥⎥⎦ .(3.1)

They are widely used in practice. For example, the MATLAB function polyeig that
solves the PEP uses the reversed first companion linearization revC1(λ) of the reversed
matrix polynomial revP (λ). The reversal operator is defined for P in (1.1) by

revP (λ) = λmP (1/λ) =

m∑
i=0

λiAm−i.(3.2)

The companion forms have the important property that they are always linearizations
[19, sec. 4].

C1(λ) and C2(λ) belong to large sets of potential linearizations recently iden-
tified by Mackey et al. [19] and studied in [6] and [19]. With the notation Λ =
[λm−1, λm−2, . . . , 1]T , these sets are

L1(P) =
{
L(λ) : L(λ)(Λ⊗ In) = v ⊗ P (λ), v ∈ C

m
}
,(3.3)

L2(P) =
{
L(λ) : (ΛT ⊗ In)L(λ) = ṽT ⊗ P (λ), ṽ ∈ C

m
}
.(3.4)

There are many L(λ) ∈ L1(P) corresponding to a given v, and likewise for L2(P);
indeed, L1(P) and L2(P) both have dimension m(m − 1)n2 + m [19, Cor. 3.6]. It is
easy to check that C1(λ) and C2(λ) belong to L1(P) and L2(P), respectively, with
ṽ = v = e1; so the pencils in L1 and L2 can be thought of as generalizations of the
first and second companion forms. It is proved in [19, Prop. 3.2, Prop. 3.12, Thm. 4.7]
that L1(P) and L2(P) are vector spaces and that almost all pencils in these spaces
are linearizations of P .

One of the underlying reasons for the interest in L1 and L2 is that eigenvectors of
P can be directly recovered from eigenvectors of linearizations in L1 and L2. As with
the backward errors, it is more convenient to use the (α, β) notation, so we define

Λα,β = [αm−1, αm−2β, . . . , βm−1]T = βm−1Λ.

Theorem 3.1 (eigenvector recovery from L1 and L2).

• If L ∈ L1(P) is a linearization of P then every right eigenvector of L with
eigenvalue (α, β) is of the form Λα,β ⊗ x for some right eigenvector x of P .

• If L ∈ L2(P) is a linearization of P then every left eigenvector of L with
eigenvalue (α, β) is of the form Λα,β ⊗ y for some left eigenvector y of P .

Proof. See [19, Thms. 3.8, 3.14, 4.4].
Theorem 3.1 shows that from any right eigenvector z of L ∈ L1 we can read off

a right eigenvector of P by looking at any nonzero subvector zi = z((i− 1)n + 1: in),
and similarly a left eigenvector of L ∈ L2 yields a left eigenvector of P .

3.1. L1(P) and L2(P). It is immediate from (3.3) and (3.4) that the pencils
in L1 satisfy (2.15), while those in L2 satisfy (2.11). Therefore our backward error
bounds are applicable to left eigenvectors of pencils in L1 and right eigenvectors of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1224 N. J. HIGHAM, R.-C. LI, AND F. TISSEUR

pencils in L2, provided that the vectors x in (2.13) and y in (2.17) are nonzero when
z and w are exact eigenvectors. In fact, for L1 and L2 (2.13) and (2.17) define a
bijection between eigenvectors of the pencil and of P and so allow recovery of all
the eigenvectors. The following two new results supplement the existing eigenvector
recovery formulae in Theorem 3.1.

Theorem 3.2 (left eigenvector recovery from L1). Let L ∈ L1(P) be a lineariza-
tion of P , with vector v (necessarily nonzero) in (3.3). If w is a left eigenvector of L
with eigenvalue (α, β) then

y = (v∗ ⊗ In)w(3.5)

is a left eigenvector of P with eigenvalue (α, β). Moreover, any left eigenvector of P
corresponding to (α, β) can be recovered from one of L from the formula (3.5).

Proof. Assume, first, that μ ≡ (α, β) is finite. For arbitrary λ, premultiplying the
condition defining L1 by w∗ (or simply using the λ-analogue of (2.16)) gives

w∗L(λ)(Λ⊗ In) = w∗(v ⊗ P (λ)
)

= w∗(v ⊗ In)P (λ) =: y∗P (λ).

Since w∗L(μ) = 0, it follows that y∗P (μ) = 0. We therefore just have to show that
y �= 0. We suppose that y = 0 and will obtain a contradiction. If y = 0 then
w∗L(λ)(Λ⊗ In) ≡ 0. Since L is linear, we can write

w∗L(λ) = [b1(λ), b2(λ), . . . , bm(λ)],

where bi(λ) = ciλ + di ∈ C
1×n is linear. Then

0 ≡ w∗L(λ)(Λ⊗ In) = [b1(λ), b2(λ), . . . , bm(λ)]

⎡⎢⎢⎣
λm−1In
λm−2In

...
In

⎤⎥⎥⎦
= λm−1b1(λ) + λm−2b2(λ) + · · · + bm(λ)
= λmc1 + λm−1(d1 + c2) + · · · + λ(dm−1 + cm) + dm.

Hence c1 = 0, d1 = −c2, . . . , dm−1 = −cm, dm = 0. Then

0 = w∗L(μ) = [b1(μ), b2(μ), . . . , bm(μ)] = [−c2, μc2 − c3, . . . , μcm−1 − cm, μcm],

which implies c2 = c3 = · · · = cm = 0. Hence bi(λ) ≡ 0 for all i. Thus w∗L(λ) ≡ 0,
which means that L is a nonregular polynomial. But by [19, Thm. 4.3], L ∈ L1(P)
being nonregular implies that L is not a linearization of P . This is a contradiction,
and so y �= 0, as required.

The case μ = ∞ can be handled by expressing L and P in homogeneous (α, β)-
form and using μ ≡ (1, 0). The details are a minor variation on those above.

Finally, consider the map w �→ (v∗ ⊗ In)w from K1 = left kerL(α, β) to K2 =
left kerP (α, β), where left ker denotes the left kernel. The first part showed that
this map has kernel {0}. Since L ∈ L1(P) is a linearization and P is regular, L
is a strong linearization1 [19, Thm. 4.3]. Hence the geometric multiplicity of any
eigenvalue (including ∞) is the same for L and P [14]; that is, K1 and K2 have the
same dimension. It follows that the map is a bijection, and the result is proved.

1L is a strong linearization of P if it is a linearization for P and revL is a linearization for revP .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1225

Theorem 3.3 (right eigenvector recovery from L2). Let L ∈ L2(P) be a lin-
earization, with vector ṽ (necessarily nonzero) in (3.4). If z is a right eigenvector of
L with eigenvalue (α, β) then

x = (ṽT ⊗ In)z(3.6)

is a right eigenvector of P with eigenvalue (α, β). Moreover, any right eigenvector of
P corresponding to (α, β) can be recovered from one of L from the formula (3.6).

Proof. The proof is entirely analogous to that of Theorem 3.2.
The broader significance of Theorems 3.2 and 3.3 combined with Theorem 3.1

is that both left and right eigenvectors of pencils in L1 and L2 yield corresponding
eigenvectors of P via simple formulae.

We will not write down backward error bounds for L1 and L2, but will do so for
their intersection in section 3.4.

3.2. Companion linearizations. It is easy to see that C2(P) = C1(P
T)T ,

where PT denotes the polynomial obtained by transposing each coefficient matrix Ai.
This property implies that any backward error results for C1 have a counterpart for
C2, and so it suffices to concentrate on the first companion form.

Is the factorization (2.11) possible for the first companion linearization? For C1

in (1.3) with m = 3 it is straightforward to verify that E(α, β)C1(α, β) = I3⊗P (α, β)
with

E(α, β) =

⎡⎣ α2In −(β2A0 + αβA1) −αβA0

αβIn αβA2 + α2A3 −β2A0

β2In β2A2 + αβA3 β2A1 + αβA2 + α2A3

⎤⎦
(indeed the first block row of this equation was mentioned in section 2.2), so that we
have three choices for G(α, β), namely, Gk(α, β) := (eTk ⊗ In)E(α, β), k = 1: 3. This
result generalizes to arbitrary degrees m.

Lemma 3.4. For the first companion form C1(α, β) = αX1 + βY1, for any m,
there exists a block m×m matrix E(α, β) ∈ C

mn×mn such that

E(α, β)C1(α, β) = Im ⊗ P (α, β),(3.7)

where the blocks are given by

[E(α, β)]i1 = αm−iβi−1In, [E(α, β)]ij =

m−1∑
k=0

skα
kβm−k−1A�k

for j > 1,

where sk ∈ {−1, 0, 1} and the indices �k are distinct (our notation suppresses the
dependence of sk and �k on i and j). The condition (2.11) is satisfied for

Gk(α, β) = (eTk ⊗ In)E(α, β), g = ek, k = 1:m.(3.8)

Proof. The proof consists of a direct verification that E(α, β) defined by

[E(α, β)]ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

αm−iβi−1In, 1 ≤ i ≤ m, j = 1,

−(α/β)j−i

m−j∑
k=0

αk−1βm−kAk, 1 ≤ i < j, 1 < j ≤ m,

(α/β)j−i

m∑
k=m−j+1

αk−1βm−kAk, 1 < j ≤ i ≤ m,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1226 N. J. HIGHAM, R.-C. LI, AND F. TISSEUR

satisfies (3.7).
The next lemma will be useful when taking norms of block matrices.
Lemma 3.5. For any block �×m matrix B we have ‖B‖2 ≤

√
�m maxi,j ‖Bij‖2.

Proof. Partitioning x conformably with B, we have

‖Bx‖2
2 =

�∑
i=1

∥∥∥∥ m∑
j=1

Bijxj

∥∥∥∥2

2

≤ max
i,j

‖Bij‖2
2

�∑
i=1

(m∑
j=1

‖xj‖2

)2

≤ max
i,j

‖Bij‖2
2

�∑
i=1

m

(m∑
j=1

‖xj‖2
2

)
= �m max

i,j
‖Bij‖2

2 ‖x‖2
2.

The result follows.
To investigate the size of the upper bound in (2.14) for L(α, β) = C1(α, β) =

αX1 + βY1 we need to bound ‖X1‖2, ‖Y1‖2, and the norm of the kth block row
Gk(α, β) of E(α, β). We find that

‖X1‖2 = max(‖Am‖2, 1), ‖Y1‖2 ≤ mmax
(
1, max

i=0:m−1
‖Ai‖2

)
,(3.9)

where we used Lemma 3.5 for Y1. From Lemma 3.4 we have, for j > 1,

‖E(α, β)ij‖2 ≤ max
�

‖A�‖2

m−1∑
k=0

|α|k|β|m−k−1 = ‖Λα,β‖1 max
�

‖A�‖2,

so that on using Lemma 3.5,

‖Gk(α, β)‖2 ≤
√
m‖Λα,β‖1 max(1,max

i
‖Ai‖2),(3.10)

this upper bound being independent of k. We can now bound the ratio ηP (zk, α, β)/
ηL(z, α, β) in terms of the approximate right eigenpair (z, α, β) and the coefficient
matrices defining P .

Theorem 3.6. Let z be an approximate right eigenvector of C1 corresponding to
the approximate eigenvalue (α, β). Then for zk = z((k − 1)n + 1: kn), k = 1:m, we
have

1

m1/2
≤ ηP (zk, α, β)

ηC1
(z, α, β)

≤ m3/2 (|α| + |β|)‖Λα,β‖1 max
(
1,maxi ‖Ai‖2

)2∑m
i=0 |α|i|β|m−i‖Ai‖2

‖z‖2

‖zk‖2

≤ m5/2 max
(
1,maxi ‖Ai‖2

)2
min

(
‖A0‖2, ‖Am‖2

) ‖z‖2

‖zk‖2
.(3.11)

Proof. The first upper bound is obtained by combining (2.14) with (3.9) and
(3.10). For the second upper bound it suffices to note that

(|α| + |β|)‖Λα,β‖1∑m
i=0 |α|i|β|m−i‖Ai‖2

≤ (|α| + |β|)(|α|m−1 + |α|m−2|β| + · · · + |β|m−1)

min
(
‖A0‖2, ‖Am‖2

)
(|α|m + |β|m)

≤ m

min
(
‖A0‖2, ‖Am‖2

)
by [7, Lem. A.1, (A.1)]. To prove the lower bound, let {ΔAi} be an optimal set
of perturbations in the definition of ηP . These trivially yield feasible perturbations

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1227

ΔX1 = diag(ΔAm, 0, . . . , 0) of X1 and ΔY1 of Y1, with ΔY1 being zero except for
the first block row [ΔAm−1, . . . , ΔA0]. ‖ΔX1‖2 ≤ ηP ‖X1‖2 is immediate. Using
Lemma 3.5,

‖ΔY1‖2 ≤ m1/2 max
i=0:m−1

‖ΔAi‖2 ≤ m1/2ηP max
i=0:m−1

‖Ai‖2 ≤ m1/2ηP ‖Y1‖2.

The theorem reveals two main sufficient conditions for ηP to be not much larger
than ηC1 . The first is that ‖z‖2/‖zk‖2 is not much larger than 1. In the context of
floating point arithmetic this requirement is to be expected, because if ‖z‖2 � ‖zk‖2

then zk is likely to have suffered damaging subtractive cancellation in its formation.
The second condition is that min(‖A0‖2, ‖Am‖2) ≈ maxi ‖Ai‖2 ≈ 1, which is certainly
true if ‖Ai‖2 ≈ 1 for all i. Since C1 ∈ L1(P), Theorem 3.1 shows that the exact
eigenvector is of the form z = Λα,β ⊗x; since the largest element of Λα,β is the first or
the last we can achieve ‖z‖2/‖zk‖2 ∈ [1,

√
m] by taking k = 1 if |α| ≥ |β| or k = m if

|α| ≤ |β|. The importance for achieving a good backward error of recovering x from
the largest block component of z has already been noted and shown empirically for
the QEP by Tisseur [22, sec. 3.2]; our analysis provides theoretical confirmation for
all degrees m.

We now turn to the backward error for a left eigenpair. Since C1 ∈ L1(P) with
v = e1 we have L(α, β)(Λα,β ⊗ In) = e1 ⊗ P (α, β), so that (2.15) is satisfied with
H(α, β) = Λα,β ⊗ In and h = e1. The ensuing eigenvector recovery property is,
from (2.17) or (3.5), y = w(1:n). Before obtaining a backward error bound we give
a more complete description of the relation between y and w, which will aid in the
interpretation of the bound. The following result extends [7, Lem. 7.2], which is
stated for simple, finite, nonzero eigenvalues, to an arbitrary eigenvalue expressed in
(α, β)-form.

Lemma 3.7 (left eigenvector recovery for C1). The vector y ∈ C
n is a left

eigenvector of P corresponding to the eigenvalue (α, β) if and only if

w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
[αm−1In]∗

−[αm−2βAm−2 + · · · + αβm−2A1 + βm−1A0]
∗

−[αm−2βAm−3 + · · · + α2βm−3A1 + αβm−2A0]
∗

...
−[αm−2βA0]

∗

⎤⎥⎥⎥⎥⎦ y, α �= 0,

⎡⎢⎢⎣
[βm−1In]∗

[αβm−2Am + βm−1Am−1]
∗

...
[αm−1Am + · · · + αβm−2A2 + βm−1A1]

∗

⎤⎥⎥⎦ y, β �= 0,

(3.12)

is a left eigenvector of C1 corresponding to (α, β). Every left eigenvector of C1 with
eigenvalue (α, β) is of the form (3.12) for some left eigenvector y of P . For a finite
eigenvalue, an alternative representation of w is

w∗ = y∗ [In, Bm−2, . . . B1, B0] ,

where (P (t) − P (λ))/(t− λ) =
∑m−1

i=0 Bi t
i and Bi = Bi(λ).

Proof. Note first that the two different formulae in (3.12) (either of which can
be obtained from the other by multiplying through by the conjugate of (α/β)m−1 or
its reciprocal and using y∗P (α, β) = 0) are needed because when α = 0 (and hence

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1228 N. J. HIGHAM, R.-C. LI, AND F. TISSEUR

y∗A0 = 0), the first expression is zero, while when β = 0 (and hence y∗Am = 0), the
second expression is zero.

For the first part it suffices to note that for w as defined by (3.12) we have

w∗C1(α, β) =

{
y∗P (α, β)(eT1 ⊗ In), α �= 0,
y∗P (α, β)(eTm ⊗ In), α = 0.

For the next part, since C1 is a strong linearization [4] and P is regular, any eigen-
value (α, β) of C1 of geometric multiplicity k is also an eigenvalue of P of geometric
multiplicity k. Any k linearly independent eigenvectors y of P for (α, β) clearly yield
via (3.12) k linearly independent eigenvectors of L. Hence any eigenvector of L for
(α, β) has the form (3.12).

The last part generalizes the analogous formula for scalar companion matrices
given by Stewart [21, sec. 2]; we omit the proof.

Lemma 3.7 shows that even when the eigenvalue is multiple all the left eigenvectors
of P can be obtained from the first n components of the left eigenvectors of C1.

We can now obtain the desired backward error bounds.
Theorem 3.8. Let w be an approximate left eigenvector of C1 corresponding to

the approximate eigenvalue (α, β). Then for w1 = w(1:n) we have

1

m1/2
≤ ηP (w∗

1 , α, β)

ηC1
(w∗, α, β)

≤ m
(|α| + |β|)‖Λα,β‖2 max(1,maxi ‖Ai‖2)∑m

i=0 |α|i|β|m−i‖Ai‖2

‖w‖2

‖w1‖2

≤ m3/2 max
(
1,maxi ‖Ai‖2

)
min(‖A0‖2, ‖Am‖2)

‖w‖2

‖w1‖2
.(3.13)

Proof. The first upper bound follows directly from (2.18), (3.9), and ‖H1(α, β)‖2 =
‖Λα,β ⊗ In‖2 = ‖Λα,β‖2. For the second upper bound it suffices to note that

(|α| + |β|)‖Λα,β‖2∑m
i=0 |α|i|β|m−i‖Ai‖2

≤ (|α| + |β|)(|α|2(m−1) + |α|2(m−2)|β2| + · · · + |β|2(m−1))1/2

min
(
‖A0‖2, ‖Am‖2

)
(|α|m + |β|m)

≤ m1/2

min
(
‖A0‖2, ‖Am‖2

)(3.14)

by [7, Lem. A.1, (A.3)]. The proof of the lower bound is exactly the same as in
Theorem 3.6.

Notice that compared with the bounds in Theorem 3.6 for right eigenpairs, the
factor maxi ‖Ai‖2 is not squared. However, k is no longer a free parameter and so
the ratio ‖w‖2/‖w1‖2 is fixed. Theorem 3.8 shows that ηP (w∗

1 , α, β) ≈ ηC1
(w∗, α, β)

is guaranteed provided that min(‖A0‖2, ‖Am‖2) ≈ maxi ‖Ai‖2 ≈ 1 and ‖w‖2/‖w1‖2

is not much larger than 1. If ‖Ai‖2
<∼ 1 for all i then for an exact left eigenvector w

the ratio ‖w‖2/‖w1‖2 is bounded by about (m3/3)1/2; this can be seen from the first
equation in (3.12) if |α| ≥ |β| and the second if |α| ≤ |β|.

A comparison with earlier work is instructive. Tisseur [22, Thm. 7] and Van
Dooren and Dewilde [24, sec. 7] both show that solving a PEP by applying a backward
stable solver to the first companion pencil is backward stable for the PEP, under
certain conditions on the Ai. Van Dooren and Dewilde measure the perturbation ΔP
to P by ‖[ΔAm, . . . , ΔA0]‖F /‖[Am, . . . , A0]‖F and show that ‖[Am, . . . , A0]‖F = 1
implies stability. Tisseur uses the more stringent measure maxi ‖ΔAi‖2/‖Ai‖2, as in
(2.1), and proves that ‖Ai‖2 ≡ 1 implies stability. These analyses are carried out
without reference to specific eigenpairs or eigenvector recovery formulae and so they
provide much less precise information than the bounds in Theorems 3.6 and 3.8.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1229

3.3. Scaled companion linearizations. When the coefficient matrices of P
have norms that differ widely, the companion matrices Ci(λ), i = 1, 2, are badly
scaled and the bounds of Theorems 3.6 and 3.8 signal that ηP � ηC1

is possible. In
this section we study the effect on the backward error of scaling the identity blocks
of Ci.

Let D = diag(d) ⊗ In, where d ∈ R
m with d1 = 1 and di > 0, i = 2:m. It

is easily checked that DC1(λ) ∈ L1(P) with v = e1, that C2(λ)D ∈ L2(P) with
ṽ = e1, and that both scaled companion pencils are always linearizations. Since
C2(P)D = (DC1(P

T))T we can concentrate on DC1. The condition (2.11) becomes
Gk(α, β)D−1 · DC1(α, β) = eTk ⊗ P (α, β), where Gk is defined in (3.8), and we find
that

‖DX1‖2 = max
(
max
i>1

di, ‖Am‖2

)
,(3.15)

‖DY1‖2 ≤ mmax
(
max
i>1

di, max
i=0:m−1

‖Ai‖2

)
,(3.16)

‖Gk(α, β)D−1‖2 ≤
√
m‖Λα,β‖1 max

(
1,

maxi ‖Ai‖2

mini>1 di

)
.(3.17)

In particular, if we choose di = max� ‖A�‖2, i = 2:m, then

‖DX1‖2 = max
i

‖Ai‖2, ‖DY1‖2 ≤ mmax
i

‖Ai‖2,

‖Gk(α, β)D−1‖2 ≤
√
m‖Λα,β‖1.

As we now show, this scaling yields bounds for ηP /ηDC1
better than those for ηP /ηC1

.
We introduce the quantity

ρ =
maxi ‖Ai‖2

min(‖A0‖2, ‖Am‖2)
,(3.18)

which measures the scaling of the problem.
Theorem 3.9. Let Ds = diag(1, s, . . . , s) ⊗ In ∈ R

mn×mn with s = maxi ‖Ai‖2.
Let z and w be approximate right and left eigenvectors of DsC1 corresponding to the
approximate eigenvalue (α, β). Then for zk = z((k − 1)n + 1: kn), k = 1:m, we have

1

m1/2
≤ ηP (zk, α, β)

ηDsC1
(z, α, β)

≤ m3/2 (|α| + |β|)‖Λα,β‖1 maxi ‖Ai‖2∑m
i=0 |α|i|β|m−i‖Ai‖2

‖z‖2

‖zk‖2
≤ m5/2 ρ

‖z‖2

‖zk‖2
,

and for w1 = w(1:n),

1

m1/2
≤ ηP (w∗

1 , α, β)

ηDsC1
(w∗, α, β)

≤ m
(|α| + |β|)‖Λα,β‖2 maxi ‖Ai‖2∑m

i=0 |α|i|β|m−i‖Ai‖2

‖w‖2

‖w1‖2
≤ m3/2 ρ

‖w‖2

‖w1‖2
.

Proof. The proof is analogous to the proofs of Theorems 3.6 and 3.8, making use
of (3.15)–(3.17).

The bounds of Theorem 3.9 for the scaled companion pencil improve upon those
for the unscaled pencil in several ways.

1. For the right eigenvector, the term max(1,maxi ‖Ai‖2
2)/min(‖A0‖2, ‖Am‖2)

in (3.11) is replaced by ρ, which is much smaller if maxi ‖Ai‖2 � 1 or maxi ‖Ai‖2 � 1.
2. For the left eigenvector, the term max(1,maxi ‖Ai‖2)/min(‖A0‖2, ‖Am‖2) in

(3.13) is replaced by ρ, which is much smaller if maxi ‖Ai‖2 � 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1230 N. J. HIGHAM, R.-C. LI, AND F. TISSEUR

3. For the scaled companion pencil, ‖w‖2/‖w1‖2 is guaranteed to be O(m3/2)
for the exact eigenvector, as can be seen from the appropriate choice of formula in
(3.12), bearing in mind that scaling changes w in (3.12) to D−1

s w. To draw the same
conclusion for the unscaled pencil we require maxi ‖Ai‖2

<∼ 1.
Our bounds suggest that scaling the identity blocks of C1 can significantly improve

the backward error of the recovered eigenvectors of P . We can, of course, employ
more sophisticated two-sided scalings, including balancing [16], [25]. However, these
scalings produce a new pencil not belonging to L1, so our backward error bounds are
not applicable to them.

3.4. DL(P) linearizations. From section 2.2 and the definition of L1 in (3.3),
it is clear that for pencils L ∈ L1 our analysis provides upper bounds for the backward
error ηP associated with approximate left eigenvectors of P recovered from approx-
imate left eigenvectors of L. The same is true for L ∈ L2 and approximate right
eigenvectors. We now concentrate on the intersection

DL(P) = L1(P) ∩ L2(P),(3.19)

since for pencils in DL(P) we can obtain backward error bounds for both left and
right eigenvectors. DL(P) is a much smaller space than L1(P) and L2(P), being
just m-dimensional. Indeed, it is shown in [19, Thm. 5.3] and [6, Thm. 3.4] that
L ∈ DL(P) if and only if L satisfies the conditions in (3.3) and (3.4) with ṽ = v. The
general form of DL(P) for the quadratic P (λ) = λ2A2 + λA1 + A0 is given by

DL(P) =

{
L(λ) = λ

[
v1A2 v2A2

v2A2 v2A1 − v1A0

]
+

[
v1A1 − v2A2 v1A0

v1A0 v2A0

]
: v ∈ C

2

}
,

which illustrates the fact that the companion pencils are not contained in DL(P) for
any m. Just as for L1 and L2, almost all pencils in DL(P) are linearizations [19,
Thm. 6.8]. In fact, there is a beautiful characterization of the subset of pencils L ∈
DL(P) that are linearizations [19, Thm. 6.7]: they are those for which no eigenvalue
of P is a root of the polynomial p(λ; v) := vTΛ =

∑m
i=1 viλ

m−i, where when v1 = 0
we define ∞ to be a root of p(λ; v). Throughout this section we assume that the
pencils L ∈ DL(P) under consideration are linearizations.

For pencils L ∈ DL(P), we have, by definition,

L(α, β)(Λα,β ⊗ In) = v ⊗ P (α, β), (ΛT
α,β ⊗ In)L(α, β) = vT ⊗ P (α, β),

so that (2.11) and (2.15) hold with G(α, β) = ΛT
α,β ⊗ In and H(α, β) = Λα,β ⊗ In.

Moreover, ‖G(α, β)‖2 = ‖H(α, β)‖2 = ‖Λα,β‖2. From [7, Lem. 4.1] we know that
L(α, β) = αX + βY satisfies

max
(
‖X‖2, ‖Y ‖2

)
≤ mr1/2 max

i
‖Ai‖2,(3.20)

where r is the number of nonzeros in v and we assume ‖v‖2 = 1 without loss of
generality. We now have the ingredients to obtain a backward error bound. Recall
that ρ is defined in (3.18).

Theorem 3.10. Let L ∈ DL(P) with vector v in (3.3) be a linearization, where
v has unit 2-norm and r nonzeros. Let z be an approximate right eigenvector of L
corresponding to the approximate eigenvalue (α, β). Then for x =

∑m
i=1 vizi, where

zi = z((i− 1)n + 1: in), we have

ηP (x, α, β)

ηL(z, α, β)
≤ mr1/2 (|α| + |β|)‖Λα,β‖2 maxi ‖Ai‖2∑m

i=0 |α|i|β|m−i‖Ai‖2

‖z‖2

‖x‖2
≤ m3/2r1/2 ρ

‖z‖2

‖x‖2
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1231

Proof. Combine (2.14), (3.20), and (3.14).
Note that the exact z has the form Λα,β ⊗ ξ so that ‖z‖2 = ‖Λα,β‖2‖ξ‖2, and

‖x‖2 = ‖
∑m

i=1 vizi‖2 = |ΛT
α,βv|‖ξ‖2. Hence ‖z‖2/‖x‖2 = ‖Λα,β‖2/|p(α, β; v)|, where

p(α, β; v) = ΛT
α,βv =

∑m
i=1 viα

m−iβi−1. Thus min{ ‖z‖2/‖x‖2 : ‖v‖2 = 1 } = 1,

with equality attained for v∗ = Λα,β/‖Λα,β‖2. This choice of v minimizes the second
upper bound of Theorem 3.10. However, simply choosing v = ek where ‖zk‖2 =
maxi=1:m ‖zi‖2 ensures that ‖z‖2/‖x‖2 ≤

√
m, which is perfectly adequate.

Intuitively, we might expect that ηP (x, α, β) ≥ ηL(z, α, β), at least to within some
constant factor, but this is not necessarily the case. Consider, for example, the pencil

L(λ) = λ

[
A A
A B − C

]
+

[
B −A C
C C

]
∈ DL(λ2A + λB + C),

which corresponds to v = [1 1]T in (3.3). Suppose A = B = I and C = εI with
0 < ε � 1, and let ΔA = δI and ΔB = ΔC = 0. These perturbations have
relative size max(‖ΔA‖2/‖A‖2, ‖ΔB‖2/‖B‖2, ‖ΔC‖2/‖C‖2) = δ, but for the pencil
max(‖ΔX‖2/‖X‖2, ‖ΔY ‖2/‖Y ‖2) ≈ max(δ, δ/ε) = δ/ε. Hence a small perturbation
to P does not necessarily correspond to a small perturbation to L and ηP /ηL cannot
therefore be bounded below by a positive constant. This phenomenon is not present
for the pencils corresponding to v = ek, which form the standard basis for DL(P) [6],
because for these pencils each block of X and Y is plus or minus a single block Ai.
We now specialize Theorem 3.10 to these pencils.

Corollary 3.11. Let Lk ∈ DL(P) corresponding to v = ek in (3.3) be a lin-
earization. Let z be an approximate right eigenvector of Lk corresponding to the
approximate eigenvalue (α, β). Then for zk = z((k − 1)n + 1: kn), we have

1

m
≤ ηP (zk, α, β)

ηLk
(z, α, β)

≤ m
(|α| + |β|)‖Λα,β‖2 maxi ‖Ai‖2∑m

i=0 |α|i|β|m−i‖Ai‖2

‖z‖2

‖zk‖2
≤ m3/2ρ

‖z‖2

‖zk‖2
.

Proof. The upper bound follows from Theorem 3.10. The lower bound is proved
in a similar way to the lower bound of Theorem 3.6.

Analogues of Theorem 3.10 and Corollary 3.11 hold for approximate left eigen-
vectors w of Lk: z is simply replaced by w and x by y =

∑m
i=1 viwi.

With the notation in Corollary 3.11, the exact eigenvector z satisfies z = Λα,β⊗x,
and it is easy to see that ‖z‖2/‖zk‖2 ≈ 1 for k = 1 if |α| ≥ |β| and for k = m
if |α| ≤ |β|. Assuming the approximate eigenvector z shares the latter property, the
pencils in DL(P) with v = e1 and v = em yield backward errors ηP ≈ ηL for eigenpairs
with eigenvectors of modulus greater than or less than 1, respectively, provided that
the measure ρ of the scaling of the problem is of order 1. Two points are worth
noting.

1. Although an eigenvector of P can be recovered from any of the blocks zi =
z((i − 1)n + 1: in) of an eigenvector z of Lk (see Theorem 3.1), our backward error
bounds in Corollary 3.11 require i = k.

2. The pencils L1 and Lm are indeed linearizations if A0 and Am, respectively,
are nonsingular, as can be seen from the characterization mentioned at the start of
this subsection.

3.5. Comparison with conditioning results. Backward error and condition-
ing are complementary concepts. Ideally, we would like the linearization L that we
use to be as well conditioned as the original polynomial P and for it to lead, after
recovering an approximate eigenpair of P from one of L, to a backward error ηP

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1232 N. J. HIGHAM, R.-C. LI, AND F. TISSEUR

of the same order of magnitude as ηL. Therefore to show that one linearization is
preferable to another we need to show that it enjoys a better bound for ηP /ηL as
well as a better condition number bound. Remarkably, our backward error results are
entirely harmonious with the results of Higham, Mackey, and Tisseur [7] concerning
eigenvalue conditioning, as we now explain.

For the companion forms the analysis in [7, sec. 7] provides bounds on the ratio
κC1

(λ)/κP (λ) of appropriately defined condition numbers in the case of quadratics.
That analysis is readily extended to (α, β)-form and general degrees, and it shows
that, like the backward error ratio in Theorem 3.6, κC1

(α, β)/κP (α, β) is bounded by

a multiple of max
(
1,maxi ‖Ai‖2

2

)
/min(‖A0‖2, ‖Am‖2). Thus if min(‖A0‖2, ‖Am‖2) ≈

maxi ‖Ai‖2 ≈ 1 and if a relatively large block is used for right eigenvector recovery
then C1 is an optimal linearization from the points of view of both backward error
and conditioning.

For the scaled companion forms we can show that κDsC1
(α, β)/κP (α, β) is bounded

by a multiple of ρ, just as for the backward error ratios in Theorem 3.9. So if ρ ≈ 1
and a relatively large block is used for eigenvector recovery then DsC1 is an optimal
linearization.

For the DL(P) pencils with v = e1 (if |λ| ≥ 1) or v = em (if |λ| ≤ 1) it is once
again the case that the factor ρ in the backward error bound (in Corollary 3.11) is
also the key quantity in a bound on the ratio of condition numbers κLk

/κP . We can
conclude that if ρ ≈ 1 then L1 and Lm are optimal with respect to both backward
error and conditioning over all linearizations for |λ| greater than 1 and less than 1,
respectively, assuming ‖z1‖2 ≈ ‖z‖2 for L1 and ‖zm‖2 ≈ ‖z‖2 for Lm (properties that
hold for the exact eigenvectors).

4. Structured linearizations. We now briefly consider to what extent the re-
sults above extend to structured linearizations for structured polynomials. Our defi-
nition of backward error remains the same and so does not incorporate structure. The
issue is that structure may change some key properties of a linearization and thereby
may limit our freedom in choosing how to recover eigenvectors.

4.1. Symmetric and Hermitian structures. If P is symmetric, that is, P (λ) =
P (λ)T , then all the pencils in DL(P) are symmetric, and these comprise all the sym-
metric pencils in L1(P) [6, Thm 5.2]. Hence Theorem 3.10 and Corollary 3.11 are
both applicable with L symmetric. If P is Hermitian, that is, P (λ) = P (λ̄)∗, then it
is precisely the pencils in DL(P) with a real vector v that are Hermitian [6, Thm 6.2].
Theorem 3.10 remains applicable for Hermitian L with the minor restriction that v
is real. Thus symmetry and Hermitian structure impose no significant limitations on
the applicability of our backward error bounds.

4.2. Alternating and palindromic structures. We now consider some other
classes of structures for which we can identify structured linearizations. These struc-
tures are less familiar than symmetric or Hermitian structures but still important
in a variety of applications [17, Chap. 7]. In what follows, the symbol � is used as
an abbreviation for transpose (T) in the real case and either transpose or conjugate
transpose (∗) in the complex case. The �-adjoint of P is defined by

P�(λ) =

m∑
i=0

λiA�
i .

P (λ) is said to be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1233

�-even if P�(−λ) = P (λ), �-odd if P�(−λ) = −P (λ),
�-palindromic if revP�(λ) = P (λ), �-antipalindromic if revP�(λ) = −P (λ),

where rev is defined in (3.2). For example, the quadratic Q(λ) = λ2M +λG+K with
M , K symmetric and G skew-symmetric, arising in gyroscopic systems, is T -even
since QT (−λ) = Q(λ). On the other hand, the quadratic Q(λ) = λ2A + λB + AT

with B complex symmetric, arising in the study of vibration of rail tracks under the
excitation of high speed trains [10], [11], is T -palindromic since revQT(λ) = Q(λ).

Linearizations in L1(P) that reflect the structure of these polynomials and there-
fore preserve symmetries in their spectra have recently been investigated by Mackey
et al. [18]. It is shown in [18, Thms. 3.5, 3.6] that if L(λ) ∈ L1(P) is �-structured
with vector v then (M ⊗ In)L(λ) is in DL(P) with vector Mv, where M is either a
diagonal matrix of alternating signs, M = diag((−1)m−1, . . . , (−1)0), in the case of
even/odd structures, or the reverse identity matrix, R = (δi,n+1−i), in the context of
palindromic structures.

Since L itself is in general not in DL(P) we cannot apply Theorem 3.10. However,
the proof of the theorem is readily adapted, and by exploiting the fact that M ⊗ In
is unitary the same bound is obtained.

Theorem 4.1. Let L ∈ L1(P) with vector v be a �-structured linearization
and assume that v has unit 2-norm and r nonzeros. Let z be an approximate right
eigenvector of L corresponding to the approximate eigenvalue (α, β). Then for x =∑m

i=1 vizi we have

ηP (x, α, β)

ηL(z, α, β)
≤ mr1/2 (|α| + |β|)‖Λα,β‖2 maxi ‖Ai‖2∑m

i=0 |α|i|β|m−i‖Ai‖2

‖z‖2

‖x‖2
≤ m3/2r1/2ρ

‖z‖2

‖x‖2
.

For approximate left eigenvectors an analogous bound holds with z replaced by w and
x by y =

∑m
i=1(Mv)iwi.

Theorem 4.1 shows that ηP ≈ ηL as long as ρ = O(1) and ‖z‖2/‖x‖2 ≈ 1. How-
ever, whereas for DL(P) v can be freely chosen, in particular to minimize ‖z‖2/‖x‖2,
now the choice of v is constrained by the requirement that L be �-structured. For
example, for T -palindromic polynomials P , L ∈ L1(P) with vector v is T -palindromic
if and only Rv = v [18, Thm. 3.5]; in the case of a quadratic, v = [1 1]/

√
2 is forced.

5. Quadratic polynomials. We now concentrate our attention on quadratic
polynomials, Q(λ) = λ2A + λB + C, for which we can give a more detailed analysis
than in the general case, covering in particular a potentially very beneficial scaling of
the polynomial. We write

a = ‖A‖2, b = ‖B‖2, c = ‖C‖2.(5.1)

Note that Λα,β = [α, β]T . We will recover eigenvectors of Q from the components z1 =
z(1:n) and z2 = z(n + 1: 2n) (and similarly for w) of eigenvectors of a linearization.

The first companion form of Q is given by

C1(λ) = λ

[
A 0
0 In

]
+

[
B C
−In 0

]
,

and DsC1(λ) = diag(In, sIn)C1(λ) with s = max(a, b, c). We normalize so that
|α|2 + |β|2 = 1. Theorems 3.6 and 3.9 say that for right eigenpairs

ηQ(zk, α, β)

ηC1
(z, α, β)

≤ 25/2 max
(
1, a, b, c

)2
|α|2a + |α||β|b + |β|2c

‖z‖2

‖zk‖2
, k = 1, 2,(5.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1234 N. J. HIGHAM, R.-C. LI, AND F. TISSEUR

ηQ(zk, α, β)

ηDsC1
(z, α, β)

≤ 25/2 max(a, b, c)

|α|2a + |α||β|b + |β|2c
‖z‖2

‖zk‖2
, k = 1, 2.(5.3)

Analogous bounds hold for left eigenvectors: they have factor 23/2 and there is no
square in the numerator for the analogue of (5.2). In interpreting these bounds and
those below recall that, for the exact eigenvectors of any pencil in L1(Q),

‖z‖2

‖z1‖2
≈ 1 for |α| ≥ |β|, ‖z‖2

‖z2‖2
≈ 1 for |α| ≤ |β|.(5.4)

The DL(Q) pencils with v = e1 and v = e2 are given by

L1(λ) = λ

[
A 0
0 −C

]
+

[
B C
C 0

]
, L2(λ) = λ

[
0 A
A B

]
+

[
−A 0
0 C

]
.

We know from Corollary 3.11 that

ηQ(z1, α, β)

ηL1
(z, α, β)

≤ 23/2 max(a, b, c)

|α|2a + |α||β|b + |β|2c
‖z‖2

‖z1‖2
.(5.5)

In view of (5.4) this bound is appropriate when |α| ≥ |β|. If |α| ≤ |β| then we wish
to take z2 rather than z1 as eigenvector of Q, but Theorem 3.10 does not provide
a bound for L1 and z2. We now derive such a bound, by explicitly constructing an
appropriate G matrix. It is easy to check that GQ(α, β) = [βIn, −(αA + βB)C−1]
satisfies GQ(α, β)L1(α, β) = eT2 ⊗Q(α, β) so that (2.11) holds, and by Lemma 3.5

‖GQ(α, β)‖2 ≤
√

2‖Λα,β‖∞ max
(
1, (a + b)‖C−1‖2

)
.

Hence (2.14) yields

ηQ(z2, α, β)

ηL1
(z, α, β)

≤ 4
max(a, b, c) max(1, (a + b)‖C−1‖2)

|α|2a + |α||β|b + |β|2c
‖z‖2

‖z2‖2
.(5.6)

Similarly we have for L2, by an analogue of the GQ analysis and by Corollary 3.11,

ηQ(z1, α, β)

ηL2
(z, α, β)

≤ 4
max(a, b, c) max(1, (b + c)‖A−1‖2)

|α|2a + |α||β|b + |β|2c
‖z‖2

‖z1‖2
,(5.7)

ηQ(z2, α, β)

ηL2
(z, α, β)

≤ 23/2 max(a, b, c)

|α|2a + |α||β|b + |β|2c
‖z‖2

‖z2‖2
.(5.8)

Essentially the same bounds (5.5)–(5.8) hold for approximate left eigenvectors: z is
simply replaced by w and zi by wi.

In Table 5.1 we summarize for unstructured quadratics the main conclusions
from these bounds concerning conditions that guarantee ηP ≈ ηL. Here, using ρ from
(3.18),

ρ =
max(a, b, c)

min(a, c)
≥ max(a, b, c)

|α|2a + |α||β|b + |β|2c .(5.9)

In view of the bounds, it is natural to scale the problem to try to bring the 2-
norms of A, B, and C close to 1. The scaling of Fan, Lin, and Van Dooren [2] has

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1235

Table 5.1

Sufficient conditions for ηP ≈ ηL; ρ is defined in (5.9).

Linearization Eigenvalue
Right

eigenvector
Left

eigenvector
Condition

Companion
|α| ≥ |β|
|α| ≤ |β|

z1
z2

w1 b ≤ a ≈ c ≈ 1

Scaled
companion

|α| ≥ |β|
|α| ≤ |β|

z1
z2

w1 ρ ≈ 1

L1
|α| ≥ |β|
|α| ≤ |β|

z1
z2

w1

w2

ρ ≈ 1
ρmax

(
1, (a + b)‖C−1‖2

)
≈ 1

L2
|α| ≥ |β|
|α| ≤ |β|

z1
z2

w1

w2

ρmax
(
1, (b + c)‖A−1‖2

)
≈ 1

ρ ≈ 1

precisely this aim. It converts Q(λ) = λ2A+λB+C to Q̃(μ) = μ2Ã+μB̃+ C̃, where

λ = γμ, Q(λ)δ = μ2(γ2δA) + μ(γδB) + δC ≡ Q̃(μ),(5.10a)

γ =
√
c/a, δ = 2/(c + bγ).(5.10b)

Letting

ã = ‖Ã‖2, b̃ = ‖B̃‖2, c̃ = ‖C̃‖2,(5.11)

τ =
b√
ac

,(5.12)

we have

ã = c̃ =
2

1 + τ
, b̃ =

2τ

1 + τ
,

ã

2
+ b̃ +

c̃

2
= 2,

so that 2/3 ≤ max(ã, b̃, c̃) ≤ 2. It is straightforward to show that ρ̃ = max(ã, b̃, c̃)/min
(ã, c̃) = max(1, τ) ≤ ρ. Note that ηQ(x, λ) = ηQ̃(x, μ), so this scaling has no effect on
the backward error for the quadratic; its purpose is to improve the backward error for
the linearization. For Q̃(μ), the bounds (5.2), (5.3), and (5.5)–(5.8) can be simplified.

Theorem 5.1. Let (z, w, α, β) be an approximate eigentriple of a linearization of

the scaled quadratic Q̃ in (5.10) with |α|2 + |β|2 = 1. Define

ω = ω(α, β) :=
1 + τ

1 + |αβ|τ ,(5.13)

with τ as in (5.12). We have

ηQ̃(zi, α, β)

ηC1
(z, α, β)

≤ 27/2ω
‖z‖2

‖zi‖2
, i = 1, 2,

ηQ̃(w∗
1 , α, β)

ηC1
(w∗, α, β)

≤ 23/2ω
‖w‖2

‖w1‖2
.

The same bounds hold for DsC1 and the constant 27/2 can be replaced by 25/2. Fur-
thermore,

ηQ̃(x, α, β)

ηLi
(z, α, β)

≤ fi(x)ω
‖z‖2

‖x‖2
, i = 1, 2,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1236 N. J. HIGHAM, R.-C. LI, AND F. TISSEUR

with

f1(x) =

{
23/2 if x = z1,
8‖C̃−1‖2 if x = z2,

f2(x) =

{
8‖Ã−1‖2 if x = z1,
23/2 if x = z2,

where the nonsingularity of C and A is required for f1(z2) and f2(z1). Similar bounds
hold for approximate left eigenvectors and Li, i = 1, 2: z is replaced by w and zi by
wi.

Proof. For the scaled norms in (5.11) we have

|α|2ã + |α||β |̃b + |β|2c̃ =
2

1 + τ
+ |α||β| 2τ

1 + τ
=

2(1 + |α||β|τ)

1 + τ
=

2

ω(α, β)
(5.14)

and the upper bounds follow from (5.2), (5.3), and (5.5)–(5.8).
We can regard ω in (5.13) as a growth factor bound in the translation from

backward error for L to backward error for Q̃. With the normalization |α|2 + |β|2 = 1,
which implies |α||β| ≤ 1/2, this factor satisfies the bounds

1 ≤ 1 + τ

1 + 1
2τ

≤ ω ≤ min

{
1 + τ,

1

|αβ|

}
≤ 1 + τ.(5.15)

Fan, Lin, and Van Dooren [2] identify max(1 + τ, 1 + τ−1) as a growth factor. Our
bounds for ω, which unlike in [2] are for individual eigenpairs and apply to Li as
well as C1, are sharper in two respects. First, they show that τ satisfying τ � 1
are harmless, since our upper bound for ω is O(1). Second, even when τ � 1 the
penultimate bound in (5.15) will still be of order 1 if |α||β| = |α|

√
1 − |α|2 = O(1),

which is the case unless |λ| = |α|/|β| = |α|/
√

1 − |α|2 is small or large.
The most striking consequence of the theorem is that if

‖B‖2
<∼ (‖A‖2‖C‖2)

1/2,(5.16)

so that τ = O(1) and hence ω = O(1), then the ηQ/ηL ratios are 1 for the relevant

choice of zi, provided Ã−1 and C̃−1 have norms of order 1 in the case of two of the
bounds for L1 and L2. In the terminology of quadratics arising from mechanical
systems with damping, the condition (5.16) holds for systems that are not too heavily
damped. A class of problems for which (5.16) is satisfied is the elliptic Q [9], [13]: those
for which A is Hermitian positive definite, B and C are Hermitian, and (x∗Bx)2 <
4(x∗Ax)(x∗Cx) for all nonzero x ∈ C

n.
Our conclusions about the benefits to the backward error of scaling Q apply

equally well to the condition numbers. Indeed, using (5.14) the analysis in [7] can
be improved to provide bounds for κL/κQ̃ expressed in terms of ω instead of ρ for
L = C1, L1, and L2. Therefore for these three choices of L both backward error
(modulo the potential requirement that ‖Ã−1‖, ‖C̃−1‖ = O(1) for L1 and L2) and
conditioning are essentially optimal for the scaled problem if ω = O(1).

6. Numerical experiments. We illustrate the theory on three symmetric QEPs.
Our experiments were performed in MATLAB 7, for which the unit roundoff is
u = 2−53 ≈ 1.1 × 10−16. The eigenpairs of L(λ) were computed by MATLAB’s
function qz. Table 6.1 reports the problem sizes, the coefficient matrix norms, and
the values of ρ in (3.18) (or (5.9)) before and after scaling via (5.10). In our figures,
the x-axis is the eigenvalue index and the eigenvalues are sorted in increasing order

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1237

Table 6.1

Problem statistics. Here, |λmin| = mini |λi|, |λmax| = maxi |λi|.

Problem Wave Nuclear Mass-spring
n 25 8 50

Unscaled Scaled Unscaled Scaled Unscaled Scaled
|λmin| 1.0e0 4.0e-2 1.8e1 6.6e-2 1.6e-2 7.0e-3
|λmax| 2.5e1 1.0e0 3.6e2 1.4e0 3.2e2 1.4e2
‖A‖2 1.6e0 1.9e0 2.4e8 1.2e0 1.0e0 1.4e-2
‖B‖2 3.2e0 1.5e-1 4.4e10 8.2e-1 3.2e2 2.0e0
‖C‖2 9.8e2 1.9e0 1.7e13 1.2e0 5.0e0 1.4e-2

‖A−1‖2 6.4e-1 5.4e-1 1.8e-1 3.7e7 1.0e0 7.2e1
‖C−1‖2 6.4e-1 3.4e2 2.1e-4 2.9e9 1.0e0 3.6e2

ρ 6.2e2 1.0e0 7.1e4 1.0e0 3.2e2 1.4e2
τ = 8.0e-2, maxω = 1.1e0 τ = 7.0e-1, maxω = 1.6e0 τ = 1.4e2, maxω = 7.2e1

of absolute value. Throughout this section “companion” refers to the first companion
linearization, C1.

Our first problem comes from applying the Galerkin method to a PDE describing
the wave motion of a vibrating string with clamped ends in a spatially inhomogeneous
environment [3], [9]. The quadratic Q is elliptic. Table 6.2 displays the smallest
and largest ratios ηQ(x, α, β)/ηL(z, α, b) over all computed eigenvalues for several
linearizations and for the two ways of recovering the right eigenvector: x = z1 and x =
z2. These ratios are compared with the corresponding theoretical upper bounds (5.2),
(5.3), and (5.5)–(5.8) (taking the same (α, β) as for the smallest/largest backward
error ratio). The upper bounds for the scaled companion linearization are smaller
than those for the companion linearization, as expected by the theory since c � 1,
and they also are sharper. For DL(Q) linearizations, the theory suggests using L1 with
x = z1, since all the eigenvalues of Q have modulus at least 1. This is reflected in Table
6.2, where the L1, z1 pairing produces smaller ratios and upper bounds than L2, z1.
For the scaled quadratic Q̃ in (5.10), we computed the bounds of Theorem 5.1. Since
this problem is elliptic, we know from Theorem 5.1 that for the scaled problem, whose
eigenvalues lie between 0.04 and 1 in modulus, the scaled and unscaled companion
linearizations and the DL(Q̃) linearization L2 will have backward errors similar to

those for Q̃ for every eigenvalue with the choice x = z2. This is confirmed by the
boldface entries in the last two columns of Table 6.2.

Our second problem is a simplified model of a nuclear power plant, as described in
[12], [23]. The largest ratios ηQ(x, α, β)/ηL(z, α, b) and corresponding upper bounds
are displayed in Table 6.3. Similar conclusions to those for the wave problem can
be drawn for this problem. Since ρ = 7 × 104, it is not surprising that some very
large ratios are obtained. This example also illustrates the advantage of scaling the
companion matrix. This is even more striking in Figure 6.1, where the ratios for all
the right and left eigenpairs are displayed. For the companion linearization, these
ratios can be up to 1010 times as large as those for DsC1. Although the problem is
not elliptic, ‖B‖2 ≤

√
‖A‖2‖C‖2 holds, and so our theory says that scaling will make

the scaled and unscaled companion linearizations and the DL(Q) linearization L2 with
x = z2 (since the scaled eigenvalues have modulus at most 1) optimally stable. This
prediction is confirmed by the boldface entries in Table 6.3. Notice that for the scaled
quadratic Q̃, the bounds for L1 with z2 and L2 with z1 are very weak, due to the
large values of ‖Ã−1‖2 and ‖C̃−1‖2 shown in Table 6.1.

Our third problem is a standard damped mass-spring system, as described in [23,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1238 N. J. HIGHAM, R.-C. LI, AND F. TISSEUR

Table 6.2

Wave problem, n = 25.

Unscaled, ρ = 6e2 Scaled, ρ = 1

Linearization
L

Ei’vec
x

min
ηQ
ηL

Upper
bound

max
ηQ
ηL

Upper
bound

max
η
Q̃

ηL

Upper
bound

Companion
z1 2.0e1 1.7e6 3.7e2 1.5e6 2.9e1 3.0e2
z2 1.4e0 1.6e4 3.8e2 3.5e7 2.5e0 1.6e1

Scaled z1 9.8e-1 1.6e1 1.1e2 1.7e3 1.4e1 1.5e2
companion z2 6.9e-1 1.6e1 1.1e2 4.3e4 1.7e0 8.3e0

L1

z1 1.9e0 2.2e1 9.0e1 1.1e3 1.8e1 7.6e1
z2 1.7e0 2.4e1 8.3e2 6.4e4 8.9e1 2.8e3

L2

z1 2.2e1 9.8e5 1.7e2 2.0e4 1.4e1 1.6e2
z2 1.5e0 8.0e0 1.5e2 2.1e4 1.7e0 8.3e0

Table 6.3

Nuclear problem, n = 8.

Unscaled, ρ = 7e4 Scaled, ρ = 1

Linearization
L

Ei’vec
x

min
ηQ
ηL

Upper
bound

max
ηQ
ηL

Upper
bound

max
η
Q̃

ηL

Upper
bound

Companion
z1 6.1e5 3.2e18 2.6e11 2.8e16 4.2e0 2.8e2
z2 5.5e5 1.2e21 9.3e9 9.9e19 3.1e-1 1.8e1

Scaled z1 3.4e-1 4.1e4 2.3e1 5.1e4 1.0e1 1.4e2
companion z2 3.0e-1 4.1e6 2.1e1 5.9e6 2.2e-1 9.2e0

L1

z1 2.1e1 1.2e3 2.3e3 1.4e5 1.4e1 6.9e1
z2 2.0e1 1.4e11 5.7e5 3.2e14 8.3e2 2.4e10

L2

z1 4.4e3 6.0e17 4.6e4 1.6e17 4.4e1 3.7e9
z2 1.2e2 1.5e4 1.9e3 6.2e6 7.6e-1 9.1e0

sec. 3.9]. The matrix A = I, B is tridiagonal with super- and subdiagonal elements
all −64 and diagonal 128, 192, 192, . . . , 192, and C is tridiagonal with super- and
subdiagonal elements all −1 and diagonal 2, 3, . . . , 3. The eigenvalues are all negative,
with 50 eigenvalues of large modulus ranging from −320 to −6.4 and 50 small modulus
eigenvalues approximately −1.5×10−2. For the approximate right eigenvector, we take
x = z1 if |λ| ≥ 1 and x = z2 otherwise, as suggested by the theory. The largest ratios
ηQ(x, α, β)/ηL(z, α, b) and corresponding upper bounds are displayed in Table 6.4.
Notice that for this problem the upper bound on the ratio ηQ(x, α, β)/ηC1(z, α, β) is
nearly attained, which suggests that the factor max(1, a, b, c)2 in the bound should
indeed contain the square. The largest ratio for L = L1 corresponds to a small
eigenvalue with x = z2 and, for L = L2, the largest ratio corresponds to a large
eigenvalue with x = z1. Hence, the reported upper bounds contain the extra factors
(a + b)‖C−1‖2 and (b + c)‖A−1‖2, respectively, which explains why the bounds are
larger than those for the scaled companion linearization (on the scaled and unscaled
problems), which are small multiples of ρ. The top plot in Figure 6.2 shows that

for the scaled quadratic Q̃, small backward error ratios are obtained for L = L1 and
large eigenvalues, whereas the ratios are small with the choice L = L2 for the small
eigenvalues—all as the theory predicts. The bottom plot in Figure 6.2 confirms that
the actual backward errors ηQ are what we would expect, given the ratios and the
fact that the computed eigenpairs of L are obtained via the QZ algorithm and so
necessarily have a backward error of order u.

Finally, we mention that further numerical illustration of the bounds developed
here, on a symmetric QEP arising from a finite element model of a simply supported
beam, can be found in [8].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1239

0 2 4 6 8 10 12 14 16

10
0

10
4

10
8

10
12

Ratios for right eigenpairs

Companion
Scaled companion

0 2 4 6 8 10 12 14 16

10
0

10
4

10
8

10
12

Ratios for left eigenpairs

Companion
Scaled companion

Fig. 6.1. Nuclear problem. Ratios ηQ/ηL for companion linearization L = C1 and scaled
companion linearization L = DsC1 for right eigenpairs (top) and left eigenpairs (bottom).

0 5 10 15 20 25 30 35 40 45 50

10
0

10
2

10
4

Ratios η
Q

s

(x,α,β)/ η
L
(z,α,β)

0 5 10 15 20 25 30 35 40 45 50
10

−16

10
−14

10
−12

Backward error η
Q

s

(x,α,β)

Fig. 6.2. Damped mass-spring problem. Ratios ηQs (x, α, β)/ηL(z, α, β) and actual backward
errors ηQs (x, α, β) with x = z1 if |α| ≥ |β| and x = z2 otherwise, for L = DsC1 (∗) and for L = L1

(�) and L = L2 (©). Here, Qs denotes the scaled quadratic Q̃.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1240 N. J. HIGHAM, R.-C. LI, AND F. TISSEUR

Table 6.4

Damped mass-spring problem, n = 50.

Unscaled, ρ = 3e2 Scaled, ρ = 1e2

Linearization
L

max
ηQ
ηL

Upper
bound

max
η
Q̃

ηL

Upper
bound

C1 8.8e3 5.8e4 1.7e2 8.1e2
DsC1 1.0e2 9.0e2 1.4e2 4.1e2
L1 2.0e3 2.9e4 1.0e4 1.5e5
L2 1.8e3 1.1e5 5.7e2 3.8e4

Acknowledgment. We thank Steve Mackey for helpful discussions regarding
the proof of Theorem 3.2.

REFERENCES

[1] Z. Bai, J. W. Demmel, J. J. Dongarra, A. Ruhe, and H. A. van der Vorst, eds., Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Software Environ.
Tools 11, SIAM, Philadelphia, 2000.

[2] H.-Y. Fan, W.-W. Lin, and P. Van Dooren, Normwise scaling of second order polynomial
matrices, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 252–256.

[3] P. Freitas, M. Grinfield, and P. Knight, Stability of finite-dimensional systems with in-
definite damping, Adv. Math. Sci. Appl., 17 (1997), pp. 435–446.

[4] I. Gohberg, M. A. Kaashoek, and P. Lancaster, General theory of regular matrix polyno-
mials and band Toeplitz operators, Integral Equations Operator Theory, 11 (1988), pp. 776–
882.

[5] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York,
1982.

[6] N. J. Higham, D. S. Mackey, N. Mackey, and F. Tisseur, Symmetric linearizations for
matrix polynomials, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 143–159.

[7] N. J. Higham, D. S. Mackey, and F. Tisseur, The conditioning of linearizations of matrix
polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 1005–1028.

[8] N. J. Higham, D. S. Mackey, F. Tisseur, and S. D. Garvey, Scaling, sensitivity and sta-
bility in the numerical solution of quadratic eigenvalue problems, MIMS EPrint 2006.406,
Manchester Institute for Mathematical Sciences, The University of Manchester, UK, 2006.
Internat. J. Numer. Methods Engrg., to appear.

[9] N. J. Higham, F. Tisseur, and P. M. Van Dooren, Detecting a definite Hermitian pair and
a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems,
Linear Algebra Appl., 351–352 (2002), pp. 455–474.

[10] A. Hilliges, C. Mehl, and V. Mehrmann, On the solution of palindromic eigenvalue prob-
lems, in Proceedings of the European Congress on Computational Methods in Applied Sci-
ences and Engineering (ECCOMAS 2004), Jyväskylä, Finland, P. Neittaanmäki, T. Rossi,
S. Korotov, E. Oñate, J. Périaux, and D. Knörzer, eds., 2004. Available online from
http://www.mit.jyu.fi/eccomas2004/proceedings/proceed.html.

[11] I. C. F. Ipsen, Accurate eigenvalues for fast trains, SIAM News, 37 (2004), pp. 1–2.
[12] T. Itoh, Damped vibration mode superposition method for dynamic response analysis, Earth-

quake Engrg. Struct. Dyn., 2 (1973), pp. 47–57.
[13] P. Lancaster, Quadratic eigenvalue problems, Linear Algebra Appl., 150 (1991), pp. 499–506.
[14] P. Lancaster and P. Psarrakos, A Note on Weak and Strong Linearizations of Regular Ma-

trix Polynomials, MIMS EPrint 2006.72, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, 2006.

[15] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic Press, Lon-
don, 1985.

[16] D. Lemonnier and P. M. Van Dooren, Balancing regular matrix pencils, SIAM J. Matrix
Anal. Appl., 28 (2006), pp. 253–263.

[17] D. S. Mackey, Structured Linearizations for Matrix Polynomials, Ph.D. thesis, University of
Manchester, Manchester, UK, 2006.

[18] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Structured polynomial eigenvalue
problems: Good vibrations from good linearizations, SIAM J. Matrix Anal. Appl., 28 (2006),
pp. 1029–1051.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS 1241

[19] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for
matrix polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971–1004.

[20] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems,
SIAM J. Numer. Anal., 10 (1973), pp. 241–256.

[21] G. W. Stewart, On a companion operator for analytic functions, Numer. Math., 18 (1971),
pp. 26–43.

[22] F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Linear Algebra
Appl., 309 (2000), pp. 339–361.

[23] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001),
pp. 235–286.

[24] P. M. Van Dooren and P. Dewilde, The eigenstructure of an arbitrary polynomial matrix:
Computational aspects, Linear Algebra Appl., 50 (1983), pp. 545–579.

[25] R. C. Ward, Balancing the generalized eigenvalue problem, SIAM J. Sci. Statist. Comput., 2
(1981), pp. 141–152.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1242–1246

FURTHER RESULTS ON THE REVERSE ORDER LAW FOR
GENERALIZED INVERSES∗

DRAGAN S. DJORDJEVIĆ†

Abstract. The reverse order rule (AB)† = B†A† for the Moore–Penrose inverse is established
in several equivalent forms. Results related to other generalized inverses are also proved.

Key words. Moore–Penrose inverse, generalized inverses, reverse order law

AMS subject classifications. 47A05, 15A09

DOI. 10.1137/050638114

1. Introduction. Throughout this paper H,K,L denote arbitrary Hilbert spaces.
We use L(H,K) to denote the set of all linear bounded operators from H to K. Also,
L(H) = L(H,H). For A ∈ L(H,K), we use R(A) to denote the range, and N (A) to
denote the null-space of A. The Moore–Penrose inverse of A is denoted by A†. It is
well known that the Moore–Penrose inverse of A exists if and only if R(A) is closed.
We assume that the reader is familiar with the properties of the Moore–Penrose in-
verse (see, for example, [1], [4], [7], [10], [11], [12]). We also assume that the following
classes of operators are well known: A{1}, A{1, 3}, A{1, 4}, A{1, 2, 3}, A{1, 2, 4}.

Some equivalent conditions of the reverse order rule

(1) (AB)† = B†A†

are well known (see all references). We shall prove some new conditions, which are
equivalent to (1). Also, conditions

B{1, 3} ·A{1, 3} ⊂ (BA){1, 3},
B{1, 4} ·A{1, 3} ⊂ (BA){1, 4},

B†A† ∈ (AB){1, 2, 3},
B†A† ∈ (AB){1, 2, 4},
B†A† ∈ (AB){1, 3},
B†A† ∈ (AB){1, 4}

will be investigated. By now, some of these conditions are investigated for complex
matrices.

The aim of this paper is to prove some equivalence results for linear bounded
Hilbert space operators, and thus obtain well-known results connected to the reverse
order rule (1).

∗Received by the editors August 12, 2005; accepted for publication (in revised form) by
H. J. Werner May 10, 2007; published electronically December 13, 2007. This work was supported
by the Ministry of Science of Serbia under grant 144003.

http://www.siam.org/journals/simax/29-4/63811.html
†Department of Mathematics and Informatics, Faculty of Sciences and Mathematics, University

of Nǐs, P. O. Box 224, 18000 Nǐs, Serbia (dragan@pmf.ni.ac.yu, ganedj@EUnet.yu).

1242

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REVERSE ORDER LAW FOR GENERALIZED INVERSES 1243

2. Results. We begin with the following auxiliary result, which can be found in
[1] for complex matrices. For completeness, we give its proof.

Lemma 2.1. Let A ∈ L(H,K) have a closed range and B ∈ L(K,H). Then the
following statements are equivalent:

(1) ABA = A and (AB)∗ = AB;
(2) there exists some X ∈ L(K,H) such that B = A† + (I −A†A)X.

Proof. (2) =⇒ (1): Obvious. (1) =⇒ (2): Since A =
[
A1 0
0 0

]
:
[
R(A∗)
N (A)

]
→[

R(A)
N (A∗)

]
, where A1 is invertible, it follows that A† =

[
A−1

1 0
0 0

]
. An elementary calcu-

lation shows that B =
[
A−1

1 0
U V

]
, where U, V are arbitrary linear and bounded. Now,

take X =
[
X1 X2

U V

]
for arbitrary X1, X2 linear and bounded.

Now, we prove the main result of this paper.
Theorem 2.2. Let A ∈ L(H,K) and B ∈ L(K,L) be such that A,B,AB have

closed ranges. Then the following statements are equivalent:
(1) R(A∗AB) ⊂ R(B);
(2) B{1, 3} ·A{1, 3} ⊂ (AB){1, 3};
(3) B†A† ∈ (AB){1, 3};
(4) B†A† ∈ (AB){1, 2, 3}.
Proof. The operator B has the following matrix form with respect to the orthogo-

nal sum of subspaces: B =
[
B1 0
0 0

]
:
[
R(B∗)
N (B)

]
→

[
R(B)
N (B∗)

]
, where B1 is invertible. From

the proof of Lemma 2.1 it follows that any B(1,3) ∈ B{1, 3} has the form
[
B−1

1 0
U V

]
.

The operator A has the following form: A =
[
A1 A2
0 0

]
:
[

R(B)
N (B∗)

]
→

[
R(A)
N (A∗)

]
. Now,

A∗ =
[
A∗

1 0

A∗
2 0

]
and AA∗ = [D 0

0 0], where D = A1A
∗
1 +A2A

∗
2 is positive and invertible in

L(R(A)). We obtain A† = A∗(AA∗)# =
[
A∗

1D
−1 0

A∗
2D

−1 0

]
. Let A(1,3) ∈ A{1, 3}. By Lemma

2.1 it follows that there exists some X ∈ L(L,K) such that A(1,3) = A† +(I−A†A)X.

Let X have the form X =
[
X11 X12

X21 X22

]
:
[

R(A)
N (A∗)

]
→

[
R(B)
N (B∗)

]
. We then get the following:

A(1,3) =

[
Z11 Z12

Z21 Z22

]
and

ABB(1,3)A(1,3) =

[
A1Z11 A1Z12

0 0

]
,

where

Z11 = A∗
1D

−1 + (I −A∗
1D

−1A1)X11 −A∗
1D

−1A2X21,

Z12 = (I −A∗
1D

−1A1)X12 −A∗
1D

−1A2X22,

Z21 = A∗
2D

−1 −A∗
2D

−1A1X11 + (I −A∗
2D

−1A2)X21,

Z22 = −A∗
2D

−1A1X12 + (I −A∗
2D

−1A2)X22.

Notice also that A∗AB =
[
A∗

1A1B1 0

A∗
2A1B1 0

]
.

(1) =⇒ (2): The inclusion R(A∗AB) ⊂ R(B) is equivalent to BB†A∗AB =

A∗AB. Now, BB†A∗AB =
[
A∗

1A1B1 0
0 0

]
. Hence, BB†A∗AB = A∗AB is equivalent to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1244 DRAGAN S. DJORDJEVIĆ

A∗
2A1B1 = 0. Since B1 is invertible, we obtain A∗

2A1 = 0, or, equivalently, A∗
1A2 = 0.

It follows that R(A2) ⊂ N (A∗
1). We have the following orthogonal decomposition:

R(A) = R(A1) ⊕N (A∗
1). Now,

R(A) =
{[

A1x+A2y
0

]
: x ∈ R(B), y ∈ N (B∗)

}
= R(A1) + R(A2)

= R(A1) ⊕R(A2),

knowing that R(A2) ⊂ N (A∗
1). Since R(A) is closed, we get that both R(A1) and

R(A2) are closed. Consider the following decompositions of A1 and A2: A1 =
[
A11 0
0 0

]
:[

R(A∗
1)

N (A1)

]
→

[
R(A1)
N (A∗

1)

]
, where A11 is invertible, and A2 =

[
0 0

A22 0

]
:
[
R(A∗

2)

N (A2)

]
→

[
R(A1)
N (A∗

1)

]
.

We have the following: 0 < D = A1A
∗
1 +A2A

∗
2 =

[
A11A

∗
11 0

0 A22A
∗
22

]
, implying that both

A11A
∗
11 and A22A

∗
22 are invertible. Hence, D−1 =

[
(A11A

∗
11)

−1 0

0 (A22A
∗
22)

−1

]
. Notice

that A∗
1D

−1A1 = [I 0
0 0], A1(I − A∗

1D
−1A2) = 0, and A∗

1D
−1A2 = 0. Now, it follows

that

A1[(I −A∗
1D

−1A1)X12 −A∗
1D

−1A2X22] = 0

and

A1[A
∗
1D

−1 + (I −A∗
1D

−1A1)X11 −A∗
1D

−1A2X21] =

[
I 0
0 0

]
is selfadjoint. An elementary computation shows that ABB(1,3)A(1,3)AB = AB.

(2) =⇒ (3): Obvious.
(3) =⇒ (1): From the proof of the implication (1) =⇒ (2), it follows that the con-

dition R(A∗AB) ⊂ R(B) is equivalent to A∗
2A1 = 0. Now, ABB†A† =

[
A1A

∗
1D

−1 0
0 0

]
is selfadjoint, implying that [A1A

∗
1, D

−1] = 0 = [A1A
∗
1, D] (here [U, V] = UV − V U).

Also,
[
A1B1 0

0 0

]
= AB = ABB†A†AB =

[
A1A

∗
1D

−1B1 0
0 0

]
, implying that A1B1 =

A1A
∗
1D

−1A1B1 = D−1A1A
∗
1A1B1. Hence, we get DA1B1 = A1A

∗
1A1B1 and, con-

sequently, A2A
∗
2A1B1 = 0. Since B1 is invertible, we obtain A2A

∗
2A1 = 0 and

R(A1) ⊂ N (A2A
∗
2) = N (A∗

2). It follows that A∗
2A1 = 0.

(4) =⇒ (3): Obvious.
(1) =⇒ (4): If R(A∗AB) ⊂ R(B), we have to prove that B†A†ABB†A† = B†A†.

Notice that AB =
[
A1B1 0

0 0

]
and B†A† =

[
B−1

1 A∗
1D

−1 0
0 0

]
. By using previously proved

facts, D commutes with A1A
∗
1 (the implication (3) =⇒ (1)) and matrix forms of A1

and D (the implication (1) =⇒ (2)), which we compute as follows:

B−1
1 A∗

1D
−1A1B1B

−1
1 A∗

1D
−1 = B−1

1 A∗
1A1A

∗
1D

−2

= B−1
1 A∗

1

[
A11A

∗
11 0

0 0

] [
(A11A

∗
11)

−2 0
0 (A22A

∗
22)

−2

]
= B−1

1 A∗
1

[
(A11A

∗
11)

−1 0
0 0

]
= B−1

1 A∗
1D

−1.

(2)

Now, it obviously follows that B†A†ABB†A† = B†A† is satisfied.
In the same manner we can prove the following result.
Theorem 2.3. Let A ∈ L(H,K) and B ∈ L(K,L) be such that A,B,AB have

closed ranges. Then the following statements are equivalent:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REVERSE ORDER LAW FOR GENERALIZED INVERSES 1245

(1) R(BB∗A∗) ⊂ R(A∗);
(2) B{1, 4} ·A{1, 4} ⊂ (AB){1, 4};
(3) B†A† ∈ (AB){1, 4};
(4) B†A† ∈ (AB){1, 2, 4}.
For complex matrices, see the following literature: The equivalence (1) ⇐⇒ (4)

in both Theorems 2.2 and 2.3 is proved in [15]; conditions (2) in both Theorems 2.2
and 2.3 are investigated in [16].

Now, as a corollary, we obtain the following result.

Corollary 2.4. Let A ∈ L(H,K) and B ∈ L(K,L) be such that A,B,AB have
closed ranges. Then the following statements are equivalent:

(1) R(A∗AB) ⊂ R(B) and R(BB∗A∗) ⊂ R(A∗);
(2) B{1, 3} ·A{1, 3} ⊂ AB{1, 3} and B{1, 4} ·A{1, 4} ⊂ AB{1, 4};
(3) B†A† ∈ AB{1, 3, 4};
(4) B†A† = (AB)†.

It is important to mention that the equivalence (1) ⇐⇒ (4) is a classical result,
proved for complex matrices in [6], and for bounded operators on Hilbert spaces in
[2], [3], and [9].

Remark 1. The equivalence (3) ⇐⇒ (4) in Theorems 2.2, 2.3 and Corollary
2.4 suggests that the “{2}-property” is implied by the rest. For matrices, this follows
from a rank argument. If X is a {1}-inverse of A, then X is also a {2}-inverse if and
only if rankX = rankA. Since we cannot talk about “rank” here, we resolve this
situation using the special partition of operators.

Results which are related to the reverse order rule for generalized inverses follow.
Multiple matrix products are considered in [8] and [14]. General conditions to the
reverse order rule for inner inverses are given in [18] and for outer inverses in [5]. The
reverse order rule for the weighted Moore–Penrose inverse is investigated in [13].

Finally, we find that results of this paper are closely connected with the results
of Werner [17]. Although in [17] the finite dimensional technique is used, the results
which will be presented here are valid in arbitrary Hilbert spaces also.

In [17] the geometric approach is involved, taking the range and the null-space
of the generalized inverses. Among other things, the following result is proved in [17,
Theorem 5.5] (interpreted in an infinite dimensional setting).

Theorem 2.5. Let B ∈ L(H,K) and A ∈ L(K,L), such that A, B, and C = AB

have closed ranges. Let T be a closed subspace of H such that T
•
+ N (B) = H (the

sum is not necessarily orthogonal) and R(C∗) ⊂ T . Then the following statements
are equivalent:

(1) There exist some operators A− and B− satisfying AA−A = A, A−A =
PR(A∗),N (A), BB−B = B, B−B = PT,N (B), BB− = PR(B),N (B∗) such that
the following is satisfied: D = B−A−, CDC = C, and DC = PR(C∗),N (C).

(2) R(BB∗A) ⊂ R(A∗).
(3) For each operator A− and B− satisfying AA−A = A, A−A = PR(A∗),N (A),

BB−B = B, B−B = PT,N (B), BB− = PR(B),N (B∗), the following holds:
D = B−A−, CDC = C, and DC = PR(C∗),N (C).

We see that for C = AB the condition R(C∗) ⊂ R(B∗) holds. Hence, for T =
R(B∗) we get the result closely related to our Theorem 2.3. Now, the corollary is
stated according to our notations.

Corollary 2.6. Let B ∈ L(H,K) and A ∈ L(K,L), such that A, B, and
C = AB have closed ranges. Then the following statements are equivalent:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1246 DRAGAN S. DJORDJEVIĆ

(1) There exist some A− ∈ A{1, 4} and some B− ∈ B{1, 3, 4} such that B−A− ∈
C{1, 4}.

(2) R(BB∗A∗) ⊂ R(A∗).
(3) A{1, 4} ·B{1, 3, 4} ⊂ C{1, 4}.
We see that Corollary 2.6 contains a weaker result than our Theorem 2.3.

Acknowledgments. I am grateful to Professor Hans Joachim Werner for send-
ing me his paper [17], and for remarks that his work in [17] is closely related to the
present results. I am also grateful to the referee for helpfully pointing to Remark 1.

REFERENCES

[1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications,
2nd ed., Springer-Verlag, New York, 2003.

[2] R. H. Bouldin, The pseudo-inverse of a product, SIAM J. Appl. Math., 24 (1973),
pp. 489–495.

[3] R. H. Bouldin, Generalized inverses and factorizations, in Recent Applications of Gen-
eralized Inverses, Res. Notes in Math. 66, Pitman, Boston, 1982, pp. 233–249.

[4] S. R. Caradus, Generalized Inverses and Operator Theory, Queen’s Papers in Pure and
Applied Mathematics 50, Queen’s University, Kingston, Ontario, Canada, 1978.

[5] D. S. Djordjević, Unified approach to the reverse order rule for generalized inverses,
Acta Sci. Math. (Szeged), 67 (2001), pp. 761–776.

[6] T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev., 8
(1966), pp. 518–521.

[7] R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker,
New York, 1988.

[8] R. E. Hartwig, The reverse order law revisited, Linear Algebra Appl., 76 (1986),
pp. 241–246.

[9] S. Izumino, The product of operators with closed range and an extension of the reverse
order law, Tohoku Math J. (2), 34 (1982), pp. 43–52.

[10] J. J. Koliha, The Drazin and Moore-Penrose inverse in C∗-algebras, Math. Proc. R. Ir.
Acad., 99A (1999), pp. 17–27.

[11] M. Z. Nashed, Inner, outer, and generalized inverses in Banach and Hilbert spaces,
Numer. Funct. Anal. Optim., 9 (1987), pp. 261–325.

[12] M. Z. Nashed and G. F. Votruba, A unified operator theory of generalized inverses,
in Generalized Inverses and Applications, M. Z. Nashed, ed., Academic Press, New
York, 1976, pp. 1–109.

[13] W. Sun and Y. Wei, Inverse order rule for weighted generalized inverse, SIAM J. Matrix
Anal. Appl., 19 (1998), pp. 772–775.

[14] Y. Tian, Reverse order laws for the generalized inverses of multiple matrix products,
Generalized Inverses, Linear Algebra Appl., 211 (1994), pp. 85–100.

[15] Y. Tian, Using rank formulas to characterize equalities for Moore-Penrose inverses of
matrix products, Appl. Math. Comput., 147 (2004), pp. 581–600.

[16] M. Wei and W. Guo, Reverse order laws for least squares g-inverses and minimum norm
g-inverses of products of two matrices, Linear Algebra Appl., 342 (2002), pp. 117–132.

[17] H. J. Werner, G-inverses of matrix products, in Data Analysis and Statistical Inference,
S. Schach and G. Trenkler, eds., Bergisch Gladbach, Germany, 1992, pp. 531–546.

[18] H. J. Werner, When is B−A− a generalized inverse of AB?, Linear Algebra Appl., 210
(1994), pp. 255–263.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1247–1266

A SUPERFAST ALGORITHM FOR TOEPLITZ SYSTEMS OF
LINEAR EQUATIONS∗

S. CHANDRASEKARAN† , M. GU‡ , X. SUN§ , J. XIA¶, AND J. ZHU‡

Abstract. In this paper we develop a new superfast solver for Toeplitz systems of linear equa-
tions. To solve Toeplitz systems many people use displacement equation methods. With displacement
structures, Toeplitz matrices can be transformed into Cauchy-like matrices using the FFT or other
trigonometric transformations. These Cauchy-like matrices have a special property, that is, their
off-diagonal blocks have small numerical ranks. This low-rank property plays a central role in our
superfast Toeplitz solver. It enables us to quickly approximate the Cauchy-like matrices by structured
matrices called sequentially semiseparable (SSS) matrices. The major work of the constructions of
these SSS forms can be done in precomputations (independent of the Toeplitz matrix entries). These
SSS representations are compact because of the low-rank property. The SSS Cauchy-like systems
can be solved in linear time with linear storage. Excluding precomputations the main operations are
the FFT and SSS system solve, which are both very efficient. Our new Toeplitz solver is stable in
practice. Numerical examples are presented to illustrate the efficiency and the practical stability.

Key words. displacement equation, SSS structure, superfast algorithm, Toeplitz matrix

AMS subject classifications. 15A06, 65F05, 65G05

DOI. 10.1137/040617200

1. Introduction. Toeplitz systems of linear equations arise in many applica-
tions, including PDE solving, signal processing, time series analysis, orthogonal poly-
nomials, and many others. A Toeplitz system is a linear system

(1.1) Tx = b

with a coefficient matrix to be a Toeplitz matrix

(1.2) T =

⎛⎜⎜⎜⎜⎜⎝
t0 t−1 t−2 · · · t−(N−1)

t1 t0 t−1 · · · t−(N−2)

t2 t1 t0 · · · t−(N−3)

...
...

...
. . .

...
tN−1 tN−2 tN−3 · · · · · ·

⎞⎟⎟⎟⎟⎟⎠ ,

that is, its entries are constant along every diagonal (a matrix whose entries are con-
stant along every antidiagonal is called a Hankel matrix). The vector t = (t−(N−1) · · ·
t−1 t0 t1 · · · tN−1) is called the Toeplitz-vector that generates T .

There are both direct and iterative methods for solving (1.1). Direct solvers are
said to be fast if they cost O(N2) operations; examples include Schur-type methods,

∗Received by the editors October 19, 2004; accepted for publication (in revised form) by D. A.
Bini May 8, 2007; published electronically December 13, 2007.

http://www.siam.org/journals/simax/29-4/61720.html
†Department of Electrical and Computer Engineering, University of California at Santa Barbara,

Santa Barbara, CA 93106 (shiv@ece.ucsb.edu).
‡Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720 (mgu@

math.berkeley.edu, zhujiang.cal@gmail.com).
§Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720

(sunxt@cal.berkeley.edu).
¶Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095

(jxia@math.ucla.edu).

1247

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1248 CHANDRASEKARAN, GU, SUN, XIA, AND ZHU

Levinson-type methods, and others [32]. An important type of direct solver is the
displacement equation–type fast solver based on Gaussian eliminations. Some known
displacement equation–type methods are the Heinig [28], GKO [22], and Gu [26]
methods. Those methods have complexity O(N2). Methods with complexity less than
O(N2) are called superfast . In this paper we will present a displacement equation–
type superfast algorithm.

1.1. Fast and superfast methods. Many fast and superfast methods that have
been developed are numerically unstable [5, 15, 16, 7, 37]. References [5] and [15]
showed that the Schur algorithm and the Levinson algorithm are weakly stable in
some cases, but both may be highly unstable in the case of an indefinite and non-
symmetric matrix. Stable generalized Schur algorithms [32] and look-ahead algo-
rithms were developed in [9, 10]. High-performance look-ahead Schur algorithms
were presented [20].

Many other solvers use the FFT or other trigonometric transforms to convert the
Toeplitz (or even Hankel or Toeplitz-plus-Hankel) matrices into generalized Cauchy
or Vandermonde matrices, which can be done stably in O(N logN) operations. This
is also the approach that we will use in this paper, with the aid of a displacement
structure.

The concept of displacement structure was first introduced in [31]. The Sylvester-
type displacement equation for a matrix Ĉ ∈ RN×N [29] is

(1.3) ΩĈ − ĈΛ = UV,

where Ω, Λ ∈ RN×N , U ∈ RN×α, V ∈ Rα×N , and α ≤ N is the displacement rank
with respect to Ω and Λ if rank(UV) = α. The matrix Ĉ is considered to possess a
displacement structure with respect to Ω and Λ if α � N .

With displacement structures it was shown in [19, 24, 36, 22, 28] that Toeplitz
and Hankel matrices can be transformed into Cauchy-like matrices of the following
form:

Ĉ =

(
uT
i · vj

ηi − λj

)
1≤i,j≤N

(ui, vj ∈ Rα) ,

where we assume that ηi �= λj for 1 ≤ i, j ≤ N . Equivalently, a Cauchy-like matrix is
the unique solution to the displacement equation (1.3) with

Ω = diag(η1, . . . , ηn), Λ = diag(λ1, . . . , λn), U =

⎛⎜⎝ uT
1
...
uT
n

⎞⎟⎠ , and V = (v1, . . . , vn) .

In particular, Ĉ is a Cauchy matrix if uT
i vj = 1 for all i and j. The displacement

rank of Ĉ is at most α.
To solve Toeplitz systems through Cauchy-like matrices, many people have uti-

lized matrix factorizations. Gohberg and Olshevsky [23] presented a fast variation of
the straightforward Gaussian elimination with partial pivoting (GEPP) procedure to
solve a Cauchy-like linear system of equations in O(N2) operations. Among other re-
sults, Gohberg, Kailath, and Olshevsky [22] developed algorithm GKO, an improved
version of Heinig’s algorithm [28], and demonstrated numerically that it is stable.
In their algorithm, the Hankel matrix and the Toeplitz-plus-Hankel matrix are also
transformed via fast trigonometric transforms into Cauchy-like matrices.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SUPERFAST ALGORITHM FOR TOEPLITZ SYSTEMS 1249

Gu presented a modified algorithm in [26] to avoid extra error growth. This
algorithm is numerically stable, provided that the element growth in the computed
factorization is not large. The algorithm takes O(N2) operations and is a fast stable
method.

Superfast algorithms appeared in [34, 4, 6, 17, 35, 1, 2, 21] and many others.
Superfast algorithms use divide-and-conquer strategies. Morf developed the first idea
in [34]. These methods are unstable for nonsymmetric systems as they cannot deal
with nearly singular leading principal submatrices.

Van Barel and Kravanja presented a superfast method for rational interpolation
at roots of unity [39]. A similar idea was then applied to Toeplitz systems [38]. It
provided an explicit formula for the inverse of a Toeplitz matrix. Additional tech-
niques such as iterative refinement and downdating were still required to stabilize
their algorithm.

1.2. Main results. Our new Toeplitz solver is also of the displacement equation
type. Given a Toeplitz linear system, we first use the FFT to transform the associated
Toeplitz matrix into a Cauchy-like matrix. Then instead of using matrix factorizations
which often cost O(N2) or more, we exploit a special low-rank property of Cauchy-like
matrices, that is, every off-diagonal block of a Cauchy-like matrix has a low numerical
rank. Using this low-rank property, we then approximate the Cauchy-like matrix by a
low-rank matrix structure called the sequentially semiseparable (SSS) matrix proposed
by Chandrasekaran et al. [12, 13]. A system with the coefficient matrix in compact SSS
form can be solved with only O(p2N) operations, where N is the matrix dimension,
and p is the complexity of the semiseparable description. The SSS solver is practically
stable in our numerical tests and those in [12, 13].

The SSS structure was developed to capture the low-rank property of the off-
diagonal blocks of a matrix and to maintain stability or practical stability in the
mean time. It is a matrix analog of semiseparable integral kernels in Kailath’s pa-
per [30]. Matrix operations with compact form SSS representations are very efficient,
provided that such compact representations exist or can be easily computed. This
turns out to be true for our case, as the Cauchy-like matrices are transformed from
Toeplitz matrices. We use a recursive compression scheme with a shifting strategy to
construct compact SSS forms for those Cauchy-like matrices. The major work of the
compressions can be precomputed on some Cauchy matrices which are independent
of the actual Toeplitz matrix entries.

The overall algorithm thus has the following stages:
(1) Precompute compressions of off-diagonal blocks of Cauchy matrices.
(2) Transform the Toeplitz matrix into a Cauchy-like matrix in O(N logN)

operations.
(3) Construct a compact SSS representation from precomputed compressions and

solve the Cauchy-like matrix system O(p2N) operations.
(4) Recover the solution of the Toepliz system in O(N logN) operations.
The stages above are either stable or practically stable. Our numerical results

indicate that the overall algorithm is stable in practice. The Toeplitz matrix does not
have to be symmetric or positive definite, and no extra stabilizing step is necessary.
After the precomputations, the total cost for the algorithm is O(N logN) +O(p2N).
This indicates that the entire algorithm is superfast.

We also point out that similar techniques are used in [33], where the low-rank
property is exploited through the block columns without diagonals (called neutered
block columns in [33]), in contrast with the off-diagonal blocks here. The compres-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1250 CHANDRASEKARAN, GU, SUN, XIA, AND ZHU

sions of either the neutered blocks or the off-diagonal blocks both give data-sparse
representations which enable fast factorizations of the Cauchy-like matrices. In fact,
corresponding to neutered block rows or columns, there are also matrix representa-
tions called hierarchically semiseparable (HSS) matrices [14] which are usually more
complicated structures than SSS matrices.

1.3. Overview. We will discuss the displacement structure and the transforma-
tion from a Toeplitz problem to a Cauchy-like problem in section 2. The low-rank
property of this Cauchy-like problem is then exploited. Section 3 then gives a linear
complexity solver using the SSS structure. In section 4, we will present an algorithm
for fast construction of SSS structures. We will then analyze the complexity in sec-
tion 5 and use some numerical experiments to demonstrate the efficiency and the
practical stability. All algorithms have been implemented in Fortran 90. Section 6
draws some conclusions.

2. Displacement structures and low-rank property.

2.1. Cauchy-like systems. Given a Toeplitz system (1.1), we can use a dis-
placement structure to transform it into a Cauchy-like system. Define

Zδ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 δ
1 0 · · · · · · 0

0 1
. . .

...
...

. . .
. . .

...
0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and let Ω = Z1 and Λ = Z−1 in (1.3). Kailath, Kung, and Morf [31] have shown that
every Toeplitz matrix satisfies the displacement equation (1.3) with A · B, having
nonzero entries only in its first row and last column, to be a matrix of rank at most
2. Hence the displacement rank of a Toeplitz matrix is at most 2 with respect to Z1

and Z−1. The following result can be found in [28].
Proposition 2.1. Let Ĉ ∈ RN×N be a matrix satisfying the displacement equa-

tion

(2.1) Z1Ĉ − ĈZ−1 = UV,

where U ∈ Rn×α and V ∈ Rα×n. Then FĈD−1
0 FH is a Cauchy-like matrix satisfying

(2.2) D1(FĈD−1
0 FH) − (FĈD−1

0 FH)D−1 = (FU)
(
V DH

0 FH
)
,

where F =
√

1
N (ω2(k−1)(j−1))1≤k,j≤N is the normalized inverse discrete Fourier trans-

form matrix, ω = e
πi
N , and

D1 = diag(1, ω2, . . . , ω2(N−1)), D−1 = diag(ω, ω3, . . . , ω2N−1),
D0 = diag(1, ω, . . . , ωN−1).

Here α ≤ 2. This proposition suggests that for a Toeplitz matrix T, one can
convert it into the Cauchy-like matrix in (2.2). Therefore the Toeplitz system (1.1)
can be readily transformed into a new system

(2.3) Cx̃ = b̃,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SUPERFAST ALGORITHM FOR TOEPLITZ SYSTEMS 1251

where C has the form

(2.4) C =

(
uT
i vj

ω2i − ω2j+1

)
1≤i,j≤N

(ui, vj ∈ Rα) .

In section 3 we will present a fast solver for (2.3). After obtaining x̃ we will
then recover x with an FFT again. All the stages involving FFT are stable and
cost O(N logN). The solver for (2.3) has a linear complexity and turns out to be
practically stable. Thus the total cost of our algorithm is bounded by O(N logN) +
O(Np2), where p is some parameter that will be described below. This indicates our
method is a superfast one with practical stability.

2.2. Low-rank property of Cauchy-like matrices. In this section, we will
show a low-rank property of C, i.e., every off-diagonal block of C has a low numerical
rank. This property is the basis of the superfast SSS solver in section 3.

First, a simple numerical experiment can give us an idea of the low-rank property
of C. To find out the numerical ranks we can use one of the following tools:

(1) τ -accurate SVD : singular values less than τ are dropped if τ is an absolute
tolerance, or singular values less than τ times the largest singular value are
dropped if τ is a relative tolerance.

(2) τ -accurate QR:

A ≈ QR, A : m× n, Q : m× k, R : k × k, k ≤ l ≡ min(m,n),

which is obtained in the following way. Compute the exact QR factorization
of matrix A = Q̂R̂, where Q̂ is m × l and R̂ is l × n with diagonal entries
satisfying R̂11 ≥ R̂22 ≥ · · · ≥ R̂ll. Then obtain R by dropping all rows of R̂
with diagonal entries less than τ if τ is an absolute tolerance, or with diagonal
entries less than τR̂11 if τ is a relative tolerance. Drop relevant columns of
Q̂ accordingly to obtain Q.

Later, by ranks we mean numerical ranks. Here we take some random Toeplitz
matrices in different sizes. Then we transform them into Cauchy-like matrices C and
compute the numerical ranks of their off-diagonal blocks. For simplicity, we compute
the ranks for blocks C(1 : d, d + 1 : N), C(1 : 2d, 2d + 1 : N), . . ., C(1 : kd, kd + 1 :
N), . . ., where d is a fixed integer, and these blocks are numbered as block numbers
1, 2, . . . , k as shown in Figure 2.1.

Here, k = 8 off-diagonal blocks for each of three N ×N Cauchy-like matrices are
considered. See Table 2.1 for the numerical ranks, where we use the τ -accurate SVD
with τ to be an absolute tolerance.

We can see that the numerical ranks are relatively small as compared to the block
sizes. And when we double the dimension of the matrix, the numerical ranks do not
increase much. This is more significant when a larger τ is used.

Fig. 2.1. Off-diagonal blocks (numbered as 1, 2, 3). Upper triangular part only.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1252 CHANDRASEKARAN, GU, SUN, XIA, AND ZHU

Table 2.1

Off-diagonal numerical ranks of Cauchy-like matrices transformed from some Toeplitz matrices
with absolute tolerance τ = 10−9.

N = 640 N = 1280 N = 2560

Block # Block size Rank Block size Rank Block size Rank
1 80 × 560 37 160 × 1120 44 320 × 2240 52
2 160 × 480 43 320 × 960 50 640 × 1920 57
3 240 × 400 45 480 × 800 53 960 × 1600 60
4 320 × 320 46 640 × 640 53 1280 × 1280 61
5 400 × 240 46 800 × 480 52 1600 × 960 60
6 480 × 160 43 960 × 320 50 1920 × 640 58
7 560 × 80 37 1120 × 160 44 2240 × 320 52

The low-rank property can be verified theoretically in the following way. We first
consider a special case of (2.4) where all uT

i vj = 1. We show that the following Cauchy
matrix has low-rank off-diagonal blocks:

(2.5) C0 =

(
1

ω2i − ω2j+1

)
1≤i,j≤N

The central idea is similar to that in the fast multipole method [25, 8], which im-
plies that with well-separated points (see, e.g., Figure 2.2) an interaction matrix is
numerically low-rank.

Here we introduce two sets of points {λk}Nk=1≡{ω2k}Nk=1 and {ηk}Nk=1≡{ω2k+1}Nk=1

on the unit circle. When we consider an off-diagonal block of C0 as follows:

G =

(
1

λi − ηj

)
1≤i≤p, p+1≤j≤N

we can show G is (numerically) low-rank. In fact G corresponds to two well-separated
sets {λk}pk=1 and {ηj}Nk=p+1; that is, there exists a point c ∈ C such that

(2.6)
|λi − c| > d + e, i = 1, . . . , p,
|ηj − c| < d, j = p + 1, . . . , N,

where d, e are positive constants. Consider the expansion

1

λi − ηj
=

1

λi − c

1

1 − ηj−c
λi−c

=

r∑
k=0

(ηj − c)
k

(λi − c)
k+1

+ O

((
ηj − c

λi − c

)r+1
)

(2.7)

=

r∑
k=0

(ηj − c)
k

(λi − c)
k+1

+ ε,(2.8)

Fig. 2.2. Well-separated sets in the plane.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SUPERFAST ALGORITHM FOR TOEPLITZ SYSTEMS 1253

where r is a number such that the error term |ε| = |O((
ηj−c
λi−c)

r+1)| is bounded by a
given tolerance. We have the estimate∣∣∣∣ηj − c

λi − c

∣∣∣∣r+1

<

(
d

d + e

)r+1

,

which enables us to find an appropriate r according to the tolerance. Thus

G =

(
r∑

k=0

(ηj − c)
k

(λi − c)
k+1

)
1≤i≤p, p+1≤j≤N

+ ε̂

(2.9)

=

⎛⎜⎜⎜⎝
1

λ1−c
1

(λ1−c)2
· · · 1

(λ1−c)r+1

1
λ2−c

1
(λ2−c)2

· · · 1
(λ2−c)r+1

...
... · · ·

...
1

λp−c
1

(λp−c)2
· · · 1

(λp−c)r+1

⎞⎟⎟⎟⎠
⎛⎜⎝

1 1 · · · 1
(ηp+1−c) (ηp+2−c) · · · (ηN−c)

...
... · · ·

...
(ηp+1−c)r (ηp+2−c)r · · · (ηN−c)r

⎞⎟⎠ + ε̂.

Therefore the numerical rank of G is at most r + 1, up to an error ε̂.
Now we can return to the Cauchy-like matrix (2.4). A similar argument shows

that any off-diagonal block of C satisfies

Ĝ≈
(

r∑
k=0

(uT
i vj)

(ηj − c)
k

(λi − c)
k+1

)
1≤i≤p, p+1≤j≤N

=

⎛⎜⎜⎜⎜⎜⎝
uT
1

λ1−c

uT
1

(λ1−c)2
· · · uT

1

(λ1−c)r+1

uT
2

λ2−c

uT
2

(λ2−c)2
· · · uT

2

(λ2−c)r+1

...
... · · ·

...
uT
p

λp−c

uT
p

(λp−c)2
· · · uT

p

(λp−c)r+1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎝

v1 v2 · · · vq
(ηp+1−c) v1 (ηp+2−c) v2 · · · (ηN−c) vN

...
... · · ·

...
(ηp+1−c)rv1 (ηp+2−c)rv2 · · · (ηN−c)rvN

⎞⎟⎠ .

That is, we replace the entries of the two matrix factors in (2.9) with appropriate
vectors. Thus the numerical rank of Ĝ will be no larger than α(r + 1), which will be
relatively small as compared to N .

3. SSS structures and superfast SSS solver.

3.1. SSS representations. To take advantage of the low-rank property of the
Cauchy-like matrix C, we can use SSS structures introduced by Chandrasekaran
et al. [12, 13]. The SSS structure nicely captures the ranks of off-diagonal blocks
of a matrix such as shown in Figure 2.1.

A matrix A ∈ CM×M̃ satisfies the SSS structure if there exist 2n positive integers
m1, . . . ,mn, and m̃1, . . . , m̃n with M = m1 + · · · + mn and M̃ = m̃1 + · · · + m̃n to
block-partition A as A = (Ai,j)k×k , where Aij ∈ C

mi×m̃j satisfies

(3.1) Aij =

⎧⎪⎨⎪⎩
Di if i = j,

UiWi+1 · · ·Wj−1V
H
j if i < j,

PiRi−1 · · ·Rj+1Q
H
j if i > j.

Here the superscript H denotes the Hermitian transpose and empty products are
defined to be identity matrices. The matrices {Ui}n−1

i=1 , {Vi}ni=2, {Wi}n−1
i=2 , {Pi}ni=2,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1254 CHANDRASEKARAN, GU, SUN, XIA, AND ZHU

Table 3.1

Dimensions of matrices in (3.1).

Matrix Ui Vi Wi Pi Qi Ri

Dimensions mi × ki m̃i × ki−1 ki−1 × ki mi × li m̃i × li+1 li+1 × li

{Qi}n−1
i=1 , {Ri}n−1

i=2 , and {Di}ni=1 are called generators for the SSS structure and their
dimensions are defined in Table 3.1.

As an example, the matrix A with n = 4 has the form

(3.2) A =

⎛⎜⎜⎝
D1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4

⎞⎟⎟⎠ .

The SSS representation (3.2) is related to the off-diagonal blocks in Figure 2.1 in
the way that the upper off-diagonal block numbers 1, 2, and 3 are

U1

(
V H

2 W2V
H
3 W2W3V

H
4

)
,

(
U1W2

U2

)(
V H

3 W3V
H
4

)
,

⎛⎝ U1W2W3

U2W3

U3

⎞⎠V H
4 .

Appropriate row and column bases of the off-diagonal blocks are clearly reflected.

The SSS structure depends on the sequences {mi} and {m̃i} and the SSS genera-
tion scheme. If A is a square matrix (M = M̃), then we can have a simpler situation
mi = m̃i, i = 1, . . . , n. SSS matrices are closed under addition, multiplication, inver-
sion, etc., although the sizes of the generators may increase.

While any matrix can be represented in this form for sufficiently large ki’s and
li’s, the column dimensions of Ui’s and Pi’s, respectively, our main focus will be
on SSS matrices which have low-rank off-diagonal blocks and have generators with
ki’s and li’s to be close to those ranks. We say these SSS matrices are compact.
Particularly true for Cauchy-like matrices, they can have compact SSS forms. Using
SSS structures, we can take advantage of the superfast SSS system solver in [12, 13] to
solve the Cauchy-like systems. The solver is efficient when the SSS form is compact,
and is practically stable. The solver shares similar ideas with that for banded plus
semiseparable systems in [11].

Here we briefly describe the main ideas of the solver in [12, 13]. We consider
solving the linear system Ax = b, where A ∈ CN×N satisfies (3.1) and b itself is an
unstructured matrix. The solver computes an implicit ULV H decomposition of A,
where U and V are orthogonal matrices.

Before we present the formal algorithm, we demonstrate the key ideas on a 4× 4
block matrix example.

3.2. SSS solver: 4× 4 example. Let the initial system Ax = b be partitioned
as follows:
(3.3)⎛⎜⎜⎝

D1 U1V
H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4

⎞⎟⎟⎠
⎛⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
b1
b2
b3
b4

⎞⎟⎟⎠−

⎛⎜⎜⎝
0
P2

P3R2

P4R3R2

⎞⎟⎟⎠ ξ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SUPERFAST ALGORITHM FOR TOEPLITZ SYSTEMS 1255

where the dimensions of the generators follow those in Table 3.1 with mi = m̃i and
the vector ξ = 0. The extra zero vector ξ on the right-hand side of (3.3) has been
added for the purpose of a general recursive pattern.

The algorithm has two main stages, compression (or elimination) and merging,
depending on the relationship between ki (li) and mi in the intermediate procedure.

3.2.1. Compression. At the beginning, k1 < m1 because of the low-rank prop-
erty described earlier. We apply a unitary transformation qH1 to U1 so that the first
m1 − k1 rows of U1 become zeros:

(3.4) qH1 U1 =

(
0

Û1

)
m1 − k1

k1
.

Now we multiply qH1 to the first m1 equations of the system

(
qH1 0
0 I

)
Ax =

(
qH1 0
0 I

)
b−

⎛⎜⎜⎝
0
P2

P3R2

P4R3R2

⎞⎟⎟⎠ ξ.

We pick another unitary transformation wH
1 to lower-triangularize qH1 D1, the (1, 1)

diagonal block A, i.e.,

(
qH1 D1

)
wH

1 =

(m1 − k1 k1

m1 − k1 D11 0
k1 D21 D22

)
.

Then system (3.3) becomes

(
qH1 0
0 I

)
A

(
wH

1 0
0 I

)(
w1 0
0 I

)
x =

(
qH1 0
0 I

)
b−

⎛⎜⎜⎝
0
P2

P3R2

P4R3R2

⎞⎟⎟⎠ ξ,

which can be rewritten as⎛⎜⎜⎜⎜⎝
D11 0 0 0 0

D21 D22 Û1V
H
2 Û1W2V

H
3 Û1W2W3V

H
4

P2Q
H
11 P2Q̂

H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
11 P3R2Q̂

H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
11 P4R3R2Q̂

H
1 P4R3Q

H
2 P4Q

H
3 D4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

z1

x̂1

x2

x3

x4

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
β1

γ1

b2
b3
b4

⎞⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎝
0
0
P2

P3R2

P4R3R2

⎞⎟⎟⎟⎟⎠ ξ,

where we have used the partitions

w1x1 =
m1 − k1

k1

(
z1

x̂1

)
, qH1 b1 =

(
m1 − k1 β1

k1 γ1

)
, and w1Q1 =

(
m1 − k1 Q11

k1 Q̂1

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1256 CHANDRASEKARAN, GU, SUN, XIA, AND ZHU

At this point, we can solve for z1 from the system of equations D11z1 = β1. We
also subtract D21z1 from the right-hand side to obtain b̂1 = γ1 −D21z1. Then we can
discard the first m1 − k1 rows and columns of the coefficient matrix of the system to
obtain⎛⎜⎜⎝

D22 Û1V
H
2 Û1W2V

H
3 Û1W2W3V

H
4

P2Q̂
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q̂
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q̂
H
1 P4R3Q

H
2 P4Q

H
3 D4

⎞⎟⎟⎠
⎛⎜⎜⎝
x̂1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
b̂1
b2
b3
b4

⎞⎟⎟⎠−

⎛⎜⎜⎝
0
P2

P3R2

P4R3R2

⎞⎟⎟⎠ ξ̂,

where ξ̂ = ξ + QH
11z1. This new system has a similar structure to the original one

but with smaller dimension. We can continue to solve it by recursion, if further
compressions of the blocks such as (3.4) are possible. Note the actual solution, say,
x1, can be recovered by

x1 = wH
1

(
z1

x̂1

)
.

3.2.2. Merging. During the recursive eliminations there are situations when
ki is no longer smaller than mi and no further compression is possible. We are
then unable to introduce more zeros into the system. Now we proceed by merging
appropriate block rows and columns of the matrix. As an example we can merge the
first two block rows and columns and rewrite the system of equations as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
D1 U1V

H
2

P2Q
H
1 D2

) (
U1W2

U2

)
V H

3

(
U1W2

U2

)
W3V

H
4

P3

(
Q1R

H
2

Q2

)H

D3 U3V
H
4

P4R3

(
Q1R

H
2

Q2

)H

P4Q
H
3 D4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
(

x1

x2

)
x3

x4

⎞⎟⎟⎠

=

⎛⎜⎜⎝
(

b1
b2 − P2ξ̂

)
b3
b4

⎞⎟⎟⎠−

⎛⎜⎜⎝
(

0
0

)
P3

P4R3

⎞⎟⎟⎠ (R2ξ̂).

Hence the system becomes⎛⎝ D̂1 Û1V
H
3 Û1W3V

H
4

P3Q̂
H
1 D3 U3V

H
4

P4R3Q̂
H
1 P4Q

H
3 D4

⎞⎠⎛⎝ x̂1

x3

x4

⎞⎠ =

⎛⎝ b̂1
b3
b4

⎞⎠−

⎛⎝ 0
P3

P4R3

⎞⎠ (ξ̃),

where

D̂1 =

(
D1 U1V

H
2

P2Q
H
1 D2

)
, Û1 =

(
U1W2

U2

)
, Q̂1 =

(
Q1R

H
2

Q2

)
,

x̂1 =

(
x1

x2

)
, b̂1 =

(
b1

b2 − P2τ

)
, ξ̃ = R2ξ̂.

The number of block rows/columns is reduced by one. Further compressions become
possible and we can proceed to solve the system recursively. In the case n = 1, we
have the system D1x1 = b1 − 0ξ, which is solved directly.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SUPERFAST ALGORITHM FOR TOEPLITZ SYSTEMS 1257

3.3. General solve algorithm. We now present a short description of the gen-
eral algorithm. The procedure in the 4 × 4 example can be directly extended to a
general system. We assume that the matrix A is in compact SSS form represented by
the generators {Ui}n−1

i=1 , {Vi}ni=2, {Wi}n−1
i=2 , {Pi}ni=2, {Qi}n−1

i=1 , {Ri}n−1
i=2 , and {Di}ni=1

as in (3.1). We also partition x = (xi) and b = (bj) such that xi and bi have mi rows.
As in the 4 × 4 example, there are two stages at each step of the recursion.

In the compression stage, we perform orthogonal eliminations on both sides of A
to create an (m1 − k1) × (m1 − k1) lower triangular submatrix at the top left corner
of A. Then we solve a small triangular system and obtain the first few components of
the solution vector. At this stage, we are left with a new system with less unknowns;
hence we can carry out a recursion.

In the merging stage, we merge the first two block rows and columns of A while
still maintaining the SSS structure. The numbers of block rows and columns are
reduced by one.

Combining these two stages, we can proceed with recursion to solve the system.
When n = 1 we can solve the linear system directly with standard solvers.

The SSS solver has a complexity O(Np2) [12, 13], where p is the maximum
numerical rank of the off-diagonal blocks of A, as compared to the traditional O(N3)
cost for a general dense N ×N matrix. We use only orthogonal transformations and
a single substitution in the SSS solver. Although a formal proof for the backward
stability is not yet available, the solver is shown to be practically stable. The reader
is referred to [12, 13] for more discussions on the stability.

4. Fast construction of SSS representation for C. According to section 3,
a system in compact SSS form can be solved very efficiently. We can thus use that
algorithm to solve the Cauchy-like system (2.3), provided that C can be quickly
written in SSS form. Therefore we try to find an efficient construction scheme. Here we
provide a divide-and-conquer SSS construction scheme by using the fast merging and
splitting strategy in [13]. If we know further that the matrix has low-rank off-diagonal
blocks and it is easy to compress the off-diagonal blocks, then the construction can
be superfast. Here we will concentrate on this situation as Cauchy-like matrices have
this low-rank property.

We first present a general divide-and-conquer construction algorithm and then
describe a fast shifting strategy to compress the off-diagonal blocks of C.

4.1. General divide-and-conquer construction algorithm. In this section,
we discuss the construction of the SSS structure of a matrix A, when the partition
sequence {mi}ni=1 is given. The general construction methods can be applied to any
unstructured matrix, thus proving that any matrix has an SSS structure. (Of course,
ki and li will usually be large in this case, precluding any speed-ups.) These methods
can be viewed as specific ways to make the realization algorithm of [18] more efficient.

Suppose we are given an N ×N matrix A and a partition sequence {mi}ni=1 with∑n
i=1 mi = N . Starting with an appropriate sequence {m̃1, m̃2}, where

∑k
i=1 mi =

m̃1 and
∑n

i=k+1 mi = m̃2, we can first partition A into a 2× 2 block matrix and then
construct a simple SSS form

(4.1) A =

(m̃1 m̃2

m̃1 D1 B
m̃2 E D2

)
=

(m̃1 m̃2

D1 U1V
H
2

P2Q
H
1 D2

)
,

where

(4.2) B = U1V
H
2 ≡ U1

(
Σ1F

H
1

)
, F = P2Q

H
1 ≡ P2

(
Σ1F

H
1

)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1258 CHANDRASEKARAN, GU, SUN, XIA, AND ZHU

are the low-rank SVDs of the off-diagonal blocks B and E. Note if the compressions
are done by τ -accurate SVD approximations or rank-revealing QR decompositions,
then appropriate “=” signs should be replaced by “≈” signs. We now split either the
(1, 1) block or the (2, 2) block to obtain a 3 × 3 block SSS matrix. For instance, we
can split the (1, 1) block according to an appropriate new sequence {m̂1, m̂2, m̂3} as
follows, where m̂1 + m̂2 = m1, m̂3 = m2:(

Dnew
1 Unew

1 (V new
2)H

Pnew
2 (Qnew

1)H Dnew
2

)
= D1,

(
Unew

1 Wnew
2

Unew
2

)
= U1, (V new

3)H = V H
2 ,

(Rnew
2 (Qnew

1)H(Qnew
2)H) = QH

1 , Pnew
3 = P2, Dnew

3 = D2,

where the new generators (marked by the superscript new) introduced based on (4.1)
can be determined in the following way. First, we partition the matrices for the old
first block conformally with the two new blocks as(

D11
1 D12

1

D21
1 D22

1

)
= D1,

(
U1

1

U2
1

)
= U1, ((Q1

1)
H(Q2

1)
H) = QH

1 .

We can then identify from these and the previous equations that

Dnew
1 = D11

1 , Dnew
2 = D22

1 , Unew
2 = U2

1 , V
new
3 = V2, Q

new
2 = Q2

1, P
new
3 = P2, D

new
3 = D2.

The remaining matrices satisfy

(4.3) (D12
1 U1

1) = Unew
1 ((V new

2)HWnew
2),

(
D21

1

(Q1
1)

H

)
=

(
Pnew

2

Rnew
2

)
(Qnew

1)H .

By factorizing the left-hand side matrices using numerical tools such as the SVD and
rank-revealing QR, these two equations allow us to compute those remaining matrices
for the new blocks.

A is thus in the new form

A =

⎛⎝
m̂1 m̂2 m̂3

m̂1 Dnew
1 Unew

1 (V new
2)H Unew

1 Wnew
2 (V new

3)H

m̂2 Pnew
2 (Qnew

1)H Dnew
2 Unew

2 (V new
3)H

m̂3 Pnew
2 Rnew

2 (Qnew
1)H Pnew

3 (Qnew
2)H Dnew

3

⎞⎠.

We can use similar techniques if we want to split the second row and column
of (4.1).

We can continue this by either splitting the first block row and block column or
the last ones using the above techniques, or splitting any middle block row and block
column similarly. Then we will be able to construct the desired SSS representation
according to the given sequence {mi, i = 1, 2, . . . , n}.

The general construction can be organized with bisection. The major cost is in
compressions of off-diagonal blocks of the form

(4.4) D12
i = XiY

H
i ,

where Xi and Yi are tall and thin, and D12
i is an off-diagonal block of

Di =

(
D11

i D12
i

D21
i D22

i

)
.

The compression (4.4) can be achieved by a τ -accurate QR factorization.
The construction is also practically stable in our implementation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SUPERFAST ALGORITHM FOR TOEPLITZ SYSTEMS 1259

4.2. Compression of off-diagonal blocks. For a general matrix with low-rank
off-diagonal blocks, the SSS construction can cost O(N2p) as a compression such
as (4.2), (4.3), and (4.4) can take O(K2p), where K is the dimension of the block
being compressed. However, for the Cauchy-like matrix C in (2.3) the compressions
can be precomputed.

Theorem 4.1. The compression of the off-diagonal block

(4.5) G =

(
uT
i · vj

λi − ηj

)
1≤i≤p, q≤j≤N

= XY H

of C can be obtained by the compression of the corresponding off-diagonal block

G =

(
1

λi − ηj

)
1≤i≤p, q≤j≤N

= X0Y
H
0

of C0, where the column dimension of X is no larger than twice the size of the column
dimension of X0.

Proof. Assume the off-diagonal block G0 = (1
λi−ηj

)1≤i≤p, q≤j≤N is in compressed

form X0Y
H
0 , and the (i, j) entry is 1

λi−ηj
= Xi,:Y

H
j,: , where Xi,: (Yj,:) denotes the ith

row of X (Y). As α ≤ 2 for simplicity we fix α = 2 in (2.1). Then the corresponding
off-diagonal block in C is

G =

(
uT
i · vj

λi − ηj

)
1≤i≤p, q≤j≤N

=

(
ui1vj1 + ui2vj2

λi − ηj

)
1≤i≤p, q≤j≤N

=
(
(ui1vj1 + ui2vj2)Xi,:Y

H
j,:

)
1≤i≤p, q≤j≤N

=

(
(ui1Xi,: ui2Xi,:)

(
vj1Y

H
j,:

vj2Y
H
j,:

))
1≤i≤p, q≤j≤N

=

⎛⎜⎝u11X1,: u12X1,:

...
...

up1Xi,: up2Xi,:

⎞⎟⎠(
vq1Y

H
q,: · · · vN1Y

H
N,:

vq2Y
H
q,: · · · vN2Y

H
N,:

)
≡ XY H .

That is, we get a compression of G.
Theorem 4.1 indicates that we can convert the compressions of the off-diagonal

blocks of C to be the compressions of those of C0 which is independent of the actual
entries of the Toeplitz matrix T . This means the compressions of off-diagonal blocks
of C0 can be precomputed. The precomputation can be done in O(N2p) flops by a
rank-revealing QR factorization such as in [27]. It is possible to reduce the cost to
O(N logN) due to the fact that the compression of a large off-diagonal block can
be obtained by that of small ones. This can be seen implicitly from the following
subsection.

4.3. Compressions of off-diagonal blocks in precomputation. We further
present a shifting strategy to reduce the cost of the compressions in the precomputa-
tion. The significance of this shifting strategy is to relate the compressions of large
off-diagonal block of C0 to those of small ones. That is, in different splitting stages
of the SSS construction of C, the compressions of off-diagonal blocks with different
sizes can be related.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1260 CHANDRASEKARAN, GU, SUN, XIA, AND ZHU

For simplicity, we look at the example of partitioning C0 into 4×4 blocks. Assume
in the first cut that we can partition C0 into 2× 2 blocks with equal dimensions as in
the following:

C0 =

(
1

ω2i − ω2j+1

)
1≤i, j≤N

=

(
C0;1,1 C0;1,2

C0;2,1 C0;2,2

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
ω2−ω3 · · · 1

ω2−ω4k+1
1

ω2−ω4k+3 · · · 1
ω2−ω2N+1

...
...

... · · ·
...

1
ω4k−ω3 · · · 1

ω4k−ω4k+1
1

ω4k−ω4k+3 · · · 1
ω4k−ω2N+1

C0;2,1 C0;2,2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where k = N
4 , and without loss of generality, we consider only the block upper tri-

angular part. Assume that we have obtained a compression X1Y
H
1 of C0;1,2 such

that

C0 =

(
C0;1,1 X1Y

H
1

C0;2,1 C0;2,2

)
,

where X1 and Y1 are tall and thin and can be computed with τ -accurate SVD or
rank-revealing QR factorization. Next, we split C0;1,1, the (1, 1) block of C0, into
2 × 2 blocks and compress its off-diagonal block. Suppose the resulting off-diagonal
block of C0;1,1 has size k × (N2 − l). We will compress it by shifting certain parts of
X1 and Y1. That is, we partition X1 and Y1 conformally as

X1 =

(
X1,1

X1,2

)
, Y1 =

(
Y1,1

Y1,2

)
,

and also pick a k × (N2 − l) block from the lower left corner of C0;1,2 = X1Y
H
1 (that

is, X1,2Y
H
1,1)

C0 =

(
C0;1,1 X1Y

H
1

C0;2,1 C0;2,2

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ω2−ω2l+3 · · · 1

ω2−ωN+1

..

. · · ·
..
.

1
ω2k−ω2l+3 · · · 1

ω2k−ωN+1

1
ω2k+2−ωN+3 · · · 1

ω2k+2−ω2(N−l)+1

..

. · · ·
..
.

1
ω4k−ωN+3 · · · 1

ωN−ω2(N−l)+1

C0;2,1 C0;2,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎝ X2Y H
2 X1,1Y H

1,1 X1,1Y H
1,2

X1,2Y H
1,1 X1,2Y H

1,2

C0;2,1 C0;2,2

⎞⎟⎠ ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SUPERFAST ALGORITHM FOR TOEPLITZ SYSTEMS 1261

where X2Y
H
2 is an unknown compression of the upper right submatrix of C0;1,1, and

the blocks that don’t concern us are left blank. At this point we do not need another
factorization to get X2Y

H
2 ; instead we can directly derive the compression X2Y

H
2 of

C0;1,1 from X1,2 and Y1,1. Clearly we have

X2Y
H
2 =

⎛⎜⎝
1

ω2−ω2l+3 · · · 1
ω2−ωN+1

... · · ·
...

1
ω2k−ω2l+3 · · · 1

ω2k−ωN+1

⎞⎟⎠ ,

X1,2Y
H
1,1 =

⎛⎜⎝
1

ω2k+2−ωN+3 · · · 1
ω2k+2−ω2(N−l)+1

... · · ·
...

1
ω4k−ωN+3 · · · 1

ωN−ω2(N−l)+1

⎞⎟⎠ = 1
ω2kX2Y

H
2 .

That means we can get X2Y
H
2 by shifting a subblock of X1Y

H
1 . A similar situation

holds for the splitting of the (2, 2) block of C after the first splitting. For the successive
compressions in later splittings, a similar shifting can be used. For splitting with
general block sizes the shifting is also similar.

The shifting scheme indicates that, in different levels of divide-and-conquer SSS
constructions, the compressions of large blocks and small blocks are related. This can
be used to further save the compression cost.

5. Performance and numerical experiments. It is well known that the FFT
transformation of the Toeplitz matrix T to a Cauchy-like matrix C, and the recovery
from the solution x̃ of the Cauchy-like system to the solution x of the Toeplitz system,
are stable. In addition, the fast divide-and-conquer construction and the SSS system
solver in section 3 are both practically stable as we will see in our numerical results.
Thus our overall algorithm is stable in practice. Here no extra steps are needed to
stabilize the algorithm as required in some other superfast methods [38].

After the precomputations discussed in sections 4.2 and 4.3 are finished, the cost
of each SSS construction is only O(Np2), where p is the maximum of the off-diagonal
ranks of the Cauchy matrix C0. The SSS solver also costs O(Np2). The total cost
is thus no more than O(N logN) + O(Np2) flops. The total storage requirement
is O(Np). For the convenience of coding, we use an O(N2p) cost precomputation
routine as discussed in subsection 4.2.

A preliminary implementation of our superfast solver in Fortran 90 is available
at http://www.math.ucla.edu/˜jxia/work/toep. We did experiments on an Itanium 2
1.4 GHz SGI Altix 350 server with a 64-bit Linux operating system and Intel MKL
BLAS. Our method (denoted by NEW) is compared to Gaussian elimination with partial
pivoting (denoted by GEPP) (via the LAPACK linear system solver ZGESV [3]). We
consider real N × N Toeplitz matrices T whose entries are random and uniformly
distributed in [0, 1]. The right-hand sides b are obtained by b = Tx, where the
exact solution x has random entries uniformly distributed in [−1, 1]. Matrices of
size N = 2k × 100, k = 2, 3, . . . , are considered. These matrices are moderately ill-
conditioned. For example, for N = 2k×100 with k = 2, . . . , 7, the one-norm condition
numbers of the matrices increase from the order of about 103 to 106.

For the NEW solver two important parameters are involved, the SSS block size d
(Figure 2.1) and the tolerance τ in the compressions of off-diagonal blocks. Here we
use the τ -accurate QR factorization with τ as a relative tolerance (section 2.2).

Figure 5.1 shows the execution time (in seconds) for GEPP and our NEW solver
with different d and τ . For the NEW solver only the time for solving the Cauchy-like

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1262 CHANDRASEKARAN, GU, SUN, XIA, AND ZHU

2 4 6 8 10 12
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Execution time

k

tim
e

(s
ec

on
ds

)

GEPP

NEW(τ=10−9, d=100)

NEW(τ=10−4, d=50)

Fig. 5.1. Computation time (in seconds) versus N = 2k × 100. For the NEW solver, time for the
precomputation is excluded.

2 4 6 8 10 12
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Precomputation time

k

tim
e

(s
ec

on
ds

)

NEW(τ=10−9, d=100)

NEW(τ=10−4, d=50)

Fig. 5.2. Time (in seconds) for precomputations in the NEW solver.

system (2.3) is reported, as the compressions of off-diagonal blocks can be done in the
precomputation, as described in section 4.3, and the SSS construction time is nearly
the precomputation time. The precomputation time is shown in Figure 5.2, although
the precomputation only needs to be done once for a particular matrix size N .

We also consider the time scaling factor, that is, the factor by which the time is
multiplied when the matrix size doubles; see Figure 5.3. We observe that the time
scaling factors for the NEW solver are near 2, that is to say the NEW solver is close to
being a linear time solver.

Figures 5.4 and 5.5 present the errors ε1 =
||x̂−x||2
||x||2

and ε2 =
||T x̂−b||2

|| |T | |x̂|+|b| ||2
, respec-

tively, where x̂ denotes the numerical solution.

A significant point of the new solver is that we can use a relatively large tolerance
τ in the precomputation and solving, and then use iterative refinement to improve the
accuracy. A relatively large τ leads to relatively small off-diagonal ranks (and thus

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SUPERFAST ALGORITHM FOR TOEPLITZ SYSTEMS 1263

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10
Time scaling factor

k

tim
e

sc
al

in
g

fa
ct

or

GEPP

NEW(τ=10−9, d=100)

NEW(τ=10−4, d=50)

Fig. 5.3. Time scaling factors.

1 2 3 4 5 6 7 8 9 10 11

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

ε
1

k

re
la

tiv
e

er
ro

r

NEW(τ=10−9, d=100)
GEPP

Fig. 5.4. ε1 =
||x̂−x||2
||x||2

versus N = 2k × 100.

1 2 3 4 5 6 7 8 9 10 11

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

ε
2

k

re
la

tiv
e

re
si

du
al

 e
rr

or

NEW(τ=10−9, d=100)
GEPP

Fig. 5.5. ε2 =
||T x̂−b||2

|| |T | |x̂|+|b| ||2
versus N = 2k × 100.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1264 CHANDRASEKARAN, GU, SUN, XIA, AND ZHU

small p in the operation counts above). Iterative refinements are very cheap due to the
facts that no precomputation is needed and the solver itself is very fast (Figure 5.1).
For τ = 10−4 and d = 50 the accuracy results after 2 to 8 steps of iterative refinement
are displayed in Figure 5.6. In fact the number of iterative refinement steps required
to reach ε2 < 10−13 is listed in Table 5.1.

Thus it is also clear that our NEW solver can also perform well as a preconditioner.
The block size d also affects the performance. Figure 5.7 indicates that for a

1 2 3 4 5 6 7 8 9 10
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

ε
2

k

re
la

tiv
e

re
si

du
al

 e
rr

or

initial
2 steps
4 steps
6 steps
8 steps

Fig. 5.6. ε2 =
||T x̂−b||2

|| |T | |x̂|+|b| ||2
, initial values (before iterative refinements), and after some steps

of iterative refinement.

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80
Computation time for NEW solver with different d=2j×25

j

tim
e

(s
ec

on
ds

)

precomputation + solver time
solver time

Fig. 5.7. Computation time of the NEW solver with N = 12800, τ = 10−9, and different block
size d = 2j × 25.

Table 5.1

Number of iterative refinement steps required to reach ε2 < 10−13 for different matrix dimen-
sions N = 2k × 100.

k 2 3 4 5 6 7 8 9
Number of steps 4 4 5 6 7 15 9 21

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SUPERFAST ALGORITHM FOR TOEPLITZ SYSTEMS 1265

given N if d = 2j × 25 is too large or too small, then both the solver time and the
precomputation time can be relatively large. In fact by counting the operations in the
algorithm it is possible to determine an optimal d; see [12] for the derivation of the
optimal choice of d in the SSS solver. We can do similar derivations for both the SSS
construction and the SSS solver. We just point out that when τ gets larger, the off-
diagonal ranks decrease and a smaller d should be chosen. In the previous experiments
we used two sets of parameters: (τ = 10−9, d = 100) and (τ = 10−4, d = 50).

Finally, it turns out that our current preliminary implementation of the solver is
slower than the implementation of the algorithm in [38], likely due to our inefficient
data structure and nonoptimized codes for SSS matrices. The complicated nature
of SSS matrices needs more careful coding and memory management. An improved
software implementation is under construction.

6. Conclusions and future work. In this paper we have presented a super-
fast and practically stable solver for Toeplitz systems of linear equations. A Toeplitz
matrix is first transformed into a Cauchy-like matrix, which has a nice low-rank prop-
erty, and then the Cauchy-like system is solved by a superfast solver. This superfast
solver utilizes this low-rank property and makes use of an SSS representation of the
Cauchy-like matrix. A fast construction procedure for SSS structures is presented.
After a one-time precomputation the solver is very efficient (O(N logN) + O(Np2)
complexity). Also the algorithm is efficient in that only linear storage is required. In
future work we hope to further reduce the precomputation cost and finish a better-
designed version of the current Fortran 90 codes in both the computations and the
coding.

Acknowledgments. Many thanks to the referees for their valuable comments
which have greatly improved the development and presentation of this paper. The
authors are also grateful to the editors and the editorial assistant for their patience
and thoughtful suggestions.

REFERENCES

[1] G. S. Ammar and W. B. Gragg, Superfast solution of real positive definite Toeplitz systems,
SIAM J. Matrix Anal. Appl., 9 (1988), pp. 61–76.

[2] G. S. Ammar and W. B. Gragg, Numerical experience with a superfast real Toeplitz solver,
Linear Algebra Appl., 121 (1989), pp. 185–206.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, 2nd ed., SIAM, Philadelphia, PA, 1994.

[4] R. R. Bitmead and B. D. O. Anderson, Asymptotically fast solution of Toeplitz and related
systems of linear equations, Linear Algebra Appl., 34 (1980), pp. 103–116.

[5] A. W. Bojanczyk, R. P. Brent, F. R. de Hoog, and D. R. Sweet, On the stability of
the Bareiss and related Toeplitz factorization algorithms, SIAM J. Matrix Anal. Appl., 16
(1995), pp. 40–57.

[6] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun, Fast solution of Toeplitz systems of
equations and computation of Padé approximants, J. Algorithms, 1 (1980), pp. 259–295.

[7] J. R. Bunch, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci.
Statist. Comput., 6 (1985), pp. 349–364.

[8] J. Carrier, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm for particle
simulations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669–686.

[9] T. F. Chan and P. C. Hansen, A look-ahead Levinson algorithm for general Toeplitz systems,
IEEE Trans. Signal Process., 40 (1992), pp. 1079–1090.

[10] T. F. Chan and P. C. Hansen, A look-ahead Levinson algorithm for indefinite Toeplitz sys-
tems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 490–506.

[11] S. Chandrasekaran and M. Gu, Fast and stable algorithms for banded plus semiseparable
matrices, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 373–384.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1266 CHANDRASEKARAN, GU, SUN, XIA, AND ZHU

[12] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and

D. White, Fast Stable Solvers for Sequentially Semi-Separable Linear Systems of Equa-
tions and Least Squares Problems, Technical report, University of California, Berkeley,
CA, 2003.

[13] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and

D. White, Some fast algorithms for sequentially semiseparable representations, SIAM J.
Matrix Anal. Appl., 27 (2005), pp. 341–364.

[14] S. Chandrasekaran, M. Gu, and W. Lyons, A Fast and Stable Adaptive Solver for Hierarchi-
cally Semi-Separable Representations, Technical report, UCSB Math 2004-20, University
of California, Santa Barbara, CA, 2004.

[15] G. Cybenko, The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems
of equations, SIAM J. Sci. Statist. Comput., 1 (1980), pp. 303–319.

[16] G. Cybenko, Error Analysis of Some Signal Processing Algorithms, Ph.D. thesis, Princeton
University, Princeton, NJ, 1978.

[17] F. R. deHoog, On the solution of Toeplitz systems, Linear Algebra Appl., 88/89 (1987),
pp. 123–138.

[18] P. Dewilde and A. van der Veen, Time-Varying Systems and Computations, Kluwer
Academic Publishers, Boston, MA, 1998.

[19] M. Fiedler, Hankel and Loewner matrices, Linear Algebra Appl., 58 (1984), pp. 75–95.
[20] K. A. Gallivan, S. Thirumalai, P. Van Dooren, and V. Vermaut, High performance

algorithms for Toeplitz and block Toeplitz matrices, Linear Algebra Appl., 241/243 (1996),
pp. 343–388.

[21] L. Gemignani, Schur complements of Bezoutians and the inversion of block Hankel and block
Toeplitz matrices, Linear Algebra Appl., 253 (1997), pp. 39–59.

[22] I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with partial pivoting
for matrices with displacement structure, Math. Comp., 64 (1995), pp. 1557–1576.

[23] I. Gohberg and V. Olshevsky, Fast state space algorithms for matrix Nehari and Nehari-
Takagi interpolation problems, Integral Equations Operator Theory, 20 (1994), pp. 44–83.

[24] I. Gohberg and V. Olshevsky, Complexity of multiplication with vectors for structured ma-
trices, Linear Algebra Appl., 202 (1994), pp. 163–192.

[25] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325–348.

[26] M. Gu, Stable and efficient algorithms for structured systems of linear equations, SIAM J.
Matrix Anal. Appl., 19 (1998), pp. 279–306.

[27] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[28] G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured matrices,
in Linear Algebra for Signal Processing, IMA Vol. Math. Appl. 69, Springer, New York,
1995, pp. 63–81.

[29] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Oper.
Theory Adv. Appl. 13, Birkhäuser Verlag, Basel, 1984, pp. 109–127.

[30] T. Kailath, Fredholm resolvents, Wiener-Hopf equations, and Riccati differential equations,
IEEE Trans. Inform. Theory, 15 (1969), pp. 665–672.

[31] T. Kailath, S. Kung, and M. Morf, Displacement ranks of matrices and linear equations,
J. Math. Anal. Appl., 68 (1979), pp. 395–407.

[32] T. Kailath and A. H. Sayed, eds., Fast Reliable Algorithms for Matrices with Structure,
SIAM, Philadelphia, 1999.

[33] P. G. Martinsson, V. Rokhlin, and M. Tygert, A fast algorithm for the inversion of general
Toeplitz matrices, Comput. Math. Appl., 50 (2005), pp. 741–752.

[34] M. Morf, Fast Algorithms for Multivariable Systems, Ph.D. thesis, Department of Electrical
Engineering, Stanford University, Stanford, CA, 1974.

[35] B. R. Musicus, Levinson and Fast Choleski Algorithms for Toeplitz and Almost Toeplitz
Matrices, Technical report, Res. Lab. of Electronics, M.I.T., Cambridge, MA, 1984.

[36] V. Pan, On computations with dense structured matrices, Math. Comp., 55 (1990),
pp. 179–190.

[37] D. R. Sweet, The use of pivoting to improve the numerical performance of algorithms for
Toeplitz matrices, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 468–493.

[38] M. Van Barel, G. Heinig, and P. Kravanja, A stabilized superfast solver for nonsymmetric
Toeplitz systems, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 494–510.

[39] M. Van Barel and P. Kravanja, A stabilized superfast solver for indefinite Hankel systems,
Linear Algebra Appl., 284 (1998), pp. 335–355.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1267–1280

STEEPEST DESCENT AND CONJUGATE GRADIENT METHODS
WITH VARIABLE PRECONDITIONING∗

ANDREW V. KNYAZEV† AND ILYA LASHUK†

Abstract. We analyze the conjugate gradient (CG) method with variable preconditioning for
solving a linear system with a real symmetric positive definite (SPD) matrix of coefficients A. We
assume that the preconditioner is SPD on each step, and that the condition number of the precon-
ditioned system matrix is bounded above by a constant independent of the step number. We show
that the CG method with variable preconditioning under this assumption may not give improvement,
compared to the steepest descent (SD) method. We describe the basic theory of CG methods with
variable preconditioning with the emphasis on “worst case” scenarios, and provide complete proofs of
all facts not available in the literature. We give a new elegant geometric proof of the SD convergence
rate bound. Our numerical experiments, comparing the preconditioned SD and CG methods, not
only support and illustrate our theoretical findings, but also reveal two surprising and potentially
practically important effects. First, we analyze variable preconditioning in the form of inner-outer
iterations. In previous such tests, the unpreconditioned CG inner iterations are applied to an artifi-
cial system with some fixed preconditioner as a matrix of coefficients. We test a different scenario,
where the unpreconditioned CG inner iterations solve linear systems with the original system matrix
A. We demonstrate that the CG-SD inner-outer iterations perform as well as the CG-CG inner-outer
iterations in these tests. Second, we compare the CG methods using a two-grid preconditioning with
fixed and randomly chosen coarse grids, and observe that the fixed preconditioner method is twice
as slow as the method with random preconditioning.

Key words. Steepest descent, conjugate gradient, iterative method, inner-outer iterations,
variable preconditioning, random preconditioning, preconditioner, condition number, linear systems,
circular cone, Householder reflection, convergence rate bound, multigrid

AMS subject classification. 65F10

DOI. 10.1137/060675290

1. Introduction. Preconditioning, a transformation, usually implicit, of the
original linear system aiming at accelerating the convergence of the approximations to
the solution, is typically a necessary part of an efficient iterative technique. Modern
preconditioning, e.g., based on so-called algebraic multilevel and domain decomposi-
tion methods, attempts to become as close to a “black box” ideal of direct solvers as
possible. In this attempt, the mathematical structure of the preconditioner, which in
the classical case is regarded as some linear transformation, may become very com-
plex, in particular, the linearity can be easily lost, e.g., if the preconditioning itself
involves “inner” iterative solvers. The fact that the preconditioner may be nonlin-
ear, or variable, i.e., changing from iteration to iteration, may drastically affect the
known theory as well as the practical behavior of preconditioned iterative methods
and therefore needs special attention. Our main result is that the conjugate gradi-
ent (CG) method with variable preconditioning in certain situations may not give
improvement, compared to the steepest descent (SD) method for solving a linear sys-

∗Received by the editors November 17, 2006; accepted for publication (in revised form) by Q. Ye
April 27, 2007; published electronically December 19, 2007. A preliminary version of this paper is
available as a technical report [9, v1–v3].

http://www.siam.org/journals/simax/29-4/67529.html
†Department of Mathematical Sciences, University of Colorado at Denver and Health

Sciences Center, P.O. Box 173364, Campus Box 170, Denver, CO 80217-3364 (Andrew.
Knyazev@cudenver.edu, http://math.cudenver.edu/∼aknyazev/, Ilya.Lashuk@cudenver.edu). The
first authors’ material was based upon work supported by National Science Foundation awards DMS
0208773 and 0612751.

1267

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1268 ANDREW V. KNYAZEV AND ILYA LASHUK

tem with a real symmetric positive definite (SPD) matrix of coefficients. We assume
that the preconditioner is SPD on each step, and that the condition number of the
preconditioned system matrix is bounded above by a constant.

Let us now introduce the notation, so that we can formulate the main result
mathematically. Let A be a real SPD matrix, (x, y) be the standard inner product
of real vectors x and y, so that (Ax, y) = (x,Ay), and let ‖x‖ =

√
(x, x) be the

corresponding vector norm. We also use ‖ · ‖ to denote the operator norm. The A-
inner product and the A-norm are denoted by (x, y)A = (x,Ay) and ‖x‖A =

√
(x, x)A.

We consider a family of iterative methods to obtain a sequence of approximate
solutions xk of a linear system Ax = b and use the A-norm to measure the error
ek = x − xk. The SD and CG methods are well-known iterative procedures that fit
into our framework. To accelerate the convergence of the error ek to zero we introduce
preconditioning, i.e., on every iteration k an operator Bk, called the preconditioner,
possibly different for each iteration k, is applied to the residual rk = b−Axk. A general
algorithm, which includes the preconditioned SD or CG (PSD or PCG, respectively)
methods as particular cases, can be presented as follows, e.g., Axelsson [1, p. 540]
and Axelsson and Vassilevski [3, Algorithm 5.3]: given A, b, {Bk}, {mk}, x0, for
k = 0, 1, . . . : rk = b−Axk, sk = B−1

k rk, and

(1.1) pk = sk −
k−1∑

l=k−mk

(Ask, pl)

(Apl, pl)
pl, xk+1 = xk +

(rk, pk)

(Apk, pk)
pk,

where

(1.2) 0 ≤ mk ≤ k and mk+1 ≤ mk + 1.

The latter condition is highlighted in Notay [11, p. 1447, line 1] and ensures that the
formula for pk in (1.1) performs the standard Gram–Schmidt A-orthogonalizations to
previous search directions, which are already pairwise A-orthogonal. The full orthogo-
nalization that performs explicit A-orthogonalizations to all previous search directions
corresponds to mk = k. Choosing mk = min{k, 1} gives the PCG method, e.g., de-
scribed in Golub and Ye [6, IPCG Algorithm]. The connection of this PCG method
to the commonly used PCG algorithm is discussed in section 7 following Golub and Ye
[6, Remark 2.3]. The shortest recursion mk = 0 leads to the standard PSD method.

It is well known, e.g., D′yakonov [4, p. 34] and Axelsson [1, section 11.1.2, p. 458]
that if the preconditioner is SPD and fixed, Bk = B = B∗ > 0, a preconditioned
method, such as (1.1), using the preconditioner B can be viewed as the corresponding
unpreconditioned method applied to the preconditioned system B−1Ax = B−1b in the
B-based inner product (x, y)B = (x,By). This implies that the theory obtained for
unpreconditioned methods remains valid for preconditioned methods, in particular,
the A-orthogonalization terms with l < k − 1 in the sum in (1.1) vanish in exact
arithmetic, e.g., Axelsson [1, section 11.2.6, Theorem 11.5]. The situation changes
dramatically, however, if different preconditioners Bk are used in the PCG method.

This paper concerns the behavior of method (1.1), where the preconditioner Bk

varies from step to step, but remains SPD on each step and the spectral condition
number κ

(
B−1

k A
)

= λmax

(
B−1

k A
)
/λmin

(
B−1

k A
)

is bounded above by some constant

κmax independent of the step number k. We note that the matrix B−1
k A is SPD

with respect to, e.g., the Bk inner product, so its eigenvalues are real positive. Let
us highlight that our assumption κ

(
B−1

k A
)
≤ κmax can be equivalently written as

‖I −B−1
k A‖Bk

≤ γ with κmax = (1 + γ)/(1 − γ), assuming without loss of generality

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SD AND CG METHODS WITH VARIABLE PRECONDITIONING 1269

that Bk is scaled such that λmax

(
B−1

k A
)
+λmin

(
B−1

k A
)

= 2. Here, we only deal with
methods that are invariant with respect to scaling of Bk.

The main result of this paper is that the preconditioned method (1.1) with (1.2)
turns into the PSD method with the worst possible convergence rate on every iteration,
if the preconditioners Bk satisfying our assumption κ

(
B−1

k A
)
≤ κmax are chosen in

a special way. We explicitly construct a variable preconditioner that slows down the
CG method to the point that the worst linear convergence rate of the SD method is
recovered. Thus one can only guarantee that the convergence rate for the method (1.1)
with (1.2) is just the same as for the PSD method, mk = 0, obtained in Kantorovich
[7] and reproduced, e.g., in Kantorovich and Akilov [8, Chapter XV]:

(1.3)
‖ek+1‖A
‖ek‖A

≤ κmax − 1

κmax + 1
.

Our proof is geometric and based on the simple fact, proved in section 2, that a
nonzero vector multiplied by all SPD matrices with a condition number bounded by
a constant generates a pointed circular cone. We apply this fact on every iteration
to the current residual vector, which becomes the center of the cone, so all points in
the cone correspond to all possible preconditioned residuals. In a somewhat similar
way, [6] use the angle between the exact and the perturbed preconditioned residuals.
In the CG method context, this cone has a nontrivial intersection with the subspace
A-orthogonal to all previous search directions. So on each iteration we can choose
a preconditioner with the a priori chosen quality, determined by κmax, that makes
enforcing A-orthogonality with respect to all previous search directions useless.

Basic properties of method (1.1), most importantly the local optimality, are de-
rived in section 3. In section 4, we apply our results from section 2 about the cone
to obtain a new proof of estimate (1.3). In section 5, we analyze the convergence
of the PCG method with variable preconditioning and prove our main result. We
assume real arithmetic everywhere in the paper, except for section 6, where we show
that our main results also hold for complex Hermitian positive definite matrices. In
section 7, we consider two particular PCG algorithms that are often used in practice
and describe their behavior with variable preconditioning.

Our numerical experiments in section 8 comparing the preconditioned SD and
CG methods support and illustrate our theoretical findings and also reveal some
potentially practical important effects. In subsection 8.1, we test the widely used
modification of the CG method with a simplified formula for the scalar βk from
section 7 and demonstrate that variable preconditioning can make this modification
much slower than even the SD method. In subsection 8.2, we analyze inner-outer
iterations as variable preconditioning. Finally, in subsection 8.3, we demonstrate that
variable preconditioning may surprisingly accelerate the SD and the CG compared to
the use of fixed preconditioning in the same methods.

Different aspects of variable preconditioning are considered, e.g., in Axelsson [1]
and Axelsson and Vassilevski [2, 3], where rather general nonlinear preconditioning is
introduced, and in Golub and Ye [6] and Notay [11], they mainly deal with the case
when the preconditioner on each iteration approximates a fixed operator. In Axels-
son [1], Axelsson and Vassilevski [2], Golub and Ye [6], and Notay [11], convergence
estimates for some iterative methods with variable preconditioning are proved. For
recent results and other aspects of variable preconditioning, see Simoncini and Szyld
[12, 13, 14] and the references therein. No attempts are apparently made in the lit-
erature to obtain a result similar to ours, even though it should appear quite natural
and somewhat expected to experts in the area after reading this paper.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1270 ANDREW V. KNYAZEV AND ILYA LASHUK

2. Pointed circular cones represent sets of SPD matrices with varying
condition numbers. For a pair of real nonzero vectors x and y we define the angle
between x and y in the usual way as

∠(x, y) = arccos

(
(x, y)

‖x‖ ‖y‖

)
∈ [0, π].

The following theorem is inspired by Neymeyr [10, Lemma 2.3].
Theorem 2.1. The set {Cx}, where x is a fixed nonzero real vector and C runs

through all SPD matrices with condition number κ(C) bounded above by some κmax,
is a pointed circular cone, specifically,

{Cx : C = C∗ > 0, κ(C) ≤ κmax} =

{
y : sin∠ (x, y) ≤ κmax − 1

κmax + 1

}
.

Theorem 2.1 can be proved by constructing our cone as the smallest pointed cone
that includes the ball considered in Neymeyr [10, Lemma 2.3]. Preparing for section 6
that deals with the complex case, not covered in Neymeyr [10], we provide a direct
proof here based on the following two lemmas. The first lemma is simple and states
that the set in question cannot be larger than the cone.

Lemma 2.2. Let x be a nonzero real vector and let C be an SPD matrix with
spectral condition number κ (C). Then sin ∠ (x,Cx) ≤ (κ (C) − 1)/(κ (C) + 1).

Proof. Denote y = Cx. We have (x,Cx) =
(
y, C−1y

)
> 0 since C is SPD, so y �= 0

and ∠ (x, y) < π/2. A positive scaling of C and thus of y is obviously irrelevant, so let
us choose y to be the orthogonal projection of x onto the one-dimensional subspace
spanned by the original y. Then from elementary two-dimensional geometry it follows
that ‖y − x‖ = ‖x‖ sin ∠ (x, y). The orthogonal projection of a vector onto a subspace
is the best approximation to the vector from the subspace, thus

‖x‖ sin ∠ (x, y) = ‖y − x‖ ≤ ‖sy − x‖ = ‖sCx− x‖ ≤ ‖sC − I‖ ‖x‖

for any scalar s, where I is the identity. Taking s = 2/ (λmax (C) + λmin (C)) , where
λmin (C) and λmax (C) are the minimal and maximal eigenvalues of C, respectively,
we get ‖sC − I‖ = (κ (C) − 1)/(κ (C) + 1).

The second lemma implies that every point in the cone can be represented as Cx
for some SPD matrix C with κ(C) determined by the opening angle of the cone.

Lemma 2.3. Let x and y be nonzero real vectors, such that ∠ (x, y) ∈
[
0, π

2

)
.

Then there exists an SPD matrix C, such that Cx = y and

κ (C) − 1

κ (C) + 1
= sin∠ (x, y) .

Proof. Denote α = ∠ (x, y). A positive scaling of vector y is irrelevant, so as
in the previous proof we choose y to be the orthogonal projection of x onto the
one-dimensional subspace spanned by the original y, then ‖y − x‖ = (sinα) ‖x‖, so
the vectors y − x and (sinα)x are of the same length. This implies that there ex-
ists a Householder reflection H such that H ((sinα)x) = y − x, cf. Neymeyr [10,
Lemma 2.3], so (I + (sinα)H)x = y. We define C = I + (sinα)H to get Cx = y.
Any Householder reflection is symmetric and has only two distinct eigenvalues ±1,
so C is also symmetric and has only two distinct positive eigenvalues 1 ± sinα, as
α ∈ [0, π/2), and we conclude that C > 0 and κ (C) = (1 + sinα)/(1 − sinα).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SD AND CG METHODS WITH VARIABLE PRECONDITIONING 1271

3. Local optimality of the method with variable preconditioning. Here
we discuss some basic properties of method (1.1) with (1.2). We derive a simple, but
very useful, error propagation identity in Lemma 3.1. We prove in Lemma 3.2 that the
method is well defined and has a certain local A-orthogonality property, formulated
without a proof in Notay [11, formulas (2.1) and (2.2)] and in the important particular
case mk = min{k, 1} proved in Golub and Ye [6, Lemma 2.1]. Using the local A-
orthogonality property of Lemma 3.2, we prove the local A-optimality property in
Lemma 3.3 by generalizing the result of Golub and Ye [6, Proposition 2.2]. Finally,
we derive a trivial Corollary 3.4 from Lemma 3.3, which uses the idea from Golub
and Ye [6, p. 1309] of comparison with the PSD method, mk = 0.

The material of this section is inspired by Golub and Ye [6] and may be known
to experts in the field, e.g., some even more general facts can be found in Axellson [1,
section 12.3.2, Lemma 12.22]. We provide straightforward and complete proofs here
suitable for a general audience.

Lemma 3.1. Let A and {Bk} be SPD matrices. Suppose pk in method (1.1) is
well defined and nonzero. Then

(3.1) ek+1 = ek − (Aek, pk)

(Apk, pk)
pk.

Proof. Recall that ek = A−1b − xk and thus rk = Aek. Then (3.1) follows
immediately from the last formula in (1.1).

Lemma 3.2. Let A and {Bk} be SPD matrices and {mk} satisfies (1.2). Then
the error, the preconditioned residual, and the direction vectors generated by method
(1.1) before the exact solution is obtained are well defined and satisfy

(pi, pj)A = 0, k −mk ≤ i < j ≤ k,(3.2)

(ek+1, sk)A = (ek+1, pi)A = 0, k −mk ≤ i ≤ k.(3.3)

Proof. We first notice that (3.1) for any k obviously implies

(3.4) (ek+1, pk)A = 0.

For the rest of the proof we use an induction in k. Let us take k = 0 and suppose
x0 �= x, then r0 �= 0 and s0 �= 0 since B0 is SPD. By (1.2), m0 = 0 and thus
p0 = s0 �= 0, so in the formula for xk+1 we do not divide by zero, i.e., xk+1 is well
defined. There is nothing to prove in (3.2) for k = 0 since m0 = 0. Formula (3.4)
implies (e1, p0)A = (e1, s0)A = 0, i.e., (3.3) holds for k = 0. This provides the basis
for the induction.

Suppose the statement of the lemma holds for k − 1, which is the induction
hypothesis, i.e., up to the index k − 1 all quantities are well defined and

(pi, pj)A = 0, k − 1 −mk−1 ≤ i < j ≤ k − 1,(3.5)

(ek, sk−1)A = (ek, pi)A = 0, k − 1 −mk−1 ≤ i ≤ k − 1.(3.6)

We now show by contradiction that xk �= x implies pk �= 0. Indeed, if pk = 0.2
then sk is a linear combination of pk−mk

, . . . , pk−1. However, since mk ≤ mk−1 + 1,
it follows from (3.6) that

(3.7) (ek, pi)A = 0, k −mk ≤ i ≤ k − 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1272 ANDREW V. KNYAZEV AND ILYA LASHUK

Then we have (sk, ek)A = 0. At the same time, since the matrix B−1
k A is A-SPD,

sk = B−1
k Aek cannot be A-orthogonal to ek unless sk = ek = 0, i.e., xk = x.

Next, we prove (3.2) by showing that the formula for pk in (1.1) is a valid step
of the Gram–Schmidt orthogonalization process with respect to the A-based inner
product. If mk = 0, then there is nothing to prove. If mk = 1, then (3.2) gets
reduced to (pk, pk−1)A = 0, which follows from the formula for pk in (1.1). If
mk ≥ 2, then condition (1.2) implies that vectors pk−mk

, . . . , pk−1 are among the
vectors pk−1−mk−1

, . . . , pk−1 and therefore are already A-orthogonal by the induction
assumption (3.5). Then the formula for pk in (1.1) is indeed a valid step of the Gram–
Schmidt orthogonalization process with respect to the A-based inner product, so (3.2)
holds.

It remains to prove (3.3). We have already established (3.2), and (3.4)–(3.7).
Equalities (3.2) and (3.7) imply that pk and ek are A-orthogonal to pk−mk

, . . . , pk−1.
Equality (3.1) implies that ek+1 is a linear combination of ek and pk. Thus, we have
(ek+1, pi)A = 0, k−mk ≤ i ≤ k− 1. Finally, it is enough to notice that sk is a linear
combination of pk, pk−1, . . . , pk−mk

, so (ek+1, sk)A = 0.
We now use Lemma 3.2 to prove the local optimality of method (1.1) with (1.2),

which generalizes the statement of Golub and Ye [6, Proposition 2.2].
Lemma 3.3. Under the assumptions of Lemma 3.2,

‖ek+1‖A = min
p∈span{sk,pk−mk

,...,pk−1}
‖ek − p‖A.

Proof. We get ek+1 ∈ ek + span {sk, pk−mk
, . . . , pk−1} from the formula for pk

in (1.1) and (3.1). Putting this together with A-orthogonality relations (3.3) of the
vector ek+1 with all vectors that span the subspace finishes the proof.

Two important corollaries follow immediately from Lemma 3.3 by analogy with
Golub and Ye [6, Proposition 2.2].

Corollary 3.4. The A-norm of the error ‖ek+1‖A in method (1.1) with (1.2)
is bounded above by the A-norm of the error of one step of the PSD method, mk = 0,
using the same xk as the initial guess and Bk as the preconditioner, i.e., specifically,
‖ek+1‖A ≤ minα ‖ek − αsk‖A.

Corollary 3.5. Let mk > 0, then the A-norm of the error ‖ek+1‖A in method
(1.1) with (1.2) for k > 0 satisfies ‖ek+1‖A ≤ minα,β ‖ek − αsk − β(ek − ek−1)‖A.

Proof. Under the lemma assumptions, the formula for pk in (1.1) and (3.1) imply
that ek+1 ∈ ek +span {sk, pk−1} = ek +span {sk, ek − ek−1} , and the A-orthogonality
relations (3.3) turn into (ek+1, sk)A = 0 and (ek+1, pk−1)A = (ek+1, ek − ek−1)A = 0,
so the vector ek+1 is A-orthogonal to both vectors that span the subspace. As in the
proof of Lemma 3.3, the local A-orthogonality implies the local A-optimality.

Corollary 3.4 allows us in section 4 to estimate the convergence rate of method
(1.1) with (1.2) by comparison with the PSD method, mk = 0,—this idea is bor-
rowed from Golub and Ye [6, p. 1309]. The results of Lemma 3.3 and Corollary 3.5
seem to indicate that an improved convergence rate bound of method (1.1) with (1.2)
can be obtained, compared to the PSD method convergence rate bound that follows
from Corollary 3.4. Our original intent has been to combine Corollary 3.5 with con-
vergence rate bounds of the heavy ball method, in order to attempt to prove such
an improved convergence rate bound. However, our results of section 5 demonstrate
that this improvement is impossible under our only assumption κ

(
B−1

k A
)
≤ κmax,

since one can construct such preconditioners Bk which make the minimizing value
of β in Corollary 3.5 be zero, so Corollary 3.5 gives no improvement compared to
Corollary 3.4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SD AND CG METHODS WITH VARIABLE PRECONDITIONING 1273

4. Convergence rate bounds for variable preconditioning. The classi-
cal Kantorovich and Akilov [8, Chapter XV] convergence rate bound (1.3) for the
PSD method is “local” in the sense that it relates the A-norm of the error on two
subsequent iterations and does not depend on previous iterations. Thus, it remains
valid when the preconditioner Bk changes from iteration to iteration, while the con-
dition number κ

(
B−1

k A
)

is bounded above by some constant κmax independent of k.
The goal of this section is to give an apparently new simple proof of the estimate (1.3)
for the PSD method, based on our cone Theorem 2.1, and to extend this statement
to cover the general method (1.1) with (1.2), using Corollary 3.4.

We denote the angle between two real nonzero vectors with respect to the A-based
inner product by

∠A (x, y) = arccos

(
(x, y)A

‖x‖A ‖y‖A

)
∈ [0, π]

and express the error reduction ratio for the PSD method in terms of the angle with
respect to the A-based inner product.

Lemma 4.1. On every step of the PSD algorithm, (1.1) with mk = 0, the error
reduction factor takes the form ‖ek+1‖A/‖ek‖A = sin(∠A(ek, B

−1
k Aek)).

Proof. By (3.3), we have (ek+1, pk)A = 0. Now, for mk = 0, in addition, pk =
sk, so 0 = (ek+1, pk)A = (ek+1, sk)A = (ek+1, xk+1 − xk)A, i.e., the triangle with
vertices x, xk, xk+1 is right-angled in the A-inner product, where the hypotenuse is
ek = x− xk. Therefore, ‖ek+1‖A / ‖ek‖A = sin(∠A(ek, xk+1 − xk)) = sin(∠A(ek, sk)),
where sk = B−1

k (b−Axk) = B−1
k Aek by (1.1).

Let us highlight that Lemma 4.1 provides an exact expression for the error reduc-
tion factor, not just a bound—we need this in the proof of Theorem 5.1 in the next
section. Combining the results of Lemmas 2.2 and 4.1 together immediately leads to
(1.3) for the PSD method, where mk = 0. Finally, taking into account Corollary 3.4,
by analogy with the arguments of Golub and Ye [6, p. 1309] and decrypting a hidden
statement in Golub and Ye [6, Lemma 3.5], we get the following theorem.

Theorem 4.2. Convergence rate bound (1.3) holds for method (1.1) with (1.2).

5. The convergence rate bound is sharp. Here we formulate and prove the
main result of the paper that one can only guarantee the convergence rate described
by (1.3) for method (1.1) with (1.2) with variable preconditioning if one only assumes
κ
(
B−1

k A
)
≤ κmax. Let us remind the reader that (1.3) also describes the convergence

rate for the PSD method, (1.1) with mk = 0. We now show that adding more vectors
to the PSD iterative recurrence results in no improvement in convergence, if a specially
constructed set of variable preconditioners is used.

Theorem 5.1. Let an SPD matrix A, vectors b and x0, and κmax > 1 be given.
Assuming that the matrix size is larger than the number of iterations, one can choose
a sequence of SPD preconditioners Bk, satisfying κ(B−1

k A) ≤ κmax, such that method
(1.1) with (1.2) turns into the PSD method, (1.1) with mk = 0, and on every iteration

(5.1)
‖ek+1‖A
‖ek‖A

=
κmax − 1

κmax + 1
.

Proof. We construct the sequence Bk by induction. First, we choose any vector
q0, such that sin∠A(q0, e0) = (κmax−1)/(κmax +1). According to Lemma 2.3 applied
in the A-inner product, there exists an A-SPD matrix C0 with condition number
κ(C0) = κmax, such that C0e0 = q0. We define the SPD B0 = AC−1

0 , then κ(B−1
0 A) =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1274 ANDREW V. KNYAZEV AND ILYA LASHUK

κ(C0) = κmax. We have sk = B−1
k Aek, so such a choice of B0 implies s0 = q0. Also,

we have p0 = s0, i.e., the first step is always a PSD step; thus, by Lemma 4.1 we have
proved (5.1) for k = 0. Note that (e1, p0)A = 0 by (3.3).

Second, we make the induction assumption: let preconditioners Bl for l ≤ k − 1
be constructed, such that ‖el+1‖A/‖el‖A = (κmax − 1)/(κmax + 1) and (ek, pl)A = 0
hold for all l ≤ k− 1. The dimension of the space is greater than the total number of
iterations by our assumption, so there exists a vector uk, such that (uk, pl)A = 0 for
l ≤ k−1 and uk and ek are linearly independent. Then the two-dimensional subspace
spanned by uk and ek is A-orthogonal to pl for l ≤ k − 1.

Let us consider the boundary of the pointed circular cone made of vectors qk
satisfying the condition sin∠A(qk, ek) = (κmax − 1)/(κmax + 1). This conical surface
has a nontrivial intersection with the 2D subspace spanned by uk and ek, since ek is
the cone axis. Let us choose vector qk in the intersection, This vector will be obviously
A-orthogonal to pl, l ≤ k − 1.

Applying the same reasoning as for constructing B0, we deduce that there exists
an SPD Bk such that κ(B−1

k A) ≤ κmax and B−1
k Aek = qk. With such a choice of Bk

we have sk = qk. Since qk = sk is A-orthogonal to pl for all l ≤ k−1, it turns out that
pk = sk, no matter how {mk} are chosen. This means that xk+1 is obtained from xk

by a steepest descent step. Then we apply Lemma 4.1 and conclude that (5.1) holds.
We note, that (ek+1, pl)A = 0 for all l ≤ k. Indeed, (ek+1, pl)A = 0 for all l ≤ k − 1
since ek+1 is a linear combination of ek and pk = sk = qk, both A-orthogonal to pl
for l ≤ k − 1. Finally, (ek+1, pk)A = 0 by (3.3). This completes the construction of
{Bk} by induction and thus the proof.

Let us highlight that the statement of Theorem 5.1 consists of two parts: first, it
is possible to have the PCG method with variable preconditioning that converges no
faster than the PSD method with the same preconditioning; and second, moreover,
it is possible that the PCG method with variable preconditioning converges no faster
than the worst possible theoretical convergence rate for the PSD method described
by (1.3). Numerical tests in section 8 show that the former possibility is more likely
than the latter. Specifically, we demonstrate numerically in subsection 8.3 that the
PCG and PSD methods with random preconditioning converge with the same speed,
but both are much faster than what bound (1.3) predicts.

6. Complex Hermitian case. In all other sections of this paper we assume for
simplicity that matrices and vectors are real. However, our main results also hold
when matrices A and {Bk} are complex Hermitian positive definite. Here we discuss
modifications to statements and proofs in sections 2, 4, and 5 in order to cover the
complex Hermitian case, assuming the scalar product be linear in its first argument
and conjugate-linear in its second argument, as usual.

In section 2, the first thing to be changed is the definition of the angle between
two nonzero vectors x, y ∈ C

n, where an absolute value is now taken,

∠(x, y) = arccos

∣∣∣∣ (x, y)

‖x‖ ‖y‖

∣∣∣∣ ∈ [
0,

π

2

]
,

that makes the angle acute and invariant with respect to complex nonzero scaling of
the vectors. Lemma 2.2 remains valid in the complex case.

Lemma 6.1. Let x be a nonzero complex vector, and C be a complex Hermitian
positive definite matrix with the spectral condition number κ (C), then sin ∠ (x,Cx) ≤
(κ (C) − 1)/(κ (C) + 1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SD AND CG METHODS WITH VARIABLE PRECONDITIONING 1275

Proof. Denote y = Cx and let γ = (x, y) / ‖y‖2
, then γy is the projection of x onto

span{y}, and ∠ (x, y) = ∠ (x, γy). Moreover, (x, γy) = (x, y)γ̄ = (x, y)(y, x)/ ‖y‖2

is real—we need this fact later in the proof of Lemma 6.2. We redefine y to γy.
The rest of the proof is exactly the same as that of Lemma 2.2, since the identity
‖y − x‖ = ‖x‖ sin ∠ (x, y) , where y is scaled by a complex scalar to be the orthogonal
projection of x onto span{y}, still holds in the complex case with the new definition
of the angle.

Lemma 2.3 and, thus, Theorem 2.1 do not hold in the complex case after the
straightforward reformulation. A trivial counterexample is a pair of vectors x �= 0
and y = ix—the angle between x and y is obviously zero, yet it is impossible that
y = Cx for any complex Hermitian matrix C, since the inner product (x, y) = −i‖x‖2

is not a real number. This counterexample also gives an idea for a simple fix.
Lemma 6.2. Let x and y be nonzero complex vectors, such that ∠ (x, y) �= π/2.

Then there exists a complex Hermitian positive definite matrix C and a complex scalar
γ, such that Cx = γy and (κ (C) − 1)/(κ (C) + 1) = sin∠ (x, y) .

Proof. We first scale the complex vector y as in the proof of Lemma 6.1 to make
y be the projection of x onto span{y}. The rest of the proof is similar to that of
Lemma 2.3, but we have to be careful working with the Householder reflection in the
complex case, so we provide the complete proof.

The redefined y is the projection of x onto span{y}, thus, ‖y − x‖ = (sinα) ‖x‖,
so the vectors u = y−x and v = (sinα)x are of the same length. Moreover, their inner
product (u, v) is real, since (x, y) is real; see the proof of Lemma 6.1. This implies
that the Householder reflection Hz = z − 2(w, z)w, where w = (u− v)/‖u− v‖, acts
on z = u such that Hu = v, i.e., H ((sinα)x) = y − x, so (I + (sinα)H)x = y. We
define C = I + (sinα)H to get Cx = y.

The Householder reflection H is Hermitian and has only two distinct eigenvalues
±1, so C is also Hermitian and has only two distinct positive eigenvalues 1± sinα, as
α ∈ [0, π/2), and we conclude that C > 0 and κ (C) = (1 + sinα)/(1 − sinα).

The same change then makes Theorem 2.1 work in the complex case.
Theorem 6.3. The set {γCx}, where x is a fixed nonzero complex vector, γ

runs through all nonzero complex scalars, and C runs through all complex Hermitian
positive definite matrices with condition number κ(C) bounded above by some κmax,
is a pointed circular cone, specifically,

{γ Cx : γ �= 0, C = C∗ > 0, κ(C) ≤ κmax} =

{
y : sin∠ (x, y) ≤ κmax − 1

κmax + 1

}
.

Section 3 requires no changes other then replacing “SPD” with “Hermitian posi-
tive definite.” In section 4, we just change the definition of the A-angle to

∠A (x, y) = arccos

∣∣∣∣ (x, y)A
‖x‖A ‖y‖A

∣∣∣∣ ∈ [
0,

π

2

]
,

and then Lemma 4.1 holds without any further changes.
Finally, the statement of Theorem 5.1 from section 5 allows for a straightforward

generalization.
Theorem 6.4. Let a Hermitian positive definite matrix A, complex vectors b and

x0, and κmax > 1 be given. Assuming that the matrix size is larger than the number
of iterations, one can choose a sequence of Hermitian positive definite preconditioners
Bk, satisfying κ(B−1

k A) ≤ κmax, such that method (1.1) with (1.2) turns into the PSD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1276 ANDREW V. KNYAZEV AND ILYA LASHUK

method, (1.1) with mk = 0, and on every iteration

(6.1)
‖ek+1‖A
‖ek‖A

=
κmax − 1

κmax + 1
.

Proof. Only a small change in the proof of Theorem 5.1 is needed. We first choose
any vector q′0, satisfying sin∠A(q0, e0) = (κmax − 1)/(κmax + 1). Then by Lemma 6.2
we obtain the complex Hermitian positive definite matrix C0 and the complex scalar
γ such that C0e0 = γq′0. Finally, we choose q0 to be γq′0 and continue as in the proof
of Theorem 5.1. The same modification is made in the choice of the vectors qk for
k ≥ 1 later in the proof.

7. Practical PCG algorithms. In this section we briefly discuss two particular
well-known PCG algorithms that are often used in practice. Our discussion here is
motivated by and follows Golub and Ye [6, Remark 2.3]. Suppose A, b, x0, r0 =
b − Ax0, {Bk} for k = 0, 1, . . . are given, and consider Algorithm 7.1 where βk on
line 7.1 is defined either by expression

(7.1) βk =
(sk, rk)

(sk−1, rk−1)
,

or by expression

(7.2) βk =
(sk, rk − rk−1)

(sk−1, rk−1)
.

Formula (7.1) is more often used in practice compared to (7.2), since it can be imple-
mented in such a way that does not require storing the extra vector rk−1.

Algorithm 7.1

1: for k = 0, 1, . . . do
2: sk = B−1

k rk
3: if k = 0 then
4: p0 = s0

5: else
6: pk = sk+βkpk−1 (where βk is defined by either (7.2) or (7.1) for all iterations)
7: end if

8: αk =
(sk, rk)

(pk, Apk)
9: xk+1 = xk + αkpk

10: rk+1 = rk − αkApk
11: end for

If the preconditioner is SPD and fixed, it is well known, e.g., Golub and Ye [6,
Remark 2.3], that (sk, rk−1) = 0, so formula (7.2) coincides with (7.1) and Algo-
rithm 7.1 is described by (1.1) with mk = min (k, 1). Of course, in this case the
choice mk = min (k, 1) is enough to keep all search directions A-orthogonal in exact
arithmetic.

Things become different when variable preconditioning is used. It is well known,
e.g., Golub and Ye [6, Remark 2.3] and Notay [11, Table 2], that using formula
(7.1) for βk can significantly slow down the convergence, and we provide our own
numerical evidence of that in section 8. At the same time, comparing Lemma 3.2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SD AND CG METHODS WITH VARIABLE PRECONDITIONING 1277

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

Iteration number

A
−

no
rm

 o
f t

he
 e

rr
or

Iterative errors for PCG methods

Algorithm 7.3 with (7.1)
Algorithm 7.3 with (7.2)

Fig. 8.1. Algorithm 7.1 with (7.1) fails to provide the PSD convergence rate.

with Lemma 2.1 from Golub and Ye [6], we can show, see Knyazev and Lashuk [9,
v1], that Algorithm 7.1 with βk defined by (7.2), which is exactly as stated by Golub
and Ye [6, IPCG Algorithm], is equivalent to the particular case of (1.1), namely with
mk = min (k, 1), and therefore is guaranteed by Theorem 4.2 to converge with at least
the same speed as the PSD method.

8. Numerical experiments. We first illustrate the main theoretical results of
the paper numerically for a model problem. We numerically investigate the influence
of the choice for βk between formulas (7.1) and (7.2) in Algorithm 7.1 and observe
that (7.2) leads to the theoretically predicted convergence rate, while (7.1) may sig-
nificantly slow down the convergence. Second, we test the convergence of inner-outer
iteration schemes, where the inner iterations play the role of the variable precondition-
ing in the outer PCG iteration, and we illustrate our main conclusion that variable
preconditioning may effectively reduce the convergence speed of the PCG method to
the speed of the PSD method. Third, and last, we test the PSD and PCG methods
with preconditioners of the same quality chosen randomly. We observe a surprising
acceleration of the PCG method compared to the use of only one fixed preconditioner;
at the same time, we show that the PSD method with random preconditioners works
as well as the PCG method, which explains the PCG acceleration and again supports
our main conclusion.

8.1. Numerical illustration of the main results. Here, we use the standard
3-point approximation of the one-dimensional Laplacian of the size 200 as the matrix
A of the system. To simulate the application of the variable preconditioner, we essen-
tially repeat the steps described in the proof of Theorem 5.1, i.e., we fix the condition
number κ

(
B−1

k A
)

= 2 and on each iteration we generate a pseudorandom vector sk,
which is A-orthogonal to previous search directions and such that the A-angle between
sk and ek satisfies sin (∠A (sk, ek)) = (κ− 1)/(κ + 1).

We summarize the numerical results of this subsection on Figure 8.1, where the
horizontal axis represents the number of iterations and the vertical axis represents
the A-norm of the error. The iteration count actually starts from 1, so the A-norm
of the error on the 0th iteration ‖e0‖A is just the A-norm of the initial error. The
straight dotted (red in the electronic version) line marked with squares on Figure 8.1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1278 ANDREW V. KNYAZEV AND ILYA LASHUK

0 5 10 15 20 25

10
−10

10
0

Iteration number

A
−

no
rm

 o
f t

he
 e

rr
or

PSD
PCG

Fig. 8.2. The PSD and PCG methods with preconditioning by inner CG with different stopping
criteria η = 0.2, 0.4, 0.6, and 0.8 (from the bottom to the top).

represents the PSD theoretical bound (1.3) and at the same time it perfectly coincides,
which illustrates the statements of Theorem 5.1, with the change of the A-norm of the
error in the case where the complete A-orthogonalization is performed, i.e., mk = k
in method (1.1), as well as in the case where Algorithm 7.1 with βk defined by (7.2) is
used. The curved solid (blue) line marked with diamonds represents the convergence
of Algorithm 7.1 with βk defined by (7.1), which visibly performs much worse in this
test compared to Algorithm 7.1 with (7.2). Notay’s paper [11, section 5.2] contains
analogous results comparing the change in the convergence rate using formulas (7.1)
and (7.2), but it misses a comparison with the PSD method. To check our results
of section 6, we repeat the tests in the complex arithmetic. The figure generated is
similar to Figure 8.1, so we do not reproduce it here.

8.2. Inner-outer iterations as variable preconditioning. Inner-outer iter-
ative schemes, where the inner iterations play the role of the variable preconditioner
in the outer PCG iteration is a traditional example of variable preconditioning; see,
e.g., Golub and Ye [6] and Notay [11]. Previously published tests analyze an approx-
imation of some fixed preconditioner, Bk ≈ B, different from A, by inner iterations,
typically using the PCG method. The quality of the approximation is determined
by the stopping criteria of the inner PCG method. A typical conclusion is that the
performance of the outer PCG method improves and starts behaving like the PCG
method with the fixed preconditioner B when Bk approximates B more accurately
by performing more inner iterations.

The idea of our tests in this subsection is different: we approximate Bk ≈ B = A.
The specific setup is the following. We take a diagonal matrix A with all integer
entries from 1 to 2000, with the right-hand side zero and a random normally dis-
tributed zero mean initial guess; we do the same for the PSD and PCG methods. For
preconditioning on the kth step, applied to the residual rk, we run the standard CG
method without preconditioning as inner iterations, using the zero initial approxima-
tion, and for the stopping criteria we compute the norm of the true residual at every
inner iteration and iterate until it gets smaller than η‖rk‖ for a given constant η. On
Figure 8.2, we demonstrate the performance of the PSD and PCG methods for four
values of η = 0.2, 0.4, 0.6, and 0.8 (from the bottom to the top). We observe that the
PSD, displayed using dashed (red in the electronic version) lines marked with circles
and PCG shown as dash-dot (blue) lines with x-marks methods both converge with a
similar rate, for each tested value of η. We notice here that the PSD method is even

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SD AND CG METHODS WITH VARIABLE PRECONDITIONING 1279

0 10 20 30
10

−5

10
0

10
5

Iteration number

A
−

no
rm

 o
f t

he
 e

rr
or

Steepest Descent
Conjugate Gradient
Full Orthogonalization

0 5 10 15 20 25
10

−5

10
0

Iteration number

A
−

no
rm

 o
f t

he
 e

rr
or

Steepest Descent
Conjugate Gradient
Full Orthogonalization

Fig. 8.3. Two-grid preconditioning with fixed (left) and random (left) coarse grids.

a bit faster than the PCG method. This does not contradict our Corollary 3.4, since
the preconditioners Bk here are evidently different in the PSD and PCG methods
even though they are constructed using the same principle.

8.3. Random vs. fixed preconditioning. In this subsection, we numerically
investigate a situation where random preconditioners of a similar quality are used in
the course of iterations. The system matrix is the standard 3-point finite-difference
approximation of the one-dimensional Laplacian using 3000 uniform mesh points and
the Dirichlet boundary conditions. We test the simplest multigrid preconditioning
using two grids, where the number of coarse grid points is 600. We set the inter-
polation to be linear, the restriction to be the transpose of the interpolation, the
coarse-grid operator to be defined by the Galerkin condition, and the smoother to be
the Richardson iteration. On Figure 8.3 (left), we once choose (pseudo-)randomly 600
coarse mesh points and build the fixed two-grid preconditioner, based on this choice.
On Figure 8.3 (right), we choose 600 new random coarse mesh points and rebuild the
two-grid preconditioner on each iteration. We note that in the algebraic multigrid
the geometric information about the actual position of the coarse grid points is not
available, so the random choice of the coarse grids may be an interesting alternative
to traditional approaches.

Figure 8.3 displays the convergence history for the PSD (top), PCG (middle), and
PCG with the full orthogonalization (bottom) with the same random initial guess
using the fixed (left) and variable (right) two-grid preconditioners. On Figure 8.3
(left), for a fixed preconditioner, we observe the expected convergence behavior, with
the PSD being noticeably the slowest and the PCG with the full orthogonalization
being slightly faster than the standard PCG. Figure 8.3 (right) demonstrates that all
three methods with the variable random preconditioner converge with essentially the
same rate, which again illustrates the main result of the paper that the PCG method
with variable preconditioning may just converge with the same speed as the PSD
method.

Figure 8.3 reveals a surprising fact that the methods with random preconditioning
converge twice as fast as the methods with fixed preconditioning! We highlight that
Figure 8.3 shows a typical case, not a random outlier, as we confirm by repeating the
fixed preconditioner test in the left panel for every random preconditioner used in
the right panel of Figure 8.3 and by running the tests multiple times with different
seeds. Our informal explanation for the fast convergence of the PSD method with
random preconditioning is based on Lemma 4.1 that provides the exact expression
for the error reduction factor as sin(∠A(ek, B

−1
k Aek)). It takes its largest value only

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1280 ANDREW V. KNYAZEV AND ILYA LASHUK

if ek is one of specific linear combination of the eigenvectors of B−1
k Ae corresponding

to the two extreme eigenvalues. If Bk is fixed, the error ek in the PSD method after
several first iterations approaches these magic linear combinations, e.g., Forsythe [5],
and the convergence rate reaches its upper bound. If Bk changes randomly, as in our
test, the average “effective” angle is smaller, i.e., the convergence is faster.

Conclusions. We use geometric arguments to investigate the behavior of the
PCG methods with variable preconditioning under a rather weak assumption that
the quality of the preconditioner is fixed. Our main result is negative in its nature:
We show that under this assumption the PCG method with variable preconditioning
may converge as slow as the PSD method, moreover, as the PSD method with the
slowest rate guaranteed by the classical convergence rate bound. In particular, which
gives the negative answer, under our assumption, to the question asked in Golub and
Ye [6, section 6, Conclusion] whether better bounds for the steepest descent reduction
factor may exist for Algorithm 7.1 with (7.2).

Stronger assumptions on variable preconditioning, e.g., such as made in Golub
and Ye [6] and Notay [11] that the variable preconditioners are all small perturbations
of some fixed preconditioner, are necessary in order to hope to prove a convergence
rate bound of the PCG method with variable preconditioning resembling the standard
convergence rate bound of the PCG method with fixed preconditioning. Such stronger
assumptions hold in many presently known real life applications of the PCG methods
with variable preconditioning, but often require extra computational work, e.g., more
inner iterations in the inner-outer iterative methods.

REFERENCES

[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.
[2] O. Axelsson and P. S. Vassilevski, A black box generalized conjugate gradient solver with

inner iterations and variable-step preconditioning, SIAM J. Matrix Anal. Appl., 12 (1991),
pp. 625–644.

[3] O. Axelsson and P. S. Vassilevski, Variable-step multilevel preconditioning methods. I. Self-
adjoint and positive definite elliptic problems, Numer. Linear Algebra Appl., 1 (1994),
pp. 75–101.

[4] E. G. D
′
yakonov, Optimization in Solving Elliptic Problems, CRC Press, Boca Raton, FL,

1996.
[5] G. E. Forsythe, On the asymptotic directions of the s-dimensional optimum gradient method,

Numer. Math., 11 (1968), pp. 57–76.
[6] G. H. Golub and Q. Ye, Inexact preconditioned conjugate gradient method with inner-outer

iteration, SIAM J. Sci. Comput., 21 (1999/00), pp. 1305–1320.
[7] L. V. Kantorovič, On the method of steepest descent, Doklady Akad. Nauk SSSR (N.S.), 56

(1947), pp. 233–236.
[8] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon

Press, New York, 1964.
[9] A. V. Knyazev and I. Lashuk, Steepest Descent and Conjugate Gradient Methods with

Variable Preconditioning, Electronic. math.NA/0605767, arXiv.org, available online at
http://arxiv.org/abs/math/0605767, 2006–2007.

[10] K. Neymeyr, A geometric theory for preconditioned inverse iteration. I. Extrema of the
Rayleigh quotient, Linear Algebra Appl., 322 (2001), pp. 61–85.

[11] Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444–1460.
[12] V. Simoncini and D. B. Szyld, Flexible inner-outer Krylov subspace methods, SIAM J. Numer.

Anal., 40 (2002), pp. 2219–2239.
[13] V. Simoncini and D. B. Szyld, Theory of inexact Krylov subspace methods and applications

to scientific computing, SIAM J. Sci. Comput., 25 (2003), pp. 454–477.
[14] V. Simoncini and D. B. Szyld, On the occurrence of superlinear convergence of exact and

inexact Krylov subspace methods, SIAM Rev., 47 (2005), pp. 247–272.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1281–1296

PAGERANK COMPUTATION, WITH SPECIAL ATTENTION TO
DANGLING NODES∗

ILSE C. F. IPSEN† AND TERESA M. SELEE†

Abstract. We present a simple algorithm for computing the PageRank (stationary distribution)
of the stochastic Google matrix G. The algorithm lumps all dangling nodes into a single node. We
express lumping as a similarity transformation of G and show that the PageRank of the nondangling
nodes can be computed separately from that of the dangling nodes. The algorithm applies the power
method only to the smaller lumped matrix, but the convergence rate is the same as that of the power
method applied to the full matrix G. The efficiency of the algorithm increases as the number of
dangling nodes increases. We also extend the expression for PageRank and the algorithm to more
general Google matrices that have several different dangling node vectors, when it is required to
distinguish among different classes of dangling nodes. We also analyze the effect of the dangling
node vector on the PageRank and show that the PageRank of the dangling nodes depends strongly
on that of the nondangling nodes but not vice versa. Last we present a Jordan decomposition of the
Google matrix for the (theoretical) extreme case when all Web pages are dangling nodes.

Key words. stochastic matrix, stationary distribution, lumping, rank-one matrix, power
method, Jordan decomposition, similarity transformation, Google

AMS subject classifications. 65F10, 65F50, 65C40, 15A06, 15A18, 15A21, 15A51, 68P20

DOI. 10.1137/060664331

1. Introduction. The order in which the search engine Google displays the Web
pages is determined, to a large extent, by the PageRank vector [7, 33]. The PageRank
vector contains, for every Web page, a ranking that reflects the importance of the Web
page. Mathematically, the PageRank vector π is the stationary distribution of the so-
called Google matrix, a sparse stochastic matrix whose dimension exceeds 11.5 billion
[16]. The Google matrix G is a convex combination of two stochastic matrices

G = αS + (1 − α)E, 0 ≤ α < 1,

where the matrix S represents the link structure of the Web, and the primary purpose
of the rank-one matrix E is to force uniqueness for π. In particular, element (i, j) of
S is nonzero if Web page i contains a link pointing to Web page j.

However, not all Web pages contain links to other pages. Image files or pdf files,
and uncrawled or protected pages have no links to other pages. These pages are called
dangling nodes, and their number may exceed the number of nondangling pages [11,
section 2]. The rows in the matrix S corresponding to dangling nodes would be zero
if left untreated. Several ideas have been proposed to deal with the zero rows and
force S to be stochastic [11]. The most popular approach adds artificial links to the
dangling nodes, by replacing zero rows in the matrix with the same vector, w, so that
the matrix S is stochastic.

It is natural as well as efficient to exclude the dangling nodes with their ar-
tificial links from the PageRank computation. This can be done, for instance, by

∗Received by the editors July 5, 2006; accepted for publication (in revised form) by D. Boley May
7, 2007; published electronically December 19, 2007.

http://www.siam.org/journals/simax/29-4/66433.html
†Department of Mathematics, North Carolina State University, P.O. Box 8205, Raleigh, NC

27695-8205 (ipsen@ncsu.edu, tmselee@ncsu.edu, http://www4.ncsu.edu/˜ipsen, http://www4.ncsu.
edu/˜tmselee).

1281

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1282 ILSE C. F. IPSEN AND TERESA M. SELEE

“lumping” all the dangling nodes into a single node [32]. In section 3, we provide
a rigorous justification for lumping the dangling nodes in the Google matrix G, by
expressing lumping as a similarity transformation of G (Theorem 3.1). We show that
the PageRank of the nondangling nodes can be computed separately from that of the
dangling nodes (Theorem 3.2), and we present an efficient algorithm for computing
PageRank by applying the power method only to the much smaller, lumped matrix
(section 3.3). Because the dangling nodes are excluded from most of the computations,
the operation count depends, to a large extent, on only the number of nondangling
nodes, as opposed to the total number of Web pages. The algorithm has the same
convergence rate as the power method applied to G, but is much faster because it
operates on a much smaller matrix. The efficiency of the algorithm increases as the
number of dangling nodes increases.

Many other algorithms have been proposed for computing PageRank, including
classical iterative methods [1, 4, 30], Krylov subspace methods [13, 14], extrapolation
methods [5, 6, 20, 26, 25], and aggregation/disaggregation methods [8, 22, 31]; see
also the survey papers [2, 28] and the book [29]. Our algorithm is faster than the
power method applied to the full Google matrix G, but retains all the advantages of
the power method: It is simple to implement and requires minimal storage. Unlike
Krylov subspace methods, our algorithm exhibits predictable convergence behavior
and is insensitive to changes in the matrix [13]. Moreover, our algorithm should
become more competitive as the Web frontier expands and the number of dangling
nodes increases. The algorithms in [30, 32] are special cases of our algorithm because
our algorithm allows the dangling node and personalization vectors to be different,
and thereby facilitates the implementation of TrustRank [18]. TrustRank is designed
to diminish the harm done by link spamming and was patented by Google in March
2005 [35]. Moreover, our algorithm can be extended to a more general Google matrix
that contains several different dangling node vectors (section 3.4).

In section 4 we examine how the PageRanks of the dangling and nondangling
nodes influence each other, as well as the effect of the dangling node vector w on the
PageRanks of dangling and nondangling nodes. In particular we show (Theorem 4.1)
that the PageRanks of the dangling nodes depend strongly on the PageRanks of the
nondangling nodes but not vice versa. Finally, in section 5, we consider a (theoretical)
extreme case, where the Web consists solely of dangling nodes. We present a Jordan
decomposition for general rank-one matrices (Theorems 5.1 and 5.2) and deduce from
it a Jordan decomposition for a Google matrix of rank one (Corollary 5.3).

2. The ingredients. Let n be the number of Web pages and k the number of
nondangling nodes among the Web pages, 1 ≤ k < n. We model the link structure of
the Web by the n× n matrix

H ≡
[
H11 H12

0 0

]
,

where the k × k matrix H11 represents the links among the nondangling nodes, and
H12 represents the links from nondangling to dangling nodes; see Figure 2.1. The
n− k zero rows in H are associated with the dangling nodes.

The elements in the nonzero rows of H are nonnegative and sum to one,

H11 ≥ 0, H12 ≥ 0, H11e + H12e = e, where e ≡

⎡⎢⎣1
...
1

⎤⎥⎦ ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PAGERANK COMPUTATION 1283

ND DH11
H12

Fig. 2.1. A simple model of the link structure of the Web. The sphere ND represents the set
of nondangling nodes, and D represents the set of dangling nodes. The submatrix H11 represents
all the links from nondangling nodes to nondangling nodes, while the submatrix H12 represents links
from nondangling to dangling nodes.

and the inequalities are to be interpreted elementwise. To obtain a stochastic matrix,
we add artificial links to the dangling nodes. That is, we replace each zero row in H
by the same dangling node vector

w =

[
w1

w2

]
, w ≥ 0, ‖w‖ ≡ wT e = 1.

Here w1 is k× 1, w2 is (n− k)× 1, ‖ · ‖ denotes the one norm (maximal column sum),
and the superscript T denotes the transpose. The resulting matrix

S ≡ H + dwT =

[
H11 H12

ewT
1 ewT

2

]
, where d ≡

[
0
e

]
,

is stochastic, that is, S ≥ 0 and Se = e.

Finally, so as to work with a stochastic matrix that has a unique stationary
distribution, one selects a personalization vector

v =

[
v1

v2

]
, v ≥ 0, ‖v‖ = 1,

where v1 is k × 1 and v2 is (n− k) × 1, and defines the Google matrix as the convex
combination

G ≡ αS + (1 − α)evT , 0 ≤ α < 1.

Although the stochastic matrix G may not be primitive or irreducible, its eigen-
value 1 is distinct and the magnitude of all other eigenvalues is bounded by α [12, 19,
25, 26, 34]. Therefore G has a unique stationary distribution,

πTG = πT , π ≥ 0, ‖π‖ = 1.

The stationary distribution π is called PageRank. Element i of π represents the
PageRank for Web page i.

If we partition the PageRank conformally with G,

π =

[
π1

π2

]
,

then π1 represents the PageRank associated with the nondangling nodes and π2 rep-
resents the PageRank of the dangling nodes.

The identity matrix of order n will be denoted by In ≡ [e1 · · · en], or simply by I.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1284 ILSE C. F. IPSEN AND TERESA M. SELEE

3. Lumping. We show that lumping can be viewed as a similarity transformation
of the Google matrix; we derive an expression for PageRank in terms of the stationary
distribution of the lumped matrix; we present an algorithm for computing PageRank
that is based on lumping; and we extend everything to a Google matrix that has sev-
eral different dangling node vectors, when it is required to distinguish among different
classes of dangling nodes.

It was observed in [32] that the Google matrix represents a lumpable Markov
chain. The concept of lumping was originally introduced for general Markov matrices,
to speed up the computation of the stationary distribution or to obtain bounds [9, 17,
24, 27]. Below we paraphrase lumpability [27, Theorem 6.3.2] in matrix terms: Let
P be a permutation matrix and

PMPT =

⎡⎢⎣ M11 · · · M1,k+1

...
...

Mk+1,1 · · · Mk+1,k+1

⎤⎥⎦
be a partition of a stochastic matrix M . Then M is lumpable with respect to this
partition if each vector Mije is a multiple of the all-ones vector e, i �= j, 1 ≤ i, j ≤ k+1.

The Google matrix G is lumpable if all dangling nodes are lumped into a single
node [32, Proposition 1]. We condense the notation in section 2 and write the Google
matrix as

G =

[
G11 G12

euT
1 euT

2

]
, where u =

[
u1

u2

]
≡ αw + (1 − α)v,(3.1)

G11 is k × k, and G12 is (n− k) × k. Here element (i, j) of G11 corresponds to block
Mij , 1 ≤ i, j ≤ k; row i of G12 corresponds to block Mi,k+1, 1 ≤ i ≤ k; column i of
euT

1 corresponds to Mk+1,i, 1 ≤ i ≤ k; and euT
2 corresponds to Mk+1,k+1.

3.1. Similarity transformation. We show that lumping the dangling nodes in
the Google matrix can be accomplished by a similarity transformation that reduces
G to block upper triangular form.

Theorem 3.1. With the notation in section 2 and the matrix G as partitioned
in (3.1), let

X ≡
[
Ik 0
0 L

]
, where L ≡ In−k − 1

n− k
êeT and ê ≡ e− e1 =

⎡⎢⎢⎢⎣
0
1
...
1

⎤⎥⎥⎥⎦ .

Then

XGX−1 =

[
G(1) ∗

0 0

]
, where G(1) ≡

[
G11 G12e
uT

1 uT
2 e

]
.

The matrix G(1) is stochastic of order k + 1 with the same nonzero eigenvalues as G.

Proof. From

X−1 =

[
Ik 0
0 L−1

]
, L−1 = In−k + êeT ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PAGERANK COMPUTATION 1285

it follows that

XGX−1 =

[
G11 G12(I + êeT)
e1u

T
1 e1u

T
2 (I + êeT)

]
has the same eigenvalues as G. In order to reveal the eigenvalues, we choose a different
partitioning and separate the leading k + 1 rows and columns, and observe that

G12(I + êeT)e1 = G12e, uT
2 (I + êeT)e1 = uT

2 e

to obtain the block triangular matrix

XGX−1 =

[
G(1) ∗

0 0

]
with at least n− k − 1 zero eigenvalues.

3.2. Expression for PageRank. We give an expression for the PageRank π in
terms of the stationary distribution σ of the small matrix G(1).

Theorem 3.2. With the notation in section 2 and the matrix G as partitioned
in (3.1), let

σT

[
G11 G12e
uT

1 uT
2 e

]
= σT , σ ≥ 0, ‖σ‖ = 1

and partition σT =
[
σT

1:k σk+1

]
, where σk+1 is a scalar. Then the PageRank equals

πT =

[
σT

1:k σT

(
G12

uT
2

)]
.

Proof. As in the proof of Theorem 3.1, we write

XGX−1 =

[
G(1) G(2)

0 0

]
,

where

G(2) ≡
[
G12

uT
2

]
(I + êeT)[e2 · · · en−k].

The vector
[
σT σTG(2)

]
is an eigenvector for XGX−1 associated with the eigenvalue

λ = 1. Hence

π̂ ≡
[
σT σTG(2)

]
X

is an eigenvector of G associated with λ = 1 and a multiple of the stationary distri-
bution π of G. Since G(1) has the same nonzero eigenvalues as G, and the dominant
eigenvalue 1 of G is distinct [12, 19, 25, 26, 34], the stationary distribution σ of G(1)

is unique.
Next we express π̂ in terms of quantities in the matrix G. We return to the

original partitioning which separates the leading k elements,

π̂T =
[
σT

1:k

(
σk+1 σTG(2)

)] [Ik 0
0 L

]
.

Multiplying out

π̂T =
[
σT

1:k

(
σk+1 σTG(2)

)
L
]

shows that π̂ has the same leading k elements as σ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1286 ILSE C. F. IPSEN AND TERESA M. SELEE

We now examine the trailing n − k components of π̂T . To this end we partition
the matrix L = In−k − 1

n−k êe and distinguish the first row and column,

L =

[
1 0

− 1
n−ke I − 1

n−kee
T

]
.

Then the eigenvector part associated with the dangling nodes is

zT ≡
[
σk+1 σTG(2)

]
L =

[
σk+1 − 1

n−kσ
TG(2)e σTG(2)

(
I − 1

n−kee
T
)]

.

To remove the terms containing G(2) in z, we simplify

(I + êeT)[e2 · · · en−k]e = (I + êeT)ê = (n− k)ê.

Hence

G(2)e = (n− k)

[
G12

uT
2

]
ê(3.2)

and

1

n− k
σTG(2)e = σT

[
G12

uT
2

]
ê = σT

[
G12

uT
2

]
e− σT

[
G12

uT
2

]
e1

= σk+1 − σT

[
G12

uT
2

]
e1,

where we used ê = e − e1, and the fact that σ is the stationary distribution of G(1),
so

σk+1 = σT

[
G12

uT
2

]
e.

Therefore the leading element of z equals

z1 = σk+1 −
1

n− k
σTG(2)e = σT

[
G12

uT
2

]
e1.

For the remaining elements of z, we use (3.2) to simplify

G(2)

(
I − 1

n− k
eeT

)
= G(2) − 1

n− k
G(2)eeT = G(2) −

[
G12

uT
2

]
êeT .

Replacing

(I + êeT)[e2 · · · en−k] = [e2 · · · en−k] + êeT

in G(2) yields

zT2:n−k = σTG(2)

(
I − 1

n− k
eeT

)
= σT

[
G12

uT
2

]
[e2 · · · en−k].

Therefore the eigenvector part associated with the dangling nodes is

z =
[
z1 zT2:n−k

]
= σT

[
G12

uT
2

]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PAGERANK COMPUTATION 1287

and

π̂ =

[
σT

1:k σT

(
G12

uT
2

)]
.

Since π is unique, as discussed in section 2, we conclude that π̂ = π if π̂T e = 1.
This follows, again, from the fact that σ is the stationary distribution of G(1) and
σT [G12

uT
2

]e = σk+1.

3.3. Algorithm. We present an algorithm, based on Theorem 3.2, for comput-
ing the PageRank π from the stationary distribution σ of the lumped matrix

G(1) ≡
[
G11 G12e
uT

1 uT
2 e

]
.

The input to the algorithm consists of the nonzero elements of the hyperlink matrix
H, the personalization vector v, the dangling node vector w, and the amplification
factor α. The output of the algorithm is an approximation π̂ to the PageRank π,
which is computed from an approximation σ̂ of σ.

Algorithm 3.1.

% Inputs: H, v, w, α Output: π̂
% Power method applied to G(1):
Choose a starting vector σ̂T =

[
σ̂T

1:k σ̂k+1

]
with σ̂ ≥ 0, ‖σ̂‖ = 1.

While not converged

σ̂T
1:k = ασ̂T

1:kH11 + (1 − α)vT1 + ασ̂k+1w
T
1

σ̂k+1 = 1 − σ̂T
1:ke

end while
% Recover PageRank:
π̂T =

[
σ̂T

1:k ασ̂T
1:kH12 + (1 − α)vT2 + ασ̂k+1w

T
2

]
.

Each iteration of the power method applied to G(1) involves a sparse matrix vec-
tor multiply with the k× k matrix H11 as well as several vector operations. Thus the
dangling nodes are excluded from the power method computation. The convergence
rate of the power method applied to G is α [23]. Algorithm 3.1 has the same conver-
gence rate, because G(1) has the same nonzero eigenvalues as G (see Theorem 3.1),
but is much faster because it operates on a smaller matrix whose dimension does not
depend on the number of dangling nodes. The final step in Algorithm 3.1 recovers π
via a single sparse matrix vector multiply with the k× (n− k) matrix H12, as well as
several vector operations.

Algorithm 3.1 is significantly faster than the power method applied to the full
Google matrix G, but it retains all advantages of the power method: It is simple to
implement and requires minimal storage. Unlike Krylov subspace methods, Algorithm
3.1 exhibits predictable convergence behavior and is insensitive to changes in the
matrix [13]. The methods in [30, 32] are special cases of Algorithm 3.1 because they
allow the dangling node vector to be different from the personalization vector, thereby
facilitating the implementation of TrustRank [18]. TrustRank allows zero elements in
the personalization vector v in order to diminish the harm done by link spamming.
Algorithm 3.1 can also be extended to the situation when the Google matrix has
several different dangling node vectors; see section 3.4.

The power method in Algorithm 3.1 corresponds to Stage 1 of the algorithm
in [32]. However, Stage 2 of that algorithm involves the power method on a rank-two
matrix of order n− k+ 1. In contrast, Algorithm 3.1 simply performs a single matrix

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1288 ILSE C. F. IPSEN AND TERESA M. SELEE

vector multiply with the k× (n−k) matrix H12. There is no proof that the two-stage
algorithm in [32] does compute the PageRank.

3.4. Several dangling node vectors. So far we have treated all dangling nodes
in the same way, by assigning them the same dangling node vector w. However, one
dangling node vector may be inadequate for an advanced Web search. For instance,
one may want to distinguish different types of dangling node pages based on their
functions (e.g., text files, image files, videos, etc.); or one may want to personalize a
Web search and assign different vectors to dangling node pages pertaining to different
topics, different languages, or different domains; see the discussion in [32, section 8.2].

To facilitate such a model for an advanced Web search, we extend the single class
of dangling nodes to m ≥ 1 different classes, by assigning a different dangling node
vector wi to each class, 1 ≤ i ≤ m. As a consequence we need to extend lumping to a
more general Google matrix that is obtained by replacing the n− k zero rows in the
hyperlink matrix H by m ≥ 1 possibly different dangling node vectors w1, . . . , wm.
The more general Google matrix is

F ≡

⎛⎜⎜⎜⎝
k k1 . . . km

k F11 F12 · · · F1,m+1

k1 euT
11 euT

12 · · · euT
1,m+1

...
...

...
...

km euT
m1 euT

m2 · · · euT
m,m+1

⎞⎟⎟⎟⎠,

where

ui ≡

⎡⎢⎣ ui1

...
ui,m+1

⎤⎥⎦ ≡ αwi + (1 − α)v.

Let π̃ be the PageRank associated with F ,

π̃TF = π̃T , π̃ ≥ 0, ‖π̃‖ = 1.

We explain our approach for the case when F has two types of dangling nodes,

F =

⎛⎝
k k1 k2

k F11 F12 F13

k1 euT
11 euT

12 euT
13

k2 euT
21 euT

22 euT
23

⎞⎠.

We perform the lumping by a sequence of similarity transformations that starts at the
bottom of the matrix. The first similarity transformation lumps the dangling nodes
represented by u2 and leaves the leading block of order k + k1 unchanged,

X1 ≡
(k + k1 k2

k + k1 I 0
k2 0 L1

)
,

where L1 lumps the k2 trailing rows and columns of F ,

L1 ≡ I − 1

k2
êeT , L−1

1 ≡ I + êeT , ê = e− e1 =

⎡⎢⎢⎢⎣
0
1
...
1

⎤⎥⎥⎥⎦ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PAGERANK COMPUTATION 1289

Applying the similarity transformation to F gives

X1FX−1
1 =

⎛⎜⎜⎝
k k1 1 k2 − 1

k F11 F12 F13e F̃13

k1 euT
11 euT

12 (uT
13e)e eũT

13

1 uT
21 uT

22 uT
23e ũT

23

k2 − 1 0 0 0 0

⎞⎟⎟⎠
with

F̃13 ≡ F13L
−1
1

[
e2 · · · ek2

]
, ũT

j3 ≡ uT
j3L

−1
1

[
e2 · · · ek2

]
, j = 1, 2.

The leading diagonal block of order k + k1 + 1 is a stochastic matrix with the same
nonzero eigenvalues as F . Before applying the second similarity transformation that
lumps the dangling nodes represented by u1, we move the rows with u1 (and corre-
sponding columns) to the bottom of the nonzero matrix, merely to keep the notation
simple. The move is accomplished by the permutation matrix

P1 ≡ [e1 · · · ek ek+k1+1 ek+1 · · · ek+k1
ek+k1+2 · · · en].

The symmetrically permuted matrix

P1X1FX−1
1 PT

1 =

⎡⎢⎢⎣
F11 F13e F12 F̃13

uT
21 uT

23e uT
22 ũT

23

euT
11 (uT

13e)e euT
12 eũT

13

0 0 0 0

⎤⎥⎥⎦
retains a leading diagonal block that is stochastic. Now we repeat the lumping on
dangling nodes represented by u1, by means of the similarity transformation

X2 ≡

⎛⎝
k + 1 k1 k2 − 1

k + 1 I 0 0
k1 0 L2 0
k2 − 1 0 0 I

⎞⎠,

where L2 lumps the trailing k1 nonzero rows,

L2 ≡ I − 1

k1
êeT , L−1

2 ≡ I + êeT .

The similarity transformation produces the lumped matrix

X2P1X1FX−1
1 PT

1 X−1
2 =

⎛⎜⎜⎜⎜⎝

k 1 1 k1 − 1 k2 − 1

k F11 F13e F12e F̃12 F̃13

1 uT
21 uT

23e uT
22e ũT

22 ũT
23

1 uT
11 uT

13e uT
12e ũT

12 ũT
13

k1 − 1 0 0 0 0 0
k2 − 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎠.

Finally, for notational purposes, we restore the original ordering of dangling nodes by
permuting rows and columns k + 1 and k + 2,

P2 ≡ [e1 · · · ek ek+2 ek+1 ek+3 · · · en].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1290 ILSE C. F. IPSEN AND TERESA M. SELEE

The final lumped matrix is

P2X2P1X1FX−1
1 PT

1 X−1
2 PT

2 =

⎡⎢⎢⎣
F11 F12e F13e ∗
uT

11 uT
12e uT

13e ∗
uT

21e uT
22e uT

23e ∗
0 0 0 0

⎤⎥⎥⎦ =

[
F (1) ∗

0 0

]
.

The above discussion for m = 2 illustrates how to extend Theorems 3.1 and 3.2 to
any number m of dangling node vectors.

Theorem 3.3. Define Xi as

⎛⎜⎝
k + (i− 1) +

∑m−i
j=1 kj km−i+1 1 − i +

∑m
j=m−i+2 kj

k + (i− 1) +
∑m−i

j=1 kj I 0 0
km−i+1 0 Li 0
1 − i +

∑m
j=m−i+2 kj 0 0 I

⎞⎟⎠
and

Pi ≡ [e1 · · · ek er+i ek+1 · · · er+i−1 er+i+1 · · · en], r = k +

m−i∑
j=1

kj .

Then

PmXmPm−1Xm−1 · · ·P1X1FX−1
1 PT

1 · · ·X−1
m PT

m =

[
F (1) ∗

0 0

]
,

where the lumped matrix

F (1) ≡

⎡⎢⎢⎢⎣
F11 F12e · · · F1,m+1e
uT

11 uT
12e · · · uT

1,m+1e
...

...
...

uT
m1 uT

m2e · · · uT
m,m+1e

⎤⎥⎥⎥⎦
is stochastic of order k + m with the same nonzero eigenvalues as F .

Theorem 3.4. Let ρ be the stationary distribution of the lumped matrix

(3.3) F (1) ≡

⎡⎢⎢⎢⎣
F11 F12e · · · F1,m+1e
uT

11 uT
12e · · · uT

1,m+1e
...

...
...

uT
m1 uT

m2e · · · uT
m,m+1e

⎤⎥⎥⎥⎦ ;

that is,

ρTF (1) = ρT , ρ ≥ 0, ‖ρ‖ = 1.

With the partition ρT =
[
ρT1:k ρTk+1:k+m

]
, where ρk+1:k+m is m × 1, the PageRank

of F equals

π̃T =

⎡⎢⎢⎢⎣ ρT1:k ρT

⎛⎜⎜⎜⎝
F12 · · · F1,m+1

uT
12 · · · uT

1,m+1
...

...
uT
m2 · · · uT

m,m+1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PAGERANK COMPUTATION 1291

4. PageRanks of dangling versus nondangling nodes. We examine how
the PageRanks of dangling and nondangling nodes influence each other, as well as the
effect of the dangling node vector on the PageRanks.

From Theorem 3.2 and Algorithm 3.1, we see that the PageRank π1 of the
nondangling nodes can be computed separately from the PageRank π2 of the dangling
nodes, and that π2 depends directly on π1. The expressions below make this even
clearer.

Theorem 4.1. With the notation in section 2,

πT
1 =

(
(1 − α)vT1 + ρwT

1

)
(I − αH11)

−1,

πT
2 = απT

1 H12 + (1 − α)vT2 + α(1 − ‖π1‖)wT
2 ,

where

ρ ≡ α
1 − (1 − α)vT1 (I − αH11)

−1e

1 + αwT
1 (I − αH11)−1e

≥ 0.

Proof. Rather than using Theorem 3.2 we found it easier just to start from scratch.
From G = α(H + dwT)+ (1−α)vT and the fact that πT e = 1, it follows that π is the
solution to the linear system

πT = (1 − α)vT
(
I − αH − αdwT

)−1
,

whose coefficient matrix is a strictly row diagonally dominant M-matrix [1, equa-
tion (5)], [4, equation (2), Proposition 2.4]. Since R ≡ I − αH is also an M-
matrix, it is nonsingular, and the elements of R−1 are nonnegative [3, section 6].
The Sherman–Morrison formula [15, section 2.1.3] implies that

(
R− αdwT

)−1
= R−1 +

αR−1dwTR−1

1 − αwTR−1d
.

Substituting this into the expression for π gives

(4.1) πT = (1 − α)vTR−1 +
α(1 − α)vTR−1d

1 − αwTR−1d
wTR−1.

We now show that the denominator 1 − αwTR−1d > 0. Using the partition

R−1 = (I − αH)
−1

=

[
(I − αH11)

−1
α (I − αH11)

−1
H12

0 I

]
yields

(4.2) 1 − αwTR−1d = 1 − α
(
αwT

1 (I − αH11)
−1

H12e + wT
2 e

)
.

Rewrite the term involving H12 by observing that H11e+H12e = e and that I−αH11

is an M-matrix, so

(4.3) 0 ≤ α (I − αH11)
−1

H12e = e− (1 − α) (I − αH11)
−1

e.

Substituting this into (4.2) and using 1 = wT e = wT
1 e+wT

2 e shows that the denomi-
nator in the Sherman–Morrison formula is positive,

1 − αwTR−1d = (1 − α)
(
1 + αwT

1 (I − αH11)
−1

e
)
> 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1292 ILSE C. F. IPSEN AND TERESA M. SELEE

Furthermore, 0 ≤ α < 1 implies 1 − αwTR−1d > 1 − α.
Substituting the simplified denominator into the expression (4.1) for π yields

(4.4) πT = (1 − α)vTR−1 + α
vTR−1d

1 + αwT
1 (I − αH11)−1e

wTR−1.

We obtain for π1

πT
1 =

(
(1 − α)vT1 + α

vTR−1d

1 + αwT
1 (I − αH11)−1e

wT
1

)
(I − αH11)

−1.

Combining the partitioning of R−1, (4.3), and vT1 e + vT2 e = 1 gives

0 ≤ vTR−1d =
[
vT1 vT2

] [(I − αH11)
−1

α (I − αH11)
−1

H12

0 I

] [
0
e

]
= αvT1 (I − αH11)

−1H12e + vT2 e

= 1 − (1 − α)vT1 (I − αH11)
−1e.

Hence πT
1 =

(
(1 − α)vT1 + ρwT

1

)
(I − αH11)

−1 with ρ > 0.
To obtain the expression for π2, observe that the second block element in

πT (I − αH − αdwT) = (1 − α)vT

equals

−απT
1 H12 + πT

2 − απT
2 ew

T
2 = (1 − α)vT2 .

The result follows from πT
1 e + πT

2 e = 1.

v1 v2

H12

w2H11

w1

Fig. 4.1. Sources of PageRank. Nondangling nodes receive their PageRank from v1 and w1,
distributed through the links H11. In contrast, the PageRank of the dangling nodes comes from v2,
w2, and the PageRank of the nondangling nodes through the links H12.

Remark 4.1. We draw the following conclusions from Theorem 4.1 with regard
to how dangling and nondangling nodes accumulate PageRank; see Figure 4.1.

• The PageRank π1 of the nondangling nodes does not depend on the connec-
tivity among the dangling nodes (elements of w2), the personalization vector
for the dangling nodes (elements of v2), or the links from nondangling to
dangling nodes (elements of H12).
To be specific, π1 does not depend on individual elements of w2, v2, and
H12. Rather, the dependence is on the norms, through ‖v2‖ = 1 − ‖v1‖,
‖w2‖ = 1 − ‖w1‖, and H12e = e−H11e.

• The PageRank π1 of the nondangling nodes does not depend on the PageRank
π2 of the dangling nodes or their number, because π1 can be computed with-
out knowledge of π2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PAGERANK COMPUTATION 1293

• The nondangling nodes receive their PageRank π1 from their personalization
vector v1 and the dangling node vector w1, both of which are distributed
through the links H11.

• The dangling nodes receive their PageRank π2 from three sources: the
associated part v2 of the personalization vector; the associated part w2 of
the dangling node vector; and the PageRank π1 of the nondangling nodes
filtered through the connecting links H12.
The links H12 determine how much PageRank flows from nondangling to
dangling nodes.

• The influence of the associated dangling node vector w2 on the PageRank
π2 of the dangling nodes diminishes as the combined PageRank ‖π1‖ of the
nondangling nodes increases.

Taking norms in Theorem 4.1 gives a bound on the combined PageRank of the
nondangling nodes. As in section 2, the norm is ‖z‖ ≡ zT e for z ≥ 0.

Corollary 4.2. With the assumptions of Theorem 4.1,

‖π1‖ =
(1 − α)‖v1‖H + α‖w1‖H

1 + α‖w1‖H
,

where ‖z‖H ≡ zT (I − αH11)
−1e for any z ≥ 0 and

(1 − α)‖z‖ ≤ ‖z‖H ≤ 1

1 − α
‖z‖.

Proof. Since (I − αH11)
−1 is nonsingular with nonnegative elements, ‖ · ‖H is a

norm. Let ‖·‖∞ be the infinity norm (maximal row sum). Then the Hölder inequality
[15, section 2.2.2] implies for any z ≥ 0,

‖z‖H ≤ ‖z‖ ‖(I − αH11)
−1‖∞ ≤ 1

1 − α
‖z‖.

As for the lower bound,

‖z‖H ≥ ‖z‖ − αzTH11e ≥ (1 − α)‖z‖.

v1 v2

H12

w2H11

Fig. 4.2. Sources of PageRank when w1 = 0. The nondangling nodes receive their PageRank
only from v1. The dangling nodes, in contrast, receive their PageRank from v2 and w2, as well as
from the PageRank of the nondangling nodes filtered through the links H12.

Corollary 4.2 implies that the combined PageRank ‖π1‖ of the nondangling nodes
is an increasing function of ‖w1‖. In particular, when w1 = 0, the combined PageRank
‖π1‖ is minimal among all w and the dangling vector w2 has a stronger influence on
the PageRank π2 of the dangling nodes. The dangling nodes act like a sink and
absorb more PageRank because there are no links back to the nondangling nodes; see
Figure 4.2. When w1 = 0 we get

πT
1 = (1 − α)vT1 (I − αH11)

−1,(4.5)

πT
2 = απT

1 H12 + (1 − α)vT2 + α(1 − ‖π1‖)wT
2 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1294 ILSE C. F. IPSEN AND TERESA M. SELEE

In the other extreme case when w2 = 0, the dangling nodes are not connected to
each other; see Figure 4.3:

πT
1 =

(
(1 − α)vT1 + ρwT

1

)
(I − αH11)

−1,(4.6)

πT
2 = απT

1 H12 + (1 − α)vT2 .

In this case the PageRank π1 of the nondangling nodes has only a positive influence
on the PageRank of the dangling nodes.

v1 v2

H12

H11

w1

Fig. 4.3. Sources of PageRank when w2 = 0. The dangling nodes receive their PageRank only
from v2, and from the PageRank of the nondangling nodes filtered through the links H12.

An expression for π when dangling node and personalization vectors are the same,
i.e., w = v, was given in [10],

πT = (1 − α)

(
1 +

αvTR−1d

1 − αvTR−1d

)
vTR−1, where R ≡ I − αH.

In this case the PageRank vector π is a multiple of the vector vT (I − αH)−1.

5. Only dangling nodes. We examine the (theoretical) extreme case when all
Web pages are dangling nodes. In this case the matrices S and G have rank one.
We first derive a Jordan decomposition for general matrices of rank one, before we
present a Jordan form for a Google matrix of rank one.

We start with rank-one matrices that are diagonalizable. The vector ej denotes
the jth column of the identity matrix I.

Theorem 5.1 (eigenvalue decomposition). Let A = yzT �= 0 be a real square
matrix with λ ≡ zT y �= 0. If z has an element zj �= 0, then X−1AX = λ eje

T
j , where

X ≡ I + yeTj − 1

zj
ejz

T , X−1 = I − eje
T
j − 1

λ
yzT +

1 + yj
λ

ejz
T .

Proof. The matrix A has a repeated eigenvalue zero and a distinct nonzero eigen-
value λ with right eigenvector y and left eigenvector z. From λyeTj = AX = λXeje

T
j

and X−1A = ejz
T it follows that X−1X = I and X−1AX = λeje

T
j .

Now we consider rank-one matrices that are not diagonalizable. In this case all
eigenvalues are zero, and the matrix has a Jordan block of order two.

Theorem 5.2 (Jordan decomposition). Let A = yzT �= 0 be a real square matrix
with zT y = 0. Then y and z have elements yjzj �= 0 �= ykzk, j < k. Define a
symmetric permutation matrix P so that Pek = ej+1 and Pej = ej. Set ŷ ≡ Py and
û ≡ Pz − ej+1. Then X−1AX = eje

T
j+1 with

X ≡ P

(
I + ŷeTj − 1

ûj
ej û

T

)
, X−1 =

(
I − eje

T
j +

1

ŷk
ŷûT − 1 + ŷj

ŷk
ej û

T

)
P.

Proof. To satisfy zT y = 0 for y �= 0 and z �= 0, we must have yjzj �= 0 and
ykzk �= 0 for some j < k.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PAGERANK COMPUTATION 1295

Since A is a rank-one matrix with all eigenvalues equal to zero, it must have a
Jordan block of the form [00

1
0]. To reveal this Jordan block, set ẑ ≡ Pz,

X̂ ≡
(
I + ŷeTj − 1

ûj
ej û

T

)
, X̂−1 =

(
I − eje

T
j +

1

ŷk
ŷûT − 1 + ŷj

ŷk
ej û

T

)
.

Then the matrix Â ≡ ŷẑT has a Jordan decomposition X̂−1ÂX̂ = eje
T
j+1. This

follows from uj = zj , ŷe
T
j+1 = ÂX̂ = X̂eje

T
j+1, and X̂−1Â = ej ẑ

T .

Finally, we undo the permutation by means of X ≡ PX̂, X−1 = X̂−1P , so that
X−1X = I and X−1AX = eje

T
j+1.

Theorems 5.1 and 5.2 can also be derived from [21, Theorem 1.4].
In the (theoretical) extreme case when all Web pages are dangling nodes, the

Google matrix is diagonalizable of rank one.
Corollary 5.3 (rank-one Google matrix). With the notation in section 2 and

(3.1), let G = euT . Let uj �= 0 be a nonzero element of u. Then X−1GX = eje
T
j with

X = I + eeTj − 1

vj
eju

T

and

X−1 = I − eje
T
j − euT + 2eju

T .

In particular, πT = eTj X
−1 = uT .

Proof. Since 1 = uT e �= 0, the Google matrix is diagonalizable, and the expression
in Theorem 5.1 applies.

Corollary 5.3 can also be derived from [34, Theorems 2.1, 2.3].

REFERENCES

[1] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin, PageRank computation and the structure
of the web: Experiments and algorithms, in Proceedings of the Eleventh International
World Wide Web Conference (WWW2002), ACM Press, New York, 2002. Available online
at http://www2002.org/CDROM/poster/173.pdf.

[2] P. Berkhin, A survey on PageRank computing, Internet Math., 2 (2005), pp. 73–120.
[3] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics

Appl. Math. 9, SIAM, Philadelphia, 1994.
[4] M. Bianchini, M. Gori, and F. Scarselli, Inside PageRank, ACM Transactions on Internet

Technology, 5 (2005), pp. 92–128.
[5] C. Brezinski and M. Redivo-Zaglia, The PageRank vector: Properties, computation,

approximation, and acceleration, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 551–575.
[6] C. Brezinski, M. Redivo-Zaglia, and S. Serra-Capizzano, Extrapolation methods for

PageRank computations, C. R. Math. Acad. Sci. Paris, 340 (2005), pp. 393–397.
[7] S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine, Comput.

Networks and ISDN Systems, 30 (1998), pp. 107–117.
[8] A. Z. Broder, R. Lempel, F. Maghoul, and J. Pedersen, Efficient PageRank approximation

via graph aggregation, in Proceedings of the Thirteenth International World Wide Web
Conference (WWW2004), ACM Press, New York, 2004, pp. 484–485.

[9] T. Dayar and W. J. Stewart, Quasi lumpability, lower-bounding coupling matrices, and
nearly completely decomposable Markov chains, SIAM J. Matrix Anal. Appl., 18 (1997),
pp. 482–498.

[10] G. M. Del Corso, A. Gulĺı, and F. Romani, Fast PageRank computation via a sparse
linear system, Internet Math., 2 (2005), pp. 251–273. Available online at http://www.
internetmathematics.org/volumes/2/3/DelCorso.pdf.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1296 ILSE C. F. IPSEN AND TERESA M. SELEE

[11] N. Eiron, K. S. McCurley, and J. A. Tomlin, Ranking the web frontier, in Proceedings of
the Thirteenth International World Wide Web Conference (WWW2004), ACM Press, New
York, 2004, pp. 309–318.

[12] L. Eldén, The Eigenvalues of the Google Matrix, Technical report LiTH-MAT-R-04-01,
Department of Mathematics, Linköping University, Linköping, Sweden, 2004.

[13] D. Gleich, L. Zhukov, and P. Berkhin, Fast parallel PageRank: A Linear System Approach,
Technical report, Yahoo!, Sunnyvale, CA, 2004.

[14] G. H. Golub and C. Greif, An Arnoldi-type algorithm for computing PageRank, BIT, 46
(2006), pp. 759–771.

[15] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, 1996.

[16] A. Gulli and A. Signorini, The indexable web is more than 11.5 billion pages, in Proceedings
of the Fourteenth International World Wide Web Conference (WWW2005), ACM Press,
New York, 2005, pp. 902–903.

[17] L. Gurvits and J. Ledoux, Markov property for a function of a Markov chain: A linear
algebra approach, Linear Algebra Appl., 404 (2005), pp. 85–117.

[18] Z. Gyöngyi, H. Garcia-Molina, and P. J., Combating web spam with TrustRank, in Pro-
ceedings of the Thirtieth VLDB Conference, ACM Press, New York, 2004, pp. 576–587.

[19] T. H. Haveliwala and S. D. Kamvar, The Second Eigenvalue of the Google Matrix, Technical
report, Computer Science Department, Stanford University, Palo Alto, CA, 2003.

[20] T. H. Haveliwala, S. D. Kamvar, D. Klein, C. D. Manning, and G. H. Golub, Computing
PageRank Using Power Extrapolation, Technical report 2003-45, Stanford University, Palo
Alto, CA, 2003. Available online at http://dbpubs.stanford.edu/pub/2003-45.

[21] R. A. Horn and S. Serra-Capizzano, A general setting for the parametric Google matrix,
Internet Math., to appear.

[22] I. C. F. Ipsen and S. Kirkland, Convergence analysis of a PageRank updating algorithm by
Langville and Meyer, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 952–967.

[23] I. C. F. Ipsen and R. S. Wills, Mathematical properties and analysis of Google’s PageRank,
Bol. Soc. Esp. Mat. Apl., 34 (2006), pp. 191–196.

[24] R. W. Jernigan and R. H. Baran, Testing lumpability in Markov chains, Statist. Probab.
Lett., 64 (2003), pp. 17–23.

[25] S. D. Kamvar, T. H. Haveliwala, and G. H. Golub, Adaptive methods for the computation
of PageRank, Linear Algebra Appl., 386 (2004), pp. 51–65.

[26] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub, Extrapolation methods
for accelerating PageRank computations, in Proceedings of the Twelfth International World
Wide Web Conference (WWW2003), Toronto, ACM Press, New York, 2003, pp. 261–270.

[27] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Van Nostrand Co., Princeton, NJ,
1960.

[28] A. N. Langville and C. D. Meyer, Deeper inside PageRank, Internet Math., 1
(2004), pp. 335–380. Available online at http://www.internetmathematics.org/volumes/
1/3/Langville.pdf.

[29] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond: The Science of Search
Engine Rankings, Princeton University Press, Princeton, NJ, 2006.

[30] A. N. Langville and C. D. Meyer, A reordering for the PageRank problem, SIAM J. Sci.
Comput., 27 (2006), pp. 2112–2120.

[31] A. N. Langville and C. D. Meyer, Updating Markov chains with an eye on Google’s
PageRank, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 968–987.

[32] C. P. Lee, G. H. Golub, and S. A. Zenios, A Fast Two-Stage Algorithm for Computing
PageRank and Its Extensions, Technical report, Stanford University, Palo Alto, CA, 2003.

[33] L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank Citation Rank-
ing: Bringing Order to the Web, 1999. Available online at http://dbpubs.stanford.
edu/pub/1999-66.

[34] S. Serra-Capizzano, Jordan canonical form of the Google matrix: A potential contribution
to the PageRank computation, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 305–312.

[35] R. S. Wills, Google’s PageRank: The math behind the search engine, Math. Intelligencer, 28
(2006), pp. 6–11.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1297–1321

MAXIMUM ATTAINABLE ACCURACY OF INEXACT SADDLE
POINT SOLVERS∗

PAVEL JIRÁNEK† AND MIROSLAV ROZLOŽNÍK‡

Abstract. In this paper we study numerical behavior of several iterative Krylov subspace
solvers applied to the solution of large-scale saddle point problems. Two main representatives of
segregated solution approach are analyzed: the Schur complement reduction method based on the
elimination of primary unknowns and the null-space projection method, which relies on a basis for
the subspace described by the constraints. We show that the choice of the back-substitution formula
may considerably influence the maximum attainable accuracy of approximate solutions computed in
finite precision arithmetic.

Key words. saddle point problems, Schur complement reduction method, null-space projection
method, rounding error analysis

AMS subject classifications. 65F10, 65F20, 65F35

DOI. 10.1137/060659727

1. Introduction. We want to solve a saddle point system which is in fact the
symmetric indefinite system with 2 × 2 block structure

(1.1)

(
A B

BT 0

)(
x

y

)
=

(
f

0

)
,

where the diagonal n × n block A is symmetric positive definite and the n × m off-
diagonal block B has full column rank. Saddle point problems have recently attracted
a lot of attention and appear to be a time-critical component in the solution of large-
scale problems in many applications of computational science and engineering. A
large amount of work has been devoted to a wide selection of solution techniques
varying from the fully direct approach, through the use of iterative stationary or
Krylov subspace methods, up to the combination of direct and iterative techniques
including preconditioned iterative schemes. For an excellent survey on applications,
methods, and results on numerical solution of saddle point problems, we refer to [5]
and numerous references therein (relevant references will be given later in the text).
Significantly less attention, however, has been paid so far to the numerical stability
aspects. In this paper we concentrate on the numerical behavior of schemes which
compute separately the unknown vectors x and y: one of them is first obtained from
a reduced system of a smaller dimension and, once it has been computed, the other
unknown is obtained by back-substitution solving exactly or inexactly another reduced
problem. The main representatives of such a segregated approach are the Schur

∗Received by the editors May 12, 2006; accepted for publication (in revised form) by M. Benzi
May 18, 2007; published electronically January 4, 2008.

http://www.siam.org/journals/simax/29-4/65972.html
†Department of Modelings of Processes, Technical University of Liberec, Hálkova 6, CZ-461 17

Liberec, Czech Republic (pavel.jiranek@tul.cz). The work of this author was supported by the MSMT
CR under the project 1M0554 “Advanced Remedial Technologies.”

‡Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou
věž́ı 2, CZ-182 07 Prague 8, Czech Republic (miro@cs.cas.cz). The work of this author was supported
by the project 1ET400300415 within the National Program of Research “Information Society” and
by the Institutional Research Plan AV0Z10300504 “Computer Science for the Information Society:
Models, Algorithms, Applications.”

1297

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1298 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

complement reduction method and the null-space projection method. In this paper
we analyze such algorithms which can be interpreted as iterations for the reduced
system but compute the approximate solutions xk and yk to both unknown vectors x
and y simultaneously.

The Schur complement reduction method uses the block factorization in the form(
A B

BT 0

)
=

(
I 0

BTA−1 I

)(
A B

0 −BTA−1B

)
,

where the matrix −BTA−1B is the Schur complement of A in (1.1). Such decompo-
sition leads to solving the resulting block triangular system

(1.2)

(
A B

0 −BTA−1B

)(
x

y

)
=

(
f

−BTA−1f

)
,

which is nothing but a block Gaussian elimination applied to the original system
(1.1). The block triangular system (1.2) is solved by computing the unknown y from
the symmetric positive definite Schur complement system of order m and then by
computing the unknown x from a system of order n with the symmetric positive
definite matrix A. This approach leads to the explicit formula for the unknown vector
x = A−1(f − By). The system (1.1) can be seen as two block equations and we
refer to them as the “first block equation in (1.1)” and the “second block equation in
(1.1).” The null-space projection method is based on the projection of the first block
equation in (1.1) onto the null-space N(BT) and onto its orthogonal complement
R(B), respectively. According to the second block equation of (1.1) the unknown x
belongs to N(BT) and therefore we get the block triangular system

(1.3)

(
(I − Π)A(I − Π) 0

BTA BTB

)(
x

y

)
=

(
(I − Π)f

BT f

)
,

where Π ≡ B(BTB)−1BT denotes the orthogonal projector onto R(B). This trian-
gular system is solved by back substitution, where we first compute the unknown
x from the projected system of order n with the symmetric positive semidefinite
matrix (I − Π)A(I − Π). Once it has been computed, the unknown y is obtained as
y = B†(f −Ax) by solving the least squares problem

(1.4) ‖f −Ax−By‖ = min
v∈Rm

‖f −Ax−Bv‖,

where B† denotes the Moore–Penrose pseudoinverse of B. The success of algorithms
for solving the block triangular system (1.2) or (1.3) depends on the availability of good
approximations to the inverse of the block A or to the pseudoinverse of B, respectively.
More precisely, one looks for a cheap approximate solution to the inner systems with
the matrix A and/or to the associated least squares problems with the matrix B.
Numerous inexact schemes have been used and analyzed (see, e.g., the analysis of
inexact Uzawa algorithms [15, 11, 12, 4, 37], inexact null-space methods [28, 35, 36],
multilevel or multigrid methods [10, 9, 36], domain decomposition methods [8], two-
stage iterative processes [27, 16], and inner-outer iterations [19]). These works contain
mainly the analysis of a convergence delay caused by the inexact solution of inner
systems or least squares problems.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1299

In this paper we concentrate on the question of what is the best accuracy we
can get from inexact schemes solving either (1.2) or (1.3) when implemented in finite
precision arithmetic. The fact that the inner solution tolerance strongly influences
the accuracy of computed iterates is known and was studied in several contexts.
The general framework for understanding inexact Krylov subspace methods has been
developed in [31] and [33]. Assuming exact arithmetic, Simoncini and Szyld [31] and
van den Eshof and Sleijpen [33] investigated the effect of an approximately computed
matrix-vector product in every iteration on the ultimate accuracy of several solvers
and explained the success of relaxation strategies for the inner accuracy tolerance
from [7, 8, 18]. The developed theory strongly exploits the particular properties of
an iterative method used for solving the associated system. In the context of saddle
point problems, this requires a deep analysis of the outer iteration scheme for solving
the reduced Schur complement or projected system (in particular, we refer to [31,
section 8]).

The effects of rounding errors in the Schur complement reduction method and
the null-space projection method have been studied, e.g., in [1, 2, 14, 26], where
the maximum attainable accuracy of computed approximate solutions by means of
residuals and errors is estimated depending on the user tolerance specified in the
outer iteration. In this paper we analyze the influence of the inexact solution of inner
systems/least squares problems on the same quantities. Our approach is based on a
standard backward analysis which allows us to take into account both the inexactness
of the inner iteration loops as well as the accompanying rounding errors that occur in
finite precision arithmetic.

The theory developed for the outer iteration process is similar to the analysis
of Greenbaum in [22, 21] who estimated the gap between the true and recursively
updated residual for a general class of iterative methods using coupled two-term
recursions. The difference here is that every computed approximate solution of an
inner problem is interpreted as an exact solution of a perturbed problem induced by
the actual stopping criterion, while the theory of [22] considered only the rounding
errors associated with a fixed matrix-vector multiplication. In contrast to the the-
ory of inexact Krylov methods [31, 33], the bounds for the true residual in the outer
iteration loop are obtained without specifying the solver used for solving the Schur
complement or the projected Hessian system. It appears that the maximum attain-
able accuracy level in the outer process is mainly given by the inexactness of solving
the inner problems and it is not further magnified by the associated rounding errors.
These results are thus similar to ones which can be obtained in exact arithmetic.

The situation is different when looking at the numerical behavior of residuals
associated with the original saddle point system, which describe how accurately the
two block equations in (1.1) are satisfied. It is shown that the attainable accuracy of
computed approximate solutions then depends significantly on the back-substitution
formula used for computing the remaining unknowns. Our results show that, indepen-
dent of the fact that the inner systems are solved inexactly, some back-substitution
schemes lead ultimately to residuals on the roundoff unit level. Indeed, our results
confirm that, depending on which back-substitution formula is used, the computed
iterates may satisfy either the first or the second block equation to the working ac-
curacy. We believe that such results cannot be obtained using the exact arithmetic
considerations and are of importance in applications requiring accurate approxima-
tions (see, e.g., [20, 17, 13]). On the other hand, we agree that in many applications
the saddle point system comes from a discretization of certain partial differential equa-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1300 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

Subsections 2.1 and 3.1.

The true residual in the outer iteration process

‖ −BTA−1f + BTA−1Bȳk‖ or ‖(I − Π)f − (I − Π)A(I − Π)x̄k‖.

↓

Subsections 2.2–2.4 and 3.2–3.4.

True residuals of the original saddle point problem

‖f −Ax̄k −Bȳk‖ and ‖ −BT x̄k‖.

↓

Subsections 2.5 and 3.5.

Forward errors of computed approximate solutions

‖x− x̄k‖ and ‖y − ȳk‖
(‖x− x̄k‖A and ‖y − ȳk‖BTA−1B).

Fig. 1.1.

tions and much lower accuracy is sufficient. In any case, our paper gives a theoretical
explanation for the behavior which was probably observed or is already implicitly
known. However, we have not found any explicit references to this issue. The imple-
mentations that we point out as optimal are actually those which are widely used and
suggested in applications.

The organization of the paper is as follows. Sections 2 and 3 are devoted to
the rounding error analysis of the Schur complement reduction method and the null-
space projection method, respectively. Each section is divided into five subsections
(see the flow-chart in Figure 1.1). In subsections 2.1 and 3.1 we analyze the influence
of inexact solution of inner systems or least squares on the maximum attainable
accuracy in the outer iteration process for solving (1.2) or (1.3), and we estimate
the ultimate norms of the true residuals −BTA−1f + BTA−1Bȳk and (I − Π)f −
(I − Π)A(I − Π)x̄k. In the consequent three subsections of sections 2 and 3, we give
bounds for the ultimate norm of the true residuals f − Ax̄k − Bȳk and −BT x̄k. As
we will see in subsections 2.2–2.4 and 3.2–3.4, the limiting accuracy of these residuals
may significantly differ for various back-substitution formulas for computing xk or yk,
respectively. Subsections 2.5 and 3.5 contain forward analysis with the bounds for the
errors x− x̄k and y− ȳk. Throughout this paper our theoretical results are illustrated
on the model example taken from [30]: we put n = 100, m = 20, and

A = tridiag(1, 4, 1) ∈ R
n×n, B = rand(n,m), f = rand(n, 1).

The spectrum of A and singular values of B lie in the interval [2.0010, 5.9990] and
[2.1727, 7.1695], respectively. Therefore the conditioning of A or B does not play an
important role in our experiments. For further discussion, we refer to subsections 2.5
and 3.5.

For distinction, we denote quantities computed in finite precision arithmetic by
bars. We assume that the usual rules of a well-designed floating-point arithmetic hold

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1301

and use occasionally the notation fl(·) for a computed result of an expression. The
roundoff unit is denoted by u. In particular, for a matrix-vector multiplication the
bound ‖fl(Ax)−Ax‖ ≤ O(u)‖A‖‖x‖ is used and ‖x‖ denotes the 2-norm of the vector
x; for a general matrix A we make use of the spectral norm ‖A‖ and the corresponding
condition number κ(A) = ‖A‖/σmin(A), where σmin(A) is the minimal singular value
of A. For a symmetric positive definite matrix A, ‖x‖A denotes the A-norm of the
vector x. Finally, we apply the O-notation when suitable.

2. Schur complement reduction method. In this section we will discuss
algorithms which compute simultaneously approximations xk and yk to the unknowns
x and y and ideally fulfill the first block equation in (1.1)

(2.1) Axk + Byk = f.

Our goal here is not to survey all existing schemes based on (2.1) but to analyze the
numerical behavior of three implementations which use different back-substitution
formulas for computing the approximate solution xk. More precisely, without spec-
ifying any particular method, we assume that we have computed the approximate

solution yk+1 and the residual vector r
(y)
k+1 using the recursions

yk+1 = yk + αkp
(y)
k ,(2.2)

r
(y)
k+1 = r

(y)
k + αkB

TA−1Bp
(y)
k(2.3)

with r
(y)
0 = −BTA−1(f − By0). We will distinguish between the following three

mathematically equivalent formulas:

xk+1 = xk + αk(−A−1Bp
(y)
k),(2.4)

xk+1 = A−1(f −Byk+1),(2.5)

xk+1 = xk + A−1(f −Axk −Byk+1).(2.6)

The resulting schemes are summarized in Figure 2.1. These schemes have been used
and studied in the context of many applications, including various classical Uzawa
algorithms, the two-level pressure correction approach, and the inner-outer iteration
method for solving (1.1); see, e.g., the schemes with (2.4) in [29, 3], (2.5) in [15], or
(2.6) in [11, 12, 4, 37], respectively. Because the solves with matrix A in formulas
(2.4)–(2.6) are expensive, these systems are in practice solved only approximately.
Our analysis is based on the assumption that every solution of a symmetric positive
definite system with the matrix A is replaced by an approximate solution produced
by an arbitrary method. The resulting vector is then interpreted as an exact solution
of the system with the same right-hand side vector but with a perturbed matrix
A + ΔA. We always require that the relative norm of the perturbation is bounded
as ‖ΔA‖ ≤ τ‖A‖, where τ represents a backward error associated with the computed
solution vector. We will always assume that the perturbation ΔA does not exceed the
limitation given by the distance of A to the nearest singular matrix and put restriction
in the form τκ(A) � 1. It follows then from the standard perturbation analysis (see,
e.g., [23, 6]) that

‖(A + ΔA)−1 −A−1‖ ≤ τκ(A)

1 − τκ(A)
‖A−1‖.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1302 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

outer iteration

y0, solve Ax0 = f −By0, r
(y)
0 = −BTx0

for k = 0, 1, 2, . . .

yk+1 = yk + αkp
(y)
k

inner iteration / back-substitution

solve Ap
(x)
k = −Bp

(y)
k

(A) xk+1 = xk + αkp
(x)
k

(B) solve Axk+1 = f −Byk+1

(C) solve Auk = f −Axk −Byk+1, xk+1 = xk + uk

r
(y)
k+1 = r

(y)
k − αkB

T p
(x)
k

Fig. 2.1. Schur complement reduction: Three different schemes for computing the approximate
solution xk+1 (called in the text the updated approximate solution (A), the approximate solution
computed by a direct substitution (B), and the approximate solution computed by a corrected direct
substitution (C), respectively).

Note that if τ = O(u), then we have a backward stable method for solving the positive
definite system with A. In our numerical experiments, we solve the systems with A
inexactly using the conjugate gradient method or with the Cholesky factorization as
indicated by the notation τ = O(u).

2.1. The attainable accuracy in the Schur complement system. In this
subsection we look at the ultimate accuracy in the outer iteration process by means
of the true residual −BTA−1f +BTA−1Bȳk. It is clear that if we perturb the Schur
complement system −BTA−1By = −BTA−1f to −BT (A + ΔA)−1Bŷ = −BTA−1f ,
where ‖ΔA‖ ≤ τ‖A‖, then the residual associated with ŷ can be bounded as

(2.7) ‖ −BTA−1f + BTA−1Bŷ‖ ≤ τκ(A)

1 − τκ(A)
‖A−1‖‖B‖2‖ŷ‖.

We see from (2.7) that there is a limitation to the accuracy of the residual obtained
directly from ŷ and its bound is proportional to τ . Note that these considerations were
made assuming exact arithmetic. The effects of rounding errors on the same quantity
have been studied by Greenbaum [22], who considered a general class of methods for
solving the fixed system of linear equations using two-term recursions given by (2.2)
and (2.3). Using a similar approach we can extend these results and formulate the
following theorem.

Theorem 2.1. The gap between the true residual −BTA−1f + BTA−1Bȳk and

the updated residual r̄
(y)
k can be bounded as

‖−BTA−1f + BTA−1Bȳk − r̄
(y)
k ‖ ≤ [(2k + 1)τ+O(u)]κ(A)

1 − τκ(A)
‖A−1‖‖B‖(‖f‖+‖B‖Ȳk),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1303

where Ȳk is defined as a maximum norm over all computed approximate solutions
Ȳk ≡ maxi=0,...,k ‖ȳi‖.

Proof. The initial residual r̄
(y)
0 is computed as r̄

(y)
0 = −fl(BT x̄0), where (A +

ΔA0)x̄0 = fl(f −By0), ‖ΔA0‖ ≤ τ‖A‖. It is easy to see that the statement holds for

k = 0. The computed approximate solution ȳk+1 and the residual r̄
(y)
k+1 satisfy

ȳk+1 = ȳk + ᾱkp̄
(y)
k + Δyk+1, ‖Δyk+1‖ ≤ u‖ȳk‖ + (2u + u2)‖ᾱkp̄

(y)
k ‖,(2.8)

r̄
(y)
k+1 = r̄

(y)
k − ᾱkB

T p̄
(x)
k + Δr

(y)
k+1, ‖Δr

(y)
k+1‖ ≤ u‖r̄(y)

k ‖ + O(u)‖B‖‖ᾱkp̄
(x)
k ‖,(2.9)

where p̄
(x)
k is the exact solution of the perturbed system

(2.10) (A + ΔAk)p̄
(x)
k = −fl(Bp̄

(y)
k), ‖ΔAk‖ ≤ τ‖A‖.

Multiplying (2.8) by BTA−1B, substituting (2.10) into the recurrence (2.9), and sub-
tracting these two equations we get the recurrence

−BTA−1f + BTA−1Bȳk+1 − r̄
(y)
k+1 = −BTA−1f + BTA−1Bȳk − r̄

(y)
k

−ᾱk(B
T p̄

(x)
k + BTA−1Bp̄

(y)
k) + BTA−1BΔyk − Δr

(y)
k .

The norm of the vector ᾱkp̄
(y)
k can be bounded as ‖ᾱkp̄

(y)
k ‖ ≤ ‖ȳk+1‖+‖ȳk‖+‖Δyk+1‖.

This bound in combination with (2.8) gives ‖Δyk+1‖ ≤ O(u)Ȳk+1 and ‖ᾱkp̄
(y)
k ‖ ≤

3Ȳk+1 which also implies

(2.11) ‖ᾱkp̄
(x)
k ‖ ≤ 3‖A−1‖

1 − τκ(A)
‖B‖Ȳk+1.

Using (2.10), the bound on ‖ᾱkp̄
(y)
k ‖, and some elementary manipulation, we can

estimate the term ᾱk(B
T p̄

(x)
k + BTA−1Bp̄

(y)
k)

‖ᾱk(B
T p̄

(x)
k + BTA−1Bp̄

(y)
k)‖ ≤ ‖ᾱkB

T [(A + ΔAk)
−1 −A−1]fl(Bp̄

(y)
k)‖

+‖ᾱkB
TA−1[fl(Bp̄

(y)
k) −Bp̄

(y)
k]‖ ≤ [τ + O(u)]κ(A)

1 − τκ(A)
‖A−1‖‖B‖2Ȳk+1.

Considering (2.9), (2.11), and the induction assumption on −BTA−1f+BTA−1Bȳk−
r̄
(y)
k (similar to the one used in [22]), we obtain the bound for the error vector Δr

(y)
k+1

in the form

‖Δr
(y)
k+1‖ ≤ O(u)κ(A)

1 − τκ(A)
‖A−1‖‖B‖(‖f‖ + ‖B‖Ȳk+1)

which proves the statement of the theorem.

It is a well-known fact that the residual r̄
(y)
k computed recursively via (2.3) usually

converges far below O(u). Using this assumption we can obtain from the estimate

for the gap −BTA−1f +BTA−1Bȳk − r̄
(y)
k the estimate for the maximum attainable

accuracy of the true residual −BTA−1f + BTA−1Bȳk itself. Summarizing, while

the updated residual r̄
(y)
k converges to zero the true residual stagnates at the level

proportional to τ . This is also illustrated in our numerical example, where the Schur
complement system −BTA−1By = −BTA−1f is solved using the steepest descent

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1304 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

method with the initial approximation y0 set to zero. In Figure 2.2(a) we show the
relative norms of the true residual −BTA−1f + BTA−1Bȳk (solid lines) and the

updated residual r̄
(y)
k (dashed lines).

Similar to Greenbaum [22], we have shown that the gap between the true and
updated residual is proportional to the maximum norm of approximate solutions
computed during the whole iteration process. Since the Schur complement system is
symmetric negative definite, the norm of the error or residual converges monotonically
for the most iterative methods like the steepest descent, the conjugate gradient, the
conjugate residual method, or other error/residual minimizing methods or at least
becomes orders of magnitude smaller than the initial error/residual without exceeding
this limit. In such cases, the quantity Ȳk does not play an important role in the bound,
and it can usually be replaced by ‖y0‖ or a small multiple of ‖y‖. The situation is
more complicated when A is nonsingular and nonsymmetric; see [24].

As we already noted, the main difference with respect to the analysis of Green-
baum is that the floating-point multiplication with the fixed A−1 is replaced by the
step-dependent inexact solution of the system with A such that it can be interpreted as
the exact application of the matrix (A+ΔAk)

−1, where the perturbation matrix ΔAk

changes at every step k. This concept is very similar to the notion of inexact Krylov
subspace methods (see [31] or [33]), which, on the other hand, do not take into account
the effects of rounding errors. The theory of Greenbaum [22] could be directly applied
if we only have at each iteration ‖fl(BTA−1Bx)−BTA−1Bx‖ ≤ O(u)‖A−1‖‖B‖2‖x‖.
Since in our idealized case fl(BTA−1Bx) = BT (A+ΔAk)

−1Bx with ‖ΔAk‖ ≤ τ‖A‖,
we have only

‖fl(BTA−1Bx) −BTA−1Bx‖ ≤ τκ(A)

1 − τκ(A)
‖A−1‖‖B‖2‖x‖.

This bound could be improved if we make a restriction and use a variable tolerance
for inner systems. If we require that every inner system is solved so that the relative
residual of its computed solution needs the tolerance τ , then every inexact application
of the matrix BTA−1B would satisfy the inequality

(2.12) ‖fl(BTA−1Bx) −BTA−1Bx‖ ≤ τ‖A−1‖‖B‖2‖x‖.

Then the whole outer process (2.2) and (2.3) together with (2.12) could be interpreted
as a floating-point iteration with the roundoff unit equal to τ . The computation in
this “extended” arithmetic would lead to

‖ −BTA−1f + BTA−1Bȳk − r̄
(y)
k ‖ ≤ O(τ)

1 − τκ(A)
‖A−1‖‖B‖2(‖y‖ + Ȳk).

A thorough rounding analysis of the block LU factorization has been given in [14]
and further developed in the saddle point context in [26]. The approach was quite
converse to the one used in our paper. It is assumed that all inner systems are solved
in a backward stable way and the accuracy of computed approximate solutions is
estimated in terms of the user prescribed tolerance for the outer Schur complement
system. Roughly speaking, the higher tolerance η leads to the higher level of attainable
accuracy of the true residuals f −Ax̄k −Bȳk and −BT x̄k. This level is magnified by
the quantities that play a similar role as the growth factor in the Gaussian elimination
with partial pivoting (see, e.g., [23]). On the other hand, the parameter η giving the
threshold for the backward error cannot be infinitely small. Theorem 2.1 actually

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1305

0 50 100 150 200 250 300
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u)

τ = 10−2

τ = 10−6

τ = 10−10

iteration number k

re
la

tiv
e

re
si

du
al

 n
or

m
s

||B
T
A

−
1 f−

B
T
A

−
1 B

y k||/
||B

T
A

−
1 f−

B
T
A

−
1 B

y 0||,
 ||

r(y
)

k
||/

||r
(y

)
0

||

(a)

0 50 100 150 200 250 300
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u)

τ = 10−2

τ = 10−6

τ = 10−10

iteration number k

re
la

tiv
e

er
ro

r
no

rm
s

||x
−

x k|| A
/||

x−
x 0|| A

, |
|y

−
y k|| B

T
A

−
1 B

/||
y−

y 0|| B
T
A

−
1 B

(b)

Fig. 2.2. Schur complement reduction method: (a) the relative norms of the true residual

−BTA−1f + BTA−1ȳk (solid lines) and the updated residual r̄
(y)
k (dashed lines)—the updated

solution scheme (2.4); (b) the relative error norms ‖x − x̄k‖A/‖x − x̄0‖A (solid lines) and
‖y − ȳk‖BTA−1B/‖y − y0‖BTA−1B (dashed lines)—the updated solution scheme (2.4).

gives its lower bound. Dividing the right-hand side by ‖A−1‖B‖2‖ȳ‖ we end up with
η ≥ O(u)κ(A)/(1 −O(u)κ(A)).

In the following we will estimate the residuals f − Ax̄k − Bȳk and −BT x̄k. We
will show that these quantities depend on the actual implementation of the back-
substitution formula for xk and distinguish between three schemes (2.4), (2.5), and
(2.6). No matter how we compute the approximations x̄k and ȳk it holds that

(2.13) −BTA−1f + BTA−1Bȳk = −BT x̄k −BTA−1(f −Ax̄k −Bȳk),

which gives the mutual relation between the residual −BTA−1f +BTA−1Bȳk in the
Schur complement system and the residuals f−Ax̄k−Bȳk and −BT x̄k associated with
the saddle point system (1.1). According to Theorem 2.1, ‖−BTA−1f +BTA−1Bȳk‖
is ultimately O(τ). Then it is clear from (2.13) that both f −Ax̄k −Bȳk and −BT x̄k

cannot be proportional to the roundoff unit u. We will show that, depending on the
chosen back-substitution scheme, we can ensure either that f − Ax̄k − Bȳk = O(τ)
with −BT x̄k = O(u) (scheme A (2.4)), or that f −Ax̄k−Bȳk = O(u) with −BT x̄k =
O(τ) (scheme C (2.6)), while the most straightforward scheme B (2.5) leads to both
f −Ax̄k −Bȳk = O(τ) and −BT x̄k = O(τ).

2.2. Scheme A: The updated approximate solution. In this subsection
we analyze the generic update (2.4). It is clear that this scheme requires only one
system solve with A per iteration. Indeed, we compute only the direction vector

p
(x)
k = −A−1Bp

(y)
k , which appears in the recurrence r

(y)
k+1 = r

(y)
k − αkB

T p
(x)
k anyway.

As we will see, in finite precision arithmetic this algorithm guarantees that −BT x̄k

will ultimately reach O(u). This happens despite the fact that the systems with the
matrix block A are computed inexactly with the parameter τ frequently much larger
than O(u).

Theorem 2.2. The true residual f −Ax̄k −Bȳk satisfies the bound

(2.14) ‖f −Ax̄k −Bȳk‖ ≤ O(u)(‖f‖ + ‖B‖Ȳk) + [(k + 1)τ + O(u)]‖A‖X̄k.

The gap between the residuals −BT x̄k and r̄
(y)
k can be estimated as

‖ −BT x̄k − r̄
(y)
k ‖ ≤ O(u)‖A−1‖‖B‖(‖f‖ + ‖A‖X̄k + ‖B‖Ȳk),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1306 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

0 50 100 150 200 250 300
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u)

τ = 10−2

τ = 10−6

τ = 10−10

iteration number k

re
si

du
al

 n
or

m
 ||

f−
A

x k−
B

y k||

(a)

0 50 100 150 200 250 300
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u), τ = 10−10, τ=10−6, τ=10−2

iteration number k

re
la

tiv
e

re
si

du
al

 n
or

m
s

||−
B

T
x k||/

||−
B

T
x 0||,

 ||
r k(y

) ||/
||r

0(y
) ||

(b)

0 50 100 150 200 250 300
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u), τ = 10−10, τ=10−6, τ=10−2

iteration number k

re
si

du
al

 n
or

m
 ||

f−
A

x k−
B

y k||

(c)

0 50 100 150 200 250 300
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u)

τ = 10−2

τ = 10−6

τ = 10−10

iteration number k

re
la

tiv
e

re
si

du
al

 n
or

m
s

||−
B

T
x k||/

||−
B

T
x 0||,

 ||
r k(y

) ||/
||r

0(y
) ||

(d)

Fig. 2.3. Schur complement reduction method: (a) the norms of the true residual f−Ax̄k−Bȳk
and (b) the relative norms of the true residual −BT x̄k (solid lines) and the recursively computed

residual r̄
(y)
k (dashed lines)—the updated solution scheme (2.4); (c) the norms of the true residual

f − Ax̄k − Bȳk—the corrected direct substitution scheme (2.6); (d) the relative norms of the true

residual −BT x̄k (solid lines) and the recursively computed residual r̄
(y)
k (dashed lines)—the direct

substitution scheme (2.5).

where X̄k is now defined as a maximum norm over all computed approximate solutions
X̄k ≡ maxi=0,...,k ‖x̄i‖.

Proof. The computed approximate solution x̄k+1 satisfies

(2.15) x̄k+1 = x̄k + ᾱkp̄
(x)
k + Δxk+1, ‖Δxk+1‖ ≤ u‖x̄k‖ + (2u + u2)‖ᾱkp̄

(x)
k ‖.

Substituting recurrently (2.15) and (2.8) into the residual

f −Ax̄k+1 −Bȳk+1 = f −Ax̄k −Bȳk − ᾱk(Ap̄
(x)
k + Bp̄

(y)
k) −AΔxk+1 −BΔyk+1,

we obtain the following bound:

‖f −Ax̄k −Bȳk‖ ≤ ‖f −Ax̄0 −By0‖

+

k−1∑
i=0

(
‖ᾱi(Ap̄

(x)
i + Bp̄

(y)
i)‖ + ‖A‖‖Δxi+1‖ + ‖B‖‖Δyi+1‖

)
.

Here we, in fact, reformulate the main result of Greenbaum [22, Theorem 2.2] and

heavily use the fact that the vectors p̄
(x)
k satisfy the perturbed system (2.10). From

Theorem 2.1 we have bounds ‖Δyk+1‖ ≤ O(u)Ȳk+1 and ‖ᾱkp̄
(y)
k ‖ ≤ 3Ȳk+1 which also

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1307

imply the bound (2.11). Using all of these results we get

‖ᾱk(Ap̄
(x)
k + Bp̄

(y)
k)‖ ≤ ‖ᾱk[fl(Bp̄

(y)
k) −Bp̄

(y)
k]‖ + ‖ΔAk‖‖ᾱkp̄

(x)
k ‖.

Further we use ‖Δxk+1‖ ≤ O(u)X̄k+1 and ‖ᾱkp̄
(x)
k ‖ ≤ 3X̄k+1. Summarizing, we get

the first result. The gap between −BT x̄k+1 and r̄
(y)
k+1 is equal to

−BT x̄k+1 − r̄
(y)
k+1 = −BT x̄k − r̄

(y)
k −BTΔxk+1 − Δr

(y)
k+1

and it leads to the expansion containing just the local errors Δxi+1, Δyi+1 and the

initial gap −BT x̄0 − r̄
(y)
0

−BT x̄k − r̄
(y)
k = −BT x̄0 − r̄

(y)
0 −

k−1∑
i=0

BTΔxi+1 −
k−1∑
i=0

Δr
(y)
k+1.

Taking norms, considering the bounds on ‖Δxk+1‖, ‖Δyk+1‖, (2.9), and the relation

r̄
(y)
0 = −fl(BT x̄0), we get the second result.

As we will see in the next subsection, the bound for the gap −BT x̄k − r̄
(y)
k is

considerably better than for the scheme (2.5). In contrast to (2.18), it does not

depend on τ . Provided that r̄
(y)
k converges to zero, the true residual −BT x̄k will

stagnate at the level proportional to u and the second block equation in (1.1) will be
satisfied to working accuracy.

Figures 2.3(a), (b) show the norms of the true residual f−Ax̄k−Bȳk and −BT x̄k

(solid lines), respectively, including the norms of the updated residual r̄
(y)
k (dashed

lines). The numerical results are in good agreement with Theorem 2.2. The residual
f −Ax̄k −Bȳk is growing slightly due to the accumulation of errors in inner systems

Ap
(x)
k = −Bp

(y)
k but it essentially remains on the level proportional to τ . The residual

−BT x̄k ultimately stagnates at O(u). The formula (2.4) is suitable whenever the
second block equation in (1.1) must be satisfied accurately, no matter how small or
big the inner tolerance τ is.

2.3. Scheme B: The approximate solution computed by a direct substi-
tution. In this subsection we assume that xk is computed by the direct substitution
(2.5). The computed x̄k then satisfies the equality

(2.16) (A + ΔAk)x̄k = fl(f −Bȳk), ‖ΔAk‖ ≤ τ‖A‖.

The perturbation matrices ΔAk are different from those defined in subsection 2.1, but
for simplicity we will keep the same notation. In the following we will show that the

residual r̄
(y)
k is a good approximation for the residual −BT x̄k, provided that they are

above the level given by the bound for −BT x̄k − r̄
(y)
k . This quantity is now, however,

proportional to τ .
Theorem 2.3. The true residual f −Ax̄k −Bȳk satisfies the bound

(2.17) ‖f −Ax̄k −Bȳk‖ ≤ O(u)(‖f‖ + ‖B‖‖ȳk‖) + τ‖A‖‖x̄k‖.

The gap between the residuals −BT x̄k and r̄
(y)
k can be bounded as follows:

(2.18)
‖ −BT x̄k − r̄

(y)
k ‖≤ O(u)‖A−1‖‖B‖(‖f‖ + ‖B‖Ȳk)

+ [(k + 3)τ + O(u)]κ(A)‖B‖X̄k,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1308 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

where X̄k is defined as X̄k ≡ maxi=0,...,k−1{‖x̄0‖, ‖x̄k‖, ‖ᾱip̄
(x)
i ‖}.

Proof. The first result follows from (2.16) and the relation for the true residual

f −Ax̄k −Bȳk = f −Bȳk − fl(f −Bȳk) − ΔAkx̄k.

For the gap between −BT x̄k and r̄
(y)
k we have the identity

(2.19)
−BT x̄k − r̄

(y)
k = −BTA−1f + BTA−1Bȳk − r̄

(y)
k + BTA−1ΔAkx̄k

+BTA−1[fl(f −Bȳk) − (f −Bȳk)].

The statement of Theorem 2.1 together with (2.19) gives the second result
(2.18).

Indeed, while the residual r̄
(y)
k converges ultimately below O(u), the residual

−BT x̄k will remain proportional to τ . The norm of f −Ax̄k −Bȳk is unconditionally
bounded by the term proportional to τ dominating other terms in (2.17).

Figure 2.3(d) shows the norms of −BT x̄k (solid lines) and r̄
(y)
k (dashed lines).

The residual f − Ax̄k − Bȳk behaves similarly to that of the scheme (2.4) shown in
plot (a). The residual f −Ax̄k −Bȳk remains almost constant since it is nothing but
the residual of the system Axk = f − Byk solved in each iteration with the uniform
accuracy.

2.4. Scheme C: The approximate solution computed with a corrected
direct substitution. The third back-substitution formula (2.6) can be derived by
a correction of the scheme (2.5) and requires two system solves with A. In this
subsection we show that its numerical behavior is very similar to the behavior of
classical nonstationary iterative methods described and analyzed by Higham [23].
We prove that under certain conditions the true residual f − Ax̄k − Bȳk ultimately
converges to the level proportional to u, which is significantly smaller than those
residuals for the previous two schemes.

Theorem 2.4. Assume for sufficiently large k with ‖ȳk+1− ȳk‖ ≤ O(u)Ȳk+1 that
there exists a step k0 such that the true residual f −Ax̄k −Bȳk is bounded by

(2.20) ‖f −Ax̄k −Bȳk‖ ≤ O(u)(‖f‖ + ‖A‖X̄k + ‖B‖Ȳk)

for all steps k ≥ k0. The gap between −BT x̄k and r̄
(y)
k can be estimated as follows:

‖ −BT x̄k − r̄
(y)
k ‖ ≤ O(u)‖A−1‖‖B‖(‖f‖ + ‖B‖Ȳk) + [(k + 3)τ + O(u)]κ(A)‖B‖X̄k.

The quantity X̄k is here defined as X̄k ≡ maxi=0,...,k−1{‖x̄0‖, ‖x̄k‖, ‖ᾱip̄
(x)
i ‖}.

Proof. The computed approximate solution x̄k+1 satisfies

(2.21) x̄k+1 = x̄k + ūk + Δxk+1, ‖Δxk+1‖ ≤ u(‖x̄k‖ + ‖ūk‖),

where the vector ūk is the exact solution of the system

(2.22) (A + ΔAk+1)ūk = fl(f −Ax̄k −Bȳk+1), ‖ΔAk+1‖ ≤ τ‖A‖.

The residual f −Ax̄k+1 −Bȳk+1 can be expressed using (2.21) and (2.22) as

(2.23)

f −Ax̄k+1 −Bȳk+1 = ΔAk+1ūk −AΔxk+1

+ fl(f −Ax̄k −Bȳk+1) − (f −Ax̄k −Bȳk+1)

= Gk+1(f −Ax̄k −Bȳk) −Gk+1B(ᾱkp̄
(y)
k) + hk+1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1309

where the matrix Gk+1 and the vector hk+1 are defined as Gk+1 ≡ ΔAk+1(A +
ΔAk+1)

−1 and hk+1 ≡ (I + Gk+1)[fl(f − Ax̄k − Bȳk+1) − (f − Ax̄k − Bȳk+1)] −
AΔxk+1 −Gk+1BΔyk+1. From a recursive use of the formula (2.23) we obtain

f −Ax̄k −Bȳk = Gk · · ·G1(f −Ax̄0 −By0) −
k−1∑
i=0

Gk · · ·Gi+2(Gi+1Bᾱip̄
(y)
i − hi+1).

Taking norms, using the relation ‖ᾱip̄
(y)
i ‖ ≤ ‖ȳi+1−ȳi‖+‖Δyi+1‖ and ‖ΔAi‖ ≤ τ‖A‖

we obtain the uniform bound ‖Gi‖ ≤ τκ(A)[1 − τκ(A)]−1 < 1. This leads to the
inequality

‖f −Ax̄k −Bȳk‖ ≤
(

τκ(A)

1 − τκ(A)

)k

‖f −Ax̄0 −By0‖(2.24)

+
k−1∑
i=0

(
τκ(A)

1 − τκ(A)

)k−i

‖B‖‖ȳi+1 − ȳi‖

+ k max
i=0,...,k−1

‖hi+1‖ + k max
i=0,...,k−1

‖B‖‖Δyi+1‖.

For the vector hk+1 it further follows that

‖hk+1‖ ≤ O(u)[‖f‖ + ‖A‖(‖x̄k+1‖ + ‖x̄k‖) + ‖B‖Ȳk+1].

It is easy to see that for sufficiently large k the first term on the right-hand side of
(2.24) will decrease far below O(u), while the second term will be at most O(u)‖B‖Ȳk+1

for all steps k starting from some index k0. Summarizing, for sufficiently large k ≥ k0

we have the bound

‖f −Ax̄k −Bȳk‖ ≤ O(u)[‖f‖ + ‖A‖(‖x̄k+1‖ + ‖x̄k‖) + ‖B‖Ȳk].

The second statement can be proved considering

−BT x̄k+1 − r̄
(y)
k+1 = −BTA−1f + BTA−1Bȳk+1 − r̄

(y)
k+1

−BT [(A + ΔAk+1)
−1 −A−1]fl(f −Ax̄k −Bȳk+1)

−BTA−1[fl(f −Ax̄k −Bȳk+1) − (f −Ax̄k −Bȳk+1)].

The first term on the right-hand side can be estimated using Theorem 2.1. Based on
(2.22) we have

‖[(A + ΔAk+1)
−1 −A−1]fl(f −Ax̄k −Bȳk+1)‖ ≤ τκ(A)

1 − τκ(A)
‖ūk‖,

which together with the bound on ‖ūk‖ completes the proof.
In Theorem 2.4 we assume that ȳk ultimately stagnates so that ‖ȳk+1 − ȳk‖ ≤

O(u)Ȳk+1 for sufficiently large k ≥ k0. It appears that this condition does not repre-

sent a serious restriction. Using (2.8) we have ‖ȳk+1 − ȳk‖ ≤ ‖ᾱkp̄
(y)
k ‖ + O(u)Ȳk+1.

We will show that the norm of ᾱkp̄
(y)
k is much smaller than u for large k, i.e., we can

absorb it into the term O(u)Ȳk+1. Denoting Ŝk ≡ BT (A+ΔAk)
−1B, using (2.9) and

(2.10) we have the bound

‖ᾱkp̄
(y)
k ‖ ≤ 2‖Ŝ−1

k ‖(‖r̄(y)
k+1‖ + ‖r̄(y)

k ‖) + O(u)‖Ŝ−1
k ‖‖(A + ΔAk)

−1‖‖B‖2‖ᾱkp̄
(y)
k ‖.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1310 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

Provided that O(u)‖Ŝ−1
k ‖‖(A + ΔAk)

−1‖‖B‖2 < 1, we obtain

‖ᾱkp̄
(y)
k ‖ ≤

2‖Ŝ−1
k ‖(‖r̄(y)

k+1‖ + ‖r̄(y)
k ‖)

1 −O(u)‖Ŝ−1
k ‖‖(A + ΔAk)−1‖‖B‖2

.

Since the norms of updated residuals decrease far below the roundoff unit, the assump-
tion on ‖ȳk+1 − ȳk‖ will be true for sufficiently large k. Note that O(u)‖Ŝ−1

k ‖‖(A +
ΔAk)

−1‖‖B‖2 < 1 is nothing but the restricted assumption of numerical nonsingu-
larity of the Schur complement matrix BTA−1B.

The bound (2.20) is significantly better than its counterparts (2.14) and (2.17).
Theorem 2.4 describes that the residual f − Ax̄k − Bȳk will ultimately reach the
roundoff unit level provided that the matrix GkGk−1 · · ·G1 converges to zero for
k → ∞. As soon as iterates ȳk start to stagnate at their limiting accuracy level,
the rate of convergence of this nonstationary iteration process is bounded by the
factor τκ(A)[1− τκ(A)]−1. The behavior of −BT x̄k is similar to that of scheme (2.5).

Indeed, when r̄
(y)
k converges ultimately below O(u), the residual −BT x̄k remains

proportional to τ . Figure 2.3(c) shows the norms of the residual f −Ax̄k −Bȳk. The
plot for −BT x̄k (not reported) is similar to the plot (d) for the scheme (2.5). It is
clear that in our well-conditioned case the stationary method converges very fast and
the rate of decrease of f − Ax̄k − Bȳk is essentially comparable to the convergence
rate of the outer iteration.

2.5. Forward error analysis. In this subsection we estimate the maximum
attainable accuracy in terms of the errors x − x̄k and y − ȳk. First we formulate
the bounds in the 2-norm, then in the A-norm of the error x − x̄k, and then in the
BTA−1B-norm of the error y − ȳk. The errors x − x̄k and y − ȳk, and the residuals
f −Ax̄k −Bȳk and −BT x̄k, satisfy

(2.25)

(
A B

BT 0

)(
x− x̄k

y − ȳk

)
=

(
f −Ax̄k −Bȳk

−BT x̄k

)
.

We have the explicit expression for the inverse of the saddle point matrix(
A B

BT 0

)−1

=

(
(I − Π)A−1 −ΠB(BTB)−1

−(BTB)−1BTΠT −(BTA−1B)−1

)
,

where Π ≡ A−1B(BTA−1B)−1BT represents the oblique projector onto a range of
R(B) along N(BT). Considering (2.25), the inequalities ‖(I −Π)A−1‖ ≤ ‖A−1‖, and
‖A−1B(BTA−1B)−1‖ = ‖ΠB(BTB)−1‖ ≤ ‖(BTB)−1‖1/2 we obtain the bounds

‖x− x̄k‖ ≤ γ1‖f −Ax̄k −Bȳk‖ + γ2‖ −BT x̄k‖,(2.26)

‖y − ȳk‖ ≤ γ2‖f −Ax̄k −Bȳk‖ + γ3‖ −BT x̄k‖,(2.27)

where γ1 ≡ σ−1
min(A), γ2 ≡ σ−1

min(B), and γ3 ≡ σ−1
min(BTA−1B) are constants inde-

pendent of the iteration step k. It is clear from (2.26), (2.27) and Theorems 2.2, 2.3,
and 2.4 that ‖x− x̄k‖ and ‖y− ȳk‖ will be O(τ) for all back-substitution schemes. In
contrast to our numerical example, the saddle point systems that arise in practice can
be ill-conditioned. In such cases the constants γ1, γ2, and γ3 may play an important
role.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1311

In exact arithmetic we have ‖x−xk‖A = ‖y−yk‖BTA−1B . Since in finite precision
arithmetic the residual f − Ax̄k − Bȳk is no longer zero, instead of this identity we
get

(2.28) |‖x− x̄k‖A − ‖y − ȳk‖BTA−1B | ≤ γ
1/2
1 ‖f −Ax̄k −Bȳk‖.

We can also formulate the proposition, which gives bounds for the errors in terms of
the residuals f −Ax̄k −Bȳk and −BTA−1f + BTA−1Bȳk.

Theorem 2.5. The A-norm of the error x − x̄k and the BTA−1B-norm of the
error y − ȳk can be bounded as

‖x− x̄k‖A ≤ γ
1/2
1 ‖f −Ax̄k −Bȳk‖ + γ

1/2
3 ‖ −BTA−1f + BTA−1Bȳk‖,(2.29)

‖y − ȳk‖BTA−1B ≤ γ
1/2
3 ‖ −BTA−1f + BTA−1Bȳk‖.(2.30)

Proof. It follows from (2.28) that

(2.31)
‖x− x̄k‖A ≤ ‖y − ȳk‖BTA−1B + |‖x− x̄k‖A − ‖y − ȳk‖BTA−1B |

≤ ‖y − ȳk‖BTA−1B + σ
−1/2
min (A)‖f −Ax̄k −Bȳk‖.

For the BTA−1B-norm of the error y − ȳk we have

(2.32) ‖y − ȳk‖BTA−1B = ‖BTA−1f −BTA−1Bȳk‖(BTA−1B)−1 ,

which completes the proof.
The first term on the right-hand side of (2.29) should be zero in exact arithmetic

and it describes how well the computed x̄k and ȳk satisfy (2.1). The second term is
related to the Schur complement residual which in exact arithmetic should converge to

zero. The recursively computed residual r̄
(y)
k is a good approximation to −BTA−1f +

BTA−1Bȳk, provided they are above the level given by Theorem 2.1. Therefore its
norm represents an easily computable quantity for the second term on the right-
hand side of (2.29). The residual f − Ax̄k − Bȳk depends on the computed x̄k and
we distinguish between three schemes with (2.4), (2.5), and (2.6), respectively. We
can see that, no matter which implementation we use, −BTA−1f + BTA−1Bȳk is a
dominating quantity in (2.29). Therefore, ‖x− x̄k‖A can be thus well approximated

during the convergence by the quantity γ
1/2
3 ‖r̄(y)

k ‖ or its estimate. Similar can be said
also for ‖y − ȳk‖BTA−1B ; see (2.30).

The errors x − x̄k and y − ȳk can be estimated with more sophisticated but
easily computable bounds (without explicit use of residuals and conditioning). As
an example we refer to the rounding error analysis of the conjugate gradient method
and various mathematically equivalent formulas for estimating ‖x − x̄k‖A [32]. It
appears that although many existing bounds were developed using exact arithmetic
considerations, they estimate successfully the energy error using computed quantities
which can be orders of magnitude different from their exact precision counterparts.
Therefore, despite that we assume that A−1 is performed inexactly, it is feasible to
estimate the BTA−1B-norm of the error y − ȳk.

In Figure 2.2(b) we report the relative error norms ‖x − x̄k‖A/‖x − x̄0‖A and
‖y − ȳk‖BTA−1B/‖y − y0‖BTA−1B . The inverse of A in the computation of the
BTA−1B-norm is computed by a direct solver. In agreement with (2.29) and (2.30)
and Theorems 2.2, 2.3, and 2.4 (see also Figure 2.3), the relative A-norm of the error
x− x̄k and also the relative BTA−1B-norm of the error y− ȳk begin to stagnate at the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1312 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

level proportional to τ . Since the behavior of these quantities for all implementations
is similar, we present only the results for the scheme (2.5). The slight difference is
visible only in the gap between both error norms given by the estimate (2.28).

3. Null-space projection method. In this section we deal with algorithms
which compute approximations xk and yk such that xk satisfies BTxk = 0 and yk
solves the least squares problem minimizing the residual f −Axk −Byk, i.e.,

(3.1) ‖f −Axk −Byk‖ = min
v∈Rm

‖f −Axk −Bv‖.

We will denote (3.1) by Byk ≈ f − Axk and assume that the approximate solution

xk+1 and the residual vector r
(x)
k+1 are computed using

xk+1 = xk + αkp
(x)
k ,(3.2)

r
(x)
k+1 = r

(x)
k − αkAp

(x)
k −Bp

(y)
k ,(3.3)

where r
(x)
0 = B†(f −Ax0). The vectors x0 and p

(x)
k belong to N(BT) and p

(y)
k solves

the problem Bp
(y)
k ≈ r

(x)
k − αkAp

(x)
k minimizing the residual

‖r(x)
k − αkAp

(x)
k −Bp

(y)
k ‖ = min

p∈Rm
‖r(x)

k − αkAp
(x)
k −Bp‖.

This residual update strategy was proposed in [20] (see also [10, 9]) and is used to
reduce the roundoff errors in the projection onto N(BT). Note that the vectors

p
(y)
k can be, with no additional cost, used as direction vectors for computing the

approximate solution yk+1. Again we will distinguish between three back-substitution
formulas (the resulting schemes are described in Figure 3.1)

yk+1 = yk + p
(y)
k , p

(y)
k = B†(r

(x)
k − αkAp

(x)
k),(3.4)

yk+1 = B†(f −Axk+1),(3.5)

yk+1 = yk + B†(f −Axk+1 −Byk).(3.6)

The pseudoinverse B† in (3.4)–(3.6) is applied by solving the least squares with the
matrix B. These problems are solved inexactly. In our considerations we will assume
that the computed solution v̄ of the least squares problem Bv ≈ c is an exact solution
of a perturbed problem (B+ΔB)v̄ ≈ c+Δc with ‖ΔB‖/‖B‖ ≤ τ and ‖Δc‖/‖c‖ ≤ τ .
The parameter τ again represents the measure for the inexact solution of the least
squares with B and actually describes the backward error. This can be achieved in
many different ways considering the inner iteration loop solving the associated system
of normal equations, the augmented system formulation, or solving it directly. Similar
inexact schemes have been considered for solving quadratic programming problems
[1, 2], multigrid methods [9, 10], or constraint preconditioners [25, 30, 28]. We assume
τκ(B) � 1 which guarantees B+ΔB to have a full column rank. This allows the use
of the perturbation theory (see [34] or [23, Lemma 19.8]), in particular the inequalities

‖(B + ΔB)†‖ ≤ ‖B†‖
1 − τκ(B)

, ‖BB† −B(B + ΔB)†‖ ≤ 2τκ(B)

1 − τκ(B)
.

Note that if τ = O(u), then we have a backward stable method for solving the least
squares problem with B. In our experiments we applied the conjugate gradient least
squares (CGLS) method [6] with the stopping criterion based on the corresponding
backward error. Notation τ = O(u) stands for the Householder QR factorization.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1313

outer iteration

x0, solve By0 ≈ f −Ax0, r
(x)
0 = f −Ax0 −By0

for k = 0, 1, 2, . . .

xk+1 = xk + αkp
(x)
k

inner iteration / back-substitution

solve Bp
(y)
k ≈ r

(x)
k − αkAp

(x)
k

(A) yk+1 = yk + p
(y)
k

(B) solve Byk+1 ≈ f −Axk+1

(C) solve Bqk ≈ f −Axk+1 −Byk, yk+1 = yk + qk

r
(x)
k+1 = r

(x)
k − αkAp

(x)
k −Bp

(y)
k

Fig. 3.1. Null-space projection method: Three different schemes for computing the approximate
solution yk+1 (called in the text the updated approximate solution (A), the approximate solution
computed by a direct substitution (B), and the approximate solution computed by a corrected direct
substitution (C), respectively).

3.1. The attainable accuracy in the projected system. In this subsection
we look at the accuracy in the outer iteration for solving the projected system (I −
Π)A(I − Π)x = (I − Π)f . We can consider the perturbed system

(3.7) (I − Π̂)A(I − Π̂)x̂ = (I − Π̂)f,

where Π̂ = (B + ΔB)(B + ΔB)† such that ‖ΔB‖ ≤ τ‖B‖. The residual associated
with the solution of (3.7) can be written as

(I − Π)f − (I − Π)A(I − Π)x̂ = (Π̂ − Π)f + (I − Π̂)A(Π − Π̂)x̂ + (Π − Π̂)A(I − Π)x̂

and due to ‖Π̂ − Π‖ ≤ ‖ΔB‖min{‖B†‖, ‖(B + ΔB)†‖} [23, Lemma 19.8], we have

‖(I − Π)f − (I − Π)A(I − Π)x̂‖ ≤ 2τκ(B)

1 − τκ(B)
(‖f‖ + ‖A‖‖x̂‖).

Indeed, even if we assume exact arithmetic, the residual obtained directly from x̂ is
proportional to the parameter τ . In addition, we ideally have (B+ΔB)T x̂ = 0 which
implies ‖−BT x̂‖ ≤ τ‖B‖‖x̂‖. Therefore we can expect that also the residual −BT x̄k

associated with the computed approximate solution x̄k will be proportional to τ . Such
analysis is dependent on the choice of a particular method with the recurrences (3.2)
and (3.3), and therefore we do not give it here. In accordance with [22] it seems
reasonable that the bound for −BT x̄k is proportional to the factor X̄k. Moreover,
the error in the projection of an arbitrary vector is represented in the bounds by
τκ(B)/[1 − τκ(B)]. Therefore −BT x̄k and Πx̄k can be expected to have the form

(3.8) ‖ −BT x̄k‖ ≤ O(τ)‖B‖
1 − τκ(B)

X̄k, ‖Πx̄k‖ ≤ O(τ)κ(B)

1 − τκ(B)
X̄k.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1314 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

Theorem 3.1 shows that the true residual (I −Π)f − (I −Π)A(I −Π)x̄k is ultimately
proportional to τ , while its projection onto N(BT) will finally reach the level O(u)

provided that the updated residual r̄
(x)
k converges far below that level.

Theorem 3.1. The gap between the true residual (I −Π)f − (I −Π)A(I −Π)x̄k

and the projection of the updated residual (I − Π)r̄
(x)
k can be bounded by

‖(I − Π)f − (I − Π)A(I − Π)x̄k − (I − Π)r̄
(x)
k ‖ ≤ O(τ)κ(B)

1 − τκ(B)
(‖f‖ + ‖A‖X̄k),

where X̄k ≡ maxi=0,...,k ‖x̄i‖.
Proof. The computed approximation x̄k+1 satisfies the relations

(3.9) x̄k+1 = x̄k + ᾱkp̄
(x)
k + Δxk+1, ‖Δxk+1‖ ≤ u‖x̄k‖ + (2u + u2)‖ᾱkp̄

(x)
k ‖.

The inequality ‖ᾱkp̄
(x)
k ‖ ≤ ‖x̄k+1‖ + ‖x̄k‖ + ‖Δxk+1‖ gives ‖ᾱkp̄

(x)
k ‖ ≤ 3X̄k+1 and

‖Δxk+1‖ ≤ O(u)X̄k+1. The vectors ȳ0 and p̄
(y)
k satisfy (B + ΔB0)ȳ0 ≈ fl(f −Ax0) +

Δc0 with ‖ΔB0‖ ≤ τ‖B‖, ‖Δc0‖ ≤ τ‖fl(f −Ax0)‖, and

(B + ΔBk)p̄
(y)
k ≈ fl(r̄

(x)
k − ᾱkAp̄

(x)
k) + Δck,(3.10)

‖ΔBk‖ ≤ τ‖B‖, ‖Δck‖ ≤ τ‖fl(r̄
(x)
k − ᾱkAp̄

(x)
k)‖.(3.11)

For updated residuals we have r̄
(x)
0 = fl(f −Ax0 −Bȳ0) and

r̄
(x)
k+1 = r̄

(x)
k − ᾱkAp̄

(x)
k −Bp̄

(y)
k + Δr

(x)
k+1,(3.12)

‖Δr
(x)
k+1‖ ≤ O(u)(‖r̄(x)

k ‖ + ‖A‖‖ᾱkp̄
(x)
k ‖ + ‖B‖‖p̄(y)

k ‖).(3.13)

The recursive use of (3.9) and (3.12) leads to the expression for the gap between the

projections of f −Ax̄k and r̄
(x)
k

(I − Π)(f −Ax̄k − r̄
(x)
k) = (I − Π)(f −Ax̄0 − r̄

(x)
0) −

k−1∑
i=0

(I − Π)(AΔxi+1 + Δr
(x)
i+1).

Taking norms and corresponding bounds we get the following after some manipulation:

(3.14) ‖(I − Π)(f −Ax̄k − r̄
(x)
k)‖ ≤ O(u)κ(B)

1 − τκ(B)

(
‖f‖ + ‖A‖X̄k

)
.

Here we have used that ‖r̄(x)
k ‖ ≤ ‖r̄(x)

0 ‖ for k = 0, 1, . . . which seems reasonable when
solving the positive semidefinite problem. For the gap between (I−Π)f−(I−Π)A(I−
Π)x̄k and (I − Π)r̄

(x)
k , we can write

‖(I−Π)f−(I−Π)A(I−Π)x̄k−(I−Π)r̄
(x)
k ‖ ≤ ‖(I−Π)(f−Ax̄k−r̄

(x)
k)‖+‖(I−Π)AΠx̄k‖.

Considering (3.14) and (3.8) we can conclude the proof.
In Figure 3.2(a) we report the relative norms of the true residual (I − Π)f −

(I − Π)A(I − Π)x̄k (solid lines) and the updated residual r̄
(x)
k (dashed lines). The

numerical results confirm that the residual f − Ax̄k is within N(BT) approximated

by r̄
(x)
k to the working precision u. However, this is not true for the residual (I −

Π)f − (I − Π)A(I − Π)x̄k which is ultimately O(τ) as it follows from Theorem 3.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1315

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u)

τ = 10−2

τ = 10−6

τ = 10−10

iteration number

re
la

tiv
e

re
si

du
al

 n
or

m
s

||(
I−

Π
)f

−
(I

−Π
)A

(I
−

Π
)x

k)|
|/|

|(
I−

Π
)f

−
(I

−Π
)A

(I
−

Π
)x

0)|
|,

||r
k||/

||r
0||

(a)

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u)

τ = 10−2

τ = 10−6

τ = 10−10

iteration number k

re
la

tiv
e

er
ro

r
no

rm
s

||x
−

x k|| A
/||

x−
x 0|| A

, |
|y

−
y k|| B

T
A

−
1 B

/||
y−

y 0|| B
T
A

−
1 B

(b)

Fig. 3.2. Null-space projection method: (a) the relative norms of the true residual (I − Π)f −
(I−Π)A(I−Π)x̄k of the projected system (solid lines) and the updated residual r̄

(x)
k (dashed lines)—

the updated solution scheme (3.4); the relative norms of the errors ‖x− x̄k‖A/‖x−x0‖A (solid lines)
and ‖y − ȳk‖BTA−1B/‖y − ȳ0‖BTA−1B (dashed lines)—the updated solution scheme (3.4).

The residual −BT x̄k obviously does not depend on the back-substitution scheme; see
Figure 3.3(d).

In contrast to the Schur complement reduction method, the inexactness is con-
nected with the matrix B instead of A. In practice, the sequential application of the
matrix (I−Π)A(I−Π) does not represent a symmetric operator. This is also reflected
in the fact that we assume a general framework for computing the vector xk and ana-

lyze another projection of residuals f −Ax̄k−Bȳk and r̄
(x)
k . Ideally at every iteration

step we apply the matrix-vector product with the matrix (I − Π̂)A(I − Π̂), where Π̂
represents the orthogonal projector Π̂ = (B+ΔB)(B+ΔB)† with ‖ΔB‖ ≤ τ‖B‖. A
question similar to one in subsection 2.1 arises as to whether we can apply the results
of [22] directly to the system (I−Π̂)A(I−Π̂)x̂ = (I−Π̂)f . Theorem 3.1 shows that in
finite precision arithmetic the residual (I−Π)f−(I−Π)A(I−Π)x̄k will remain propor-
tional to the parameter τ . The theory of Greenbaum can be directly applied only if the
multiplication by (I−Π)A(I−Π) satisfies ‖fl[(I−Π)A(I−Π)x]−(I−Π)A(I−Π)x‖ ≤
O(u)‖(I−Π)A(I−Π)‖‖x‖ which is obviously not the case here. In the idealized case
we have fl[(I − Π)A(I − Π)x] = (I − Π̂)A(I − Π̂)x and hence

‖fl[(I − Π)A(I − Π)x] − (I − Π)A(I − Π)x‖ ≤ O(τ)κ(B)

1 − τκ(B)
‖A‖‖x‖.

If we could improve this bound to satisfy ‖fl[(I−Π)A(I−Π)x]− (I−Π)A(I−Π)x‖ ≤
τ‖A‖‖x‖, the outer iteration process could be viewed as an iteration in finite precision
arithmetic with the roundoff unit equal to τ and the theory of Greenbaum would lead
to the estimate

‖(I − Π)f − (I − Π)A(I − Π)x̄k − r̄
(x)
k ‖ ≤ O(τ)

1 − τκ(B)
‖A‖(‖x‖ + X̄k).

The numerical behavior of the null-space projection method was studied also in
[1, 2], where the inner least squares are solved by the QR or LU factorization with
τ = O(u) and the projected system is solved inexactly with the parameter η. Our
Theorem 3.1 thus gives an answer to the question of how small the parameter η can be
in the outer iteration. Roughly speaking, when using the error or residual minimizing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1316 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u), τ = 10−10, τ=10−6, τ=10−2

iteration number

re
la

tiv
e

re
si

du
al

 n
or

m
s

||f
−

A
x k−

B
y k||/

||f
−

A
x 0−

B
y 0||,

 ||
r(x

)
k

||/
||r

(x
)

0
||

(a)

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u)

τ = 10−2

τ = 10−6

τ = 10−10

iteration number

re
la

tiv
e

re
si

du
al

 n
or

m
s

||f
−

A
x k−

B
y k||/

||f
−

A
x 0−

B
y 0||,

 ||
r(x

)
k

||/
||r

(x
)

0
||

(b)

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u), τ = 10−10, τ=10−6, τ=10−2

iteration number

re
la

tiv
e

re
si

du
al

 n
or

m
s

||f
−

A
x k−

B
y k||/

||f
−

A
x 0−

B
y 0||,

 ||
r(x

)
k

||/
||r

(x
)

0
||

(c)

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

τ = O(u)

τ = 10−2

τ = 10−6

τ = 10−10

iteration number

re
si

du
al

 n
or

m
 ||

−
B

T
x k||

(d)

Fig. 3.3. Null-space projection method: The relative norms of the true residual f −Ax̄k −Bȳk
and the updated residual r̄

(x)
k (plots (a), (b), and (c) for the updated solution scheme (3.4), the direct

substitution scheme (3.5), and the corrected direct substitution scheme (3.6), respectively); (d) the
norms of the residual −BT x̄k—the updated solution scheme (3.4).

method for solving the projected Hessian system the backward error associated with
the iterate x̄k cannot be smaller than O(u)κ(B)/[1 −O(u)κ(B)].

It is clear that no matter how we compute x̄k and ȳk we have the following relation
between (I − Π)f − (I − Π)A(I − Π)x̄k, f −Ax̄k −Bȳk, and −BT x̄k:

(3.15) (I − Π)f − (I − Π)A(I − Π)x̄k = (I − Π)(f −Ax̄k −Bȳk) + (I − Π)AΠx̄k.

Owing to (3.8), Πx̄k (and thus also −BT x̄k) is O(τ). From Theorem 3.1 we have
that ‖(I − Π)f − (I − Π)A(I − Π)x̄k‖ is ultimately O(τ). Since (I − Π)(f − Ax̄k) =
(I−Π)(f−Ax̄k−Bȳk) for any ȳk it also follows from Theorem 3.1 that the projection
of f − Ax̄k − Bȳk onto N(BT) will ultimately reach O(u). It is not clear from
(3.15) whether the whole residual f −Ax̄k −Bȳk will be ultimately O(τ) or O(u). It
strongly depends on the back-substitution scheme used for computing the approximate
solutions yk+1. The following subsections show that the residual f − Ax̄k − Bȳk for
the schemes with (3.4) (scheme A) and with (3.6) (scheme C) will finally reach O(u),
while the scheme B using (3.5) leads to the accuracy that is proportional only to τ .

3.2. Scheme A: The updated approximate solution. In this subsection we
analyze the generic scheme with the update (3.4). This implementation does not
require any additional solution of a least squares problem with the matrix B. Indeed,

the computed direction vector p
(y)
k is used to update both the iterate yk and the

residual r̄
(x)
k . As we will see, this algorithm computes the residual f − Ax̄k − Bȳk

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1317

which will ultimately reach the level of roundoff unit u independently of the fact that
the inner least squares are solved with the accuracy determined by the parameter τ .

Theorem 3.2. The gap between the residuals f − Ax̄k − Bȳk and r̄
(x)
k can be

bounded as follows:

‖f −Ax̄k −Bȳk − r̄
(x)
k ‖ ≤ O(u)(‖f‖ + ‖A‖X̄k + ‖B‖Ȳk),

where Ȳk ≡ maxi=0,...,k ‖ȳi‖. The statement of the theorem remains true if we replace

Ȳk by max{‖y0‖, ‖p(y)
i ‖, i = 0, 1, . . . , k − 1}.

Proof. The vector x̄k+1 satisfies (3.9) with ‖Δxk+1‖ ≤ O(u)X̄k+1, and similarly
for ȳk+1 we have

ȳk+1 = ȳk + p̄
(y)
k + Δyk+1, ‖Δyk+1‖ ≤ u‖ȳk‖ + (2u + u2)‖p̄(y)

k ‖

with ‖Δyk+1‖ ≤ O(u)Ȳk+1. The residual r̄
(x)
k+1 satisfies (3.12) and thus ‖Δr

(x)
k+1‖ ≤

O(u)(‖r̄(x)
k ‖+‖A‖X̄k+1+‖B‖Ȳk+1). Using the above relations we obtain the recursive

formula

f −Ax̄k+1 −Bȳk+1 − r̄
(x)
k+1 = f −Ax̄k −Bȳk − r̄

(x)
k −AΔxk+1 −BΔyk+1 − Δr

(x)
k+1.

Taking the norms we get the following after some manipulation:

‖f −Ax̄k −Bȳk − r̄
(x)
k ‖ ≤ O(u)

(
‖f‖ + ‖A‖X̄k + ‖B‖Ȳk +

k−1∑
i=0

‖r̄(x)
i ‖

)
.

The statement can now be proved by induction on k.

We have shown that r̄
(x)
k is a good approximation to f−Ax̄k−Bȳk independent of

the fact that p̄
(y)
k are computed inexactly. Note that Theorem 3.1 can be derived using

Theorem 3.2 due to ‖(I −Π)(f −Ax̄k − r̄
(x)
k)‖ = ‖(I −Π)(f −Ax̄k −Bȳk − r̄

(x)
k)‖ ≤

‖f−Ax̄k−Bȳk− r̄
(x)
k ‖. In Figure 3.3(a) we show the relative norms of f−Ax̄k−Bȳk

(solid lines) and r̄
(x)
k (dashed lines). The results of our numerical experiment are in a

good agreement with Theorem 3.2.

3.3. Scheme B: The approximate solution computed by a direct sub-
stitution. In this subsection we analyze the scheme (3.5), which uses the directly
computed right-hand side vector f −Axk. The computed ȳk is then a solution of the
perturbed problem

(3.16) (B + ΔBk)ȳk ≈ fl(f −Ax̄k) + Δck

with ‖ΔBk‖ ≤ τ‖B‖ and ‖Δck‖ ≤ τ‖fl(f − Ax̄k)‖. We will show that (I − Π)r̄
(x)
k is

a good approximation of f − Ax̄k − Bȳk provided that both are above their level of
maximum attainable accuracy.

Theorem 3.3. The gap between the residuals f −Ax̄k−Bȳk and (I−Π)r̄
(x)
k can

be bounded by

‖f −Ax̄k −Bȳk − (I − Π)r̄
(x)
k ‖≤ 5τκ(B)

1−τκ(B) (‖f‖ + ‖A‖‖x̄k‖)

+O(u)(‖f‖ + ‖A‖X̄k + ‖B‖Ȳk).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1318 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

Proof. Considering (3.16) it follows for the true residual that

f −Ax̄k −Bȳk = f −Ax̄k −B(B + ΔBk)
†[fl(f −Ax̄k) + Δck]

= (I − Π)(f −Ax̄k) + B[B† − (B + ΔBk)
†]fl(f −Ax̄k)

+BB†[fl(f −Ax̄k) − (f −Ax̄k)] −B(B + ΔBk)
†Δck.

Taking (3.16), the bounds on B[B† − (B +ΔBk)
†], (B +ΔBk)

†, and Theorem 3.1 we
get the desired result.

When using the formula (3.5) the residual f −Ax̄k −Bȳk will not decrease below

a level proportional to τ , while (I − Π)r̄
(x)
k converges beyond the level O(u). This

result is illustrated by our numerical experiment. In Figure 3.3(b) we plotted the

relative norms of f −Ax̄k −Bȳk (solid lines) and r̄
(x)
k (dashed lines).

3.4. Scheme C: The approximate solution computed with a corrected
direct substitution. In this subsection we analyze the scheme (3.6) requiring a
solution of two least squares problems with B. We show that its behavior is similar to
the algorithm using the update (3.4). We prove that under certain assumptions the
true residual f − Ax̄k − Bȳk converges ultimately to the O(u) level. The difference
is that while Theorem 3.2 holds without any additional conditions, here we have
a situation analogous to the behavior of nonstationary iterative methods (see [23,
Chapter 16]).

Theorem 3.4. Provided that for sufficiently large step k the computed vector x̄k

stagnates, i.e., we have ‖x̄k+1 − x̄k‖ ≤ O(u)X̄k+1, there exists some iteration step k0

such that

(3.17) ‖f −Ax̄k −Bȳk − (I − Π)r̄
(x)
k ‖ ≤ O(u)(‖f‖ + ‖A‖X̄k + ‖B‖Ȳk)

holds for all k ≥ k0.

Proof. The vector ȳk+1 satisfies ȳk+1 = ȳk + q̄
(y)
k + Δyk+1 and ‖Δyk+1‖ ≤

O(u)Ȳk+1, where q̄
(y)
k is the solution of the problem (B + ΔBk)q̄

(y)
k ≈ fl(f −Ax̄k+1 −

Bȳk) + Δck with ‖ΔBk‖ ≤ τ‖B‖ and ‖Δck‖ ≤ τ‖fl(f − Ax̄k+1 − Bȳk)‖. For f −
Ax̄k+1 −Bȳk+1 we can then write

f −Ax̄k+1 −Bȳk+1 = (I − Π)(f −Ax̄k+1) + Gk(f −Ax̄k+1 −Bȳk)

−B(B + ΔBk)
†Δck + hk,

where Gk = B[B† − (B + ΔBk)
†] and hk = −B(B + ΔBk)

†[fl(f − Ax̄k+1 − Bȳk) −
(f −Ax̄k+1 −Bȳk)]−BΔyk+1. Projecting f −Ax̄k+1 −Bȳk+1 onto R(B) and taking
norms, we obtain

‖Π(f −Ax̄k+1 −Bȳk+1)‖ ≤
[
‖Gk‖ + τ‖B(B + ΔBk)

†‖
]
‖f −Ax̄k+1 −Bȳk‖

+ τ‖B(B + ΔBk)
†‖‖fl(f −Ax̄k+1 −Bȳk) − (f −Ax̄k+1 −Bȳk)‖ + ‖hk‖.

The term ‖f −Ax̄k+1 −Bȳk‖ can be further bounded by

‖f −Ax̄k+1 −Bȳk‖ ≤ ‖(I −Π)(f −Ax̄k+1)‖+ ‖Π(f −Ax̄k −Bȳk)‖+ ‖A(x̄k+1 − x̄k)‖

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1319

which together with the bound on ‖Gk‖, ‖hk‖ ≤ O(u)(‖f‖ + ‖A‖X̄k+1 + ‖B‖Ȳk+1),
and τ‖B(B + ΔBk)

†‖ ≤ τκ(B)[1 − τκ(B)]−1 < 1 leads to

‖Π(f −Ax̄k+1 −Bȳk+1)‖

≤ 3τκ(B)

1 − τκ(B)
[‖Π(f −Ax̄k −Bȳk)‖ + ‖(I − Π)(f −Ax̄k+1)‖ + ‖A‖‖x̄k+1 − x̄k‖]

+O(u)(‖f‖ + ‖A‖X̄k+1 + ‖B‖Ȳk+1).

After the recursive use of the previous inequality we obtain

‖Π(f −Ax̄k −Bȳk)‖ ≤
(

3τκ(B)

1 − τκ(B)

)k

‖f −Ax̄0 −Bȳ0‖(3.18)

+
k−1∑
i=0

(
3τκ(B)

1 − τκ(B)

)k−i

[‖(I − Π)(f −Ax̄i+1)‖ + ‖A‖‖x̄i+1 − x̄i‖]

+O(u)(‖f‖ + ‖A‖X̄k + ‖B‖Ȳk).

Under the assumption on the stagnation of iterates there exist some index k0 such
that the second term on the right-hand side of (3.18) will be of order O(u)(‖f‖ +
‖A‖X̄k + ‖B‖Ȳk) for all iteration steps k ≥ k0. Finally, from Theorem 3.2 we have

‖(I − Π)(f −Ax̄k) − (I − Π)r̄
(x)
k ‖ ≤ O(u)(‖f‖ + ‖A‖X̄k + ‖B‖Ȳk).

Theorem 3.4 shows that f −Ax̄k −Bȳk will ultimately reach the O(u) level. As
soon as the approximate solutions x̄k stagnate with ‖x̄k+1 − x̄k‖ ≤ O(u)X̄k+1, the
rate of convergence of this process is roughly given by the factor 3τκ(B)[1−τκ(B)]−1.
Note that similar to subsection 2.4 the assumption on the stagnation is not restrictive.
The numerical results on a model example are shown in Figure 3.3(c), which reports

the relative norms of f − Ax̄k − Bȳk (solid lines) and r̄
(x)
k (dashed lines), and are in

good agreement with Theorem 3.4.

3.5. Forward error analysis. In this subsection we look at the maximum
attainable accuracy measured by errors x− x̄k and y− ȳk. The analysis is very similar
to the Schur complement reduction method and therefore we focus only on issues
particular to the null-space projection method. We recall that relation (2.25) gives
the universal bounds (2.26), (2.27), and (2.28). Independent of the back-substitution
scheme used for computing ȳk, the terms γ2‖−BT x̄k‖ and γ3‖−BT x̄k‖ on the right-
hand side of (2.26) and (2.27), respectively, are always proportional to τ . The terms
with f−Ax̄k−Bȳk depend on the back-substitution formula and their final magnitude
will be at most O(τ), leading to similar conclusions on errors as in subsection 2.5.
The estimate for ‖x− x̄k‖A is given in the following theorem.

Theorem 3.5. The A-norm of the error x− x̄k can be bounded as

‖x− x̄k‖A ≤ δ1‖ −BT x̄k‖ + δ2‖(I − Π)(f −Ax̄k)‖,(3.19)

where δ1 ≡ ‖A‖1/2/σmin(B) and δ2 ≡ σ
−1/2
min (A) are constants independent of the

iteration step k.
Proof. Since (I−Π)A(x− x̄k) = (I−Π)(f −Ax̄k), B

Tx = 0 and ‖B(BTB)−1‖ =
σ−1
min(B), ‖x− x̄k‖2

A can be written as

‖x− x̄k‖2
A = (Π(x− x̄k), A(x− x̄k)) + ((I − Π)A(x− x̄k), x− x̄k)(3.20)

≤ ‖A1/2‖‖x− x̄k‖A(‖B(BTB)−1‖‖BT (x− x̄k)‖ + ‖(I − Π)(f −Ax̄k)‖).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1320 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

Dividing both sides by ‖x− x̄k‖A gives the statement (3.19).

The first term on the right-hand side of (3.19) should be zero in exact arithmetic.
The computed x̄k, however, does not fulfill −BT x̄k = 0 and its departure from N(BT)
was discussed in (3.8). The second term converges to zero in exact arithmetic and it
is related to the projected residual (I − Π)(f − Ax̄k); see Theorem 3.14. The result

for y − ȳk can be obtained from (3.19) using (2.28). Provided that r̄
(x)
k is larger than

O(τ), ‖x− x̄k‖A is then well approximated by δ2‖(I − Π)r̄
(x)
k ‖.

4. Conclusions. In this paper we have looked at the numerical behavior of cer-
tain inexact saddle point solvers. In particular, for several mathematically equivalent
implementations we studied the influence of inexact solving of the inner systems and
estimated their maximum attainable accuracy. When considering the outer iteration
process our rounding error analysis has led to results similar to ones which can be
obtained assuming exact arithmetic. The situation was different when we looked at
the residuals in the saddle point system. We have shown that some implementa-
tions lead ultimately to residuals on the roundoff unit level independently of the fact
that the inner systems were solved inexactly on a much higher level τ . Indeed, our
results confirmed that the generic and actually the cheapest implementations deliver
the approximate solutions which satisfy either the second or the first block equation
to the working accuracy. In addition, the schemes with the corrected direct substi-
tution are also very attractive. We gave a theoretical explanation for the behavior
which was probably observed or is already tacitly known. The implementations that
we pointed out as optimal are actually those which are widely used and suggested
in applications. It appears that, when measured in terms of the errors, the maxi-
mum attainable accuracy level is similar for all considered implementations and is
proportional to the parameter which measures the inexactness in solving the inner
systems.

Acknowledgments. The authors would like to thank the anonymous referees
for their valuable comments and suggestions and Volker Mehrmann for his discussion
during the MAT-TRIAD 2005 meeting, which actually stimulated this work.

REFERENCES

[1] M. Arioli, The use of QR factorization in sparse quadratic programming and backward error
issues, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 825–839.

[2] M. Arioli and L. Baldini, A backward error analysis of a null space algorithm in sparse
quadratic programming, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 425–442.

[3] J. Atanga and D. Silvester, Iterative methods for stabilized mixed velocity-pressure finite
elements, Internat. J. Numer. Methods Fluids, 14 (1992), pp. 71–81.

[4] C. Bacuta, A unified approach for Uzawa algorithms, SIAM J. Numer. Anal., 44 (2006),
pp. 2633–2649.

[5] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numer., 14 (2005), pp. 1–137.

[6] A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[7] A. Bouras and V. Frayssé, Inexact matrix-vector products in Krylov methods for solving

linear systems: A relaxation strategy, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 660–678.
[8] A. Bouras, V. Frayssé, and L. Giraud, A Relaxation Strategy for Inner-Outer Linear Solvers

in Domain Decomposition Methods, Technical report TR/PA/00/17, CERFACS, France,
2000.

[9] D. Braess, P. Deuflhard, and K. Lipnikov, A subspace cascadic multigrid method for mortar
elements, Computing, 69 (2002), pp. 205–225.

[10] D. Braess and R. Sarazin, An efficient smoother for the Stokes problem, Appl. Numer. Math.,
23 (1997), pp. 3–19.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAX ATTAINABLE ACCURACY OF SADDLE POINT SOLVERS 1321

[11] J. H. Bramble, J. E. Pasciak, and A. T. Vassilev, Analysis of the inexact Uzawa algorithm
for saddle point problems, SIAM J. Numer. Anal., 34 (1997), pp. 1072–1092.

[12] J. H. Bramble, J. E. Pasciak, and A. T. Vassilev, Inexact Uzawa algorithms for nonsym-
metric saddle point problems, Math. Comp., 69 (2000), pp. 667–689.

[13] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput.
Math. 15, Springer-Verlag New York, 1991.

[14] J. W. Demmel, N. J. Higham, and R. S. Schreiber, Stability of block LU factorization,
Numer. Linear Algebra Appl., 2 (1995), pp. 173–190.

[15] H. C. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point
problems, SIAM J. Numer. Anal., 31 (1994), pp. 1645–1661.

[16] A. Frommer and D. B. Szyld, H-splittings and two-stage iterative methods, Numer. Math.,
63 (1992), pp. 345–356.

[17] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press Inc.,
London, 1981.

[18] L. Giraud, S. Gratton, and J. Langou, Convergence in backward error of relaxed GMRES,
SIAM J. Sci. Comput., 29 (2007), pp. 710–728.

[19] G. H. Golub and Q. Ye, Inexact preconditioned conjugate gradient method with inner-outer
iteration, SIAM J. Sci. Comput., 21 (1999), pp. 1305–1320.

[20] N. I. M. Gould, M. E. Hribar, and J. Nocedal, On the solution of equality constrained
quadratic programming problems arising in optimization, SIAM J. Sci. Comput., 23 (2001),
pp. 1376–1395.

[21] A. Greenbaum, Accuracy of computed solutions from conjugate-gradient-like methods, in Ad-
vances in Numerical Methods for Large Sparse Sets of Linear Systems, vol. 10, M. Natori
and T. Nodera, eds., Keio University, Yokohama, Japan, 1994, pp. 126–138.

[22] A. Greenbaum, Estimating the attainable accuracy of recursively computed residual methods,
SIAM J. Matrix Anal. Appl., 18 (1997), pp. 535–551.

[23] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[24] P. Jiránek and M. Rozložńık, Limiting accuracy of segregated solution methods for nonsym-

metric saddle point problems, J. Comput. Appl. Math., to appear.
[25] C. Keller, N. I. M. Gould, and A. J. Wathen, Constraint preconditioning for indefinite

linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300–1317.
[26] J. Maryška, M. Rozložńık, and M. Tůma, Schur complement reduction in the mixed-hybrid

approximation of Darcy’s law: Rounding error analysis, J. Comput. Appl. Math., 117
(2000), pp. 159–173.

[27] N. K. Nichols, On the convergence of two-stage iterative processes for solving linear equations,
SIAM J. Numer. Anal., 10 (1973), pp. 460–469.

[28] I. Perugia and V. Simoncini, Block-diagonal and indefinite symmetric preconditioners for
mixed finite element formulations, Numer. Linear Algebra Appl., 7 (2000), pp. 585–616.

[29] A. Ramage and A. J. Wathen, Iterative solution techniques for the Stokes and Navier-Stokes
equations, Internat. J. Numer. Methods Fluids, 19 (1994), pp. 67–83.

[30] M. Rozložńık and V. Simoncini, Krylov subspace methods for saddle point problems with
indefinite preconditioning, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 368–391.

[31] V. Simoncini and D. B. Szyld, Theory of inexact Krylov subspace methods and applications
to scientific computing, SIAM J. Sci. Comput., 25 (2003), pp. 454–477.

[32] Z. Strakoš and P. Tichý, On error estimation in the conjugate gradient method and why
it works in finite precision computations, Electron. Trans. Numer. Anal., 13 (2002),
pp. 56–80.

[33] J. van den Eshof and G. L. G. Sleijpen, Inexact Krylov subspace methods for linear systems,
SIAM J. Matrix Anal. Appl., 26 (2004), pp. 125–153.

[34] P. A. Wedin, Perturbation theory for pseudo-inverses, BIT, 13 (1973), pp. 217–232.
[35] C. Wieners and B. I. Wohlmuth, Duality estimates and multigrid analysis for saddle

point problems arising from mortar discretizations, SIAM J. Sci. Comput., 24 (2003),
pp. 2163–2184.

[36] W. Zulehner, A class of smoothers for saddle point problems, Computing, 65 (2000),
pp. 227–246.

[37] W. Zulehner, Analysis of iterative methods for saddle point problems: A unified approach,
Math. Comp., 71 (2002), pp. 479–505.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1322–1342

NEW FAST AND ACCURATE JACOBI SVD ALGORITHM. I∗

ZLATKO DRMAČ† AND KREŠIMIR VESELIĆ‡

Dedicated to the memory of Patricia J. Eberlein, whose enthusiasm and belief in the powers
of the Jacobi methods were a constant inspiration

Abstract. This paper is the result of concerted efforts to break the barrier between numerical
accuracy and run-time efficiency in computing the fundamental decomposition of numerical linear
algebra—the singular value decomposition (SVD) of general dense matrices. It is an unfortunate
fact that the numerically most accurate one-sided Jacobi SVD algorithm is several times slower than
generally less accurate bidiagonalization-based methods such as the QR or the divide-and-conquer
algorithm. Our quest for a highly accurate and efficient SVD algorithm has led us to a new, superior
variant of the Jacobi algorithm. The new algorithm has inherited all good high accuracy properties
of the Jacobi algorithm, and it can outperform the QR algorithm.

Key words. Jacobi method, singular value decomposition, eigenvalues

AMS subject classifications. 15A09, 15A12, 15A18, 15A23, 65F15, 65F22, 65F35

DOI. 10.1137/050639193

1. Introduction. In 1846, Jacobi [25] introduced a new simple and accurate
algorithm for diagonalization of symmetric matrices. The algorithm starts with sym-
metric matrix H(0) = H ∈ R

n×n and then generates a sequence of congruences,
H(k+1) = (V (k))TH(k)V (k), where V (k) is plane rotation; i.e., V (k) differs from the
identity only at the cleverly chosen positions (pk, pk), (pk, qk), (qk, pk), (qk, qk), where(

V
(k)
pk,pk V

(k)
pk,qk

V
(k)
qk,pk V

(k)
qk,qk

)
=

(
cosφk sinφk

− sinφk cosφk

)
.

The angle φk is determined to annihilate the (pk, qk) and (qk, pk) positions in H(k).

Simple trigonometry reveals that in the nontrivial case (H
(k)
pkqk �= 0) we can take

cot 2φk =
H

(k)
qkqk −H

(k)
pkpk

2H
(k)
pkqk

and tanφk =
sign(cot 2φk)

| cot 2φk| +
√

1 + cot2 2φk

∈
(
−π

4
,
π

4

]
,

where φk is the smaller of two angles satisfying the requirements. (If H
(k)
pkqk = 0, then

V (k) = I, the identity.) Under suitable pivot strategies k �→ (pk, qk), the sequence
(H(k))∞k=0 converges to diagonal matrix Λ, and the product V (0)V (1) · · ·V (k) · · · con-
verges to the orthogonal matrix V of eigenvectors of H, HV = V Λ. The convergence

is monitored using the off-norm, Ω(H) =
√∑

i �=j H
2
ij , for which one easily shows the

monotonicity Ω2(H(k+1)) = Ω2(H(k)) − 2(H(k))2pk,qk
≤ Ω2(H(k)).

∗Received by the editors August 20, 2005; accepted for publication (in revised form) by M. Chu
June 5, 2007; published electronically January 4, 2008. This work was supported by the Volkswagen–
Stiftung grant Designing Highly Accurate Algorithms for Eigenvalue and Singular Value Decompo-
sitions.

http://www.siam.org/journals/simax/29-4/63919.html
†Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia (drmac@

math.hr). The work of this author was supported by the Croatian Ministry of Science and Technology
under grant 0037120 (Numerical Analysis and Matrix Theory).

‡Lehrgebiet Mathematische Physik, Fernuniversität Hagen, Postfach 940, D-58084 Hagen, Ger-
many (kresimir.veselic@FernUni-Hagen.de).

1322

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. I 1323

Hestenes [23] noted that the Jacobi method can be used to compute the SVD
of general matrices. If A is of full column rank1 and if we define H = ATA, then
the application of the method to H, H(k+1) = (V (k))TH(k)V (k), can be represented
by the sequence A(k+1) = A(k)V (k). To determine the parameters of V (k) we only
need the four pivot elements of H(k), that is, the 2 × 2 Gram matrix of the pkth and
the qkth column of A(k). The limit matrix of (A(k))∞k=0 is UΣ, where the columns
of orthonormal U are the left singular vectors and the diagonal matrix Σ carries the
singular values along its diagonal. The accumulated product of Jacobi rotations is
orthogonal matrix V of the eigenvectors of H. The SVD of A is A = UΣV T .

The development of fast methods based on reduction of A to bidiagonal form
shifted interest away from the Jacobi SVD method—bidiagonalization-based routines
xGESVD [11] and xGESDD [21] from LAPACK [1] can in some cases be ten or
even fifteen times faster than the Jacobi SVD. However, Demmel and Veselić [12]
showed that the Jacobi algorithm is more accurate than any other algorithm that
first reduces the matrix to bidiagonal form. Some classes of matrices that appear
ill-conditioned with respect to SVD computation in fact define the SVD perfectly
well, and the ill-conditioning is artificial. For instance, if A ∈ R

m×n is such that
minD=diag κ2(AD) is moderate, then the Jacobi SVD algorithm computes all singular
values σ1 ≥ · · · ≥ σn with guaranteed number of correct digits independent of the
size of κ2(A) = σmax(A)/σmin(A) ≡ σ1/σn. The Jacobi method correctly deals with
artificial ill-conditioning (e.g., grading), while the bidiagonalization-based methods do
not.

In this paper we present a new preconditioned Jacobi SVD algorithm which pro-
vides higher accuracy with efficiency comparable to the bidiagonalization-based meth-
ods. In section 2 we show that rank revealing QR factorization can be used as an
efficient preconditioner for the Jacobi SVD algorithm, and we reduce the problem to
SVD computation of structured triangular matrices. Important detail of choosing A
or AT as input to the new algorithm is discussed in section 3. The dilemma “A or
AT ” generates interesting mathematical questions leading us to study entropy of the
set of normalized diagonals of the adjoint orbit of a positive definite matrix. The
basic structure of the new Jacobi SVD algorithm is developed in section 4. Numeri-
cal properties are analyzed in section 5. It is shown that the backward perturbation
has structure which allows scaling invariance of the condition number for the forward
error. Implementation details of a new Jacobi SVD for triangular matrices and results
of numerical testing of the preconditioned Jacobi SVD are given in the second part
of this paper [18], where we demonstrate the potential of the new approach.

2. QR factorization as preconditioner for the Jacobi SVD algorithm. In
the case m
 n, the QR factorization A = Q (RT 0)

T
is an attractive preprocessor

for the Jacobi SVD algorithm, because Jacobi rotations can be applied to R ∈ R
n×n

instead of A ∈ R
m×n. If the QR factorization is computed with a rank revealing

column pivoting, AΠ = Q (RT 0)
T
, then the additional structure of R opens quite

a few possibilities for more efficient SVD computation by the Jacobi algorithm.

2.1. Faster convergence. Veselić and Hari [34] noted that the eigenvalues of
symmetric positive definite H can be computed more efficiently if the Jacobi SVD
method is applied to the lower triangular factor L from the pivoted Cholesky fac-
torization PTHP = LLT . If H = ATA, rank(A) = n, then Cholesky factoriza-
tion with pivoting of H corresponds to the QR factorization with column pivoting

1This is only a temporary assumption for the sake of simplicity.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1324 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

AΠ = Q (RT 0)
T
, L = RT . Hence, the Jacobi SVD on RT should have better

convergence than if applied to R, and the preconditioning is performed simply by
taking RT instead of R as input. Implicitly, this is one step of the Rutishauser [31]
LR diagonalization method RTR � RRT , which has a nontrivial diagonalizing effect.

Let R =
(R[11]

0
R[12]

R[22]

)
, where the diagonal blocks are k × k and (n− k)× (n− k),

and consider the corresponding block partitions of H = RTR and M = RRT :

H =

(
H[11] H[12]

H[21] H[22]

)
=

(
RT

[11]R[11] RT
[11]R[12]

RT
[12]R[11] RT

[12]R[12] + RT
[22]R[22]

)
,

M =

(
M[11] M[12]

M[21] M[22]

)
=

(
R[11]R

T
[11] + R[12]R

T
[12] R[12]R

T
[22]

R[22]R
T
[12] R[22]R

T
[22]

)
.(2.1)

Note that the (1, 1) block in M is increased, and the (2, 2) block is decreased, i.e.,
Trace(M[11]) = Trace(H[11]) + ‖R[12]‖2

F , Trace(M[22]) = Trace(H[22]) − ‖R[12]‖2
F .

This redistribution of the mass of the diagonal blocks makes the gap between the
dominant and subdominant parts of the spectrum more visible on the diagonal. Using
the monotonicity of the spectrum, we also conclude that properly ordered eigenvalues
λi(·) of the diagonal blocks satisfy λi(M[11]) ≥ λi(H[11]), λj(M[22]) ≤ λj(H[22]), 1 ≤
i ≤ k, 1 ≤ j ≤ n − k. With suitable pivot strategy, this has positive impact on
the structure of Jacobi rotations (smaller angles) in the off-diagonal blocks in (2.1).
Moreover, the off-diagonal blocks of M are expected to be smaller than those in H.

Proposition 2.1. With the partition of R and (2.1) define R[1:] = (R[11] R[12]),

R[:2] =
(R[12]

R[22]

)
, cos Φ = H

−1/2
[11] H[12]H

−1/2
[22] , and cos Ψ = M

−1/2
[11] M[12]M

−1/2
[22] . Then,

with ‖ · ‖ ∈ {‖ · ‖2 ≡ σmax(·), ‖ · ‖F },

(i) ‖M[12]‖ ≤
σmax(R[22])

σmin(R[11])
‖H[12]‖ ; (ii) ‖ cos Ψ‖ ≤

σmax(R[:2])

σmin(R[1:])
‖ cos Φ‖.(2.2)

Proof. To prove the well-known relation (i), one notes that M[12] = R−T
[11]H[12]R

T
[22].

For the new estimate (ii), we use the connections between the LQ factorization,
Cholesky factorization and the positive definite matrix square root to conclude that
there exist orthogonal matrices S1, S2 such that

cos Ψ = (R[1:]R
T
[1:])

−1/2 S1 cos Φ (RT
[:2]R[:2])

1/2 S2.

Taking the norm completes the proof.
Let ξ = ξ(R, k) = σmax(R[22])/σmin(R[11]). If ξ < 1, then ‖M[12]‖F ≤ ξ‖H[12]‖F <

‖H[12]‖F . Thus, a smaller value of ξ implies more block diagonal structure in M than
in H. Now, it is the task of the rank revealing pivoting in the QR factorization to
find index k for which ξ � 1. If the pivoting is done right, and if the singular values
of R are distributed so that σk
 σk+1 for some k, then ξ will be much smaller than
one. See [7], [8] for a detailed analysis related to (2.2(i)).

Note that (2.2(ii)) estimates scaled off-diagonal blocks, which is relevant for the
convergence of the Jacobi algorithm. Relevant separation is given by ζ = ζ(R, k) =
σmax(R[:2])/σmin(R[1:]). In general, ξ < 1 does not imply ζ < 1, but an additional
factorization will provide that stronger separation.

Theorem 2.2. Let R = LQL be the LQ factorization of R,(
R[11] R[12]

0 R[22]

)
=

(
L[11] 0
L[21] L[22]

)
QL = LQL.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. I 1325

Then we have the following monotonicity relations:

σi

((
L[11]

L[21]

))
≥ σi(L[11]) = σi(R[1:]) ≥ σi(R[11]), i = 1, . . . , k;(2.3)

σj(L[22]) ≤ σj((L[21] L[22])) = σj(R[22]) ≤ σj(R[:2]), j = 1, . . . , n− k.(2.4)

In particular, if σmin(R[1:]) > σmax(R[22]), then ξ(LT , k) < 1, ζ(LT , k) < 1, and
‖L[21]‖ < ‖R[12]‖. In that case, M = RRT is a shifted quasi-definite matrix.

Proof. The inequalities (2.3) and (2.4) are obtained by an application of the mono-
tonicity principle to the corresponding eigenvalues. Combination of the inequalities
with the assumption σmin(R[1:]) > σmax(R[22]) gives the bounds on ξ and ζ. Since

L[21] = R[22]R
T
[12]L

−T
[11] we have, for ‖ · ‖ ∈ {‖ · ‖2, ‖ · ‖F }, ‖L[21]‖ ≤ σmax(R[22])

σmin(R[1:])
‖R[12]‖ <

‖R[12]‖. Finally, note that M − s2I is quasi-definite for any s ∈ (σmax(R[22]),
σmin(R[1:])).

Remark 2.1. Theorem 2.2 introduces gap γ(R, k) = σmax(R[22])/σmin(R[1:]),
which from the pivoted QR factorization requires less than the condition σmax(R[22]) <

σmin(R[11]). If γ < 1, then the off-diagonal block in M (1) = LTL satisfies ‖M (1)
[21]‖ ≤

(σmax(L[22])/σmin(L[11]))(σmax(R[22])/σmin(R[11]))‖H21‖.
Now, it is reasonable to expect that the one-sided Jacobi SVD algorithm applied

to L runs quite differently than if applied to the initial A. The structure of L calls for
modifications, and the result is a new Jacobi-type algorithm designed for triangular
matrices. Its complete description is in the second part of this report [18].

Remark 2.2. It is well known that repeated application of the step “do QR
factorization and transpose R” is actually a simple way to approximate the SVD;
see [29], [20], [32]. Fernando and Parlett [20] first realized that “the use of a precondi-
tioner for cyclic Jacobi is not a futile effort.” Here we stress the term preconditioner
and use of the implicit Cholesky SVD as preconditioner for Jacobi iterations.

2.2. Rank deficient cases. Consider the case of A with low numerical rank.
The task is to compute the singular values with standard error bound. In a rank
revealing QR factorization, the computed R̃, Q̃ satisfy backward stability relations

(A + δA)Π = Q̂

(
R̃
0

)
, ‖δA(:, i)‖2 ≤ εqr‖A(:, i)‖2, i = 1, . . . , n; ‖Q̃− Q̂‖F ≤ εqr,

where Q̂ is orthogonal and εqr is bounded by a moderate f(m,n) times the round-off

ε. Suppose there is an index k ∈ {1, . . . , n} such that R̃ can be partitioned as

R̃ =

(
R̃[11] R̃[12]

0 R̃[22]

)
, where R̃[22] ∈ R

(n−k)×(n−k) is sufficiently small.(2.5)

If we set R̃[22] to zero, then we will implicitly continue working with the matrix

Q̂

⎛⎝ R̃[11] R̃[12]

0 0
0 0

⎞⎠ =

⎛⎝A + δA− Q̂

⎛⎝ 0 0
0 R̃[22]

0 0

⎞⎠ΠT

⎞⎠Π ≡ (A + ΔA)Π.(2.6)

If ‖R̃[22]‖2/‖A‖2 is of the order of εqr, then replacing R̃[22] with zero is in the matrix
norm a backward stable operation for singular value computation with classical error
bound—the perturbation in each singular value is small compared to ‖A‖2 = σmax(A).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1326 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

Further, (2.6) is the QR factorization of (A+ ΔA)Π, where for the computed orthog-
onal factor we can keep Q̃. If we compute the LQ factorization of the k × n matrix,
R̂ ≡ (R̃[11] R̃[12]) = LQ1, then the Jacobi iterations work on substantially smaller
k× k lower triangular matrix L. Thus, a rank revealing ULV decomposition is in this
case an excellent preprocessor for the Jacobi SVD algorithm.

Theorem 2.3. Let the block R̃[11] in (2.6) be nonsingular and let R̃[11] = DT,

where D is diagonal with σmin(D) = |r̃kk|. Further, let the truncated block R̃[22] satisfy

‖R̃[22]‖2 ≤ τ |r̃kk|. If σ̃1 ≥ · · · ≥ σ̃k and σ̂1 ≥ · · · ≥ σ̂k are the nonzero singular values

of R̃ and R̂, respectively, then for i = 1, . . . , k

0 ≤ σ̃i − σ̂i

σ̃i
≤

(
σ̂k

σ̃i

)
τ‖T−1‖2.

Proof. We first note that maxi=1:k |σ̃i − σ̂i| ≤ ‖R̃[22]‖2 ≤ τ |r̃kk | ≤ τ σ̃1, which
estimates truncation error relative to the matrix norm. This bound actually contains
better estimate because |r̃kk| is related to σ̃k. From the Courant–Fisher minimax
theorem we conclude |r̃kk| ≤ ‖T−1‖2σk(R̃[11]), where σk(R̃[11]) is the kth largest

singular value of R̃[11]. The proof is completed by the Cauchy interlacing theorem,

which yields σk(R̃[11]) ≤ σ̂k ≤ σ̃k.
Consider, for example, the classical Businger–Golub pivoting [6],

AΠ = Q

(
R
0

)
, |rii| ≥

j∑
k=i

r2
kj , 1 ≤ i < j ≤ n.(2.7)

With careful implementation [16], the computed R̃ has the structure (2.7) up to small
round-off. The index k can be determined, for example, by looking for a gap between
two consecutive diagonals of R̃, i.e., |r̃k+1,k+1| ≤ ε|r̃kk|. In that case, ‖R̃[22]‖2 ≤√
n− kε|r̃kk|. Further, with D = diag(‖R̃[11](i, :)‖2)

k
i=1, the condition number ‖T−1‖2

in Theorem 2.3 is usually smaller than O(k). (Its theoretical upper bound contains
2k factor, and it is attained at the Kahan matrix.) We refer to [14] for more details.

To conclude, in cases of low numerical rank, we can always use best available rank
revealing QR factorization to reduce the dimension, if necessary with an additional
LQ factorization, as described above.

3. A or AT ?. If A ∈ R
m×n with m > n, then the QR factorization of A is an

efficient preprocessor and preconditioner for the Jacobi algorithm. If m < n, then
we start with the QR factorization of AT . But what if A is a square nonsingular
n × n matrix? For example, let A = DQ , where D is diagonal and Q is orthogonal.
In that case working with A is implicit diagonalization of ATA = QTD2Q, while
taking AT implicitly diagonalizes diagonal matrix AAT = D2. For a nonnormal A, a
better choice between ATA and AAT has a smaller off-diagonal part and the diago-
nals reveal the spectrum in the sense that their distribution reveals the distribution
of the spectrum as closely as possible. This desirable spectrum revealing property
implies that we prefer A with less equilibrated column norms. Otherwise, the effect
of preconditioning is weaker, and larger angles of Jacobi rotations are more likely to
appear during the process, thus causing slower convergence. In an efficient computa-
tion, the decision “A or AT ” has to be based on at most O(n2) flops. This complexity
corresponds to computing the diagonal entries of H = ATA and M = AAT .

Let s2(H) =
∑n

i=1 h
2
ii = Trace(H ◦ H), s2(M) = Trace(M ◦ M). (Here ◦

denotes the Hadamard matrix product.) Since H and M are orthogonally similar,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. I 1327

‖H‖F = ‖M‖F , a larger value (s2(H) or s2(M)) implies smaller corresponding off-
norm Ω(H) or Ω(M). In fact, s2(·) attains its maximum over the set of matrices
orthogonally similar to H only at diagonal matrices. In the standard symmetric

Jacobi algorithm the value of Ω2(H)
‖H‖2

F
= 1 − Trace(H◦H)

Trace(HH) = 1 − s2(H)
‖H‖2

F
is used to measure

numerical convergence. Hence, s2(·) is one possible choice for the decision between A
and AT , but with respect to the standard matrix off-norm. Note, however, that in
floating point computation s2(·) may ignore tiny diagonal entries, and that it does not
provide any information about the distributions of the diagonal entries of H and M .
The latter is crucial for the success of both the preconditioner and the Jacobi itera-
tions. In the next section we address that issue by a novel application of well-known
tools.2

3.1. Entropy of the diagonal of the adjoint orbit. Let H = HT be positive
semidefinite. From the spectral decomposition H = UΛUT , hii =

∑n
j=1 |uij |2λj ,

i = 1, . . . , n. If we define vectors d(H) = (h11, . . . , hnn)
T
, λ(H) = (λ1, . . . , λn)

T
,

then d(H) = (U ◦ U)λ(H), where the matrix S = U ◦ U is doubly stochastic, in fact,
orthostochastic. Thus, d(H) is majorized by λ(H) (d(H) ≺ λ(H)), which is known
as the Schur theorem; see, e.g., [3]. If we use normalization3 by the trace,

d(H)

Trace(H)
= S

λ(H)

Trace(H)
, and define d′(H) =

d(H)

Trace(H)
, λ′(H) =

λ(H)

Trace(H)
,

then d′(H) and λ′(H) are two finite probability distributions connected by the doubly
stochastic matrix S. Thus, d′(H) has larger entropy than λ′(H). Recall that for a

probability distribution p = (p1, . . . , pn)
T

(pi ≥ 0,
∑

i pi = 1) the entropy of p
is η(p) = − 1

logn

∑n
i=1 pi log pi ∈ [0, 1]. For any doubly stochastic matrix S we have

η(Sp) ≥ η(p) with the equality if and only if S is a permutation matrix. The entropy
is a symmetric concave function on the compact and convex set of finite probability
distributions. It is maximal, η(p) = 1, if and only if pi = 1/n for all i. Also, η(p) = 0
if and only if the probability distribution degenerates to pk = 1, pi = 0, i �= k.

Definition 3.1. The d-entropy of positive semidefinite H is defined as the en-
tropy of its diagonal normalized by the trace, ηd(H) ≡ η(d′(H)).

Proposition 3.2. The d-entropy ηd is strictly positive on the open cone of
positive definite matrices. It always attains its maximum 1 on the real adjoint orbit
O(H) = {WTHW : W orthogonal}. Further, it holds ηd(O(H)) = {1} if and only
if H is a scalar (H = scalar · I). If H has s different eigenvalues with multiplicities
n1, . . . , ns, then ηd attains its minimal value on O(H) at each of n!∏s

i=1 ni!
different

diagonal matrices in O(H), and nowhere else.
Proof. There always exists an orthogonal W such that WTHW has constant

diagonal. The fact that the entropy ηd(·) of the diagonal of H is larger than the
entropy of the vector of the eigenvalues holds for any symmetric concave function.
To see that, recall the relation d′(H) = Sλ′(H), where S is doubly stochastic. By
the Birkhoff theorem [3, Theorem II.2.3], S is from the convex hull of permutation
matrices, thus S =

∑
k αkPk, where the Pk’s are permutation matrices and the αk’s

are nonnegative with sum one. Thus, d′(H) belongs to the convex polyhedral set
spanned by permutations of the vector λ′(H). Hence, a concave function on d′(H)

2For the sake of brevity, we will just illustrate the main idea and leave the details for a forthcoming
paper.

3By definition, 0/0 = 0 and 0 log 0 = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1328 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

cannot have smaller value than its minimal value on the vectors Pkλ
′(H). Note

that the number of minimal points represents the number of possible affiliations of n
diagonal entries with s different eigenvalues.

Example 3.1. The following example illustrates the preceding discussion on the
relation between the entropy and the spectral information along the diagonal of the
matrix. Let A be the upper triangular factor from the QR factorization of the 4 × 4
Hilbert matrix, and let H = ATA, M = AAT . The d(H), λ(H), and d(M) are

h11 ≈ 1.4236e+00, h22 ≈ 4.6361e−01, h33 ≈ 2.4138e−01, h44 ≈ 1.5068e−01,

λ1 ≈ 2.2506e+00, λ2 ≈ 2.8608e−02, λ3 ≈ 4.5404e−05, λ4 ≈ 9.3513e−09,

m11 ≈ 2.2355e+00, m22 ≈ 4.3655e−02, m33 ≈ 1.3022e−04, m44 ≈ 3.5308e−08.

If we look at only the diagonal entries of the matrix, we cannot say how close the
diagonal is to the spectrum. After all, the matrix can be diagonal, that is, with
minimum entropy in its orbit, and we cannot detect that. But if we have the diagonals
of two orthogonally similar matrices, then we see the difference between the two
diagonals. If we compute the entropies, ηd(H) ≈ 7.788e − 001 > ηd(M) ≈ 8.678e −
002.

Remark 3.1. Just looking at d(H) and d(M) in Example 3.1 and knowing that
they are diagonals of unitarily similar matrices is enough to choose d(M) as a better
approximation of the spectrum since if H were close to diagonal, then κ2(H) would
be O(1), while κ2(M) ≥ 108. In other words, orthogonal similarity can hide the high
spectral condition number of diagonal matrix (so that it is not seen on the diagonal of
the similar matrix), but it cannot produce it starting from a well-conditioned, almost
diagonal matrix. In some sense, with respect to the problem of guessing the spectrum,
the diagonal of M has less uncertainty than the diagonal of H. Our algorithm can
better utilize diagonals with a smaller entropy.

4. The algorithm. We now describe the new preconditioned Jacobi SVD algo-
rithm with rank revealing QR factorization as preconditioner. At this point we do not
consider the details of the application of the one-sided Jacobi rotations to triangular
matrix. Instead, we use triangular Jacobi SVD as a black box and give the details in
[18]. On input to the black box we have triangular nonsingular matrix X, and the box
computes X∞ = XVx, where X∞ = UxΣ, X = UxΣV T

x is the SVD of X, and Vx is the
product of the Jacobi rotations. If Vx is not computed, we write X∞ = X 〈Vx〉. We
keep this notation in other situations as well. If in a relation some matrix is enclosed
in 〈·〉, then that matrix is not computed and no information about it is stored. For

example, A = 〈Q〉 (RT 0)
T

means computing only R in the QR factorization of A.

4.1. Computing only Σ. We first describe the algorithm for computing only
the singular values of A. In Algorithm 1 we use two QR factorizations with pivot-
ing and then apply the one-sided Jacobi SVD algorithm. We do not specify which
rank revealing QR factorization is used—the rule is to use the best available; see,
e.g., [5], [4]. In some cases, the rows of A can be sorted to get more structured
backward error; see section 5.3.

Remark 4.1. The pivoting in the second QR factorization is optional, and P1 = I
works well. If efficient QR factorization with local pivoting is available, it can be used
to compute R1. If maxi=2:n ‖R(1 : i − 1, i)‖2/|rii| ≤ O(n)ε, then the columns of A
are nearly orthogonal, and the second QR factorization is unnecessary, X = RT .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. I 1329

Algorithm 1 σ = SV D(A).

(PrA)P = 〈Q〉
(
R
0

)
; ρ = rank(R) ; [optional deflation, section 2.2][optional Pr,

section 5.3]
R(1 : ρ, 1 : n)TP1 = 〈Q1〉R1 ; X = RT

1 ; [optional pivoting P1]
X∞ = X 〈Vx〉 ; {Use section 5.4 for sharp stopping criterion.}
σi = ‖X∞(:, i)‖2, i = 1, . . . , ρ ; σ = (σ1, . . . , σρ, 0, . . . , 0) .

Algorithm 2 (σ, V) = SV D(A).

(PrA)P = 〈Q〉
(
R
0

)
; ρ = rank(R) ; [optional deflation, section 2.2][optional Pr,

section 5.3]
X = R(1 : ρ, 1 : n)T ; X∞ = X 〈Vx〉 ;

σi = ‖X∞(:, i)‖2, i = 1, . . . , ρ ; σ = (σ1, . . . , σρ, 0, . . . , 0) ;

Ux(:, i) =
1

σi
X∞(:, i), i = 1, . . . , ρ ; V = PUx .

4.2. Computing Σ and V . If we need the singular values and the right singular
vectors, a direct application of Jacobi rotations to A or R requires the accumulated
product of rotations to construct the right singular vector matrix V . To avoid the
explicit multiplication of Jacobi rotations, in this case we use Algorithm 2. The beauty
of the preconditioning R � RT in Algorithm 2 is in the fact that the set of the right
singular vectors is computed without the product of the Jacobi rotations, and at the
same time, due to preconditioning, fewer rotations are needed to reach the numerical
convergence. If ρ � n, an additional LQ factorization of R(1 : ρ, 1 : n) is advisable. In
that case, the accumulation of rotations can be avoided, as described in section 4.4.2.

4.3. Computing Σ and U . If Σ and U are needed and if we apply the Jacobi
SVD on X = A or X = R, then we do not need the product of Jacobi rotations. The
problem is that in the case m
 n the rotations on A are too expensive, and that in
both cases (A or R) the convergence is slower than in the case X = RT .

In the case X = RT , we need the accumulated product of the Jacobi rotations, and
the cost of the product of only one sweep of fast rotations is 2nρ(ρ−1) = 2nρ2 −2nρ.
To this we should also add the cost of heavier memory traffic and increased cache
miss probability because two square arrays are transformed. All this is avoided by
an extra QR factorization followed by transposition of the triangular factor, which is
computed in 2nρ2 − 2ρ3/3 flops on BLAS 3 level.

In some cases X = A is the perfect choice. For instance, if H is a symmetric
positive definite matrix and PTHP = AAT its pivoted Cholesky factorization with
lower triangular matrix A, then AT has the same properties as R in (2.7). Thus
A 〈V 〉 = UΣ will be an efficient Jacobi SVD and, since H = (PU)Σ2(PU)T , we
obtain the spectral decomposition of H without computing V .

In Algorithm 3 we define for a matrix M its property τ(M) to be true if M is
of full column rank and the Jacobi SVD algorithm applied to M converges quickly.
For instance, if A is the Cholesky factor of positive definite matrix, computed with
pivoting, then τ(A) = true. If evaluation of τ(A) requires more than O(mn) flops, or
if we do not know how to judge A, then by definition τ(A) = false.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1330 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

Algorithm 3 (σ, U) = SV D(A).

if τ(A) then {e.g., A computed by pivoted Cholesky factorization, PTHP = AAT }
X = A; X∞ = X 〈Vx〉 ;

σi = ‖X∞(:, i)‖2, i = 1, . . . , n ; σ = (σ1, . . . , σn) ;

U(:, i) =
1

σi
X∞(:, i), i = 1, . . . , n ;

else

(PrA)P = Q

(
R
0

)
; ρ = rank(R) ; [optional deflation, section 2.2][optional Pr,

section 5.3]
if τ(R) then {e.g., maxi=2:n ‖R(1 : i− 1, i)‖2/|rii| small}
X = R ; X∞ = X 〈Vx〉 ;

σi = ‖X∞(:, i)‖2, i = 1, . . . , ρ ; σ = (σ1, . . . , σρ, 0, . . . , 0) ;

Ux(:, i) =
1

σi
X∞(:, i), i = 1, . . . , ρ; U = PT

r Q

(
Ux

0(m−ρ)×ρ

)
;

else
R(1 : ρ, 1 : n)TP1 = 〈Q1〉R1 ; [optional pivoting P1]
X = RT

1 ; X∞ = X 〈Vx〉 ;

σi = ‖X∞(:, i)‖2, i = 1, . . . , ρ ; σ = (σ1, . . . , σρ, 0, . . . , 0) ;

Ux(:, i) =
1

σi
X∞(:, i), i = 1, . . . , ρ; U = PT

r Q

(
P1Ux

0(m−ρ)×ρ

)
;

end if
end if

4.4. Computation of U , Σ, and V . In this section we describe an efficient
implementation of the preconditioned Jacobi SVD algorithm for computing the full
SVD. The classical implementation of the Jacobi SVD algorithm transforms two
matrices, one approaching the matrix of the left singular vectors scaled by the cor-
responding singular values (UΣ), and the second being the accumulated product of
the Jacobi rotations (V). We extend an idea from [14] and compute the product of
Jacobi rotations a posteriori from a well-conditioned matrix equation. In this way, the
expensive iterative part has fewer flops and needs less cache space. The rotations are
explicitly accumulated only if none of four candidate matrix equations can guarantee
an accurate solution.

4.4.1. Classical computation of V by accumulation. Let the Jacobi itera-
tions stop at index k and let X̃∞ = X̃(k). Let Ṽx be the computed accumulated prod-
uct of Jacobi rotations used to compute X̃∞. Rowwise backward stability implies
that X̃∞ = (X + δX)V̂x, where V̂x is orthogonal, and ‖δX(i, :)‖2 ≤ εJ‖X(i, :)‖2,
εJ ≤ O(nε); see [13]. The matrix Ṽx can be written as Ṽx = (I + E0)V̂x, where
‖E0‖2 is small. In fact, maxi ‖E0(i, :)‖2 ≤ εJ . Note that the matrix V̂x is a purely
theoretical entity—it exists only in the proof of the backward stability. If we want to
recover V̂x, the best we can do is to compute

X−1X̃∞ = (I + E1)V̂x, E1 = X−1δX,(4.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. I 1331

since we do not have δX. Thus, we can come ‖E1‖2 close to V̂x. To estimate E1, we
write X = DY , where D is diagonal scaling, Dii = ‖X(i, :)‖2, and Y has unit rows
in the Euclidean norm. We obtain for ‖ · ‖ ∈ {‖ · ‖2, ‖ · ‖F }

‖E1‖ ≤ ‖Y −1‖2‖D−1δX‖ ≤ ‖Y −1‖2

√
nεJ ≤ ‖Y −1‖2O(n3/2)ε.(4.2)

Finally, the matrix X̃∞ is written as ŨxΣ̃. The diagonal entries of Σ̃ are computed
as Σ̃ii = σ̃i = computed(‖X̃∞(:, i)‖2) = ‖X̃∞(:, i)‖2(1 + νi), |νi| ≤ O(nε), and then
Ũx(:, i) is computed by dividing X̃∞(:, i) by σ̃i. Thus,

ŨxΣ̃ = X̃∞ + δX̃∞, |δX̃∞| ≤ ε|X̃∞|.(4.3)

If σ̃i is computed using a double accumulated dot product, then |νi| ≤ O(ε) and the
columns of Ũx are of unit norm up to O(ε). The following proposition explains how
well the computed SVD resembles the matrix X.

Proposition 4.1. The matrices Ũx, Σ̃, Ṽx, V̂x satisfy residual relations

(i) ŨxΣ̃V̂ T
x = X + F = X(I + X−1F); (ii) ŨxΣ̃Ṽ T

x = (X + F)(I + ET
0),

where for all i, ‖F (i, :)‖2 ≤ εJ‖X(i, :)‖2, εJ = εJ + ε(1 + εJ). Further, ‖E0‖2 ≤√
nεJ ≤ O(n3/2ε), and ‖X−1F‖2 ≤ ‖Y −1‖2

√
nεJ .

Proof. From the relations X̃∞ = (X+δX)V̂x and (4.3) we obtain ŨxΣ̃V̂ T
x = X+F ,

F = δX + δX̃∞V̂ T
x , and for (ii) we use Ṽx = (I + E0)V̂x.

4.4.2. Computation of V from matrix equation. Suppose that, instead of
Ṽx, we decide to use some other approximation of V̂x. The matrix X−1X̃∞ is a good
candidate (it gets ‖E1‖2 close to V̂x), but we cannot have the exact value of X−1X̃∞.
We can solve the matrix equation and take V̆x = computed(X−1X̃∞). Since X is
triangular, the residual bound for V̆x is

E2 = XV̆x − X̃∞, |E2| ≤ εT |X||V̆x|, εT ≤ nε

1 − nε
.(4.4)

From (4.1) and (4.4) we conclude that

V̆x = (I + E3)V̂x = V̂x(I + V̂ T
x E3V̂x), E3 = E1 + X−1E2V̂

T
x ,(4.5)

where only the symmetric part Sym(E3) = 0.5(E3+ET
3) contributes to the first order

departure from orthogonality of V̆x, ‖V̆ T
x V̆x − I‖2 ≤ 2‖Sym(E3)‖2 + ‖E3‖2

2.
The following proposition shows that we have also computed a rank revealing

decomposition of X (in the sense of [10]).
Proposition 4.2. The matrices Ũx, Σ̃, V̆x satisfy the residual relations

ŨxΣ̃V̆ T
x = (X + F)(I + ET

3), E3 = E1 + X−1E2V̂
T
x ;(4.6)

ŨxΣ̃V̆ −1
x = X + F1, F1 = E2V̆

−1
x + δX̃∞V̆ −1

x ,(4.7)

where F is as in Proposition 4.1, ‖E3‖2 ≤ ‖Y −1‖2(
√
nεJ + nεT), and it holds for all

i that ‖F1(i, :)‖2 ≤ (εT ‖|V̆x|‖2 + ε(1 + εJ))‖V̆ −1
x ‖2‖X(i, :)‖2.

This analysis shows that the quality of the computed right singular vector matrix
V̆x depends on the condition number ‖Y −1‖2, where X = DY . Hence, the rows
of the triangular matrix X must be well-conditioned in the scaled sense. If X
is computed from the initial A using the QR factorization with column pivoting,
AP = Q (RT 0)

T
, then X = R can be written as X = DY with well-conditioned Y .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1332 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

Thus, we expect that V̆x can be computed accurately, but immediately notice a draw-
back. The Jacobi rotations implicitly transform the matrix PT (ATA)P , which means
that we do not have the preconditioning effect—for that the input matrix to Jacobi
procedure should be XT = Y TD.

We conclude that the initial matrix should be of the form X = DY = ZC , where
D, C are diagonal and both Y and Z are well-conditioned. Well-conditioned Z implies
fast convergence, while well-conditioned Y ensures stable a posteriori computation of
the right singular vectors. Therefore, we define X in the following way:

(i) AP = Q (RT 0)
T
;

(ii) RTP1 = Q1R1;
(iii) X = RT

1 .

The matrix R can be written as R = DrRr with well-conditioned Rr, and if we
write R1 = (R1)c(D1)c, then κ((R1)c) = κ(Rr); thus X = DY with D = (D1)c,
Y = (R1)

T
c . Further, R1 = (D1)r(R1)r with the expected value of κ((R1)r) smaller

than κ((R1)c), and thus X = ZDc with well-conditioned Z. In fact, ZTZ is very
strongly diagonally dominant. We have strong numerical evidence that the pivoting
in the second QR factorization is not worth the overhead. If we have an efficient QR
factorization with local pivoting, such overhead is negligible. Note that X = R1 also
has the required properties. Without column pivoting in the second QR factorization
(P1 = I) we cannot give any theoretical bound on the condition number of Y , and
condition estimators must be used. Putting all of this together, we obtain Algorithm 4.

Since the key matrices in the algorithm are all triangular, condition estimators
can be used to control the program flow. We can decide which matrix is the best input
to the one-sided Jacobi algorithm, or which matrix equation to solve. For instance,
in the case ρ = n and small κ1, the SVD RT

1 = UxΣV T
x implies Vx = R−T

1 (UxΣ),
but we also note that R(Q1Vx) = (UxΣ). It can be shown (as in section 4.4.2) that
computing W = Q1Vx very efficiently as R−1X∞ is numerically as accurate as first
computing Vx = R−T

1 X∞ and then multiplying Q1Vx. (Similar situations occur in
the case of well-conditioned Y and X = L2, where QT

2 Vx is computed directly as
R−1

1 X∞.) Since in each major step we have estimates of relevant condition number
(of scaled matrices), the algorithm can be authorized (an input option) to drop some
small singular values if the condition number test shows that they are highly sensitive.

The last line of defense in Algorithm 4 computes with explicit accumulation of
Jacobi rotations. So far, we know of no example in which accumulation of Jacobi
rotation is needed, because the previous three preconditioning steps failed to produce
X, which is structured as X = DY with moderate ‖Y −1‖2. In fact, we never had
the case that required X = LT

2 . The worst-case example, which probably already has
crossed the reader’s mind, is Kahan’s matrix [26].

Example 4.1. It is instructive to see how our algorithm deals with the upper
triangular Kahan’s matrix K = K(m, c) with Kii = si−1 and Kij = −c·si−1 for i < j,
where s2 + c2 = 1. Using MATLAB, we generate K(100, 0.9998). It is estimated that
κ1 ≈ ‖R−1

r ‖ is bigger than 1016. Now, the trick here is that our entropy test will
transpose the matrix automatically and take A = KT instead of A = K. In that
case the estimated κ1 is around one. Suppose now that the transposing mechanism
is switched off, or that, e.g., A = K(1 : m, 1 : n), n < m, so that no transposition is
allowed. Let A be equal to the first 90 columns of K. Again, κ1 > 1016, but κY ≈ 1.

5. Assessing the accuracy of the computed SVD. In this section we ana-
lyze numerical properties of the new algorithm. To simplify the notation, we drop the
permutation matrices, thus assuming that A is replaced with the permuted matrix

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. I 1333

Algorithm 4 (U, σ, V) = SVD(A).

(PrA)P = Q

(
R
0

)
; ρ = rank(R) ; [optional deflation, section 2.2][optional Pr,

section 5.3]
if max

i=2:n
‖R(1 : i− 1, i)‖/|rii| small then {columns of A almost orthogonal}

X = R ; κ0 = estimate(‖A†
c‖2) ; {At this point, κ0 � n. ATA is γ-s.d.d.}

X∞ = X 〈Vx〉 ; Vx = R−1X∞ ; σi = ‖X∞(:, i)‖2, i = 1, . . . , n ; V = PVx ;

Ux(:, i) =
1

σi
X∞(:, i), i = 1, . . . , n ; U = PT

r Q

(
Ux 0
0 Im−n

)
;

else
κ0 = estimate(‖A†

c‖2) ; κ1 = estimate(‖R†
r‖2) ;

if κ1 small then {e.g., κ1 small ⇐⇒ κ1 <
√
n, or, e.g., κ1 < n}

R(1 : ρ, 1 : n)T = Q1

(
R1

0

)
{second preconditioning}; X = RT

1 ;

else

R(1 : ρ, 1 : n)TP1 = Q1

(
R1

0

)
{second preconditioning};

R1 = L2 〈Q2〉 {third preconditioning: LQ factorization}; X = L2;
κY = estimate(‖Y −1‖2) ; if κY ≥ n then κZ = estimate(‖Z−1‖2) ; end if

end if
if Y well conditioned then

X∞ = X 〈Vx〉; σi = ‖X∞(:, i)‖2 ; Ux(:, i) =
1

σi
X∞(:, i), i = 1, . . . , ρ;

if ρ = n and κ1 small then

W = R−1X∞; {here W ≡ Q1Vx}; V = PW ; U = PT
r Q

(
Ux 0
0 Im−ρ

)
;

else if κ1 small then {R rectangular, ρ < n}

Vx = R−T
1 X∞; V = PQ1

(
Vx 0
0 In−ρ

)
; U = PT

r Q

(
Ux 0
0 Im−ρ

)
;

else {here X = L2 and W ≡ QT
2 Vx}

W = R−1
1 X∞; V = PQ1

(
Ux 0
0 In−ρ

)
; U = PT

r Q

(
P1W 0

0 Im−ρ

)
;

end if
else if κZ < n then

X = LT
2 ; X∞ = X 〈Vx〉; σi = ‖X∞(:, i)‖2 ; Ux(:, i) =

1

σi
X∞(:, i), i = 1, . . . , ρ;

Vx = L−T
2 X∞ ; V = PQ1

(
Vx 0
0 In−ρ

)
; U = PT

r Q

(
P1Q

T
2 Ux 0
0 Im−ρ

)
;

else {last line of defense: use X = L2 and accumulate Jacobi rotations}
X∞ = XVx ; σi = ‖X∞(:, i)‖2 ; Ux(:, i) =

1

σi
X∞(:, i), i = 1, . . . , ρ ;

V = PQ1

(
Ux 0
0 In−ρ

)
; U = PT

r Q

(
P1Q

T
2 Vx 0

0 Im−ρ

)
;

end if
end if

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1334 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

PrAP . The computed matrices are marked by tildes, and by hats we denote matrices
whose existence is obtained during backward error analysis (they are usually close
to the corresponding matrices marked with tildes). We note that detailed analysis is
given without the details of the triangular SVD computation X∞ = XVx. We only
need the fact that the computed X̃∞, Ṽx satisfy X̃∞ = (X + δX)V̂x, where for all
i ‖δX(i, :)‖2 ≤ εJ‖X(i, :)‖2, εJ ≤ O(nε), and V̂x is exactly orthogonal, close to Ṽx.
This is independent of the pivot strategy. For the sake of brevity we will not analyze
all variants of algorithms given in section 4.

5.1. Backward error analysis. The following proposition is central to the
analysis of Algorithms 1 and 2. It gives backward stability with a rather strong
columnwise estimate of the relative backward error.

Proposition 5.1. Let the SVD of the real m × n matrix A be computed by
reducing A to triangular form, A = Q (RT 0)

T
, and then applying the Jacobi SVD

algorithm to X = RT . If only the singular values or singular values and the right
singular vectors are needed (Algorithms 1 or 2), then the backward stability of the
computation can be described as follows:

(i) Let X ≈ ŨxΣ̃
〈
Ṽ T
x

〉
be the computed SVD of the computed matrix X. Then

there exist a columnwise small perturbation ΔA and orthogonal matrices Q̂, V̂x such
that

A + ΔA = Q̂

(
V̂x 0
0 I

)(
Σ̃
0

)
ŨT
x , where(5.1)

‖ΔA(:, i)‖2 ≤ η̃‖A(:, i)‖2, i = 1, . . . , n, η̃ = εqr + εJ + εqrεJ .(5.2)

(ii) Furthermore, let εu ≡ ‖ŨT
x Ũx − I‖F < 1/2. There exist a backward pertur-

bation E and orthogonal matrix Û such that ‖Ũx − Û‖F ≤
√

2εu and the SVD of
A + E is

A + E = Q̂

(
V̂x 0
0 I

)(
Σ̃
0

)
Û ≡ Ûa

(
Σ̃
0

)
V̂ T
a , where(5.3)

‖E(:, i)‖2 ≤ η̂‖A(:, i)‖2, η̂ = η̃ +
√

2nεu + O(ε2) for all i.(5.4)

Proof. Let Q̃ and R̃ be the computed numerically orthogonal and the triangular
factor of A, respectively. Then there exist an orthogonal matrix Q̂ and backward
perturbation δA such that A + δA = Q̂ (R̃T 0)

T
, where for all column indices

‖δA(:, i)‖2 ≤ εqr‖A(:, i)‖2. Let the one-sided Jacobi SVD be applied to X = R̃T . By

Proposition 4.1, X + F = ŨxΣ̃V̂ T
x , ‖F (i, :)‖2 ≤ εJ‖X(i, :)‖2, and therefore

A + δA + Q̂

(
FT

0

)
= Q̂

(
V̂x 0
0 I

)(
Σ̃
0

)
ŨT
x , ΔA = δA + Q̂

(
FT

0

)
,(5.5)

where ‖ΔA(:, i)‖2 ≤ εqr‖A(:, i)‖2 + εJ‖R̃(:, i)‖2, ‖R̃(:, i)‖2 ≤ (1 + εqr)‖A(:, i)‖2, and
(5.1), (5.2) follow. Note that the right-hand side of relation (5.1) is not an SVD.
To obtain a relation with the SVD of a matrix in the vicinity of A, we need to
replace Ũx with a nearby orthogonal matrix. However, since the backward error ΔA
is columnwise small, we need to do this carefully and preserve this fine structure of
the backward error. Since Ũx is on the right-hand side, correcting its departure from
orthogonality implies certain linear combinations of the columns of A+ΔA. If A has
very large and very small columns, then such linear combinations may introduce large
perturbations into the small ones. This is why we cannot use the orthogonal polar

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. I 1335

factor of Ũx as the closest orthogonal matrix. We proceed with the following thought
experiment.

Let Π be a permutation matrix such that the columns of AΠ have decreasing
Euclidean lengths.4 Let ΠT Ũx = (I + GT

0)Ûx be the RQ factorization of ΠT Ũx, with
lower triangular G0 and orthogonal Ûx. Since Ũx is numerically orthogonal, we can
nicely estimate G0. First, I + G0 is regular.

From the Cholesky factorization (I + G0)(I + G0)
T = I + Ûx(ŨT

x Ũx − I)ÛT
x , we

conclude, using [17], that ‖G0‖F ≤
√

2εu. Let I + G = (I + G0)
−1. Obviously, G

is lower triangular. Since G = −G0 + G2
0(I + G0)

−1, it holds that ‖G‖1 ≤ ‖G0‖1 +
‖G0‖2

1/(1 − ‖G0‖1). From (5.5) we obtain the SVD

(A + ΔA)(I + ΠGΠT) = Q̂

(
V̂x 0
0 I

)(
Σ̃
0

)
(ΠÛx)T .(5.6)

Note that small ‖ΠGΠT ‖1 = ‖G‖1 ≈ ‖G0‖1 does not automatically mean columnwise
small backward perturbation in A. Let us estimate the columns of AΠGΠT . Note
that in the multiplication AΠG each column of A gets a contribution only from
columns that are smaller in norm, i.e., AΠG(:, i) =

∑n
k=i gki(AΠ)(:, k), and thus

‖AΠG(:, i)‖2 ≤ ‖G‖1‖(AΠ)(:, i)‖2. Since ΠT redistributes the columns back to the
original order, we have ‖(AΠGΠT)(:, i)‖2 ≤ ‖G‖1‖A(:, i)‖2.

Similarly, ‖(ΔAΠGΠT)(:, i)‖2 ≤ η̃‖G‖1‖A(:, i)‖2. Note that from the relation
Ũx = (I + ΠGT

0 ΠT)(ΠÛx) we easily find that the matrix Û = ΠÛx satisfies ‖Û −
Ũx‖F ≤ ‖G0‖F . Finally, note that (5.6) defines E in relation (5.3).

Consider now the computation of the full SVD with a single preconditioning step.

Proposition 5.2. Let A ≈ Q̃
(
R̃
0

)
be the computed QR factorization of A. Let

the computed SVD of X = R̃T be X ≈ ŨxΣ̃V x, where the following hold.

(a) V x = Ṽx if V x is computed as the accumulated product of Jacobi rotations
(Proposition 4.1). In that case ‖V x − V̂x‖F ≤

√
nεJ .

(b) V x = V̆x if V x is computed from the triangular matrix equation (Proposi-
tion 4.2). In that case ‖V x − V̂x‖F ≤ ‖Y −1‖2(

√
nεJ + nεT), where Y =

diag(1/‖X(i, :)‖2)X.

Let Ṽa = Ũx, V̂a = Û , where Û is as in Proposition 5.1 and let

Ûa = Q̂

(
V̂x 0
0 I

)
, Ũa = computed

(
Q̃

(
V x 0
0 I

))
.

Then ‖Ũa − Ûa‖2 ≤
√
mεqr + ‖V x − V̂x‖2 + O(ε2), ‖Ṽa − V̂a‖F ≤

√
2εu, and the resid-

ual (that is, the backward error)

Δ′A = Ũa

(
Σ̃
0

)
Ṽ T
a −A = (I + (Ũa − Ûa)Û

T
a)(A + ΔA) −A(5.7)

satisfies ‖Δ′A(:, i)‖2 ≤ η̃′‖A(:, i)‖2, η̃′ = η̃ + ‖Ũa − Ûa‖2 + η̃‖Ũa − Ûa‖2.

Proof. In addition to the proof of Proposition 5.1, we need an estimate for Ũa−Ûa.
Note that Ũa is computed using Householder vectors computed in the QR factoriza-
tion, and then replace V x with V̂x + (V x − V̂x).

4One should keep in mind that Π is an object in our thought experiment, unrelated to actual
pivoting in the algorithm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1336 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

5.2. Backward errors for two preconditionings. In the case X = RT all
transformations are applied to A from the same side,

(
Σ
0

)
UT
x = (V T

x ⊕ I)QTA. This
fact is the key for columnwise small backward error. In the case of two QR factor-
izations in the preconditioning phase, where X = RT

1 , columnwise small backward
error in A is not obvious, because in that case we compute ULV decomposition by
transforming A from both sides.

Theorem 5.3. For the computed matrix X̃∞ ≈ ŨxΣ̃, there exist backward per-
turbation ΔA, permutation P̃1, and orthogonal Q̂, Q̂1, V̂x, S such that(

ŨxΣ̃
0

)
≈

(
X̃∞
0

)
=

(
P̃T

1 0
0 Im−n

)
Q̂T (A + ΔA)SQ̂1V̂

T
x .(5.8)

For each i, ΔA(:, i) is a small relative perturbation of A(:, i), and S is close to identity.
Proof. The second factorization RTP1 = Q1R1 is computed as (R̃T + δR̃T)P̃1 =

Q̂1R̃1, where ‖δR̃(i, :)‖2 ≤ εqr‖R̃(i, :)‖2. Jacobi rotations are applied to X = R̃T
1 ,

which yields X̃∞ = (X + δX)V̂x, ‖δX(i, :)‖2 ≤ εJ‖X(i, :)‖2. This means that R̃1 is
changed backward to R̃1 + δR̃1 with columnwise bound ‖δR̃1(:, i)‖2 ≤ εJ‖R̃1(:, i)‖2.
To push δR̃1 further backward we have to change R̃. It is easy to check that ΔR̃ =
δR̃ + P̃1δR̃

T
1 Q̂

T
1 is a rowwise small perturbation of R̃ with the property

(R̃T + ΔR̃T)P̃1 = Q̂1(R̃1 + δR̃1).(5.9)

Write R̃+ΔR̃ = R̃(I+E) with E = R̃−1ΔR̃, and let R̃ = DrR̃r with Dr = diag(‖R̃(i,
:)‖2)

n
i=1. It is easily shown that ‖E‖F ≤

√
n(εqr +εJ(1+εqr))‖R̃−1

r ‖2. Note that this

bound depends on ‖R̃−1
r ‖2, which in our case is at most O(n).

Let ΔA0 = δA + Q̂ ((ΔR̃)T 0)
T
. Then we almost have the explicit backward

relationship (5.8) with columnwise bound. The backward perturbed matrix is

A + Δ0A = (A + δA)(I + E) (= (I + δAA†)A(I + E) if rank(A) = n).(5.10)

Note that I +E represents multiplicative backward perturbation, which immediately
and cleanly exposes its corresponding forward error. However, additive backward
perturbation might be more desirable and interpretable. Therefore, we are going to
transform the multiplicative part into an additive one. If the columns of A + δA are
not ordered from large to small in the Euclidean norm, then we order them using
permutation Π and write (A + δA)(I + E) = (A + δA)Π(I + ΠTEΠ)ΠT .

If I + ΠTEΠ = LS0 is the LQ factorization, then we can write L = I + F with
lower triangular F and ‖F‖F ≤ O(1)‖E‖F . The orthogonal matrix S0 is close to
identity. Then we have

(A + δA)(I + E) = (A + δA)Π(I + F)S0Π
T = ((A + δA)Π + (A + δA)ΠF)S0Π

T ,

where ‖((A+ δA)ΠF)(:, i)‖2 ≤ ‖F‖1‖((A+ δA)Π)(:, i)‖2. If we permute the columns
of A + δA back to the original order, we obtain

A + ΔA0 = (A + δA)(I + E) = (A + δA + δ1A)ΠS0Π
T ,(5.11)

where ‖δ1A(:, i)‖2 ≤ (1 + εqr(A))‖F‖1‖A(:, i)‖2, i = 1, . . . , n. Using this in (5.8),

we conclude that ŨxΣ̃ is computed by orthogonal transformations on A + δA + δ1A,
where the perturbation ΔA = δA + δ1A is columnwise small, and S = ΠS0Π

T .
The practical value of this is that no matter how the columns of A are scaled, the

algorithm computes the SVD of A with columnwise small backward relative error.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. I 1337

5.3. Complete pivoting and two-sided scaling. In [14], we recommended
that the rows of A be sorted before the first QR factorization with column pivoting,
thus having the effect of complete pivoting suggested by Powell and Reid [30]. The
reason was more structured backward error, as shown in [9]. It is important that the
whole algorithm preserves this structured perturbation.

Theorem 5.4. Let A = D1CD2, where D1, D2 are diagonal matrices, be pre-
pivoted so that the computed QR factorization satisfies

D1(C + δC)D2 = Q̂

(
R̃
0

)
, Q̂T Q̂ = Im.(5.12)

Let q = maxi≥j |(D2)ii/(D2)jj |. There exists an orthogonal matrix S, close to identity,
such that the backward perturbation in Theorem 5.3 can be written as(

ŨxΣ̃
0

)
≈

(
X̃∞
0

)
=

(
P̃T

1 0
0 Im−n

)
Q̂TD1(C + ΔC)D2SQ̂1V̂

T
x .(5.13)

It holds that ‖ΔC‖F ≤ ‖δC‖F + q
√

8‖E‖F (‖C‖2 + ‖δC‖2) + O(‖E‖2
F).

Proof. We go back to relation (5.10) and rewrite it as

A + ΔA = (A + δA)(I + E) = D1(C + δC)D2(I + E).(5.14)

If I + E = (I + F)S is the LQ factorization, then ‖F‖F ≤
√

8‖E‖F +
√

2‖E‖2
F ,

provided that ‖E‖F ≤ 1/5; see [17]. Further, ‖I − S‖2 ≤ ‖E‖2 + ‖F‖2, and

A + ΔA = D1(C + δC)(I + F1)D2S, F1 = D2FD−1
2 , ‖F1‖F ≤ q‖F‖F .(5.15)

If we let ΔC = δC + CF1 + δCF1, then using (5.8) we obtain (5.13).
For SVD perturbation under this backward error with two-sided scaling we refer

to [33], [9], [14], [10], [15], [24].

5.4. Forward relative errors in the computed SVD. Since the Jacobi SVD
algorithm has columnwise small backward error, the condition number for the errors
in the singular values of A+δA = (I+δAA†)A is up to a

√
n factor minD=diag κ2(AD).

This is in sharp contrast with bidiagonalization-based methods where the backward
error has no columnwise structure and the condition number is κ2(A).

Theorem 5.5. Consider A ∈ R
m×n with the SVD A = U

(
Σ
0

)
V T and singular

values σ1 ≥ · · · ≥ σn > 0. Let σ̃1 ≥ · · · ≥ σ̃n be the singular values of the perturbed
matrix Ã = A + δA = (I + Γ)A, Γ = δAA†, and let ‖Γ‖2 < 1.

(i) It holds that

max
j=1:n

|σ̃j − σj |√
σ̃jσj

≤ ‖Sym(Γ)‖2 +
1

2

‖Γ‖2
2

1 − ‖Γ‖2
≤ ‖Γ‖2 + O(‖Γ‖2

2).(5.16)

(ii) Let I +Ξ = diag(‖(I +Γ)U(:, i)‖2)
n
i=1, Ŭ = (I +Γ)U(I +Ξ)−1, ŬT Ŭ = I +Ω,

and Ω̂ = Ω(1 : n, 1 : n). Let the singular values of Ã be written with multiplicities as

σ̃1 = · · · = σ̃s̃1 > σ̃s̃1+1 = · · · = σ̃s̃2 > · · · > σ̃s̃�̃−1+1 = · · · = σ̃s̃�̃
, s̃�̃ = n, s̃0 ≡ 0,

and let the relative gaps be defined by γ̃i = minj �=i

|σ̃2
s̃i

−σ̃2
s̃j

|
σ̃2
s̃i

+σ̃2
s̃j

, i = 1, . . . , �̃, γ̃ = mini γ̃i.

If ‖Ω̂‖2 < γ̃/3, then for all i and σ̆j = σj‖(I + Γ)U(:, j)‖2 = σj(1 + Ξjj)√√√√ s̃i∑
j=s̃i−1+1

∣∣∣∣ σ̃s̃i − σ̆j

σ̆j

∣∣∣∣2 ≤

√√√√√ s̃i∑
j=s̃i−1+1

∣∣∣∣∣1 −
σ̃2
s̃i

σ̆2
j

∣∣∣∣∣
2

≤ 2

γ̃i
‖Ω̂‖2

2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1338 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

In particular, maxj=1:n
|σ̃j−σ̆j |

σ̆j
≤ 2

γ̃ ‖Ω̂‖2
2.

(iii) For columnwise small δA, ‖Γ‖F ≤
√
nmaxi=1:n(‖δA(:, i)‖2/‖A(:, i)‖2)‖A†

c‖2,
where Ac is obtained by scaling the columns of A to have unit norm.

Proof. Since I + Γ is nonsingular, we can use [27] and relation (I + Γ)−1 =
(I − Γ) + Γ2(I + Γ)−1 to conclude that

max
1≤j≤n

|σ̃j − σj |√
σ̃jσj

≤ 1

2
‖(I + Γ)−1 − (I + Γ)T ‖2 =

1

2
‖ − 2Sym(Γ) + Γ2(I + Γ)−1‖2.

Relation (5.16) follows using the fact that ‖Γ‖2 < 1. Write

Ã = (I + Γ)U

(
Σ
0

)
V T = Ŭ(I + Ξ)

(
Σ
0

)
V T ,(5.17)

where (I + Γ)U = Ŭ(I + Ξ) with diagonal matrix Ξ determined so that Ŭ has unit
columns. Obviously, |Ξii| ≤ ‖ΓU(:, i)‖2 for all i, and ‖Ξ‖2 ≤ ‖Γ‖2. Write Ã as

Ã = Ŭ

(
Σ̆
0

)
V T ,

(
Σ̆
0

)
= (I + Ξ)

(
Σ
0

)
, Σ̆ = diag(σ̆j)

n
j=1,(5.18)

and note that ŬT Ŭ = I + Ω with Ωii = 0 for all i. Now,

ÃT Ã = V (Σ̆ 0) (I + Ω)

(
Σ̆
0

)
V T = V Σ̆(In + Ω̂)Σ̆V T ,(5.19)

where Ω̂ = Ω(1 : n, 1 : n). Using the orthogonal similarity in the last relation,
we can compare the eigenvalues of ÃT Ã and the corresponding eigenvalues of the
matrix M ≡ Σ̆(In + Ω̂)Σ̆. A second look at the relations (5.17)–(5.19) reveals the
transformation of the multiplicative perturbation I+Γ of A into the nonorthogonality
of the left singular vector matrix U and then the splitting of the nonorthogonality of
(I + Γ)U into the column length changes and angle changes. The changes of the unit
lengths of the columns of U are then taken as perturbation of Σ, thus defining Σ̆.

Note that the matrix M is ‖Ω̂‖2—scaled diagonally dominant (s.d.d.) [2] with
eigenvalues σ̃2

1 ≥ · · · ≥ σ̃2
n and diagonal entries σ̆2

1 ≥ · · · ≥ σ̆2
n. Using [22, Corollary

3.2] we conclude that

s̃i∑
j=s̃i−1+1

∣∣∣∣1 −
σ̃2
s̃i

(σ̆j)2

∣∣∣∣2 +

s̃i∑
j=s̃i−1+1

s̃i∑
k=s̃i−1+1

Ω̂2
jk

≤ 4

γ̃2
i

⎛⎝ s̃i∑
j=s̃i−1+1

(

s̃i−1∑
k=1

Ω̂2
jk +

n∑
k=s̃i+1

Ω̂2
jk)

⎞⎠2

.

Remark 5.1. Consider the right-handed Jacobi SVD algorithm on X ∈ R
n×n.

Let X̃∞ ≡ X̃(k) = (X + δX)V̂ be the computed matrix and X̃∞ + δX̃∞ = Ũ Σ̃ as
in relation (4.3). Let maxi �=j

∣∣(ŨT Ũ)ij
∣∣ ≤ τ , maxi

∣∣1 − ‖Ũ(:, i)‖2

∣∣ ≤ ν. We wish to

know how the sizes of τ and ν influence the relative distance between the σ̃i = Σ̃ii

and the corresponding exact singular value σ̂i of Ũ Σ̃. As in the proof of Theorem 5.5,
we split the perturbation (the departure from orthogonality of Ũ) into two parts.
Let Ũ = Ŭ(I + Ξ), where Ŭ has unit columns and Ξ is a diagonal matrix with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. I 1339

‖Ξ‖2 ≤ ν. Write Ũ Σ̃ as Ŭ Σ̆, where Σ̆ is the diagonal matrix with diagonal entries
σ̆i = σ̃i(1 + Ξii). Note that ν can be as small as O(ε) with the cost of doubly
accumulated dot products, and O(nε) if no extra precision is used. The potentially
larger and harder to control value τ enters the estimate quadratically, and that opens
a possibility for better stopping criteria. As in Theorem 5.5, we note that Σ̆ŬT Ŭ Σ̆
has diagonal entries σ̆2

i and eigenvalues σ̂2
i , i = 1, . . . , n. Further, Ω = ŬT Ŭ − I

satisfies maxij |Ωij | ≤ τ/(1− ν)2. Let ‖Ω‖2 < γ̂/3, where the gap γ̂ between the σ̂2
i ’s

is analogous to γ̃ in Theorem 5.5. Then, if k̂i is the multiplicity of σ̂i, it holds that

|σ̂i − σ̆i|
σ̆i

≤ 2

γ̂i
k̂i(n− k̂i)

τ2

(1 − ν)4
≤ 1

γ̂i

n2τ2

2(1 − ν)4
.(5.20)

Example 5.1. We illustrate the application of the relation (5.20) in stopping the
Jacobi SVD algorithm. Let ε ≈ 2.22 · 10−16, n = 1000, and τ = 10−8. Since we do
not have the σ̂i’s, the relative gaps will be estimated using the computed σ̃i’s. Let
ŨT Ũ = I + Ω̃. Then ‖Ω̃‖F ≤ ω ≡

√
n(n− 1)τ2 + nν2 < 9.9950 · 10−6 and

max
i=1:n

|σ̂i − σ̃i|√
σ̂iσ̃i

≤ ‖(I + Ω̃)−1/2 − (I + Ω̃)1/2‖2 ≤ ω1 ≡ ω√
1 − ω

< 9.9951 · 10−6.

From this we conclude that for all i

|σ̂i − σ̃i|
min{σ̂i, σ̃i}

≤ ω2 ≡ ω1

1 − ω1
< 9.996 · 10−6,

|σ̂i − σ̃i|
σ̂i + σ̃i

≤ ω1

2
< 4.998 · 10−6.

Suppose that we have n different values σ̃1 > · · · > σ̃n > 0 and that they are well
separated relative to their uncertainty in approximating the σ̂i’s, i.e., let

max
i �=j

|σ̃i − σ̃j |
σ̃i + σ̃j

> 5ω > 4.997 · 10−5. Then γ̃i ≡ min
j �=i

|σ̃2
i − σ̃2

j |
σ̃2
i + σ̃2

j

> 5ω.

Since the σ̂i’s are O(ω) close to the σ̃i’s, we know that the σ̂i’s are simple and that

γ̂i ≡ minj �=i
|σ̂2

i−σ̂2
j |

σ̂2
i +σ̂2

j
≥ γ̃i

(
1 − ω2

5ω

)
1−ω2

(1+ω2)2
> 0.7999γ̃i > 3.999ω > 3‖Ω‖2. Since σ̆i =

σ̃i(1 + O(10−13)), we have σ̆1 > · · · > σ̆i > σ̆i+1 > · · · > σ̆n > 0. We can now apply
the quadratic bound, which yields for each i

|σ̂i − σ̆i|
σ̆i

≤ 2

0.7999

1

γ̃i
(n− 1)

τ2

(1 − ν)4
≤ 1

γ̃i
2.498 · 10−13.(5.21)

Thus, if for instance γ̃i > 10−3, we can claim that σ̃i coincides with the corresponding
σ̂i to about ten decimal places, which actually doubles the previous number by about
five known correct digits.

5.5. Accuracy of the singular vectors. The structure of the backward error
in our algorithm is such that we can use well-developed and sharp perturbation the-
ory [19], [28]. Our starting point is the relation (5.3) in Proposition 5.1, which is the
SVD of A+E with the computed singular values in diagonal Σ̃, and exactly orthogonal
matrices Q̂, V̂x, Û which are close to the corresponding computed approximations Q̃,
V x, Ũx, respectively. We first deal with the singular vector perturbations in the case
of simple well-separated singular values. If σ1 ≥ · · · ≥ σn are the singular values of

A = U
(

Σ
0

)
V T , then the relative separation is defined as ρi = min

{
2,minj �=i

|σj−σi|
σi

}
,

i = 1, . . . , n. If the singular values are simple, then each ρi is positive and the singular

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1340 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

vectors define one-dimensional singular subspaces. If the perturbed matrix also has
only simple singular values, then we can use the angles between the original and the
perturbed subspaces as a natural error measure. Let θi and ϑi denote the error angles
in the ith left and right singular vector, respectively. In the case of the perturbation
from relation (5.3), θi = ∠(U(:, i), Ûa(:, i)), ϑi = ∠(V (:, i), V̂a(:, i)).

Proposition 5.6. Let A = U
(

Σ
0

)
V T be the SVD of A and let (5.3) be the SVD

of a perturbed matrix with ‖E(:, i)‖2 ≤ η̂‖A(:, i)‖2, i = 1, . . . , n (cf. Proposition 5.1).
Let Φ = EA†, φ = ‖Φ + ΦT + ΦΦT ‖2, φ ≤ 2‖Sym(Φ)‖2 + ‖Φ‖2

2. If φ < ρi, then

max {sin θi, sinϑi} ≤
√

2

{
ξ

ρi − φ
+ ‖Φ‖2

}
,(5.22)

where ξ ≤ 2‖Sym(Φ)‖2 + O(‖Φ‖2
2) and ‖Φ‖2 ≤

√
nη̂‖A†

c‖2.
Proof. We obtain the proof by applying [19, Theorem 3.3].
Application of the above estimates to the actually computed matrices Ũa, Ṽa

follows by combining Propositions 5.6 and 5.2, since the angles ∠(Ũa(:, i), Ûa(:, i))
and ∠(Ṽa(:, i), V̂a(:, i)) are small, with bounds sharper than those in (5.22).

In cases of clustered or multiple singular values, the singular vectors are not
the right objects to be approximated numerically. Instead, we try to compute well-
defined singular subspaces, belonging to multiple or tightly grouped singular values.
The structure of the backward perturbation in the Jacobi SVD algorithm fits nicely
into the perturbation estimates. For the sake of simplicity, we will give only one
perturbation result, following [28]. Other interesting bounds can be derived from
the fact that A + E = (I + Φ)A, where ‖Φ‖ is independent of the column scaling
of A.

Proposition 5.7. Let Σ = Σ1 ⊕ Σ2, Σ̃ = Σ̃1 ⊕ Σ̃2 with Σ1 = diag(σ1, . . . , σk),
Σ2 = diag(σk+1, . . . , σn), Σ̃1 = diag(σ̃1, . . . , σ̃k), Σ̃2 = diag(σ̃k+1, . . . , σ̃n). Let � =

mini=1:k;j=1:n−k |σi − σ̃k+j |/
√

σ2
i + σ̃2

k+j. In the rectangular case, m > n, replace

� with min{�, 1}. Let U1, Û1, V1, V̂1 be the subspaces spanned by the columns of
U1 ≡ U(:, 1 : k), Ûa(:, 1 : k), V (:, 1 : k), V̂a(:, 1 : k), respectively. If � > 0, then∥∥∥∥(‖ sin Θ(U1, Û1)‖F

‖ sin Θ(V1, V̂1)‖F

)∥∥∥∥
F

≤
√
‖ΦTU1‖2

F + ‖ − ΦU1 + Φ2(I − Φ)−1U1‖2
F

�
.(5.23)

Thus, the error angles are bounded by O(‖Φ‖F /�).
This concludes the first part of our report. We have defined the global structure of

a new preconditioned Jacobi SVD algorithm, which uses pivoted QR factorization as
the preconditioner and reduces the computation to the SVD of structured triangular
matrices. We have shown that the new algorithm computes the SVD with columnwise
small backward error and with condition number independent of column scaling. Re-
liable implementation of the preconditioner is given in [16]. The new implementation
of the Jacobi SVD on triangular matrices and the results of numerical testing are
presented in [18], where we show that the new method can reach the efficiency of less
accurate bidiagonalization-based methods (SGESVD and SGESDD from LAPACK).
The speedup over the equally accurate standard one-sided Jacobi SVD can be a factor
of ten or more.

Acknowledgments. The authors acknowledge generous support by the Volks-
wagen Science Foundation and the Croatian Ministry of Science and Technology.
They are also indebted to P. Arbenz (Zürich), J. Barlow (State College), J. Demmel
(Berkeley), F. Dopico (Madrid), V. Hari (Zagreb), W. Kahan (Berkeley), J. Moro

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. I 1341

(Madrid), B. Parlett (Berkeley), and I. Slapničar (Split) for their comments, criticisms,
and many fruitful discussions. Special thanks go to the anonymous referees for their
substantial and constructive suggestions.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenny, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, 2nd ed., SIAM, Philadelphia, 1995.

[2] J. Barlow and J. Demmel, Computing accurate eigensystems of scaled diagonally dominant
matrices, SIAM J. Numer. Anal., 27 (1990), pp. 762–791.

[3] R. Bhatia, Matrix Analysis, Grad. Texts in Math., Springer-Verlag, New York, 1997.
[4] C. H. Bischof and G. Quintana-Orti, Algorithm 782: Codes for rank–revealing QR factor-

izations of dense matrices, ACM Trans. Math. Software, 24 (1998), pp. 254–257.
[5] C. H. Bischof and G. Quintana-Orti, Computing rank-revealing QR factorizations of dense

matrices, ACM Trans. Math. Software, 24 (1998), pp. 226–253.
[6] P. A. Businger and G. H. Golub, Linear least squares solutions by Householder transforma-

tions, Numer. Math., 7 (1965), pp. 269–276.
[7] S. Chandrasekaran and I. C. F. Ipsen, On rank-revealing factorisations, SIAM J. Matrix

Anal. Appl., 15 (1994), pp. 592–622.
[8] S. Chandrasekaran and I. C. F. Ipsen, Analysis of a QR algorithm for computing singular

values, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 520–535.
[9] A. J. Cox and N. J. Higham, Stability of Householder QR factorization for weighted least

squares problems, in Numerical Analysis 1997, Proceedings of the 17th Dundee Biennial
Conference, D. F. Griffiths, D. J. Higham, and G. A. Watson, eds., Pitman Res. Notes in
Math. Ser. 380, Longman, Harlow, UK, 1998, pp. 57–73.

[10] J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač, Computing
the singular value decomposition with high relative accuracy, Linear Algebra Appl., 299
(1999), pp. 21–80.

[11] J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci.
Statist. Comput., 11 (1990), pp. 873–912.

[12] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 1204–1245.

[13] Z. Drmač, Computing the Singular and the Generalized Singular Values, Ph.D. thesis, Lehrge-
biet Mathematische Physik, Fernuniversität Hagen, Germany, 1994.

[14] Z. Drmač, A posteriori computation of the singular vectors in a preconditioned Jacobi SVD
algorithm, IMA J. Numer. Anal., 19 (1999), pp. 191–213.

[15] Z. Drmač, On principal angles between subspaces of Euclidean space, SIAM J. Matrix Anal.
Appl., 22 (2000), pp. 173–194.

[16] Z. Drmač and Z. Bujanović, On the failure of rank revealing QR factorization software—a
case study, ACM Trans. Math. Software, to appear.

[17] Z. Drmač, M. Omladič, and K. Veselić, On the perturbation of the Cholesky factorization,
SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1319–1332.

[18] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm. II, SIAM J. Matrix
Anal. Appl., 29 (2008), pp. 1343–1362.

[19] S. C. Eisenstat and I. C. F. Ipsen, Relative perturbation techniques for singular value prob-
lems, SIAM J. Numer. Anal., 32 (1995), pp. 1972–1988.

[20] K. V. Fernando and B. N. Parlett, Implicit Cholesky algorithms for singular values and
vectors of triangular matrices, Numer. Linear Algebra Appl., 2 (1995), pp. 507–531.

[21] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the bidiagonal SVD, SIAM
J. Matrix Anal. Appl., 16 (1995), pp. 79–92.

[22] V. Hari and Z. Drmač, On scaled almost-diagonal Hermitian matrix pairs, SIAM J. Matrix
Anal. Appl., 18 (1997), pp. 1000–1012.

[23] M. R. Hestenes, Inversion of matrices by biorthogonalization and related results, J. Soc.
Indust. Appl. Math., 6 (1958), pp. 51–90.

[24] N. J. Higham, QR factorization with complete pivoting and accurate computation of the SVD,
Linear Algebra Appl., 309 (2000), pp. 153–174.

[25] C. G. J. Jacobi, Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkom-
menden Gleichungen numerisch aufzulösen, Crelle’s Journal für reine und angew. Math.,
30 (1846), pp. 51–95.

[26] W. Kahan, Numerical linear algebra, Canad. Math. Bull., 9 (1965), pp. 757–801.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1342 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

[27] R.-C. Li, Relative perturbation theory: I. Eigenvalue and singular value variations, SIAM J.
Matrix Anal. Appl., 19 (1998), pp. 956–982.

[28] R.-C. Li, Relative perturbation theory: II. Eigenspace and singular subspace variations, SIAM
J. Matrix Anal. Appl., 20 (1998), pp. 471–492.

[29] R. Mathias and G. W. Stewart, A block QR algorithm for singular value decomposition,
Linear Algebra Appl., 182 (1993), pp. 91–100.

[30] M. J. D. Powell and J. K. Reid, On applying Householder transformations to linear least
squares problems, in Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968),
North-Holland, Amsterdam, 1969, pp. 122–126.

[31] H. Rutishauser, Vorlesungen über numerische Mathematik, Band 2, Differentialgleichungen
und Eigenwertprobleme, Birkhäuser Verlag, Basel, Stuttgart, 1976. Lehrbücher und Mono-
graphien aus dem Gebiete der exakten Wissenschaften, Math. Reihe, Band 57.

[32] G. W. Stewart, The QLP Approximation to the Singular Value Decomposition, Tech. report
TR-97-75, Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD, 1997.

[33] J.-G. Sun, Componentwise perturbation bounds for some matrix decompositions, BIT, 32
(1992), pp. 702–714.

[34] K. Veselić and V. Hari, A note on a one-sided Jacobi algorithm, Numer. Math., 56 (1989),
pp. 627–633.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1343–1362

NEW FAST AND ACCURATE JACOBI SVD ALGORITHM. II∗

ZLATKO DRMAČ† AND KREŠIMIR VESELIĆ‡

Abstract. This paper presents a new one-sided Jacobi SVD algorithm for triangular matrices
computed by revealing QR factorizations. If used in the preconditioned Jacobi SVD algorithm,
described in part one of this paper, it delivers superior performance leading to the currently fastest
method for computing SVD decomposition with high relative accuracy. Furthermore, the efficiency
of the new algorithm is comparable to the less accurate bidiagonalization-based methods. The paper
also discusses underflow issues in floating point implementation and shows how to use perturbation
theory to fix the imperfectness of the machine arithmetic.

Key words. Jacobi method, singular value decomposition, eigenvalues

AMS subject classifications. 15A09, 15A12, 15A18, 15A23, 65F15, 65F22, 65F35

DOI. 10.1137/05063920X

1. Introduction. Jacobi iteration is one of the time-honored methods for com-
puting the spectral decomposition H = V ΛV T of a real symmetric matrix H. The
early discovery in 1846 is certainly due to the simplicity and the elegance of the method
as well as to the geniality of C. G. J. Jacobi, who called it “ein leichtes Verfahren”
and applied it to compute the secular perturbations of the planets. Jacobi’s original
article [25] is a masterpiece of applied mathematics and may even today be read with
profit by both students and scientists. The simplicity of the Jacobi method is not
only theoretical but also computational, and in this respect it may well be compared
with Gaussian elimination. Thus, with coming of automatic computation, the Jacobi
method was soon rediscovered by Goldstine, Murray, and von Neumann [17], who
provided the first detailed implementation and error analysis.

In our recent work [14] we introduced a preconditioner for the Hestenes variant [24]
of the Jacobi method for SVD computation of general matrices. We have shown that
rank revealing QR factorization can serve as a versatile preconditioner which enables
efficient execution of Jacobi iterations on the triangular factor. The idea of QR
iterations as preconditioner for SVD computation is well known (see [33], [27], [15]),
but thus far it has not been fully exploited in the context of the Jacobi method. It is
both simple and powerful: If AP = Q(RT 0)T is the Businger–Golub QR factorization
of A, then the Hestenes one-sided Jacobi algorithm applied to X = RT converges
much faster than if applied to A. (If R is singular, then the second QR factorization

RTP1 = Q1 (RT
1 0)

T
provides nonsingular X = RT

1 .) In [14] Jacobi iterations
on triangular matrices are used as a black-box procedure: starting with X(0) = X,
the sequence X(k+1) = X(k)V (k) converges to X∞ = UΣ and the product of Jacobi
rotations V (0)V (1) · · · converges to V . The SVD of X is X = UΣV T , where the matrix

∗Received by the editors August 30, 2005; accepted for publication (in revised form) by M. Chu
June 5, 2007; published electronically January 4, 2008. This work was supported by the Volkswagen–
Stiftung grant Designing Highly Accurate Algorithms for Eigenvalue and Singular Value Decompo-
sitions.

http://www.siam.org/journals/simax/29-4/63920.html
†Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia (drmac@

math.hr). The work of this author was supported by the Croatian Ministry of Science and Technology
under grant 0037120 (Numerical Analysis and Matrix Theory).

‡Lehrgebiet Mathematische Physik, Fernuniversität Hagen, Postfach 940, D-58084 Hagen, Ger-
many (kresimir.veselic@FernUni-Hagen.de).

1343

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1344 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

V is obtained not from the accumulated product of Jacobi rotations but rather in an
a posteriori manner, using the relation V = X−1X∞. Assembling the SVD of A from
the SVD of X is straightforward.

In this report we unwrap the black box and present a new one-sided Jacobi SVD
method for triangular matrices. A new pivot strategy is introduced in section 2. We
use the triangular structure to reduce the flop count and memory traffic. At the same
time, faster convergence is achieved using the knowledge of the asymptotic behavior
of Jacobi iterations. We also use the structure of the SVD of triangular matrices,
obtained from the theory of symmetric quasi-definite matrices. A new ordering of
rotations is also designed to improve the use of fast cache memory. Underflow prob-
lems in floating point implementation of the algorithm are solved using perturbation
theory in section 3. Numerical testing of the new preconditioned Jacobi SVD algo-
rithm (cf. [14, Algorithm 4] with the new triangular SVD method from this paper) is
presented in section 4. The results presented in section 4.3 carry the main message
of [8], [14], and this paper: Our new Jacobi SVD algorithm is more accurate than
the bidiagonalization-based QR (SGESVD) and divide-and-conquer (SGESDD) algo-
rithms from LAPACK [1]. Moreover, the new algorithm can compute the SVD faster
than SGESVD, and it is not much slower than SGESDD. Concluding remarks and
discussion of future work are given in section 5.

2. One-sided Jacobi SVD on n×n preconditioned triangular matrices.
The Jacobi transformation X(k+1) = X(k)V (k) transforms pivot columns pk, qk chosen
by pivot strategy (ordering) k �→ (pk, qk). An example is the row-cyclic strategy,
which is periodic, and in one full sweep of n(n− 1)/2 rotations it rotates at the pivot
positions (1, 2), (1, 3), . . . , (1, n); (2, 3), . . . , (2, n); (3, 4), . . . , (3, n); . . . , (n−2, n); (n−
1, n). The convergence of X(k) is studied in terms of the convergence of H(k) =
(X(k))TX(k) towards the diagonal form, and its rate is usually measured using the
off-norm, Ω(H(k)) = ‖H(k) −diag(H(k))‖F . In the case of the row-cyclic strategy the
convergence is asymptotically quadratic [20]: If Ω(H(0)) is sufficiently small and if
the diagonal entries of H(0) are sorted, then Ω(H(n(n−1)/2)) ≤ const · Ω(H(0))2.

In practice, the Jacobi rotation V (k) is executed only if the cosine of the angle
between X(k)(:, pk) and X(k)(:, qk) is greater than a tolerance which is usually n times
the round-off ε. Otherwise, the rotation is skipped. If n(n−1)/2 consecutive rotations
with all possible pivot pairs are skipped, i.e.,

max
i �=j

|X(:, i)TX(:, j)|
‖X(:, i)‖2‖X(:, j)‖2

≤ nε,(2.1)

then the iterations are stopped and numerical convergence is declared. Demmel and
Veselić [8] showed that (2.1) is important for high relative accuracy. If the floating
point Jacobi rotation is implemented as in [11], then the procedure can compute the
singular values in the full range of machine numbers.

Our new pivot strategy is based on the fact that the initial matrix X = X(0) is
triangular, nonsingular, and with additional structure implied by the Businger–Golub
column pivoting. In this section, we outline the key ingredients of the new approach.

2.1. SVD of lower triangular matrix. As discussed in [14], the precondi-
tioned Jacobi SVD algorithm computes a rank revealing QR factorization AP =
Q(R0), and then it applies one-sided Jacobi SVD to X = RT . (In some cases, it uses

second QR factorization RT = Q1 (RT
1 0)

T
and then X = RT

1 .) The reason is that
RRT is more diagonal than RTR. In addition to the arguments in [14], we give an

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. II 1345

illustration by simple MATLAB example and show that the gap revealing property
of the pivoted QR factorization (cf. [31], [32]) opens a connection to the theory of
symmetric quasi-definite matrices.

Example 2.1. We generate in MATLAB A ∈ R
50×50 with entries uniformly

distributed over [0, 1], and compare the column norms of A and X = RT . Further,
we compare the diagonality of the Gram matrices Hs = RT

c Rc and Ms = XT
c Xc,

where Rc, Xc are obtained by column equilibration, e.g., Xc = Xdiag(‖X(:, i)‖−1
2).

The results shown in Figure 2.1 strongly suggest that the Jacobi method should
diagonalize XTX faster than RTR. In the case of graded A (column norms vary in
length) the positive effect of using X instead of R is even stronger. (See the second
row in Figure 2.1.) An analysis of perfect behavior of the column norms of X can be
found in [12].

It appears that the Jacobi iterations X(k+1) = X(k)V (k) in general work better if
the initial X is lower triangular. An explanation is given in the following theorem.

Theorem 2.1. Let X ∈ R
n×n be a lower triangular matrix with the partition

X =

(
X11 0
X21 X22

)
, X11 ∈ R

k×k, and let σmin

((
X11

X21

))
> σmax(X22).(2.2)

Let the SVD of X be given with the partition

X = UΣV T =

(
U11 U12

U21 U22

)(
Σ1 0
0 Σ2

)(
V11 V12

V21 V22

)T

.(2.3)

Then the matrix V is more block diagonal than U in the following sense:
(i) In the Löwner partial order V T

11V11 � V T
21V21, V T

22V22 � V T
12V12. (For sym-

metric matrices S1 and S2, S1 � S2 if and only if S1−S2 is positive definite.)
As a consequence, σmin(V11) > 1/

√
2 and σmin(V22) > 1/

√
2.

(ii) Let Uk, Vk, Ik be the subspaces spanned by the first k columns of U, V, and
the identity matrix I, respectively. If the angles ψk, θk are defined as ψk =
∠(Vk, Ik), θk = ∠(Uk, Ik), then ψk < π/4 and

tanψk ≤ σk+1

σk
tan θk.

Proof. Consider the block partition of the cross product matrix H = XTX,

XTX =

(
XT

11X11 + XT
21X21 XT

21X22

XT
22X21 XT

22X22

)
=

(
H11 H12

H21 H22

)
.

The gap assumption (2.2) implies that for any shift ξ ∈ S = (λmax(H22), λmin(H11))
both H11 − ξI and ξI − H22 are positive definite. Therefore, the matrix H − ξI is
symmetric quasi-definite, and the matrix V must have the special structure of the
eigenvector matrix of quasi-definite matrices [16]. In particular, V T

11V11 � V T
21V21,

V T
22V22 � V T

12V12, yielding σmin(V11) > 1/
√

2, σmin(V22) > 1/
√

2. From this and
X11V11 = U11Σ1 it follows that U11 is nonsingular. Further, from the SVD of X it
follows that

V −1
11 V12 = −(V −1

22 V21)
T = Σ−1

1 U−1
11 U12Σ2 and ‖V −1

11 V12‖2 ≤ σk+1

σk
‖U−1

11 U12‖2.

Finally, from the CS decomposition of partitioned V we have ‖V −1
11 V12‖2 = tanψk.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1346 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

0 20 40 60
10

−2

10
−1

10
0

10
1

10
2

0

20

40

60

0

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

0

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

0

50

0

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

50
0

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 2.1. Example 2.1: In the first plot, the top line denotes sorted column norms of A, the
middle line denotes the column norms of X = RT , and lowest line denotes the singular values.
The next two plots are obtained by meshz(abs(Ms − diag(Ms))) and meshz(abs(Hs − diag(Hs))),
respectively. In the second row of the figure, the plots correspond to matrix A with graded columns.

Remark 2.1. Part (ii) of Theorem 2.1 is due to Chandrasekaran and Ipsen [6]
but under the assumption that X and one of the matrices U11, V11 is nonsingular.
The contribution of (ii) is in establishing a connection between the separation condi-
tion (2.2) and the theory of symmetric quasi-definite matrices to conclude (i), which
yields nonsingularity of V11. Further, our “weak separation” condition (2.2) is weaker
than the usual condition σmin(X11) > σmax(X22).

Remark 2.2. Comparing XTX with XXT =
(X11X

T
11

X21XT
11

X11X
T
21

X22XT
22+X21XT

21

)
we see that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. II 1347

one important difference is that the monotonicity principle acts inside different diago-
nal blocks. Thus, it can increase or decrease the initial separation gap. Also note that
in the case of “strong separation” σmin(X11) > σmax((X21 X22)), even the matrix U
has the property (i). However, property (ii) implies that V is more block diagonal.
Hence, we prefer V to be the product of Jacobi rotations.

In the Jacobi SVD algorithm applied to X = RT , the matrix V is built as the
accumulated product of Jacobi rotations. The structure of V (more block diagonal
than U) is an additional argument to apply Jacobi rotations to the columns of X.

2.2. How to exploit the triangular form. Classical pivot strategies in the
one-sided Jacobi method are not designed to preserve any zero pattern of the input
matrix. In fact, the incapability to preserve created zeros was the main reason for the
poor performance, as compared with bidiagonalization-based methods.

However, if the initial matrix is triangular, quite a few rotations in the first sweep
can use and partially preserve the zero structure. Let X denote the array in the
memory occupied by the iterates in the Jacobi SVD algorithm. Initially, X is lower
triangular; see (2.4). Let the columns of X be partitioned into four blocks, X[1], X[2],
X[3], X[4], of dimensions n × ni, respectively, where each ni is approximately n/4.

Further, let X [1] =
(
X[1], X[2]

)
, X [2] =

(
X[3], X[4]

)
.

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� o 0 0 0 0 0 0
� � 0 0 0 0 0 0
� � � o 0 0 0 0
� � � � 0 0 0 0

� � � � � o 0 0
� � � � � � 0 0
� � � � � � � o
� � � � � � � �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡
(
X[1], X[2], X[3], X[4]

)
≡(X [1], X [2]).(2.4)

We will say that rotations are applied in X�
[i] (X

[i]
�) if we implicitly transform XT

[i]X[i]

((X [i])TX [i]) by following one full sweep of some pivot strategy. Further, for two
blocks X[i] and X[j] (X [i] and X [j]) of X, rotating in X[i]↔X[j] (X [i]↔X [j]) means

choosing, in some order, all pivot pairs with the first pivot column from X[i] (X [i])

and the second one from X[j] (X [j]).
Consider the most natural greedy approach. Rotating in X[4] is efficient because

all columns are, and remain during rotations, in a canonical subspace of dimension
n4 ≈ n/4. Thus, only the submatrix X[4](n1 + n2 + n3 + 1 : n, 1 : n4) is transformed.

This reduces the operation count of rotations applied in X�
[4] by a factor of four. In

the same way, transformations of the columns of X[3] by any strategy is computed in
a subspace of dimension n3+n4 ≈ n/2. The same holds for the transformations of the
columns of X [2]. Repeated transformations of the columns of X[3] (and independently
X[4]) are still in a lower-dimensional subspace, and thus very efficient. Savings in the
transformations of the columns of X[2] are modest, but not worthless. Note that this
strategy in the first sweep transforms more often closer to the diagonal, which seems
reasonable given the structure of the initial matrix (see Example 2.1).

Definition 2.2. The greedy triangular sweep for the partition (2.4) of lower
triangular matrix is defined as the following ordering of Jacobi rotations:

X�
[3], X

�
[4], X[3]↔X[4], X

�
[3], X

�
[4]; X

�
[1], X

�
[2], X[1]↔X[2], X

�
[1], X

�
[2]; X

[1]↔X [2].(2.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1348 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

In each bulk of rotations (X�
[i], X[j]↔X[k], X

[j]↔X [k]) pivot ordering is arbitrary and

implemented to transform only the nontrivial parts of the corresponding submatrices.
Thus, in the greedy triangular sweep, the blocks of zeros denoted by “0” in (2.4)

are at some point used to reduce the complexity (number of operations and memory
traffic), as discussed above. This is particularly important because the first sweep
is the busiest one. The positions denoted by “o” are treated as nonzero entries, i.e.,
they are not used to save operations.

This technique can be applied recursively by refining the partition (2.4).

2.3. Cubic convergence. Mascarenhas [26] observed that in the row-cyclic
strategy the off-diagonal entries converge to zero at different rates and showed that
by using special quasi-cyclic strategies the Jacobi method can attain cubic asymptotic
convergence. Here the term quasi-cyclic refers to a modified row-cyclic strategy in
which slowly convergent positions are visited more often. To motivate quasi-cyclic
strategy, assume that H = XTX is almost diagonal, Ω(H) = O(ε), and introduce the
following block partitions:

H =

(
H [11] H [12]

H [21] H [22]

)
=

⎛⎜⎜⎝
H[11] H[12] H[13] H[14]

H[21] H[22] H[23] H[24]

H[31] H[32] H[33] H[34]

H[41] H[42] H[43] H[44]

⎞⎟⎟⎠ .(2.6)

For simplicity, assume that the eigenvalues of H are well separated. If the row-cyclic
strategy is first applied to the diagonal blocks H [11] and then to H [22], their off-
diagonal norms will be reduced from O(ε) to O(ε2). Rotating in the row-cyclic fashion
inside the block H [12] reduces its norm to the order of O(ε3). Visiting the diagonal
blocks H [11] and H [22] once more will reduce their off-norms to O(ε4). Repeating
this pattern recursively on a finer partition of H, we obtain the quasi-cyclic ordering
which visits all pivot pairs from

H[33], H[44], H[34], H[33], H[44], H[11], H[22], H[12], H[11], H[22], H
[12],(2.7)

respectively. The pivot positions inside each block are visited using a row-cyclic
strategy.

Theorem 2.3 (see Rhee and Hari [28]). Let the diagonal entries of H in (2.6)
be ordered from large to small, and let no two diagonal entries from different blocks
H[ii], H[jj] be affiliated with the same eigenvalue. Let δ = minλi �=λj |λi − λj | and

Γ1 =

√
Ω(H [11])2 + Ω(H [22])2

δ/3
, Γ2 =

(
‖H [12]‖F

δ/3

)2/3

, Γ ≡ Γ(H) = max{Γ1,Γ2}.

Let H ′ be the matrix computed after the quasi-cycle (2.7). If Γ(H) < 1/4, then
Γ(H ′) < (49/25)Γ(H)3. Further, if Γ(H) = Γ1 < 1/4, then Ω(H ′) ≤ (18/δ2)Ω(H)3.

Rhee and Hari pointed out that the reduction of Ω(H) is only quadratic if Γ2

dominates Γ1. One of the key points in our new preconditioned algorithm is that
preconditioning makes the dominance of Γ2 over Γ1 very unlikely; see Example 2.1.
Intuitively, it is then a reasonable strategy to take care of Γ1 first and then follow
the strategy (2.7) in its implicit form (2.5). We expect positive effects of the cubic
convergence mechanism even in the first sweep, before the conditions for the cubic
convergence are fulfilled.

Let us summarize the elements of the first sweep and the benefits of working on
X = RT , as compared to the classical application of the Hestenes Jacobi SVD on A:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. II 1349

XTX =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � � ⊗ ⊗ ⊗ ⊗
� � � � � ⊗ ⊗

� � � ⊗ ⊗ ⊗
� � � � ⊗

� � � �
� � �

� �
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� rotated
� rotation skipped after test
⊗ dot product test abandoned

Fig. 2.2. Example of modified row-cyclic strategy: if two consecutive rotations in a row are
skipped, then the remaining pivot positions in that row are not even tested against the threshold.

(i) R is computed efficiently by BLAS 3 operation; smaller dimension in the case
m > n;

(ii) preconditioning effect (XTX closer to diagonal than ATA; see Example 2.1);
(iii) a priori known structure of XTX and of Jacobi rotations (Theorem 2.1);
(iv) greedy sweep (2.5) exploits triangular structure to save flops and reduce

memory traffic; it transforms more often where most needed, and at the same time it
follows cubically convergent strategy (2.7).

2.4. How to adapt to the nearly band structure. Upon completion of the
first sweep, the array X is dense. However, X is the result of the preconditioning by
a rank revealing QR factorization, followed by a greedy sweep. Hence, X must have
structure that can be exploited. We expect that H = XTX is a scaled diagonally
dominant (s.d.d.) matrix in the sense of [2] and that its off-diagonal mass is distributed
close to the diagonal. This is a typical nonpathological situation. The pathological
case occurs in the presence of multiple or tightly clustered singular values.

It is known that the convergence of Jacobi iterations is improved if the threshold
for the rotation is set higher at the beginning of the process and then gradually
reduced to the final level. Such a strategy is not suitable for the implicit Jacobi SVD
algorithm because O(n) flops are required to compute a single pivot element. Further,
in the nonpathological case we may expect that many rotations with pivot positions
far from diagonal will be skipped. In fact, in each row of the row-cyclic pivoting,
each skipped rotation increases the probability that the next rotation in that row
will be skipped as well. Hence, it is reasonable to have a pivot strategy which will
dynamically adapt to the structure of the matrix and anticipate small pivots. This
strategy saves many unnecessary dot products, and it can be applied inside the blocks
of the quasi-cyclic strategy (2.5) as well as globally on X.

The scheme on Figure 2.2 gives the main idea. The basic strategy is row-cyclic
with de Rijk’s pivoting1 [9], but if in a row i a certain number of consecutive rotations
is skipped (because the pivot elements are sufficiently small), the control of the row-
cycling moves to the next row—the remaining pivot positions of the ith row are not
visited. This strategy is motivated by the following reasons. First, it is very likely that
the ⊗-positions in Figure 2.2 will pass the tolerance check, so we save unnecessary
dot products. Second, even if the ⊗-positions do not satisfy the tolerance criterion,
they are expected to be much smaller than the pivot positions closer to the diagonal,
and it is more useful for the overall convergence to reduce those positions close to the
diagonal.

1Due to preconditioning and monotonicity of Jacobi rotation (it increases larger and decreases
smaller diagonal pivots), de Rijk’s pivoting is identity most of the time.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1350 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

Certainly, this modification of the row-cyclic strategy may bring no savings in the
pathological case. However, it does no harm—in that case it simply reduces to the
classical strategy. Also, this modification is in general not convergent, so an additional
switch turns it off after at most 3 or 4 modified sweeps. After that, the classical full
sweep does the final cleanup. Numerical evidence shows that in a nonpathological
case the expected total number of rotations in 3 or 4 sweeps of this predict-and-skip
strategy is much smaller than in one classical full sweep.

2.5. Cache-aware pivot strategy. In sections 2.1–2.4 we considered modi-
fications to reduce the number of operations and to improve the convergence rate
of the Jacobi SVD algorithm. Numerical evidence shows that those modifications,
combined with the preconditioning, substantially improve the one-sided Jacobi SVD
algorithm. However, the algorithm still transforms a full square array, where the ba-
sic operations (dot product and plane rotation) both have O(n) operations per O(n)
memory references. Pivot strategies in Jacobi methods are usually not designed to
enhance temporal and spatial data locality, which results in numerous cache misses,
thus degrading the performance. Fortunately, a well-known tiling technique fits very
nicely into our previous modifications and considerably improves data locality.

Introduce a parameter b (block size expressed in number of columns) and partition
the columns of X in n/b� blocks (the first n/b� − 1 blocks with b columns each,
the last block with the remaining n − b(n/b� − 1) columns). This introduces a
n/b�× n/b� block partition in H = XTX and the new strategy is to visit all blocks
in the usual row-cyclic fashion (on the block-level), where at the beginning of the
rth block row, after rotating in the diagonal block (r, r), we allow the possibility of
transforming the next k diagonal blocks (and, optionally, to repeat transformations
in the block (r, r)) before entering the block (r, r + 1). The parameter k is a small
integer (typically 0, 1, 2) depending on X, n, b and cache parameters. It influences
the convergence rate (this is easily seen by taking, for example, k = 1) and memory
access patterns. Inside each block all positions are visited row by row. We call this
strategy “tiled row-cyclic.” Its detailed description is shown in Algorithm 1.

Proposition 2.4. The tiled row-cyclic strategy with k = 0 is equivalent to the
row-cyclic strategy: both strategies compute the same matrix after the full cycle of
n(n− 1)/2 rotations. Thus, it is convergent.

The proof is straightforward. The proof of global convergence for k > 0 is only a
technical matter [22]. The tiled row-cycling can be immediately deployed inside the
blocks of (2.5), and it can be modified following the lines of section 2.4.

3. Underflow and overflow—problems and solutions by perturbation
theory. Reliable software implementation of an SVD algorithm must take care of
underflow and overflow exceptions. This is particularly important for our new pre-
conditioned Jacobi SVD algorithm (cf. [14, Algorithm 4] with the triangular Jacobi
SVD as described in previous sections), because it is designed to compute the singular
values in the full range of floating point numbers. For example, if σmax(A) ≈ 1030,
σmin(A) ≈ 10−30, but minD=diag κ2(AD) is moderate, then we can approximate all
singular values to high relative accuracy even in single precision arithmetic (with
round-off unit ε ≈ 10−8). (For comparison, bidiagonalization-based methods cannot
guarantee any correct digit in the singular values below εσmax, which is in this case
approximately 1022.) Jacobi SVD computation in the full range of floating point
numbers requires nonstandard implementation of Jacobi rotation because it can get
denormalized or flushed to identity, even in cases where its action is nontrivial [11].

In this section we discuss some other problems related to underflow and overflow.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. II 1351

Algorithm 1 Tiled row-cyclic strategy with tile size b.

{Simplified description of one full sweep}
Nbl = n/b�
for r = 1 to Nbl do
i = (r − 1) · b + 1
for d = 0 to k do {Do the blocks (r, r), . . . , (r + k, r + k)}
i = i + d · b
for p = i to min{i + b− 1, n} do

for q = p + 1 to min{i + b− 1, n} do
rotate pivot pair (p, q)

end for
end for

end for
i = (r − 1) · b + 1
for c = r + 1 to Nbl do
j = (c− 1) · b + 1
for p = i to min{i + b− 1, n} do

for q = j to min{j + b− 1, n} do
rotate pivot pair (p, q)

end for
end for

end for
end for

The underflow and overflow thresholds are denoted by ν and ω, respectively. The
round-off unit of the working precision is denoted by ε.

3.1. Scaling against overflow. Overflow issues are resolved simply by multi-
plying the matrix by a suitable scalar factor. However, even this simple operation
can introduce unacceptably large errors. For instance, LAPACK’s driver routine
xGESVD computes α = maxi,j |Aij | and scales the input matrix A with (1/α)

√
ν/ε

(if α <
√
ν/ε) or with (1/α)ε

√
ω (if α > ε

√
ω).

Example 3.1. Take in MATLAB A = (1.0e250
0

0
1.0e−201), d = diag(A), σ = svd(A).

A is (bi)diagonal, and its singular values are on the diagonal. However,

d =

(
9.999999999999999e + 249
1.000000000000000e− 201

)
, σ =

(
9.999999999999999e + 249
1.000000000016167e− 201

)
.

To explain this, let α = maxi,j |Aij |, ε = eps/2, ω = realmax , ν = realmin, s =
ε
√
ω/α, and scale A with s. The singular values of sA are on its diagonal; scaling the

diagonal of sA with 1/s changes the (2, 2) entry precisely to 1.000000000016167e−201.
Five digits in the second singular value of a 2×2 diagonal matrix are lost due to scaling
σ = (1/s) ∗ (s ∗ d). (In MATLAB, ω ≈ 1.79 · 10308, ν ≈ 2.22 · 10−308.) The problem
is not removed if s is changed to the closest integer power of 2. Note that in this
example λ = eig(A) returns λ = d.

Our implementation of fast scaled Jacobi rotations uses the column norms and
the cosines of the angles between the columns (cf. [11]); i.e., we can compute the
singular values of X even if σmin(X) ≈ ν, σmax(X) ≈ ω. Since the largest singular
value of an n × n X is bounded by

√
nmaxj ‖X(:, j)‖2, it is enough to have initial

X scaled so that its maximal column is not larger than ω/
√
n. Since the largest

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1352 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

value of any column norm of X is
√
nω, even in the most extreme case, the scaling

factor against overflow does not have to be smaller than 1/n. In the nonextreme case
(maxj ‖X(:, j)‖2/minj ‖X(:, j)‖2 < ωε/

√
n) we scale X to have maximal column

norm at
√
ω/

√
n.

Remark 3.1. A concrete implementation of BLAS and LAPACK may contain
computational routines which are optimized for speed at the cost of reduced compu-
tational range. For instance, xNRM2() is sometimes implemented as SQRT(xDOT()),
which works correctly for vector norms in the range (

√
ν,

√
ω). In such cases, scal-

ing of A must ensure that the maximal column is not larger than
√
ω/

√
n in the

Euclidean norm. If the spectrum of singular values spreads over the full range of nor-
malized numbers and if all of them are wanted to high relative accuracy, then enforcing√
ω/

√
n as the maximum column norm may damage smallest singular values.

Remark 3.2. The one-sided Jacobi SVD can be adapted to work even beyond
the range of working precision. Let A = A0D0 with diagonal D0, where A cannot be
stored because of underflow/overflow, but both A0 and D0 can. Fast scaled Jacobi
rotations work on the pair A0, D0 and deliver the result in factored form. The only
required modification is that the array of scaling factors for fast rotations be initialized
to diag(D0) instead of a vector of ones.

3.2. An unusual underflow problem. Preliminary tests of software imple-
mentation of the preconditioned Jacobi SVD algorithm showed undesirable behavior
in some cases of strongly graded matrices: the convergence of the Jacobi iterations was
swift, the total number of rotations was very small, but the run time was unacceptably
long. This called for detailed step-by-step analysis. Recall that the algorithm first
computes2 AP = Q0(

R
0), then it computes the QR factorization L = QT of L = RT ,

and finally it applies our new Jacobi SVD algorithm to the lower triangular matrix
X = TT .

To our surprise, in some examples the second QR factorization without pivoting
was considerably slower than the QR factorization with column pivoting. In these
examples, L was structured, strongly graded, with deep gap in the spectrum:

L =

(
L11 0
L21 L22

)
, with ‖L−1

11 ‖−1
2 � ‖L22‖2 and ‖L21‖2 � ‖L11‖2.

We traced the problem to computation with many denormalized floating point num-
bers during the computation of the factorization L = QT . From the block-partitioned
QR factorization L = (Q11

Q21

Q12

Q22
)(T11

0
T12

T22
) we have T12 = QT

11L
−T
11 LT

21L22 and ‖T12‖2 ≤
‖Q11‖2‖L−1

11 ‖2‖L22‖2‖L21‖2. This is the well-known QR mechanism that eventually
forces the (1, 2) block to zero, and it is clearly seen in Example 3.2.

Example 3.2. This example illustrates how denormalized numbers appear in the
QR factorization. Using SGEQRF from LAPACK we compute

L =

⎛⎝ 1.0e+20 0 0
1.0e−15 1.0e−06 0
1.0e−20 1.0e−25 1.0e−21

⎞⎠ , T =

⎛⎝−0.10e+21 −0.99e−41 0.00e+00
0 −0.10e−05 −0.99e−40
0 0 0.99e−21

⎞⎠ .

From the point of view of numerical accuracy, these denormalized numbers in the
upper triangle of T are as good as zeros—backward stability and the forward errors
are given with respect to column norms, and these are well preserved if the entries

2For simplicity, we give only one branch of the algorithm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. II 1353

of the initial A are normalized numbers. Unfortunately, if the denormals are created
and transformed inside an optimized black-box routine, they can cause considerable
slowdown (take, e.g., n > 1000).

The performance of Jacobi rotations applied to a lower triangular matrix can also
be degraded by the denormalized numbers. The dot products needed to compute the
rotation angles can be extremely slow (many of the summands can be denormalized
and are as good as zeros in the final result), and rotations with small angles during
the first greedy sweep may generate additional denormalized entries where there are
zeros in the upper triangle.

3.2.1. Solution by artificial perturbation. How do we deal with this prob-
lem? We can ignore it, because it is automatically solved with proper implementation
of the machine arithmetic or with the set to zero underflow. However, it is very
instructive to solve it in the framework of the imperfect arithmetic. The first nat-
ural idea is to set small off-diagonal matrix entries to zero. This has to be done by
inspection after each transformation in QR factorization (or in the Jacobi iterations).
This may kill the performance of highly optimized blocked code, and the underflows
may still appear because they actually grow in places of zero entries. Furthermore,
setting an entry to zero means perturbing the data, which may not be allowed because
it causes unacceptably large perturbation. (For instance setting in Example 3.2 the
element L31 to zero introduces large perturbation in the third row of L. In some cases
this may be unacceptable.)

Now consider the opposite approach—using artificial perturbation we destroy all
zeros and increase small entries. Let X be an n× n lower triangular and nonsingular
matrix. The goal is to replace X with X+δX, where the perturbation δX is (i) small
enough so that it does not introduce errors larger than the initial uncertainty of the
SVD caused by computing X; (ii) big enough to prevent underflows in the next QR
factorization or in Jacobi iterations; (iii) small enough so that it does not interfere with
the convergence and that it does not prevent the use of the lower triangular structure;
and (iv) small enough so that it does not preclude stable a posteriori computation of
the right singular vectors.

This means that the perturbation δX has to be columnwise and also rowwise
small. We use ζ to denote an appropriate threshold value used in the construction of
δX ≡ δXζ , for instance, ζ =

√
ν, ζ =

√
ν/ε, or ζ = ε/n. The choice of ζ depends on

κ2(X), from smallest values in the nonextreme case, κ2(X) < ωε, to largest in the
case3 κ(X) ≈ ω2ε.

Definition 3.1. For lower triangular matrix X and small positive parameter ζ,
define δXζ as follows:

(δXζ)ij =

{
0 if |Xij | ≥ ζ min{|Xii|, |Xjj |}

−Xij + sign(Xij)ζ min{|Xii|, |Xjj |} else

}
for i ≥ j;(3.1)

(δXζ)ij = −sign(Xji)ζ min{|Xii|, |Xjj |} for i < j.(3.2)

The perturbed matrix X̃ = X+δXζ is not triangular. On the other hand, efficient
implementation of the first sweep of the quasi-cyclic strategy (section 2.2) is based
on the triangular form. We now show that in application of the pivoting (2.5) to X̃
we can use the same technique as in section 2.2 and treat X̃ as triangular. More

3Extreme cases are relevant only if the singular values are well determined by the data and all
wanted to high relative accuracy. Of course, such extreme cases are difficult if the machine arithmetic
is not well implemented.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1354 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

precisely, in the first bulk of rotations X̃�
[3] we transform only X̃[3](n1 + n2 + 1 : n, :),

thus ignoring the perturbation added to X[3](1 : n1 + n2, :). The perturbed zeros

inside the block X̃[3](1 : n1 + n2, :) are used to drown denormalized numbers during

the phase X [1] ↔X [2]. The same strategy is applied to X̃�
[4], where in particular

X̃[4](1 : n1+n2+n3, 1 : n4) is treated as zero and not transformed. In other words, we
ignore the perturbation δXζ whenever we need a triangular structure to apply (2.5)
as described in section 2.2.

Proposition 3.2. The application of the first sweep of the quasi-cyclic strategy
(2.5) to X̃ (as described above) is rowwise backward stable. Further, the perturbation
of the upper triangle can be ignored in the a posteriori computation of the right singular
vectors.

Proof. To justify this manipulation with δXζ , we first note that it contains tiny
rowwise relative perturbations X. Indeed, for i < j we have

|(δXζ)ij |
‖X(i, :)‖2

=ζ
min{|Xii|, |Xjj |}

‖X(i, :)‖2
≤ ζ, where in case of a graded matrix

|Xjj |
‖X(i, :)‖2

�1.

The key argument is shown for the simplest (n1, n2) block partition of X̃,

X̃ =

(
X̃11 X̃12

X̃21 X̃22

)
=

(
X̃11 0
X̃21 X̃22

)
+

(
0 X̃12

0 0

)
≡ X̃� + δX̃�.

Obviously, ‖X̃12(i, :)‖2 ≤ √
n2ζ‖X(i, :)‖2 for all i = 1, . . . , n1. Suppose we transform

the last n2 columns of X̃, following some pivot strategy, but we simply do not reference
X̃12 (that is, we work on X̃� and use its triangular structure). The computed matrix
is represented by the backward perturbation analysis as

X̃ ′ =

(
X̃11 0
X̃21 X̃22 + δX̃22

)(
I 0
0 Ŵ

)
+

(
0 X̃12

0 0

)
=

(
X̃11 X̃12Ŵ

T

X̃21 X̃22 + δX̃22

)(
I 0
0 Ŵ

)
, ŴT Ŵ = I,

where ‖δX̃22(i, :)‖2 ≤ O(n)ε‖X̃22(i, :)‖2, i = 1, . . . , n2, which means that ignoring X̃12

is equivalent to replacing it with X̃12Ŵ
T and then applying Ŵ . Since right-handed

orthogonal transformation does not change the row-norms of the involved matrices,
the rowwise backward stability is preserved.

If we need only to compute the QR factorization of X, or to compute only the
singular values, then we can allow even bigger δXζ . Each Xij in the lower triangle
with the property |Xij | < ζ|Xjj | is replaced with sign(Xij)ζ|Xjj |, and thus (δXζ)ij =
−Xij + sign(Xij)ζ|Xjj | for all i > j. Simultaneously, the position Xji in the upper
triangle is set to (δXζ)ji = −sign(Xij)ζ|Xii|. Note that ‖δXζ(:, j)‖2 ≤

√
nζ|Xjj |,

i.e., the perturbation is columnwise small. Since the matrix X is computed in the QR
factorization with pivoting, the condition number of column scaled X is moderate,
which means that computations with X and X + δXζ will give equally good singular
value approximations.

4. Numerical testing. In this section we present software implementation of
the new algorithm described in [14, Algorithm 4] and in this report. We give the
results of preliminary testing of the algorithm with respect to numerical accuracy
and efficiency (run times compared with those of existing algorithms). Our goal

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. II 1355

is numerically reliable software implemented to reach a reasonable fraction of the
efficiency of the less accurate bidiagonalization-based methods. In other words, we
want to make the high accuracy of the Jacobi SVD algorithm so affordable that the
new algorithm becomes attractive as one of the methods of choice for dense full SVD
computation.

Carefully designed testing of the software is also a test of the theory. It shows how
sharp the theoretical bounds are and also gives new insights into the cases of input
matrices which are on the boundaries of the theoretical assumptions. Good test cases
give insights into the behavior of the algorithm and may induce modifications which
improve the efficiency of the algorithm. The feedback loop created in this way is part
of the research process. In fact, the material of section 3 is the result of numerical
tests of an early version of the code. Further, during the tests of our code we found
serious problem in the LAPACK implementations xGEQPF and xGEQP3 of the QR
factorization with column pivoting; see [13] for a provably stable implementation.

We test single precision (32-bit representation, ε ≈ 5.3 · 10−8) implementation.
It is always assumed that the nonzero entries of input matrix are normalized floating
point numbers.

4.1. Measuring error—distance to what?. One difficulty in testing a new
SVD software on a large set of pseudorandom matrices is how to provide reference
(exact) values of Σ, U , and V , which are used to estimate the accuracy of the com-
puted approximations Σ̃, Ũ , Ṽ . One could start by generating pseudorandom nu-
merically orthogonal U , diagonal Σ, and numerically orthogonal V and then define

A = computed(U Σ V
T
). However, the numerical SVD of A may be very much

different from U Σ V
T
. Using the same algorithm in higher precision is useful but

not always—depending on the matrix, it is possible that both procedures compute
with large errors. The alternative is to use existing, tested(!), and trusted double
precision software to compute the SVD of a given test matrix A. In our case, this
means DGESVD and/or DGESDD4 from LAPACK, but this will be useful only as
long these procedures guarantee at least eight digits of accuracy, that is, for (roughly)
κ(A) < 1/ε ≈ 108. Our choice of the reference procedure is the classical one-sided
Jacobi SVD with de Rijk’s [9] pivoting, implemented in double precision.

If σ̃1 ≥ · · · ≥ σ̃n and σ̂1 ≥ · · · ≥ σ̂n are the computed and the reference singular
values computed in higher precision, then the forward errors of interest are5

ei =
|σ̃i − σ̂i|

σ̂i
, i = 1, . . . , n, e = max

i=1:n
ei.(4.1)

4.2. Test matrices. Our primary targets are the matrices of the form A = BD,
where D is diagonal and B is well conditioned with equilibrated (unit in Euclidean
norm) columns. In that case the relative error in the output is governed by the condi-
tion number κ(B) independent of D. To illustrate this property we need to generate
test matrices A = BD, where B has given κ(B) and unit columns. Moreover, the
matrices should be generated so systematically that the maximal measured forward
errors attain the predicted theoretical bounds, and that experimental data show that
no accuracy can be guaranteed if the assumptions of the theory are not satisfied. In

4During the testing we accidentally found an example of serious failure of the DGESDD procedure
from the SUN performance library—a ghost singular value of the size of the largest one appeared in
the dominant part of the spectrum.

5Here by definition 0/0 = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1356 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

that case we will have experimental evidence that both the theory and the numerical
testing are done properly.

We use the algorithm of Stewart [29] to generate random orthogonal matrices
distributed uniformly with respect to the Haar measure over the orthogonal group
O(n). If W1 and W2 are two such matrices, and if S is diagonal with given condition
number κ(S), we compute C = W1SW2. Then we use the fact that for the matrix CTC
there always exists an orthogonal W3 such that the diagonal entries of WT

3 (CTC)W3

are all equal to Trace(CTC)/n. Then the matrix B = CW3 has equilibrated columns
and condition number κ. If we generate diagonal D, then A = BD. There are
several ways to generate the matrix W3; see, e.g., [5], [7]. The distributions of the
diagonal entries of S and D can be chosen in different ways. We use the modes
provided in the LAPACK test matrix generators (parameter MODE in DLATM1),
and the chosen modes are denoted by μ(S) and μ(D). Thus, each generated matrix
A has four parameters, p(A) = (κ(S), μ(S), κ(D), μ(D)). For each fixed p(A), we use
three different random number generators provided in the LAPACK testing library
(LAPACK/TESTING/MATGEN/), and with each of them we generate a certain
number of samples (test matrices). In this way, we have an automated generator of
pseudorandom matrices with certain relevant parameters varying systematically in a
given range; for instance, κ(S)(= κ(B)) is set to take the values 10, 102, 103, . . . , 108.

4.3. Test results. Our new algorithm is implemented in a LAPACK-style rou-
tine SGEPVD, which is in an early stage of development. We have done no serious
profiling in order to optimize it for a particular architecture. The bulk of the code
(rotations) is still on BLAS 1 level, and we have plans to change this in near future.
Nevertheless, the obtained results are surprisingly good and encouraging. The re-
sults presented in this report were obtained on an HP X2100 workstation (1.9GHz
Pentium 4, 1Gb RAM, 8 Kb L1 cache, 256 Kb L2 cache), using GNU FORTRAN
compiler F77 3.3.1 under SuSE Linux. The LAPACK library is compiled from the
source code and linked with the BLAS library from Intel’s MKL 6.1.

4.3.1. Computing the full SVD. The test matrices of the form A = BD are
generated as follows. We take A = ((W1SW2)W3)D as described in section 4.2, and
κ(S) = 10i, i = 1, . . . , 8, and κ(D) = 102j , j = 0, . . . , 7. For each fixed pair (i, j)
we generate diagonal S and D each with four different distributions of the diagonal
entries (as specified by the parameter MODE). This gives for each fixed (κ(S) =
10i, κ(D) = 102j) 16 different types of matrices, giving a total of 64·16 = 1024 classes.
The matrices are generated in four nested loops; the outer loop controls κ(B) = κ(S).
Hence, the matrices are divided into eight groups with fixed κ(B).6 Finally, we choose
the row and the column dimensions, m and n, and the test procedure is ready.

Once we compute A ≈ Ũ Σ̃Ṽ T , Σ̃ = diag(σ̃1, . . . , σ̃n), we can immediately estimate
the quality of the computed decomposition using the following computed quantities:

r = computed

(
‖A− Ũ Σ̃Ṽ T ‖F

‖A‖F

)
(should be at most f(m,n)ε, f moderate);

oU = computed

(
max
i,j

|(ŨT Ũ)ij − δij |
)

(should be at most O(mε));

oV = computed

(
max
i,j

|(Ṽ T Ṽ)ij − δij |
)

(should be at most O(nε)).

6This helps in the interpretation of the results of the experiments and explains the shapes of the
graphs on the figures given here.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. II 1357

100 200 300 400 500 600 700 800 900 1000

10
−5

10
0

10
5

10
10

test matrices with dimension 1500−by−1300

re
lat

ive
 e

rro
rs

relative errors: SGEPVD (green) vs. SGESVD (blue) and SGESDD (red)

Fig. 4.1. Maximal relative errors in the computed singular values for 1500 × 1300 matrices.
The top curve (worst case) describes the accuracy of SGESDD. The middle curve represents the
errors of SGESVD, and the lowest curve (smallest relative errors) belongs to SGEPVD.

These measures are useful to test the correctness of the code and backward stability
in the matrix norm sense. It is easy to show that r, oU , and oV can be computed
sufficiently accurately (best using higher precision) to be used as relevant measures of
the quality of the computed decomposition. Thus, the standard error bound can be
a posteriori numerically checked. Our procedure, called SGEPVD,7 has successfully
passed all three tests; r, oU , oV were in the allowed ranges. Note that SGEPVD
returns the singular vectors numerically orthogonal up to the theoretical bound mε
(nε), which, as in other algorithms dealing with numerical orthogonality, for large m
and n may not look satisfactory in single precision (ε ≈ 10−7 and, e.g., m = n = 4000).

Before we go over to the comparison of SGEPVD with SGESVD and SGESDD
from LAPACK, we should point out that SGEPVD computes the SVD to higher
accuracy and also provides an estimate of the maximal relative error by computing
an approximation of ‖B†‖2.

We show only two out of the many tests performed during code development.
Or first test ran with m = 1500, n = 1300, and with one pseudorandom matrix in
each class. Compare the maximal relative errors in computed singular values for all
1024 test cases, shown on Figure 4.1. It is clearly seen that the accuracy of SGEPVD
depends on κ(B), while the other two methods depend on κ(A). Any SVD algorithm
that starts with bidiagonalization is at risk to have error behaving like the SGESVD
and SGESDD errors in Figure 4.1. The best caption for this figure is the title of [8].
Note that SGESVD returns much better results than SGESDD. To the best of our
knowledge, this fact is not mentioned elsewhere in the literature. Also, note the con-
siderable upward bias in the relative errors of the bidiagonalization-based procedures
(cf. [30]).

The timings for this example are shown on Figure 4.2. We immediately note that
the new Jacobi SVD algorithm is not that much slower than the bidiagonalization-

7PVD is the acronym for principal value decomposition, an old name for SVD.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1358 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

relative timings: SGEPVD vs. SGESVD(blue x) and SGESDD(red +)

test matrices with dimension 1500−by−1300

re
lat

ive
 tim

ing
s

100 200 300 400 500 600 700 800 900 1000

0.2

0.4

0.6

0.8

1
relative timings: SGEPVD vs. SGESVD(blue x) and SGESVJ(red .)

test matrices with dimension 1500−by−1300

re
lat

ive
 tim

ing
s

Fig. 4.2. Computing full SVD: Relative timings for 1500× 1300 matrices on a Pentium 4 ma-
chine with Intel MKL 6.1 library. In the first plot, the crosses denote timeSGEPVD/timeSGESVD and
the pluses timeSGEPVD/timeSGESDD. The second plot shows timeSGEPVD/timeSGESVD (crosses)
and timeSGEPVD/timeSGESVJ (dots). See Remark 4.1.

based fast methods. In fact, it outperforms the QR algorithm and is on average less
than twice as slow as the divide-and-conquer algorithm. The worst-case performance
for SGEPVD is on matrices with weak column scaling and a singular spectrum com-
posed of many tight clusters (examples above the 1.5 mark on Figure 4.2). In all other
cases the time of SGEPVD is on average 1.5 times the time of SGESDD. Here, again,
we stress the fact that the results obtained by SGEPVD enjoy much better numeri-
cal properties and that the time of SGEPVD includes computed error bound—better
results and additional information are computed in reasonable time. Thus, for a fair
comparison one should consider both Figures 4.1 and 4.2 before deciding which algo-
rithm is the better choice for a particular application. The second plot on Figure 4.2
shows timeSGEPVD/timeSGESVD and timeSGEPVD/timeSGESVJ, where SGESVJ de-
notes our careful implementation (cf. [11]) of de Rijk’s [9] one-sided Jacobi SVD.
(De Rijk’s one-sided Jacobi SVD is much more efficient than other classical cyclic
Jacobi algorithms.) It is interesting that de Rijk reported superior performance of
his Jacobi SVD code over the SSVDC routine from LINPACK (Golub–Reinsch SVD)
on CYBER 205. Note that our code SGEPVD runs up to ten times faster than
SGESVJ.

In the second test we have 500× 350 matrices, with two examples in each of 1024
classes. The results are given in Figure 4.3.

Remark 4.1. Note the few outliers above mark 2 on Figures 4.2 and 4.3. They
correspond to matrices on which SGEPVD actually performed very well, with a low
number of rotations and swift convergence. (We checked this by inspecting the details
of those particular runs. In fact, on these matrices even the classical one-sided Jacobi,
usually much slower, comes close to our new method.) However, since our threshold for
perturbation used to trap denormals was set to ζ =

√
ν ≈ 10−19, some of them were

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. II 1359

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

test matrices with dimension 500−by−350

rel
ati

ve
 tim

ing
s

relative timings: SGEPVD vs. SGESVD (x) and SGESDD (+)

Fig. 4.3. Computing full SVD: Relative timings for 500 × 350 matrices on a Pentium 4 ma-
chine with Intel MKL 6.1 library. The crosses denote timeSGEPVD/timeSGESVD and the pluses are
timeSGEPVD/timeSGESDD.

not captured, and imperfect denormalized arithmetic caused considerable slowdown.
We used this value of ζ to illustrate the problem. In practice the threshold can be set
higher; e.g., if in those cases ζ = ε/n, or if set to zero underflow is in function, then
the run time reflects the actual flop count and the outliers disappear.

Remark 4.2. We have noted that using a double accumulated dot product in
preparation of Jacobi rotation reduces the total number of rotations, especially in
cases of multiple or tightly clustered singular values. Unfortunately, in the MKL
BLAS library DSDOT performs poorly in comparison to SDOT, and the savings in
number of rotations do not reduce the total run time.

Remark 4.3. The results may vary on the same machine with different BLAS
libraries. We note that with the GOTO BLAS [18], [19] all routines run faster (as
compared to the MKL library), but the relative speedup is smallest in our algorithm.
This is because GOTO BLAS 3 outperforms MKL 6.1 BLAS 3, but GOTO BLAS 1
is no match for really efficient MKL 6.1 BLAS 1. Since our code still depends on
BLAS 1 (dot products and plane rotations), switching to GOTO BLAS has mixed
consequences. A hybrid of the two libraries would be much better for our algorithm.

4.3.2. Computing only Σ. We have established that the singular values are
computed by the new algorithm as predicted by the theory—our variant of the Jacobi
SVD complies with [8], [10]. In the previous section we showed that it computes the
full SVD with efficiency comparable to fast bidiagonalization-based approaches. If
only the singular values are needed, reaching a similar level of relative efficiency seems
to be mission impossible, for we would need a Jacobi-based algorithm that computes
Σ in time comparable to the time needed to bidiagonalize the matrix! However,
the results of [14, Algorithm 1] with the rank revealing QR factorization [4], [3] are
encouraging.

The test matrices of the form A = BD are generated as in section 4.3.1, with 2048
examples in each test run. We show the results of two tests; in the first the matrices
were 500×350 and in the second m = 1000, n = 700. The maximal measured relative
errors e are not shown because they behave as shown in section 4.3.1. In Figure 4.4

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1360 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

relative timings: SGEPVD vs. SGESVD(blue x) and SGESVJ(red .)

test matrices with dimension 500−by−350

re
lat

ive
 tim

ing
s

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

relative timings: SGEPVD vs. SGESVD(blue x) and SGESVJ(red .)

test matrices with dimension 1000−by−700

re
lat

ive
 tim

ing
s

Fig. 4.4. Computing only Σ: Relative timings for 500 × 350 and 1000 × 700 matrices on a
Pentium 4 machine with Intel MKL 6.1 library. The crosses denote timeSGEPVD/timeSGESVD and
the dots are timeSGEPVD/timeSGESVJ.

we display the relative timings and compare SGEPVD with SGESDD (or SGESVD)
and with the classical one-sided Jacobi SVD with de Rijk’s pivoting (SGESVJ).
The speedup of the new algorithm over SGESVJ ranges from a factor of 2 up to a
factor of 15. (We note that SGEPVD computes Σ and also an estimate of the scaled
condition number.) It is interesting to note that in cases of well separated singular
values (especially in cases of badly scaled matrices) the new method computes all
singular values faster than bidiagonalization-based methods. In less favorable cases
of clustered singular values the new method is slower with a factor of up to 2.43,
depending on the input matrix.

5. Conclusion and future work. The most important message of [14] and this
paper is that the question of the ultimate dense nonstructured full SVD method is still
open. What is desired is the most efficient algorithm capable of computing the SVD to
optimal (numerically feasible) accuracy warranted by the data. Because the one-sided
Jacobi SVD is more accurate than any other algorithm that first bidiagonalizes the
matrix, in our quest for the ultimate dense nonstructured SVD algorithm we follow the
Jacobi idea. We have enhanced the basic Jacobi SVD algorithm with a preconditioning
stage and new iterative scheme for preconditioned triangular matrices.

Our results show that the new preconditioned Jacobi-type SVD algorithm can be
competitive in efficiency with fast bidiagonalization-based methods (QR and divide-
and-conquer algorithms) without trading accuracy for speed. In fact, the new algo-
rithm computes the SVD more accurately and almost twice as fast as the SGESVD
from LAPACK, and the speedup factor over the equally accurate standard one-sided
Jacobi SVD (enhanced with de Rijk’s pivoting) typically ranges between three and ten.
(See Figures 4.1 and 4.2.) The new Jacobi SVD algorithm remains slower (with fac-
tors ranging from 1 to 1.75) than the less accurate divide-and-conquer SVD (SGESDD
from LAPACK). If only the singular values are computed, our method can be up to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW JACOBI SVD ALGORITHM. II 1361

fifteen times faster than the standard one-sided Jacobi SVD, and it is up to twice
as slow as bidiagonalization-based singular value computation. (In our tests with
dimensions up to 1000 the efficiency was within factors 0.63–2.43 of SGESVD and
SGESDD.)

The new algorithm has an advantage over bidiagonalization-based methods in
cases of matrices with low numerical rank, because it starts with a rank revealing
factorization (cf. [23]). (Bidiagonalization is not rank revealing unless enhanced with
pivoting, which would make it more expensive.) In fact, in cases of low numerical rank,
we can even outperform SGESDD. If m � n, both methods start with the QR fac-
torization, which is the most expensive part of the computation, and in that case the
efficiency of all three methods is about the same. Also, if only the standard absolute
accuracy is required, then Jacobi iterations can be controlled by a loosened stopping
criterion, thus allowing satisfactory approximation with less computational effort.

However, our algorithm is not yet fully optimized and several issues are the subject
of our current and future work. The most expensive part of our method are BLAS 1
Jacobi rotations, which means that there is more potential for optimization. One
simple improvement will be possible once optimized combinations of AXPY and DOT,
and combination of two linked AXPY operations are available in single calls.

Nontrivial improvement will be obtained by using block rotations. We expect that
the fast scaled block rotations designed by Hari [21] will fully exploit the potential of
our approach and considerably improve the performance, especially in difficult cases
of tightly clustered singular values. Namely, in such cases the preconditioner does
not perform well, which means that one or two full sweeps of rotations are needed to
compensate the lack of proper preconditioning. Such heavy computation on a BLAS 1
level is clearly seen in the numerical results presented in section 4 (see, e.g., the crosses
above 1.5 and 2 on Figure 4.4).

Further, the overhead of column pivoting in BLAS 3 optimized QR factorization
(SGEQP3 from LAPACK) is still too big. Any future improvement of the column-
pivoted QR factorization contributes to the efficiency of our algorithm. Other is-
sues include new rank revealing QR factorization and using shifts in the second QR
(and third in some cases) factorization if only classical absolute error bounds are re-
quired. Our ultimate goal is high performance LAPACK-style software. The question
is whether or not we will be able to reach the efficiency of SGESDD. Time will tell.

Acknowledgments. The authors acknowledge generous support by the Volks-
wagen Science Foundation and the Croatian Ministry of Science and Technology.
They are also indebted to P. Arbenz (Zürich), J. Barlow (State College), J. Demmel
(Berkeley), F. Dopico (Madrid), V. Hari (Zagreb), W. Kahan (Berkeley), J. Moro
(Madrid), B. Parlett (Berkeley), and I. Slapničar (Split) for their comments, criticisms,
and many fruitful discussions. Special thanks go to the anonymous referees for their
substantial and constructive suggestions.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenny, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, 2nd ed., SIAM, Philadelphia, 1995.

[2] J. Barlow and J. Demmel, Computing accurate eigensystems of scaled diagonally dominant
matrices, SIAM J. Numer. Anal., 27 (1990), pp. 762–791.

[3] C. H. Bischof and G. Quintana-Orti, Algorithm 782: Codes for rank-revealing QR factor-
izations of dense matrices, ACM Trans. Math. Software, 24 (1998), pp. 254–257.

[4] C. H. Bischof and G. Quintana-Orti, Computing rank-revealing QR factorizations of dense

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1362 ZLATKO DRMAČ AND KREŠIMIR VESELIĆ

matrices, ACM Trans. Math. Software, 24 (1998), pp. 226–253.
[5] N. N. Chan and K.-H. Li, Diagonal elements and eigenvalues of a real symmetric matrix, J.

Math. Anal. Appl., 91 (1983), pp. 562–566.
[6] S. Chandrasekaran and I. C. F. Ipsen, Analysis of a QR algorithm for computing singular

values, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 520–535.
[7] P. I. Davies and N. J. Higham, Numerically stable generation of correlation matrices and

their factors, BIT, 40 (2000), pp. 640–651.
[8] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.

Appl., 13 (1992), pp. 1204–1245.
[9] P. P. M. de Rijk, A one-sided Jacobi algorithm for computing the singular value decomposition

on a vector computer, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 359–371.
[10] Z. Drmač, Computing the Singular and the Generalized Singular Values, Ph.D. thesis, Lehrge-

biet Mathematische Physik, Fernuniversität Hagen, Germany, 1994.
[11] Z. Drmač, Implementation of Jacobi rotations for accurate singular value computation in

floating point arithmetic, SIAM J. Sci. Comput., 18 (1997), pp. 1200–1222.
[12] Z. Drmač, A posteriori computation of the singular vectors in a preconditioned Jacobi SVD

algorithm, IMA J. Numer. Anal., 19 (1999), pp. 191–213.
[13] Z. Drmač and Z. Bujanović, On the failure of rank revealing QR factorization software—a

case study, ACM Trans. Math. Software, to appear.
[14] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm. I, SIAM J. Matrix

Anal. Appl., 29 (2008), pp. 1322–1342.
[15] K. V. Fernando and B. N. Parlett, Implicit Cholesky algorithms for singular values and

vectors of triangular matrices, Numer. Linear Algebra Appl., 2 (1995), pp. 507–531.
[16] A. George, K. Ikramov, and A. B. Kucherov, Some properties of symmetric quasi-definite

matrices, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1318–1323.
[17] H. H. Goldstine, H. H. Murray, and J. von Neumann, The Jacobi method for real symmetric

matrices, J. Assoc. Comput. Mach., 6 (1959), pp. 59–96. (Also in Collected Works, Vol. V,
J. von Neumann, ed., Pergamon Press, New York, 1973, pp. 573–610.)

[18] K. Goto, http://www.cs.utexas.edu/users/kgoto/, 2004.
[19] K. Goto and R. van de Geijn, On Reducing TLB Misses in Matrix Multiplication, Tech.

report TR-2002-55, FLAME Working Note 9, Department of Computer Science, The
University of Texas at Austin, Austin, TX, 2002.

[20] V. Hari, On sharp quadratic convergence bounds for the serial Jacobi methods, Numer. Math.,
60 (1991), pp. 375–406.

[21] V. Hari, Accelerating the SVD block-Jacobi method, Computing, 75 (2005), pp. 27–53.
[22] V. Hari, Convergence of a block-oriented quasi-cyclic Jacobi method, SIAM J. Matrix Anal.

Appl., 29 (2007), pp. 349–369.
[23] V. Hari and K. Veselić, On Jacobi methods for singular value decompositions, SIAM J. Sci.

Statist. Comput., 8 (1987), pp. 741–754.
[24] M. R. Hestenes, Inversion of matrices by biorthogonalization and related results, J. Soc.

Indust. Appl. Math., 6 (1958), pp. 51–90.
[25] C. G. J. Jacobi, Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkom-

menden Gleichungen numerisch aufzulösen, Crelle’s Journal für reine und angew. Math.,
30 (1846), pp. 51–95.

[26] W. F. Mascarenhas, On the convergence of the Jacobi method for arbitrary orderings, SIAM
J. Matrix Anal. Appl., 16 (1995), pp. 1197–1209.

[27] R. Mathias and G. W. Stewart, A block QR algorithm for singular value decomposition,
Linear Algebra Appl., 182 (1993), pp. 91–100.

[28] N. H. Rhee and V. Hari, On the global and cubic convergence of a quasi-cyclic Jacobi method,
Numer. Math., 66 (1993), pp. 97–122.

[29] G. W. Stewart, The efficient generation of random orthogonal matrices with an application
to condition estimators, SIAM J. Numer. Anal., 17 (1980), pp. 403–409.

[30] G. W. Stewart, Perturbation Theory for the Singular Value Decomposition, Tech. report
UMIACS-TR-90-124, Department of Computer Science and Institute for Advanced Com-
puter Studies, University of Maryland, College Park, MD, 1990.

[31] G. W. Stewart, A Gap-Revealing Matrix Decomposition, Tech. report TR-3771, Department
of Computer Science and Institute for Advanced Computer Studies, University of Mary-
land, College Park, MD, 1997.

[32] G. W. Stewart, The QLP Approximation to the Singular Value Decomposition, Tech. report
TR-97-75, Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD, 1997.

[33] K. Veselić and V. Hari, A note on a one-sided Jacobi algorithm, Numer. Math., 56 (1989),
pp. 627–633.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1363–1381

ALGORITHMIC ASPECTS OF ELIMINATION TREES FOR SPARSE
UNSYMMETRIC MATRICES∗

STANLEY C. EISENSTAT† AND JOSEPH W. H. LIU‡

Abstract. The elimination tree of a symmetric matrix plays an important role in sparse elimi-
nation. We recently defined a generalization of this structure to the unsymmetric case that retains
many of its properties. Here we present an algorithm for constructing the elimination tree of an
unsymmetric matrix and show how it can be used to find a symmetric reordering of the matrix into
a recursive, bordered block triangular form. We also present two symbolic factorization algorithms
that use the elimination tree to determine the nonzero structures of the triangular factors of such
matrices. Numerical experiments demonstrate that these algorithms are efficient and compare the
new symbolic factorization schemes with existing ones.

Key words. elimination tree, symbolic factorization, sparse matrix factorization

AMS subject classifications. 65F05, 65F50

DOI. 10.1137/050643581

1. Introduction. The elimination tree of a symmetric matrix plays many impor-
tant roles in sparse factorization [20]. By using paths instead of edges to define the
tree, we recently generalized this structure to unsymmetric matrices while retaining
many of its properties [15]. In this paper we consider several algorithmic aspects of
elimination trees. The outline of the paper is as follows.

In section 2 we introduce some graph notation and review the elimination tree
of an unsymmetric matrix and tree-based, bordered block triangular (BBT) order-
ings [15]. In section 3 we present algorithms for constructing the elimination tree and
for finding a BBT ordering. The basic algorithm repeatedly finds strongly connected
components of subgraphs. Quotient graphs and path-preserving edge reduction are
used to improve its efficiency.

In section 4 we review existing algorithms for symbolic LU factorization, which
use either symmetric pruning [13] or the elimination dags (directed acyclic graphs) [18]
to improve performance. We describe a tree-based pruning scheme that is the first
practical implementation of path-symmetric reduction [13]. We also present two sym-
bolic factorization algorithms for matrices that are in BBT form. Both are based on
special structural properties of the triangular factors of BBT ordered matrices and
this tree-based pruning scheme.

In section 5 we give experimental results from running these algorithms on a set
of test problems. We also compare the performance of the new symbolic factoriza-
tion codes with existing ones. In section 6 we offer some concluding remarks and
suggest possible applications of elimination trees to other aspects of sparse factoriza-
tion.

∗Received by the editors October 26, 2005; accepted for publication (in revised form) by E. Ng
July 2, 2007; published electronically January 4, 2008.

http://www.siam.org/journals/simax/29-4/64358.html
†Department of Computer Science, Yale University, P.O. Box 208285, New Haven, CT 06520-8285

(stanley.eisenstat@yale.edu).
‡Department of Computer Science, York University, North York, ON, M3J 1P3, Canada (joseph@

cs.yorku.ca). This author’s research was supported in part by the Natural Sciences and Engineering
Research Council of Canada under grant A5509.

1363

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1364 STANLEY C. EISENSTAT AND JOSEPH W. H. LIU

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 •
• 2 • • •

3 • • •
4 •

• 5
• 6 •

• 7
• 8

• • 9
• • 10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1�

�

2�� ��
�
��

��������

3�

		

�

�
�

��

4� �

5�
�

6�
��������

�
�
�
�
�
���

7� � 8��

9�
�

�
�

���

�
�

��

10�

	
	

	

�

Fig. 1. A sparse matrix and its directed graph.

2. Background. The authors introduced the elimination tree of a sparse unsym-
metric matrix and studied tree-based, BBT orderings in [15]. We briefly review
these ideas here.

2.1. Graph notation. The directed graph G(M) of a sparse unsymmetric n×n
matrix M is defined as follows: the vertex set is X(M) = {1, 2, . . . , n}; and for distinct

vertices r and c, there is a directed edge r
M�−→ c from r to c if and only if the entry

mrc �= 0. We shall use the notation r
M
=⇒ c to indicate a directed path1 from r to c.

If the matrix M is clear from context, we shall sometimes use the abbreviated forms
r �→ c and r ⇒ c.

At times we shall consider composite paths such as r
M�−→ u

M ′
=⇒ c. If there

is no restriction on the intermediate vertex u, we shall use the abbreviated form2

r
M�−→ M ′

=⇒ c.

A set of vertices S ⊆ X(M) induces a subgraph of G(M) consisting of the
vertices in S and all edges u �→ v with u, v ∈ S. To simplify the presentation
we shall not distinguish between a set of vertices and the subgraph of G(M) that
it induces; that is, we shall use S as a subset of X(M) and as a subgraph of
G(M) interchangeably. It should be clear from context which use is intended. We
shall use the notation Gm(M) to denote the subgraph {1, 2, . . . ,m} of G(M) for
0 ≤ m ≤ n.

A subgraph S of G(M) is strongly connected if, for any pair of distinct vertices
u, v ∈ S, there is a cycle u ⇒ v ⇒ u in the subgraph S. If S is a maximal strongly
connected subgraph, then it is a (strongly connected) component of G(M).

Figure 1 contains a 10× 10 unsymmetric matrix that will be used as an example
throughout the paper. The diagonal entries are the vertices; each • represents an
off-diagonal nonzero. The subgraph {1, 4, 6, 7} is strongly connected (since 1 �→ 4 �→
7 �→ 6 �→ 1 is a cycle), but is not a component (since the entire graph is strongly
connected).

2.2. Quotient graphs and matrices. Let {S1, S2, . . . , Sq} be a partition of
the vertex set X(M). The quotient graph of G(M) induced by this partition has the
vertices S1, S2, . . . , Sq and a directed edge from Si to Sj if and only if there are

vertices u ∈ Si and v ∈ Sj with u
M�−→ v. We can represent the quotient graph as

G(Q) by defining a q × q quotient matrix Q with qij = 1 if there is an edge from Si

to Sj and qij = 0 otherwise.

1Paths and cycles must contain at least one edge, but need not be simple; that is, they may visit
a vertex or edge more than once.

2This notation is due to John Gilbert.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMIC ASPECTS OF ELIMINATION TREES 1365

Q =

⎛

⎜
⎜
⎜
⎝

S1 • • •
S2 •
• S3

• • S4

• • S5

⎞

⎟
⎟
⎟
⎠

S1
��

�
	

		�

S2
�
�������

S3
�

�������

S4
�

�
	

		

S5
�

	
		

�

Fig. 2. A quotient graph of the matrix in Figure 1.

A+ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 •
• 2 • ◦ • •

3 • • •
4 •

• ◦ ◦ 5 ◦ ◦ ◦ ◦
• ◦ 6 ◦ •

• 7 ◦
• ◦ 8 ◦

• • ◦ ◦ ◦ ◦ ◦ 9 ◦
• ◦ ◦ ◦ • ◦ 10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1�
�
��

2�
�
��

3�
�

��
4� 5�6�

�
��

7�
	

		

8� 9�

10�

Fig. 3. The filled matrix and elimination tree for the matrix of Figure 1.

Figure 2 contains the quotient graph G(Q) of the directed graph in Figure 1 for
the partition

S1 = {2, 3, 5}, S2 = {1, 4, 6, 7}, S3 = {8}, S4 = {9}, S5 = {10}.

Note that there is an edge from S3 to S2 since there is an edge 8 �→ 6 in the original
graph. Also, there is a directed edge from S1 to S2 since there is an edge 2 �→ 1 (or
an edge 3 �→ 6).

2.3. The elimination tree of an unsymmetric matrix. Let A be a nonsin-
gular sparse unsymmetric n × n matrix with a nonzero diagonal and the factoriza-
tion A = LU , where L is unit lower triangular and U is upper triangular; and let
A+ = L + U − I denote its filled matrix.

We define the elimination tree T (A) of A using the parent function

fpnz(k) = min{x | x > k and x
L

=⇒ k
U

=⇒ x},

where the minimum over the empty set is taken to be ∞. Vertex p = fpnz(k) is the
parent of vertex k if fpnz(k) < ∞. By definition we have fpnz(n) = ∞, so that
vertex n is a root. In general T (A) consists of one or more trees, and each vertex k
with fpnz(k) = ∞ is a root. However, there is only one tree when A is irreducible [15,
Corollary 3.7].

For example, the filled matrix and elimination tree for the matrix in Figure 1
is given in Figure 3. The diagonal entries are the vertices; each ◦ represents an
off-diagonal nonzero in A+ that is zero in A.

We shall use the notation Tk to denote both the subtree of T (A) rooted at vertex
k and the set of vertices in this subtree.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1366 STANLEY C. EISENSTAT AND JOSEPH W. H. LIU

(PAP t)+ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 • •
3 • •

•
•

◦
◦

5 ◦
◦ 9

•
•
◦ ◦
◦ •

•

◦
◦

8 •
6 •

1 •
4 •

• ◦ ◦ 7

•

◦

• ◦ ◦ • ◦ ◦ ◦ ◦ 10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 4. The filled matrix of an upper BBT postordering of the matrix in Figure 1.

2.4. BBT postorderings. A matrix M is said to be upper bordered block tri-
angular (BBT) if it can be written in the form⎛⎜⎜⎜⎜⎜⎝

M1,1 M1,2 . . . M1,s M1,s+1

0 M2,2 . . . M2,s M2,s+1

...
...

. . .
...

...
0 0 . . . Ms,s Ms,s+1

Ms+1,1 Ms+1,2 . . . Ms+1,s Ms+1,s+1

⎞⎟⎟⎟⎟⎟⎠
for some symmetric blocking of the rows and columns. If we can find a permutation
matrix P such that the reordered matrix PAP t is in BBT form for some s > 1, we
can take advantage of this structure by working with PAP t instead of A.

Let c1, . . . , ct be the children of a vertex k in the elimination tree T (A). In a
postordering of T (A) the vertices within each subtree Tci are numbered consecutively,
and k is numbered immediately after its descendants. Postordering preserves3 the
structure of T (A).

To achieve a (recursive) BBT form, an upper BBT (resp., lower BBT) post-
ordering imposes a further condition on the order in which the subtrees Tc1 , . . . , Tct
are numbered: an edge in G(A) from a vertex in one subtree to a vertex in another
must always be directed from the lower-numbered vertex to the higher-numbered one
(resp., higher to lower). A BBT postordering need not be unique and need not pre-
serve the filled graph.4 However, it does preserve the set of values on the diagonal of
U (see [15, Theorem 5.2]) and thus is arguably just as stable numerically.

For example, the ordering 2, 3, 5, 9, 8, 6, 1, 4, 7, 10 is an upper BBT postordering
of the elimination tree in Figure 3 and gives rise to the permuted matrix PAP t in
Figure 4. The boxes emphasize the recursive nature of BBT form.

We shall say that a matrix A is upper (resp., lower) BBT ordered if the natural
ordering is an upper (resp., lower) BBT postordering of T (A).

3. Constructing the elimination tree.

3.1. The basic algorithm. In this section we consider effective ways to con-
struct the elimination tree T (A). All are based on the following result, which is a

3That is, letting P denote the corresponding permutation matrix, the elimination tree T (PAP t)
is identical to T (A) up to the numbering of the vertices [15, Theorem 5.1].

4Indeed, it may increase the amount of fill.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMIC ASPECTS OF ELIMINATION TREES 1367

Table 1

Strongly connected components of Gk(A).

k Components

1 {1}
2 {1}, {2}
3 {1}, {2}, {3}
4 {1}, {2}, {3}, {4}
5 {1}, {4}, {2,3,5}

k Components

6 {1}, {4}, {2,3,5}, {6}
7 {2,3,5}, {1,4,6,7}
8 {2,3,5}, {1,4,6,7}, {8}
9 {1,4,6,7}, {8}, {2,3,5,9}
10 {1,2,3,4,5,6,7,8,9,10}

Algorithm eTree

for vertex k = 1 to n do
Find the component K of Gk(A) that contains k
for each vertex x ∈ K \ {k} do

if fpnz(x) = ∞ then fpnz(x) = k
end for
fpnz(k) = ∞

end for

Fig. 5. Basic algorithm for constructing the elimination tree.

more usable characterization of the parent function fpnz(∗) than the definition given
in section 2.3.

Theorem 3.1 (see [15, Corollary 3.4]). Vertex k is the parent of vertex x in the
elimination tree T (A) if and only if k is the first vertex after x such that k and x
belong to the same strongly connected component of the subgraph Gk(A) of G(A).

For example, Table 1 gives the strongly connected components in Gk(A) for the
matrix in Figure 1, with the component containing k listed last. From this it is easy
to verify that the elimination tree is as shown in Figure 3. For example, vertex 5 is
the parent of vertex 2 because G5(A) is the first subgraph Gk(A) with a component
containing vertices 2 and k.

Theorem 3.1 leads immediately to Algorithm eTree in Figure 5, which sets
fpnz(x) equal to the first k for which x and k belong to the same component of
Gk(A).

There are many algorithms for finding strongly connected components (e.g., [7,
p. 489], [17], and [23]). When adapted to find the component containing k, all take
time proportional to the number of vertices and edges in Gk(A) reachable from k.
Thus Algorithm eTree runs in time O(mn), where m is the number of nonzero
entries in A.

There is still benefit to reducing both the number of these vertices (see section 3.2)
and the number of these edges (see section 3.3) in such a way that strong connectivity
is preserved.

3.2. Using quotients of strongly connected components. The strongly
connected components of a graph form a partition of its vertex set, and by definition
the quotient graph they induce has the following property:

Let distinct vertices x and y belong to strongly connected components
X and Y, respectively. Then there exists a path x ⇒ y in the graph
if and only if either X = Y or there exists a path X ⇒ Y in the
quotient graph.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1368 STANLEY C. EISENSTAT AND JOSEPH W. H. LIU

Moreover, the quotient graph is acyclic (i.e., cycle-free). In this section we use this suc-
cinct representation of the connectivity of a graph [21] to improve Algorithm eTree.
We begin with a characterization of the components of the graph Gk(A).

Theorem 3.2. Let K be a component of Gk(A), and let m be the highest-
numbered vertex in K. Then K = Tm, the subtree of the elimination tree T (A) rooted
at m.

Proof. (K ⊆ Tm) Assume that K �⊆ Tm, and let x be the highest-numbered vertex
in K \ Tm. Since K is a component of Gk(A) and m is the highest-numbered vertex
in K, it follows that K is a component of Gm(A). Since in addition both x and m
belong to K, by Theorem 3.1 vertex x has a parent p in T (A), both x and p belong
to the same component of Gp(A), and x < p ≤ m. Thus both x and p belong to the
same component of Gm(A), namely, K. On the other hand, since x /∈ Tm, we have
p /∈ Tm so that p ∈ K \ Tm, which contradicts the definition of x.

(Tm ⊆ K) Since Tm is the subtree of T (A) rooted at m and m ∈ K, it suffices
to show that if vertex p ∈ K and vertex c is a child of p in T (A), then c ∈ K.
By Theorem 3.1 both p and c belong to the same component of Gp(A), which is a
subgraph of Gk(A) since p ≤ k. Thus c and p must also belong to the same component
of Gk(A), namely, K.

For example, the subgraph G7(A) of the graph in Figure 1 has two strongly
connected components {2, 3, 5} and {1, 4, 6, 7} (see Table 1) corresponding to the
subtrees T5 and T7 of the elimination tree in Figure 3.

Let G(Qk) denote the quotient graph of Gk(A) induced by its strongly connected
components, where Qk is the quotient matrix. Then each vertex in G(Qk) is a subtree
Tu of T (A) for some vertex u with u ≤ k; and for distinct vertices Tu and Tv in G(Qk),
there is an edge Tu �→ Tv if and only if there exist vertices x ∈ Tu and y ∈ Tv such
that x

A�−→ y.

The graph Gk(A) is obtained from the graph Gk−1(A) (the empty graph if k = 1)

by adding vertex k and all edges x
A�−→ k and k

A�−→ x with 1 ≤ x < k. Similarly,
G(Qk) can be obtained from G(Qk−1) (the empty graph if k = 1) in two steps:

1. Form the intermediate graph G(Q′
k) from G(Qk−1) by

• adding vertex k;
• for each vertex Tu, adding the edge Tu �→ k if there is an edge x

A�−→ k
with x ∈ Tu; and

• for each vertex Tv, adding the edge k �→ Tv if there is an edge k
A�−→ y

with y ∈ Tv.
2. Form G(Qk) from G(Q′

k) by coalescing k and all vertices in the strongly
connected component of G(Q′

k) that contains it into the new vertex Tk.
Figure 6 gives the intermediate quotient graphs G(Q′

7), G(Q′
8), G(Q′

9), and
G(Q′

10) for the matrix in Figure 1. For example, the four components of G6(A),

T1 = {1}, T4 = {4}, T5 = {2, 3, 5}, T6 = {6},

are used to form G(Q′
7).

Let Tc be a vertex of G(Q′
k) that is coalesced into Tk, and let vertex p be the

parent of vertex c in T (A). Then c and k belong to the same component of Gk(A),
and p ≤ k by Theorem 3.1. But if p < k, then Tc could not have been a component
of Gk−1(A) or a vertex of G(Qk−1) by Theorem 3.2. Thus p = k, and c is a child of
k. This leads immediately to Algorithm eTreeQ in Figure 7.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMIC ASPECTS OF ELIMINATION TREES 1369

Q′
7 =

⎛

⎜
⎜
⎜
⎝

T1 •
T4 •

• T5 •
• T6

• 7

⎞

⎟
⎟
⎟
⎠

T1
�

�
T4
� �

T5
��

�
T6
�

�������

7� �

Q′
8 =

⎛

⎝
T5 •

T7

• 8

⎞

⎠

T7
� T5

��

8�

�

Q′
9 =

⎛

⎜
⎜
⎝

T5 • •
T7

• T8

• • 9

⎞

⎟
⎟
⎠

T7
� T5

��

�
T8
�

�

9�

�
�������

Q′
10 =

⎛

⎜
⎜
⎝

T7 •
• T8

• T9 •
• • 10

⎞

⎟
⎟
⎠

T7
�

�������T8
�

�
T9
��

�
10��

�

Fig. 6. Some of the intermediate quotient graphs for the matrix in Figure 1. The leading
diagonal block of Q′

k is Qk−1.

Algorithm eTreeQ

G(Q0) = empty graph
for vertex k = 1 to n do

Create G(Q′
k) from G(Qk−1) by adding k and

its incident edges
Find the component K of G(Q′

k) that contains k
for each vertex Tc ∈ K \ {k} do

fpnz(c) = k
end for
Create G(Qk) from G(Q′

k) by coalescing
the vertices in K into the new vertex Tk

fpnz(k) = ∞
end for

Fig. 7. Constructing the elimination tree using quotient graphs.

To find the component of G(Q′
k) containing k we could adapt any of the standard

algorithms for finding strongly connected components. However, G(Q′
k) has the prop-

erty that, when k and its incident edges are deleted, the subgraph G(Qk−1) remaining
is acyclic. Algorithm scc of Figure 8 is a new, special-purpose algorithm that takes
advantage of this property. As a result it is much simpler than the other algorithms,
which work for general graphs. The following result proves its correctness.

Theorem 3.3. Algorithm scc returns the strongly connected component of
G(Q′

k) that contains vertex k.
Proof. Since there is a path k ⇒ v in G(Q′

k) for each vertex v visited during
the depth-first search dfs(k), it suffices to prove that inSC[v] = true when dfs(v)
returns if and only if there is a path v ⇒ k. We use induction on the order in which
dfs(v) returns.

From the algorithm we see that for any v �= k, we have inSC[v] = true if and
only if inSC[w] = true for some neighbor w of v. Since either w = k or dfs(w)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1370 STANLEY C. EISENSTAT AND JOSEPH W. H. LIU

Algorithm scc (vertex k)
for each vertex v in G(Q′

k) do
visited[v] = inSC[v] = false

end for
inSC[k] = true; SC = {k}
dfs(k)
return SC

procedure dfs (vertex v)
visited[v] = true
for each vertex w adjacent to v in G(Q′

k) do
if not visited[w] then dfs(w)
if inSC[w] then inSC[v] = true

end for
if inSC[v] then SC = SC ∪ {v}

end procedure

Fig. 8. Finding the strongly connected component of G(Q′
k) that contains vertex k.

returns before dfs(v), by induction the latter is true if and only if either w = k or
there is a path w ⇒ k; i.e., there is a path v ⇒ k.

The time to initialize the arrays visited[∗] and inSC[∗] at the start of Algorithm
scc need not be proportional to the number of vertices and edges reached during the
depth-first search. However, suppose that we set all elements in these arrays to 0 at
the start of Algorithm eTreeQ and adopt the convention that true means “equal
to k” during the call to scc(k). Since none of these elements can have that value
before the call, they all have a value equivalent to false, and no further initialization
is necessary.

While in practice Algorithm eTreeQ is much faster than Algorithm eTree, its
worst-case run-time is still O(mn).

3.3. Using path-preserving edge reductions. Let u and v be distinct ver-
tices in G(Qk) for which there is both an edge u �→ v and a path u �→⇒ v of length
at least two. Then the edge u �→ v can be deleted without changing the connectivity.5

Pruning such edges while transforming G(Qk−1) into G(Qk) will improve the perfor-
mance of Algorithm eTreeQ during subsequent iterations since there will be fewer
edges to examine. However, it is not necessary to delete all redundant edges; indeed,
it can be more efficient to prune only an easily identifiable subset of them [13].

In this section we shall describe two forms of such path-preserving edge pruning
that are easily incorporated into Algorithm scc. We need the following result to
justify this approach.

Theorem 3.4. Let W be a set of edges in the graph G(Q′
k) with the property

that, for each edge u �→ v in W , there is a corresponding path u �→⇒ v of length at
least two that does not contain an edge of the form x �→ k. Then we can prune all of
the edges in W without changing the connectivity.

Proof. Let G(Q′′
k) be the graph obtained from G(Q′

k) by deleting every edge in
W . It suffices to show that for each edge u �→ v deleted, there is a path u ⇒ v in
G(Q′′

k). By assumption there is such a path in G(Q′
k). If no edge on this path is in

W , we are done. Otherwise replace the first such edge x �→ y by the corresponding
path x ⇒ y in G(Q′

k) and repeat. Since no replacement path contains an edge of the

5These transformations were used in [14] to define effective implicit representations of the nonzero
structure of the Schur complement of a sparse matrix.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMIC ASPECTS OF ELIMINATION TREES 1371

form x �→ k and every cycle in G(Q′
k) must contain such an edge, none of the paths

created can contain a cycle and this process must eventually halt.
For example, in the graph G(Q′

7) of Figure 6 the set with the single edge T5 �→ T1

satisfies the condition in the theorem since there is a path T5 �→ T6 �→ T1 of length
two, but the set with the single edge T5 �→ T6 does not since the only path T5 �→⇒ T6

of length at least two contains the edge T4 �→ 7.
The first form of pruning applies to edges emanating from k. Let isPath[w] =

true if and only if there is a path k ⇒ v �→ w in G(Q′
k) for some vertex v �= k. Then

the set of edges

W1 = {k �→ w | isPath[w]}

is redundant. We can compute the isPath[∗] array by initializing it to false and
inserting the statement

if v �= k then isPath[w] = true

into the for each loop in function dfs(∗).
The second form of pruning applies to forward edges. Let pre[u] = i if u is the

ith vertex visited during the depth-first search. Assume that the call dfs(v) finds
a vertex w adjacent to v that has already been visited (i.e., visited[w] = true).
By definition, if pre[w] > pre[v], then w must have been visited after the call dfs(v)
began. Moreover, that visit must have been the result of a call dfs(x) for some other
vertex x that is adjacent to v; i.e., w must be on a path v �→ x ⇒ w of length of least
two. Thus the set of forward edges

W2 = {v �→ w | pre[w] > pre[v] but w was not visited from v}

is redundant. We can compute the pre[∗] array by initializing an integer value dfsNo

to 0 and inserting the statements

pre[v] = dfsNo; dfsNo = dfsNo + 1

at the start of function dfs(∗).
A version of Algorithm scc that incorporates both forms of pruning is shown in

Figure 9. It runs somewhat faster but has the same worst-case complexity.

3.4. Finding a BBT postordering. Once we have constructed the elimination
tree we can find a postordering using a depth-first search where each vertex k is
numbered after all of its children have been visited. However, a BBT postordering
imposes an additional constraint on the order in which the children are visited. In
this section we show that Algorithm scc provides this order.

Let vertices c1, . . . , ct be the children of k in T (A). By Theorem 3.2 the sub-
trees Tc1 , . . . , Tct of T (A) are the strongly connected components of Gk−1(A) that
are coalesced into the component Tk of Gk(A) during the formation of G(Qk). The
additional condition for a lower BBT postordering is that ci must be numbered after
cj if there is an edge x �→ y with x ∈ Tci and y ∈ Tcj . In terms of the quotient graph
G(Q′

k), this means that ci must be numbered after cj if there is an edge Tci �→ Tcj .
Consider the order in which vertices are added to K in Algorithm scc. Vertex k

is added first; and if there is an edge Tci �→ Tcj in G(Q′
k), then vertex Tci is added

to K after vertex Tcj . That is, ignoring vertex k, this order satisfies the condition for
a lower BBT postordering. Similarly, the reverse of this order satisfies the condition
for an upper BBT postordering.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1372 STANLEY C. EISENSTAT AND JOSEPH W. H. LIU

Algorithm sccP (vertex k)
for each vertex v in G(Q′

k) do
visited[v] = inSC[v] = isPath[v] = false

end for
inSC[k] = true; SC = {k}; dfsNo = 0
dfsP(k)
for each vertex v adjacent to k do

if isPath[v] then prune k �→ v
end for
return SC

procedure dfsP (vertex v)
visited[v] = true
pre[v] = dfsNo; dfsNo = dfsNo + 1
for each vertex w adjacent to v in G(Q′

k) do
if not visited[w] then dfsP(w)
else if pre[w] > pre[v] then prune v �→ w
if v �= k then isPath[w] = true
if inSC[w] then inSC[v] = true

end for
if inSC[v] then SC = SC ∪ {v}

end procedure

Fig. 9. Finding the strongly connected component using edge pruning.

4. Symbolic LU factorization. Symbolic factorization is the process of deter-
mining the nonzero structure of the triangular factors L and U . We can find the
structure of L either by rows or by columns and the structure of U either by rows or
by columns. In this section we shall discuss the by-row variants. We assume that no
pivoting is required for numerical stability.

Let Struct(Mr∗) denote the nonzero structure of the rth row of the matrix M ,
that is, the vertex set {j | mrj �= 0}. We can characterize Struct(Lr∗) and Struct(Ur∗)
using the nonzero structure of the original matrix and paths in the graphs G(L) and
G(U) of the factor matrices:

Struct(Lr∗) = { j | j ≤ r and either r
A�−→ j or r

A�−→ URR==⇒ j},

where URR denotes the r× r leading principal submatrix of U (see [22, Theorem 6]),
and

Struct(Ur∗) =

⎛⎝Struct(Ar∗) ∪
⋃

k∈Struct(Lr∗)\{r}
Struct(Uk∗)

⎞⎠ \ {1, . . . , r − 1}

(see [6]).

4.1. Pruning. Reducing the number of edges in G(URR) that must be tra-
versed to find Struct(Lr∗) and the number of vertices k ∈ Struct(Lr∗) \ {r} for which
Struct(Uk∗) contributes to Struct(Ur∗) will speed up symbolic factorization. We can
do both by using path-preserving edge pruning as discussed in section 3.3.

Let G(U -) be the subgraph of G(U) obtained by pruning some set of redundant

edges, that is, edges x
U�−→ y for which there is a path x

U�−→ U
=⇒ y. Here U - is the

matrix obtained from U by setting the entries associated with these edges to zero.
The graph G(L-) and the matrix L- are defined similarly.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMIC ASPECTS OF ELIMINATION TREES 1373

Theorem 4.1 (see [13, Observations 3.1 and 3.2]). The row structure of Lr∗ is
given by

Struct(Lr∗) = { j | j ≤ r and either r
A�−→ j or r

A�−→ U-
RR==⇒ j};

and the row structure of Ur∗ is given by

Struct(Ur∗) =

⎛⎝Struct(Ar∗) ∪
⋃

k∈Struct(L-
r∗)\{r}

Struct(Uk∗)

⎞⎠ \ {1, . . . , r − 1}.

The minimal pruned graphs that can be used in Theorem 4.1 are the transitive
reductions6 of G(L) and G(U), also known as the elimination dags G(Lo) and G(Uo),
respectively [18]. However, the expense7 of computing these dags could outweigh the
savings [13].

A practical compromise is to prune only an easily identifiable subset of edges. Let
the function ρ(k) have the property that all edges i

L�−→ k and k
U�−→ i with i > ρ(k)

are redundant. Given ρ(k), these edges are easily pruned from G(L) and G(U).
Several such symmetric pruning functions have been proposed:

• Symmetric reduction [13, Theorem 3.3]:

ρs(k) = min{i | i > k and i
L�−→ k

U�−→ i}.

This usually gave the best performance for the matrices considered in [13].
• Path-symmetric reduction [13, Theorem 5.1]:

ρp(k) = min{i | i L
=⇒ k

U
=⇒ i}.

This is a generalization of symmetric reduction where the symmetric edges
can be paths. No implementation is given in [13]. However, since ρp(k) ≡
fpnz(k), we can easily evaluate ρp(k) by constructing the elimination tree.
We shall use Lθ and Uθ to represent the reduced factors.

• Partial path-symmetric reduction [13, Corollaries 5.2 and 5.3]:

ρπ(k) = min{i | i L�−→ k
U

=⇒ i or i
L

=⇒ k
U�−→ i}.

This is a special case of path-symmetric reduction where one of the symmetric
paths must be an edge. It was introduced in [13] as an easily implemented
approximation.

Figure 10 gives the factors L and U for the matrix in Figure 1 with the entries
pruned by symmetric reduction, partial path-symmetric reduction, path-symmetric
reduction, and the elimination dag marked.

4.2. BBT ordered matrices. In this section we consider the case where A
is upper BBT ordered. The elimination dag G(Lo) is the same as the elimination
tree T (A) with edges directed from parent to child [15, Theorem 6.3]. Together with
Theorem 4.1, this gives the following result.

6The transitive reduction of a directed graph G(M) is a subgraph G(Mo) such that u
M
=⇒ v

if and only if u
M

o

=⇒ v, and that no subgraph with fewer edges has this property. The transitive
reduction of a directed acyclic graph (dag) is unique [1].

7Using supernodes reduces the cost somewhat [19], but the same savings accrue from using
pruning as described in what follows.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1374 STANLEY C. EISENSTAT AND JOSEPH W. H. LIU

A+ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 •
• 2 • ◦ • s

3 • s s
4 •

• ◦ ◦ 5 ◦ ◦ ◦ s
• ◦ 6 ◦ s

• 7 ◦
s ◦ 8 ◦

• • s ◦ ◦ s ◦ 9 ◦
s s s ◦ • ◦ 10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 •
• 2 • ◦ π̄ π

3 • π π
4 •

• ◦ ◦ 5 ◦ ◦ ◦ π
• ◦ 6 ◦ π

• 7 ◦
π ◦ 8 ◦

• π̄ π π̄ ◦ π ◦ 9 ◦
π π π ◦ • ◦ 10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 •
• 2 • ◦ p p

3 • p p
4 •

• ◦ ◦ 5 ◦ ◦ ◦ p
• ◦ 6 ◦ p

• 7 ◦
p ◦ 8 ◦

p̄ p p p ◦ p ◦ 9 ◦
p p p ◦ • ◦ 10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 •
• 2 • ◦ d d

3 • d d
4 •

• ◦ ◦ 5 ◦ d̄ ◦ d
• ◦ 6 ◦ d

• 7 ◦
d ◦ 8 ◦

d d d d ◦ d ◦ 9 ◦
d d d d̄ • ◦ 10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 10. The pruned filled matrix of the matrix in Figure 1, where s denotes entries pruned
by symmetric reduction; π denotes entries pruned by partial path-symmetric reduction; p denotes
entries pruned by path-symmetric reduction; d denotes entries pruned using the elimination dag,
and a bar denotes entries not pruned by a lesser form of pruning.

Corollary 4.2. Let A be upper BBT ordered. The row structure of Lr∗ is given
by

Struct(Lr∗) = { j | j ≤ r and either r
A�−→ j or r

A�−→ U-
RR==⇒ j}.

The row structure of Ur∗ is given by

Struct(Ur∗) =

⎛⎝Struct(Ar∗) ∪
⋃

k : fpnz(k)=r

Struct(Uk∗)

⎞⎠ \ {1, . . . , r − 1}.

The expression for Struct(Ur∗) is the same as in the symmetric case [20, Theo-
rem 8.1], where it is the key to efficient symbolic factorization.

4.2.1. Pruning using the elimination tree. Corollary 4.2 leads immediately
to Algorithm eTreeSymbolic in Figure 11. The pruning strategy is based on the
elimination tree and thus is equivalent to path-symmetric reduction as discussed in
section 4.1.

However, there is another interpretation. Let p = fpnz(r) be the parent of

vertex r in T (A). By definition there is a cycle p
L

=⇒ r
U

=⇒ p. Since A is upper

BBT ordered, there is an edge p
L�−→ r (see [15, Theorem 6.5]). Thus there is a cycle

p
L�−→ r

U
=⇒ p; and path-symmetric reduction is the same as partial path-symmetric

reduction. Algorithm eTreeSymbolic can be viewed as an implementation of either.

4.2.2. Pruning using the elimination dags. When the elimination dags are
used in a symbolic factorization algorithm, they are usually constructed in parallel
with the row structures of the factors [18, section 5.2]. That is, during the rth step,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMIC ASPECTS OF ELIMINATION TREES 1375

Algorithm eTreeSymbolic

Use Algorithm eTreeQ to construct the elimination tree
for r = 1 to n do

Struct(Ur∗) = Struct(Ar∗) \ {1, . . . , r − 1}
for each child s of r in T (A) do

Struct(Ur∗) = Struct(Ur∗) ∪ (Struct(Us∗) \ {1, . . . , r − 1})
end for
Struct(Uθ

r∗) = Struct(Ur∗) \ {fpnz(r) + 1, . . . , n}
Struct(Lr∗) = φ
for each vertex i in Struct(Ar∗) \ {1, . . . , r − 1} do

Add to Struct(Lr∗) every vertex reachable from i
through a path in G(Uθ

RR)
end for

end for

Fig. 11. Symbolic factorization using the elimination tree (i.e., path-symmetric reduction) for
an upper BBT ordered matrix.

after computing Struct(Lr∗) we use depth-first search to prune the row Lr∗ to Lo
r∗;

and after computing Struct(Ur∗) we use depth-first search to prune the column U∗r
to Uo

∗r. (Pruning the row Ur∗ to Uo
r∗ would require the structures of higher-numbered

rows of U .)
However, the situation is quite different when the matrix is upper BBT ordered.

First, we need not construct the dag G(Lo), which as noted earlier is the elimination
tree with edges directed from parent to child [15, Theorem 6.3]. Second, we can use
fpnz(r) to prune Ur∗ to Uθ

r∗ as soon as we compute Struct(Ur∗) so that there will be
fewer edges to consider during transitive reduction.

Third, we can prune the rows of Uθ rather than the columns. Let vertex s be a
child of vertex r in T (A). Since �rs is the first off-diagonal nonzero in the sth column
of L (see [16, section 5.1]), we will not need Uo

s∗ to compute the structure of any row
of L until we are ready to compute Struct(Lr∗). Since the nonzero entries in Uo

s∗ are
in columns s+1, . . . , r = fpnz(s), pruning Uθ

s∗ to Uo
s∗ requires only the corresponding

rows of Uo. These rows will always be available if we transitively reduce the rows
of Uθ corresponding to the children of r in descending order when we are ready to
compute the structure of Lr∗.

Finally, we do not have to prune Uθ
t∗ to Uo

t∗ if vertex t is the last child of vertex

r in T (A). By the definition of fpnz(t) we have r
L

=⇒ t
U

=⇒ r. Since the natural
ordering of a BBT ordered matrix is a postordering and t is the last child of r, we
have r = t + 1. Thus the path t

U
=⇒ r must be an edge in U ; that is, utr �= 0. Since

utr is the first nonzero in row t of U , it must be retained in the elimination dag G(Uo).
On the other hand, since r = fpnz(t), it is the only off-diagonal nonzero in row t of
Uθ. Therefore Uo

t∗ = Uθ
t∗.

These observations lead to Algorithm edagSymbolic in Figure 12.

5. Experimental results. In this section we demonstrate the efficiency of the
algorithms to construct the elimination tree and to find a BBT postordering of
an unsymmetric sparse matrix. We also compare the performance of Algorithms
eTreeSymbolic and edagSymbolic with existing codes for symbolic factorization.
All of these algorithms were implemented in Fortran, and the experiments were per-
formed on a dual 2.8 GHz Intel Xeon processor with 2 GB of RAM.

We started with 21 matrices from the University of Florida Sparse Matrix Collec-
tion [8] (see Table 2). Most are reducible, and for such matrices a block factorization
(i.e., permute the rows and columns so that the matrix is in block upper triangu-
lar form and factor only the irreducible diagonal blocks) leads to less fill and work.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1376 STANLEY C. EISENSTAT AND JOSEPH W. H. LIU

Algorithm edagSymbolic

Use Algorithm eTreeQ to construct the elimination tree
for r = 1 to n do

Struct(Ur∗) = Struct(Ar∗) \ {1, . . . , r − 1}
for each child s of r in T (A) do

Struct(Ur∗) = Struct(Ur∗) ∪ (Struct(Us∗) \ {1, . . . , r − 1})
end for
Struct(Uθ

r∗) = Struct(Ur∗) \ {fpnz(r) + 1, . . . , n}
for each child s of r in T (A), in descending order, do

if s is not the last child of r then
Prune Uθ

s∗ to obtain Uo
s∗

end for
Struct(Lr∗) = φ
for each vertex i in Struct(Ar∗) \ {1, . . . , r − 1} do

Add to Struct(Lr∗) every vertex reachable from i
through a path in G(Uθ

RR)
end for

end for

Fig. 12. Symbolic factorization using the elimination dags for an upper BBT ordered matrix.

Thus we “preprocessed” each as follows:

1. Use the Dulmage–Mendelsohn decomposition [12] (dmperm in MATLAB) to
identify the rows and columns in each irreducible diagonal block and delete
all entries that lie in off-diagonal blocks.

2. Apply a random permutation symmetrically to the rows and columns to ran-
domize the tie-breaking strategy in the next step.

3. Run the analysis phase of the multifrontal code MA41 UNS [3] (with ICNTL(6)

= 5, ICNTL(7) = 2, and ICNTL(8) = 7) to find a transversal [10] (i.e., a
column permutation that puts large entries on the diagonal) and a DMLS
ordering [2] (i.e., a symmetric row and column permutation that preserves
the large entries on the diagonal but reduces the off-diagonal fill).

4. Symmetrically permute the rows and columns to put the matrix in block
diagonal form while preserving the (relative) DMLS ordering within each
block.

We refer to the resulting matrix as A. Each problem was preprocessed eleven times
(with different symmetric random permutations), and all numbers reported are me-
dians over the corresponding set of eleven matrices.

Table 2 gives the basic statistics for the preprocessed problems. Here n(A) is
the size of A; nz(A)/n(A) is the average number of nonzeros per row; symm(A) is
the percentage of nonzero off-diagonal elements aij for which aij and aji are both
nonzero; fill(A) and work(A) are the fill and work (in multiply-adds) when factoring
A; and ts(A) is the time (in milliseconds) to perform a symbolic factorization of A
using symmetric reduction.

Table 3 gives the statistics for finding the elimination tree. Here h(A) is the height
of the elimination tree T (A); h(M) is the height of T (M), the elimination tree for the
symmetrized matrix M = A+At; wi(A) is the number of redundant edges in the set
Wi, where an edge that can be pruned by both heuristics is included in both counts
(see section 3.3); te(A) is the time to find T (A); tu(A) is the time to find T (A) and
an upper BBT reordering of that tree; and tp(A) is the time to perform a symbolic
factorization of A using path-symmetric reduction, given T (A). Note the following:

• We must have h(A) ≤ h(M) since the parent of any node in T (A) is an
ancestor of that node in T (M) (see [16, Theorem 7.1]).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMIC ASPECTS OF ELIMINATION TREES 1377

Table 2

Test problems.

Matrix n(A)
nz(A)

n(A)
symm(A) fill(A) work(A)

ts(A)

(ms)

Averous/epb1 14734 6.45 72.94 9.51×105 4.28×107 17.11

Bai/rw5151 5151 3.92 .00 2.15×105 6.33×106 8.61

Goodwin/goodwin 7320 44.37 57.32 1.71×106 1.39×108 33.38

Graham/graham1 9035 34.27 59.88 1.38×106 1.01×108 25.38

Grund/bayer02 13935 4.05 7.57 2.79×105 3.96×106 6.24

Grund/bayer10 13436 4.84 6.12 2.82×105 4.41×106 6.08

HB/gemat11 4929 6.45 99.59 4.95×104 1.64×105 1.19

Hamrle/Hamrle2 5952 3.72 11.98 6.04×104 2.18×105 1.36

Hohn/fd12 7500 3.63 4.75 3.13×105 9.76×106 5.81

Hohn/fd15 11532 3.70 4.36 5.77×105 2.32×107 10.83

Hohn/fd18 16428 3.75 4.15 9.40×105 4.43×107 17.78

Hohn/sinc12 7500 35.81 25.40 7.02×106 2.82×109 195.25

Hollinger/g7jac040 11790 8.94 2.88 2.06×106 4.38×108 50.98

Lucifora/cell1 7055 4.26 79.63 1.86×105 2.93×106 4.35

Lucifora/cell2 7055 4.26 79.63 1.86×105 2.93×106 4.35

Nasa/barth 6691 3.12 15.55 8.35×104 8.89×105 2.03

Nasa/barth4 6019 3.83 16.98 1.52×105 2.61×106 3.61

Nasa/barth5 15606 3.65 14.44 3.13×105 4.16×106 9.24

Shen/e40r0100 17281 32.03 88.46 2.15×106 1.30×108 41.89

Shen/shermanACd 6136 6.89 99.57 1.12×105 2.00×106 2.46

TOKAMAK/utm5940 5940 14.02 54.80 7.36×105 4.28×107 13.35

Table 3

Statistics for the elimination tree.

Matrix h(A) h(M)
w1(A)

n(A)

w2(A)

n(A)

te(A)

ts(A)

tu(A)

ts(A)

tp(A)

ts(A)

Averous/epb1 1112 1122 .13 .06 .48 .56 .97

Bai/rw5151 387 902 .07 .13 1.56 1.56 .89

Goodwin/goodwin 1977 2062 .45 .34 .48 .49 .92

Graham/graham1 1191 1338 .34 .22 .65 .67 .97

Grund/bayer02 979 1291 .14 .08 1.29 1.45 .96

Grund/bayer10 757 870 .12 .07 1.24 1.41 .99

HB/gemat11 142 143 .00 .00 1.75 2.11 1.08

Hamrle/Hamrle2 645 813 .30 .28 2.12 2.42 1.07

Hohn/fd12 668 729 .12 .08 .55 .65 .86

Hohn/fd15 986 1025 .12 .08 .49 .58 .85

Hohn/fd18 1142 1179 .12 .08 .46 .54 .86

Hohn/sinc12 3672 4332 .79 .67 .09 .09 .96

Hollinger/g7jac040 1924 2295 .59 .58 .74 .78 .90

Lucifora/cell1 720 778 .20 .11 .70 .84 .92

Lucifora/cell2 720 778 .20 .11 .70 .84 .91

Nasa/barth 258 294 .22 .22 1.47 1.74 .94

Nasa/barth4 328 656 .30 .22 1.03 1.15 .97

Nasa/barth5 427 976 .31 .29 1.75 1.86 .98

Shen/e40r0100 1374 1384 .20 .16 .67 .72 .95

Shen/shermanACd 289 289 .01 .01 1.12 1.33 1.07

TOKAMAK/utm5940 1109 1115 .14 .07 .36 .40 .90

Median .20 .11 .70 .84 .95

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1378 STANLEY C. EISENSTAT AND JOSEPH W. H. LIU

Table 4

Statistics for upper BBT ordered matrices.

Matrix
fill(Au)

fill(A)

work(Au)

work(A)

ts(Au)

ts(A)

te(Au)

ts(Au)

tp(Au)

ts(Au)

td(Au)

ts(Au)

Averous/epb1 1.07 1.01 1.13 .39 .94 .89

Bai/rw5151 3.30 1.22 2.33 .09 .91 1.16

Goodwin/goodwin 1.07 1.06 1.08 .42 .93 .90

Graham/graham1 1.21 1.32 1.23 .49 .94 .92

Grund/bayer02 1.59 1.38 1.84 .45 .83 1.04

Grund/bayer10 1.44 1.25 1.63 .54 .89 1.04

HB/gemat11 1.00 1.00 1.03 1.68 .96 1.13

Hamrle/Hamrle2 2.08 2.32 2.60 .60 .84 1.28

Hohn/fd12 1.49 1.48 1.81 .25 .85 .83

Hohn/fd15 1.65 1.63 2.02 .19 .87 .80

Hohn/fd18 1.62 1.61 2.09 .17 .86 .79

Hohn/sinc12 1.08 .99 1.32 .06 .97 .98

Hollinger/g7jac040 2.08 1.59 2.69 .06 .83 .93

Lucifora/cell1 2.32 1.85 2.00 .30 .92 1.07

Lucifora/cell2 2.32 1.85 1.97 .31 .93 1.08

Nasa/barth 1.95 2.00 2.20 .50 .87 .93

Nasa/barth4 1.89 1.24 2.32 .27 .89 .93

Nasa/barth5 2.36 1.69 2.62 .25 .90 .98

Shen/e40r0100 1.05 1.07 1.10 .61 .92 .88

Shen/shermanACd 1.02 1.01 1.02 1.05 .97 1.04

TOKAMAK/utm5940 1.08 1.09 1.09 .32 .93 .88

Median 1.59 1.32 1.84 .32 .91 .93

• The number of edges in the sets W1 and W2 is small, most likely because of
the pruning implicit in working with the quotient graph.

• The time to find T (A) is never appreciably larger than the time for symbolic
factorization, and the time to find an upper BBT ordering as well is only
slightly larger.

• As expected, path-symmetric reduction is faster than symmetric reduction.
However, the improvement is less than the cost of finding T (A). Thus sym-
metric reduction remain the preferred approach unless the elimination tree is
needed for other reasons.

Table 4 gives the fill and work for the upper BBT reordered matrix Au of A and the
symbolic factorization times ts(Au), tp(Au), and td(Au) using symmetric reduction,
Algorithm eTreeSymbolic, and Algorithm edagSymbolic, respectively. Note the
following:

• BBT reordering generally increases both the fill and the work (by medians
of 59% and 32%, respectively), which offsets some of the advantages of BBT
ordered matrices [16].

• Again path-symmetric reduction (Algorithm eTreeSymbolic) is faster than
symmetric reduction; but while the improvement is usually less than the cost
of finding T (Au), that should not be necessary in this case.

• Algorithm edagSymbolic is faster than symmetric reduction more often
than not; but again the improvement is usually less than the cost of finding
T (Au).

Thus path-symmetric reduction is the preferred approach.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMIC ASPECTS OF ELIMINATION TREES 1379

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 • • • •
2 • • • •

3 • • • •
4 • • • •

5 • • • •
• • • • • 6 • • • • • •

• 7 • ◦ ◦ ◦ ◦
• ◦ 8 • ◦ ◦ ◦
• ◦ ◦ 9 • ◦ ◦

• ◦ ◦ ◦ ◦ • ◦ ◦ ◦ 10 • ◦
• ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ 11 •
• ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ 12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1�
���

2�
		

3� 4�

5�
���6�

7�

8�

9�

10�

11�

12�

Fig. 13. A contrived matrix and its elimination tree.

Table 5

Times for the 1000 × 1000 version of the matrix in Figure 13.

Algorithm Time (ms)
Algorithm eTreeQ 5.62
Symbolic factorization by

Symmetric reduction 82.34
Path-symmetric reduction 8.14
Algorithm eTreeSymbolic 7.60
Algorithm edagSymbolic 7.46

The upper BBT matrix in Figure 13 demonstrates the advantage that the algo-
rithms considered here can have over symmetric reduction. Table 5 gives the times
for a larger version of that matrix.

6. Concluding remarks. In this paper we have presented algorithms for con-
structing the elimination tree and finding a BBT postordering of an unsymmetric
matrix. Experiments indicate that the run-times of these algorithms are compara-
ble with those for symbolic factorization. We have also shown how the elimination
tree and BBT postorderings can be used to improve the performance of a symbolic
factorization algorithm. However, for the problems considered here path-symmetric
reduction, the best of the new algorithms, is only better than symmetric reduction if
the elimination tree is available.

These ideas also have been applied with great effect in the unsymmetric multi-
frontal method [16]. Here we suggest two other applications.

6.1. Unsymmetric supernodes. By grouping together adjacent rows and/or
columns with the same nonzero structure in A+ and treating them as a dense matrix
for storage and computation, we can improve the efficiency of symmetric [5] and
unsymmetric [9] sparse numerical factorization. These groupings of row/column indices
are called supernodes.

There are several ways to define an unsymmetric supernode [9], including the
following:

• A T1 supernode is a range8 r :s of columns of L and rows of U , such that the
diagonal block A+(r :s, r :s) is full and each row of L(s+1:n, r :s) and each
column of U(r :s, s+1:n) is either full or zero.

8We use the MATLAB notations p :q, denoting the sequence p, p+1, . . . , q, and M(P,Q), denoting
the submatrix of M defined by the row sequence P and the column sequence Q.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1380 STANLEY C. EISENSTAT AND JOSEPH W. H. LIU

• A T3 supernode is a range r :s of columns of L and U , such that the diagonal
block A+(r :s, r :s) is full and each row of L(s+1:n, r :s) is either full or zero.

Since the diagonal block A+(r :s, r :s) is dense, necessary (but not sufficient) condi-
tions for r :s to be a T1 or T3 supernode are that the nodes r, . . . , s lie on an upward
path in the elimination tree T (A) and that only node r has more than one child. This
simplifies the identification of supernodes and suggests how to relax the definitions
to increase their number and/or sizes (see [4, 11] for the symmetric case). Moreover,
since the nodes in a supernode are numbered sequentially during a BBT ordering,
such an ordering may also reveal more or larger supernodes.

6.2. Diagonal Markowitz ordering. Suppose that we want to minimize the
work required to factor an unsymmetric matrix by symmetrically reordering the rows
and columns (i.e., the same permutation is applied to both rows and columns). A
greedy algorithm selects at each stage the pivot i in the reduced matrix for which the
product rici is smallest. This is the diagonal Markowitz ordering [2].

To implement this algorithm we need an efficient scheme to maintain the nonzero
structure of the reduced matrix (i.e., the connectivity in the Schur complement). One
approach is to use quotient graphs [21, 2]. The techniques used to speed construction
of the elimination tree in section 3 seem to have immediate application to making the
maintenance of these quotient graphs more efficient.

Acknowledgments. We thank Patrick Amestoy, who provided us with a version
of MA41 UNS that includes the DMLS ordering; and the referees, whose insightful
comments helped us to improve the presentation.

REFERENCES

[1] A. V. Aho, M. R. Garey, and J. D. Ullman, The transitive reduction of a directed graph,
SIAM J. Comput., 1 (1972), pp. 131–137.

[2] P. R. Amestoy, X. S. Li, and E. G. Ng, Diagonal Markowitz scheme with local symmetriza-
tion, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 228–244.

[3] P. R. Amestoy and C. Puglisi, An unsymmetrized multifrontal LU factorization, SIAM J.
Matrix Anal. Appl., 24 (2002), pp. 553–569.

[4] C. Ashcraft and R. Grimes, The influence of relaxed supernode partitions on the multifrontal
method, ACM Trans. Math. Software, 15 (1989), pp. 291–309.

[5] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon, Progress in sparse matrix
methods for large sparse linear systems on vector supercomputers, Internat. J. Supercom-
puter Appl., 1 (1987), pp. 10–30.

[6] A. Chang, Application of sparse matrix methods in electric power system analysis, in Sparse
Matrix Proceedings, R. A. Willoughby, ed., Report RA1 (#11707), IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1968, pp. 113–122.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1992.

[8] T. A. Davis, University of Florida Sparse Matrix Collection; also available online at http://
www.cise.ufl.edu/research/sparse/matrices/.

[9] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 720–755.

[10] I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to
the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889–901.

[11] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[12] A. L. Dulmage and N. S. Mendelsohn, Coverings of bipartite graphs, Canad. J. Math., 10
(1958), pp. 517–534.

[13] S. C. Eisenstat and J. W. H. Liu, Exploiting structural symmetry in unsymmetric sparse
symbolic factorization, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 202–211.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMIC ASPECTS OF ELIMINATION TREES 1381

[14] S. C. Eisenstat and J. W. H. Liu, Structural representations of Schur complements in sparse
matrices, in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and
J. W. H. Liu, eds., Springer-Verlag, New York, 1993, pp. 85–100.

[15] S. C. Eisenstat and J. W. H. Liu, The theory of elimination trees for sparse unsymmetric
matrices, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 686–705.

[16] S. C. Eisenstat and J. W. H. Liu, A tree-based dataflow model for the unsymmetric multi-
frontal method, Electron. Trans. Numer. Anal., 21 (2005), pp. 1–19.

[17] H. N. Gabow, Path-based depth-first search for strong and biconnected components, Inform.
Process. Lett., 74 (2000), pp. 107–114.

[18] J. R. Gilbert and J. W. H. Liu, Elimination structures for unsymmetric sparse LU factors,
SIAM J. Matrix Anal. Appl., 14 (1993), pp. 334–352.

[19] A. Gupta, Improved symbolic and numerical factorization algorithms for unsymmetric sparse
matrices, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 529–552.

[20] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134–172.

[21] G. Pagallo and C. Maulino, A bipartite quotient graph model for unsymmetric matrices,
in Numerical Methods, V. Pereyra and A. Reinoza, eds., Lecture Notes in Math. 1005,
Springer-Verlag, New York, 1983, pp. 227–239.

[22] D. J. Rose and R. E. Tarjan, Algorithmic aspects of vertex elimination on directed graphs,
SIAM J. Appl. Math., 34 (1978), pp. 176–197.

[23] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),
pp. 146–160.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1382–1388

ON THE CONVERGENCE OF GENERAL STATIONARY LINEAR
ITERATIVE METHODS FOR SINGULAR LINEAR SYSTEMS∗

ZHI-HAO CAO†

Abstract. Recently, Lee et al. have published an interesting paper [SIAM J. Matrix Anal.
Appl., 28 (2006), pp. 634–641] concerning the energy norm convergence of general stationary linear
iterative methods for semidefinite linear systems. In this paper, we first consider the convergence of
general stationary linear iterative methods for general singular consistent linear systems and show
that the convergence and the quotient convergence are equivalent. Then we consider the convergence
of general stationary iterative methods for the semidefinite systems and clarify some issues in Lee et
al.’s paper.

Key words. iterative methods, singular linear systems, matrix splitting, convergence, quotient
convergence, energy norm convergence

AMS subject classifications. 65F10, 65F15

DOI. 10.1137/060671243

1. Introduction. We consider the problem of finding a solution x ∈ Rn to

(1.1) Ax = b,

where A ∈ Rn,n is a given singular matrix and b ∈ Rn is a given vector in the range
of A. A classical stationary linear iterative method to solve (1.1) can be obtained by
using a splitting [2, 3, 7, 12] of A: A = M −N ,

Mx(k) = Nx(k−1) + b, k = 1, 2, . . . ,

which is equivalent to the following iterative scheme:

(1.2) x(k) = x(k−1) −M−1(Ax(k−1) − b), k = 1, 2,

The matrix T = I − M−1A ≡ M−1N determined by the splitting A = M − N is
called the iteration matrix and the splitting is called induced by the iteration matrix
T [7]. When A is nonsingular, an iteration matrix T induces an unique splitting of A.
Thus, constructing a classical stationary iterative scheme is equivalent to making a
splitting of A. However, when A is singular, there are infinitely many splittings of A
induced by the same iteration matrix T (cf. [2, 5]). Therefore, we extend the classical
stationary linear iterative method to the general stationary linear iterative method
by replacement of M−1 in (1.2) with M† in a straightforward manner

(1.3) x(k) = x(k−1) −M†(Ax(k−1) − b), k = 1, 2, . . . ,

where M† is the Moore–Penrose generalized inverse of M (see [1]). The iteration
matrix is

(1.4) T = I −M†A.

∗Received by the editors October 2, 2006; accepted for publication (in revised form) by R. Nabben
September 14, 2007; published electronically January 4, 2008. This work was supported by NSFC
project 10471027.

http://www.siam.org/journals/simax/29-4/67124.html
†School of Mathematical Sciences and Laboratory of Mathematics for Nonlinear Sciences, Fu-

dan University, Shanghai 200433, People’s Republic of China (zcao@fudan.edu.cn; zhcao@cableplus.
com.cn).

1382

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ITERATIVE METHODS FOR SINGULAR SYSTEMS 1383

We emphasize that (1.3) is not proposed as a computational scheme but rather
as useful for theoretical analysis.

Definition 1.1. We say that the iterative scheme (1.3) is convergent if, for any
initial guess x(0) ∈ Rn, the iteration sequence {x(k)} produced by the iterative scheme
converges to a solution x∗ of (1.1) as k → ∞.

Let A† be the Moore–Penrose inverse of A, and then P ≡ A†A is an orthogonal
projection onto N (A)⊥, the orthogonal complement of the null space N (A). Then
x∗∗ ≡ A†b is the unique solution of (1.1) with the least 2-norm (see [1, 3]).

Definition 1.2. We say that the iterative scheme (1.3) is quotient convergent if,
for any initial guess x(0) ∈ Rn, the iteration sequence {x(k)} produced by the iterative
scheme is such that the sequence {Px(k)} converges to the least 2-norm solution x∗∗
of (1.1) as k → ∞.

2. General singular systems. For any matrix B ∈ Rn,n let γ(B) denote the
pseudospectral radius of B, i.e.

(2.1) γ(B) = max{|λ| : λ ∈ σ(B) \ {1}},

where σ(B) is the set of the eigenvalues of B.
We now consider the convergence of the iterative method (1.3). Let e(k) = x(k) −

x∗∗ be the iteration error of x(k), and then from (1.3) we have

(2.2) e(k) = (I −M†A)e(k−1) = Te(k−1) = T ke(0).

Thus, the fact that e(k) → x∗ − x∗∗ ∈ N (A)(k → ∞); i.e., the iterative scheme (1.3)
is convergent if and only if T is semiconvergent [3]; i.e.,

(2.3) T k → T∞(k → ∞),

and T∞ is a projection onto the null space N (A).
It is well known (see [10]) that a matrix T is semiconvergent if and only if there

is a nonsingular matrix S such that

(2.4) S−1TS =

(
I

T̃

)
,

where the spectral radius ρ(T̃) of T̃ satisfies ρ(T̃) < 1, i.e., T̃ is a convergent matrix.
Therefore, T is semiconvergent if and only if the following two conditions are satisfied:

(a) The pseudospectral radius γ(T) ≡ ρ(T̃) < 1.
(b) rank(I −T) = rank((I −T)2) or, equivalently, index1(T) ≡ index(I −T) = 1

(cf. [3] for the definitions of indexλ(B) and index(B) for a square matrix B).
From (1.4) and (2.4) we have

(2.5) M†A = S

(
0

I − T̃

)
S−1

and

(2.6) T∞ = S

(
I

0

)
S−1.

Let S = [S1, S2], (2.5) and (2.6) imply that T∞ is a projection, and

(2.7) Span(S1) = R(T∞) = N (M†A),

(2.8) Span(S2) = N (T∞) = R(M†A).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1384 ZHI-HAO CAO

From (2.7) we know that T∞ is a projection onto N (M†A). Therefore, the condition

(2.9) N (M†A) = N (A)

is a necessary and sufficient condition for the projection T∞ being a projection onto
N (A).

From the discussion above we can obtain the following convergence theorem (see
[9]).

Theorem 2.1. The general stationary linear iterative scheme

x(k) = x(k−1) −M†(Ax(k−1) − b), k = 1, 2, . . . ,

is convergent if and only if the following three conditions are fulfilled:
(a) γ(T) < 1, where T ≡ I −M†A is the iteration matrix,
(b) index1(T) ≡ index(I − T) = 1,
(c) N (M†A) = N (A).
We now consider the relationship between the convergence and the quotient con-

vergence. We obtain the following theorem, which extends the corresponding result
in [4], and it is the one of the main results in this paper.

Theorem 2.2. For the general stationary linear iterative scheme (1.3)

x(k) = x(k−1) −M†(Ax(k−1) − b), k = 1, 2, . . . ,

the convergence and the quotient convergence are equivalent.
Proof. We need only to show that the quotient convergence implies the conver-

gence, since the latter is obviously implies the former.
The iterative scheme can be written as

x(k) = x(k−1) −M†A(x(k−1) − x∗∗), k = 1, 2,

If N (M†A) �= N (A), then there exists an initial guess x(0) such that e(0) ≡ x(0)−x∗∗ ∈
N (M†A) and e(0) �∈ N (A). With this x(0), the iterative scheme (1.3) produces an
iteration sequence {x(k)} : x(k) = x(0), k = 1, 2, Obviously, Px(0)−x∗∗ ≡ Pe(0) �=
0, since A(Pe(0)) = Ae(0) �= 0. Therefore, the quotient convergence implies

(2.10) N (M†A) = N (A).

From (2.2) we have

Pe(k) = PT ke(0).

Thus, the iterative scheme (1.3) is quotient convergent if and only if

(2.11) PT k → 0(k → ∞),

since PT ke(0) → 0(k → ∞) for all e(0) ∈ Rn. Since P ≡ A†A is an orthogonal

projection onto N (A)⊥, there exists an orthogonal matrix Ŝ such that

(2.12) ŜTPŜ =

(
0

I

)
.

Let Ŝ = [Ŝ1, Ŝ2], where (using (2.10))

(2.13) Span(Ŝ1) = N (A) = N (M†A) and Span(Ŝ2) = N (A)⊥ = N (M†A)⊥.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ITERATIVE METHODS FOR SINGULAR SYSTEMS 1385

Since T = I −M†A, we have T Ŝ1 = Ŝ1. Thus, the matrix ŜTT Ŝ can be expressed as
the following form:

ŜTT Ŝ =

(
I R12

R22

)
.

If index1(T) ≡ index(I − T) > 1, then 1 ∈ σ(R22). In this case, we have

PT k = Ŝ

(
0

Rk
22

)
ŜT �→ 0(k → ∞).

This means that index1(T) ≡ index(I − T) = 1 is the necessary condition for the
quotient convergence.

Since index1(T) = 1, there exists a nonsingular matrix S such that

(2.14) T = S

(
I

T̃

)
S−1, and hence M†A = S

(
0

I − T̃

)
S−1,

where 1 �∈ σ(T̃) and ρ(T̃) = γ(T). Let S = [S1, S2], where (using (2.10))

(2.15) Span(S1) = N (M†A) = N (A) and Span(S2) = R(M†A).

Then the matrix S = [S1, S2] can be expressed as

(2.16) [S1, S2] = [Ŝ1, Ŝ2]

(
G11 G12

G22

)
,

where G11 and G22 are nonsingular. From (2.16) we have

(2.17) S−1 =

(
G−1

11 Ĝ12

G−1
22

)
ŜT .

From (2.12), (2.14), (2.16), and (2.17) we have

PT k = Ŝ

(
0

I

)
ŜTS

(
I

T̃ k

)
S−1

= [0, Ŝ2]

(
G11 G12

G22

)(
I

T̃ k

)(
G−1

11 Ĝ12

G−1
22

)
ŜT

= [0, Ŝ2G22T̃
kG−1

22]ŜT .

Thus, the fact that PT k → 0(k → ∞) implies T̃ k → 0(k → ∞), which is equivalent

to γ(T) = ρ(T̃) < 1.
In summary, we have showed that the quotient convergence of the iterative scheme

(1.3) implies that all three conditions (a), (b), and (c) in Theorem 2.1 are satisfied.
Thus, the quotient convergence implies the convergence.

By applying Theorem 2.2 we obtain the following result.
Theorem 2.3. The general stationary linear iterative scheme

x(k) = x(k−1) −M†(Ax(k−1) − b), k = 1, 2, . . . ,

is convergent if and only if

(2.18) r(k) ≡ Ax(k) − b → 0(k → ∞) ∀x(0) ∈ Rn.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1386 ZHI-HAO CAO

Proof. Equation (2.18) is equivalent to

(2.19) Ae(k) → 0(k → ∞) ∀e(0) ∈ Rn,

since e(k) = x(k) − x∗∗. (2.19) implies

(2.20) Pe(k) → 0(k → ∞) ∀e(0) ∈ Rn,

since P = A†A. Inversely, (2.20) implies (2.19), since AP = AA†A = A. Thus, (2.19)
and (2.20) are equivalent to each other. Now (2.20) is equivalent to the quotient
convergence. Applying Theorem 2.2 (2.18) is also equivalent to the convergence.

Theorem 2.3 shows that (2.18) can be used as the definition of convergence (cf.
Definition 1.1) of the general stationary iterative scheme (1.3).

3. Semidefinite systems. Now we consider the symmetric positive semidefinite
systems; i.e., we assume the matrix A ∈ Rn,n in (1.1) is symmetric positive semidefi-
nite. Lee et al. [8] call the iterative scheme (1.3) being energy norm convergent if and
only if

(3.1) |I −M†A|A < 1.

Obviously, (3.1) implies (2.18). Thus, from Theorem 2.3 the energy norm convergence
implies the convergence.

For symmetric positive definite systems and the classical stationary linear iterative
scheme, i.e., in the case that A is symmetric positive definite and M is invertible, we
have the following well known theorem (see [11, 6]).

Theorem 3.1. For symmetric positive definite systems Ax = b, the classical
stationary linear iterative scheme

x(k) = x(k−1) −M−1(Ax(k−1 − b), k = 1, 2, . . . ,

is energy norm convergent if and only if MT +M −A is symmetric positive definite.
This convergence result can easily be extended to positive semidefinite systems.
Theorem 3.2. For symmetric positive semidefinite systems Ax = b, the classical

stationary linear iterative scheme

x(k) = x(k−1) −M−1(Ax(k−1 − b), k = 1, 2, . . . ,

is energy norm convergent if and only if MT + M −A is symmetric positive definite
on R(M−1A).

Proof. It is easy to see that (cf. [5])

(3.2) A− (I −M−1A)TA(I −M−1A) = (M−1A)T (MT + M −A)(M−1A).

From (3.2) we immediately obtain the conclusion of the theorem.
Lee et al. [8] have further extended these convergence results to the case of the

general stationary linear iterative scheme and obtain the following necessary and
sufficient conditions for the energy norm convergence (see Theorem 4.4 in [8]):

(A1) R(A) ⊂ R(M) or, equivalently, N (MT) ⊂ N (A),
(A2) MT + M −A is symmetric positive definite on R(M†A),

or, equivalently,
(A1) R(A) ⊂ R(M) or, equivalently, N (MT) ⊂ N (A),

(A2a) there exists ω ∈ (0, 1) such that (M†Ax,M†Ax)A ≤ ω(M†Ax,Ax) for all
x ∈ Rn,

(A2b) there exists α > 0 such that (M†Ax,M†Ax)A ≥ α(M†Ax,M†Ax) for all
x ∈ Rn.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ITERATIVE METHODS FOR SINGULAR SYSTEMS 1387

However, this result has some problems to clarify.
First we compare the condition (A1) with the condition N (M†A) = N (A), which

is necessary for the convergence.
Theorem 3.3. Let A ∈ Rn,n be a symmetric matrix, and M ∈ Rn,n. Then the

condition (A1) implies the condition N (M†A) = N (A).
Proof. It is easy to see that the condition N (M†A) = N (A) is equivalent to the

condition N (M†)
⋂
R(A) = {0}.

Now if N (MT) ⊂ N (A), then N (MT)
⋂
R(A) = {0}, since A is symmetric.

Noting that N (M†) = N (MT) the conclusion of the theorem follows.
Now we give a semidefinite system and a general stationary linear iterative scheme

which is energy norm convergent, but the conditions (A1) and (A2) are not satisfied.
Example. We take the semidefinite matrix A and the vector b ∈ R(A) as

A =

(
0

1

)
and b =

(
0
1

)
,

respectively. The matrix M is

M =
1

2

(
0 −1
0 1

)
,

and hence, the matrix M† is (
0 0
−1 1

)
.

Obviously, the least 2-norm solution of Ax = b is x∗∗ =
(
0
1

)
, and the iteration

matrix T is

T = I −M†A =

(
1

0

)
.

Since

(I −M†A)TA(I −M†A) = TTAT = 0,

|I −M†A|A = 0. Thus, the general stationary linear iterative scheme is energy norm
convergent. Now we have

N (MT) = Span

{(
1
1

)}
and N (A) = Span

{(
1
0

)}
,

and, thus, the condition (A1) is not satisfied. We note that the condition N (M†A) =
N (A) is satisfied, since M†A =

(
0

1

)
= A.

Now we consider the condition (A2). We have

MT + M −A =
1

2

(
0 −1
−1 0

)
,

and

(M†A)T (MT + M −A)(M†A) = 0.

Thus, condition (A2) is also not satisfied.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1388 ZHI-HAO CAO

Finally, we point out that the key problem in Theorem 4.4 of [8] is that (A1) is
not a necessary condition for energy norm convergence (cf. Theorem 3.3). It is easy
to show that if the condition (A1) is assumed to be satisfied, then the condition (A2)
is sufficient and necessary for energy norm convergence. Therefore, Theorem 4.4 of
[8] can be revised or correctly formulated as follows.

Theorem 3.4. Let (A1) be satisfied. Then the iterative scheme (1.3) is energy
norm convergent if and only if (A2) is satisfied or, equivalently, if and only if (A2a)
and (A2b) are satisfied.

Proof. By (A1) and the fact that MM†M = M it is easy to see that (cf. Lemma
4.1 in [8])

(3.3) MM†A = A,

and we have showed that (A1) implies (cf. Theorem 3.3)

(3.4) N (M†A) = N (A).

By using (3.3) we have (cf. (3.2))

(3.5)
A− (I −M†A)TA(I −M†A) = (M†A)TA + AM†A− (M†A)TA(M†A)

= (M†A)TM(M†A) + A(M†)TMT (M†A) − (M†A)TA(M†A)
= (M†A)T (M + MT −A)(M†A).

From (3.5) and (3.4) we obtain that the iterative scheme (1.3) is energy norm conver-
gent if and only if (A2) is satisfied.

By Lemma 4.3 in [8] (A2) is equivalent to (A2a) and (A2b).
We note that Theorem 3.4 is still an extension of Theorem 3.2 to general stationary

linear iterative schemes for positive semidefinite linear systems.

Acknowledgments. I gratefully acknowledge the reviewer and Prof. R. Nabben
for many comments and suggestions that helped improve this paper greatly.

REFERENCES

[1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Theory and Application, Wiley,
New York, 1974.

[2] M. Benzi and D. B. Szyld, Existence and uniqueness of splittings for stationary iterative
methods with applications to alternating methods, Numer. Math., 76 (1997), pp. 309–321.

[3] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, 2nd
ed., SIAM, Philadelphia, 1994.

[4] Z.-H. Cao, On the convergence of iterative methods for solving singular linear systems, J.
Comput. Appl. Math., 145 (2002), pp. 1–9.

[5] Z.-H. Cao, A note on properties of splittings of singular symmetric positive semidefinite ma-
trices, Numer. Math., 88 (2001), pp. 603–606.

[6] Z.-H. Cao, A note on P-regular splittings of Hermitian matrix, SIAM J. Matrix Anal. Appl.,
21 (2000), pp. 1392–1393.

[7] P. J. Lanzkron, D. J. Rose, and D. B. Szyld, Convergence of nested classical iterative
methods for linear systems, Numer. Math., 58 (1991), pp. 685–702.

[8] Y.-J. Lee, J.-B. Wu, J. Xu, and L. Zikatanov, On the convergence of iterative methods for
semidefinite linear systems, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 634–641.

[9] G. I. Marchuk and Y. Kuznetzov, Iterative Methods and Quadratic Functionals (in Russian),
Science Press, Norvosibirsk, 1972.

[10] C. D. Meyer, Jr., and R. J. Plemmons, Convergent powers of a matrix with applications to
iterative methods for singular linear systems, SIAM J. Numer. Anal., 14 (1977), pp. 699–
705.

[11] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.
[12] R. S. Varga, Matrix Iterative Analysis, 2nd ed., Springer–Verlag, Berlin, Heidelberg, 2000.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1389–1410

STRUCTURED MAPPING PROBLEMS FOR MATRICES
ASSOCIATED WITH SCALAR PRODUCTS.

PART I: LIE AND JORDAN ALGEBRAS∗

D. STEVEN MACKEY† , NILOUFER MACKEY† , AND FRANÇOISE TISSEUR‡

Abstract. Given a class of structured matrices S, we identify pairs of vectors x, b for which
there exists a matrix A ∈ S such that Ax = b, and we also characterize the set of all matrices
A ∈ S mapping x to b. The structured classes we consider are the Lie and Jordan algebras associ-
ated with orthosymmetric scalar products. These include (skew-)symmetric, (skew-)Hamiltonian,
pseudo(skew-)Hermitian, persymmetric, and perskew-symmetric matrices. Structured mappings
with extremal properties are also investigated. In particular, structured mappings of minimal rank
are identified and shown to be unique when rank one is achieved. The structured mapping of minimal
Frobenius norm is always unique, and explicit formulas for it and its norm are obtained. Finally the
set of all structured mappings of minimal 2-norm is characterized. Our results generalize and unify
existing work, answer a number of open questions, and provide useful tools for structured backward
error investigations.

Key words. Lie algebra, Jordan algebra, scalar product, bilinear form, sesquilinear form,
orthosymmetric, adjoint, structured matrix, backward error, Hamiltonian, skew-Hamiltonian, Her-
mitian, complex symmetric, skew-symmetric, persymmetric, perskew-symmetric, minimal rank, min-
imal Frobenius norm, minimal 2-norm

AMS subject classifications. 15A04, 15A57, 15A60, 15A63, 65F30, 65F35

DOI. 10.1137/060657856

1. Introduction. The problem of finding all matrices A that map a given
nonzero vector x ∈ K

n to a given vector b ∈ K
m, where K is a fixed field, can

be solved using elementary means [10]. Trenkler [21] recently revisited this problem,
giving a solution using generalized inverses:

A = bx† + Z(In − xx†),(1.1)

where In is the n × n identity matrix, Z ∈ K
m×n is arbitrary, and x† is any gen-

eralized inverse of x. In this work we restrict the permissible transformations to a
class of structured matrices S ⊂ K

n×n and consider the following structured mapping
problems.

Existence. For which vectors x, b does there exist some A ∈ S such that Ax = b?

Characterization. Determine the set S = {A ∈ S : Ax = b } of all structured
mappings taking x to b.

We present a complete, unified solution for these two problems when S is the
Lie or Jordan algebra associated with an orthosymmetric scalar product. These S

include, for example, symmetric and skew-symmetric, Hermitian, pseudo-Hermitian
and skew-Hermitian, Hamiltonian, persymmetric, and perskew-symmetric matrices.

∗Received by the editors April 21, 2006; accepted for publication (in revised form) by R. Nabben
June 21, 2007; published electronically January 9, 2008.

http://www.siam.org/journals/simax/29-4/65785.html
†Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 (steve.

mackey@wmich.edu, nil.mackey@wmich.edu, http://homepages.wmich.edu/∼mackey/).
‡School of Mathematics, The University of Manchester, Sackville Street, Manchester, M60 1QD,

UK (ftisseur@ma.man.ac.uk, http://www.ma.man.ac.uk/∼ftisseur/). This author’s work was sup-
ported by Engineering and Physical Sciences Research Council grant GR/S31693.

1389

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1390 D. S. MACKEY, N. MACKEY, AND F. TISSEUR

We will assume that x �= 0 throughout, since both problems have trivial solutions if
x = 0.

Answers to some particular instances of these structured mapping problems can
be found in the literature. Liu and Leake [9, Lem. 1] show that for x, b ∈ R

n, x can be
mapped to b by a real skew-symmetric matrix if and only if x and b are orthogonal.
Khatri and Mitra [8] and later Sun [17] address the existence and characterization
problems for the matrix equation AX = B, where X, B are matrices and the unknown
A is Hermitian; the skew-Hermitian and complex symmetric cases are covered in [19].
Restricting the results of [8], [17], and [19] to the case when X and B are vectors
yields one among the many representations of the set S identified in this paper.
Structured mapping problems for double structures, for structures that do not arise
in the context of a scalar product, and for some specific nonlinear structures have also
been investigated (see [5], [6], [15], [18], and [22] for examples).

One of our motivations for studying these problems stems from the analysis of
structured backward errors in the solutions to structured linear systems and structured
eigenproblems [7], [19], [20]. Recall that a backward error of an approximate solution
y to a linear system Ax = b is a measure of the smallest perturbation E such that
(A+E)y = b. When A is in some linearly structured class S one may want to require
E to have the same structure; the structured backward error is then a measure of the
smallest structured perturbation E such that Ey = r := b − Ay. Hence solving the
structured mapping problem is the first step towards obtaining explicit expressions
for structured backward errors.

For any linear matrix structure S it is possible to obtain a characterization of
the structured mapping set S using the Kronecker product approach of [4], which we
briefly outline here. The equation Ax = b is first rewritten as (xT ⊗ In) vec(A) =
b, where ⊗ denotes the Kronecker product and vec is the operator that stacks the
columns of a matrix into one long vector. The linear nature of the matrix structure
is then encoded by vec(A) = ΠSp, where ΠS is an n2 × m pattern matrix giving
(in essence) a basis for the structured class S, and p is an m-dimensional vector of
parameters (m = dim S ≤ n2). Hence

S = {A ∈ K
n×n : (xT ⊗ In)ΠSp = b, vec(A) = ΠSp }.(1.2)

Note that there may be no solution to the system (xT ⊗ In)ΠSp = b if (xT ⊗ In)ΠS is
rank deficient or if the system is overdetermined (n > m). When they exist, solutions
can be obtained from the singular value decomposition of (xT⊗In)ΠS. In particular, if
the system is underdetermined and consistent, and if the pattern matrix ΠS is chosen
so that ‖p‖2 = ‖A‖F for all A ∈ S (i.e., ΠS contains an orthonormal basis for S in the
Frobenius inner product), then the solution A ∈ S with minimal Frobenius norm is

given in terms of the pseudoinverse by p =
(
(xT ⊗In)ΠS

)+
b. As a result a computable

expression for the structured backward error is obtained:

ηF (y) = min{ ‖E‖F : (A + E)y = b, E ∈ S } = ‖
(
(yT ⊗ In)ΠS

)+
(b−Ay)‖2.(1.3)

There are several disadvantages associated with this Kronecker product approach.
The existence of structured solutions to Ax = b may not be easy to check. In addition,
the set S of all structured mappings is given only implicitly by (1.2). Also, among
all solutions in S, it is difficult to distinguish ones with special properties, other than
that of minimal Frobenius norm. The structured backward error expression in (1.3)
is expensive to evaluate and difficult to compare with its unstructured counterpart
‖b−Ay‖2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED MAPPING PROBLEMS 1391

By contrast, the approach presented in this paper gives easy-to-check conditions
for the existence problem and an explicit solution for the characterization problem
when S is the Lie or Jordan algebra of a scalar product. The set S is rewritten as

S = B + {A ∈ S : Ax = 0 },(1.4)

where B is any particular solution of the nonhomogeneous mapping problem. We
provide a set of possible particular solutions B for a given class S and given vectors
x and b, thus giving multiple ways of representing S. This enables one to more easily
identify structured mappings with minimal rank or minimal Frobenius norm and to
readily derive bounds for the ratio between the structured and unstructured backward
errors. A multiplicative representation, by contrast with the additive representation
in (1.4), is used to characterize the set of all minimal 2-norm structured mappings
in S. From this characterization, minimal 2-norm mappings of minimal rank and
minimal 2-norm mappings of minimal Frobenius norm can be identified.

To give an idea of the scope of the paper, we give here an illustration of what
is obtained by applying our general results to a particular structure S, in this case
the Lie algebra of complex skew-symmetric matrices. For given x, b ∈ C

n our results
imply that

S := {A ∈ C
n×n : Ax = b, AT = −A } is nonempty ⇐⇒ xT b = 0 ,

and that

S = { bwT − wbT + (I − vxT)L(I − xvT) : L ∈ C
n×n, LT = −L } ,(1.5)

where w, v ∈ C
n are any fixed but arbitrary vectors chosen such that wTx = vTx = 1.

All mappings in S of the form bwT − wbT (corresponding to setting L = 0 in (1.5))
have minimal rank two, and the choice w = x̄/‖x‖2

2, L = 0 gives the unique mapping
Aopt of minimal Frobenius norm:

Aopt = (bx̄T − x̄bT)/‖x‖2
2 , ‖Aopt‖F = min

A∈S
‖A‖F =

√
2‖b‖2/‖x‖2 .(1.6)

The set M := { A ∈ S : ‖A‖2 = minB∈S ‖B‖2 } of all minimal 2-norm mappings can
be characterized by

M =
‖b‖2

‖x‖2

{
UTdiag

([
0
1
−1
0

]
, S
)
U : S ∈ C

(n−2)×(n−2), ST = −S, ‖S‖2 ≤ 1

}
,

where U∗[x b̄] = [‖x‖2e1 ‖b‖2e2]; i.e., U is the unitary factor of the QR factorization
of [x b̄] with R forced to have positive entries. For this structure S it turns out that
Aopt ∈ M, so Aopt is simultaneously a mapping of minimal rank, minimal Frobenius
norm, and minimal 2-norm. As a consequence of (1.6) an explicit formula for the
structured backward error in (1.3) for this class S is given for the Frobenius norm by

ηF (y) =
√

2
‖Ay − b‖2

‖y‖2
,

which is immediately seen to differ from its unstructured counterpart by a factor of
only

√
2. For the 2-norm the structured and unstructured backward errors are equal.

In summary, the results here generalize and unify existing work, answer a number
of open questions, and provide useful tools for the investigation of structured backward
errors. After some preliminaries in section 2, a complete solution to the existence and
characterization problems is presented in sections 3 and 4. In section 5 we identify
structured mappings of minimal rank, minimal Frobenius norm, and minimal 2-norm,
and investigate their uniqueness. Some technical proofs are given in the appendix.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1392 D. S. MACKEY, N. MACKEY, AND F. TISSEUR

2. Preliminaries.

2.1. Scalar products. A bilinear form on K
n (K = R,C) is a map (x, y) �→

〈x, y〉 from K
n × K

n to K, which is linear in each argument. If K = C, the map
(x, y) �→ 〈x, y〉 is a sesquilinear form if it is conjugate linear in the first argument and
linear in the second. To a bilinear form on K

n is associated a unique M ∈ K
n×n such

that 〈x, y〉 = xTMy for all x, y ∈ K
n; if the form is sesquilinear, 〈x, y〉 = x∗My for

all x, y ∈ C
n, where the superscript ∗ denotes the conjugate transpose. The form is

said to be nondegenerate when M is nonsingular.
A bilinear form is symmetric if 〈x, y〉 = 〈y, x〉 or, equivalently, if MT = M , and

skew-symmetric if 〈x, y〉 = −〈y, x〉 or, equivalently, if MT = −M . A sesquilinear form
is Hermitian if 〈x, y〉 = 〈y, x〉 and skew-Hermitian if 〈x, y〉 = −〈y, x〉. The matrices
associated with such forms are Hermitian and skew-Hermitian, respectively.

We will use the term scalar product to mean a nondegenerate bilinear or sesquilin-
ear form on K

n. When we have more than one scalar product under consideration,
we will denote 〈x, y〉 by 〈x, y〉M , using the matrix M defining the form as a subscript
to distinguish the forms under discussion.

2.2. Adjoints. The adjoint of A with respect to the scalar product 〈·, ·〉M ,
denoted by A�, is uniquely defined by the property 〈Ax, y〉

M
= 〈x,A�y〉

M
for all

x, y ∈ K
n. It can be shown that the adjoint is given explicitly by

A� =

{
M−1ATM for bilinear forms,

M−1A∗M for sesquilinear forms.

The following properties of adjoint, all analogous to properties of transpose (or con-
jugate transpose), follow easily and hold for all scalar products.

Lemma 2.1. (A + B)� = A� + B�, (AB)� = B�A�, (A−1)� = (A�)−1 and

(αA)� =

{
αA� for bilinear forms,

αA� for sesquilinear forms.

The involutory property (A�)� = A does not hold for all scalar products; this
issue is discussed in section 2.4.

2.3. Lie and Jordan algebras. Associated with 〈·, ·〉
M

is a Lie algebra L and
a Jordan algebra J, defined by

L :=
{
A ∈ K

n×n : 〈Ax, y〉
M

= −〈x,Ay〉
M

∀x, y ∈ K
n
}

=
{
A ∈ K

n×n : A� = −A
}
,

J :=
{
A ∈ K

n×n : 〈Ax, y〉M = 〈x,Ay〉M ∀x, y ∈ K
n
}

=
{
A ∈ K

n×n : A� = A
}
.

All the structured matrices considered in this paper belong to one of these two classes.
Note that L and J are linear subspaces of K

n×n. Table 2.1 shows a sample of well-
known structured matrices in some L or J associated with a scalar product.

2.4. Orthosymmetric and unitary scalar products. Scalar products for
which vector orthogonality is a symmetric relation, i.e.,

〈x, y〉
M

= 0 ⇔ 〈y, x〉
M

= 0 ∀x, y ∈ K
n,

will be referred to as orthosymmetric scalar products [12], [13]. One can show that
〈·, ·〉

M
is orthosymmetric if and only if it satisfies any one (and hence all) of the

following equivalent properties:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED MAPPING PROBLEMS 1393

Table 2.1

Structured matrices associated with some orthosymmetric scalar products.

R =

[
1

. .
.

1

]
, J =

[
0 In

−In 0

]
, Σp,q =

[
Ip 0
0 −Iq

]
with p + q = n.

Space M Adjoint Jordan algebra Lie algebra
A�

J = {A : A� = A} L = {A : A� = −A}

Symmetric bilinear forms

R
n I AT Symmetrics Skew-symmetrics

C
n I AT Complex symmetrics Complex skew-symmetrics

R
n Σp,q Σp,qAT Σp,q Pseudosymmetrics Pseudoskew-symmetrics

C
n Σp,q Σp,qAT Σp,q Complex pseudosymm. Complex pseudoskew-symm.

R
n R RATR Persymmetrics Perskew-symmetrics

Skew-symmetric bilinear forms

R
2n J −JAT J Skew-Hamiltonians Hamiltonians

C
2n J −JAT J Complex J-skew-symm. Complex J-symmetrics

Hermitian sesquilinear forms

C
n I A∗ Hermitian Skew-Hermitian

C
n Σp,q Σp,qA∗Σp,q Pseudo-Hermitian Pseudoskew-Hermitian

Skew-Hermitian sesquilinear forms

C
2n J −JA∗J J-skew-Hermitian J-Hermitian

1. The adjoint with respect to 〈·, ·〉
M

is involutory, i.e., (A�)� = A for all A ∈
K

n×n.
2. M = αMT with α = ±1 for bilinear forms; M = αM∗ with α ∈ C, |α| = 1

for sesquilinear forms.
3. K

n×n = L ⊕ J.
See [12, Thm. A.4] or [13, Thm. 1.6] for a proof of this equivalence along with a list
of additional equivalent properties. The second property says that orthosymmetric
bilinear forms are always either symmetric or skew-symmetric. On the other hand,
an orthosymmetric sesquilinear form 〈x, y〉

M = x∗My, where M = αM∗, |α| = 1,
α ∈ C, is always closely tied to a Hermitian form: defining the Hermitian matrix
H = ᾱ1/2 M gives 〈x, y〉H = ᾱ1/2 〈x, y〉M for all x, y ∈ C

n. Consequently, the Jordan
algebra of 〈·, ·〉H is identical to the Jordan algebra of 〈·, ·〉M :

〈Ax, y〉H = 〈x,Ay〉H ⇔ ᾱ1/2 〈Ax, y〉M = ᾱ1/2 〈x,Ay〉M ⇔ 〈Ax, y〉M = 〈x,Ay〉M .

Similarly, the Lie algebras of 〈·, ·〉H and 〈·, ·〉M are also identical. Thus a result estab-
lished for Hermitian sesquilinear forms immediately translates into a corresponding
result for orthosymmetric sesquilinear forms. Up to a scalar multiple, then, there are
really only three distinct types of orthosymmetric scalar products: symmetric bilinear,
skew-symmetric bilinear, and Hermitian sesquilinear. We will, however, continue to
include separately stated results (without separate proofs) for skew-Hermitian forms
for convenience, as this is a commonly occurring special case.

The results in this paper hold only for orthosymmetric scalar products, which as
just mentioned are those for which the useful and simplifying property (A�)� = A

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1394 D. S. MACKEY, N. MACKEY, AND F. TISSEUR

holds for all matrices [12], [13]. For these scalar products, adjoints of rank-one matrices
will often be needed,

(yzTM)� = zyTMT for orthosymmetric bilinear forms,

(yz∗M)� = zy∗M∗ for orthosymmetric sesquilinear forms.
(2.1)

Some of our results will require the extra property that the scalar product 〈·, ·〉
M

is also unitary, that is, βM is unitary for some β > 0 [12]. One can show that in
unitary scalar products, “the stars commute,” i.e., (A∗)� = (A�)∗ for all A ∈ K

n×n

and that for every unitarily invariant norm ‖ · ‖, ‖A�‖ = ‖A‖ for all A ∈ K
n×n [13,

Thm. 1.8]. Finally, note that important classes of structured matrices arise in the
context of scalar products that are both orthosymmetric and unitary, as witnessed by
the entries in Table 2.1 (for all of which α = ±1 and β = 1). The results in this paper
are not confined to just the examples in the table, however.

2.5. Projections. Projections that map x to the zero vector form a key part in
our solution to the structured mapping problems.

Since the matrix M of the scalar product is nonsingular, given a nonzero x ∈ K
n

one can always construct many w ∈ K
n such that 〈w, x〉M = 1. For example, when

x is nonisotropic (i.e., 〈x, x〉
M �= 0), w = x/〈x, x〉M will work for bilinear forms, and

w = x/〈x, x〉
M

can be used for sesquilinear forms. If x is isotropic (i.e., 〈x, x〉M = 0),

choose k so that xk �= 0; then w = M−T ek/xk will have the desired property for
bilinear forms, and w = M−∗ek/xk will work for sesquilinear forms.

With w chosen so that 〈w, x〉M = 1, it is easy to show that for bilinear forms,
xwTM is idempotent and hence a projection with range span{x}. Replacing T by
∗ gives a similar result for sesquilinear forms. The complementary projections Pw

defined by

Pw :=

{
I − xwTM, 〈w, x〉

M
= 1 for bilinear forms,

I − xw∗M, 〈w, x〉M = 1 for sesquilinear forms
(2.2)

have kernel span{x}, and in particular map x to the zero vector.

3. The existence problem. Throughout the rest of the paper we assume that
x, b ∈ K

n with x �= 0, but that any b is allowed unless otherwise stated. For a scalar
product 〈·, ·〉M we will denote by S the corresponding Jordan algebra J or Lie algebra
L and will write

S := {A ∈ S : Ax = b }, J := {A ∈ J : Ax = b }, L = {A ∈ L : Ax = b }(3.1)

for the associated structured mapping sets. Note that S = J when S = J and S = L
when S = L.

As a preliminary step towards solving the existence problem, we show that the
projections given in (2.2) can be used to construct maps that send x to b.

Lemma 3.1. Let x �= 0, and let w ∈ K
n be chosen so that 〈w, x〉M = 1 with 〈·, ·〉M

orthosymmetric. Then ±Bwx = b, where ±Bw is defined by

±Bw :=

{
bwTM ± (bwTM)�Pw for bilinear forms,

bw∗M ± (bw∗M)�Pw for sesquilinear forms.
(3.2)

Note that +Bw and −Bw have rank at most two.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED MAPPING PROBLEMS 1395

Proof. Since Pwx = 0 and 〈w, x〉
M

= 1, we immediately conclude ±Bwx = b.
Next, by (2.1) we see that in the bilinear case, (bwTM)�Pw = wbTMTPw, which is a
rank-one matrix, and hence +Bw, −Bw are the sum of two matrices of rank one. The
proof in the sesquilinear case is similar.

Thus, since +Bw, −Bw are always solutions to the unstructured mapping problem,
they should be consistent with (1.1), which captures all solutions. Now 〈w, x〉

M
= 1

implies wTMx = 1 in the bilinear case. Since any row vector uT with the property
uTx = 1 is a generalized inverse x† for the map x : R → R

n, we can take x† to be
wTM . Rewriting (3.2) for the bilinear case we get

±Bw = bx† ± wbTMT (I − xx†),(3.3)

which is of the form given by Trenkler in (1.1) with Z = ±wbTMT . The argument
for the sesquilinear case is similar, with the role of x† being played by w∗M . It is
worth observing that once the parameter wT is chosen, both x† and Z in (3.3) are
determined, and thus we are confining our attention to a constrained subset of the
maps given by (1.1).

We still have to determine when a structured mapping exists, and what role +Bw,
−Bw play in such a mapping. The next theorem characterizes pairs of vectors x, b for
which there exists A ∈ L or A ∈ J such that Ax = b. When a structured mapping
exists, we show that either −Bw or +Bw will be in the Lie or Jordan algebra, thus
yielding a constructive proof of existence.

Theorem 3.2 (existence for L, J). Let 〈·, ·〉M be an orthosymmetric scalar prod-
uct. Then for any given pair of vectors x, b ∈ K

n with x �= 0 and associated structured
mapping sets J and L in (3.1),

J �= ∅ ⇐⇒ 〈b, x〉M = 〈x, b〉M ,(3.4)

L �= ∅ ⇐⇒ 〈b, x〉
M = −〈x, b〉M .(3.5)

In particular, when 〈b, x〉M = 〈x, b〉M then +Bw ∈ J , and when 〈b, x〉M = −〈x, b〉M ,
−Bw ∈ L.

Proof. (⇒) Since Ax = b, in all cases we have

A ∈ J ⇒ 〈b, x〉M = 〈Ax, x〉
M

= 〈x,Ax〉
M

= 〈x, b〉
M
,

A ∈ L ⇒ 〈b, x〉
M

= 〈Ax, x〉
M

= 〈x,−Ax〉
M

= −〈x, b〉
M
.

(⇐) By Lemma 3.1 we know that +Bw, −Bw as defined in (3.2) map x to b. It
suffices to prove that when 〈b, x〉M = 〈x, b〉

M
, +Bw ∈ J, and when 〈b, x〉

M
= −〈x, b〉

M
,

−Bw ∈ L. Using Lemma 2.1 and the expressions for the adjoints given in (2.1), we
have for bilinear forms

±Bw = bwTM ± (bwTM)�(I − xwTM)

= bwTM ± (bwTM)� ∓ w(bTMTx)wTM

= bwTM ± (bwTM)� ∓ 〈x, b〉MwwTM,

and on the other hand,

±B�
w = (bwTM)� ± (I − wxTMT)bwTM

= (bwTM)� ± bwTM ∓ w(xTMT b)wTM

= (bwTM)� ± bwTM ∓ 〈b, x〉MwwTM.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1396 D. S. MACKEY, N. MACKEY, AND F. TISSEUR

If 〈b, x〉
M

= 〈x, b〉
M
, then clearly +Bw = +B�

w so that +Bw ∈ J. If 〈b, x〉
M

= −〈x, b〉
M
,

then −B�
w = (bwTM)�−bwTM−〈x, b〉MwwTM = −−Bw so that −Bw ∈ L. The proof

in the sesquilinear case is similar.

The existence conditions in (3.4)–(3.5) are made more explicit in Corollary 3.3
for the main types of orthosymmetric scalar products. Observe that sometimes a
condition on 〈b, x〉

M
is needed, while in other cases a structured mapping exists with

no restrictions at all on x and b.

Corollary 3.3. Let 〈·, ·〉M be any orthosymmetric scalar product for which

M =

{
±MT for bilinear forms,

±M∗ for sesquilinear forms.

Then for any given pair of vectors x, b ∈ K
n with x �= 0, let S denote either J or L

as in (3.1). Then S �= ∅ if and only if the conditions given in the following table hold:

Scalar product J �= ∅ L �= ∅

Symmetric bilinear always 〈b, x〉M = 0

Skew-symmetric bilinear 〈b, x〉M = 0 always

Hermitian sesquilinear 〈b, x〉M ∈ R 〈b, x〉M ∈ iR

Skew-Hermitian sesquilinear 〈b, x〉M ∈ iR 〈b, x〉M ∈ R

Proof. The conditions in the table follow from Theorem 3.2 and the definitions of
symmetric and skew-symmetric bilinear forms and of Hermitian and skew-Hermitian
sesquilinear forms.

Theorem 3.2 and Corollary 3.3 unify and generalize existence results in [9] for real
skew-symmetric matrices, in [8] and [17] for symmetric and Hermitian matrices, in
[19] for complex symmetric and skew-Hermitian structures, and in [16, Lem. 5.1] for
real persymmetric matrices, which are particular instances of Lie and Jordan algebras
associated with different bilinear and sesquilinear forms on R

n and C
n (see Table 2.1).

4. The characterization problem. We turn now to the task of determining
the set of all matrices that map x to b and belong to a Lie or Jordan algebra.

Lemma 4.1. Let S denote the Lie or Jordan algebra of any orthosymmetric scalar
product. Then

(a) A ∈ S ⇒ Q�AQ ∈ S for all Q; that is, �-congruence preserves L and J

structures;
(b) {P�

wSPw : S ∈ S} ⊆ {A ∈ S : Ax = 0}, where Pw is any particular one of the
projection matrices defined in (2.2);

(c) for any w ∈ K
n such that 〈w, x〉M = 1, A ∈ S, Ax = 0 =⇒ A = P�

wAPw.

Proof. (a) This is a direct consequence of adjoint being involutory in orthosym-
metric scalar products.

(b) Follows immediately from the fact that Pwx = 0, together with (a).

(c) For any bilinear form, A ∈ S =⇒ A = ±A� = ±M−1ATM =⇒ MA =
±ATM =⇒ xTMA = ±xTATM = ±(Ax)TM . But Ax = 0. Hence xTMA = 0.
From (2.2), we have Pw = I−xwTM . Hence APw = A−AxwTM = A, since Ax = 0.
Using (2.1) and xTMA = 0 we now obtain

P�
wAPw = P�

wA = (I − wxTMT)A = A,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED MAPPING PROBLEMS 1397

since for orthosymmetric bilinear forms MT = ±M . The proof for sesquilinear forms
follows along the same lines.

The complete solution to the homogeneous mapping problem can now be described.
Theorem 4.2 (characterization for J and L: homogeneous case). Let S denote

the Lie or Jordan algebra of any orthosymmetric scalar product space. Given x ∈ K
n

with x �= 0, and w ∈ K
n such that 〈w, x〉

M
= 1,

{A ∈ S : Ax = 0} = {P�
wSPw : S ∈ S}

where Pw is defined in (2.2).
Proof. The proof follows immediately by combining (b) and (c) of Lemma 4.1.
Corollary 4.3. If v, w ∈ K

n, with 〈v, x〉M = 〈w, x〉M = 1, then

{P�
v SPv : S ∈ S} = {P�

wSPw : S ∈ S}.

Thus we have several representations of the set of solutions to the homogeneous
mapping problem. Now if A, B ∈ S are such that Ax = Bx = b, then (A−B)x = 0.
By Theorem 4.2, A−B = P�

wSPw, or equivalently, A = B + P�
wSPw for some S ∈ S.

Hence,

{A ∈ S : Ax = b} = B + {A ∈ S : Ax = 0},(4.1)

where B is any particular solution of the nonhomogeneous mapping problem. By
combining Theorems 3.2 and 4.2 together with (4.1) we now have the complete solution
of the characterization part of the mapping problem for J and L.

Theorem 4.4 (characterization for J and L: nonhomogeneous case). Let J and
L be the Jordan and Lie algebras of any orthosymmetric scalar product on K

n. Let
x, b ∈ K

n with x �= 0 and let J and L be the structured mapping sets as in (3.1).
Choose any v, w ∈ K

n such that 〈v, x〉
M

= 〈w, x〉
M

= 1, and use v and w to define Pv,
±Bw as in (2.2) and (3.2), respectively. Consider the following sets:

J+ = {+Bw + P�
v SPv : S ∈ J}, L− = {−Bw + P�

v LPv : L ∈ L}.

Then

J =

{J+ if 〈x, b〉
M = 〈b, x〉M ,

∅ otherwise,
L =

{
L− if 〈x, b〉M = −〈b, x〉M ,

∅ otherwise.

A more general problem for Hermitian, and real symmetric matrices in particular,
was considered by Sun [17, Lem. 1.4]. For given matrices X,B ∈ K

n×�, Sun gave a
characterization of the set

H = {A ∈ K
n×n : A∗ = A and AX = B}

in terms of the pseudoinverse X+ of X, and the complementary orthogonal projections
ΠX = XX+ and ΠX⊥ = I −ΠX . He proved that H �= ∅ if and only if two conditions
are satisfied: BΠX∗ = B and ΠXBX+ is Hermitian. In this case H can be expressed
as

H = {BX+ + (BX+)∗ΠX⊥ + ΠX⊥SΠX⊥ : S∗ = S, S ∈ K
n×n}.(4.2)

When � = 1, writing X, B as x, b, respectively, we get Πx = xx∗/(x∗x), and x+ =
x∗/(x∗x). Since Πx∗ = 1, the conditions for H to be nonempty reduce to requiring that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1398 D. S. MACKEY, N. MACKEY, AND F. TISSEUR

Πxbx
+ be Hermitian. A simple calculation shows that this happens if and only if x∗b is

real, which is in agreement with the condition in Corollary 3.3. Sun’s characterization
of H becomes

H =

{
bx∗

x∗x
+

x∗b

x∗x
Πx + ΠxSΠx, S∗ = S

}
,

which corresponds to J+ in Theorem 4.4 with M = I and the special choice v =
w = x/(x∗x). This choice of w corresponds to using an orthogonal projection in the
representation for J+, since Pv is now I − xx∗/(x∗x). Thus Sun’s characterization is
one among many given by Theorem 4.4.

A similar analysis of the real symmetric case shows that the results of Corollary 3.3
and Theorem 4.4 are compatible with Sun’s solution for the case � = 1, and due to
the freedom in the choice of v and w, give a more flexible description of the set of real
symmetric matrices mapping x to b.

5. Structured mappings with extremal properties. Let J and L be the
sets of all structured solutions to the mapping problem as in (3.1). We now show how
to find matrices in J or L with the extremal properties of minimal rank, minimal
Frobenius norm, or minimal 2-norm, and we investigate their uniqueness.

5.1. Structured mappings of minimal rank. In what follows, we assume
b �= 0.

Theorem 5.1 (rank-one structured mappings). Let 〈·, ·〉
M be an orthosymmetric

scalar product, and let S denote either J or L as in (3.1). Assume b �= 0. A necessary
condition for the existence of a rank-one matrix in S is 〈b, x〉

M �= 0. Whenever this
rank-one matrix exists, it is unique and given by

A =

{
bbTM/〈b, x〉M for bilinear forms,

bb∗M/〈b, x〉M for sesquilinear forms.

Proof. Consider any rank-one matrix A = uvT such that Ax = b with b �= 0.
Since b ∈ range(A), u is a multiple of b, so without loss of generality we can take
u = b.

Now suppose the orthosymmetric scalar product is bilinear, so M = ±MT . Since
M is nonsingular, there exists z ∈ K

n such that vT = zTM , and so A = uvT = bzTM .
For A ∈ S we have A� = εA with ε = ±1. Hence by (2.1) we have ±zbTM = εbzTM
and so zbT = ±εbzT . Thus z = μb and A = μbbTM with μ a scalar. But Ax = b ⇒
μb(bTMx) = b ⇒ μ〈b, x〉M = 1, thus forcing 〈b, x〉M to be nonzero, and uniquely
determining A by A = bbTM/〈b, x〉M . Similar reasoning applies for the sesquilinear
case, leading to the formula A = bb∗M/〈b, x〉M .

Corollary 5.2. Let b �= 0. If 〈b, x〉M �= 0, then either S is empty or there is a
unique A ∈ S with rank(A) = 1.

Proof. When S �= ∅, we know from Theorem 3.2 that +Bw ∈ J and −Bw ∈ L for
any w such that 〈w, x〉M = 1. Since 〈b, x〉M �= 0, choose w = w∗ , where

w∗ :=

{
b/〈b, x〉M for bilinear forms,

b/〈b, x〉
M

for sesquilinear forms
(5.1)

so that 〈w∗ , x〉M = 1. Substituting this choice of w into the formulas for +Bw, −Bw

given in (3.2) yields the unique rank-one mapping specified in Theorem 5.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED MAPPING PROBLEMS 1399

Table 5.1

Rank-one structured mappings when 〈b, x〉M �= 0 with w∗ as in (5.1).

Scalar product J L

Symmetric bilinear +Bw∗ L is empty

Skew-symmetric bilinear J is empty −Bw∗

Hermitian +Bw∗ if 0 �= 〈b, x〉M ∈ R. −Bw∗ if 0 �= 〈b, x〉M ∈ iR.

sesquilinear Otherwise J is empty. Otherwise L is empty.

Skew-Hermitian +Bw∗ if 0 �= 〈b, x〉M ∈ iR. −Bw∗ if 0 �= 〈b, x〉M ∈ R.

sesquilinear Otherwise J is empty. Otherwise L is empty.

Particular cases of Corollary 5.2 are summarized in Table 5.1. The extra condi-
tions in the sesquilinear cases come from the results in Corollary 3.3.

For nonzero b we have seen that the condition 〈b, x〉M �= 0, while necessary for the
existence of structured rank-one mappings, is precisely the condition that precludes
the existence of any structured mappings in certain cases (see Theorem 3.2). On the
other hand, Theorem 3.2 also shows that structured mapping sets S are never empty
when the condition 〈b, x〉

M
= 0 is met. We turn to the question of determining what

the minimal achievable rank is in this case.
Theorem 5.3 (rank-two structured mappings). Let 〈·, ·〉M be an orthosymmetric

scalar product, and let S denote either J or L as in (3.1). Consider any nonzero x,
b ∈ K

n. If 〈b, x〉M = 0, then

min
A∈S

rank(A) = 2.

There are always infinitely many matrices in S attaining this minimal rank. Among
these are −Bw ∈ L and +Bw ∈ J , where −Bw, +Bw are given by (3.2), with any choice
of w ∈ K

n such that 〈w, x〉
M = 1.

Proof. If 〈b, x〉M = 0, then by Theorem 5.1, the minimum possible rank for
matrices in S is 2. We know +Bw, −Bw map x to b for all w ∈ K

n such that 〈w, x〉M = 1,
and from Theorem 3.2 it follows that +Bw ∈ J and −Bw ∈ L for all such w. Since +Bw,
−Bw are at most rank two, and since they cannot be rank one, they are structured
mappings of rank two.

5.2. Structured mappings of minimal Frobenius norm. Another impor-
tant special property is minimal norm, since this is directly related to structured
backward errors for linear systems and eigenvalue problems [19], [20] as well as to the
derivation of quasi-Newton methods [3]. We first consider minimal Frobenius norm;
the minimal 2-norm case will be treated in the next section. For real symmetric or
Hermitian matrices, it is well known [2], [3] that minimal Frobenius norm is achieved
by

Aopt =
bx∗ + xb∗

x∗x
− (b∗x)

(x∗x)2
xx∗.

We show how to generalize this result to all Lie and Jordan algebras associated with
scalar products that are both orthosymmetric and unitary. To prove the uniqueness
of the structured mapping of minimal Frobenius norm, we will need the next two
lemmas.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1400 D. S. MACKEY, N. MACKEY, AND F. TISSEUR

Lemma 5.4. In any real or complex inner product space, the associated norm ‖ ·‖
is strictly convex on independent vectors, that is,

‖tu + (1 − t)v‖ < t‖u‖ + (1 − t)‖v‖ , 0 < t < 1 ,

for any linearly independent u and v.
Proof. The Cauchy–Schwarz inequality implies that 〈u, v〉 + 〈v, u〉 < 2‖u‖‖v‖

for linearly independent u, v. A straightforward calculation then establishes the re-
sult.

Lemma 5.5. For b �= 0, the Frobenius norm is strictly convex on S (S = J ,L).
Proof. Assuming b �= 0, distinct A,B ∈ S are linearly independent. Since the

Frobenius norm arises from the inner product 〈A,B〉 = tr(A∗B), the result is imme-
diate from Lemma 5.4.

As Lemma 3.1 and Theorem 3.2 show, whenever the set of structured mappings
S is nonempty, we can construct a parametrized set of structured maps +Bw or −Bw

that take x to b. The next theorem shows how this latitude in the choice of the
parameter w ∈ K

n, 〈w, x〉
M

= 1, can be exploited to identify the unique map of
minimal Frobenius norm.

Theorem 5.6 (minimal Frobenius norm structured mapping). Let 〈·, ·〉
M be a

scalar product that is both orthosymmetric and unitary. Let S denote either J or L
as in (3.1). If S �= ∅, the problem

min
A∈S

‖A‖F

has a unique solution given by

Aopt =
bx∗

x∗x
+ ε

(
bx∗

x∗x

)�(
I − xx∗

x∗x

)
, ε =

{
1 if S = J ,

−1 if S = L.
(5.2)

Moreover,

‖Aopt‖2
F = 2

‖b‖2
2

‖x‖2
2

− β2 |〈b, x〉M |2
‖x‖4

2

,(5.3)

where β > 0 is such that βM is unitary.
Proof. Since S �= ∅, we know from Theorem 3.2 that +Bw ∈ J and −Bw ∈ L for

any w ∈ K
n such that 〈w, x〉M = 1. Choose w = w0 , where

w
0

=

{
M−Tx/(x∗x) for bilinear forms,

M−∗x/(x∗x) for sesquilinear forms.
(5.4)

Then 〈w0
, x〉

M
= 1, and the expressions for the structured maps ±Bw0

in (3.2) and
the projection Pw0 in (2.2) become

±Bw0 =
bx∗

x∗x
±
(
bx∗

x∗x

)�
Pw0 , Pw0 = I − xx∗

x∗x
.(5.5)

For brevity, let A
0 denote ±Bw0 , and let P0 denote the orthogonal projection Pw0 .

We now show that A0 is the unique map of minimal Frobenius norm in S.
Complete {x/‖x‖2} to an orthonormal basis {x/‖x‖2, u2, . . . , un} with respect

to the standard inner product on K
n. We first observe that for all A ∈ S,

‖Ax‖F = ‖b‖F = ‖A0x‖F .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED MAPPING PROBLEMS 1401

The characterization theorem, Theorem 4.4, with v = w = w0
tells us that any A ∈ S

can be written as A = A
0 + P�

0
SP0 for some S ∈ S. Premultiplying ui by A and

taking the norm yields

‖Aui‖2
2 = ‖A

0ui‖2
2 + ‖P�

0
SP

0
ui‖2

2 + 2 Re
(
(A

0
ui)

∗P�
0
SP

0
ui

)
, 2 ≤ i ≤ n.(5.6)

When 〈·, ·〉
M is unitary, the last term on the right-hand side of (5.6) always vanishes.

To see this, first consider the case when the form is bilinear. Since the stars commute
in a unitary scalar product and x∗ui = 0, i = 2:n, we have

(A
0
ui)

∗ = ±u∗
i

((
bx∗

x∗x

)�)∗

= ±u∗
i

(
xb∗

x∗x

)�
= ±

(
u∗
iM

−1b̄

x∗x

)
xTM =: αix

TM

and

(A
0ui)

∗P�
0
SP

0
ui = αix

TM

(
M−1

(
I − x̄xT

x∗x

)
M

)
Sui = αi(x

T − xT)MSui = 0.

Similarly, for sesquilinear forms, (A
0
ui)

∗ = αix
∗M with αi = ±(u∗

iM
−1b)/(x∗x) and

(A
0
ui)

∗P�
0
SP

0
ui = αix

∗M

(
M−1

(
I − xx∗

x∗x

)
M

)
Sui = αi(x

∗ − x∗)MSui = 0.

Therefore from (5.6), ‖Aui‖2 ≥ ‖A
0
ui‖2, 2 ≤ i ≤ n. Recall that the Frobenius norm

is unitarily invariant; since {x/‖x‖2, u2, . . . , un} forms an orthonormal basis for K
n,

‖A‖2
F =

‖Ax‖2
2

‖x‖2
2

+

n∑
i=2

‖Aui‖2
2 ≥ ‖A0

x‖2
2

‖x‖2
2

+

n∑
i=2

‖A0ui‖2
2 = ‖A0‖2

F ∀A ∈ S,

showing that A0 has minimal Frobenius norm.
It is well known that strictly convex functions have at most one minimizer [1,

p. 4]. Therefore Lemma 5.5 implies that A
0 is unique for b �= 0. When b = 0, A0 ≡ 0

is clearly unique. Thus Aopt, the unique structured map of minimal Frobenius norm,
is A0 , defined by (5.2).

Finally, for the Frobenius norm of Aopt we have

‖Aopt‖2
F =

(
‖bx∗‖2

F + ‖(bx∗)�P0‖2
F + 2εRe

(
tr[xb∗(bx∗)�P0]

))
/‖x‖4

2.(5.7)

Now P
0x = 0 implies

tr[xb∗(bx∗)�P
0
] = tr[P

0
xb∗(bx∗)�] = tr(0) = 0.(5.8)

Since P0 is an orthogonal projection, P 2
0

= P
0 = P ∗

0
. Hence

‖(bx∗)�P
0
‖2
F = tr

[
(bx∗)�P

0

(
(bx∗)�

)∗]
= ‖(bx∗)�‖2

F − ‖(bx∗)�x‖2
2/(x

∗x)

= ‖(bx∗)‖2
F − x∗(bb∗)�x.(5.9)

For the last equality we have used the fact that ‖X�‖F = ‖X‖F for any unitary scalar
product.1 Recall that βM is unitary for some β > 0. Thus M−1 = β2M∗ and

x∗(bb∗)�x = β2

{
x∗M∗b̄bTMx (bilinear forms)

x∗M∗bb∗Mx (sesquilinear forms)

}
= β2|〈b, x〉

M
|2.(5.10)

Now combining (5.8)–(5.10) into (5.7) gives the desired formula for ‖Aopt‖2
F .

1Surprisingly, this property characterizes unitary scalar products [13].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1402 D. S. MACKEY, N. MACKEY, AND F. TISSEUR

5.3. Structured mappings of minimal 2-norm. From Ax = b it is clear
that ‖b‖2/‖x‖2 is always a lower bound for ‖A‖2. For a large class of scalar products
Theorem 5.6 also yields an upper bound:

‖b‖2

‖x‖2
≤ min

A∈S
‖A‖2 ≤ min

A∈S
‖A‖F ≤

√
2
‖b‖2

‖x‖2
,(5.11)

where S denotes either J or L as in (3.1). In this section we show that the lower
bound is actually attained in any Lie or Jordan algebra of a scalar product that is
both orthosymmetric and unitary.

Unlike the structured mapping of minimal Frobenius norm, mappings of minimal
2-norm in S are almost never unique. For example, consider the Jordan algebra of
n× n symmetric matrices with n ≥ 3, and take x = e1 and b = e2 to be the first and
second columns of the identity matrix, respectively. Then all matrices of the form
A = diag

([
0
1

1
0

]
, S
)

with S symmetric and ‖S‖2 ≤ 1 satisfy AT = A, Ax = b and
have ‖A‖2 = ‖b‖2/‖x‖2 = 1. Indeed, this formula captures all symmetric matrices
mapping e1 to e2 that have minimal 2-norm. We develop similar characterizations
of the sets of structured mappings of minimal 2-norm for large classes of Lie and
Jordan algebras by reducing to the characterization problem for the following special
structures:

Sym(n,K) = {A ∈ K
n×n : AT = A},

Skew(n,K) = {A ∈ K
n×n : AT = −A},(5.12)

Herm(n,C) = {A ∈ C
n×n : A∗ = A}.

We will use the simplified notation Sym(K), etc., when the size of the matrices is clear
from the context. The technical details for these special structures can be found in
the appendix. Recall that for nonzero μ ∈ K,

sign(μ) := μ/|μ|.

Theorem 5.7 (minimal 2-norm structured mappings: general case). Let Sn

be the Lie algebra L or Jordan algebra J of a scalar product 〈·, ·〉M on K
n that is

both orthosymmetric and unitary, so that M · Sn is either Sym(n,K), Skew(n,K),
or γHerm(n,C) for some |γ| = 1. Also let x, b ∈ K

n \ {0} be vectors such that
S = {A ∈ Sn : Ax = b} is nonempty. Then

min
A∈S

‖A‖2 =
‖b‖2

‖x‖2
.

Furthermore, with M :=
{
A ∈ S : ‖A‖2 = ‖b‖2/‖x‖2

}
, there exists a unitary matrix

U such that

M =

{
‖b‖2

‖x‖2
U�(βM)−1

[
R 0
0 S

]
U : S ∈ S̃n−r, ‖S‖2 ≤ 1

}
,(5.13)

where β > 0 is a real constant such that βM is unitary and � denotes the adjoint of
the scalar product 〈·, ·〉

M . The number r, the structured class S̃n−r, and R ∈ K
r×r are

given in each case by the following:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED MAPPING PROBLEMS 1403

(i) M ·Sn = Sym(n,K): r = 1 (r = 2) if x and Mb are linearly dependent (inde-

pendent), S̃n−r = Sym(n− r,K), and

R =

{
sign(μ) if βMb = μx for some μ ∈ K,[
1
0

0
−1

]
otherwise.

(ii) M · Sn = Skew(n,K) : r = 2, S̃n−r = Skew(n− 2,K), and R =
[
0
1
−1
0

]
.

(iii) M · Sn = γHerm(n,C) for some |γ| = 1: r = 1 (r = 2) if x and Mb are

linearly dependent (independent), S̃n−r = γHerm(n− r,C), and

R =

{
γ sign(μ) if γ−1βMb = μx for some μ ∈ R,

γ
[
1
0

0
−1

]
otherwise.

The matrix U can be taken as the product of at most two unitary Householder reflec-
tors; when K = R, U is real orthogonal.

Proof. For orthosymmetric 〈·, ·〉
M

it is shown in [12, Thm. 8.4] that left multi-
plication by the matrix M defining the scalar product is a bijection from K

n×n to
K

n×n that maps L and J to Skew(K) and Sym(K) for bilinear forms, and to unit
scalar multiples of Herm(C) for sesquilinear forms. Furthermore βM being unitary
implies that the map S �−→ βM · S is a 2-norm-preserving bijection. For bilinear
forms, the equivalence of the equations Ax = b and Ãx := (βMA)x = (βMb) =: b̃
thus reduces the structured mapping problem for S = {A ∈ Sn : Ax = b} in a 2-

norm-preserving way to the structured mapping problem for finding Ã in Skew(n,K)

or Sym(n,K) such that Ãx = b̃. Similarly for sesquilinear forms, the equivalence of

Ax = b and Ãx := (γ−1βMA)x = (γ−1βMb) =: b̃ gives a 2-norm-preserving reduc-

tion of the structured mapping problem for S to that of finding Ã in Herm(n,C) such

that Ãx = b̃.
The value of minA∈S ‖A‖2 and the formula for M in (5.13) now follow by applying

Theorem A.2 to the minimal 2-norm structured mapping problem for Ãx = b̃, and
then using the correspondence between Ã and A.

Note the structure of formula (5.13) and how it automatically produces matrices

in Sn. In all cases, ‖b‖2

‖x‖2
(βM)−1 diag(R,S) is in Sn, since the scalar product is or-

thosymmetric and ‖b‖2/‖x‖2 and β are real. Lemma 4.1(a) shows that �-congruence

preserves L and J structure, so U� ‖b‖2

‖x‖2
(βM)−1 diag(R,S)U is again in Sn.

5.4. Comparison of the various “minimal” structured mappings. We
conclude section 5 by exploring the relationships between the three types of extremal
mappings—minimal rank, Frobenius norm, and 2-norm—under the assumption that
the scalar product 〈·, ·〉

M
is both unitary and orthosymmetric.

In general the minimal Frobenius norm solution Aopt differs from the minimal
rank solution. The latter is usually rank one, whereas Aopt is generally rank two.
From (5.2) we see that Aopt is rank one if and only if M−1x̄ ∈ span{b} for bilinear
forms or M−1x ∈ span{b} for sesquilinear forms.

For structured mappings of the minimal 2-norm, the following corollary of The-
orem 5.7 singles out the unique matrix of minimal rank as well as that of minimal
Frobenius norm.

Corollary 5.8. Under the hypotheses of Theorem 5.7, let M denote the set of
all minimal 2-norm mappings in S = {A ∈ S : Ax = b}. Assume further that x, b are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1404 D. S. MACKEY, N. MACKEY, AND F. TISSEUR

vectors such that S is nonempty. Consider the particular mapping

A2 :=
‖b‖2

‖x‖2
U�(βM)−1

[
R 0
0 0

]
U ∈ M ,(5.14)

obtained by setting S equal to 0 in (5.13). Then A2 is the unique solution of both
the minimal rank problem minA∈M rank(A) and the minimal Frobenius norm problem
minA∈M ‖A‖F . Moreover, either

(1) A2 has rank one and ‖A2‖F = ‖b‖2/‖x‖2, or
(2) A2 has rank two and ‖A2‖F =

√
2‖b‖2/‖x‖2.

Case (1) occurs when x and Mb (x and Mb) are linearly dependent and the scalar
product is bilinear (sesquilinear). (Note that if M · S = Skew(n,K), then this linear
dependence implies that S is empty.) Otherwise case (2) holds.

Are there any conditions under which there is a structured mapping in S that
simultaneously has all three extremal properties? The next result provides a complete
answer to this question.

Theorem 5.9. Let S be the Lie or Jordan algebra of a scalar product 〈·, ·〉
M that

is both unitary and orthosymmetric. Assume that x, b ∈ K
n \ {0} are vectors such

that S = {A ∈ S : Ax = b} is nonempty and A2 is the matrix defined (5.14). Then
the unique minimal Frobenius norm mapping Aopt ∈ S has both minimal 2-norm and
minimal rank in S if and only if the pair of vectors (x, b) satisfies either property (a)
or property (b) below.

(a) M−1x̄ ∈ span{b} for bilinear forms or M−1x ∈ span{b} for sesquilinear
forms. In this case

Aopt = A2 =

{
bbTM/〈b, x〉M for bilinear forms,

bb∗M/〈b, x〉
M

for sesquilinear forms

is the unique rank-one mapping in S.
(b) 〈b, x〉M = 0. In this case

Aopt = A2 =
bx∗

x∗x
+ ε

(
bx∗

x∗x

)�
, ε =

{
1 if S = J,

−1 if S = L,

is the unique rank-two mapping in M = {A ∈ S : ‖A‖2 = minB∈S ‖B‖2}.
Proof. (⇒) Aopt having minimal 2-norm in S means that Aopt ∈ M, with minimal

Frobenius norm in M; thus Aopt = A2 by Corollary 5.8. But A2 is either rank one
or rank two. A2 with rank one means Aopt has rank one, and therefore property (a)
holds by the remarks preceding the corollary. On the other hand A2 with rank two
implies ‖Aopt‖F = ‖A2‖F =

√
2 ‖b‖2/‖x‖2, which by (5.3) implies that property (b)

holds.
(⇐) Property (a) implies that Aopt is rank one by the remarks preceding the

corollary. But property (a) is equivalent to the linear dependence of x and Mb (x
and Mb) for bilinear (sesquilinear) forms, which are precisely the conditions in Corol-
lary 5.8 which guarantee that A2 is rank one. The uniqueness of rank-one mappings in
S from Theorem 5.1 now implies that Aopt = A2 has all three minimality properties.

Property (b) implies that ‖Aopt‖F =
√

2 ‖b‖2/‖x‖2 by (5.3), and that the min-
imal rank in S is two by Theorem 5.3. By Corollary 5.8 we know that ‖A2‖F ≤√

2 ‖b‖2/‖x‖2, so the uniqueness of minimal Frobenius norm mappings implies that
Aopt = A2. This map has minimal rank two by case (2) of Corollary 5.8.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED MAPPING PROBLEMS 1405

6. Concluding remarks. In this paper we have presented complete, unified,
and explicit solutions of the existence and characterization problems for structured
mappings coming from Lie and Jordan algebras associated with orthosymmetric scalar
products. In addition, in the set {A ∈ S : Ax = b } we have identified and character-
ized the structured mappings of minimal rank, minimal Frobenius norm, and minimal
2-norm. These results have already found application in the analysis of structured
condition numbers and backward errors [7], [20], and constitute the first step towards
characterizing the set {A ∈ S : AX = B }, where X and B are given matrices.

In part II of this paper [14] we consider the same structured mapping problems
for a third class of structured matrices S associated with a scalar product: the auto-
morphism group G defined by

G =
{
A ∈ K

n×n : 〈Ax,Ay〉
M

= 〈x, y〉
M

∀x, y ∈ K
n
}

=
{
A ∈ K

n×n : A� = A−1
}
.

Unlike the corresponding Lie and Jordan algebras, the group G is a nonlinear subset
of K

n×n; hence different (and somewhat more elaborate) techniques are needed to
solve the structured mapping problems for G. There are, however, some ways in
which the results for groups G are actually simpler than the ones developed in this
paper for L and J. Consider, for example, the solution of the existence problem given
in [14]: for any orthosymmetric scalar product 〈·, ·〉

M , there exists A ∈ G such that
Ax = b if and only if 〈x, x〉

M
= 〈b, b〉

M
. A clean, unified, and simply stated result.

Examples of groups G covered by this theorem include the orthogonal, symplectic,
and pseudounitary groups. Two types of characterization of the set {A ∈ G : Ax = b}
are also given in [14], both of which are expected to be useful in structured backward
error investigations.

Appendix. Structured mappings of minimal 2-norm for symmetric,
skew-symmetric, and Hermitian structures. Our goal in this appendix is to
characterize the complete set of all minimal 2-norm mappings for each of the five
key structures in (5.12). For example, for real symmetric matrices it is already well
known that A = (‖b‖2/‖x‖2)H, where H is a Householder reflector mapping x/‖x‖2

to b/‖b‖2, provides a minimal 2-norm solution. However, the set of all minimal 2-norm
symmetric matrices taking x to b has not previously been explicitly described.

First we consider the 2 × 2 case for a special type of (x, b) vector pair and for
symmetric and Hermitian structures.

Lemma A.1. Let S be either Sym(2,K) or Herm(2,C) and let

S =

{
A ∈ S : A

[
α
β

]
=

[
α
−β

]}
,

where α, β ∈ C with Re(α) �= 0 and β �= 0 when S = Sym(2,C), and α, β ∈ R \ {0}
otherwise. Then

min
A∈S

‖A‖2 = 1 ,

with A =
[
1
0

0
−1

]
being the unique matrix in S of minimal 2-norm.

Proof. Note that from (5.11) any A ∈ S satisfies ‖A‖2 ≥ 1, and since
[
1
0

0
−1

]
∈ S

has unit 2-norm we have minA∈S ‖A‖2 = 1. The rest of the proof consists of showing
that

[
1
0

0
−1

]
is the unique minimizer of the 2-norm for S.

We start by parameterizing S using (4.1):

S =

[
1 0
0 −1

]
+

{
A ∈ S : A

[
α
β

]
=

[
0
0

]}
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1406 D. S. MACKEY, N. MACKEY, AND F. TISSEUR

where
[
1
0

0
−1

]
is a particular mapping in S. Any A ∈ Sym(2,K) has the form

[
a
z
z
c

]
with a, c, z ∈ K, so A

[
α
β

]
=
[
0
0

]
implies

[
a
z
z
c

]
= z

[−β/α
1

1
−α/β

]
. Similarly any A ∈

Herm(2,C) has the form
[
a
z̄
z
c

]
with a, c ∈ R; then α, β ∈ R together with A

[
α
β

]
=
[
0
0

]
implies that z ∈ R, and so A can once again be expressed in the form z

[−β/α
1

1
−α/β

]
.

Hence writing

P (z) =

[
1 0
0 −1

]
+ z

[−β
α 1

1 −α
β

]
=

[
1 − β

αz z

z −1 − α
β z

]
,

we have S = {P (z) : z ∈ K} if S = Sym(2,K), and S = {P (z) : z ∈ R} when
S = Herm(2,C) and α, β ∈ R.

We can now calculate the 2-norm of P (z) by computing the largest eigenvalue of

P ∗P (z) =

⎡⎣ 1 −
(
β
ᾱ z̄ + β

αz
)

+
(
1 + β2

|α|2
)
|z|2 (z − z̄) − γ|z|2

(z̄ − z) − γ̄|z|2 1 +
(
ᾱ
β z̄ + α

β z
)

+
(
1 + |α|2

β2

)
|z|2

⎤⎦ ,

where γ := (α/β) + (β/α). Much calculation and simplification yields

trP ∗P (z) = 2 + 2q(z), detP ∗P (z) = 1 + 2q(z) − 2
(
1 + Re

α2

|α|2
)
|z|2,

where q(z) := Re
[
(αβ − β

α)z
]
+ |γ|2|z|2/2 ∈ R. Since the characteristic polynomial of

P ∗P (z) is λ2 − trP ∗P (z)λ + detP ∗P (z), we get

λ±(z) =
1

2

(
trP ∗P (z) ±

√(
trP ∗P (z)

)2

− 4 detP ∗P (z)

)

= 1 + q(z) ±

√
q(z)2 + 2

(
1 + Re

α2

|α|2
)
|z|2 .

Since q(z) ∈ R, clearly the largest eigenvalue of P ∗P (z) is λ+(z). But the hypothesis

Re(α) �= 0 means that Re α2

|α|2 > −1, so the second term under the square root

is strictly bigger than 0 for all nonzero z. Hence λ+(z) satisfies λ+(0) = 1 and
λ+(z) > 1 for all nonzero z. Thus z = 0 is the unique minimizer of λ+(z), and hence
P (0) =

[
1
0

0
−1

]
is the unique minimizer of the 2-norm for S.

We are now in a position to give a complete description of the set of all minimal
2-norm structured mappings for symmetric, skew-symmetric, and Hermitian matrices.

Theorem A.2 (minimal 2-norm structured mappings: special cases). Let Sn be
either Sym(n,K), Skew(n,K), or Herm(n,C), and let x, b ∈ K

n \ {0} be vectors such
that S = {A ∈ Sn : Ax = b} is nonempty. Then

min
A∈S

‖A‖2 =
‖b‖2

‖x‖2
.

Furthermore with M :=
{
A ∈ S : ‖A‖2 = ‖b‖2/‖x‖2

}
, there exists an n × n unitary

matrix U such that

M =

{
‖b‖2

‖x‖2
U� diag(R,S)U : S ∈ Sn−r, ‖S‖2 ≤ 1

}
,

where the adjoint �, the number r, and R ∈ Sr are given by the following:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED MAPPING PROBLEMS 1407

(i) Sn = Sym(n,K) : � = T and r = 1 (r = 2) if x and b are linearly dependent
(independent), with

R =

{
sign(μ) if b = μx for some μ ∈ K,[
1
0

0
−1

]
otherwise.

(ii) Sn = Skew(n,K) : � = T and r = 2, with R =
[
0
1
−1
0

]
.

(iii) Sn = Herm(n,C) : � = ∗ and r = 1 (r = 2) if x and b are linearly dependent
(independent), with

R =

{
sign(μ) if b = μx for some μ ∈ R,[
1
0

0
−1

]
otherwise.

The matrix U can be taken as the product of at most two unitary2 Householder reflec-
tors; when K = R, U is real orthogonal.

Proof. For any A ∈ Sn such that Ax = b, observe that the matrix B = ‖x‖2

‖b‖2
A is

also in Sn and maps x
‖x‖2

to b
‖b‖2

; also note that b = μx (resp., b = μx) in the theorem

is equivalent to b
‖b‖2

= sign(μ) x
‖x‖2

(
resp., b

‖b‖2
= sign(μ) x

‖x‖2

)
. Thus it suffices to

prove the theorem for x, b ∈ K
n with ‖x‖2 = ‖b‖2 = 1 and the condition b = μx (resp.,

b = μx) replaced by b = sign(μ)x
(
resp., b = sign(μ)x

)
; we make these assumptions

throughout the rest of the argument.

The proof proceeds by first developing a unitary U and accompanying R for each
of the five structures in (5.12). Then these U and R matrices are used to build explicit
families of matrices in the structured mapping set S that realize the lower bound in
(5.11), and thus are of minimal 2-norm. Finally we show that for each structure these
families account for all of M.

We begin by constructing for each case of the theorem a unitary matrix U such
that

Ux =

[
y
0

]
, (U�)−1b =

[
c
0

]
,(A.1)

with y, c ∈ K
r satisfying Ry = c, where R ∈ Sr is as defined in the theorem.

(i) First, suppose that Sn = Sym(n,K). If b = sign(μ)x for some μ ∈ K, then
let U be the unitary Householder reflector mapping x to e1, so that y = 1. Then
(U�)−1b = Ub = sign(μ)e1, so c = sign(μ). Clearly with R := sign(μ) ∈ S1 we have
Ry = c.

When x and b are linearly independent then U can be taken as the product of
two unitary Householder reflectors, U = H2H1. The first reflector H1 takes x + b
to ±‖x + b ‖2e1; with H1x =

[
α
v

]
and H1b =

[
γ
w

]
we see that w = −v with v �= 0

because of the linear independence of x and b, and α+γ = ±‖x+b ‖2 ∈ R\{0}. Then
‖x‖2 = ‖ b ‖2 ⇒ ‖H1x‖2 = ‖H1b ‖2 ⇒ |α| = |γ|, which together with α+γ ∈ R implies

that γ = α, and hence H1b =
[

α
−v

]
. Note also that 2 Reα = α+ α = ±‖x+ b̄ ‖2 �= 0.

For the second reflector pick H2 =
[
1
0

0
H̃2

]
so that H̃2v = βe1 with β = ±‖v‖2 �= 0.

2But not necessarily Hermitian; see [11].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1408 D. S. MACKEY, N. MACKEY, AND F. TISSEUR

Hence

U
[
x b

]
=

⎡⎢⎢⎢⎢⎣
α α
β −β
0 0
...

...
0 0

⎤⎥⎥⎥⎥⎦ , Reα �= 0, 0 �= β ∈ R ,(A.2)

and therefore y =
[
α
β

]
and c =

[
α

−β

]
satisfy Ry = c with R =

[
1
0

0
−1

]
∈ S2. Note that

U can be taken to be real orthogonal when K = R.
(ii) For Sn = Skew(n,K), Theorem 3.2 says that S is nonempty if and only if

bTx = 0. In this situation U can be taken as the product of two unitary House-
holder reflectors, U = H2H1. The first reflector H1 is defined to take x to e1 ;
then H1b =

[
α
v

]
for some v ∈ K

n−1. The fact that bTx = 0 implies α = 0, since
bTx = [α v∗]H1H

∗
1 e1 = α. For the second reflector pick H2 =

[
1
0

0
H̃2

]
so that

H̃2v = e1 ∈ K
n−1. Then U [x b] = [e1 e2] ∈ K

n×2, giving y =
[
1
0

]
and c =

[
0
1

]
in

K
2 satisfying Ry = c for R =

[
0
1
−1
0

]
∈ S2. Note once again that U can be taken to

be real orthogonal when K = R.
(iii) Finally suppose that Sn = Herm(n,C). Theorem 3.2 says that S is nonempty

if and only if b∗x ∈ R. If x and b are linearly dependent, then b = sign(μ)x for some
μ ∈ C, and b∗x ∈ R implies that μ ∈ R. In this case U can be taken as the unitary
Householder reflector mapping x to e1 so that (U�)−1b = Ub = sign(μ)e1 since μ is
real. Hence [y c] = [1 sign(μ)] and Ry = c with R = sign(μ) ∈ S1.

On the other hand if x and b are linearly independent, then U can be taken as
the product of two unitary Householder reflectors U = H2H1 in a manner analogous
to that described above in (i) for Sym(n,K); the only difference is that H1 now
takes x + b to ±‖x + b‖2e1. In this case (A.2) holds with b̄ replaced by b. Also
b∗x = (H1b)

∗(H1x) = α2 − v∗v ∈ R so that α2 ∈ R. This together with Reα �= 0
implies that α ∈ R. Hence we have y =

[
α
β

]
and c =

[
α

−β

]
with α, β ∈ R \ {0},

satisfying Ry = c with R =
[
1
0

0
−1

]
∈ S2.

Using the unitary U and R ∈ Sr constructed above for each Sn, we can now
show that the lower bound 1 = ‖b‖2/‖x‖2 ≤ minA∈S ‖A‖2 from (5.11) is actually
attained by a whole family of A ∈ S. For any S ∈ Sn−r with ‖S‖2 ≤ 1, consider
A = U� diag(R,S)U . Then A ∈ Sn, since Sn is preserved by any �-congruence (see
Lemma 4.1(a)) and diag(R,S) ∈ Sn. Also Ax = b because of the properties of U in
(A.1), and ‖A‖2 = ‖diag(R,S)‖2 = ‖R‖2 = 1. Thus{

U� diag(R,S)U : S ∈ Sn−r , ‖S‖2 ≤ 1
}
⊆ M .

Finally, we complete the characterization of M by showing that this contain-
ment is actually an equality. Consider an arbitrary A ∈ M. Then Ax = b ⇒
((U�)−1AU−1)(Ux) = (U�)−1b, so the matrix B := (U�)−1AU−1 = (U−1)�AU−1 is
in Sn and maps the vector Ux =

[
y
0

]
to (U�)−1b =

[
c
0

]
. Let B11 ∈ Sr be the leading

principal r × r submatrix of B, so ‖B11‖2 ≤ ‖B‖2 = ‖A‖2 = 1. The form of the
two vectors

[
y
0

]
and

[
c
0

]
implies that B11 maps y to c ; since ‖y‖2 = ‖c‖2 = 1 we

have ‖B11‖2 ≥ 1, and hence ‖B11‖2 = 1. Using Lemma A.1 we can now show that
B11 = R in all cases.

(i) Suppose Sn = Sym(n,K) and B11 ∈ Sr. Then b = sign(μ)x for some μ ∈ K

implies [y c] = [1 sign(μ)], so B11y = c implies B11 = sign(μ) = R. On the other

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRUCTURED MAPPING PROBLEMS 1409

hand if b and x are linearly independent, then [y c] =
[
α
β

α
−β

]
with Re(α) �= 0 and 0 �=

β ∈ R. Since B11y = c with ‖B11‖2 = 1, Lemma A.1 implies that B11 =
[
1
0

0
−1

]
= R.

(ii) B11 ∈ Skew(2,K) must have the form
[

0
σ

−σ
0

]
for some σ ∈ K. So B11y = c

with y = e1 and c = e2 implies σ = 1, and hence B11 =
[
0
1
−1
0

]
= R.

(iii) Finally consider Sn = Herm(n,C) and B11 ∈ Sr. If b = sign(μ)x for some
μ ∈ R, then [y c] = [1 sign(μ)], so B11y = c implies B11 = sign(μ) = R. If b and x
are linearly independent, then [y c] =

[
α
β

α
−β

]
with α, β both real and nonzero. Since

B11y = c with ‖B11‖2 = 1, Lemma A.1 implies that B11 =
[
1
0

0
−1

]
= R.

The condition ‖B‖2 = 1 now forces the rest of the first r columns of B to be all
zeros; since B ∈ Sn, the rest of the first r rows of B must also be all zeros. Thus B has
the form B = diag(R,S), with S ∈ Sn−r. Finally, ‖B‖2 = 1 and ‖R‖2 = 1 implies that
‖S‖2 ≤ 1. Thus we have B := (U�)−1AU−1 = diag(R,S), so A = U� diag(R,S)U
and hence M ⊆

{
U� diag(R,S)U : S ∈ Sn−r , ‖S‖2 ≤ 1

}
.

Note that when Sn is the class of real symmetric matrices and if x, y ∈ R
n are

linearly independent, then choosing S = In in Theorem A.2 yields the Householder
reflector I − 2UT e2e

T
2 U mapping x to b.

REFERENCES

[1] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization. Theory and
Examples, Springer-Verlag, New York, 2000.

[2] J. R. Bunch, J. W. Demmel, and C. F. Van Loan, The strong stability of algorithms for
solving symmetric linear systems, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 494–499.

[3] J. E. Dennis, Jr. and J. J. Moré, Quasi-Newton methods, motivation and theory, SIAM Rev.,
19 (1977), pp. 46–89.

[4] D. J. Higham and N. J. Higham, Backward error and condition of structured linear systems,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 162–175.

[5] R. A. Horn, V. V. Sergeichuk, and N. Shaked-Monderer, Solution of linear matrix equa-
tions in a *congruence class, Electron. J. Linear Algebra, 13 (2005), pp. 153–156.

[6] C. R. Johnson and R. L. Smith, Linear interpolation problems for matrix classes and a trans-
formational characterization of M-matrices, Linear Algebra Appl., 330 (2001), pp. 43–48.

[7] M. Karow, D. Kressner, and F. Tisseur, Structured eigenvalue condition numbers, SIAM
J. Matrix Anal. Appl., 28 (2006), pp. 1052–1068.

[8] C. G. Khatri and S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix
equations, SIAM J. Appl. Math., 31 (1976), pp. 579–585.

[9] R.-W. Liu and R. J. Leake, Exhaustive equivalence classes of optimal systems with separable
controls, SIAM J. Control, 4 (1966), pp. 678–685.

[10] M. Machover, Matrices which take a given vector into a given vector, Amer. Math. Monthly,
74 (1967), pp. 851–852.

[11] D. S. Mackey, N. Mackey, and F. Tisseur, G-reflectors: Analogues of Householder trans-
formations in scalar product spaces, Linear Algebra Appl., 385 (2004), pp. 187–213.

[12] D. S. Mackey, N. Mackey, and F. Tisseur, Structured factorizations in scalar product spaces,
SIAM J. Matrix Anal. Appl., 27 (2006), pp. 821–850.

[13] D. S. Mackey, N. Mackey, and F. Tisseur, On the Definition of Two Natural Classes of
Scalar Product, MIMS EPrint 2007.64, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, 2007.

[14] D. S. Mackey, N. Mackey, and F. Tisseur, Structured Mapping Problems for Matrices As-
sociated with Scalar Products, Part II: Automorphism Groups, MIMS EPrint, Manchester
Institute for Mathematical Sciences, The University of Manchester, UK, in preparation.

[15] A. Pinkus, Interpolation by matrices, Electron. J. Linear Algebra, 11 (2004), pp. 281–291.
[16] S. M. Rump, Structured perturbations part I: Normwise distances, SIAM J. Matrix Anal. Appl.,

25 (2003), pp. 1–30.
[17] J. Sun, Backward perturbation analysis of certain characteristic subspaces, Numer. Math., 65

(1993), pp. 357–382.
[18] J. Sun, Backward Errors for the Unitary Eigenproblem, Tech. report UMINF-97.25, Depart-

ment of Computing Science, University of Ume̊a, Ume̊a, Sweden, 1997.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1410 D. S. MACKEY, N. MACKEY, AND F. TISSEUR

[19] F. Tisseur, A chart of backward errors for singly and doubly structured eigenvalue problems,
SIAM J. Matrix Anal. Appl., 24 (2003), pp. 877–897.

[20] F. Tisseur and S. Graillat, Structured condition numbers and backward errors in scalar
product spaces, Electron. J. Linear Algebra, 15 (2006), pp. 159–177.

[21] G. Trenkler, Matrices which take a given vector into a given vector—revisited, Amer. Math.
Monthly, 111 (2004), pp. 50–52.

[22] Z.-Z. Zhang, X.-Y. Hu, and L. Zhang, On the Hermitian-generalized Hamiltonian solutions
of linear matrix equations, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 294–303.

	SJMAEL_V29_i1_p0001.pdf
	SJMAEL_V29_i1_p0015.pdf
	SJMAEL_V29_i1_p0033.pdf
	SJMAEL_V29_i1_p0054.pdf
	SJMAEL_V29_i1_p0067.pdf
	SJMAEL_V29_i1_p0082.pdf
	SJMAEL_V29_i1_p0098.pdf
	SJMAEL_V29_i1_p0117.pdf
	SJMAEL_V29_i1_p0143.pdf
	SJMAEL_V29_i1_p0160.pdf
	SJMAEL_V29_i1_p0177.pdf
	SJMAEL_V29_i1_p0184.pdf
	SJMAEL_V29_i1_p0199.pdf
	SJMAEL_V29_i1_p0228.pdf
	SJMAEL_V29_i1_p0245.pdf
	SJMAEL_V29_i1_p0260.pdf
	SJMAEL_V29_i1_p0279.pdf
	SJMAEL_V29_i1_p0302.pdf
	SJMAEL_V29_i1_p0328.pdf
	SJMAEL_V29_i2_p0349.pdf
	SJMAEL_V29_i2_p0370.pdf
	SJMAEL_V29_i2_p0377.pdf
	SJMAEL_V29_i2_p0396.pdf
	SJMAEL_V29_i2_p0413.pdf
	SJMAEL_V29_i2_p0434.pdf
	SJMAEL_V29_i2_p0455.pdf
	SJMAEL_V29_i2_p0473.pdf
	SJMAEL_V29_i2_p0496.pdf
	SJMAEL_V29_i2_p0530.pdf
	SJMAEL_V29_i2_p0554.pdf
	SJMAEL_V29_i2_p0566.pdf
	SJMAEL_V29_i2_p0586.pdf
	SJMAEL_V29_i2_p0596.pdf
	SJMAEL_V29_i2_p0606.pdf
	SJMAEL_V29_i2_p0626.pdf
	SJMAEL_V29_i2_p0643.pdf
	SJMAEL_V29_i2_p0656.pdf
	SJMAEL_V29_i2_p0660.pdf
	SJMAEL_V29_i2_p0672.pdf
	SJMAEL_V29_i2_p0685.pdf
	SJMAEL_V29_i3_p0699.pdf
	SJMAEL_V29_i3_p0712.pdf
	SJMAEL_V29_i3_p0731.pdf
	SJMAEL_V29_i3_p0752.pdf
	SJMAEL_V29_i3_p0774.pdf
	SJMAEL_V29_i3_p0796.pdf
	SJMAEL_V29_i3_p0826.pdf
	SJMAEL_V29_i3_p0838.pdf
	SJMAEL_V29_i3_p0850.pdf
	SJMAEL_V29_i3_p0855.pdf
	SJMAEL_V29_i3_p0870.pdf
	SJMAEL_V29_i3_p0895.pdf
	SJMAEL_V29_i3_p0927.pdf
	SJMAEL_V29_i3_p0954.pdf
	SJMAEL_V29_i3_p0972.pdf
	SJMAEL_V29_i3_p0982.pdf
	SJMAEL_V29_i3_p1007.pdf
	SJMAEL_V29_i3_p1025.pdf
	SJMAEL_V29_i4_p1051.pdf
	SJMAEL_V29_i4_p1065.pdf
	SJMAEL_V29_i4_p1083.pdf
	SJMAEL_V29_i4_p1101.pdf
	SJMAEL_V29_i4_p1120.pdf
	SJMAEL_V29_i4_p1147.pdf
	SJMAEL_V29_i4_p1171.pdf
	SJMAEL_V29_i4_p1181.pdf
	SJMAEL_V29_i4_p1191.pdf
	SJMAEL_V29_i4_p1218.pdf
	SJMAEL_V29_i4_p1242.pdf
	SJMAEL_V29_i4_p1247.pdf
	SJMAEL_V29_i4_p1267.pdf
	SJMAEL_V29_i4_p1281.pdf
	SJMAEL_V29_i4_p1297.pdf
	SJMAEL_V29_i4_p1322.pdf
	SJMAEL_V29_i4_p1343.pdf
	SJMAEL_V29_i4_p1363.pdf
	SJMAEL_V29_i4_p1382.pdf
	SJMAEL_V29_i4_p1389.pdf

